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Abstract

Human cancers are complex ecosystems composed of different types of cells. The diverse

populations of co-existing cells within the same tumor that have genetic, functional, and

environmental differences determine the tumor heterogeneity, which is one of the major

challenges facing cancer diagnosis and treatment. The aim of this thesis was to apply

different machine learning methods to classify single cell RNA-seq (scRNA-seq) samples

across nine different types of cancer. We observed that T cells are the most abundant

datasets in public repositories due to their important role in immunotherapies. For this

reason, we performed an in-silico analysis from scRNA-seq data available in the Gene

Expression Omnibus. A őrst approach was to analyze and characterize genetic T cell

signatures from őve different types of cancer and apply dimensionality reduction and clus-

tering methods to identify subpopulations from malignant and non-malignant datasets.

This analysis revealed that pathways related to immune response, metabolism and viral

immunoregulation were observed exclusively in samples of malignant origin. A second

approach was to perform two deep learning models to classify cells from nine different

types of cancer, where the cells were grouped in the diversity of the cell state, giving

us a new perspective in the different classes of tumors present in our dataset. Finally,

we observed that working with unsupervised methods, our data help us understand the

heterogeneity between tumors. Characterization of cellular diversity was associated with

pathways that play a key role in tumor proliferation, progression, and regulation of the

microenvironmental immune response.
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Chapter 1

Introduction

1.1 Motivation

Cancer is one of the leading causes of death world-wide and one of the most complex dis-

eases to treat [173]. The World Health Organization (WHO), indicates that late detection

and diagnosis are common in most reported cases, lung cancer being the most common

cause of death (1.76 million deaths), followed by colorectal (862 000 deaths), stomach (783

000 deaths), liver (782 000 deaths) and breast cancer (627 000 deaths). Diagnosis and

detection of the disease at an early stage is essential to increase the chances of survival

[155].

As a way of processing complex datasets, machine learning has been used for biological

research [25], to uncover underlying patterns, build models and make predictions with

general purpose approaches to learn functional relationships from the data [143, 107].

Applications include data analysis from genomics, proteomics, transcriptomics, medical

imaging, among others [7, 121, 215, 92, 195].

Deep learning (DL) methods have proven to signiőcantly outperform classical machine

learning methods in different tasks, making it the state-of-the-art solution in many őelds

[109, 77, 222, 76, 139]. DL models are based on neural networks that learn from the

data and are usually composed of numerous parameters subject to modiőcation. In order

to properly set these parameters, a large amount of data is required. In the case of

cancer analysis, the data may correspond to images or gene expression values. Over

the last couple of years, these types of data have shown a remarkable volume growth

[63, 133]. In terms of images, there are different technologies and strategies [53]. For

example, computer-aided detection (CAD) systems help to recognize patterns in images

that might be associated with abnormalities [27, 111]. Likewise, ultrasound imaging is

useful in cancer detection, characterizing lesions in different organs and tissues by using

1
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high-frequency sound waves that penetrate tissues in the body [95]. On the other hand,

magnetic resonance imaging (MRI) is highly sensitive at detecting tissue abnormalities.

Some of its applications include diagnosis, staging, personalized treatment, and treatment

monitoring. Thanks to all these advantages, images are the most common type of data

analyzed in cancer research [73, 191, 61]. When studying gene expressions, the data

correspond to hundreds of gigabytes or terabytes of DNA base pairs depending on the

sequencing technology employed [209, 183]. Genomic data commonly comes from next

generation sequencing (NGS) and DNA microarrays. One of the advantages of NGS

technologies is obtaining the gene expression level of different types of cancer. Thus,

contributing to the understanding of genetic differences and heterogeneity in cancer cells

and tissues [123, 71]. Single-cell RNA-seq (scRNA-seq) allows to obtain a full genetic

description of single cells in comparison with massive sequencing. However, scRNA-

seq contains more noise than the analysis of massive sequencing [198], due to a greater

ampliőcation of the genetic material and a smaller number of samples. Despite that,

methods aimed at reducing dimensionality and identifying subpopulations, as well as

clustering methods from machine learning, have improved the analysis to get reliable

single cell data [100].

However, using DL for cancer research is a big challenge because the input data in a

neural network can vary. Neural network architectures depend on the data available and

the question in need of an answer. The state-of-the-art solutions normally only focus on

one type of data. As for the learning process, it relies on the data and architecture used.

This thesis aims to use machine learning and deep learning to develop classiőcation models

to apply in single cell RNA-seq of different types of cancer that contains different labeled

and unlabeled cells important in the immune responses. Thus, the right classiőcation

and differentiation between the samples, can determine the important genes for cancer

prediction and subsequently a treatment.
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1.2 Contributions

This section presents the main contributions of the thesis.

• We integrate a large number of cells that come from different types of cancer and

with different interests of research, using the next-generation sequencing technology

scRNA-seq that helps us to understand the different cell populations and the rela-

tionship between genes from nine different types of cancer. No previous work has

integrated the amount of data that we used.

• We study some types of cancer in a unique way, such as glioblastoma. Where

we applied our unsupervised deep learning frameworks (autoencoder, variational

autoencoder and variational deep embedding) for scRNA-seq to infer the cell-type

in glioblastoma, but using different datasets. However we observed that even for

only one type of cancer it was complex to identify the cell types in an unsupervised

way, because they came from different experiments. This work was presented at the

EACR Bioinformatics in Cancer 2021 Conference (Virtual).

• We discovered a possible atlas for cell classiőcation by collecting information from

the state of the art and performing a semi-supervised machine learning model, it

was possible to identify the different cell types. This work was presented at the

Single-Cell RNA-seq 2020 Workshop, Earlham Institute, UK.

• We identiőed common genes across őve different types of cancer and compared to

non-malignant genes for each T cell subset to identify speciőc pathways. Exclusive

pathways in CD4+ cells, CD8+ cells and Tregs, and common pathways for the

tumor-inőltrating T cell subsets were identiőed. This research was presented at the

2018 Grace Hopper Celebration. Houston, Texas, USA.

Then, the identiőed pathways were compared with RNAseq and proteomic data ob-

tained from T cell subsets cultured under malignant environments and we observed

that cytokine signaling, especially Th2-type cytokine was the top overrepresented

pathway in Tregs from malignant samples.

We observed that previous data from the Molecular and Translational Immunology

Laboratory, have demonstrated an increment in Th2-like Tregs and Teff inőltrated
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subsets in melanoma [69], colorectal cancer [69] and oral cancer [52] in comparison

with inőltrated subsets from non-malignant tissues (Figure 1.1A). In addition, we

identiőed that Vitamin D signaling promotes these Th subset disbalance in oral can-

cer. This work was published in [52]. We then compared our RNAseq data obtained

from T-cells subsets cultured with malignant and non-malignant environments from

oral cancer and proteomic data from CD4-T cells cultured with Vitamin D with the

data obtained from the in-silico analysis of this thesis.

In total, 481 genes were obtained from the RNA-seq experiments. For CD4-T

cells, 218 common pathways were identiőed between scRNA-seq and RNA-seq data,

whereas for Tregs, 194 common pathways were identiőed. No CD8 were analyzed

for RNA-seq data. For proteomics, only CD4 T cells were analyzed. After analy-

sis, 1,692 proteins were found in the gene list obtained from the sc-RNAseq data,

resulting in 561 common pathways.

Signaling by interleukins, nucleotide-binding domain, leucine rich repeat containing

receptor (NLR), TRAF6 mediated NF-kappaB activation and Toll Like receptor cas-

cades were the top overrepresented common pathways in CD4-T cells (Figure 1.1B).

For Tregs, the data revealed that signaling by interleukins (IL-4, IL-13 and IL-1-

0), transcriptional regulation by TP53, interferon alpha/beta signaling, and Nerve

Growth Factor (NGF) stimulated transcription and NTRK were the top overrepre-

sented common pathways (Figure 1.1C). Finally, proteomic data revealed common

pathways such as cytokine signaling in immune system, interferon gamma signaling,

downstream TCR signaling, MHC class II antigen presentation, and PD-1 signaling

(Figure 1.1D). Overall these data support the observation of a preference of regu-

latory Th2-like cells in cancer, as previously described by us and others, and other

interesting pathways such as the recognition of bacteria and virus by NLR and TLR

signaling in CD4 and the NGF receptor tyrosine-kinase TrkA signaling in Tregs.

Therefore, we validated and observed common pathways for CD4-T cells and Treg

with our experiments, maintaining all the discoveries from the in-silico analysis

across different types of cancers (article submitted to Cancers journal).
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Figure 1.1: Pathways validation.
(A) Summary of T-cells in melanoma, colorectal cancer and oral cancer from our lab.

Scatter plot of (B) Common pathways between CD4-T cells and RNA-seq experiments.
(C) Common pathways between Treg and RNA-seq experimients. (D) Common

pathways between CD4-T cells and proteomic data.
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• By applying an unsupervised model to different scRNA-seq datasets, it is not possi-

ble to integrate all data if sequencing methodologies are not standardized. Therefore,

it must perform a separate analysis and then join the data.

• The biological results and methodology implemented were also useful in another re-

search. Such as to study mesenchymal stem cells in a type-2 Diabetes mouse model.

This work was published in [156]. Finally, other contribution was in the identiő-

cation of SARS-CoV-2 infections and reinfection, these studies were published in

[2, 11].
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1.3 Structure of the thesis

The thesis is organized as follows:

In Chapter 2: We expose the research carried out in the thesis, that is, the hypothe-

sis, general and speciőc goals, as well as the methodology, available resources, and

databases used.

In Chapter 3: We talk about the theoretical framework for machine learning and deep

learning needed to understand the remaining chapters.

In Chapter 4: We introduce analysis of tumor-inőltrating T cell across different types

of cancer supported by machine learning tools. Moreover, we show the results of

how we identiőed only T cells between others type of cells using machine learning

models for clustering.

In Chapter 5: We present machine learning and deep learning models to classify differ-

ent types of cells across nine type of cancer and how the cells are associated to the

tumor development.

In Chapter 6: We discuss the őnal conclusions and future work.



Chapter 2

Research conducted

2.1 Hypothesis

Machine learning and deep learning models based on gene expression proőles from different

types of cancer allow the characterization of the tumor heterogeneity by classifying the

different types of cells within the tumor and by identifying key genes in the malignant

environment.

2.2 Goals

2.2.1 General Goal

To develop machine learning and deep learning models based on gene expression from

single cell RNA-sequencing repositories from nine different types of cancer to classify

the different types of cells within the tumor and key genes supporting the malignant

environment.

2.2.2 Speciőc Goals

SG1 Develop a computational framework for a high dimensional gene expression data

integration from single cell RNA-sequencing repositories obtained from nine different

types of cancer.

SG2 Develop a classiőcation model for cell types (T, B, natural killers, macrophages,

mast, monocytes, dendritic, neutrophils, endothelial, őbroblast, myocytes, CAFs,

myeloid, myoőbroblast and epithelial) based on machine learning methods.

8
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SG3 Identify relevant genes in malignant samples and evaluate them with the gene on-

tology database1 to study the pathways associated to the development of cancer.

2.3 Methodology

To achieve the speciőc goals of this thesis, the following tasks were completed:

T1: Review and study the state-of-the-art of machine learning and deep learning appli-

cations in genomic data.

T2: Search datasets of scRNA-seq available in public repositories, that were performed

with similar experimental design from different types of cancer.

T3: Verify the quality of each sequencing library and perform a digital expression matrix

using transcripts per million (TPM) values as gene expression levels for all datasets

selected.

T4: Search common genes across all datasets and create a new matrix.

T5: Data exploration of relevant gene markers.

T6: Implement a model for dimensionality reduction and cell type clustering.

T7: Perform a pathway enrichment analysis of relevant genes and visualize how genes

are functionally grouped.

2.4 Available resources and databases

The Department of Computer Science of the Universidad de Concepción has the ade-

quate computing resources for the development of this thesis. It was performed in a

Linux platform, speciőcally Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-101-generic x86_-

64), mainly using the following programming languages: Python, C and R. The hardware

characteristics are:

• CPU cores: 16
1http://www.geneontology.org/
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• Architecture: x86_64 (64-bit)

• CPU model: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

• RAM: 64 GB

• Total space in disk used: 1,8 TB.

The main database used to obtain the datasets was the Gene Expression Omnibus

(GEO). It is a database for gene expression proőling and RNA methylation proőling

managed by the National Center for Biotechnology Information. These high-throughput

screening genomics data are derived from microarray or RNA-Seq experimental data

(https://www.ncbi.nlm.nih.gov/geo/).

To perform the pathway enrichment analysis we used the Gene Ontology Consortium

database (data-version from 2020-05-02) that provides structured, controlled vocabularies

and classiőcations that cover several domains of molecular and cellular biology and are

freely available for community use in the annotation of genes, gene products and sequences

[36].



Chapter 3

Theoretical framework

3.1 Machine Learning

Machine learning is a subset of artiőcial intelligence. It is deőned as a set of methods that

can detect patterns in data and use the uncovered patterns to predict future data, or to

perform other kinds of decisions [146]. Usually, machine learning is divided in supervised,

unsupervised and reinforcement learning.

Supervised learning: the goal is to learn a mapping from inputs x to outputs y, given

a labeled set of input-output pairs D = {(xi, yi)}Ni=1, where D is the training set and

N is the number of training set. The learner receives a set of labeled examples as

training data and makes predictions for all unseen points. Commonly, this scenario

is associated with classiőcation, regression, and ranking problems.

Unsupervised learning: the goal is to őnd interesting patterns in the data D = {xi}Ni=1.

The learner exclusively receives unlabeled training data, and makes predictions for

all unseen points. This scenario is associated with learning task such as clustering

and dimensionality reduction.

Reinforcement learning: the goal is to learn the optimal behavior in an environment

to obtain maximum reward. This optimal behavior is learned through interactions

with the environment and observations of how it responds. It differs from supervised

learning due to in reinforcement learning the agent decides what to do to perform

the given task, in the absence of a training dataset, learning from its experience.

11
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3.1.1 Supervised learning

Classification

In this process the goal is to learn a mapping from inputs x to outputs y, where y ∈
{1, ..., C} with C being the number of classes. When C = 2, it is a binary classiőcation,

and when C > 2, it is a multiclass classiőcation. In the classiőcation setting there are

a set of training observations (x1, y1), ..., (xn, yn) that can be used to build a classiőer

and this classiőer should perform well not only on the training data, but also on the test

observations [87].

Some common algorithms used for classiőcation are:

Decision Tree: the simplest description is a divide-and-conquer approach. This algo-

rithm is used to discover features and extract patterns in large datasets for dis-

crimination and predictive modeling. A decision tree is constructed by recursively

partitioning the feature space of the training set, őnding a set of decision rules that

naturally partition the feature space to provide an informative and robust hierar-

chical classiőcation model [147].

Random Forest: it is a ensemble1 classiőer that produces multiple decision trees, using

a randomly selected subset of training samples and variables. The trees are created

by drawing a subset of training samples with replacement, i.e., the same objects

can be selected several times, while others may not be selected at all. The decision

forest chooses the classiőcation, which has the most votes over all the trees in the

forest. If the number of instances in a dataset is N , almost 2/3 of the original

size is randomly selected through bootstrapping manner N times. The remaining

instances have been used as an out-of-bag set to be evaluated. The set of out-of-bag

are those observations that are not used to build the sub-trees, those have been

used for evaluating the error prediction. In the last two decades this classiőer has

performed excellent classiőcation results and speed of processing [13].

Gradient Boosting: it is an ensemble learning method, where each predictor tries to

improve on its predecessor by reducing the errors. Gradient boosting has three main
1An ensemble method is an approach that combines many simple building block models in order to

obtain a single and potentially powerful model.
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components: a loss function, weak learners and an additive model. The role of the

loss function is to estimate how good the model is at making predictions with the

given data. A weak learner is one that classiőes the data but does not perform well

on its own, perhaps no better than random guess, therefore, it presents a high error

rate. The additive model is an iterative and sequential approach of adding the trees

(weak learners) one step at a time. Thus, each iteration should reduce the value of

the loss function [146].

Naive Bayes: it is a probabilistic machine learning model used for classiőcation tasks

based on the Bayes Theorem. It assumes that the presence of one feature in a class

is independent of the other feature present in the same class. The Bayes theorem is

deőned as:

p(Cj|x) =
p(Cj)p(x|Cj)

p(x)
, (3.1)

where, Cj represent the possible outcomes or classes and x is the feature vector;

p(Cj|x) is the posterior probability of class Cj given the predictor x; p(Cj) is the

prior probability of class Cj; p(x|Cj) is the likelihood which is the probability of x

given we know it is from class Cj, and p(x) is prior probability of x predictor. Then,

a Bayesian classiőer generates a label L such as:

L = arg maxj∈{1,2,...,j}p(Cj)
n
∏

i=1

p(xi|Cj). (3.2)

In the learning process the known structure, class and conditional probabilities are

calculated using the training data, and then the values of these probabilities are

used to classify new observations [200].

k-Nearest Neighbor (KNN): it is a non-parametric2 classiőer that looks at a positive

integer of K points in the training set that are nearest to the test input x, counts

how many members of each class are in this set, and returns that empirical fraction

2Algorithms that do not make particular assumptions about the kind of mapping function are known
as non-parametric algorithms.



14

as the estimate [146]. KNN is deőned as:

p(y = c|x,D, K) =
1

K

∑

i∈Nk(x,D)

I(yi = c), (3.3)

where Nk(x,D) are the indices of the K nearest points to x in D (training data)

and I(e) is the indicator function deőned as follows:

I =







1 if e is true

0 if e is false.
(3.4)

Support Vector Machine (SVM): it is a discriminative (conditional) classiőcation

model that learns linear or nonlinear decision boundaries in the attribute space

to separate the classes. The objective of the algorithm is to őnd a hyperplane in

an N-dimensional space, where N is the number of features, that distinctly classiőes

the data points. When separating the two classes of data points, there are many

possible hyperplanes that could be chosen, therefore, it is key to őnd a plane that

has the maximum margin, i.e. the maximum distance between data points of both

classes [202].

Logistic Regression: it is a probabilistic discriminative model for classiőcation, which

directly estimates the odds of a data instance x using its attribute values. The idea

is to use a linear predictor, z = wTx+ b, to represent the odds of x as follows:

P (y = 1|x)
P (y = 0|x) = ez = ew

Tx+b, (3.5)

where, w and b are the parameters of the model and aT denotes the transpose of a

vector a. If wTx+ b > 0, then x belongs to class 1 since this probability is greater

than the probability of belonging to class 0; otherwise, x belongs to class 0. Logistic

regression uses a sigmoid function and works best on binary classiőcation problems,

although it can be used on multiclass classiőcation problems through the one versus

all method [202].

Most common metrics that have been used widely while evaluating a classiőcation
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model are:

Accuracy: it measures how often the classiőer correctly predicts. It is deőned as the

ratio of the number of correct predictions and the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

True positive rate (TPR) or recall or sensitivity: it is the probability that an ac-

tual positive will test positive.

TPR =
TP

TP + FN
(3.7)

True negative rate (TNR) or speciőcity: it is the probability that an actual nega-

tive will test negative.

TNR =
TN

TN + FP
(3.8)

False positive rate (FPR): it is the proportion of all negatives that still yield positive

test outcomes.

FPR =
FP

FP + TN
(3.9)

False negative rate (FNR:) it is the proportion of positives which yield negative test

outcomes with the test.

FNR =
FP

FP + TN
(3.10)

Precision: it is the ratio of True Positives to all the positives predicted by the model.

Precision =
TP

TP + FP
(3.11)

F-measure or F1-score: it is a single metric that combines both Precision and Recall.

The higher the F1 score, the better is the performance of the model. The range for

F1-score is [0,1].

F −measure =
2 ∗ Precision ∗Recall

Precision+Recall
(3.12)
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Area under the curve (AUC): is the measure of the ability of a classiőer to distin-

guish between classes. And a ROC curve (Receiver Operating Characteristic curve)

is a graph showing the performance of a classiőcation model. It is a way to visualize

the tradeoff between the True Positive Rate (TPR) and False Positive Rate(FPR)

using different decision thresholds (the threshold for deciding whether a prediction

is labeled łtruež or łfalsež) for the predictive model.

AUC =
1 + TPR− FPR

2
, (3.13)

where TP is true positive (correctly classiőed), FN is false negative, FP is false

positive and TN is true negative.

Regression

Regression is the process of őnding the correlations between dependent and independent

variables. In this scenario, the response variable is continuous. The task of the regression

algorithms is to őnd the mapping function to map the input variable X to the continuous

output variable y.

Some types of regression algorithms are:

Simple linear regression: it is a very straightforward approach for predicting a quanti-

tative response y on the basis of a single predictor variable X. It assumes that there

is approximately a linear relationship between X and y. It is deőned as y ≈ β0+β1X,

where β0 and β1 are two unknown constants that represent the intercept and slope

terms in the linear model.

Multiple linear regression: this approach depends on more than one variable. Using

more independent variables can improve the accuracy of the model, as long as the

variables are relevant to the problem. The multiple linear regression model takes

the form: y = β0 + β1X1 + β2X2 + ... + βpXp + ϵ, where Xj represents the jth

predictor and βj quantiőes the association between that variable and the response.

Polynomial regression: can be considered a special case of multilinear regression, in

which the data distribution is more complex than a linear one, i.e., the dependent
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variable X and the independent variable y are modelled as the nth degree polynomial

in X. It is deőned as: y = β0 + β1X1 + β2X
2
2 + β3X

3
3 + ... + βdX

d
i + ϵi, where ϵi is

the error term and d is the degree of the polynomial function.

Support vector regression (SVR): similar to the support vector machine (SVM) clas-

siőcation algorithm, it is an extension of the margin used to the regression setting,

where a hyperplane with maximum margin such that the maximum number of data

points are within the margin. SVR instead seeks for coefficients that minimize a dif-

ferent type of loss, where only residuals larger in absolute value than some positive

constant contribute to the loss function.

Decision tree regression: a decision tree is built by partitioning the data into subsets

containing instances with similar values. The standard deviation is used to calculate

the homogeneity of a numerical sample. If the numerical sample is completely

homogeneous, its standard deviation is zero. To avoid overőtting, the coefficient of

deviation is used, which decides when to stop branching and the average of each

branch is assigned to the related leaf node.

Random forest regression: it is an ensemble approach that takes into account the

predictions of several decision trees. First, the algorithm selects K random points,

then identiőes the number of decision tree regressors to be created. The average of

each branch is assigned to the leaf node in each decision tree. Finally, to predict

output for a variable, the average of all the predictions of all decision trees are taken

into consideration.

3.1.2 Unsupervised learning

Clustering

The goal of clustering is to divide data points into homogeneous groups such that the data

points in the same group are as similar as possible and data points in different groups are

as dissimilar as possible. Clustering algorithms are used to group data points based on

certain similarities, most common algorithms are [31]:

• Density-based: clustering separates data objects based on their regions of density,
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connectivity, and boundary. The clusters connect dense components, which can

grow in any direction that density leads to.

• Hierarchical: this method works grouping data into a tree of clusters, starting by

treating every data points as a separate cluster. Then, it repeatedly identify the

two clusters which can be closest together, and merge the two maximum comparable

clusters.

• Partitioning: this method classiőes the information in multiple groups based on the

characteristics and similarity of the data. Partitioning clustering requires a őxed

number of clusters to be speciőed a priori. It uses an iterative process to optimize

the cluster centers, as well as the number of clusters.

• Grid-based: the data space is divided into a őnite number of cells that form a grid-

like structure. The performance of this method depends on the size of the grid,

being insufficient for highly irregular data distributions.

• Model-based: clustering assumes that the data are generated by a mixture of un-

derlying probability distributions. This method can automatically determine the

number of clusters based on standard statistics.

• Evolutionary: this clustering approaches use genetic algorithms, such as particle

swarm optimization, and other evolutionary approach [4]. These are stochastic

methods and use an iterative process, starting with a random population of solu-

tions, which is a valid partition of data with a őtness value.

Dimensionality reduction

The curse of dimensionality refers to an exponential increase in the size of data needed

to populate the parameter space. As a solution to this problem, dimensionality reduction

is deőned as the transformation of high-dimensional data into a meaningful representa-

tion of reduced dimensionality. There are different advantages when using dimensionality

reduction, for example, many data mining algorithms work better if the dimensional-

ity or the number of attributes in the data is lower, as by doing this, it is possible to

eliminate irrelevant features and reduce noise. Another advantage is that a reduction of
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dimensionality can lead to a more understandable model because the model involves fewer

attributes. Other advantages are related to the time and memory required by the data

mining algorithm which reduced and to the data being more easily visualized [202].

Some techniques for dimensionality reduction are: feature selection methods, ma-

trix factorization, manifold learning and autoencoder methods. Matrix factorization is a

method that reduce a matrix into constituent parts that make it easier to calculate more

complex matrix operations [202]. The parts can be ranked and a subset of those parts can

be selected to represent the dataset. Manifold learning is used to create a low-dimensional

projection of high-dimensional data, often for visualization purposes, but preserving the

salient structure or relationship in the data [82]. Finally, autoencoders are deep neural

networks that perform dimensionality reduction, where a network model is used that seeks

to compress the data to a bottleneck layer with fewer dimensions than the original input

data (more details in next chapter).

Traditionally, dimensionality reduction was performed using linear techniques such as

Principal Components Analysis (PCA) [130], factor analysis [193], and classical scaling

[208]. PCA is a linear algebra technique for continuous attributes that őnd new attributes

(principal components) that are a combinations of the original attributes; are orthogonal

to each other, and capture the maximum amount of variation in the data. In mathe-

matical terms, PCA is a method that projects a dataset to a new coordinate system by

determining the eigenvectors and eigenvalues of the covariance matrix. It involves the

calculation of a covariance matrix of a dataset to minimize the redundancy and maximize

the variance. The covariance matrix is used to measure how much the dimensions vary

from the mean with respect to each other. With the covariance matrix, the eigenvectors

and eigenvalues are calculated and the eigenvalues are sorted in descending order. Thus,

the components are in order of signiőcance. The eigenvector with the highest eigenvalue is

the most dominant principal component of the dataset. Therefore, principal components

are calculated by multiplying each row of the eigenvectors with the sorted eigenvalues

[211].

Generally, dimensionality reduction helps in data compression by reducing features,

reducing storage, removing redundant features and noise, and tackling the curse of di-

mensionality. However, it may lead to some amount of information loss and sometimes
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accuracy can be compromised.

3.1.3 Reinforcement learning (RL)

This is similar to sequential decision problems, except that the reward for each state are

not known ahead of time, and the agent may not start out with a transition model. In

this sense, RL does not necessarily know what to expect as the outcome of each action it

executes. RL techniques can be classiőed in two main groups: active and passive.

Passive reinforcement learning

In passive RL, the agent’s policy π is őxed: in state s, it always executes the action π(s).

Its goal is simply to learn how good the policy is, learning the utility function Uπ(s).

Since the choice for each state are predetermined passive RL is not particularly useful for

letting an agent learn how it should behave in an environment, but it is useful for us to

learn as one step on the way to active RL.

This is operating under a stochastic environment, where a particular action executed

in a particular state does not always lead to the same next state. To learn the utilities

of these states under a őxed policy: (1) execute the policy a bunch of times, (2) at the

end of every run, calculate the utility for each state in the sequence, and (3) update the

average utility for each of the states we observed with our new data points.

Active reinforcement learning

An active agent must decide what actions to take. We want to learn utilities in order

to őgure out which actions are the best ones to choose. Our choices of actions are not

predetermined , making an active learner more powerful. Therefore, the agent attempts

to őnd an optimal policy by exploring different actions in the world. An important aspect

of active RL is the friction between maximizing the reward for a speciőc state and the

potential of learning new information. This is commonly known as the exploitation-

exploration trade off.
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3.2 Deep Learning

Neural networks are DL models that have gained attention during the last couple of

years [182]. These models were proposed in 1943 and are inspired by the structure of

neurons and how the brain learns [137, 65]. In 1957 Frank Rosenblatt [175] deőned the

perceptron as a system that illustrates the properties of intelligent systems in general.

A basic perceptron consists of one or more inputs, a processor, and a single output. It

contains inputs (usually given as a vector) and weights identiőed as w = (w1, ..., wn).

The input x = (x1, ...., xn) is linearly transformed by multiplying each element xi by

its corresponding weight wi and adding a constant factor b called the bias. This linear

transformation is called the pre-activation z and it is deőned as:

z =
n

∑

i=1

wixi + b = wTx+ b (3.14)

For the perceptron to work as a non-linear model an activation function is applied to

z, denoted by σ, producing an activation denoted by a = σ(z). The original idea for this

activation was to emit an impulse or not depending on the value of z. A step function

can be used for this purpose:

σ(z) =







1 if z ≥ 0

0 if z < 0.
(3.15)

when z is greater than or equal to 0 the output is 1, otherwise is 0. For a single neuron

the mathematical model is deőned as:

a = σ(wTx). (3.16)

Figure 3.1a shows the mathematical model of the perceptron, that receives n inputs

and outputs the activation a. A nonlinear activation function turns the perceptron into a

non-linear model. The learning goal is to őt the weights w and bias b according to some

objective function to be optimized.

Just as with biological neurons, neural networks are modeled as layers of neurons con-

nected to each other, where the connections are deőned in terms of the weights. Multilayer
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Figure 3.1: Neural networks model.
a. Perceptron model and its components: inputs (x1...xn), weights (w11...wnm), activation
function (σ) and output (a). b. Simple neural network, with one hidden layer. c. Deep
neural network with multiple hidden layers.



23

perceptrons (MLPs), also referred to as feedforward neural networks, are artiőcial neural

networks in which the connections between units do not form a cycle [59]. In a basic

neural network architecture, every input unit is connected to every output unit. However,

specialized networks have fewer connections, to reduce the number of parameters and the

computational cost. Figure 3.1b shows a simple neural network with n inputs, a single

hidden layer and an output layer that predicts y. Figure 3.1c represents a deep neural

network with a similar structure that includes more hidden layers.

In 1960, the Back Propagation Model was proposed in the context of control theory

[93], and later in 1961 the model was used with principles of dynamic programming

[20, 45]. However, in 1980, the artiőcial neural network increased its popularity when

Fukushima [54] proposed a multilayered artiőcial neural network for pattern recognition

tasks.

Feedforward neural networks propagate the information from the input through each

hidden unit in each layer to produce an output, a process known as forward propagation.

The network parameters are usually adjusted by minimizing a loss function using gradient

methods such as stochastic gradient descent [40, 6]. Backpropagation, is used to efficiently

compute the gradients of the loss function [24, 109, 178, 58, 59].

A comparison between this model and the biological neurons can be made. The inputs

of each artiőcial neuron are associated to the dendrites and the weights, to synapses. The

activation of this function will depend on the stimulus received.

3.2.1 Activation functions

Each neuron computes a linear transformation of its input. The output of the neuron is

the result of applying an activation function to such linear transformation. Examples of

activation functions are shown in Table 3.1 and Figure 3.2.

Linear or identity function: it is a simple identity function f(x) = x, which linearly

transforms the input into the output. Its range and domain are equal to [−∞; +∞].

Linear functions generate non-binary values. If only linear activation functions are

used through the network, the neural network model is equivalent to a simple linear

transformation of the input.
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Figure 3.2: Activation functions.
Shape of a. Linear, b. Hard sigmoid, c. Hiperbolic tangent, d. SoftSign, e. Rectiőed
linear unit, f. Leaky ReLU, g. Thresholded ReLU, h. ELU, i. SELU, j. Softplus, and
k. Softmax activation functions.
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Table 3.1: Activation function summary.

Function Equation

Linear f(x) = x

Hard sigmoid f(x) = max
(

0,min
(

1, (x+1)
2

))

Hiperbolic tangent tanh(x) = ex−e−x

ea+e−x

SoftSign f(x) = x
1+|x|

Rectified linear unit f(x) = max(0, x)

Leaky ReLU f(x) = αx+ x =

{

x, if x > 0

αx, if x ≤ 0

ELU f(x) =

{

x, if x > 0

α(ex − 1) if x ≤ 0

SELU f(x) = λ

{

x, if x > 0

α(ex − α) if x ≤ 0

Softplus f(x) = log(1 + ex)

Softmax f(x) = eai∑
j e

aj

Logistic sigmoid function: this function returns values ranging from 0 to 1. It is a non-

linear activation function that gives an ‘S’ shaped curve (hence the name sigmoid).

The function is differentiable i.e., the slope of the sigmoid curve can be calculated

at any two points [70]. One of its advantages is that it produces the ϕ parameter of

a Bernoulli distribution, generating a value from 0 to 1 although its derivatives are

closer to 0 for small or large inputs.

Hard sigmoid: it is a linear approximation of the sigmoid function. The range in this

case is equal to 0 for an input between (−∞,−2.5), increasing linearly from 0 to 1

for an input between [−2.5, 2.5] and being equal to 1 for an input between (2.5,+∞).

The advantage of this function over the logistic sigmoid function is that hard sigmoid

is faster to compute, as there is no need to calculate exponential functions. However,

the derivative of this function is not continuous and is 0 for input values below -2.5

or higher than 2.5 [37].

Hyperbolic tangent: this is a sigmoid function ranging from -1 to 1. Generally, it is

used for categorizing two classes. The tanh function is also sigmoidal (‘S’-shaped),

but the range is between (-1 to 1). This is an advantage compared to the sigmoid

function because of its steeper derivative, which makes it more efficient in a wider
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range for faster learning and grading. The negative inputs are mapped strongly

negative and the zero inputs are mapped near zero in the tanh graph. It is a

differentiable and monotonic function, but it is not derivative [15].

SoftSign: this is a sigmoid function with range (-1, 1) that converges polynomially as

opposed to the tanh function, which converges exponentially.

Rectiőed linear unit (ReLU/ELU): this function behaves linearly for positive values

in the domain preserving many properties of linear models. It truncates negative

values to zero which is why its range is (0,+∞). ReLUs accelerate the convergence

of stochastic gradient descent and do not activate all the neurons at the same time.

Returning zero for negative values causes the function to be non-differentiable at

the origin [149, 129].

Leaky ReLU: this function is a variant of the ReLU, the difference is that it introduces

a small negative slope to the normal ReLU, that helps updating the weights during

the backpropagation process. By introducing an α parameter, the gradients do not

turn into zero during training. The range for this function is (−∞,+∞).

Thresholded ReLU: another variant of ReLU, that is activated only if the input is

above some threshold speciőed by the user. In this sense, the output is 0 for x < θ,

and equal to x if x ≥ θ [103].

Exponential Linear Unit (ELU): this is another variant of the ReLU, generally used

to accelerate the training of neural networks. It outputs a linear value for non-

negative inputs but uses a monotonically increasing function for negative values.

The goal of ELUs is to push the mean unit activation closer to 0. This reduces the

computational complexity and improves the learning speed thanks to a more robust

representation and a better generalization when compared to regular ReLUs and

Leaky ReLUs. At the same time, ELUs solve the vanishing gradient problem by

using the identity for positive values and an α parameter that controls the saturation

point for negative inputs [34].

Scaled Exponential Linear Unit (SELU): it is another variant of ReLUs. This acti-

vation function scales positive and negative values. Its activation converges toward
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Table 3.2: Loss functions summary

Function Equation

Mean Absolute Error or L1 S =
∑n

i=1 |yi − ŷi|
Mean Squared Error or L2 S =

∑n
i=1(yi − ŷi)

2

Cross entropy S = − 1
n

∑n
i=1[yilog(ŷi) + (1− yi)log(1− ŷi)]

Hinge loss Hinge loss =
∑

imax(0, 1− yi ∗ hθ(xi))
Kullback-Leibler Divergence DKL(p||q) = Ex∼p

[

log p(x)
q(x)

]

= Ex∼p [log p(x)− log q(x)]

zero mean and unit variance when propagated through multiple layers during net-

work training, thus learning robust features. Another advantage is that SELUs are

not affected by vanishing and exploding gradients [101].

Softplus: since it represents a smooth approximation of the ReLU, it is also known as

SmoothReLU. Softplus produces outputs between (0, +∞) [47]. An advantage of

Softplus is that it improves the model performance with fewer epochs needed to

converge during training.

Softmax: commonly used in the őnal layer of a network designed for multiclass classiő-

cation problems. It represents the probability distribution of a categorical variable

over n different classes by assigning decimal probabilities to each class, which add

to 1 [59].

3.2.2 Loss function

When training a neural network, a loss function is minimized. This loss measures the

quality of a set of parameters for solving the task the neural network was designed for.

There are different loss functions according to the type of problem that must be ad-

dressed. Below we describe a set of commonly used loss functions and Table 3.2 shows

their corresponding equations [88].

Mean Absolute Error or L1 loss function: used to minimize the absolute differences

between the target value (yi) and the estimated values (ŷi).

Mean squared error or L2 loss function: used to minimize the squared differences

between the target value (yi) and the estimated values (ŷi).
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Cross entropy loss: it measures the performance of a probabilistic classiőcation model

and increases as the predicted probability diverges from the ground truth label.

Hinge loss: used for binary classiőcation. The hinge function is a convex surrogate loss

function for the 0-1 loss and it is the basis of the widely-used support vector machine

model.

Kullback-Leibler Divergence (KL Divergence): is a measure of how one probabil-

ity distribution differs from a baseline distribution. A KL divergence loss of 0 sug-

gests that the distributions are identical. It calculates how much information would

be lost if the predicted probability distribution is used to approximate the desired

target probability distribution. The KL divergence can be used for multi-class clas-

siőcation, in which case it is functionally equivalent to multi-class cross-entropy.

Table 3.2 shows the equation for two separate probability distributions p(x) and

q(x) over the same random variable x.

3.2.3 Gradient descent

Gradient descent (GD) is used to minimize an objective function J(θ) parameterized by

the parameters of the neural network θ. For functions with multiple inputs, GD uses

the gradient of J (vector that contains all the partial derivatives of J with respect to θ

denoted as ▽θJ(θ)) to update the parameters iteratively in the direction of the steepest

descent. This is achieved by following the negative of the gradient as shown in Figure 3.3

[19].

Gradient descent present variants that differ in how much data is used to compute the

gradient of the objective function. Due to the limited amount of data, in practice GD can

be performed in different ways as described below:

Batch gradient descent: it computes the gradient of the cost function to the parame-

ters θ for the entire training dataset. The size of the steps is known as the learning

rate η and it deőnes how much the parameters opposed to the gradient at itera-

tion t should be moved in order to advance towards the minimum. Parameters are

updated by

θt+1 = θt − η · ▽θJ(θ)|θt (3.17)
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Figure 3.3: Gradient descent.
Example of how gradient descent uses the derivatives to reach the global minimum.

Batch gradient descent is computationally efficient since it produces a stable error

gradient and convergence. It will converge to the global minimum if the loss function

is convex and may converge to a local minimum if the loss function is non-convex.

However, it might be impractical for large datasets given that batch gradient descent

needs to calculate the gradients of the loss function for all the data. Similarly, it

has been shown that batch gradient descent has a slow convergence when compared

to the other methods described below [177].

Stochastic gradient descent (SGD): this variant performs a parameter update for

each training example xn and label yn, and learning is performed for every example:

θt+1 = θt − η · ▽θJ(θ
t;xn; yn) (3.18)

Generally, it is used to learn online and faster given that SGD performs one update

at a time and with a high variance that causes the objective function to ŕuctuate

[19]. In spite of ameliorating the model due to its frequent updates, SGD increases

the run time which renders it computationally expensive. A disadvantage is that this

algorithm may converge to a local minimum and present a high variance, without

reaching the global optimal result.

Mini-batch gradient descent: this is a combination of two types of gradient descent:

batch and stochastic. Mini-batch gradient descent is useful technique that splits the
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training dataset into small batches and implement GD on each batch one after the

other. It performs an update for every mini-batch of n training examples, deőned

as:

θt+1 = θt − η · ▽θJ(θ
t; {xn, yn}n∈Mm

), (3.19)

where Mm corresponds to the set of indexes of the m mini-batch. This allows a

variance reduction in the parameter updates. Usually the batch size is a power of

2 achieving better run time than common batch sizes. Mini-batch gradient descent

also helps avoiding local minima while converging at a higher speed than batch

gradient descent since it uses less examples. All of this results in a more stable

convergence while getting closer to the global minimum [177, 117].

Setting parameters and choosing a proper learning rate can be a challenging task.

Therefore, different gradient descent variants have been proposed to improve the learning

performance. These optimizers work by modifying the learning rate component, the

gradient component or both [59]. Some examples are [177]:

Momentum: this method proposed in 1999 [169] was designed to accelerate learning and

primarily aims at solving the poor conditioning of the Hessian matrix and variance

in the stochastic gradient. Momentum adds a fraction γ of the updated vector of

the past time step vt−1 to the current update vector vt, as shown in Equation 3.21:

vt = γvt−1 + η▽θJ(θ), (3.20)

θ = θ − vt. (3.21)

Nesterov Accelerated Momentum [150]: the difference with the standard momen-

tum method resides in the moment in which the gradient is evaluated after the

current velocity is applied. The idea is to look at a point to which current momen-

tum is pointing and compute gradients from that point. In Equation 3.23 computing

θ − vt−1 give us an approximation of the next position of the parameters.
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vt = γvt−1 + η▽θJ(θ − γvt−1) (3.22)

θ = θ − vt (3.23)

AdaGrad (Adaptive gradient) [128]: is an algorithm where the learning rate is ad-

justed separately for each parameter on each step. It modiőes individual learning

rates keeping the sum of squares of parameter-wise gradients. When gradient change

is small, the learning rate is slightly affected by the algorithm and it moves towards

the optimum faster. When the gradient is large the learning rate further decreases

as deőned in Equation 3.24:

θt+1 = θt −
η√

Gt + ϵ
· ⊙gt, (3.24)

where gt is the gradient at time t, Gt is a diagonal matrix where each diagonal

element contains the sum of the squares of the gradients with respect to the network

parameters θ at time t, ϵ is a small constant that avoids division by zero, and ⊙ is

the matrix-vector product. Notice that by performing this operation, the learning

rate now is scale differently for each parameter and is inversely proportional to the

square root of Gt.

RMSprop (Root Mean Square Propagation) [145]: this method uses an adapta-

tive learning rate that modiőes AdaGrad to perform better in a nonconvex setting.

It works dividing the learning rate for a weight by a running average of the magni-

tudes of recent gradients for that weight.

vt = γvt−1 + (1− γ) · (▽θJ(θ))
2, (3.25)

θ = θ − η√
vt + ϵ

▽θJ(θ), (3.26)

where γ is a hyperparameter that weights the contribution of vt−1 and the square

of the gradient to vt, and ϵ is a small constant that avoids division by zero.
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Adam (Adaptive Moment Estimation) [97]: computes adaptive learning rates for

each parameter. It is considered to be a combination of momentum and RMSProp

that, besides using the decaying average of past squared gradients for parameter-

speciőc learning rates, it also employs a decaying average of past gradients in place

of the current gradient. Formally it is shown in Equation 3.27:

θt+1 = θt −
η√

v̂t + ϵ
m̂t, (3.27)

where v̂t and m̂t are actually bias-corrected averages to ensure that the values are

not biased towards 0.

Other examples of gradient descent optimization algorithms are: AdaDelta [224],

AdaMax [97], Nadam [116], AMSGrad [216] which are variations of the algorithms ex-

plained above.

3.2.4 Regularization

An important desired feature of deep learning models is their ability to predict with

low error both on the data used for training, and on new data unseen by the model.

This ability to generalize is often achieved by regularization techniques. Goodfellow et

al., [59] deőned regularization as łany modiőcation we make to the learning algorithm

that is intended to reduce the generalization error, but not its training errorž. Different

strategies are used to reduce the test error and maintain accuracy. As artiőcial neural

network models are usually composed of many parameters, they tend to overőt to the

training data, but not predict correctly on unseen data.

Some of the most common strategies for regularization are:

L1 and L2 regularization: these are commonly known as weight decay, and modify

the general cost function by adding a łregularization term". These terms force

the model to obtain small value for their parameters, hence, diminishing the its

complexity and therefore reducing overőtting.

L1 penalizes the absolute value of the weights and tends to drive some weights to

zero. It is also known as Lasso regression, and it is deőned as in the Equation 3.28:
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J̃(x, y) = J(x, y) + λ
∑

i

|θi|, (3.28)

where J(x, y) is the error and λ is the regularization parameter.

L2 regularization penalizes the square value of the weights and tends to drive all

the weights to smaller values [151], as deőned by the Equation 3.29:

J̃(x, y) = J(x, y) + λ
∑

i

θ2
i , (3.29)

where J(x, y) is the error and λ is the regularization parameter.

Dropout: regularization strategy that at each training iteration randomly selects some

nodes and removes them from the network including its connections. Dropout can

be applied to hidden or input layers. Each iteration has a different set of nodes

and őnally different set of outputs, producing a more robust model by avoiding

co-adaptation. The probability of choosing the number of nodes to be dropped

is a hyperparameter of the function. Dropout is equivalent to sampling from an

exponential number of networks which helps reducing overőtting [194].

Data augmentation: using as much data as possible to train the network helps the

model to generalize better. However, data is limited and this is why synthetic data

with similar-to-real-data variations is created for some machine learning problems.

Data augmentation is a method that increase the dataset size as a data-space so-

lution for limited data problem. It has been effective for classiőcation problems,

especially for object recognition [59]. Moreover, it has been applied to images [165]

and speech recognition tasks [86] with satisfactory results.

Early stopping: when training deep neural networks using GD methods, the model őts

the data iteratively. During the őrst learning steps GD improves the performance

of the model for data outside the training set, but after a point, it starts overőtting

to the training data. Early stopping works by keeping a subset of the training

set as the validation set and then interrupting the training procedure when the

performance on the validation set worsens. Under this strategy it is possible to get
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models with better validation set error and therefore, a better generalization error,

as the validation set was not used to őt the parameters [220].

3.2.5 Neural network architectures

Convolutional Neural Network (CNN): This architecture is a neural network for

processing data that has a known grid-like topology (e.g. images). This network

employs convolutions which are a specialized kind of linear operation. A typical

CNN network has three main types of layers: Convolutional Layers, Pooling Layers

and Fully-Connected Layers [48]. The convolutional layer is the core building block

of this type of network, and does most of the computational heavy lifting. The

element responsible for carrying out the convolution operation in the őrst part of

the convolutional layer is called the Kernel/Filter (K). The goal of this operation

is to extract the high-level features from the input [1]. Pooling layers are in charge

of reducing the spatial size of the convolved feature and extracting dominant fea-

tures [104]. A pooling function replaces the outputs of the network at a certain

location with a summary statistic of the nearby outputs [55]. Max Pooling layers

are commonly used. They output the maximum within a rectangular neighborhood

[148]. Other pooling functions calculate the average of a rectangular neighborhood

(average pooling) [225]. Convolutional and pooling layers are usually combined in a

CNN architecture which is then fed to a fully-connected architecture used to learn

the prediction task from the high-level features as represented by the output of the

convolutional architecture [46]. Figure 3.4a shows a visual representation of these

networks and how they work. First square represents the input. The following two

columns represent the convolutional and pooling layers (i.e. the convolutional archi-

tecture) followed by a hidden fully connected layer before the output (last column

with three outputs).
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CNNs are a good architecture for processing spatial information for 2D and 3D

images, given that digital images store pixel values in a two-dimensional grid of

data to which convolutions can be naturally applied [219]. The kernel is a multidi-

mensional array of parameters that is directly learned from the data working as an

optimized feature extractor that is applied in each position of the image. Among

all the types of cancer studied, this is the most used architecture (77.5%) in the

analysis of medical images.

Some variations of this architecture are: Spatially Constrained Convolutional Net-

work (SC-CNN) [192], Multiresolution Convolutional Network (MR-CN) [115], Fully

Convolutional Network (FCN) [122], among others.

Recurrent Neural Network (RNN): RNN are a type of neural network meant to

analyze sequential data. They operate over sequences of vectors, and their structure

includes cyclic connections. They differ from other neural networks in that they

possess a circuit involving hidden to hidden recurrences which serves as temporal

memory for the networks [142]. Figure 3.4b shows a graph of this network with a

recurrent hidden state (curve arrow). A simple recurrent network is modeled by:

h(t) = g(b+ Uht−1 +Wxt), (3.30)

o(t) = c+ V h(t), (3.31)

where t is the time step, W represent the weights connecting the hidden units ht

and the input units xt, and V represent the weights connecting the hidden units ht

with the output units ot; b and c are the offsets of the hidden and output layers; g

is the activation function and U represents the weights connecting hidden units at

time t− 1 to hidden units at time t.

Generative Adversarial Networks (GAN): These networks are generative models

that aim at simulating data that follow the same distributrion as the real data.

GANs make use of two adversarial models: a generative model G that captures the

data distribution given a random input variable z, and a discriminative model D

that estimates the probability that a sample came from the training data rather
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Figure 3.4: Visualization of neural networks architecture.
First and last columns at each sample represent input and output, and colored sky-blue
dots represent hidden layers. (a) Convolutional neural network (CNN) the convolution
is performed on the input with the use of a őlter or kernel to then produce a feature
map. Pooling layers are added to reduce the number of parameters and computation
in the network. The last layers are fully connected layers that have full connections
to all the activations in the previous layer including the output. (b) Recurrent neural
network (RNN) in this network the information cycles through a loop. When it makes a
decision, it takes into consideration the current input and also what it has learned from
the inputs it received previously. (c) Generative Adversarial Network (GAN) is composed
of a generator and a discriminator. The input for the generator is a noise source and the
discriminator takes as inputs real and generated examples, to őnally distinguish between
the two sources (real/fake). (d) Autoencoder (AE) this network works by compressing
the input into a latent-space representation, and then reconstructing the output from this
representation.
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than G. Thus, D tries to discriminate samples as accurately as possible, while G

tries to generate data that the discriminator is not able to correctly distinguish as

non-real [60].

To deőne how a GANs work, it is necessary to consider three distributions:

• pz(z): distribution of the noise input z,

• pg(x): the distribution over the generated data, and

• pr(x): distribution of the real data x.

To ensure the decisions of discriminator D over real data are accurate we maximize

Ex∼pr(x)[logD(x)]. At the same time, given a fake sample G(z), for z ∼ pz(z), the

discriminator is expected to output a probability, D(G(z)), close to zero by max-

imizing Ez∼pz(z)[log(1 − D(G(z)))]. As for the generator, it is trained to increase

the chances of D producing a high probability for a fake example, thus to mini-

mize Ez∼pz(z)[log(1 − D(G(z)))]. Therefore, the function to be maximized by the

discriminator and minimized by the generator is:

V (D,G) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

= Ex∼pr(x)[logD(x)] + Ex∼pg(x)[log(1−D(x)].
(3.32)

A visualization of how these networks work is depicted in Figure 3.4c where the

architecture is composed of two networks: a generator and a discriminator (hidden

layers). The generator generates data, and the discriminator uses sample and real

data to classify data in generated or real.

AutoEncoder (AE): This neural network is trained to encode its input into a latent

embedded space and reconstruct from this embedding a representation as close as

possible to the input. The architecture may be viewed as an encoding function and a

decoder that produces a reconstruction [14]. For input data xi these networks learn

an encoder function f and decoder function g such that the output ri = g(f(xi))

is similar to xi. An autoencoder is trained by minimizing a loss function that aims

at measuring the difference between xi and ri, such as L(xi, ri) = ∥xi − ri∥2.
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Usually, the embedding space is smaller than the input, obtaining a compressed

representation of the data and learning correlations which facilitate tasks such as

classiőcation, visualization, communication and storage of the data [78]. Figure 3.4d

shows a general structure of an AE where the dimensionality of the input is the same

as the dimensionality of the output, and the decoder creates a reconstruction of the

input from the hidden layer.

Some examples of AE architectures are: denoising autoencoder (DAE) [213, 96],

and stacked denoising autoencoder (SDAE) [214, 124] or deep autoencoder [78],

among others. The őrst one, is an AE that receives a corrupted data point as input

and is trained to recover the original undistorted data as its output; the second

one is a DAE with multiple hidden layers; and őnally, the third one is composed of

two symmetrical networks that have shallow layers constituting the encoder and a

second set of layers used as a decoder.



Chapter 4

Analysis of tumor-inőltrating T cell across different types of

cancer supported by machine learning tools

Cancer is derived from our own cell, and the immune responses for cell growth present

a big challenge. However, genetic engineering of T cells1 can be used therapeutically

to overcome the challenges. The importance of T cells can be due to it can be modiőed

with genes encoding receptors that recognize cancer-speciőc antigens, also several hundred

billion T cells reside in our lymphoid tissues and circulate through the bloodstream to

detect and destroy diseased cells.

Single cell proőling (scRNA-seq2) has enabled high resolution mapping of cellular het-

erogeneity, development, and activation states in diverse systems. This approach has been

applied to analyze human T cells in diseased tissues and in response to immunotherapies

in cancer, for this reason we selected this type of data for our analysis.

CD8+ and CD4+ T cells play a key role in cellular immune responses against cancer by

cytotoxic responses and effector lineages differentiation, respectively. These subsets have

been found in different types of cancer; however, it is unclear whether tumor-inőltrating

T cell subsets exhibit similar transcriptome3 proőling across different types of cancer in

comparison with healthy tissue-resident T cells. Thus, in this section, the aim of this

study was to analyze the single cell transcriptome of tumor-inőltrating CD4-T, CD8-T

and Tregs (subpopulations of T cells) obtained from different types of cancer to identify

speciőc pathways for each subset in malignancy. An in-silico analysis was performed from

scRNA-seq data available in public repositories (Gene Expression Omnibus) including

1T cells are part of the immune system and develop from stem cells in the bone marrow. They help
protect the body from infection and may help fight cancer. Also called T lymphocyte and thymocyte.

2Single-cell sequencing is a next-generation sequencing (NGS) method that examines the genomes or
transcriptomes of individual cells, providing a high-resolution view of cell-to-cell variation.

3A transcriptome is the full range of messenger RNA, or mRNA, molecules expressed by an organism.
The term can also be used to describe the array of mRNA transcripts produced in a particular cell or
tissue type.

39
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breast cancer, melanoma, colorectal cancer, lung cancer and head and neck cancer. After

dimensionality reduction, clustering and selection of the different subpopulations from

malignant and non-malignant datasets, common genes across different types of cancer

were identiőed and compared to non-malignant genes for each T cell subset to identify

speciőc pathways. Our data revealed that tumor-inőltrating T cells exhibit 38 exclusive

pathways in CD4+ cells, 72 exclusive pathways in CD8+ cells and 100 exclusive pathways

in Tregs. In addition, we also identiőed 31 common pathways for the three T cell subsets

in malignant tissues, including viral infection and metabolism. In summary, our analysis

allowed to integrate a large amount of data using machine learning in order to identify

common genetic T cell signatures across different types of cancers. Therefore, potential

immunomodulatory therapies associated with these pathways could be applied to different

types of tumors.

4.1 Related work

The main role of the immune system is to protect the body against infections and abnormal

cell growth. One of the main players in the recognition of pathogenic antigens or neoplastic

transformation are T-lymphocytes. This subset has been shown to be involved in the

regulation of the immune response by operating both cellular and humoral immunity

[204]. T-lymphocytes can be divided into two main subpopulations, CD8+ cytotoxic T-

and CD4+ helper T cells. CD8-T cells are characterized by inducing cell-mediated lysis

during viral infection and malignancy [138, 51]. On the other hand, CD4-T cells play an

important role in the adaptive immune system by inducing a regulated effective response

to pathogens, associated with a cytokine proőle and the modulation of other subsets such

as macrophages, B cells and NKs [105, 125]. CD4-T cells can be divided into effector

T-helper lineages such as Th1, Th2 and Th17 and regulatory T cells (Tregs). Tregs are

a subpopulation of CD4-T cells that maintain self-tolerance and modulate the immune

system by controlling pro-inŕammatory responses via different suppressive mechanisms

[69].

In cancer, the cytotoxic responses from CD8-T cells and effector Th1 and Th17 cells

have been considered protective in terms of tumor development [157]. By contrast, the

presence of Th2 and Tregs has been associated with bad prognosis [110, 21]. The balance
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between these effector and regulatory responses can be affected by cancer cells that pro-

mote phenotypic changes [170, 66] and migration [85] of regulatory subsets that inhibit

anti-tumor pro-inŕammatory responses. Therefore, it is crucial to identify whether Tregs,

CD4-T and CD8-T cells surrounding tumors exhibit a common speciőc genetic signature

in comparison with tissue-resident T cell subsets from healthy volunteers across different

types of cancer. This information will lead us to the mechanism by which the tumors

command Tregs, CD4-T and CD8-T signaling pathways as well as the identiőcation of

potential speciőc responses aimed at predicting the efficacy of clinical therapies for cancer

treatment [230, 197].

During the last decades, the former T cell subsets have been identiőed with the ana-

lytical method of ŕow cytometry by using ŕuorescent-labelled antibodies against proteins

such as CD3, CD8, CD4, CD25, CD127 and FOXP3 [84]. This technique is widely used

in clinical samples for the monitoring of these cells in cancer immunotherapies [179, 171].

However, nowadays, novel genetic sequencing techniques have allowed the identiőcation

of T cells based on their genetic signature, including the same markers classically used

in ŕow cytometry. It has been shown that the identiőcation of T cells by scRNA-seq can

provide not only the identiőcation of these cells, but also new biological pathways related

with their function [56, 203].

scRNA-seq allows to obtain a full genetic description of single cells in comparison

with massive sequencing. However, scRNA-seq contains more noise than the analysis of

massive sequencing [198], due to a greater ampliőcation of the genetic material and a

smaller number of samples. Despite that, methods aimed at reducing dimensionality and

identifying subpopulations, as well as clustering methods from machine learning, have

improved the analysis to get reliable single T cell data [100].

Common machine learning methods have been applied to scRNA-seq data in order to

reduce their dimensionality and identify subpopulations. Such methods include Princi-

pal Component Analysis (PCA) [10] which aims at reducing the data dimensionality by

calculating a transformation of the data into a set of linearly uncorrelated values called

principal components. PCA is a simple and very useful tool for examining heterogeneity in

scRNA-seq data [166, 118, 176]. Recently, t-distributed stochastic neighbor embedding (t-

SNE), has also been applied to dimensionality reduction in scRNA-seq data [206, 136, 57].
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t-SNE is a stochastic method for dimensionality reduction originally aimed at visualizing

high dimensional data. It is a non-linear dimensionality reduction technique that őnds a

lower dimensional space in which similar objects are close and dissimilar objects are dis-

tant with high probability [72]. Clustering techniques can then be applied to the reduced

dimensionality space in order to őnd groups of similar cells [100].

In this study we have analyzed publicly available scRNA-seq data from CD4-T, CD8-

T and Treg cells isolated from melanoma [206, 114], breast [9, 32], lung [199, 68], col-

orectal [228] and head and neck [168] cancer. We identiőed common genes between

tumor-inőltrating T cell subsets. We compared these genes with the genetic proőle of

the same non-malignant tissue resident subsets. For malignant-related T cells subsets,

results showed that 652 genes in CD4-T, 69 genes in CD8-T cells and 557 genes in Treg,

were common between the different tumors, but different from genes from non-malignant

samples. In terms of pathway analysis, speciőc gene discrimination between malignant

and non-malignant samples revealed unique immune response pathways in CD4-T, CD8-T

and Tregs associated with metabolism and immunoregulation. Altogether the datasets

analysis revealed that tumor-inőltrating T cell subsets exhibit similar and unique genetic

signatures across different types of cancer in comparison with tissue resident subsets.

4.2 Our Approach

4.2.1 Data collection and pre-processing

Data collection from previous scRNA-seq expression proőles from malignant and non-

malignant cells were included in the analysis. In some cases, non-malignant samples were

obtained from the adjacent normal tissues. We selected scRNA-seq data from isolated

cells from breast (GSE114727 and GSE75688), lung (GSE126030 and GSE99254), col-

orectal (GSE108989), melanoma (GSE72056 and GSE123139), and head and neck cancer

(GSE103322). The datasets were obtained from the Gene Expression Omnibus (GEO)

repository and all of them were sequenced on Illumina HiSeq2500/HiSeq4000 or Illumina

NextSeq 500 (Homo sapiens) with a similar experimental design. We veriőed the quality

of each sequencing library with FastQC [5], a software package that estimates the number

of un-callable and low quality bases. Mapping to the human reference genome (hg38) was
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done using STAR [41], a high performance community-standard aligner.

Each dataset was analyzed separately as a digital expression matrix. We used tran-

scripts per million (TPM) values as gene expression levels for all the analysis, calculated

as:

106·Cij/length of gene i
∑

i Cij/length of gene i
,

where Cij is the count value of gene i in cell j. We removed genes with low expression

values, considering as cutoff the upper median TPM values [83].

4.2.2 T cell identiőcation

Datasets GSE126030, GSE99254 and GSE108989 contain only T cells. Datasets GSE114727,

GSE75688 and GSE123139 contain different type of cells, although each of them is detailed

in separate őles available in the Gene Expression Omnibus (GEO) repository, indicating

explicitly which of them are T cells.

To identify the different cells for the datasets GSE72056 and GSE103322 we started

by using PCA and variance analysis in order to obtain the value of the optimal number

of components using the Scikit-learn implementation of PCA [162]. We identiőed eight

components in GSE72056 and nine components in GSE103322.

We used agglomerative clustering to deőne subsets of cells and for assigning their

labels (T, B, macrophages, endothelial, cancer-associated őbroblasts (CAFs) NK, mast

and myocytes cells). We used t-SNE [210] for dimensionality reduction in order to visualize

the cells in a two-dimensional scatter plot. Following [206] and [168], we used six cluster

for GSE72056 and eight for GSE103322 in order to cluster the same number of cells.

To identify the T cell cluster in GSE72056 and GSE103322 we removed all the cells

that has no expression for cell markers and those were the ones we used in this analysis.

4.2.3 Analysis of T cells subpopulations

In order to identify our target genes, we classiőed subpopulation of T cells according to the

following gene selection criteria: (1) for CD4-T cells cd3g>0, cd8=0, cd4>0 and foxp3=0;

(2) for CD8-T cells, cd3g>0, cd8>0, cd4=0, foxp3>0; and (3) for Tregs cd3g>0, cd8=0,

cd4>0 and foxp3>0.
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To identify the T cell subpopulations included in our analysis, we generate a multiple

list comparator with the name of the genes in each condition, to őnally extract which

genes are common across malignant samples, non-malignant samples and different between

malignant and non-malignant samples.

4.2.4 Pathways and GO categories analysis

A pathway enrichment analysis was performed using the Gene Ontology Consortium

database (data-version from 2020-05-02) [8, 36]. This database includes information about

biological processes, molecular functions and cellular components. Reactome pathway

database [89] was also used to identify pathway enrichment due to its database of hu-

man pathways, reactions and processes allowing an orientation and model in biological

pathways that include classic intermediary metabolism, signaling, innate and adapted

immunity, transcriptional regulation, apoptosis and diseases that are highly expressed in

our data. Exclusive pathways were identiőed using InteractiVenn [74].

To visualize the list of GO terms and őnd how genes are functionally grouped we

use Cytoscape v.3.8.2 with the plugin ClueGO v.2.5.7 [17] with a (p<0.001) and kappa

statistics to calculate the relationships between the terms based on the similarity of their

associated genes.

4.3 Results

Figure 4.1 illustrates the bioinformatics pipeline for the analysis and identiőcation of

exclusive T cell subsets transcriptomic pathways in malignancy. Brieŕy, the scRNA-seq

datasets from breast (GSE114727 and GSE75688), lung (GSE126030 and GSE99254), col-

orectal (GSE108989), melanoma (GSE72056 and GSE123139), and head and neck cancer

(GSE103322) were obtained from the Gene Expression Omnibus (GEO) repository. Each

dataset was analyzed separately as a digital expression matrix and transcripts per million

values were used as gene expression levels (Figure 4.1a). Once the datasets were analyzed,

we reduced dimensionality and clustered the different cell types in order to identify the

T lymphocytes (Figure 4.1b). We then analyzed the transcriptome of CD4+, CD8+ and

Tregs from malignant and non-malignant samples (Figure 4.1c) and identiőed common

genes across the different types of cancer for each T cell subset (Figure 4.1d). Common
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Figure 4.1: scRNA-seq pipeline.
(a) Datasets of scRNA-seq were selected from Gene Expression Omnibus (GEO)

database from breast (GSE114727 and GSE75688), lung (GSE126030 and GSE99254),
colorectal (GSE108989), melanoma (GSE72056 and GSE123139), and head and neck
cancer (GSE103322). (b) The data was processed using dimensionality reduction and
clustering techniques in order to separate T cells and its subpopulations CD4-T, CD8-T
and Treg (c) from malignant and non-malignant origin. (d) Then, common genes across
the different types of cancer from malignant and non-malignant origin were selected and
(e) pathways and GO categories to proőle the gene selection was obtained from Gene
Ontology (GO) and Reactome database. (f) Visualization using Cytoscape and ClueGO
plugin for biological process and (g) differentiation of the functions between conditions
of the subpopulations of T cells was displayed.

genes from malignant and non-malignant samples for each type of subpopulation were

mapped to biological pathways using gene ontology (GO) terms [8, 36], classiőed as bi-

ological process, molecular functions, cellular components and reactome pathways [89]

(Figure 4.1e). The data was visualized using different networks (Figure 4.1f) and exclu-

sive pathways for each subpopulation in both conditions were őnally identiőed (Figure

4.1g).

4.3.1 Proőling of tissue-inőltrating T cells from different types of cancer

In order to obtain the transcriptomic proőle of tissue inőltrating T cells, we analyzed each

dataset individually to get the gene count for each cell type per condition (malignant, non-

malignant). We deőned as a cutoff the upper median TPM values of gene expression in

each scRNA-seq dataset and removed genes with low expression values in all the type of

cells identiőed.

For datasets GSE126030, GSE99254 and GSE108989, the T cells were already labeled
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in separate őles in the Gene Expression Omnibus repository, therefore these őles used

for further analysis. Datasets GSE72056 and GSE103322 contain different types of cells

embedded in a single matrix őle, thus dimensionality reduction and clustering were re-

quired to identify T cells. Brieŕy, we used PCA and variance analysis in order to obtain

the value of the optimal number of components using the Scikit-learn implementation

of PCA [162]. We identiőed eight components in melanoma (GSE72056) (Figure 4.2a)

and nine components in head and neck cancer (GSE103322) (Figure 4.2b). In order to

identify the T cells population from these datasets, we performed a t-SNE dimensionality

reduction and a clustering approach. Figure 4.2a and 4.2bb show t-SNE plots identifying

the different types of cells, including B cells, macrophages, endothelial, cancer-associated

őbroblasts (CAFs), NK cells, mast cells and myocytes. Based on this analysis, only T

cells were selected by using the gene markers detailed on Appendix Table S1.

(a) Melanoma cancer (b) Head and neck cancer

Figure 4.2: Cell identiőcation in melanoma and head and neck cancer
Single cells plot of gene expression proőles using dimensionality reduction technique

t-SNE for malignant cells for Melanoma and Head and Neck cancer data colored by type
of cells.

For the identiőcation of T cell subsets in all datasets, we performed a comparison

using a set of classical gene markers including cd3g, cd8, cd4 and foxp3. Thus, these gene

markers helped to őlter and conőrm the identiőcation of CD4 helper T cells (cd3g>0;

cd8=0; cd4>0; foxp3=0), CD8 cytotoxic T cells (cd3g>0; cd8>0; cd4=0; foxp3>0)

and Tregs (cd3g>0; cd8=0; cd4>0, foxp3>0) from the original datasets. In Table 4.1
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we reported a summary of counting of genes by dataset after removing genes with a

low expression values, identifying the type of tissue with its respective Gene Expression

Omnibus ID (GEO), and the counting of malignant and non-malignant related genes for

CD4-T, CD8-T and Treg cells. We identiőed a total of 67,917 genes in malignant CD4,

63,038 genes in malignant CD8 and 56,827 genes in malignant Treg from őve tissues

(breast, lung, colorectal, head and neck and melanoma). On the other hand, we identiőed

24,436 genes in non-malignant CD4, 28,341 genes in non-malignant CD8 and 20,877 genes

in non-malignant Treg for two tissues (lung and colorectal).

Table 4.1: Summary of the datasets used in this work. Each row indicates the number of
genes for CD4-T, CD8-T and Treg.

Data ID
Type of
cancer

Condition CD4 CD8 Treg

GSE114727 Breast Malignant 12855 12601 8924
GSE75688 Breast Malignant 8878 2620 6835
GSE126030 Lung Non-malignant 8418 10573 6620
GSE99254 Lung Malignant 10571 11034 10349

Non-malignant 9748 10488 7532
GSE108989 Colorectal Malignant 7324 7005 7283

Non-malignant 6270 7280 6725

GSE103322
Head and
neck

Malignant 7574 8093 7517

GSE72056 Melanoma Malignant 10136 10779 8732
GSE123139 Melanoma Malignant 10579 10906 7187

Once identiőed the different T cell subsets, we performed a second analysis to de-

termine those common genes for each condition (malignant; non-malignant) across all

different type of samples (Figure 4.3). Then, we compared the common genes between

the malignant and non-malignant condition for each T cell subset. The Venn diagram

in Figure 4.4a, Figure 4.4b and Figure 4.4c represents the total number of genes from

scRNA-seq data for the CD4-T, CD8-T and Tregs subsets, respectively. We observed 652

(11.74%) of exclusive genes in malignant-derived CD4-T, 69 (1.10%) of exclusive genes

in malignant-derived CD8-T cells and 557 (12%) of exclusive genes in malignant-derived

Tregs analyzed. This overall gene identiőcation revealed exclusive and common genes per

T cell subset and condition, allowing to use this information for further pathway analysis.
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Figure 4.3: Venn diagram of number of genes of T cells across different types of cancer

(a) CD4-T cells (b) CD8-T cells (c) Treg cells

Figure 4.4: Venn diagram of T cell subpopulations representing the exclusive and common
genes between malignant and non-malignant origin.
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4.3.2 GO annotations and biological pathways in T cells from malignant and

non-malignant cancer

GO annotations and biological pathways were analyzed by comparing the data obtained

from malignant and non-malignant samples per subset. The Gene Ontology Consortium

[8, 36] was used to establish the GO enrichment and the reactome pathway database [89]

to analyze pathways and generalize the concept of the reactions that match our datasets,

including biological process with a focus in signaling, metabolism, transcriptional regu-

lation, apoptosis and disease. We identiőed 7,490 GO annotations for biological process,

1,404 GO annotations for molecular functions, 2,035 for GO annotations of cellular com-

ponent ontology and 12,033 reactome pathways (Table 4.2). These annotations were

divided into malignant and non-malignant origin in CD4, CD8 and Tregs. For GO terms

38, 72 and 100 biological functions were associated exclusively to malignant CD4-T cells,

CD8-T cells and Tregs, respectively. In general, from malignant samples we observed that

some of the main associations found in the GO terms between CD4-T, CD8-T and Treg

corresponded to immune response and defense, some of them being transcendental for

cancer immunotherapies [160, 158].

Table 4.2: Summary of functional enrichment annotations for malignant and non-
malignant CD4-T, CD8-T and Treg.

Functional enrichment Malignant Non-malignant
CD4 CD8 Treg CD4 CD8 Treg

Biological Process 1335 950 1388 1282 1265 1270
Molecular Function 270 159 249 240 249 237
Cellular Component 376 271 385 322 339 342
Reactome Pathway 2059 1746 1966 2073 2138 2051

In order to determine interaction between biological pathways associated to malignant

or non-malignant samples and visualize them as an interaction network, the biological pro-

cess terms were analyzed using the Cytoscape software [188] and the ClueGO plugin [17]

to visualize the non-redundant biological terms for large clusters of genes as a hierarchical

biological network. Using this method, we observed 17 exclusive GO terms in malignant

CD4, 17 exclusive GO terms in non-malignant CD4, 12 exclusive GO terms in malignant

CD8, 86 exclusive GO terms in non-malignant CD8, 54 exclusive GO terms in malignant
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Treg and 25 exclusive GO terms in non-malignant Treg. Figure 4.5 display a visualiza-

tion of the network for malignant and non-malignant genes for CD4-T, CD8-T and Treg,

including clustered pathways for each condition (malignant and non-malignant) and la-

belling according to the most signiőcant term per group. For the speciőcity of each path-

way, we observed differences between malignant and non-malignant samples. This data

is available in the child nodes that together with the p-values information from ClueGO

indicated different functional categories inside the networks. Of note, common functions

between malignant and non-malignant T-cell subsets were observed in this analysis de-

spite previous gene selection. In summary, our data revealed 93 clusters for malignant

CD4, 92 clusters for non-malignant CD4, 43 clusters for malignant CD8, 123 clusters for

non-malignant CD8, 83 clusters for malignant Treg and 81 clusters for non-malignant

Treg samples (Figure 4.5). One cluster that was differentially observed in Treg cell was

regulation of macromolecule metabolic process, which was positive in malignant sam-

ples, but negative in non-malignant Treg. Besides clusters, this analysis shows different

specialization between the pathways for each condition.

4.3.3 Exclusive biological pathways in T cells from different types of cancer

After deőning the pathways in cells from malignant and non-malignant samples we identi-

őed exclusive pathways for T-lymphocytes between both conditions (Figure 4.6). The 31

recurrent annotations found in the three T cell subsets from malignant samples were asso-

ciated with different types of cancer and other diseases of the immune system, being the

malignant genes associated with the types of cancer studied and viral diseases such as HIV

Infection. However, we also found that pathways associated to localization were common

between the three subpopulations from malignant samples, such as positive regulation of

protein localization to Cajal body and SRP-dependent cotranslational protein targeting

to membrane. Another important function found were viral transcription and viral gene

expression pathways that plays an important role in viral transcription and translation

[229, 49]. From non-malignant samples we observed 23 recurrent annotations within the

T cells highlighting the regulation of translation in response to stress, nucleotide-excision

repair, DNA damage recognition and viral budding were the most important and common

terms between T cell subsets.



51

Figure 4.5: Gene ontology of biological processes networks.
The visualization of the networks was performed in Cytoscape using the ClueGO plu-

gin. (a) Network visualization of GO terms associated for CD4-T cells with malignant
origin and (b) for GO terms associated to CD4-T cells from non-malignant origin. (c)
Network corresponding to GO terms of CD8-T cells from malignant origin and (d) rep-
resent the GO terms associated to CD8-T cells with non-malignant origin. (e) GO terms
associated to Treg from malignant origin and (f) GO terms associated to Treg from non-
malignant origin.
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Figure 4.6: Comparison of common biological processes across all the T cell subpopulation

When molecular function annotations were analyzed, we observed that peroxiredoxin

activity, threonine-type peptidase activity and NADH dehydrogenase activity were recur-

rent and relevant annotations for CD4, CD8 and Treg cells from malignant origin. For

T cells from non-malignant origin, we found that between the three subpopulation struc-

tural constituent of ribosome, thyroid hormone receptor binding and snoRNA binding

were common annotations between them. In the case of cellular components annotations,

we observed that signal recognition particle, endoplasmic reticulum targeting and pro-

teasome core complex, beta-subunit complex were the three most important annotations

in common between malignant CD4, CD8 and Treg cells. For non-malignant cells, we

observed that methylosome, U2-type catalytic step 2 spliceosome and eukaryotic transla-

tion initiation factor 3 complex (eIF3m) were the most important annotations in common

between CD4-T, CD8-T and Tregs.

Exclusive functions of the different T cell subsets between malignant and non-malignant

samples were őnally analyzed. 38 exclusive biological process terms belong to malignant



53

CD4 and 33 to non-malignant CD4, 72 exclusive biological process terms belong to ma-

lignant CD8 and 80 to non-malignant CD8 and 100 exclusive biological terms belong to

malignant Treg and 38 to non-malignant Treg (Figure 4.6).

The main pathways associated exclusively to malignant CD4 were somatic diversiőca-

tion of immune receptors via germline recombination within a single locus, protein target-

ing to vacuole, lymphocyte activation involved in immune response, positive regulation of

DNA-binding transcription factor activity, T cell differentiation involved in the immune

response, negative regulation of extrinsic apoptotic signaling pathway via death domain

receptor and positive regulation of leukocyte activation among others. On the other

hand, the main exclusive pathways for non-malignant CD4 were negative regulation of

response to wounding, aminoglycan biosynthetic process, chemical synaptic transmission,

cell communication involved in cardiac conduction, neuromuscular synaptic transmission,

interleukin-15-mediated signaling pathway, negative regulation of lymphocyte apoptotic

process, among others.

Malignant CD8 was characterized mainly by metabolic process such as purine nucle-

oside triphosphate biosynthetic process, ATP biosynthetic process, response to epider-

mal growth factor, gluconeogenesis, response to gamma radiation, negative regulation

of oxidative stress and positive regulation of signal transduction by p53 class media-

tor. Non-malignant CD8 pathways were characterized by cell morphogenesis involved in

differentiation, mitochondrial RNA metabolic process, DNA modiőcation, phospholipid

metabolic process, multicellular organism development, cell recognition, and others.

In the case of malignant Tregs, we observed a detailed speciőcity in the pathways such

as positive regulation of cell differentiation, circadian regulation of gene expression, cel-

lular response to glucocorticoid stimulus, response to drug, negative regulation of mRNA

catabolic process, negative regulation of cell population proliferation, positive regulation

of cell cycle G1/S phase transition, negative regulation of NIK/NK-kappaB signaling and

tricarboxylic acid metabolic process, meanwhile for non-malignant Tregs main pathways

were negative regulation of cytokine production, negative regulation of immune effector

process, positive regulation of pathway-restricted SMAD protein phosphorylation, posi-

tive regulation in response to stress, positive regulation of T cell proliferation and negative

regulation of receptor signaling pathway via JAK-STAT, among others.
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Across the T cells subpopulations we also observed 59 exclusive positive and negative

regulations of different biological process. In Figure 4.7 we highlighted negative biological

functions with a left orientation and positive biological functions with a positive orienta-

tion. Analyzing the different mechanism of regulation from the cell help us to understand

how the regulation is working simultaneously in several pathways either positively or

negatively to regulate exclusive process of each T cell subpopulations.

4.3.4 Reactome pathways in T cells from different types of cancer

Reactome pathways were also analyzed between T cell subsets through Reactome Path-

way Database [89]. We observed a total of 5,771 annotations for malignant data and 6,262

annotations for non-malignant data. In the three T cell subsets derived from malignant

samples the main pathways found were associated to cellular response to stress, transla-

tion and ER-Phagosome pathway. The non-malignant derived T cell subsets were also

associated to RNA process and class I MHC mediated antigen processing & presentation.

In malignant CD4 the most overrepresented pathways are SRP-dependent cotranslational

protein targeting to membrane, GTP hydrolysis and joining of the 60S ribosomal subunit

and L13a-mediated translational silencing of Ceruloplasmin expression that are part of

the metabolism of proteins in the database. In the case of non-malignant CD4 the main

three pathways are translation, metabolism of RNA and processing of Capped Intron-

Containing Pre-mRNA, thus regulating more processes of metabolism of RNA. For ma-

lignant CD8 the most overrepresented pathways are peptide chain elongation, formation

of a pool of free 40S subunits and eukaryotic translation elongation that are also part of

metabolism of proteins. In non-malignant CD8 same pathways as in non-malignant CD4

are the most overrepresented. In malignant Treg formation of a pool of free 40S subunits,

nonsense mediated decay (NMD) independent of the exon junction complex (EJC) and

peptide chain elongation are the most important pathways also related to metabolism of

protein and RNA. In non-malignant Treg we identiőed translation, metabolism of RNA

and regulation of expression of SLITs and ROBOs, observing in this subpopulation more

pathways from the developmental biology location.

Furthermore, for a more exhaustive analysis and subsequent discussion we focus on the
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Figure 4.7: Exclusive GO terms for biological processes associated with positive and
negative regulations to each T cell subpopulation.
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annotations under the immune system pathway, observing that TRAF6 mediated IRF7 ac-

tivation in TLR7/8 or TLR9 signaling is present only in malignant CD4. In non-malignant

CD4 we also observed unique pathways that were TLR3-mediated TICAM1-dependent

programmed cell death, TICAM1-dependent activation of IRF3/IRF7, TICAM1, TRAF6-

dependent induction of TAK1 complex and TICAM1, RIP-mediated IKK complex recruit-

ment.

In summary, our data revealed that despite the type of cancer, there are pathways in

T cells that are common between cancer, but unique in comparison with pathways in T

cells from non-malignant tissues.

4.4 Discussion

Over the past years, datasets obtained from scRNA-seq have revealed valuable information

about the repertoire of cells contributing or controlling the development of several types

of tumors [206]. In this study, we analyzed published scRNA-seq datasets obtained from

T cell subsets from malignant and non-malignant origin, in order to identify common

pathways between these cells across different types of tumors. Our data revealed that

regardless the type of cancer, we observe common functions associated with metabolic

process, translation and immune-related pathways for each T cell subset such. Publicly

available data was analyzed through an exhaustive in silico analysis where samples were

characterized and re-labeled in order to generate a list of pathways and gene ontology (GO)

categories, which were further validated by using data from different sources. Finding

subgroups of cells and analyzing in tumor tissue versus normal tissue would lead us

understand common pathways of T cells in different cancer. In addition, regardless the

tumor origin, similar pathways were identiőed; therefore, potential immunomodulatory

therapies associated with these pathways could be applied to different types of tumors.

One of the major limitations in biological analysis is often the high dimensionality of

the data [80]. In our study, it was essential to deőne a strategy to thoroughly label the

samples, and thus ensure a more precise and reliable result by using machine learning

techniques. Using the classiőcation of cells in terms of their immunological background,

we show that a high similarity exists for relevant genes. These genes were mapped to the

same biological functions, mainly cancer development functions, and őnally, GO terms and
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reactome annotations gave us a clear idea of the pathways highlighted to deőne possible

targets to identify key cellular pathways from the immune system in cancer.

A visualization of the overrepresenting GO annotations in T cell subpopulations iso-

lated from both malignant and non-malignant tissues, allows to identify common genes

between healthy and tumor-inőltrating T cells, and also common genes across different

types of cancer for each T cell subset. We observed the highest percentage of common GO

annotations between malignant and non-malignant conditions in CD4-T cells. The most

overrepresented terms found only in malignant CD4-T was detection of abiotic stimulus

and detection of external stimulus that participates in the perception of the stimulus.

Then, it is received by a cell and converted into a molecular signal [36, 102, 113]. Positive

regulation of cysteine-type endopeptidase activity was also an overrepresented term in ma-

lignant CD4-T. This function is involved in apoptotic processes and inŕammasome, being

also responsible for the activation of inŕammatory response [23]. The data also highlighted

positive regulation of antigen receptor-mediated signaling pathway as an important term

in malignant helper cells. In fact, it has been associated with key immunological function

in ovarian cancer between the four stages of this type of cancer because it is one of the

initial triggers of the immune response and can activation of the T cell response [30].

We also observed some overrepresented function in non-malignant CD4-T that indi-

rectly could be important for cancer as the absence of these may also contribute to tumor

development. Here, regulation of oxidative stress-induced intrinsic apoptotic signaling

pathway, autophagosome maturation and regulation of vascular permeability process were

overrepresented only in non-malignant CD4-T. The őrst function plays an essential regula-

tory role in promoting cell survival under stress conditions contributing to cancer therapy

[126]. For autophagosome maturation, this pathway is crucial in the delivery of cyto-

plasmic components. Therefore, the role in cancer for damaged proteins and organelles

autophagy allows prolonged survival to tumor cells, providing a protective function limit-

ing tumor necrosis and inŕammation [174, 135]. In the case of vascular permeability, this

pathway is related with blood distribution to all tissues and maintain the homeostasis,

lipid transport and immune surveillance. In the particular case of cancer, this permeability

can facilitate metastatic spread [33]. Also, vascular permeability is crucial in physiologi-

cal and pathological angiogenesis, due to normal or healthy blood vessel growth occurring
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during tissue repair and it has been reported as a cause of mortality in cancer, among

other causes [12].

Overrepresented annotations in CD8-T cells from malignant samples were character-

ized by a development of biosynthetic processes, showing pathways such as purine nucleo-

side triphosphate biosynthetic process, ribonucleoside triphosphate biosynthetic process,

purine ribonucleoside triphosphate biosynthetic process and ATP biosynthetic process.

All these functions in cancer are associated with metabolic requirements for cell growth

and proliferation of cancer cells by producing de novo nucleotide synthesis, maintaining

normal triphosphate biosynthetic process, as this process is critical for replication and

repair the DNA [212, 22]. Another pathway that characterized unique CD8-T responses

in malignant conditions was response to epidermal growth factor, which has been as-

sociated with the regulation of cell proliferation, differentiation and migration through

epidermal growth factor receptor (EGFR) function, that play an important role in tu-

morigenesis in various types of epithelial cancers. Nowadays, novel therapies that target

the EGFR agents have improved patient’s therapies with colorectal, lung, head and neck

and pancreatic cancers, however, there are some cases using monoclonal antibodies where

an activation of signaling pathways downstream of the EGFR could produce resistance

to the treatment [180, 108]. Gluconeogenesis was also observed only in malignant CD8-

T cells, but the role of this metabolic process in CD8-T cells in cancer is unclear. It

is known that it generates free glucose from precursors and is associated to cancer cell

plasticity and tumor cell growth. However, it has also been shown that this pathway is

inhibited in some types of cancers as it may engage in truncated gluconeogenesis func-

tion in fasting conditions [186, 217, 62]. On the other hand, overrepresented annotations

in non-malignant CD8-T were characterized by membrane invagination, multicellular or-

ganism development and inner ear morphogenesis and anatomical structure development

that are associated to developmental processes. Those terms in general are part of mem-

brane organization and developmental processes. Others highlighted pathways observed

were glycerolipid biosynthetic process, glycerophospholipid biosynthetic process and lipid

biosynthetic process. Glycerolipid processes have been proposed within a new therapy in

cancer, neuroscience and metabolic diseases by targeting with small molecule inhibitors

[187, 127].



59

In Tregs, the pathways with the highest p-value from malignant samples were positive

regulation of cell differentiation and cellular response to different compound, such as ni-

trogen, oxygen-containing, glucocorticoids stimulus, organonitrogen among others. Those

compounds in cancer studies have been proved that when are altered, they support can-

cer and immune cells responses [106]. In the case of glucocorticoids, those corticosteroids

act primarily on carbohydrate and protein metabolism having anti-inŕammatory and im-

munosuppressive effects [38]. Other pathways associated only to malignant Tregs were

circadian regulation of gene expression and circadian rhythm, both processes modulate

the frequency of gene expression pattern with a regularity of approximately 24 hours. In

cancer studies, those pathways participate over cyclic physiological processes. In addition,

cancer has been linked with the disruption of circadian rhythms [134, 94]. Regulation of

NIK/NF-kappaB signaling, negative regulation of I-kappaB kinase/NF-kappaB signaling

and negative regulation of NIK/NF-kappaB signaling were also associated only to ma-

lignant Tregs, affecting a complex network between extracellular stimuli to cell survival,

developing an essential role in inŕammation, innate immunity and cancer initiation and

progression [79, 119, 226]. Non-malignant Treg present annotations such as retrograde

vesicle-mediated transport, Golgi to endoplasmic reticulum, maintenance of protein loca-

tion and positive regulation of transport that belong to localization and transport path-

ways. Also, we observed pathways associated to cytokines such as positive regulation of

response to cytokine stimulus and positive regulation of lymphocyte proliferation that

play an important role in modulation of immune and inŕammatory responses, due to

cytokines key role at clinical cancer research [227, 35, 112, 44].

Finally, terms obtained from the Reactome analysis revealed pathways that play an

important role in the immune system as cytokines that regulate and mediate immunity, in-

ŕammation and haematopoiesis, promoting intercellular communication between immune

cells [153]. In addition, these proteins bind to their cell surface receptor and act in an

autocrine and/or paracrine fashion, inducing tissue growth and repair [3, 91]. Moreover,

adaptive immunity is involved in roles such as the recognition of particular pathogens

or antigens prior presentation by antigen presenting cell from peripheral tissues [159].

TNFR2 non-canonical NF-kB pathway was one of the most signiőcant pathways between
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all the datasets analyzed, even though it was found in both conditions (malignant and non-

malignant). It has been shown that TNFR2 in normal tissues exhibits basal expression

[64], whereas it can be induced to promote cell survival pathways such as cell prolifer-

ation by activating transcription factor NF-kB via the alternative non-canonical route

[190]. This suggest that the regulation of TNFR2 may be relevant in tumor inőltrating

lymphocytes.

4.5 Conclusions

In summary, we used dimensionality reduction and pathways analysis to integrate a large

amount of data in order to identify common genetic T cell signatures across different type

of cancers. These methodologies allow us to compare those T cell signatures and their

core dynamics pathways between malignant and non-malignant samples to identify unique

and common pathways in CD4-T, CD8-T and Tregs. Our analysis revealed that pathways

related with the immune response, metabolism and viral immunoregulation were observed

exclusively in cancer samples. Several other pathways were identiőed in all three T cell

subsets, however future research is required to understand whether these pathways favor

effective anti-tumor responses, or they are impaired and therefore do not prevent tumor

progression.

So far, we have analyzed only one type of cell, however, we want to explore more

cells from the immune system, know how many of them are common in other types of

cancer, and how these play a key role in the tumor development, among others biological

functions. All these questions are investigated in the next chapter.



Chapter 5

Classiőcation of cancer cells using machine learning and deep

learning models

The aim of this chapter was to analyze gene expression proőles of scRNA-seq samples from

nine different types of cancer and to develop machine learning and deep learning (DL)

models to classify the different types of cells and characterize the tumor heterogeneity in

malignant samples. We found that 10,788 genes are common between the datasets. We

explored key genes highly weighted modeling the mean-variance relationship inherent in

scRNA-seq data and performing a downstream analysis such as PCA, tSNE and Uniform

Manifold Approximation and Projection (UMAP). Then, we performed two DL models to

classify the cells according to the gene markers observed in the literature. However, given

the nature of the scRNA-seq experiment, DL models performed well when we analyzed

a single experiment and not a combination of experiments. Under this view, we selected

the results from the principal component analysis (PCA) to discover relevant pathways.

This result is closely related to the heterogeneity of cells between tumors, characterizing

the cellular diversity composition in our data.

61
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5.1 Related work

Regarding genomic data, during the last two decades it has mainly come from DNA or

RNA sequencing from next-generation sequencing technology (NGS) [29]. NGS or high-

throughput sequencing technologies provide an accurate genome-wide that contains large

volumes of sequence data [184, 141] useful for different applications such as mutation

mapping and polymorphism discovery [132], biomedical research [189], among others.

The quantiőcation of the level in which a particular gene is expressed within a cell is

called łGene expressionž [185]. Most papers that use genomic data for cancer detection

and prediction employ gene expression values. This kind of data is very complex due to

its high dimensionality and intricacy, making it challenging to use for cancer detection.

The growth of data generated through the NGS has allowed for an advance in the

analysis of genetic variants for the diagnosis and cancer treatment [172]. In this sense,

the analysis of gene expression data and mutations have been the main strategies in

the detection and classiőcation of features and cells [39, 223]. The applications of DL

in this őeld are an efficient method to extract features and interpret this type of data

linking genetic variants with diseases [26, 7]. For instance, the use of neural networks

in large datasets with a high dimensionality and sparse and noisy data with nonlinear

relationships, has been a widely used analysis alternative, as well as the generation of

models that can be applied to new datasets of gene expression [131].

The most used architecture for genomic data is multilayer perceptron (MLP) (53.62%)

and autoencoder (AE) (30.43%). AEs have mainly been used for dimensionality reduction

[205], classiőcation of cancer cells and clustering of gene expression to identify relevant

genes for cancer diagnosis and treatment [39, 50]. For genomics, denoising autoencoders

(DAE) can be used to extract useful features that will constitute better higher level

representations of the data, in the sense of reconstructing a clean repaired output from

a corrupted version of it [214]. Danaee et al. [39] state that a DAE model improves

classiőcation performance for cancer detection, as a single AE does not allow to extract

all the useful representations from noisy and high dimensional data.

For breast cancer, we observed that DAEs and Stacked Denoising Autoencoder (SDAEs)

are useful to extract functional features from high dimensional gene expression proőles

[39]. Tan et al., [201] implemented a method to identify and extract complex patterns
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from microarray samples using a DAE with three layers: an input layer, a hidden layer,

and a reconstructed layer. Results show that the DAE successfully constructs features

that contain both clinical and molecular information. Features constructed by the AE

generalize to an independent dataset collected using a distinct experimental platform.

Another model for breast cancer developed by Liu et al., [120] extracts deep features from

RNA-seq data and copy number alteration (CNA) data separately and jointly. In this

work, two unsupervised DAE were developed to extract deep features and a heat map was

used to visualize and cluster patients into subgroups based on these features. All of these

models linked together improved the signiőcance of the features associated with breast

cancer patients clinical characteristics and outcomes.

Way et al., [218] presented a variational autoencoder (VAE) model applied to RNA-seq

data from The Cancer Genome Atlas (TCGA). They called the model łTybalt", and it

was trained with 5,000 input genes encoded to 100 features and reconstructed back to the

original 5,000. Tybalt determined that the learned features were generally non-redundant

and could disentangle large sources of variation in the data and can be useful in cancer

stratiőcation or in the prediction of speciőc activated expression patterns. Nevertheless,

the authors declare it still requires careful validation and evaluation. For breast cancer,

Titus et al., [207] developed a framework that uses a VAE architecture to learn latent

representations of the DNA methylation landscape from three independent breast tumor

datasets. The model works as an extension of the Tybalt VAE model and extracts sets of

speciőc features that contribute to the learned latent dimensions representing Estrogen

Receptor (ER)-negative and ER-positive tumors.

GANs have been applied for cancer diagnosis to learn features from unlabeled mi-

croarray data for breast and prostate cancer. In the model proposed by Bhat et al., [16]

the generative network probabilistically generates output samples, using random noise as

input, whereas the inference or discriminator network learns to discriminate the true data

distribution samples from the generated fake data. The model learns features that are

passed through sigmoid activation functions and used as input to conventional non-DL

machine learning models that classify them as cancerous or non-cancerous.
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5.2 Our Approach

5.2.1 Data collection and pre-processing

Data collection from previous scRNA-seq expression proőles from malignant and non-

malignant cells were included in the analysis. We selected scRNA-seq data from isolated

cells from breast (GSE114727 and GSE75688), lung (GSE126030 and GSE99254), col-

orectal (GSE108989), melanoma (GSE72056 and GSE123139), and head and neck cancer

(GSE103322). The datasets were obtained from the Gene Expression Omnibus (GEO)

repository and all of them were sequenced on Illumina HiSeq2500/HiSeq4000 or Illumina

NextSeq 500 (Homo sapiens) with a similar experimental design. We veriőed the quality

of each sequencing library with FastQC [5], a software package that estimates the number

of un-callable and low quality bases. Mapping to the human reference genome (hg38) was

done using STAR [41], a high performance community-standard aligner.

Each dataset was analyzed separately as a digital expression matrix. We used tran-

scripts per million (TPM) values as gene expression levels for all the analysis, calculated

as:

106·Cij/length of gene i
∑

i Cij/length of gene i
,

where Cij is the count value of gene i in cell j. We removed genes with low expression

values, considering as cutoff the upper median TPM values [83]. Then, we compared the

ten datasets matrices and we searched the common genes across.

5.2.2 Data exploration

Using Seurat R package (version 4.0.4) [181] cells with < 200 genes detected were őltered

from downstream analyses. All samples were merged with the CreateSeuratObject function

into one Seurat object. The merged Seurat object was normalized and scaled with a

global-scaling normalization method LogNormalize that normalizes the feature expression

measurements for each cell by the total expression, multiplies this by scale factor (10,000

by default), and log-transforms the result.

We next calculate a subset of features that exhibit high cell-to-cell variation in the

dataset, i.e. highly expressed in some cells, and lowly expressed in others. It is calcu-

lated by modeling the mean-variance relationship inherent in single-cell data using the
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FindVariableFeatures() function from Seurat.

5.2.3 Cell type annotation

In order to determine cell types, we combined unsupervised clustering and differential

expression to compare top differentially expressed genes with cell type speciőc expression

known from the literature. Through this approach, we identiőed broad categories among

all cells, and further delineated cellular subtypes by isolating subsets. Differential expres-

sion was performed using FindAllMarkers function from Seurat with default parameters

(only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) in order to őnd marker genes

that deőne clusters.

Another approach was to search in the literature for the gene markers for each type

of cell. Table 5.1 shows the most used genes as marker.

5.2.4 Dimensionality reduction and clustering

For a őrst approach, we performed PCA using RunPCA from Seurat on the scaled data

in order to visualize a list of the genes which were the most highly and lowly weighted

in the different PCs. To determine the dimensionality to which to reduce the dataset,

we plot the explained variance for each principal components. We also run two non-

linear dimensional reduction techniques: tSNE and Uniform Manifold Approximation and

Projection (UMAP), to visualize the clusters of the dataset according to Seurat analysis.

On the other hand, we implemented two deep learning models using PyTorch [161], an

open source machine learning framework. For the two models we split the data in train

and test sets into 80% and 20% respectively. The selection of hyperparameters was using

GridSearchCV method from Scikit-Learn and manual tuning. The implemented models

were:

Autoencoder (AE): (Model description in section 3.2.5) an AE is composed of an en-

coder and a decoder part. First, the encoder takes 128 features and it produces the

latent code representation which then goes to the decoder for reconstruction. Next,

the decoder, which again keeps increasing the features size until we get the origi-

nal 128 features. The forward method simply combines the encoder and decoder
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Table 5.1: Gene marker found in the literature review.

Type of cell Gene markers References
T cells cd3d, cd3e, cd3g, cd8, cd4, foxp3, cd2 [206, 168,

90, 9, 164,
152]

B cells cd79b, blk, hla-dpa1, hla-dra, cd37,
cd74, cd19, cd79a

[206, 168,
43, 90, 9,
164, 152]

Mast cells enpp3, kit [168, 43, 9,
152]

Macrophages cd163, cd14, csf1r, fcer1g, fcgr3a, ty-
robp, cd68, c1q

[206, 168,
154, 90, 9,
164, 152]

Monocytes vcan [9, 152]
Dendritic itgae, itgax, cd8a, clec9a, cd141 [168, 9, 152]
Neutrophils cd33, cd44, ceacam8, cd11b, cd14, cd15,

cd16, cd32
[9]

Endothelial pecam1, vwf, cdh5 [206, 168,
144, 43, 90,
164]

Fibroblast col5a1, fbln2, col1a1, col1a2, lum,fbln1,
pdgfra

[168, 144,
43, 90, 164]

Myocytes tnnt2, myl2 [168]
Cancer-associated
őbroblast (CAF)
cells

col6a1, col6a2, col6a3, fap, thy1, dcn [206]

Myeloid cd45, cd19, cds6, cd11b [43, 90, 9]
Myoőbroblast cd34 [43]
Epithelial acta2, mylk, tp63, sytl2, abca3, lpcat1,

napsa, sftpb, slc34a2, krt14, krt5, sftpc
[75, 43, 90]

Natural killer (NK) klrd1, klrf1, clic3, cst7, fgfbp2, gnly,
gzma, gzmb, hopx, klrb1, ncam1, ncr1,
nkg2, nkg7, prf1

[206, 90, 9,
152]
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with the activation function (Leaky ReLU) after each layer and the forward method

returns the network.

We combined different loss functions and optimizers, however the selected one were:

Mean squared error (MSE) and Adam, with a learning rate = 1e-5 and the regular-

ization method was Early stopping.

Variational autoencoders (VAE): introduced by Kingma and Welling in 2013 [98].

VAEs are generative models [42] which inherited the AE architecture. They are

composed of two models supporting each other, an encoder or recognition model

and a decoder or generative model. The encoder is parameterized by parameters

φ, and models an approximation to its posterior pφ(z|x), where z is the latent

representation of x. The decoder model works as a generator by sampling from the

distribution pθ(x|z), where θ are the decoder neural network parameters [99]. In

other words, by training a VAE, we are able to generate synthetic data that follows

the distribution of the real data.

The framework of VAE provides a principled method for jointly learning deep latent-

variable models and corresponding inference models using stochastic gradient de-

scent. Latent variables are variables that are part of the model, but which can not

be observed, therefore those are not part of the dataset. We use z to denote such

latent variables. The marginal distribution over the observed variables pθ(x), is

given by:

pθ(x) =

∫

pθ(x, z)dz, (5.1)

where θ parametrizes the joint and marginal distributions. This is also called the

(single datapoint) marginal likelihood or the model evidence. If z is discrete and

pθ(x|z) is a different Gaussian distribution for each value of z, then pθ(x) is a

mixture of Gaussians model. For continuous z (which is generally more efficient

to work with due to the reparameterization trick), pθ(x) can be seen as an inőnite

mixture, which are potentially more powerful than discrete mixtures. Such marginal

distributions are also called compound probability distributions. The framework of

VAEs provides a computationally efficient way for optimizing deep latent-variable
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models (DLVMs) jointly with a corresponding inference model using stochastic gra-

dient descent (SGD). The hyperparameters selected for this model were the same

used in the AE model.

5.2.5 Pathways analysis of key genes across the different types of cancer

A pathway enrichment analysis was performed using the Gene Ontology Consortium

database (data-version from 2020-05-02) [8, 36]. To visualize the list of GO terms and

őnd how genes are functionally grouped we use Cytoscape v.3.8.2 with the plugin ClueGO

v.2.5.7 [17] with a (p<0.001) and kappa statistics to calculate the relationships between

the terms based on the similarity of their associated genes.
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5.3 Results

5.3.1 Single cell analysis and exploration

Single-cell transcriptome proőling of tumors provides an unbiased overview of the hetero-

geneity of cancer cells and their microenvironment. To generate a comprehensive tumor

cells atlas of human cancers, we collected scRNA-seq datasets from nine different types

of cancer. A total of 20,574 cells were őltered for this study, including breast cancer, lung

cancer, colorectal cancer, head and neck cancer, melanoma, glioblastoma, prostate can-

cer, liver cancer and squamous cell carcinoma. T cells, B cells, mast cells, macrophages,

monocytes, dendritic, neutrophils, endothelials, őbroblasts, myocytes, cancer-associated

őbroblast (CAF) cells, myeloids, myoőbroblasts, epithelial cells and natural killer cells

were reported from the different datasets. Table 5.2 shows the detail for each dataset

with its ID from GEO database, the type of cancer, the type of cell that the article

associated in the GEO database reported, the total number of cells and the total num-

ber of genes. Datasets GSE11472 (breast cancer), GSE103322 (head and neck cancer),

GSE137829 (prostate cancer) and GSE144236 (squamous cell carcinoma) include diverse

type of cells. On the other hand, we observed that T cells are the most abundant, all the

datasets thta report the type of cell include these. Additionally, we calculate the pairwise

intersections between the ten datasets, to analyze the data as a single reference, in order

to deőne commonalities and harmonize annotations between the experiments. Table 5.3

shows the total of common genes between the pairwise intersection of the datasets, iden-

tiőed with the GEO accession number (ID). A total of 10,788 genes are common between

the ten datasets. These 10,788 genes are the subset that we used for the next steps.

A őrst approach, was to detect the highly variable genes (HVG) across the scRNA-seq

data. This analysis allows to detect genes that contribute to cell-to-cell differences in a

mixed cell population. HVG assumes that if genes have large differences in expression

across cells some of those differences are due to biological difference between the cells

rather than technical noise [221]. This was detected by calculating the average expression

and dispersion for each gene, placing these genes into bins, and then calculating a z-

score for dispersion within each bin. The minimum/maximum average expression and

dispersion parameters (x min, x max, y min) were then used to select the variable genes.
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Table 5.2: Summary of the datasets

The Data ID corresponds to the GEO accession number, then it shows the type pf
cancer, type of cells declared in the article associated in the GEO website, the total

number of cells and the total number of genes.

Dataset
ID

Type of
cancer

Type of cells
Total

of cells

Total
of

genes

GSE114727 Breast

Monocytes, macrophages,
dendritic cells (DCs), T
cells, B cells, mast cells,
and neutrophils

30 20049

GSE75688 Breast
T cells, B cells and
macrophages

557 34996

GSE126030 Lung T cells 2 16296
GSE108989 Colorectal T cells 11138 23371

GSE103322
Head and
neck

T cells, B cells,
macrophages, dendritic
cells, mast cells,
endothelial cells,
őbroblasts, and myocytes

3363 23686

GSE72056 Melanoma
T cells, B cells,
macrophages, CAFs and
endothelial cells

4645 23684

GSE57872 Glioblastoma Unknown 874 40124

GSE137829 Prostate

T cells, B cells, myeloid
cells, mast cells,
őbroblasts,
myoőbroblasts,
endothelial cells and
epithelial cells

11 25623

GSE146115 Liver Unknown 1329 24042

GSE144236
Squamous
Cell
Carcinoma

Fibroblasts, melanocytes,
epithelial cells, endothelial
cells, B/Plasma cells,
natural killer (NK), T
cells and myeloid cells

13 34844
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Table 5.3: Total of common genes between the datasets

Each dataset is identiőed with the GEO accession number (ID) and total of genes that
contains. The matrix represents the number of genes that are common between pairwise
intersections.

Dataset ID
(Total genes)

GSE72056
(23684)

GSE75688
(34996)

GSE103322
(23686)

GSE108989
(23371)

GSE114727
(20049)

GSE126030
(16296)

GSE137829
(25623)

GSE144236
(34844)

GSE146115
(24042)

GSE57872
(40124)

19868 34558 19868 21244 19922 16248 25398 34239 23895

GSE72056
(23684)

18683 23682 21661 13394 12052 16591 18653 15419

GSE75688
(34996)

18683 20035 19828 16152 25048 32401 23564

GSE103322
(23686)

21664 13394 12052 16591 18653 15419

GSE108989
(23371)

14235 12729 17668 19990 16413

GSE114727
(20049)

14593 18573 19810 17910

GSE126030
(16296)

15612 16183 14981

GSE137829
(25623)

25065 20928

GSE144236
(34844)

23517

By default, Seurat returns 2,000 features per dataset [196]. As we know a priori that there

are about 15 types of cells, Figure 5.1 shows the top 15 variable genes across the single

cells of our data. These are: cxcl10, fn1, a2m, lyz, rpl39, rpl36a, rps28, rpl28, rpl27a,

rpl41, rpl9, dsp, rps24, mt1x and apoe.

To start with dimensionality reduction, we run classical methods, such as PCA, tSNE

and UMAP. When running the PCA, we observed őve principal components (PCs) and it

gives us a list of the genes which were the most highly and lowly weighted in the different

PCs (Appendix Table 6.2). By default, we used the 2,000 most variable genes. Figure 5.2

shows the top 15 genes associated with reduction components that are highly and the top

15 genes lowly weighted in the PCs. For each subplot in the y-axis the őrst 15 genes are

lowly weighted (left from 0) and the next 15 genes are the highly weighted genes (right

from 0 ). The complete list is available in Appendix Table 6.2.

In order to determine the top principal components, we implemented a heuristic

method called Elbow plot, a ranking of principle components based on the percentage

of variance explained by each one. In our data, we can observe an elbow around PC10-20,

suggesting that the majority of true signals are captured in the őrst 20 PCs. However,

we can also observe that the top 15 PCs retain mostly of information, while other PCs

contain progressively less (Figure 5.3).
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Figure 5.1: Identiőcation of the top 15 highly variable genes

We calculate a subset of features that exhibit high cell-to-cell variation in the dataset.
We observed that the 15 most highly variable genes across the cells were cxcl10, fn1, a2m,
lyz, rpl39, rpl36a, rps28, rpl28, rpl27a, rpl41, rpl9, dsp, rps24, mt1x and apoe .
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Figure 5.2: Identiőcation of highly and lowly variable features by principal component

Each subplot shows the top 15 genes that are highly (right from) and lowly (left from 0)
weighted in each principal component (PC) (x-axis).
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Figure 5.3: Standard deviation of each principal component in a Elbow Plot.

We ranking the principal components (PC) in the x-axis with the standard variation
(y-axis) by each one.



74

For a more detailed view, we performed dimensionality heatmaps. These are plots of

PCA weightings for the most highly and lowly weighted genes, shown against the set of

cells which are most highly inŕuenced by the PC. The idea is that as long as we are seeing

clear structure in one of these plots, then we are still adding potentially useful information

to the analysis (Figure 5.4).
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Figure 5.4: Heatmaps of the PCA matrix.

The subőgures represent the principal components (PC) from PCA analysis to visualize
the top genes that contribute in each. Both cells (x-axis) and genes (y-axis) are ordered
by their PC scores.

For clustering the cells, Seurat includes an approach that generates an embedding of

the cells and creates a k-nearest neighbor (KNN) graph, with edges drawn between cells

with similar feature expression patterns, and then attempts to partition this graph into
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highly interconnected communities. This approach, őrst construct a KNN graph based

on the euclidean distance in PCA space, and reőne the edge weights between any two

cells based on the shared overlap in their local neighborhoods (Jaccard similarity). This

step is performed using the FindNeighbors() function, and takes as input the previously

deőned dimensionality of the dataset (őrst 15 PCs). To cluster the cells, we applied

modularity optimization techniques such as the Louvain algorithm [18], to iteratively

group cells together, with the goal of optimizing the standard modularity function. The

FindClusters() function implements this procedure, and contains a resolution parameter

that sets the ‘granularity’ of the downstream clustering, with increased values leading to

a greater number of clusters. In our dataset we found 20,340 nodes and 686,168 edges.

The number of communities was 18.

Other approach was apply non-linear dimensionality reduction by using UMAP and

t-SNE over the original data. The overall goal of these approaches is to construct low-

dimensional manifolds of high-dimensional datasets such that data entries (single cells

in this case) that are similar are closer together in manifold space. UMAP generally

preserves the global structure of the data instead of just local structures. Qualitatively,

the UMAP plot (Figure 5.5a) separates the clusters further apart from one another, while

the t-SNE plot (Figure 5.5b) does not), observing that the 10,788 cells from nine cancer

types were colored by annotated cell type.

After deőning the different clusters, in a őrst attempt we tried to identify the gene

markers that deőnes clusters via differential expression. We found markers for every

cluster compared to all remaining cells, reporting only the positive ones. We used the

Wilcox rank sum test to identify genes which are differentially regulated between two

groups of cells. This is a non-parametric test, which makes very few assumptions about

the structure of the data and just looks for genes, which have expressions which are

consistently ranked more highly in one group of cells compared to another. Figure 5.6

shows the most upregulated gene from each cluster (x-axis). The plot shows that for some

clusters a gene can uniquely predict its gene marker to identify the cell type (cluster 8,

14 and 17), however, we also observe that a gene selected as a marker picks up more than

one cluster, such as ccr7, rps14, jund, tnfrsf4. Therefore this analysis was not enough to

determine the gene marker for each cluster and we cannot determine the type of cell that
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Figure 5.5: Non-linear dimensionality reduction
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each one represents.

Figure 5.6: Differentially expressed genes identiőed as cluster biomarkers

To visualize the gene marker expressions we used the Wilcox rank sum test to identify
genes which are differentially regulated between the groups of cells. X-axis represent each
cluster identiőed in the UMAP and t-SNE representations. Y-axis shows the expression
level of the genes.
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To clean this up for the individual clusters, in a second attempt to discover the cell

type of each cluster, we used the ROC test, a measure of how speciőcally a gene can

predict the membership of two groups. The ROC curve is produced by calculating and

plotting the true positive rate against the false positive rate for a single classiőer at a

variety of thresholds. The true positive rate, or sensitivity, can be represented as:

TPR = Sensitivity =
TP

TP + FN
, (5.2)

where TP is the number of true positives and FN is the number of false negatives. The

true positive rate is a measure of the probability that an actual positive instance will be

classiőed as positive. The false positive rate, or 1-speciőcity, can be represented as:

FPR = 1− Specificity =
FP

FP + TN
, (5.3)

where FP is the number of false positives and TN is the number of true negatives. The

false positive rate is essentially a measure of how often an actual negative instance will

be classiőed as positive.

To identify gene markers using ROC test, this for each gene, evaluates (using the area

under the ROC curve (AUC)) a classiőer built on that gene alone, to classify between

two groups of cells. An AUC value of 1 means that expression values for this gene alone

can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher

level than each of the cells in cells.2). An AUC value of 0 also means there is perfect

classiőcation, but in the other direction. A value of 0.5 implies that the gene has no

predictive power to classify the two groups. Returns a "predictive power" (abs(AUC-0.5)

* 2) ranked matrix of putative differentially expressed genes. This is a non-parametric

test, which just cares about the ranked expression measures for each gene. Figure 5.7

shows the multiple prediction for all clusters with an AUC value over ≈ 0.88 for each

cluster. According to the ROC test, the genes ccl5 (AUC = 0.936), rps6 (AUC = 0.875),

il32 (AUC = 0.862), loc286437 (AUC = 0.949), rps14 (AUC = 0.982), hla-e (AUC =

0.942), eef1a1 (AUC = 0.937), c1r (AUC = 0.942), apoe (AUC = 0.997), myl9 (AUC

= 0.989), hla-dra (AUC = 0.963), rpl21 (AUC = 0.884), tyrobp (AUC = 0.927), krt19

(AUC = 0.989), pecam1 (AUC = 0.956), stmn1 (AUC = 0.960), igll5 (AUC = 0.898) and
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Figure 5.7: Gene markers for each cluster using ROC test

rrm2 (AUC = 0.879) are the gene markers of each cluster. Four of this genes were highly

weighted in the different PCs from PCA analysis: cctn, clu, col3a1 and rps14. However,

we still observe that some genes are part of more than one cluster.

A third attempt to identify cell types was performing an analysis from the literature

review. The dataset proőles in the GEO database indicated that there were a total of 15

cell types. Then, we plot the gene markers reported in Table 5.1 and visualize them as

genes of interest onto the embedding of the UMAP dimensionality reduction performed.

Nevertheless, when exploring these gene markers in our data, only 11 cell types were

observed: T cells (Figure 5.8), B cells (Figure 5.9), mast (Figure 5.10), macrophages

(Figure 5.11), monocytes (Figure 5.12), dendritic (Figure 5.13), neutrophils (Figure 5.14),

őbroblast (Figure 5.15), CAF (Figure 5.16), epithelial (Figure 5.17) and natural killer

(Figure 5.18). In the case of T cells (Figure 5.8), we visualized the genes cd2, cd3d,
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cd3e and cd3g, missing the other genes mentioned in the Table 5.1. For B cells (Figure

5.9) we observed six genes from the list cd79b, blk, hla-dpa1, hla-dra, cd37 and cd74.

Mast cells (Figure 5.10) have a low expression and only the gene enpp3 was observed.

In macrophages (Figure 5.11) four genes were observed cd163, fcgr3a, tyrobp and cd68.

For monocytes in the state-of-the-art we only found one gene marker (vcan) and it was

expressed in our data (Figure 5.12). Dendritic cells (Figure 5.13) expressed two genes

itgae,itgax from the list. For neutrophils we found eight gene markers in the literature,

but only two genes were expressed in our data, however cd33 has a minimum expression

and cd44 is present in different clusters. In the case of őbroblast cells (Figure 5.15) we

observed two genes col5a1 and fbln2 expressed in our data. CAF cells (Figure 5.16)

expressed three gene markers from the list col6a1, col6a2 and col6a3. For epithelial

cells (Figure 5.17) we observed nine gene markers from the list acta2, mylk, tp63, sytl2,

abca3, lpcat1, napsa, sftpb and slc34a2 but lowly expressed and in different clusters.

Finally, for NK cells (Figure 5.18) we observed twelve gene markers klrd1, klrf1, clic3,

cst7, fgfbp2, gnly, gzma, gzmb, hopx, klrb1, nkg7, prf1. Gene markers reported in Table

5.1 for endothelials, myocytes, myeloid and myoőbroblast were not expressed in our data.

In summary, under the three methods used Wilcox rank sum test, ROC test and

literature review to determine cell types we observed that tyrobp, a gene marker for

macrophages was found by the methods. The genes rps14 and igll5 were found through

Wilcox rank sum test and ROC test, and the genes hla-dra and pecam1 were found

through ROC test and literature review to determine B and endothelial cells.
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Figure 5.8: Gene markers of T cells from literature review

Figure 5.9: Gene markers of B cells from literature review
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Figure 5.10: Gene markers of Mast cells from literature review

Figure 5.11: Gene markers of macrophage cells from literature review

Figure 5.12: Gene markers of monocyte cells from literature review
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Figure 5.13: Gene markers of dendritic cells from literature review

Figure 5.14: Gene markers of neutrophil cells from literature review

Figure 5.15: Gene markers of Fibroblast cells from literature review
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Figure 5.16: Gene markers of CAF cells from literature review

Figure 5.17: Gene markers of Epithelial cells from literature review
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Figure 5.18: Gene markers of Natural Killer cells from literature review
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5.3.2 Clustering with the DL models

In this section, we explored and implemented two unsupervised DL models to extract

relevant biological information and handle the complexities of scRNA-seq. It has been

theoretically shown that the neural networks are the universal approximators capable of

performing the dimensionality reduction [81].

During the data pre-processing stage, we deőned a matrix where the rows correspond

to the cell samples, and the columns correspond to the feature vectors containing the

gene expression values. To reduce the computational complexity, we worked with the

intersection of the genes across the ten datasets (10,788 genes in total). Here, we aim to

provide as much data as possible for our DL algorithms to capture the true data structure

across all types of cells from different cancers.

The two models that we implemented were with an autoencoder (AE) and a variational

autoencoder (VAE) architecture. Both architectures are artiőcial neural networks that

are used in unsupervised learning to automatically learn features from unlabeled data.

There are multiple parameters in the DL architectures that can be optimized. These

hyperparameters control the behavior of training algorithms and have a signiőcant effect

on the performance of the resulting DL models. The hyperparameter search was using

the GridSearchCV method from Scikit-Learn and manual tuning. The selected hyperpa-

rameters were: batch size = 128, number of epochs = 10000, learning rate = 1e-5, latent

dimension = 32, training optimization algorithm = Adam, activation function = leaky

ReLU, loss function = MSE, and also Kullback-Leibler divergence in VAE, regularization

= early stopping and patience = 200.

Figure 5.19 shows the training curves information for the AE y VAE models, indicating

that the neural networks have been trained until convergence, even considering the use of

early stopping.

To identify the optimal number of clusters we used the Elbow method, that looks at

the percentage of variance explained as a function of the number of cluster. In the Elbow

method we run the K-means algorithm multiple times over a loop, with an increasing

number of cluster choice (2 to 25). Clustering score is the sum of squared distances of

samples to their closest center. Elbow is the point on the plot where clustering score slows

down, and the value of cluster at that point give us the optimum number of clusters to
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(a) Autoencoder (b) Variational autoencoder

Figure 5.19: Training curves for autoencoder and variational autoencoder models

have. Figure 5.20 shows the plots of the Elbow curve method for the (a) AE model and

the (b) VAE model. In the AE we observed that the optimal numer of clusters (K) is 6,

and in the VAE model it is 5.

(a) Autoencoder (b) Variational autoencoder

Figure 5.20: Elbow method for optimal number of clusters

(a) Elbow method in autoencoder model tends to change slowly for a number of clusters
K = 6. (b) Elbow method in variational autoencoder model tends to change slowly for a
number of clusters K = 5.

Figure 5.21 shows the visualization of the two-dimensional embedding space of the ten

datasets generated by UMAP for the AE and VAE models. We observe that the cluster

has not relationship with the type of cells and it is difficult to determine its biological

interpretation with an unsupervised method. This could be a consequence of a biological
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(a) Autoencoder (b) Variational autoencoder

Figure 5.21: Clustering cell using DL models

and batch effect due to the single-cell isolation techniques vary in the experiments. The

most common method is the ŕow-activated cell sorting (FACS). A limitation of this tech-

nique include the need of different target proteins of interest, therefore given the nature

and interest of each experiment the weight of the gene expression values are bias by the

gene markers used [83].

In addition, we evaluate our models only for the dataset GSE103322 (head and neck

cancer) with the same hyperparameters used before. Figure 5.22 shows the training curves

for the AE and VAE models indicating that the neural networks have been trained until

convergence (epoch 2,200 in the AE model and 2,900 in the VAE model.) To identify the

optimal number of clusters we used the Elbow method in the same way as in the previous

experiment, but considering a loop with a increasing number of cluster between 2 to 16.

Figure 5.23 shows the Elbow curves for the (a) AE model and the (b) VAE model, for

both models we observe that the optimal number of clusters (K) is 8.

Figure 5.24 shows the visualization of the two-dimensional embedding space of the

head and neck cancer dataset generated by UMAP for the AE and VAE models. The

head and neck cancer data was colored by type of cells. Using the gene markers from

Table 5.1 we identiőed the different types of cells, including őbroblast, endothelial, T

cells, B cells, macrophages, dendritic, myocyte and mast cells in the clusters.
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(a) Autoencoder (b) Variational autoencoder

Figure 5.22: Training curves for autoencoder and variational autoencoder models on head
and neck cancer data.

(a) Autoencoder (b) Variational autoencoder

Figure 5.23: Elbow method to calculate the optimal number of cluster on head and neck
cancer data

Elbow method in (a) AE model and (b) VAE model tends to change slowly for a number
of clusters K = 8.
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(a) Autoencoder

(b) Variational autoencoder

Figure 5.24: Clustering cell using DL models on head and neck cancer

Single cell plot of gene expression proőles using (a) AE model and (b) VAE model. The
head and neck cancer data is colored by type of cells.

Therefore, we can observe that given the biological nature of the scRNA-seq experi-

ment, using DL it is possible to identify the different type of cells for samples coming from

the same experiment. However, given that the data used in this thesis come from different

laboratories, times and study interests, it compromises the integration and interpretation

of the data and eventually the cell population identiőcation.
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5.3.3 Pathways analysis of key genes across datasets

To understand the variation in the observed clusters in terms of its biological functions,

we performed a pathway analysis. GO annotations and biological pathways were an-

alyzed using the key genes highly weighted in the different principal components from

previous analysis (Section 5.3.1). We observed 10 clusters in the interaction network for

biological processes terms using the Cytoscape software and ClueGO plugin. Figure 5.25

indicates that the main biological process are: SRP-dependent cotranslational protein

targeting to membrane, chromosome condensation, ribosome biogenesis, negative regu-

lation of complement activation, platelet degranulation, regulation of intrinsic apoptotic

signaling pathway in response to DNA damage, regulation of intrinsic apoptotic signal-

ing pathway in response to DNA damage, sequestering of actin monomers, cytoplasmic

translation, peptide cross linking and positive regulation of axon extension.

5.4 Discussion

DL is a promising approach for the study of complex biological systems, but issues remain

regarding our ability to delineate the learned biology from these models. In general, we

only őnd a weak correlation when calculating the number of clusters and the previous

knowledge from the state-of-the-art. In this analysis it was necessary to explore the data

according to the gene markers that we found. With unsupervised methods, we can build

models, but then it is needed to interrogate the latent dimension to make interpretations.

Analysis of the heterogeneity within tumors normally enables two perspectives: cells

are grouped into cell types or in the diversity of the cell state that may be assigned

to distinct phases based on relative expression of cell-cycle. However, in our dataset, a

possible insight should be looking into the different classes of tumors or in the tumor

microenvironment.

Similar to the results from Chapter 4, using the results from PCA analysis and regard-

less of the type of cancer, we observe that common functions associated with SRP com-

ponents have been correlated with a growing list of diseases, such as cancer progression,

myopathies and bone marrow genetic diseases, suggesting a potential for development of
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Figure 5.25: Pathways associated to the key genes common across datasets

Gene ontology (GO) analysis of biological processes on the highly weighted genes from
PCA analysis. The ClueGO plugin of Cytoscape permitted őnd a rich cluster of over-
represented GO processes and a network, where each node represents a GO biological
process, and the colors refer to the GO group. The edges reŕect the relationships between
the terms based on the similarity of their associated genes.
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SRP-target therapies of each individual component [28]. Chromosome condensation is an-

other important term, that plays a key role in oncogenesis of most cancers, determining the

regulation of tumor cell proliferation, invasion, metastasis, and radio-chemotherapeutic

resistance [67]. The third biological process, ribosome biogenesis, is one of the most mul-

tifaceted and energy-demanding processes because it involves a large number of assembly

and maturation factors, elevating cancer risk [163]. Another important process in our data

was the negative regulation of complement activation, that plays a key role in the immune

system that has developed as a őrst defense against non-self cells, due to inhibitory mech-

anisms of complement activation allow cancer cells to escape from complement-mediated

elimination and hamper the clinical efficacy of monoclonal antibodyśbased cancer im-

munotherapies [167]. On the other hand, platelet degranulation plays an important role

in response to tumor cell stimuli profoundly inŕuences biology in the cardiovascular sys-

tem. Numerous growth factors are released from α-granules during the formation of tumor

cell-platelet emboli that stimulate tumor cell growth and angiogenesis and also initiate

and regulate microenvironmental and systemic immune responses during the formation

of tumors, therefore, this pathway inŕuences tumor cell-induces biological changes in the

vascular microenvironment that can be promoted by calcium and magnesium ions [140].

Finally, the pathways observed in our data indicate which are closely related to tumor cell

proliferation, progression and regulation of the microenvironmental and systemic immune

response.

5.5 Conclusions

By applying machine learning and DL models, we found over 10,000 common genes across

nine different types of cancer that present a diversity of cells that helps us understand

the heterogeneity between tumors. The computational method applied by calculating

cell-speciőc modality weights, allows us to perform a downstream analysis on a weighted

combination of data that őnally improved the characterization of the cellular diversity.

We explored the response of the immune system according to the pathways associated

with the key genes discovered in our analysis that play an important role in tumor prolifer-

ation, progression and regulation of the microenvironmental immune response integrating

15 types of cells.
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However, a limitation of the study was to integrate high dimensionality data from

different experiments. Using gene markers from the state-of-the-art and machine learning

tools provided best overview of the markers that may be used in the ŕow cytometry and

we identiőed the type of cell in the clusters. On the other hand, the DL models can

classify the type of cells for a single experiment or dataset, but it does not perform well

when we analyze the ten datasets as a unique matrix. In addition, our models give us

another perspective about the cluster, where we observed that the clusters are grouped

in the diversity of the tumor microenvironment.



Chapter 6

Conclusions and Future Work

Machine learning and deep learning methods have proven to be useful in modern oncology

research for accurate decision-making, predicting cancer prognosis and tumor growth, and

classifying cells and/or tissues, among other tasks. This thesis was useful to investigate

clustering methods for cancer analysis, using publicly available scRNA-seq data. However,

working with a high dimensionality of data coming from different experiments is a complex

scenario when the task is to work with unsupervised methods.

In a őrst approach we applied machine learning methods for dimensionality reduction

and pathway analysis to integrate a large amount of data to identify common genetic T

cells signatures across őve different types of cancers. We have analyzed CD4-T, CD8-T and

Treg cells, that are subpopulations of T cells, and were isolated from melanoma, breast,

lung, colorectal and head and neck cancer. After dimensionality reduction, clustering and

selection of the different subpopulations from malignant and non-malignant datasets, we

compared those T cell signatures and their core dynamics pathways between malignant

and non-malignant samples to identify unique and common pathways in CD4-T, CD8-

T and Tregs. Our analysis revealed that pathways related to the immune response,

metabolism and viral immunoregulation were observed exclusively in cancer samples.

Several other pathways were identiőed in all three T cell subpopulations, however future

research is required to understand whether these pathways favor effective anti-tumor

responses, or they are impaired and therefore do not prevent tumor progression.

A second approach was to apply DL models to classify cells from nine different types of

cancers (breast, lung, colorectal, head and neck, melanoma, glioblastoma, prostate, liver

and squamous cell carcinoma) as an unsupervised method. However, given the nature

of the scRNA-seq experiment, DL models performed well when we analyzed a single

experiment and not a combination of experiments. Alternatively, with the same data, we

applied machine learning models to classify the cells, considering a list of gene markers

95
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from the literature review, in order to determine the type of cell in these models, but

we observed noise and overlapping of the gene markers on the clusters. Furthermore, we

performed a pathway analysis using the key genes highly weighted in the őve principal

components (from PCA analysis). We observed ten clusters in the interaction network of

biological process terms obtained from Cytoscape software and ClueGO plugin. The main

biological processes observed in our data indicate which are closely related to tumor cell

proliferation, progression and regulation of the microenvironmental and systemic immune

response.

To summarize, our analysis of tumour inőltrating T-cells revealed unique pathways

related to the immune response, metabolism and viral immunoregulation exclusively in

cancer samples. Moreover, our second approach led us to explore the challenges of apply-

ing DL methods to scRNA-Seq, where with machine learning we can explore in detail gene

markers of our interest. However, machine learning and deep learning are promising and

powerful tools for analyzing different types of data, particularly useful when addressing

problems in cancer research such as cancer prediction, prevention, diagnosis, prognosis

and even therapy.

Future lines of research in Chapter 4 must be to validate the identiőed pathways with

our in-house experiments of RNA-seq and proteomic data obtained from T cell subsets

cultured under malignant environment, processed in the Molecular & Translational Im-

munology Lab, Department of Clinical Biochemistry & Immunology, Pharmacy Faculty,

University of Concepcion.

Another future work, could be the creation of an atlas for the classiőcation of the

different cells studied in this thesis. This could be under a semi-supervised approach,

combining the labeled data that we debugged in Chapter 4 and 5. Additionally, we

could redeőne the training data, avoiding data coming from few cell types, thus we could

improve our deep learning models.
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Appendix

Table 6.1: Gene markers for T cells

ACKR2 ACKR3 ACKR4 ADA ADAR ADIPOQ AICDA AIMP1 APCS
BCL2 BCL2L1 BCL6 BLNK BMP2 BMP4 BMP6 BMP7 BST2
BTK BTLA C3 C3AR1 C5 C5AR1 CASP1 CASP8 CAV1
CBLB CCL1 CCL11 CCL13 CCL14 CCL15 CCL16 CCL17 CCL18
CCL19 CCL2 CCL20 CCL21 CCL22 CCL23 CCL24 CCL25 CCL26
CCL27 CCL28 CCL3 CCL4 CCL5 CCL7 CCL8 CCR1 CCR10
CCR2 CCR3 CCR4 CCR5 CCR6 CCR7 CCR8 CCR9 CCRL2
CD14 CD180 CD1A CD1B CD1C CD1D CD2 CD209 CD27
CD274 CD276 CD28 CD3D CD3E CD3G CD4 CD40 CD40LG
CD44 CD47 CD5 CD7 CD70 CD74 CD80 CD81 CD86
CD8A CDC42 CDK2 CDKN1A CDKN1B CEBPA CEBPB CHUK CIITA
CKLF CLEC4C CLEC4E CLEC7A CMKLR1 CNTF CRLF2 CRP CSF1
CSF1R CSF2 CSF2RA CSF3 CSF3R CTLA4 CX3CL1 CX3CR1 CXCL1
CXCL10 CXCL11 CXCL12 CXCL13 CXCL14 CXCL16 CXCL2 CXCL3 CXCL5
CXCL6 CXCL8 CXCL9 CXCR1 CXCR2 CXCR3 CXCR4 CXCR5 CXCR6
DDX58 DGKZ DPP4 EBI3 EGF EGFR EGR1 EGR2 EGR3
EIF2AK2 ELK1 EOMES ERBB2 F3 FADD FAS FASLG FCER1A
FCER2 FCGR1A FIGF FLT3 FLT3LG FOS FOSL1 FOXP1 FOXP3
FPR1 GATA3 GBP1 GFI1 GPI GZMA GZMB HAVCR2 HDAC9
HIF1A HLA-A HLA-B HLA-C HLA-DMA HLA-DPA1 HLA-E HLA-G HMGB1
HSPD1 ICAM1 ICOS ID2 IDO1 IFI16 IFI27 IFI30 IFI44
IFI44L IFI6 IFIH1 IFIT1 IFIT2 IFIT3 IFITM1 IFITM2 IFITM3
IFNA1 IFNA14 IFNA16 IFNA2 IFNA21 IFNA4 IFNA5 IFNA6 IFNA7
IFNA8 IFNAR1 IFNAR2 IFNB1 IFNE IFNG IFNGR1 IFNGR2 IFNK
IFNL1 IFNLR1 IFNW1 IGF1 IGSF6 IKBKB IL10 IL10RA IL10RB
IL11 IL11RA IL12A IL12B IL12RB1 IL12RB2 IL13 IL13RA1 IL15
IL16 IL17A IL17B IL17C IL17F IL17RA IL17RB IL17RE IL18
IL18R1 IL18RAP IL19 IL1A IL1B IL1R1 IL1R2 IL1RAP IL1RL1
IL1RN IL2 IL20 IL20RB IL21 IL21R IL22 IL22RA2 IL23A
IL23R IL24 IL25 IL27 IL27RA IL2RA IL2RB IL2RG IL3
IL31 IL31RA IL33 IL3RA IL4 IL4R IL5 IL5RA IL6
IL6R IL7 IL7R IL9 IL9R INHA INHBA IRAK1 IRAK2
IRAK4 IRF1 IRF2 IRF2BP1 IRF3 IRF4 IRF5 IRF6 IRF7
IRF8 IRF9 IRGM ISG15 ISG20 ITCH ITGA1 ITGAM ITGB2
JAK1 JAK2 JAK3 JUN KITLG KNG1 LAG3 LAT LCK
LEP LEPR LGALS3 LIF LRP1 LTA LTB LY86 LY96
LYN LYZ MAF MAP2K3 MAP3K1 MAP3K7 MAPK1 MAPK8 MBL2
MET MICA MICB MIF MMP3 MMP9 MPL MPO MS4A1
MSTN MX1 MX2 MYC MYD88 NCK1 NFATC1 NFATC2 NFATC3
NFKB1 NFKB2 NFKBIA NFRKB NLRP3 NMI NOD1 NOD2 NODAL
NOS2 NOTCH1 NR2C2 NR3C1 NR4A1 NR4A3 OAS1 OAS2 OSM
PDCD1 PELI1 PML POU2F2 PPARA PPARG PPBP PRF1 PRKCG
PRKCZ PRKRA PSME1 PSME2 PTGDR2 PTGER2 PTGS2 PTPRC RAC1
RAG1 REL RELA RELB RIPK2 RNF128 RORA RORC RUNX1
RUNX3 S1PR1 SELE SELL SFTPD SH2D1A SIGIRR SLC11A1 SLIT2
SOCS1 SOCS3 SOCS5 SPP1 STAT1 STAT2 STAT3 STAT4 STAT5A
STAT6 SYK TAP1 TAP2 TAPBP TBK1 TBX21 TGFA TGFB1
TGFB2 TGFB3 THBS1 THPO TICAM1 TICAM2 TIMP1 TIRAP TLR1
TLR10 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9
TMEM173 TNF TNFRSF10A TNFRSF11B TNFRSF14 TNFRSF18 TNFRSF1A TNFRSF4 TNFRSF8
TNFRSF9 TNFSF10 TNFSF11 TNFSF12 TNFSF13 TNFSF13B TNFSF14 TNFSF4 TNFSF8
TOLLIP TP53 TP53INP1 TRAF3 TRAF6 TXLNA TYK2 TYMP UBE2N
UTS2 VAV1 VCAM1 VEGFA XCL1 XCR1 ZBTB7B
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Table 6.2: Genes highly and lowly weighted in the different principal components (PCs).

PC ID Positive genes Negative genes

PC-1

RPL7, EEF1A1, RPL18A,
RPL9, SLC25A6, KCNQ1OT1,
AXL, LPP, RPS3A, TOR1AIP2,
RPS7, RPL36A, FAM114A1,
RPL23A, RPL38, RPS28,
CTTN, RPL41, CST3, CD99,
GSN, SRSF10, RPL39, UGT8,
TSC22D1, ADAMTS4, RPL23,
TCF4, PNPO, MORF4L1

TMSB4X, MALAT1, FTH1,
CD74, RPLP1, RPL8, TMSB10,
SLMO2-ATP5E, RPS4X,
RPL19, RPL11, RPL3, RPS14,
TPT1, RPL7A, FTL, CYBA,
RPL13A, CLEC2B, IFNG,
PNRC1, RPS19, RPS3,
S100A10, BIRC3, RGS10,
FGFBP2, PTTG1, CCL3L1,
AQP3

PC-2

CALD1, SPARC, C1R,
SERPING1, MAP1B, CLU,
FSTL1, CTTN, PMP22, FN1,
DST, PLS3, CD9, NFIA, CD63,
CCDC80, CD59, IGFBP7,
MALAT1, DPYSL2, CLIC4,
COL6A1, COL6A2, COL3A1,
CFH, A2M, CALU, TSC22D1,
MYL9, THBS1

ZNF850, LYZ, MPL, PRRG4,
CCL22, PSTPIP2, UGT8,
ZNF665, PIGX, RPS29, PTK6,
PTAFR, RPL28, MAPK13,
CCDC144B, BNIPL, EXPH5,
PNPO, IL10, RPS18, CSF2RA,
MCTS1, SNHG7, RPS15A,
PIGR, SPRED1, CLSPN,
TINCR, CFLAR, OCLN

PC-3

TMSB10, RPS25, S100A6,
TMSB4X, RPS13, RPL11,
RPL10A, RPS14, IGFBP7,
RPL7A, MIF, RPLP1, COL6A2,
FAU, RPS4X, RPS16, VIM,
RPL19, RPS12, MYL9, GSN,
COL3A1, TPT1, RPL26,
MFGE8, RPL24, AEBP1,
TPM2, HSPB1, RPL34

SCD, NEAT1, TF, DHCR24,
ITGB8, PTPRF, EIF3CL, DST,
CLU, APOE, C3, EEF1A1,
SOX9, CXADR, MALAT1,
NUDT3, DSP, CP, SERPINA1,
MAP2, PCDH9, TOP2A,
PRRC2C, CD24, CENPF,
BROX, GATM, GAN, STMN1,
ATF5

PC-4

CCNB2, TOP2A, CDK1, ENO1,
STMN1, ZWINT, TPX2, DTL,
UBE2C, NUSAP1, CCNB1,
TK1, FANCI, NME1, BUB1B,
SMC2, CDCA8, KIF23, BUB1,
SRP9, SUB1, PSAT1, DBI,
RPS3, RPL8, TUBA1B,
CDCA3, NCAPG2, RPL19,
CCT5

C4A, C3, SERPING1, GPX3,
TF, APOE, ADAMTS4, C1R,
MYL9, AXL, CFH, CRISPLD2,
IFITM3, ADAMTS1, MYLK,
SYNPO2, CALD1, TAGLN,
TPM2, COL18A1, IGFBP7,
AEBP1, SERPINF1, COL6A2,
ATF5, NEAT1, COL3A1,
THBS1, A2M, RASD1

PC-5

RPLP2, RPS12, RPL32, RPS11,
RPL30, RPL11, RPL13A,
RPS27A, RPL34, RPL37,
RPS23, RPS14, RPS19,
RPL35A, RPL13, RPS13, RPS8,
RPL19, RPL18, RPS10, RPLP1,
RPL26, RPS5, RPL14, RPL31,
RPS16, RPL27, RPL35, RPS20,
RPL12

HLA-DPA1, CTSC, HLA-DRA,
CD74, CCL4L1, IFI6, ENTPD1,
HLA-DPB1, HLA-DMA, LYZ,
CCL3, PKM, CAPG, PTTG1,
PTAFR, FKBP1A, NAMPT,
TPM4, CD68, CSF2RA, TPMT,
STX11, LPCAT2, S1PR2, CD83,
CDKN1A, ITGAX, IFNG,
EPSTI1, ATP1B3


	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Structure of the thesis

	Research conducted
	Hypothesis
	Goals
	General Goal
	Specific Goals

	Methodology
	Available resources and databases

	Theoretical framework
	Machine Learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning (RL)

	Deep Learning
	Activation functions
	Loss function
	Gradient descent
	Regularization
	Neural network architectures


	Analysis of tumor-infiltrating T cell across different types of cancer supported by machine learning tools
	Related work
	Our Approach
	Data collection and pre-processing
	T cell identification
	Analysis of T cells subpopulations
	Pathways and GO categories analysis

	Results
	Profiling of tissue-infiltrating T cells from different types of cancer
	GO annotations and biological pathways in T cells from malignant and non-malignant cancer
	Exclusive biological pathways in T cells from different types of cancer
	Reactome pathways in T cells from different types of cancer

	Discussion
	Conclusions

	Classification of cancer cells using machine learning and deep learning models
	Related work
	Our Approach
	Data collection and pre-processing
	Data exploration
	Cell type annotation
	Dimensionality reduction and clustering
	Pathways analysis of key genes across the different types of cancer

	Results
	Single cell analysis and exploration
	Clustering with the DL models
	Pathways analysis of key genes across datasets

	Discussion
	Conclusions

	Conclusions and Future Work
	References

