Please use this identifier to cite or link to this item: http://repositorio.udec.cl/jspui/handle/11594/1085
Title: Leyes de Conservación y Ecuaciones Afines con Flujos no Locales e Involuciones.
Authors: Burger, Raimund, supervisor de grado
Betancourt Cerda, Fernando Elías
Keywords: Ecuaciones Diferenciales Parabólicas;Leyes de Conservación (Matemáticas);Método de Volumen Finito;Análisis Numérico.
Issue Date: 2011
Publisher: Universidad de Concepción, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática.
Abstract: La presente tesis tiene tres objetivos. El primero de ellos es el estudio de buen planteamiento y el desarrollo de métodos numéricos para una ley de conservación escalar con flujos no-locales, que modela el fenómeno de agregación en biología matemática. Se demuestra la existencia de solución débil de la ecuación no-local de agregación usando el método de las aproximaciones sucesivas y argumentos de compacidad. Para la unicidad se utiliza el concepto de entropía y se prueba un resultado de equivalencia entre soluciones débiles y de entropía. Con el método de aproximación se desarrollan ejemplos numéricos que ilustran el fenómeno de agregación. El segundo objetivo de la tesis es el estudio de buen planteamiento de una ley de conservación no-local, esta vez modelando el proceso de sedimentación. Para esta ecuación, se prueba la existencia de soluciones débiles de entropía por un método de diferencias finitas y argumentos de compacidad. La unicidad se obtiene por la técnica de doblamiento de variables. Dependiendo de ciertos valores de parámetros, se obtiene una regularidad Lipschitz o un Principio del Máximo independiente del tiempo. Con el método de aproximación se generan resultados numéricos que se comparan con los modelos clásicos locales. Se aprecia el fenómeno de sedimentación por capas. Finalmente, se extiende el método de volúmenes finitos con multiplicadores de Lagrange generalizados, que originalmente fue desarrollado para las ecuaciones de Maxwell, a cualquier sistema hiperbólico de Friedrichs con restricciones de tipo involuciones. Se demuestra la convergencia del método a la solución deseada. Además se prueba el cumplimiento de la involución en el sentido débil. Ejemplos numéricos ilustran las propiedades del método en las ecuaciones de Maxwell y en la ecuación de inducción en magneto-hidrodinámica.
Description: Tesis para optar al grado de Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática.
URI: http://repositorio.udec.cl/jspui/handle/11594/1085
metadata.dc.source.uri: http://ezpbibliotecas.udec.cl/login?url=http://tesisencap.udec.cl/concepcion/betancourt_f
Appears in Collections:Ingeniería Matemática - Tesis Doctorado

Files in This Item:
File Description SizeFormat 
Leyes de Conservación y Ecuaciones Afines con Flujos no Locales e Involuciones.pdf99,61 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.