Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.udec.cl/jspui/handle/11594/6805
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorAqueveque Navarro, Pablo Esteban; supervisor de gradoes
dc.contributor.advisorRamalinga Viswanathan, Mangalaraja; supervisor de gradoes
dc.contributor.authorVennu, Divyaes
dc.date.accessioned2021-07-09T18:37:18Z-
dc.date.available2021-07-09T18:37:18Z-
dc.date.issued2021-
dc.identifier.urihttp://repositorio.udec.cl/jspui/handle/11594/6805-
dc.descriptionTesis para optar al grado de Magíster en Ciencias de la Ingeniería con mención en Ingeniería Eléctrica.es
dc.description.abstractThe demand of flexible electronic devices led the scientific community to develop novel electroactive materials for various sensing devices to realize them in the potential applications in health monitoring, robotics, electronic skin and diagnostics. Especially, monitoring the human activities using integrated sensors are dedicated to non/invasive measurements such as pressure and force are seen in dielectric and piezoelectric applications. Currently, capacitive sensors with various dielectric materials with high sensitivity are realized as low power electronics devices in prosthetics, humanoids, structural health monitoring, biomedical and planter pressure monitoring in neurogenerative pathology applications. Materials for the capacitive sensors generally consist of electroactive polymers and ceramics as dielectric layer. Polymers which are flexible, robust are widely used and have low dielectric properties. On the other hand, ceramic having high dielectric properties are restricted its widespread usage due to brittle/rigid in nature. Currently, polymer nanocomposite with synergetic properties of polymer matrix and ceramic fillers are realized for capacitive pressure sensors. The present work is intended to develop a polymer-ZnO based nanocomposite and to fabricate a flexible capacitive pressure sensor. Zinc oxide nanostructures modified with graphene greatly influenced the crystallinity and showed strong interaction with polyvinyldine fluoride matrix. Frequency dependent dielectric studies suggests the PVDF-ZnO-Gr nanocomposite shows the higher permittivity (~30 at 100 Hz) than PVDF-ZnO (~20 at 100Hz) nanocomposite. The electromechanical performance was investigated by measuring the change in capacitance response under various load conditions. The capacitive pressure sensing response is considerably higher than that of the pristine PVDF-based device. The significant change in capacitance upon load is observed by the induced electrical potential due to displacement of electrodes and change in spacing between the fillers in the polymer matrix.es
dc.language.isospaes
dc.publisherUniversidad de Concepción.es
dc.rightsCreative Commoms CC BY NC ND 4.0 internacional (Atribución-NoComercial-SinDerivadas 4.0 Internacional)-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es-
dc.subjectMateriales Nanocompuestos-
dc.subjectTransductores de Presión-
dc.subjectSensores Táctiles-
dc.subjectAplicaciones Industriales-
dc.titleDevelopment of ferroelectric nanocomposite for capacitive pressure sensors.es
dc.typeTesises
dc.description.facultadDepartamento de Ingeniería Eléctricaes
dc.description.departamentoDepartamento de Ingeniería Eléctrica.es
Aparece en las colecciones: Ingeniería Eléctrica - Tesis Magister

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESIS DEVELOPMENT OF FERROELECTRIC NANOCOMPOSITE FOR .Image.Marked.pdf1,88 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons