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This research proposes a novel crowd estimation technology to help authorities to make the
right decisions in times of crisis. Specifically, deep learning models have faced these challenges,
achieving excellent results. In particular, the trend of using single-column Fully Convolutional
Networks (FCNs) has increased in recent years. A typical architecture that meets these charac-
teristics is the autoencoder. However, this model presents an intrinsic difficulty: the search for
the optimal dimensionality of the latent space. In order to alleviate such difficulty, we propose a
dual architecture consisting of two cascaded autoencoders. The first autoencoder is responsible
for carrying out the masked reconstruction of the original images, whereas the second obtains
crowd maps from the outputs of the first one. Our architecture improves the location of people
and crowds on Focal Inverse Distance Transform (FIDT) maps, resulting in more accurate count
estimates than estimates obtained through a single autoencoder architecture. Specifically, to
evaluate the model in the location task we used two decision thresholds (𝜎	 = 4 and 𝜎
 = 8),
obtaining, respectively, that our model increased the Precision by 36 (from 27.11% to 63.11%)
and 46.8 (from 37.26% to 84.06%) percentage points, the Recall metric by 3.05 (from 54.56%
to 57.61%) and 1.75 (from 74.98% to 76.73%) percentage points, and F1-Score by 24.02 (from
36.22% to 60.24%) and 30.45 (from 49.78% to 80.23%) percentage points. For the counting
task, the Dual Reconstructive Autoencoder (DRA) model decreased MAE and RMSE by 88.5%
and 75.18%, respectively, compared to the metrics obtained for the Single Autoencoder (SA)
model (SA model MAE: 121.73, DRA model MAE: 13.92, SA model RMSE: 127.61, DRA model
RMSE: 31.67).
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The global figures for Covid-19 infections show the rapid spread of the virus in Chile [1] and the
world [2]. It is known that crowded spaces are directly related to high infection rates. At the
beginning of the pandemic, health authorities used various mechanisms to avoid crowds, such
as the permanent closure of shopping centers, curfews, preventive and mandatory quarantines,
and teleworking. However, these mechanisms notably harmed global economies and the general
welfare of the population. Given the successful vaccination campaigns, it has been possible to
return to the routine, maintaining social distancing and using masks. However, there are still
crowds of people who do not respect the protocols for different reasons, which are generally very
difficult to handle. As such, crowd detection and management are still critical.

Similarly, crowd management is highly critical in natural disasters. Earthquakes, tsunamis,
forest fires, floods, and mudslides are some natural phenomena that frequently cause stampedes
of uncontrolled people. Two of the countries most exposed to natural catastrophes are China and
Chile [3]. Specifically, earthquakes are frequent threats in both countries, generating fatalities
and considerable material losses [4].

Automatic people counting technologies can help authorities to make vital decisions in dif-
ficult moments to reduce civilian casualties. Manual counting of people from a video feed of
a security camera is not an option since, in general, people in these scenes change constantly.
Moreover, manual counting is a time-consuming task, and usually, the count is required in
almost real-time. As such, machine-learning approaches are required to tackle this problem.

	�	 �������� ���


There are three main machine-learning approaches in crowd estimation: detection, regression,
and density maps [5]. The detection approach was the first to appear and was mainly charac-
terized by sliding window detectors [6, 7, 8, 9]. This approach fails when many occluded people
are in the image. This problem was solved using texture and foreground feature-extraction
regression methods [10, 11].

On the other hand, due to the success of deep learning, specifically artificial neural net-
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works, many contemporary authors use their convolutional versions to develop models capable
of counting people through hierarchical learning of the data characteristics and then making
high-quality inferences from them. A typical classification for convolutional neural networks is
basic, single-column, and multi-column. The basic networks, denoted as Convolutional Neural
Network (CNN), were the first to appear and have fully connected layers (dense layers) at the
end of their architecture. On the other hand, single-column and multi-column networks do not
have dense layers and estimate the number of people directly from the output density map of
the network. These models are commonly called fully convolutional networks (FCN), and the
difference between these two types lies in the number of columns used by the architecture.

C. Wang �� ��� [12] developed one of the first works on this subject, obtaining the count
of people in highly dense images through a regression model that used a basic convolutional
neural network. However, some researchers realized that density maps contribute much more
to people counting than estimating them directly from images because the models can learn
the characteristics of crowds through them [13]. Accordingly, Y. Zhang �� ��� [13] employed a
multi-column convolutional neural network to obtain density maps to accurately estimate the
number of people in images with arbitrary perspectives and crowd distributions. However, as
was demonstrated by [14], the network is not very effective when using columns with different
receptive fields since each one learns practically the same characteristics of the images.

Subsequently, L. Boominathan �� ��� [15] used a multi-column convolutional neural network
to estimate density maps and total people in images of significantly dense crowds. Combining
a deep and shallow network allows scale-invariant detection from widely occluded images. A
similar approach to the ones used in [13, 15] is the one implemented by L. Zeng �� ��� [16], where
they employed a single-column, high-performance multi-scale model based on the generation of
scale-relevant features.

M. Marsden �� ��� [17] used a single column deep neural network to obtain density maps and
achieve high accuracy in people counting. Researchers can examine images of any resolution
and aspect ratio with such a model. Also, a 50% reduction in image size does not significantly
affect system performance for real-time deployment. A completely different methodology is the
one used by the same authors [18], which focused on using a residual neural network for crowd
counting, detection of violent behavior, and classification of the density level of groups of people,
demonstrating the benefits of multitasking learning. Although they manage to demonstrate such
a benefit compared to learning individual tasks, they fail to overcome the methods analyzed in
state-of-the-art presented in their study.

To perform crowd counting on still images from different scenes, K. Han �� ��� [14] used a
convolutional neural network. They employ random Markov fields as a post-processing method,
obtaining a better counting accuracy in local patches. However, the strategy of dividing the
images into overlapping patches and then employing such post-processing could be a disadvan-
tage in terms of the algorithm’s execution time. A different strategy that used patches is the
one exposed by H. Xiong �� ��� [19], who takes advantage of estimating the number of people
in a complete image by employing the sum of the estimates in the patches that make it up. In
particular, its network can generate patches in which the number of people varies in a closed
interval. In this way, they trained their one-column network under a problem of closed nature.
However, the network can generalize well in images where the number of people is arbitrary
through the idea mentioned before. It is essential to mention that this network is considered
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one of the state-of-the-art models of three of the most used datasets.
V. Sindagi and V. Patel [20] used another technique to perform crowd counting through

multitasking learning. They used a high level prior to classifying the number of people in the
images coarsely to make the estimation later. Thus, they can obtain high-resolution density
maps using their multi-column network.

Following an approach similar to that discussed in [13], D. Sam �� ��� [21] used a three-column
convolutional network, except that they use a classifier to send image patches to one of three
regressors that best matches the crowd density, variations scale, perspective, and background.
With this, they can vastly improve their base network at the expense of using more parameters
and time to train the classifier, which is significantly challenging given the varied characteristics
of crowds and their environments. In contrast, L. Zhang �� ��� [22] used a single-column
network with small filters of equal size in all layers to maintain spatial resolution and create a
deeper network. Notably, they perform the combination of feature maps from multiple layers
to improve the robustness of the network against changes in the sizes of people’s heads.

On the other hand, based on the limited amount of existing labeled data, since they are costly
to obtain in terms of time and work, X. Liu �� ��� [23] tries to take advantage of unlabeled data
for crowd estimation in a basic network through the learning of ranges of numbers of people.
By doing so, his approach can improve the training of neural networks for the task of estimating
crowds. Another improvement related to the limited amount of training data is the one devised
by C. Zhang �� ��� [24]. They try to handle the model’s reduced performance when analyzing
unseen scenes. In particular, they examined the inference stage scenes to find the patches with
the most similar scenes in the training set, with which they finely refitted their basic model.
However, precisely such a non-parametric tuning scheme can take considerable time since it is
necessary to find all the candidate images and patches for the fine retraining of the network.
M. Reddy �� ��� [25] used a different methodology to fit the network to target scenes of a few
labeled samples. They used the novel learning-to-learn approach (meta-learning) to fine-tune
the network by using few labeled data, managing to overcome various methods that address
this problem.

S. Aich and I. Stavness [26] focus on improving the generic object count through their heat
map regulation technique. The basis of this method is back-propagating the error between
a difference of predicted class activation maps and thick maps of Absolute truth Gaussian
activation instead of just backpropagation of the counting error. This technique aims to reduce
false positives and increase false negatives. Using such a scheme and a simple neural network,
they can achieve similar performance with considerably faster inference than the model presented
in [24]. On the other hand, a new type of crowd map, called Focal Inverse Distance Transform
(FIDT) map, is the one devised by D. Liang �� ��� [27] and is characterized by significantly
improving the individual location of people in images of dense crowds. It is worth mentioning
that although his method focused on improving location, he also obtains competitive results in
the task of estimating the number of people.

As can be seen, there is a clear trend in using single-column fully convolutional neural
networks. In particular, a trivial architecture that meets these specifications is the encoding
and decoding model, known as the autoencoder [5, 28, 29, 30, 31, 32, 33, 34]. However, an
intrinsic difficulty of this model is the choice of the dimensionality of the latent coding space
[35, 36]. In ideal terms, such a latent space should have the essential data characteristics that
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allow the network to accurately perform the task for which it was trained. If the dimensionality
of this space is less than the optimal value, the network will have severe problems executing the
task. In contrast, if the dimensionality is high, the latent space will have redundant features,
resulting in poor feature extraction by the network. The difficulty in finding the optimum is
based on the close relationship between the latent space and the data particularities.

In conclusion, although initially, the studies focused on demonstrating the potential of crowd
estimation through detection approaches and direct regression of people counting, nowadays,
the density map learning approach is the most widely used. This approach is related to the
extensive use of artificial neural networks, with their fully convolutional versions being the most
preferred in this area. More specifically, during the last decade, there has been an increased
interest in using single-column architectures, such as autoencoder models. Furthermore, given
the significant improvements that FIDT maps have in locating people in dense crowds, it is
estimated that researchers will use such maps in future research. Therefore, we designed a dual
autoencoder architecture since there are no researches that improve localization and estimation
in density and FIDT maps.

	�
 ������� �������
�

In the present investigation, we address the problems of estimation and location of people in
images of crowds through machine learning models. Therefore, to pose the problems, it is
first mentioned that the estimation process corresponds to counting people in crowds. The
location refers to where each person is located in the scenes. We carry out these tasks on a
widely known dataset of images captured in the visible spectrum, in several outdoor scenes,
with elevated views, varied lighting, and sparse and dense crowds.

Likewise, our machine learning models correspond to deep learning approaches, or more
specifically, fully convolutional neural networks. Specifically, we used autoencoder architectures
to carry out the study. In addition, we train these networks to learn the agglomerations’
characteristics to generate density maps or FIDT maps. Finally, we estimate the number of
people and their locations in the images from these maps.

	�� ������ ��������

To reduce the complexity of obtaining an autoencoder’s optimum latent space dimensionality
for the simultaneous tasks of locating and estimating people in crowds, we propose a dual
architecture composed of two cascaded autoencoders. The first autoencoder is responsible for
generating reconstructive masking of the input images, resulting in images in which only the
heads of the people are present. The second autoencoder takes the output images of the first
one and generates the FIDT maps.
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A reconstruction task in a dual autoencoder architecture will improve localization and counting
people tasks in crowd images, using density maps and Focal Inverse Distance Transform (FIDT)
maps, in percentages greater than 4% and 2%, respectively, compared to a single autoencoder
architecture without the reconstruction task.

	�
 ��	�������

	�
�	 ��
���� ��	������

The general objective of this research is to carry out a study to prove or refute the idea of
improving the location and estimation of people through a reconstruction task in a specific fully
convolutional neural network architecture.

	�
�
 ������� ��	�������

The specific objectives that break down the general objective are presented below:

1. Implement an architecture consisting of two cascaded autoencoders.

2. Use the ShanghaiTech Part B dataset to train and test the models.

3. Train and test a single autoencoder model to generate density maps and people counting.

4. Train and test a dual network with the introduction of the reconstruction task to obtain
density maps and counts.

5. Train and test the single autoencoder model to generate FIDT maps and crowd estimation.

6. Introduce the reconstruction task to train and test the dual network to obtain FIDT maps
and counts.

7. Contrast the results based on standard metrics to prove or refute the hypothesis and
compare the performance of the models concerning state-of-the-art methods.

	�� �����������

The methodology that will be applied to develop the research is set out below:

1. Implement an architecture consisting of two cascaded autoencoders.

1.1. Theoretical, conceptual, and implementation analysis of similar architecture.
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2. Use the ShanghaiTech Part B dataset to train and test the models.

2.1. Exploratory analysis of the characteristics of the ShanghaiTech Part B dataset.

3. Train and test a single autoencoder model to generate density maps and people counting.

3.1. Investigation of graphics card (GPU) characteristics to speed up computations.

3.2. Analysis of the model training curves.

4. Train and test a dual network with the introduction of the reconstruction task to obtain
density maps and counts.

4.1. Observation, analysis, and contrast of training curves concerning the previous model.

4.2. Evaluation and visual comparison of results obtained when introducing the recon-
struction task in the dual architecture in contrast to the one implemented previously.

5. Train and test the single autoencoder model to generate FIDT maps and crowd estimation.

5.1. Training analysis of the model in terms of its learning curves.

6. Introduce the reconstruction task to train and test the dual network to obtain FIDT maps
and counts.

6.1. Analysis of learning curves in the network training process.

6.2. Evaluation and visual comparison of results concerning those obtained with the single
autoencoder model.

7. Contrast the results based on standard metrics to prove or refute the hypothesis and
compare the performance of the models concerning state-of-the-art methods.

7.1. Investigation and analysis of standard metrics to contrast results.

7.2. Analysis of results based on metrics.
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In particular, we employed two types of crowd maps: density maps and FIDT maps. These
maps are created using the ShanghaiTech Part B dataset. Next, we detail step by step how to
obtain each of them. It is worth mentioning that we used such maps as ground truths.

���� 2.1: Sample images of the ShanghaiTech Part B dataset [13, 37].

7
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���� 2.2: Sample image of the ShanghaiTech Part B dataset, density map (𝜎 = 4, 𝜇 = 67),

FIDT map (𝛼 = 0.02, 𝛽 = 0.75).


�
 ���
�������� ���� � �������

We use Part B of the ShanghaiTech dataset for training and evaluation. This dataset has
400 training images and 316 evaluation images [13, 37]. The ground truths provided by this
dataset are simply vectors with the position coordinates of each head in each of the images. The
dataset is made up of visible spectrum images, captured in several outdoor scenes, with elevated
views, varied lighting, and sparse and dense crowd densities. The images in both subsets have
a resolution of 768× 1024. The average number and standard deviation of people in the images
of the training subset are 123 and 94. Likewise, the minimum and the maximum number of
people are 12 and 576, respectively. In turn, the average, standard deviation, minimum, and
maximum of people in the evaluation subset images are 124, 95, 9, and 539, respectively. The
table 2.1 exposes a summary of the main characteristics of the dataset. In addition, the figure
2.1 shows a series of example images of the present dataset.

����� 2.1: Main characteristics of the ShanghaiTech Part B dataset.

������

����� ������ �� ������

������ ���������
 ��
 ��� ��� ��� ���

Train Data 400 768 × 1024 12 576 123 94

Test Data 316 768 × 1024 9 539 124 95


�� ��
���� ����

A density map is a crowd map that represents people’s heads by normalized Gaussian kernels
[13]. The normalization aims to make the integral of each kernel equal to 1 so that we can

8
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compute the total head count as the integral of the entire density map. In particular, it is
possible to obtain this type of map employing the procedure explained below.

Consider a crowd image with 𝑁 people and a set of points 𝐴 containing the position (𝑥𝑖, 𝑦𝑖),
with 𝑖 = 1, 2, . . . , 𝑁 , of each head in the image [13]. If we represent each head as a delta
distribution 𝛿(𝑥− 𝑥𝑖, 𝑦 − 𝑦𝑖), we obtain the complete image 𝐶 as:

𝐶(𝑥, 𝑦) =
∑︁

�𝑥𝑖,𝑦𝑖�∈𝐴

𝛿(𝑥− 𝑥𝑖, 𝑦 − 𝑦𝑖) . (2.1)

Then, it is possible to obtain the density map as the convolution of 𝐶 with a Gaussian kernel
𝐾:

𝐷(𝑥, 𝑦) = 𝐶(𝑥, 𝑦) *𝐾𝜎𝑖
(𝑥, 𝑦) , (2.2)

where 𝜎𝑖 = 𝜓𝑑𝑖, 𝜓 is a constant, and 𝑑𝑖 = 	
𝑘

∑︀𝑘
𝑗�	 𝑑

𝑖
𝑗. Y. Zhang �� ��� [13] have found empirically

that 𝜓 = 0.3 corresponds to the best value. The variable 𝑑𝑖𝑗 is the set of distances between each
head (𝑥𝑖, 𝑦𝑖) and its 𝑘 closest neighbors, 𝑑𝑖	, 𝑑

𝑖

, . . . , 𝑑

𝑖
𝑘. An alternative approach is to consider a

constant standard deviation, which allows us to generalize the kernel size for all heads regardless
of their size in the images. Here, we adopt the latter approach based on the results reported
by V. K. Valloli �� ��� [30], who, with fixed-size kernels, obtained a 25% improvement in the
Mean Absolute Error (MAE) metric compared to geometry-adaptive kernels using a similar
architecture.

Figure 2.2(a) shows an image of crowds from the ShanghaiTech Part B dataset, whereas
Figure 2.2(b) exposes its density map. Such a dataset provides crowd images, along with the
location points of each head. Thus, we generated the exposed density map using the previous
procedure on the set of ground truth points of the respective image. For the Gaussian kernels,
we use a constant standard deviation of 4 (i.e., 𝜎𝑖 = 𝜎 = 4), and a window of 67 × 67 pixels
(i.e., 𝜇 = 67). We have tried several values for these parameters, and we selected those that
generate the best results in our models.


�� ����� 

����� �����
�� ���
����� ����

A Focal Inverse Distance Transform (FIDT) map is a type of crowd map characterized by accu-
rately representing the location of each person in all kinds of crowd densities. The improvement
in localization is the main difference with the density maps; however, the counting procedure
requires a local maximum detection strategy [27]. Next, we explain the mathematical derivation
of a FIDT map.

Consider a crowd image and a set of points 𝐴 with the positions (𝑥𝑖, 𝑦𝑖), with 𝑖 = 1, 2, . . . , 𝑁 ,
of the 𝑁 people’s heads in the image. From this, we can obtain the Euclidean distance transform
map [27] through the following expression:

𝐸(𝑥, 𝑦) = min
�𝑥𝑖,𝑦𝑖�∈𝐴

√︀
(𝑥− 𝑥𝑖)
 + (𝑦 − 𝑦𝑖)
 . (2.3)

Then, we calculate the FIDT map as:

𝐹 (𝑥, 𝑦) =
1

𝐸(𝑥, 𝑦)�𝛼·𝐸�𝑥,𝑦��𝛽� +𝐵
, (2.4)
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where we use 𝐵 = 1 to avoid dividing by zero and adopt 𝛼 = 0.02 and 𝛽 = 0.75 as recommended
by D. Liang �� ��� [27].

Figure 2.2(c) shows the FIDT map of the sample image. We obtained this map using the
previously detailed procedure on the location points provided by the dataset for each corre-
sponding image. Comparing with Figure 2.2(b), we observe that the FIDT map significantly
improves the location of people in the dense crowd area.
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In this work, we focused our attention in designing a deep-learning model to generate both
people counting and location within a given scene. From a general point of view, the use of an
autoencoder would be adequate to compress the crowds’ characteristics in their latent space.
Nevertheless, the main problem is finding the proper dimensionality for such a coding space.
Consequently, we propose to alleviate this difficulty through an architecture of two cascaded
autoencoders. The first autoencoder aims to learn the characteristics of people’s heads in crowd
imagery in order to obtain an output image as a mosaic of circular masks of the input scene.
(The center of each circle gives the location of peoples’ heads in the input image.)

The second autoencoder focuses primarily on generating density maps or FIDT maps. Sub-
sequently, we obtain the estimates of the number of people from the crowd maps. The specific
objective of using our dual architecture, instead of a single autoencoder, is to separate the tasks
of detecting people and generating the points representative of each head. Indeed, a single au-
toencoder architecture must address both tasks together, which drastically complicates training,
generating even more difficulties in finding essential features for the latent space.

��
 �������� ������������

We show the architecture of the proposed neural network in Figure 3.1. Here we present both
variants: the one that computes the FIDT maps and the that computes the density maps, which
differ only in the last block. Our model comprises two cascaded autoencoders and initially
performs the reconstructive masking of the input images; for these reasons, we name it DRA.
DRA models use part of the architecture proposed by V. K. Valloli �� ��� [30] as a basis.

The first autoencoder takes the crowd image and converts it to an image in which only the
heads of the people are present (reconstructive masking). Subsequently, the second autoencoder
takes this output and generates the FIDT map or the density map, depending on the selected

11
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���� 3.1: Architecture of the Dual Reconstructive Autoencoder (DRA) model proposed in this

work.

block at the end.
Both autoencoders have a contraction path and an expansion path. The variants of the

DRA model (for both types of crowd maps) agree on the path of contraction, differing only at
the end of the expansion path (dashed-blue square in Figure 3.1). DRA models perform feature
extraction on contraction paths, which use the first five blocks of the Torchvision VGG16 BN
model (without the fully connected layer). In particular, we use the pre-trained VGG16 BN on
the ImageNet dataset. Next, we explain the flow of a color image in the DRA model.

��� ���� ����

The input RGB image is taken by the first block of the contraction path (B1 C2) of the first
autoencoder, composed of two convolution layers of 3 × 3 × 64 that have Batch Normalization
(BN) and Rectified Linear Unit (ReLU) activation function. The feature maps are then passed
through a max-pooling layer of 2 × 2 with stride 2, decreasing their resolution by half. The
output then goes into block B2 C2, which has two convolution layers of 3×3×128 with BN and
ReLU. Once again, we reduce the resolution using a max-pooling layer 2 × 2 with stride 2 to
send the feature maps to block B3 C3 composed of three convolution layers with kernels equal
to those of the previous convolution layers, 256 outputs, BN, and ReLU. We apply max-pooling
and three convolution layers of 3 × 3 × 512, where each has batch normalization and ReLU
(block B4 C3). We finish the contraction path by applying max-pooling, followed by the B5 C3
block of 3 convolutional layers with the same parameters as the previous block.

The expansion path begins applying a nearest-neighbor interpolation layer with scale factor
2, doubling the resolution of the feature maps. Then, we concatenate these maps with the
outputs of block B4 C3, generating 1024 feature maps to which we apply a convolution layer
of 1 × 1 × 256 with BN and ReLU. Next, we send the outputs to a convolution layer with
3× 3 kernel, 256 outputs, BN, and ReLU. We then double the resolution via nearest upsample,
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concatenate with block B3 C3’s outputs, and pass them through a 1 × 1 × 128 convolution
layer with batch normalization and ReLU. Next, we double the resolution, concatenate with
the outputs of block B2 C2, and apply a convolution of 1 × 1 × 64 followed by a convolution
of 3 × 3 × 64, both with BN and rectified linear unit. The expansion path ends with a further
doubling of the resolution, concatenation with the outputs of block B1 C2, and application of
convolutional layers of 1 × 1 × 32 + BN + ReLU, 3 × 3 × 32 + BN + ReLU, and 3 × 3 × 3
+ ReLU. The passage of the RGB image through the contraction and expansion paths of the
first autoencoder generates the so-called masked reconstruction of the original image. In such
an output, only the heads of the people from the original image are present.

The masked reconstruction enters the second autoencoder, passing through its contraction
path first. As can be seen from Figure 3.1, such a path is identical to that of the first autoen-
coder. In the case of the expansion path, it is identical to its counterpart in the first autoencoder
until reaching the interpolation layer of 128 feature maps. At this point lies the difference be-
tween the variant for FIDT maps and that for density maps. In the case of FIDT maps, the
feature maps go through a section identical to the respective section in the expansion path of the
first autoencoder until reaching the last block, which has an extra 1× 1× 1 convolution layer +
ReLU at the end, thus generating the FIDT map. On the other hand, the variant designed for
density maps takes the 128 upsampled feature maps, concatenates them with those from block
B2 C2, and passes them through convolutional layers of 1 × 1 × 64 + BN + ReLU, 3 × 3 × 64
+ BN + ReLU, 3 × 3 × 32 + BN + ReLU, and 1 × 1 × 1 + ReLU, obtaining the density map.

As mentioned before, our model will be compared to a single autoencoder architecture that
directly generates the crowd maps from the input images. For this reason, the model is called
SA. The architecture of the SA model corresponds to the last autoencoder of the DRA neural
network, so there is a variant for each crowd map (see Figure 3.2).

���� 3.2: Architecture of the Single Autoencoder (SA) model.
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In the training of the DRA model, we use a Gaussian distribution with zero mean and 0.01
standard deviation to randomly initialize the weights of all trainable layers of the expansion
paths. Moreover, we used a total of 50 epochs and a batch size of 1, generating 20,000 itera-
tions. We also performed on-the-fly data augmentation through 14 random 400×400 crops and
horizontal flips half the time. We train the first autoencoder for 8,000 iterations, the second
for the following 4,000 iterations. Finally, we enable the early stopping method to monitor for
validation loss when training the entire model (for both autoencoders) for the remaining 8,000
iterations.

In such a training scheme, we use different loss functions depending on the type of crowd
map. In particular, the FIDT map variant uses the Mean Squared Error (MSE) and Independent
Structural Similarity Index Measure (I-SSIM) loss functions, whereas the density map variant
only uses MSE. Specifically, in the training of the first autoencoder of the DRA model for FIDT
maps, we used the MSE loss function multiplied by a constant:

𝐿	𝐹 = 𝜂𝐿𝑀𝑆𝐸 = 𝜂
1

𝑀

𝑀∑︁
𝑖�	

(𝑦𝑖 − 𝑦𝑖)

 , (3.1)

where 𝜂 = 10
, 𝑀 is the number of pixels, 𝑦𝑖 is the 𝑖-th ground truth value, and 𝑦𝑖 is the 𝑖-th
estimated value.

The second autoencoder of the DRA variant for FIDT maps uses a loss given by the sum of
the MSE and I-SSIM losses,

𝐿
𝐹 = 𝐿𝑀𝑆𝐸 + 𝐿𝐼−𝑆𝑆𝐼𝑀 . (3.2)

where 𝐿𝐼−𝑆𝑆𝐼𝑀 has the expression [27]:

𝐿𝐼−𝑆𝑆𝐼𝑀 =
1

𝑁

𝑁∑︁
𝑖�	

𝐿𝑆𝑆𝐼𝑀(𝑃𝑖, 𝐺𝑖) . (3.3)

Here 𝑁 is the total number of people, 𝑃𝑖 and 𝐺𝑖 are the prediction and ground truth for
the 𝑖-th 30 × 30 independent instance region, respectively. The Structural Similarity Index
Measure (SSIM) loss in (3.3) is given by:

𝐿𝑆𝑆𝐼𝑀(𝑃,𝐺) = 1 − 𝑆𝑆𝐼𝑀(𝑃,𝐺) , (3.4)

where SSIM corresponds to the Structural Similarity Index Measure, which is calculated by [27]:

𝑆𝑆𝐼𝑀(𝑃,𝐺) =
(2𝜇𝑃𝜇𝐺 + 𝜆	) (2𝜎𝑃𝐺 + 𝜆
)

(𝜇

𝑃 + 𝜇


𝐺 + 𝜆	) (𝜎

𝑃 + 𝜎


𝐺 + 𝜆
)
, (3.5)

where 𝑃 and 𝐺 are the predicted and ground truth maps, respectively; 𝜇𝑃 and 𝜎𝑃 (correspond-
ingly, 𝜇𝐺 and 𝜎𝐺) are the mean and standard deviation of predicted map, 𝑃 (correspondingly
of ground-truth map, 𝐺). As with the instance size, we adopt the values of 𝜆	 and 𝜆
 from [27]
(i.e., 𝜆	 = 0.0001 and 𝜆
 = 0.0009). We carried out the training of the complete model through
the joint loss function 𝐿𝐽𝐹 = 𝐿	𝐹 + 𝐿
𝐹 .
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To train the first autoencoder of the DRA variant for density maps, we use the same loss
function as for the variant for FIDT maps, that is, 𝐿	𝐷 = 𝐿	𝐹 . We used the loss function
𝐿
𝐷 = 𝜏𝐿𝑀𝑆𝐸, with 𝜏 = 10�, for the second autoencoder of the density map variant. As before,
the joint loss 𝐿𝐽𝐷 used to train the complete model corresponds to the sum of the individual
losses, namely 𝐿𝐽𝐷 = 𝐿	𝐷 + 𝐿
𝐷.

We employed Adam optimization [38] and a learning rate equal to 10−�. Likewise, for FIDT
maps, we used weight decay equal to 5 × 10−�, whereas, for density maps, we used 5 × 10−�.
All these parameters where experimentally determined to achieve the best performance. The
hardware employed for training was an NVIDIA A100 Tensor Core GPU with a 40 GB HBM2
@ 1.6 TB GPU memory size, running on an accelerator-optimized (A2) Google Cloud virtual
machine with 12 vCPUs and 85 GB RAM. We used Python programming language in its version
3.7.10 and PyTorch 1.9 machine learning framework.

For the first autoencoder of both variants of the DRA model, the targets were the original
images multiplied by their respective binary head masks. Such masks (used only for training
purposes) were obtained by thresholding the ground truth density maps (from the database)
through a threshold of 10−
. The targets of the second autoencoder correspond to crowd maps,
where the type of map used depends on the selected DRA variant. The loss function used by
each SA model variant corresponds directly to the one used by the second autoencoder of the
respective DRA model variant. We train each SA variant with the same hyperparameters as
the respective DRA variant to perform fair comparisons.

In order to avoid overfitting, we validated the models using 158 images out of the 316 images
in the evaluation set. The validation images are only used in such a procedure and in no case to
evaluate the model nor in training. In training, we used early stopping with patience equal to
2,000. This method monitored the loss functions calculated on the validation subset, for which
we used a batch size equal to 7.

��
 ���������
 �����

We perform a patch-based evaluation for all models [30]. To explain such an approach, let us
consider a single model and a single evaluation image. The procedure begins with dividing the
image into nine equally-sized overlapping patches 𝐴,𝐵, . . . , 𝐼 (Figure 3.3). Later, the model is
fed with the patches, generating nine inferences. We infer the complete image from the specific
contribution of each of the nine small inferences, as shown in Figure 3.4. Then, to carry out the
counting in a predicted density map, we integrate the entire map, whereas, in a FIDT map, it
is necessary to use a procedure for detecting local maxima [27].

We employed counting, localization, and reconstruction metrics in the evaluation. The first
two types of metrics are responsible for quantifying the models’ performance in the tasks of
counting and locating people in crowds. Specifically, localization metrics were used only for
FIDT maps. Reconstruction metrics allow quantifying the DRA models’ performance in the
reconstructive masking task.

Among the counting metrics, we have used the Mean Absolute Error (MAE) and the Root
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���� 3.3: Overlapping patches used in the evaluation stage of the models.

���� 3.4: Contribution of the nine small inferences to the complete inference of a model.

Mean Squared Error (RMSE) wich are given by:

𝑀𝐴𝐸 =
1

𝑇

𝑇∑︁
𝑖�	

|𝑧𝑖 − 𝑧𝑖| , (3.6)

and

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑇

𝑇∑︁
𝑖�	

(𝑧𝑖 − 𝑧𝑖)

 , (3.7)

respectively. In both metrics, 𝑧𝑖 and 𝑧𝑖 are the target and estimated counts, and 𝑇 is the total
number of evaluation images. The MAE metric measures the accuracy of the estimates, whereas
RMSE measures their robustness.

The localization metrics we have employed are Precision, Recall, and F1-Score, given by:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (3.8)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (3.9)

F1 =
2 · Precision · Recall

Precision + Recall
, (3.10)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are the numbers of true positives, false positives, and false negatives,
respectively. We obtained these last variables by comparing the predicted and ground truth
locations, using two decision thresholds: 𝜎	 = 4 and 𝜎
 = 8. The Precision metric measures the
quality of successful predictions relative to the total number of times the model predicts the
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existence of an instance. In turn, Recall measures the number of correct predictions concerning
the number of ground truth positives. The F1-Score metric measures the quality and quantity
of correct predictions since it combines Precision and Recall.

The reconstruction metrics we have used are the RMSE, the SSIM, and the Feature Similarity
Index Measure for color images (FSIMc) [39]. The FSIMc metric is defined by:

𝐹𝑆𝐼𝑀𝑐 =

∑︁
𝑥∈�

𝑆𝐿(𝑥) [𝑆𝐶(𝑥)]𝜌 𝑃𝐶𝑚(𝑥)∑︁
𝑥∈�

𝑃𝐶𝑚(𝑥)
, (3.11)

where Ω is the set of all pixels in the image, 𝜌 = 0.03 (based on [39]), 𝑃𝐶𝑚(𝑥) is the maximum
between the phase congruency of the prediction and the target, 𝑆𝐿(𝑥) is the similarity between
the prediction and the target, whereas 𝑆𝐶(𝑥) = 𝑆𝐼(𝑥)𝑆𝑄(𝑥) is the chrominance similarity. The
similarities between the chromatic features 𝑆𝐼(𝑥) and 𝑆𝑄(𝑥) are given by:

𝑆𝐼(𝑥) =
2𝐼	(𝑥)𝐼
(𝑥) + 𝑇�
𝐼
	 (𝑥) + 𝐼

 (𝑥) + 𝑇�

, (3.12)

𝑆𝑄(𝑥) =
2𝑄	(𝑥)𝑄
(𝑥) + 𝑇�
𝑄


	(𝑥) +𝑄


(𝑥) + 𝑇�

, (3.13)

where 𝑇� = 𝑇� = 200 (based on [39]), 𝐼	 and 𝑄	 are the color channels of the prediction, and 𝐼

and 𝑄
 are the chrominance information of the ground truth. For an RGB image, we obtained
𝐼 and 𝑄 from the following transformation [40]:⎡⎣𝑌𝐼

𝑄

⎤⎦ =

⎡⎣0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

⎤⎦⎡⎣𝑅𝐺
𝐵

⎤⎦ , (3.14)

where 𝑌 corresponds to the luminance information.
For the reconstruction task, the RMSE metric measures the model error, whereas SSIM and

FSIMc measure the similarities in structural and chromatic terms between the predictions and
the ground truths of the reconstructive masks, respectively.

We evaluated the models using the 158 images of the evaluation subset set aside exclusively
for testing. None of the four neural networks have seen these images in training or validation.
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The training of the DRA model for FIDT maps begins with Figure 4.1(a), which exposes the
loss 𝐿	𝐹 calculated over batches of the training and validation subsets. We trained only the
first autoencoder from iteration 0 to 8,000, using the mentioned loss, to perform reconstructive
masking. Then, the curve has a dead zone representing a pause in the training of the first
autoencoder. The beginning of the dead zone activates the training of the second autoencoder
employing the loss 𝐿
𝐹 . In Figure 4.1(b) we show the training curve of the second autoencoder,
with the aim that it performs the generation of FIDT maps from the masked reconstructions
generated by the first autoencoder. The independent training of the second autoencoder takes
place from iteration 8,000 to iteration 12,000, after which we reactivated the training of the first
autoencoder. Thus, we performed a joint training, where both losses operate from iteration
12,000 until the early stopping method is automatically activated. Joint training constitutes
the final stage of adjustment of weights and biases to achieve a better adaptation between both
parts of the network. However, as seen in Figure 4.1, most of the training of the autoencoders
is done in the independent stages.

���� 4.1: DRA model training curves for FIDT maps.
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Similarly, the DRA model variant training for density maps starts with Figure 4.2(a). Iden-
tical to the training of the previous variant, we only trained the first autoencoder during the
first 8,000 iterations. In such an interval, it is possible to observe the decrease of the 𝐿	𝐷

loss as the iteration increases. Subsequently, we paused the training of the first autoencoder
and activated the training of the second one for the successive 4,000 iterations, using the 𝐿
𝐷

loss (Figure 4.2(b)). Finally, joint training is carried out from iteration 12,000 until the early
stopping method is automatically activated. Again, the most effective training of this variant
occurs during the individual training of the autoencoders since, according to the curves, the
joint adjustment does not provide notable improvements in learning.

���� 4.2: DRA model training curves for density maps.

We display typical results from the DRA and SA models for FIDT maps in Figure 4.3.
In particular, we present six images from the evaluation subset, along with the ground truth
masked images, reconstructed masked images, ground truth FIDT maps, and the respective
predictions of both neural networks. By comparing the predicted counts from our model (fifth
column in Figure 4.3) with the predicted counts of the widely-used SA model (sixth column
in Figure 4.3), one can clearly see that the DRA model significantly improves the counting
and location of people in crowds compared to the SA model. The location results of this latter
model (last column) differ significantly from the ground truths (fourth column), as the predicted
maps have many false positives and artifacts. This result was consistent across all the images
used in the evaluation stage. In the case of the FIDT maps, the counts are directly related to
the locations of the people. Despite the improvement over the SA model, the DRA model’s
counting performance decreases for dense crowds positioned in the upper parts of the images
(third sample image). However, despite this shortcoming, locating people remains competitive.
Regarding the masked reconstructions made by the DRA model, it stands out that they are
visually consistent with the ground truth masked images.

Figure 4.4 shows typical results from the DRA and SA neural networks for density maps.
For comparison purposes, we show the same images of the evaluation subset (see Figure 4.3).
In addition, the count figures of the ground truth density maps differ slightly from those of
the ground truth FIDT maps due to the different mechanisms for creating the crowd maps and
the different schemes for obtaining the counts. The results for the networks that generate the
density maps show that the counts estimated by the SA model are closer to the actual values
than the estimates generated by the DRA model when we use density maps. As expected, the
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���� 4.3: Sample results of DRA and SA models for FIDT maps.

masked reconstructions are similar to ground truths and those generated by the DRA variant
for FIDT maps.

Comparing the results of the DRA model variants for FIDT and density maps, we observe
that both have similar count estimates; however, the former significantly improves the location
of people in dense crowds. In turn, the SA model for density maps provides better count
estimates and fewer artifacts and false positives compared to its variant for FIDT maps.

We summarize the results of the counting metrics for all models in Table 4.1. The DRA
model for FIDT maps has an MAE of 13.92 and an RMSE of 31.67, whereas the SA model
for the same map type obtains 121.73 and 127.61. Thus, the metrics show the considerable
improvement that constitutes using the devised methodology. On the other hand, the DRA
model has a lower performance for counting compared to the SA model for density maps.
Likewise, the DRA variant for FIDT maps has better accuracy and robustness than its variant
for density maps.

The localization metrics of the DRA and SA models for FIDT maps are summarized in
Table 4.2. The Precision, Recall, and F1-Score metrics are higher in the DRA model than in
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���� 4.4: Sample results of DRA and SA models for density maps.

the SA model, implying a significant improvement in locating people in crowds, as shown by the
sample results. For example, we can observe that the proposed DRA method is able to double
the Precision.

Table 4.3 shows the reconstruction metrics achieved for both variants of the DRA model. As
expected, both variants have highly similar RMSE, SSIM, and FSIMc values, since they have
an identical learning mechanism for their first autoencoder (number of iterations, loss func-
tions, among others). Based on these metrics, the reconstruction performance of reconstructive
masking is excellent.

Table 4.4 displays the performance of the DRA model variants and the SA model variant
for density maps, along with the performance of various state-of-the-art models on the Shang-
haiTech Part B dataset. It is possible to observe that our models have competitive performances.
Although the SA (density maps) model performs better than the DRA (FIDT maps), it only
focuses on counting, so it cannot obtain the individual location of people in dense crowds. On
the other hand, unlike several state-of-the-art models, the architecture of our DRA model is
simple since it corresponds to a single-column model composed of two cascaded autoencoders.
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����� 4.1: Counting metrics for each variant of the DRA and SA models.

����� ��� ����� ��� ����

FIDT map
DRA 13.92 31.67

SA 121.73 127.61

Density map
DRA 19.87 32.59

SA 9.50 15.57

����� 4.2: Localization metrics of the DRA and SA models for FIDT maps.

����� ��� �����
��������
 ��� ������ ��� �	������ ���

𝜎	 � � 𝜎
 � � 𝜎	 � � 𝜎
 � � 𝜎	 � � 𝜎
 � �

FIDT map
DRA 63.11% 84.06% 57.61% 76.73% 60.24% 80.23%

SA 27.11% 37.26% 54.56% 74.98% 36.22% 49.78%

����� 4.3: Reconstruction metrics for DRA model variants.

����� ����� ��� ���� ��
� ��
��

DRA
FIDT map 91.92 0.93 0.95

Density map 91.96 0.93 0.94
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����� 4.4: Performance of the models on the ShanghaiTech Part B dataset.

����� ������
 ������������ ��� ����

C. Zhang �� ��� [24] Basic 32.00 49.80

Y. Zhang �� ��� [13] Multi-column 26.40 41.30

M. Marsden �� ��� [17] Single-column 23.76 33.12

D. B. Sam �� ��� [21] Multi-column 21.60 33.40

V. A. Sindagi �� ��� [20] Multi-column 20.00 31.10

��� ���
���� ���� ��
���������
 	���� �
�
�

K. Han �� ��� [41] Basic 17.80 26.00

L. Zeng �� ��� [16] - 17.70 30.20

L. Zhang �� ��� [22] Single-column 16.20 25.80

��� ��
�� ���� ��
���������
 	���
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X. Liu �� ��� [23] Basic 13.70 21.40

Y. Li �� ��� [14] Single-column 10.60 16.00
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� 	
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D. Liang �� ��� [27] Multi-column 6.90 11.80

V. K. Valloli �� ��� [30] ��
���������
 ���� 	����
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We conclude that our Dual Reconstructive Autoencoder (DRA) model for Focal Inverse Distance
Transform (FIDT) maps generates improvements in localization and people counting compared
to a single autoencoder architecture, which is widely used nowadays. For the counting task, our
model decreased MAE and RMSE by 88.5% and 75.18%, respectively, compared to the metrics
obtained for the Single Autoencoder (SA) model (SA model MAE: 121.73, DRA model MAE:
13.92, SA model RMSE: 127.61, DRA model RMSE: 31.67). Regarding localization metrics,
respectively, for both decision thresholds, the DRA model increased the Precision by 36 (from
27.11% to 63.11%) and 46.8 (from 37.26% to 84.06%) percentage points, the Recall metric by
3.05 (from 54.56% to 57.61%) and 1.75 (from 74.98% to 76.73%) percentage points, and F1-
Score by 24.02 (from 36.22% to 60.24%) and 30.45 (from 49.78% to 80.23%) percentage points.
Although the computational cost and inference time of the DRA model are approximately
twice that of the SA network, our neural network widely exceeds the hypothesized improvement
percentages for counting and location tasks, which justifies its use and therefore validate the
hypothesis of improvement for FIDT maps. These improvements were achieved due to the
proposed architecture we have designed and the methodology of separating the tasks of detecting
people and generating points representative of each head into independent autoencoders. Our
neural network obtains crowd estimates similar to those of state-of-the-art models, accurate
locations for all crowd density types, and excellent masked reconstructions. Despite this, our
task-division approach failed to improve counting performance when density maps were used
compared to the SA model. Indeed, the SA neural network outperformed the DRA model
by 47.81% for the MAE metric (SA model MAE: 9.50, DRA model MAE: 19.87) and 47.77%
for the RMSE metric (SA model RMSE: 15.57, DRA model RMSE: 32.59), which refutes the
hypothesis of improvement for density maps. However, the SA model only focuses on counting
people, unable to obtain individual locations of people in dense crowds, whereas our model can
generate both due to the dual architecture.
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Among the future works, we will implement the DRA neural network for FIDT maps in the
facilities of the campus of the Universidad de Concepción, Chile. We will deploy visible, near-
infrared, and long-wave-infrared security cameras to characterize crowds using the proposed
dual-autoencoder approach. Moreover, we will use a standalone 5G mobile communications
network for centralized communication between the cameras and a deep learning server. In
addition, we will generate an assembly of neural networks using the intermediate output of
the DRA model to feed a facial expression recognition model. In this way, we will achieve
a prototype of an intelligent, accurate, robust, fast, and effective Earthquake Early Warning
System (EEWS) to help authorities make complex decisions at critical moments triggered by
natural disasters.
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