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a b s t r a c t

This paper presents an agent-based model for describing the increase the knowledge by
accumulating the information needed to complete a learning task or objectives, based
on phenomena studied by behavioral and learning scientists. From the simulations,
the average increase rate in knowledge, the skewness and kurtosis of knowledge
distributions, and grade distributions are determined. These tools make it possible to
evaluate the efficiency of teaching strategies and the performance of learning in the
classroom. The present model significantly reproduces the phenomenology obtained in
Bordogna and Albano (2001), showing first and second-order phase transitions and the
temporal dynamics of knowledge. Furthermore, the results of our model allow us to built
a gas model analogy. Some of the study cases show characteristics of systems far from
the state of thermodynamic equilibrium. This allows us to use the known techniques
from gas models to interpret the dynamics of the simulated learning process. The
presented model does not describe the teaching–learning process in all its complexity.
We use a simple behavioral characteristic of the persons, namely, the inattentional
private experience. However, it allows us to prove learning strategies to optimize the
learning process. Also, this model is a starting point to propose new models with more
elements from neuroscience and sociophysics to study in greater depth the dynamics of
the classroom.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The study of the learning process has been developed by psychologists from the 60’s [1–3]. Research in educational
psychology suggests that the teacher plays a fundamental and active role in the teaching process since he has the
responsibility of the rhythm, content and sequence of the lecture [4]. However, the learning process occurs while people
interact in groups [5,6] and depends on the individual ability to integrate the information of the environment with
their internal representations [7]. According to Cameron and Giuntoli [8], 46% of students pay attention at any given
time during the lecture, suggesting that in the classroom students focus less than half of the attention on the content
of class. This happens for inattentional private experience, such as attentional lapses, daydreaming and mindwandering,
which are highly relevant in the educational context [9]. These phenomena are fundamental to generate the exchange
between internal and external representation that ensures learning [7,10]. It is estimated that students daydream 30% to
50% of the time [11], as well as mindwandering, which depending on the task to be performed and the concentration
required, also varies between 30% and 50% [7]. On the other hand, both individual and collective work associated
with bibliographic material and student study habits are of great importance in the academic performance of students.
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According to Gettinger and Seibert [12], study skills are academic enablers; they function as critical tools for learning, and
that enhance the effectiveness and efficiency of students’ learning. Furthermore, study skills, study habits, study attitudes,
and study motivation exhibit particularly strong and robust relationships with academic performance in college, as noted
by Credé and Kuncel [13].

From another point of view, in the last decades, different studies have been carried out that seek to describe the society
in the framework of complex systems [14]. However, research on the learning process from the multidisciplinary perspec-
tive of complex systems is at a relatively early stage [15–17]. Particularly from sociophysics [18–20], the development of a
theory to describe the teaching–learning process in different contexts has approached through applications of the Monte
Carlo method to a generalized Ising Model [21], for example, learning via the Internet [22], the teaching process in the
classroom [23] and social learning applications [24]. Also, modeling based on the kinetic theory of active particles [25]
provides a more general theoretical framework for studying the collective learning process.

The goal of this paper is to model the increase the knowledge by accumulating the information needed to complete a
learning task or objectives, based on phenomena studied by behavioral and learning scientists. The basic assumptions to
modeling the acquisition of information from the agents are that this process is affected by (1) students’ cognitive abilities
and proficiencies, and (2) the learning environment. The basic idealizations of the model, concerning each issue, are that:
(1) students’ cognitive abilities only depend on the loss of attention due to the inattentional private experiences; and (2)
the agents obtain information from (a) the direct instruction for a teacher, (b) social interaction in workgroup sessions, (c)
student’s study occurring in an environment that is conducive to studying. To describe this process, we using one of the
most used modeling approaches to study complex systems, the so-called bottom up [26]. This approach is characterized
by the use of agent-based models (ABMs) to reproduce artificial worlds or virtual societies [27,28]. These models have
been widely used to describe social dynamics such as segregation [29], cultural diffusion [30], civil violence [31,32], as
well as in econophysics [33,34].

The order in which the contents are presented will be as follows. In Section 2, we will briefly describe the proposed
model. Then, in Section 3, we present the comparative study with other developed models, and present new case
studies analyzed and discuss based on the theoretical elements already proposed. Finally, in Section 4, we establish the
conclusions.

2. The model

Our model consists of a system with N agents that increase their knowledge by accumulating the amount of
information AI needed to complete a learning task or objectives during a training time t . Let Ci be a vector of length
AI with components σif . If agent i acquire a unit of information f then σif = 1, otherwise σif = 0. In this way, the
knowledge of each agent is a sum of information that varies over time.

This process is determined by two parameters. The local parameter αi measures the loss of attention of each agent
of the system during the learning process. The loss of attention is produced by the inattentional private experience as
quoted in [7]. We assume that this parameter refers to the intrinsic capacity of each agent to acquire information to
increase their knowledge. On the other hand, the global parameter β is the amount of noise in the environment during the
process of accumulating information and it taking values between [0, 1] uniformly distributed. Note that the β parameter
corresponds to the reciprocal of the noise parameter in [21].

We consider three different ways that agents may acquire the information needed to complete a learning task or
objectives:

1. Student–Teacher Interaction: In this process, each unit of time is equivalent to a lecture was given by a teacher. In
this lecture, the agents can acquire a unit of information if R ≥ αi +β , where R is a random number between [0, 1]
uniformly distributed. So the knowledge vector component takes the value one (σif = 1).

2. Student–Student Interaction: In this process, the acquire the information occurs in rounds of group work. These
take place after a given number of lectures. Here agents can increase their knowledge by exchanging a unit of
information between them. So, subgroups G of NG agents are formed, where they can exchange a randomly a unit
of information according to the following steps:

(a) An agent i of a subgroup G will randomly choose another agent j of the same subgroup.
(b) With R a random number, If R ≥ αi, agent i will randomly select a unit of information k that it does not have

and copy it from agent j, such that σik = σjk.
(c) This process will be repeated for each agent i in the G subgroups.

3. Student–Bibliography Interaction: In this process, the increase of knowledge occurs when each agent independently
studies the bibliography or learning material provided by the teacher. This process will occur after a certain amount
of time NST and an agent i acquire a unit of information k from the study material B when R ≥ αi, with R a selected
random number. Such that σik = σBk.
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In this work, we only considered noise in the Student–Teacher interaction. In all other interactions, we assumed that
work in suitable conditions so that the noise does not impede to acquire information during interactions. For example, in
the case of group work, participatory methodologies are used, tasks that require different levels of concentration, where
the noise not be an impediment. On the other hand, study habits are characterized by appropriate studying routines
(e.g., reviews of material) occurring in an environment that is conducive to studying [13].

Although the similarity of these interactions with those already defined by Bordogna and Albano [21] is evident,
they differ in the way agents interact. In this case, the acquisition of learning objectives in the Student–Student and
Student–Bibliography interaction was inspired by the exchange of cultural features of the Axelrod model [30]. These
forms of interaction are also present in the models described by kinetic theory [25], money exchange [33,34] and opinion
formation [35,36].

Finally, We carried out a number of evaluations, NEV , to quantify the amount of information AI acquired by each agent
during the training time. The grade calculated as follows

grade(i) =

⎛⎜⎜⎜⎜⎜⎝
AI∑
j

σij

AI/NEV

⎞⎟⎟⎟⎟⎟⎠ ∗ 6 + 1. (1)

The ratio between AI and NEV sets a similar amount of information for each evaluation. This formula has set to obtain
a scale of notes between 1 and 7.

3. Study cases

Initially, our model compared with the results reported by Bordogna and Albano [21] through performing simulations
that consider the same general conditions. That is, the same instructional time, the number of agents and the number
of students that randomly make up the work groups. This simulations have two kind of classrooms. One classroom has
students who only attend lectures (Case I), and in other classroom has students attend lectures and work groups (Case
II). However, considering the differences in the simulation approach, some parameters are different to generate similar
conditions.

For Bordogna and Albano [21], knowledge increases over time and is assumed to be discrete. Thus they called ∆σ

as a ‘‘quantum’’ of knowledge. With this, the minimum knowledge is 0.1, and the maximum is 1. Our model, based on
the exchange of information to complete a learning task or objectives maintains the discrete nature of knowledge but,
varies in quantitative value due to the simulation approach. Thus, in our case the minimum of knowledge is zero, and the
maximum is the total of information to be acquired in the instructional period, AI = 100.

The Student–Student interaction in [21] occurs throughout the whole simulation period, which in our model is
equivalent to considering group work at each step. Therefore, the number of group work is equal to the number of lectures.
The αi parameter takes values between 0 and 1 evenly distributed, considering that for Bordogna and Albano [21], there
is a possibility of unsuccessful interactions due to persuasion and affinity between those who interact. In our model, the
increase in knowledge is only conditioned by periods of loss of attention of agents during the learning process.

Fig. 1(a) shows the variation of the average knowledge of the system in the time σ(t). Here the regimes described by
Bordogna and Albano in their work [21] (Fig. 1, case AA, page 118701-2) can be observed. For short time regimes (t < 5)
there is no significant difference in obtaining information to increase their knowledge. But in intermediate time regimes
(5 < t < 100) the difference between Case I and Case II is observed. Note that this difference is due to students of Case
I only attending lectures, while students in Case II attend lectures and group sessions. The advantage of Case II is finally
expressed in prolonged time regimes (t > 100), where the difference in accumulated information is remarkable.

Fig. 1(b) shows the noise effects during the learning process in the classroom. Here it is observed that the noise
considerably reduces the acquire of information as it increases. Because the noise does not take effect during the
Student–Student interaction, the lessons given during the lecture are reinforced through cooperation in group work.

In addition, this figure shows for both cases a phase transition around the point βc ≈ 0.99, as described in [23,24].
As quoted by Bordogna y Albano, the phase transition for Cases I and II are characterized as second order and first order
transition respectively. The inset of Fig. 1(b) shows how significant is the difference between the variation of the maximum
knowledge of both cases under the effects of noise. As the noise increases, group work becomes more relevant to achieve
meaningful learning in the classroom.

These results shows that our model significantly reproduces the phenomenology obtained by Bordogna and Al-
bano [21]. The differences observed in Fig. 1(b) originate in the assumption that in this work we do not consider that the
Student–Student interaction has noise. Thus, as noise increases in the classroom, the possibility of acquiring information
of the Student–Teacher interaction decreases. In the critical point βc , students stop acquiring information. So in the
Student–Student interaction, they have no information to exchange. It is important to note that the results of our model
in Case II Fig. 1(b) remarkably shows the characteristic form of the first-order phase transition.
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Fig. 1. Results obtained with our model under equivalent conditions to the ones by Bordogna and Albano [21]. The red line corresponds to the
case in which the students only attend lectures, and the blue line corresponds to the case in which the students attend the class and have group
work sessions. Panel (a) shows the variation of the average knowledge of the system σ(t) over time. Panel (b) shows the variation of the maximum
knowledge in the system versus the noise in a classroom. The inset shows the difference between the variation of the maximum knowledge of both
cases. For these results averaged over 103 different experiments, N = 96 agents were considered, AI = 100, NG = 3, α ∼ U[0, 1], β = 0.5 and a
number of lectures equal to the simulation time t = 103 .

Next, we study cases with small training times to analyze situations comparable to learning in a university classroom.
We considered a training period of 36 lectures, with a maximum of information of 36 (one per lecture) and 12 group
work sessions. In this way, we simulate a training period of 3 months with 3 h of teaching and 1 group work session
per week. The working groups are formed by NG = 3 students chosen at random, and NEV = 2 evaluations are carried
out during the training time. Considering the evidence developed from studies in educational psychology [7,11], the αi
parameter was distributed taking values between [0.30, 0.50].

3.1. Homogeneous classroom

We have considered four kinds of classrooms with all students in the same conditions. In case I, the students only
attend to lectures. In case II, the students attend lectures and work groups. In the case III, the students attend lectures
and study individually reviewing the bibliography after each class. Finally, in the case IV, the students attend lectures,
work groups and study individually.

Fig. 2(a) shows the evolution of the average knowledge in the time σ(t) for each case. In times before the first group
work session, t < 4, it is not possible to find large differences between those who attend the group work sessions
and those who only attend lectures. Nonetheless, the advantage of those who additionally study class-by-class from the
beginning is significant, resulting in an initial knowledge (t = 1) greater than for the other cases. Note that the small
breaks in the blue line and the green line from t ≥ 4, is due to the beginning of the group work sessions. Here the
students increase their knowledge as a result of the exchange of information. Then, between the first group work session
and the first evaluation, 4 ≤ t ≤ 18, the increase in knowledge is progressive and determines the dynamics. In this time
interval, the advantage of those who attend the group work sessions over those who only attend lectures is observable.
Also, the notorious advantage of the students in Case III and Case IV is due to the independent study of the first class,
where the advantage of those who attend the group work sessions is observable again.

For times after the first evaluation, t > 18, the difference in knowledge between the different cases analyzed is
maintained. Note that students who attend all activities and study class-by-class reach a steady state, obtaining maximum
knowledge in the instructional time. Students who only attend lectures reach an average knowledge of 0.6, while for those
who attend lectures and attend in group work sessions they get a value close to 0.8.

In general, the increase in knowledge is fast in all cases showing slight differences. However, for intermediate times
regimes, the differences in student’s knowledge increase due to the start of group work sessions. Thus, after the first
evaluation, the dynamics of the system is determined by the rest of the instructional time.

Fig. 2(b) shows the temporal evolution of the average knowledge of all cases on a logarithmic scale. A linear fit was
to the data between 4 ≤ t ≤ 19 using the least-squares method. Before t = 4, workgroups have not yet begun, so the
dynamics for the cases are not comparable. From t = 19 onward, the difference in knowledge between the cases analyzed
maintaining during the instruction time. Here, the slopes can be interpreted as a rate of acquiring information and bring
us a measure of performance of the students to complete a learning task or objectives during training time. This measure
allows us to rank studied cases from the most to the least efficient, and verify that study skills are related to academic
performance and improve the effectiveness and efficiency of student learning [12,13].

Fig. 2(c) shows the noise effects during the learning process in the homogeneous classroom. Here it is observed that
the acquisition of information reduces as it increases the noise.
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Fig. 2. Results obtained for a homogeneous classroom. The colors red, blue, yellow, and green corresponds to the case I, II, III, and IV respectively.
The segmented vertical lines indicate the time at which the evaluations were performed. Panel (a) shows the variation of the average knowledge of
the system σ(t) over time. Panel (b) shows the variation of the average knowledge of the system on a logarithmic scale. The dotted lines correspond
to a linear fit made using least squares, and the colors used correspond to the respective adjustment of each case. Also, the slope of each of the
lines with their respective color is shown. Panel (c) shows the variation of the maximum knowledge in the system versus the noise in a classroom.
The segmented vertical lines in βc ≈ 0.70 indicate the critical noise point. For these results averaged over 103 different experiments, N = 96 agents
were considered, AI = 36, NST = 36, NG = 3, NEV = 2, α ∼ U[0.3, 0.5], and a number of lectures equal to the simulation time t = 36. In panel (a)
and panel (b) β = 0.0. In panel (c) β ∈ [0, 1].

The Case I and Case II in the homogeneous classroom decrease continuously, similarly to Case I observed in Fig. 1(b).
This behavior is characteristic of a second-order phase transition, as described in [23,24]. Note that the behavior of Case II
in the homogeneous classroom is different from Case II observed in Fig. 1(b) because there is a difference in the number
of workgroup sessions. For Case II observed in Fig. 1 b, the workgroup sessions are after each class. Instead, for Case II
in the homogeneous classroom, the group sessions are every three classes. Finally, in Case III and Case IV, the acquire of
information decreases continuously but does not reach zero because the workgroup session and individual study allows
reinforces the information given during the lecture through cooperation.

Fig. 3(a) shows the temporal variation of the distribution of knowledge for each case study. Until before the first
evaluation, similar behavior observed for all cases. The mean of the knowledge distribution increases progressively over
time, as noted in Fig. 3(b). The standard deviation increases progressively for Case I and II. But in Case III y Case IV
decreases for t > 20 and t > 25 respectively, because the distribution of knowledge for Case III and Case IV condenses
at the maximum value when reaching the end of instruction time.

Note that the dispersion variation in knowledge distribution shows that the increase in knowledge is different for
each agent. The origin in the knowledge distribution dispersion is given by of variety attention capacities of the agents
parameterized by αi. So the students in Case III and Case IV reach the maximum of knowledge due to the individual study
and the collaboration in the workgroup sessions.

On the other hand, detail the change in the asymmetry of the knowledge distributions is observed in Fig. 3(b). For
Case I, there is a slight increase in negative asymmetry where the mean is less than the median. Case II has a negative
asymmetry in the beginning but between 8 < t ≤ 32, the knowledge distribution has positive asymmetry where the mean
is greater than the median. Finally, when t > 32 arrives, the knowledge distribution has a negative asymmetry again. For
Case III, the asymmetry is negative throughout the training time, with a significant increase in value from t > 24. For
case IV, the asymmetry change on time, reaching values significantly high due to the condensation of the distribution on
the maximum of knowledge.
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Fig. 3. Results obtained for a homogeneous classroom. The colors red, blue, yellow, and green corresponds to the case I, II, III, and IV respectively.
Panel (a) shows the variation in time of the distribution of knowledge σi for each of the case studies. Panel (b) shows the variation in time of the
mean, standard deviation, skewness, and kurtosis for each of the cases analyzed. The inset figures show greater detail of skewness and kurtosis in
the region of t ∈ [0, 25]. For these results averaged over 103 different experiments, N = 96 agents were considered, AI = 36, NST = 36, NG = 3,
NEV = 2, α ∼ U[0.3, 0.5], β = 0.0, and a number of lectures equal to the simulation time t = 36.

The change of the knowledge distribution form with the variation of the kurtosis on time showed in Fig. 3(b). For
t = 0, the knowledge for all agents is null. Then, it show that the knowledge distributions take platykurtic form for Cases
I and II throughout the instructional time. Case III and case IV show a transition from the Platykurtic to a Leptokurtic from
t ≤ 30 and t ≤ 25, respectively.

Finally, Fig. 4 shows the distribution of the grades obtained by the students for the first and the second evaluation,
and the average grade at the end of the course. Note that for Cases I and II, the forms of the distributions of grades in the
first evaluation show a similar dispersion but for different average values. This difference indicates that Case II is more
efficient. In the second evaluation, Case II is more efficient than Case I but the dispersion in both distributions is smaller
than the previous one. This difference generates homogenization in the students. In Case III and Case IV, the distribution
of grades condenses at the maximum value, showing that they reached the maximum information needed to complete
a learning task or objectives. Table 1 summarizes these results.

3.2. Heterogeneous classroom

In this subsection we analyze eight cases with different regimes of class attendance, group work sessions and individual
study. The attendance can be obligatory or random distributed uniformly. The characteristics of each case are described
in Table 2. As previously, we consider a training period of 36 lectures, with a maximum of information of 36 (one per
lecture) and 12 group work sessions.

Fig. 5(a) shows the time variation of the average knowledge σ(t) for each Case. It is appreciated that the Cases OOO
and ORO (blue and purple lines, respectively) reach maximum knowledge. Then, Cases OOR and ROO (the orange line
and the green dotted line, respectively) are those that reach an average value closer to the maximum values obtained in
Cases OOO and ORO. Cases ORR and RRO (the dotted brown line and the pink line, respectively) have the same final
result. Finally, Cases ROR and RRR (red and gray lines, respectively) obtain the lowest maximum values, in which the
maximum knowledge obtained in Case ROR is greater than in Case RRR. As expected, the acquisition of information is
more favorable when the agent’s attendance is obligatory to each of the three learning instances. Likewise, the acquisition
of information is poor when the attendance at each of the learning instances is random.
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Fig. 4. Results obtained for a homogeneous classroom. The rows correspond to the distribution of grades obtained in the first evaluation, the second
evaluation and the final average grade. The colors red, blue, yellow, and green corresponds to the Case I, II, III, and IV respectively. For these results
averaged over 103 different experiments, N = 96 agents were considered, AI = 36, NST = 36, NG = 3, NEV = 2, α ∼ U[0.3, 0.5], β = 0.0, and a
number of lectures equal to the simulation time t = 36.

Table 1
This table shows the mean, standard deviation, median, skewness, and kurtosis for the
distribution of grades obtained in the first evaluation, the second evaluation and the final
average grade. These results averaged over 103 different experiments.
Cases Ev 1 Ev 2 Final

I

Mean 4.598 4.600 4.599
Stand. Desv. 0.054 0.040 0.045
Median 4.601 4.601 4.599
Skewness −0.063 −0.083 −0.087
Kurtosis −0.041 −0.009 −0.054

II

Mean 5.639 5.667 5.653
Stand. Desv. 0.052 0.041 0.043
Median 5.639 5.667 5.651
Skewness 0.027 0.143 0.124
Kurtosis −0.252 −0.154 −0.264

III

Mean 6.897 6.948 6.923
Stand. Desv. 0.071 0.052 0.054
Median 6.899 6.950 6.924
Skewness −0.289 −0.346 −0.197
Kurtosis 0.199 0.077 −0.080

IV

Mean 6.988 6.999 6.994
Stand. Desv. 0.058 0.016 0.031
Median 6.990 7.000 6.995
Skewness −1.267 −3.411 −1.297
Kurtosis 2.106 14.155 2.210

It is worth noting that attendance at all lectures as well as individual study class-by-class is equally important. Because
in both Cases, acquiring a information in the instructional period can occur the same number of times. Therefore, agents
who attend all lectures and study class-by-class have more advantage over agents who only attend lectures or study
individually. Note that the group work sessions are less periodic, due to them occurring every three lectures. However,
they are an educational instance that guarantees the increase of knowledge through peer interaction, which allows OOR
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Table 2
This table shows the different Cases studied according to the attendance assigned for
lectures, group work sessions and individual study.
Cases Class attendance Group work attendance Individual study

OOO Obligatory Obligatory Obligatory
OOR Obligatory Obligatory Random
ROO Random Obligatory Obligatory
ROR Random Obligatory Random
ORO Obligatory Random Obligatory
ORR Obligatory Random Random
RRO Random Random Obligatory
RRR Random Random Random

Fig. 5. Results obtained for the heterogeneous classroom of the Cases described in Table 2. The segmented vertical lines indicate the time at which
the evaluations were carried out. Panel (a) shows the variation of the average knowledge of the system σ(t) in time. Panel (b) shows the variation
of the system average knowledge on a logarithmic scale. The dotted lines correspond to a linear fit made using least squares, and the colors used
correspond to the respective adjustment of each Case. Also, the slope of each of the lines with their respective color is shown. Panel (c) shows the
variation of the maximum knowledge in the system versus the noise in a classroom. The segmented vertical lines in βc ≈ 0.70 indicate the critical
noise point. For these results averaged over 103 different experiments, N = 96 agents were considered, AI = 36, NG = 3, NEV = 2, α ∼ U[0.3, 0.5],
and a number of lectures equal to the simulation time t = 36. In panel (a) and panel (b) β = 0.0. In panel (c) β ∈ [0, 1].

and ROO Cases and ORR and RRO Cases to be efficient. Finally, Cases ROR and RRR have the lowest average performance.
In these Cases class attendance and the individual study are random. Thus, they do not guarantee a constant source of
information. However, the differences in efficiency observed between Cases ROR and RRR shows that attendance at
group work sessions creates an increase in the information achieved.

As in the Cases described in Fig. 2, it is possible to notice small breaks in the lines of average knowledge due to the
beginning of the group work sessions. However, these breaks are more significant for Cases with full attendance at group
work sessions. Also, it is again possible to note that after the first evaluation, the difference in knowledge acquired in the
different Cases analyzed becomes a permanent trend.

Fig. 5(b) shows the temporal evolution of the average knowledge in the classroom on a logarithmic scale. A linear fit
was made to the data between 4 ≤ t ≤ 19 using the least-squares method. Because before t = 4 the rounds of study
have not yet begun, so the dynamics for the three Cases are not comparable. On the other hand, from t = 19 onward, the
difference in knowledge between the Cases analyzed is maintained, so the dynamics do not change, and some students
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Table 3
This table shows all the study Cases with noise null ranked from the most efficient to the least efficient
according to the value of the slope.
Cases OOO ORO OOR ROO RRO ORR ROR RRR

Slope 0.0372 0.0346 0.0291 0.0290 0.0264 0.0263 0.0209 0.0181

Fig. 6. Results obtained for a heterogeneous classroom. This figure shows the variation in time of the distribution of knowledge σi for each of the
Case studies. For these results averaged over 103 different experiments, N = 96 agents were considered, AI = 36, NG = 3, NEV = 2, α ∼ U[0.3, 0.5],
β = 0.0, and a number of lectures equal to the simulation time t = 36.

reach maximum knowledge. The slopes obtained in each Case (see Table 3) allows us to rank studied Cases from the most
to the least efficient as follows: OOO, ORO, OOR, ROO, RRO, ORR, ROR, RRR.

Fig. 5(c) shows the noise effects during the learning process in the heterogeneous classroom. Here it is observed that the
acquisition of information reduces as it increases the noise. Again, the behavior obtained is characteristic of a second-order
phase transition, as in the Cases described in Fig. 2, and quoted in [23,24].

Note the change in the grouping of cases in the noiseless and the noisier scenario. When the noise is null, we observe
similarities in the cases OOR and ROO, ORR and RRO, and ROR and RRR. However, when the noise increments, the
maximum knowledge change, and new grouping cases are OOO and ROO, ORO and RRO, OOR and ROR, and ORR and
RRR. Here emerge a new rank of efficiency because the individual study and the workgroup take more relevance when
the noisier scenarios do not allow to acquire information in the lecture.

Fig. 6 shows the time variation of the distribution of knowledge for each Case study. The temporal increase of the
mean and the standard deviation of the distributions observed in Fig. 7(a) and (b), allow to classify the different studied
Cases. Thus, we can establish similarity in the form of the distributions in Cases OOO and ORO, OOR and ROO, RRO
and ORR, and in ROR and RRR. Note that, in all Cases, this increase accounts for the progressive increase in student
knowledge. The increase in dispersion indicates that each student increased their knowledge differently.

Also, Fig. 7(c) and (d) shows changes in asymmetry as well as in the forms of the distributions in each Case. In Cases
OOO and ORO there is a slight increase in the negative asymmetry, where the mean is less than the median. Also, a
transition from a platykurtic to a leptokurtic form is observed at t = 25 for Case OOO and t = 27 for Case ORO. For Cases,
OOR and ROO, asymmetry and kurtosis are very similar. The distributions show positive asymmetry, and at t = 26 the
asymmetry becomes negative. At t = 33, for both Cases, a change from the platykurtic to a leptokurtic form is observed.
For Cases ORR and RRO, we can observe a similar behavior described Cases OOR and ROO. The asymmetry change from
positive to a negative at t = 27 and the change from platykurtic to leptokurtic form occurs at t = 36 and t = 35 for Cases
ORR and RRO respectively. Finally, for Cases, ROR and RRR a change from positive to negative asymmetry are observed
at t = 32 and t = 33, respectively. However, the distribution maintains a platykurtic form throughout the instructional
time. These changes in the distributions of knowledge account for the existence of the dynamics within the classroom,
which is observed in Fig. 6.

Fig. 8 shows the distribution of grades of the Case studies in a heterogeneous classroom. The rows correspond to the
distributions of grades obtained in the first evaluation, the second evaluation and the final average grade. The columns
correspond to Cases from OOO to RRR. Again the similarities described above can be observed for Cases OOO and ORO,
OOR and ROO, RRO and ORR, and in ROR and RRR. These similarities can be confirmed by looking at Table 4.
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Fig. 7. Results obtained for a heterogeneous classroom. This figure shows the variation in time of the mean, standard deviation, skewness, and
kurtosis for each of the Cases analyzed. The inset figures show greater detail of skewness and kurtosis in the region of t ∈ [0, 25]. For these results
averaged over 103 different experiments, N = 96 agents were considered, AI = 36, NG = 3, NEV = 2, α ∼ U[0.3, 0.5], β = 0.0, and a number of
lectures equal to the simulation time t = 36.

Fig. 8. Results obtained for a heterogeneous classroom. The rows correspond to the distribution of grades obtained in the first evaluation, the
second evaluation and the final average grade. The columns correspond to the Cases from OOO to RRR. For these results averaged over 103 different
experiments, N = 96 agents were considered, AI = 36, NG = 3, NEV = 2, α ∼ U[0.3, 0.5], β = 0.0, and a number of lectures equal to the simulation
time t = 36.

3.3. An analogy with a gas model

To get an idea of the detailed evolution of the distribution of knowledge in a group of agents, we first analyze the
simplest possible case in this model. All agents have the same measures the loss of attention αi. Unlike the cases already
described, we studied its asymptotic evolution considering a number of lectures equal to the instruction time t = 144
(see Fig. 9).

This result of the evolution of the system where the agents obtain information from the learning environment with
equal probability, without interacting with each other, reassembles the normal distribution. It is possible to think that the
evolution of the system, from its initial condition, where all the agents are without information, to a state characterized by
a normal distribution, corresponds to a gas in a thermal bath that expands and tends towards thermodynamic equilibrium.
This evolution where all agents have the same conditions for the acquisition of information, but the differences are induced
by the random occurrence of episodes of loss of attention. If the agents’ loss of attention probability is distributed as in
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Table 4
This table shows the mean, standard deviation, median, skewness and kurtosis for the distribution of grades obtained by students for the first,
second and final grades in the heterogeneous classroom with noise null. These results averaged over 103 different experiments.
Cases Ev 1 Ev 2 Final Cases Ev 1 Ev 2 Final

OOO

Mean 6.989 6.999 6.994

ORO

Mean 6.952 6.984 6.968
Stand. Desv. 0.054 0.018 0.029 Stand. Desv. 0.070 0.048 0.050
Median 6.990 7.000 6.995 Median 6.955 6.986 6.969
Skewness −1.254 −3.678 −1.391 Skewness −0.607 −0.925 −0.724
Kurtosis −2.073 15.729 2.736 Kurtosis 0.426 1.076 0.694

OOR

Mean 6.645 6.764 6.704

ROO

Mean 6.647 6.763 6.705
Stand. Desv. 0.073 0.064 0.063 Stand. Desv. 0.074 0.064 0.064
Median 6.646 6.767 6.706 Median 6.649 6.766 6.709
Skewness −0.041 0.072 0.011 Skewness −0.324 −0.387 −0.381
Kurtosis −0.140 −0.134 −0.175 Kurtosis −0.015 0.160 0.028

ORR

Mean 6.326 6.415 6.371

RRO

Mean 6.332 6.415 6.373
Stand. Desv. 0.076 0.066 0.068 Stand. Desv. 0.075 0.064 0.067
Median 6.990 7.000 6.995 Median 6.335 6.417 6.376
Skewness −0.119 −0.076 −0.077 Skewness −0.105 −0.066 −0.089
Kurtosis 0.087 0.277 0.224 Kurtosis −0.007 0.009 0.017

ROR

Mean 5.450 5.522 5.486

RRR

Mean 4.897 4.934 4.916
Stand. Desv. 0.073 0.068 0.069 Stand. Desv. 0.083 0.080 0.081
Median 5.438 5.516 5.475 Median 4.894 4.936 4.916
Skewness 0.122 0.092 0.125 Skewness 0.014 −0.016 −0.006
Kurtosis −0.084 0.014 −0.017 Kurtosis −0.191 −0.170 −0.188

Fig. 9. In panel (a) the distribution observed in t = 144 is shown with points in olive. An olive line shows the fit of a normal distribution. Panel (b)
shows the relative error of the adjustment function as the time elapses. For these results averaged over 103 different experiments, N = 96 agents
were considered, AI = 144, NG = 3, NEV = 2, α = 0.5, β = 0.0, and a number of lectures equal to the instruction time t = 144.

the range already described, since the agents do not interact with each other, the total distribution will evolve from the
initial condition to a superposition of normal distributions.

The interaction between the agents gives rise to distributions that deviate from the normal distribution. As can be seen
in Fig. 10, the cases shown in the upper and lower panels are not equilibrium distributions, but rather have deviations
being wider than the normal distribution (see upper panels Fig. 10) or presenting two modes as in the distributions of the
lower panels. The latter is generated by the association of agents in the study process based on their previous performance.
This is a form of Maxwell’s demon, where by homophilia the agents are grouped to study in triples according to their
previous performance. It is clear that this is the reason for the appearance of two modes in the distributions in the lower
panels of Fig. 10.

4. Conclusions

We developed an agent-based model based on phenomena studied by behavioral and learning scientists, to study the
increase the knowledge by accumulating the information needed to complete a learning task or objectives.

Our model has basic idealizations in common with the model reported by Bordogna and Albano [21], as the interactions
with a teacher, with other agents, and the bibliography. However, they differ in the way of operationalizing some basic
assumptions, generating differences in the possibles phenomena to simulate. For example, Bordogna and Albano consider
the possibility of unsuccessful interactions due to persuasion and affinity between those who interact. In our model, the
increase in knowledge is only conditioned by periods of loss of attention of agents during the learning process and is
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Fig. 10. Distributions of Cases in a heterogeneous classroom observed in t = 80. The columns correspond to the Cases OOO and RRR. The rows
corresponding to agents are grouped random and to academic performance (amount of information). The inset figures show greater detail of skewness
(cyan line) and kurtosis (magenta line) in the region of t ∈ [0, 80]. For these results averaged over 103 different experiments, N = 96 agents were
considered, AI = 144, NG = 3, NEV = 2, α ∼ U[0.3, 0.5], β = 0.0, and a number of lectures equal to the instruction time t = 144.

incremental. These characteristics could lead to the model of Bordogna and Albano shows some phenomena (like clusters
of fixed opinions) than our model cannot.

Our model can be considered a equivalent version of Bordogna and Albano’s model but has the advantage of
reproducing the temporal dynamics of knowledge and show the characteristic behavior of first and second-order phase
transitions, as observed in Fig. 1(b). Furthermore, the effects of noise introduced during the learning process in the
homogeneous classroom generate changes in the nature of phase transitions. Thus, our model, unlike the Bordognas and
Albano model, shows a change in the type of phase transition, from first order to second order due to the limitation of
the range of the loss of attention, as shown in Fig. 2(c). In addition, in the heterogeneous classroom there are changes in
the grouping of the case studies presented, showing efficient cases in scenarios without noise, as well as efficient cases
in noisier scenarios, which are different from those without noise. This change produced by the inclusion of noise, can
be interpreted as an adaptation property of the system that allows it to reach the maximum knowledge only from the
intrinsic parameters of agents and the rules of interactions.

It is important to note that the slopes showed in Figs. 2(b) and 5(b) can be interpreted as a rate of acquiring information
and bring us a measure of performance of the students to complete a learning task during training time. The slopes allow
us to rank the study cases and differentiate all of them when the attendance to any learning activity can be random.
Furthermore, this fact allows us to verify that the study skills, study habits, study attitudes, and study motivation exhibit
particularly strong and robust relationships with academic performance in college, as noted by Cred and Kuncel [13].

The distributions of grades from evaluation one and two contain information on the dynamics of learning. Thus, grades
distributions can be used as a tool to measure the efficiency of teaching strategies. It also makes it possible to create and
propose new schemes for the assessment process based on learning achievements.

Our model allows to analyze the temporal variation of the distribution of knowledge in the classroom, as well as the
kinetic theory of active particles developed by Burini et al. [25]. Our results allow us to built a representation of our model
as a gas model, showing characteristics of systems far from the state of thermodynamic equilibrium. It allows us to use the
known techniques of the gas models to interpret the dynamics of the simulated learning process. For example, an analogy
can be made between the increase of the kinetic temperature and that of the dispersion observed in the distributions of
acquisition of information. It is also possible an analogy between the heat flux with the skewness of the distributions of
the classroom dynamics, which due to the workgroup sessions.

The basic assumptions and idealizations used in our model allow us to identify some elements of the learning process,
to obtain a first modeling approach based on phenomena as loss of attention. Besides, our model shows phase transitions,
and other characteristics of ABMs such as Heterogeneity, Autonomy of agents, and Local Interactions, as noted by
Epstein [26]. Nonetheless, we do not pay particular attention to how agents construct knowledge in pair interaction. Thus,
our model lacks some key features of complex systems. For example, self-organization, sensitivity to initial conditions,

12



I. Ormazábal, F.A. Borotto and H.F. Astudillo Physica A 565 (2021) 125563

or nonlinearities, as quoted by Jacobson [17]. This is a disadvantage because our model does not describe the teaching–
learning process in all its complexity. However, our model can be improved and include, for example, pre-knowledge
in agents, non-linear feedback effects, as shown in Koponen [37]. Also this model can be improved to consider the
influence of groups formed by affinity with a topological basis in complex networks, the influence of work and teaching
methodologies on classroom learning or phenomena that arise from the coexistence of people in the classroom such as
homophilia or the formation of groups or communities.
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Epstein’s model for a civil disorder is an agent-based model that simulates a social protest process where
the central authority uses the police force to dissuade it. The interactions of police officers and citizens
produce dynamics that do not yet have any analysis from the sociophysics approach. We present numerical
simulations to characterize the properties of the one-dimensional civil disorder model on stationary state. To
do this, we consider interactions on a Moore neighborhood and a random neighborhood with two different
visions. We introduce a Potts-like energy function and construct the phase diagram using the agent state
concentration. We find order-disorder phases and reveal the principle of minimum grievance as the underlying
principle of the model’s dynamics. Besides, we identify when the system can reach stable or an instability
conditions based on the agents’ interactions. Finally, we identified the most relevant role of the police based on
their capacity to dissuade a protest and their effect on facilitating a stable scenario.
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I. INTRODUCTION

In recent years, the sociophysics or statistical physics of
social dynamics has described different social phenomena as
collective effects of the interaction between individuals [1–3].
In particular, the study of opinion dynamics has generated var-
ious models describing consensus, agreement, or uniformity
using tools from statistical physics [4–7]. Recent efforts aim at
describing these models, considering a diversity of individual
traits of a population and size of group discussion [8] or
their multistate variations, such as, for example, the majority
voting model [9], the multistate voter model [10], multichoice
opinion dynamics models [11], or the multistate noisy q-voter
model [12].

In parallel, social scientists have used agent-based mod-
els to reproduce emerging social phenomena [13,14], such
as the Schelling model of urban segregation [15] and the
Axelrod model of cultural dissemination [16]. These models
have attracted the attention of physicists, who have described
the Schelling model as interacting physical particles [17] and
as an Ising-like model [18]. Furthermore, they have char-
acterized the static and dynamic properties in one and two
dimensions [19] and their different behaviors using a phase di-
agram [20]. They have recently used a similar energy function
to characterize the Schelling and Sakoda models [21–23]. On
the other hand, physicists described the Axelrod model in two
dimensions showing order-disorder phase transitions [24].
Then, they described the one-dimensional Axelrod model as a
starting point for its description in more complex topologies
[25]. In addition, they described the role of dimensionality
on the order-disorder phase transitions [26] and the stabil-
ity model using Lyapunov functions [27,28]. In this context,

*Corresponding author: iormazabal@udec.cl

Epstein presented an agent-based model to describe the so-
cial dynamics of protests and rebellions through recognizable
macroscopic phenomena [29]. This model simulates a social
protest process where the central authority uses police force
to dissuade a protest.

For a generalized rebellion, Epstein presents five study
cases and reports statistical regularities observed in the punc-
tuated equilibrium dynamics, opening new questions about
how the civil disorder dynamics work. Different scientists
have modified this model to describe other social conflicts
such as workers’ protests [30], the spread of criminal activity
[31], or civil war cases between ethnic groups [32]. In ad-
dition, some variations include legitimacy with endogenous
feedback [33] or the influence of the distribution of money
on the dynamics [34]. Despite these modifications, nobody
characterized this agent-based model using concepts and tools
of statistical physics in its original form.

This paper aims to characterize the one-dimensional civil
disorder model on a stationary state as a first approach to
studying this model in other dimensions or topologies. To do
this, we perform numerical simulations of the Epstein model
with and without police officers and use two visions to define
interactions in a Moore neighborhood and a random neigh-
borhood. We introduced two macroscopic quantities and built
the phase diagram to identify different behaviors. On the one
side, we define a Potts-like energy function to deduce a guid-
ing principle to understand civil disorder dynamics. For the
Schelling and Sakoda model [22,23], this energy-like function
allows us to identify a minimization principle to understand
the spatial segregation patterns as efficient or inefficient. In
the case of the dynamics of a factory workers’ protest [35],
a function similar to the Ising model’s free energy allows us
to identify the steady state of the system and to describe two
phases based on the principle of minimum dissatisfaction. On
the other side, we used the concentration of agents to identify
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and characterize phase changes. The concentration allows us
to describe phase transitions in the q-voter model with two
types of stochasticity [36] and the multistate noisy q-voter
model [12]. Besides, this macroscopic quantity is helpful in
building phase diagrams. In the Schelling and Axelrod model
[20,24], this strategy allows us to identify domain boundaries
of the different qualitative behaviors. Hence, in this work,
the agents’ concentration and the phase diagram are crucial
elements to characterize the original Epstein model and allow
us to describe order-disorder transitions not reported in other
works.

When considering the system without police officers, we
identify transitions from two orders with a majority phase,
a disordered phase, and a consensus phase. Furthermore, we
identify when the system can reach stability or an instabil-
ity conditions based on the agent’s interactions. Besides, we
reveal the principle of minimum grievance, the underlying
principle of the model’s dynamics. On the other hand, in
the system with police officers, we study the effects of po-
lice officers’ concentrations in different scenarios generated
by the kind of neighborhoods and vision. We find the same
order-disorder transition, but now we observe six ordered
phases with a majority, one disordered phase, and the con-
sensus phase. With the global quantities that we introduced,
we can determine the role of police officers to dissuade a
social protest. Finally, we identify stability and instability
conditions of the system dynamics, and we show the en-
ergetic cost of using the police force to facilitate a stable
scenario. These results from the perspective of sociophysics
yield new qualitative elements and contribute to the future to
study the dynamics of this model in other dimensions and
topologies to approach the complexity of the dynamics of
social protest.

The paper is organized as follows: In Sec. II, we introduce
Epstein’s model for a civil disorder and the global quantities
used to describe the model’s behavior to reach the stationary
state. The simulations for the model without and with police
officers and their respective phase diagrams are presented in
Sec. III. The discussion of our results and concluding remarks
are in Sec. IV.

II. THE MODEL AND GLOBAL QUANTITIES

A. The Epstein model

The civil disorder model has two agents: citizens and po-
lice officers. Citizens can be active when they participate in
social protest, passive when they do not participate, or jailed
when the police officers catch them. Citizens can switch from
one state to another depending on their neighborhood, local
parameters, and the global parameters of the system. On the
other hand, a police officer agent represents the central au-
thority’s force. They are responsible for deterring a protest by
capturing the active agents in their neighborhood. The neigh-
borhood for all agents can be a von Neumann neighborhood
used by Epstein [29] or a Moore neighborhood as in other
works [31,34].

The system’s dynamics emerge by relating the legitimacy
of the authority and the grievance of the population, i.e., it
depends on the relationship between the global parameters

and the agents’ parameters. The global parameters are the
same for all agents: legitimacy L, a state change threshold T ,
the maximum jail term Jmax, and the vision v. The original
model’s vision determines the neighborhood’s size, similarly
to the rule radius in cellular automata [37] and range in other
opinion models [38,39]. On the other hand, the local agent pa-
rameters are hardship H and risk aversion R. Both parameters
are random values between zero and one uniformly distributed
among all agents.

The rules that determine the agents’ actions are as follows:
(1) State change rule. Each agent will decide whether to

join the protest, evaluating the equation G − NR > T , where
G = H (1 − L) symbolizes the grievance and NR = RP the net
risk. The arrest probability equation P = 1 − exp[−k(C/A)v]
depends on the active agents and police officers ratio in the
neighborhood defined by the vision. Hence when any agents
evaluate if they switch their state, consider all active agents
and police officers in their neighborhood. Therefore, for a
fixed number of police officers, the agent’s arrest probability
falls the more active agents there are. Notice that A is always
at least one because the agent always counts himself as active
when computing P. The value of k is 2.3 for ensuring plausible
P values, as reported by Epstein [29]. In the complete form of
the state switch equation,

H (1 − L) − R(1 − exp[−k(C/A)v]) > T, (1)

we notice that the first element on the left depends on a combi-
nation of local and global values, and the other depends on the
neighborhood conditions. In this way, when the difference of
the agents’ state variables exceeds the threshold, they switch
from passive to active; otherwise, they remain passive agents.

(2) Capture rule. Police officers randomly capture an ac-
tive agent from their neighborhood. If there are no active
agents, they do nothing. A jailed agent stops participating in
the dynamics according to the jail parameter assigned value
randomly, with values between zero and the maximum deter-
mined at the beginning of the simulation. We used 30 time
steps as a maximum jail term, the same value used by Epstein
[29]. When jailed agents finish their sentences, they return to
the model dynamics as passive agents.

(3) Movement rule: Each agent will move to an empty
space at random within their neighborhood.

After setting global and local parameters of the model, we
placed all the agents in random positions in the lattice to start
the simulations. At each time step, all agents evaluate the
dynamics rules asynchronously [29]. We show a schematic
visualization of the changes of the agents’ state changes due
to the interaction rules in Fig. 1.

B. Global quantities

In order to characterize the model, we labeled each agent
with the variable α, which can take values between one and
four to represent an active agent, passive, jailed, or police
officer. Then, we have defined the following quantities.

1. Concentration of agents

To see the predominant state in the system and study its
macroscopic behavior as a function of the global parameters,
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Pasive Active

H(1 − L) > T

Agent state transition

(a) System without police

Local and global parameters

(b) System with police

Pasive Active Jailed

Police

Jmax

G − NR > T

Agent state transition

All parameters and neighborhood conditions

FIG. 1. Schematic visualization of agents state changes in the
Epstein’s model for a civil disorder. For the system without police
officers, the citizen agents can switch between two states depending
on their local and global parameters. For the system with police
officers, the agents can change among three states depending on
their local and global parameters and neighborhood conditions. The
switch from the active to jailed state is a product of the interaction
with the police officers’ agents.

we define:

Cα = Nα

N
, (2)

where Nα denotes the number of agents in the state α and N
the number of agents in the system. As usually used in opinion
dynamics models [12,36],

∑
Cα = 1 and we distinguish the

following phases:
(i) The disordered phase, when all agent states are of a

similar concentration in the system.
(ii) The ordered phase, when one agent state is majority

over the others.
(iii) The consensus phase is when the system reaches a

particular ordered phase where all agents have the same state.
It is essential to note what we define order from the opinion

dynamics perspective to describe order-disorder transitions.
Thus, by order, we refer to a macroscopic pattern in which
we could find a majority opinion state. We do not refer to the
common idea related to public order as the absence of criminal

or political violence in society. Moreover, these definitions are
convenient because they allow us to identify a macroscopic
state with the agents’ state and the system’s dynamics.

2. Energy

Now, we introduce a global quantity that allows us to ana-
lyze and interpret the system based on the macroscopic states
that emerge from the agents’ states of the system. Hence, we
introduce a Potts-like energy function [40],

E [α] = − 1

2vN

N∑

i=1

∑

j∈Vi

Ji jδ(αi, α j ), (3)

where the symbol
∑

j∈Vi
means the sum over all neighbors j

of the agent i with the same state α. Here Ji j is called the in-
teraction strength. However, we will take Ji j = 1 (for all i and
j), due to the characteristics original model. In other words,
in this work, we do not consider different interaction strength
values. δ(αi, α j ) is a Kronecker delta, i.e., δ(αi, α j ) = 1 if
αi = α j and zero for all αi �= α j .

Note that the energy functions introduced in the Schelling
model [21,22] are like the Ising model because the models
have two possible states. For the case of the Sakoda model
[23] and this model, it is more natural to use the Potts energy
because these models have more than two states.

Besides, we can observe that the energy definition shows
the absolute minimum or ground state when all the agents
in the system are in the same state. On the other hand, the
energy may reach the maximum energy when the system takes
a chessboard aspect. This behavior is convenient because it
allows us to establish analogies or interpretations of the dy-
namics.

III. SIMULATIONS AND PHASE DIAGRAMS

This paper aims to characterize the Epstein’s model for
a civil disorder in a one-dimensional lattice with periodic
boundary conditions as a first approximation to understand
the dynamics of social protests. Thus, we perform simula-
tions on a one-dimensional lattice with N = 28 and N = 210

sites, considering a system without and with police officers.
The first one has agents with two possible states, active and
passive. The second one has police officers then the agents
can be active, passive, or jailed.

Furthermore, to study the effects of interactions in the
system dynamics, we consider agents with visions one and
seven interacting in Moore and random neighborhoods. Note
that vision determines the neighborhood’s size, so when we
consider a one-dimensional lattice, the vision represents the
number of pairs of agents to consider to evaluate an agent’s
state switch. For example, when the agent’s vision is one,
the Moore neighborhood of the agents consists of its nearest
neighbors. Thus each agent considers two sites, one to their
left and one to their right. When the agent’s vision is seven,
the Moore neighborhood of the agents counts seven sites on
the left and seven sites on the right, with 14 agents in total.

On the other hand, a random neighborhood is when an
agent can randomly select other agents to form their neigh-
borhood. Then, when the agent’s vision is one, it chooses
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FIG. 2. Agents’ concentration variation on time. Panel (a) cor-
responds to a system without police officers and (b) a system with
police officers. In both cases, the system reaches a stationary state
quickly.

two agents randomly. When its vision is seven, the agent can
randomly select 14 agents from the lattice.

We have not used Epstein’s motion rule from the original
model in this work. So the agents occupying the whole of the
one-dimensional lattice and the system can enter a stationary
regime, as shown in Fig. 2. As we can see, the dynamics
converge quickly around the same value for the agents’ con-
centration in any state and remain constant on average after
some time. For this reason, in this paper, we can study the
asymptotic properties of the dynamics and characterize the
model on the steady state. In this way, we use 20 realiza-
tions with 5500 time steps for all the study cases. In each
realization, all agents have different initial positions and state
variables. Then, we discard the first 500 time steps to obtain a
steady state. Finally, we calculated the average quantities over
20 realizations to characterize the model.

A. System without police officers

When we study the system without police officers, the state
switch equation (1) changes to

H (1 − L) > T . (4)

Hence, the agents’ state only depends on its local param-
eters and is independent of their neighborhood. Therefore,

changes in the system’s dynamics depend on the threshold and
the initial simulation’s conditions. To study the whole system,
we run simulations for threshold and legitimacy values be-
tween 0.00 and 0.99 with a step of 0.01 for both variables.

To obtain a first idea of the model dynamics, we study
the concentration and energy variations for different threshold
fixed values. We observe the variation of the concentration
of agents when the legitimacy increases in Fig. 3. With low
values to legitimacy, the active agents are predominant. Then
as legitimacy increases, the passive agents are predominant.
When the threshold is T = 0.10, the system’s dominant state
changes, as shown in Fig. 3(a). Note that when the legitimacy
is L < 0.80, the active agents predominate, when L = 0.80,
the concentration for two states are similar, and when L >

0.80, the passive agents are dominant. For L � 0.90, all agents
of the system are in the passive state. We can see a translation
of the point of concentration similarity and the point when
all agents of the system are passive states when the threshold
increases in Figs. 3(a), 3(b), 3(c), and 3(d) figures. The trans-
lations of these points indicate transitions in the system. It is
important to note that all showed results collapsed on the same
curves for all visions, neighborhoods, and sites considered
in our simulations. This behavior is because the state switch
equation (4) is independent of the neighborhood and indicates
the system’s dynamic depending on the threshold and the
initial simulation’s conditions.

We present the global average energy versus legitimacy
with different threshold values in Fig. 4. When the threshold
is T = 0.10, the energy starts with a lower value of around
〈E〉 ≈ −0.8. As the legitimacy increases, the energy reaches
a maximum value around 〈E〉 ≈ −0.5 when the legitimacy is
L = 0.80. Next, the energy converges to the minimum value
when the legitimacy is L � 0.90. The initial energy value is
a local minimum and indicates when the active agents pre-
dominate. Then, when the agents’ concentrations are similar,
the energy reaches a maximum. Finally, the energy minimizes
when the system has only passive agents and reaches the
absolute minimum or the ground state.

On the other hand, when the system possesses higher
thresholds values, the energy reaches a maximum and then
converges to the minimum quickly. Besides, we can see a
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FIG. 3. Concentration variations for different threshold fixed values in a system without police officers. With low values to legitimacy, the
active agents are predominant, but as legitimacy increases, the passive agents dominate. There are points when active and passive agents have
a similar concentration (segmented lines) and when all the agents in the system are passives (solid lines). As the threshold increases, we can
see a translation of these points suggesting a transition. This figure shows simulations results for a one-dimensional lattice with N = 210 sites,
Moore neighborhood, and vision one. However, the results obtained for all visions, neighborhoods, and sites considered collapse on the same
curve.
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FIG. 4. The global average energy variations for different thresh-
old fixed values in a system without police officers. The energy
shows two minimum values. The first is a local minimum, where the
active agents predominate in the system. The other one is a global
minimum or the ground state, and all agents in the system are passive.
On the other hand, the system reaches a maximum value when the
active and passive agent concentrations are similar. This figure shows
simulations results for a one-dimensional lattice with N = 210 sites,
Moore neighborhood, and vision one. However, the results obtained
for all visions, neighborhoods, and sites considered collapse on the
same curve.

translation of these energy points as the threshold increases
suggesting a transition.

To build the phase diagram, we search the coordinates
(T, L) where the agents’ concentrations are similar, and all
agents are passive. As shown in Fig. 5, these points define the
phase boundaries. Following the phases described in opinion
models, the results show order-disorder transitions. Phase AP
and PA are ordered phases with a majority agent state. Active
agents are dominant in phase AP and passives in phase PA. As
a result of crossing the dashed line between these two phases,
we observe a disordered phase with similarly active and pas-
sive agents concentrations. Note that our numerical results are
consistent with the assumption for an average agent. We can
find the critical legitimacy to obtain equal concentrations of
active and passive. As a result, we obtained this dashed line
of critical legitimacy Lc = 1 − 2T . The consensus phase is a
particular ordered phase when all agents are passive. The solid
line shows the transition from majority order to consensus
order.

To observe the system transition, we study the stationary
probability density function of the agents’ concentration. We
show distributions for a system with Moore neighborhood
with vision one and T = 0.10 in Fig. 6 because we ob-
serve the same behavior independent of the neighborhood,
vision, and sites considered in our simulations. We can see the

FIG. 5. Phase diagram for a system without police officers.
Phases AP and PA are ordered phases with a majority agent
state. Active agents are predominant in the AP phase and passive
in phase PA. The dashed line between these two phases shows
when the system has similar concentrations and is therefore disor-
dered. The consensus phase is a particular ordered phase when all
agents are passives. The solid line shows the transition from the
order with a majority to consensus. Every point in this diagram
corresponds to an L and T value when the concentrations of active
and passive agents are similar or when the system reaches a consen-
sus. The points for all visions, neighborhoods, and sites considered
collapse on the same curve.

system transition from the order with active agents majority in
L = 0.75 to a disordered phase in L = 0.80 and then a change
to order with passive agent majority in L = 0.85, in Figs. 6(a),
6(b), and 6(c). As for legitimacy increases, we can observe a
transition to a consensus in L = 0.90 in Figs. 6(d), 6(e), and
6(f).

B. System with police officers

To study the model with police officers, we used legitimacy
values and the concentration of police officers from 0.00 to
0.99 with a step of 0.01 for both variables. We vary the
concentrations of police officers as an initial condition be-
cause its value determines the system’s dynamics. The police
officers’ role is to dissuade a social protest, preventing citizen
agents from becoming active agents and arrest active agents
in the system producing jailed agents. Besides, the police
officers’ action depends on the vision, so we study the sys-
tem separately with two different visions. On the other hand,
the police officers’ inclusion makes the change of the agents
state depends on the state parameters and the neighborhood
conditions, as we can see in Eq. (1). We used a fixed threshold
value in T = 0.10 for these simulations because its role is to
determine a limit value to the state switch equation. Further-
more, this value coincides with Epstein’s reported value in the
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FIG. 6. Stationary probability density function of the agents’
concentration for a system without police officers. We see two tran-
sitions when the system increases legitimacy and threshold fixed. A
continuous transition from AP phase to PA phase across a disordered
phase in L = 0.80, as seen in (a), (b), and (c). Then, a continuous
transition from PA phase to consensus, as seen in (d), (e), and (f).
This figure shows simulations results for a one-dimensional lattice
with N = 210 sites, Moore neighborhood, and vision one. However,
these behaviors are the same for all visions, neighborhoods, and sites
considered in our simulations.

five study cases from the original model for a generalized re-
bellion. Thus, this value allows us to characterize this context
with a more significant parameters set.

1. Results with vision one

We show the agents’ concentration variations for different
values of police officers’ concentrations and vision one in
Fig. 7. When the interactions occur in a Moore neighbor-
hood, we observe a variation of the concentration of agents
when the legitimacy increases in Figs. 7(a), 7(b), 7(c), and
7(d). With low values to legitimacy, the active agents are
predominant. Then as legitimacy increases, the passive agents
are dominant. The jailed agents’ concentration depends on
the police officers’ concentration. Then their variations only
occur as police officers’ concentration increases and produce
a change of active agents concentration. With interactions
in the random neighborhood, the jailed agent concentrations
have predominant values for low legitimacy, as we can see
in Figs. 7(e), 7(f), 7(g), and 7(h). Then, passive agents are
predominant as legitimacy increases. The active agent con-
centrations depend on the police officers’ concentrations and
decrease as the number of police officers in the system in-
creases.

Now, we can observe the global average energy ver-
sus legitimacy for a Moore and random neighborhood in
Figs. 8(a) and 8(b), respectively. On the one side, when the

interactions occur in the Moore neighborhood, and police
officers’ concentration equals Cpol = 0.10, the energy starts
around 〈E〉 ≈ −0.6. Next, it has an increasing behavior to
around 〈E〉 ≈ −0.4, and a legitimacy value is close to L =
0.80. Then, the energy decreases quickly to the lower value
〈E〉 ≈ −0.8. We observe the local energy minimum when
active agents are predominant. Then, the energy maximum
shows when the agents’ states have similar concentrations.
In particular, the active and passive agents concentration
is approximately 0.4, and jailed agents and police officers
concentrations are close to 0.10. Finally, we see the global
energy minimum when all agents are passive. Note that this
global minimum is not absolute because the police officers’
concentration equals Cpol = 0.10. As the police officers’ con-
centration increases, the energy maintains a constant value
before reaching the minimum energy value. Note that this
global energy minimum increases as a police officer’s con-
centration. On the other side, for a random neighborhood,
the energy started around 〈E〉 ≈ −0.4, with a police offi-
cer concentration equal to 0.10, 0.30, and 0.50. Next, the
energy had an increasing behavior until it reached a maxi-
mum around 〈E〉 ≈ −0.3 and eventually converged rapidly
to different energy minima. We observe similar behavior
in both neighborhoods for police officer concentration is
Cpol = 0.70. Furthermore, the global minimum of energy
increases as a police officers’ concentration increases for all
cases.

As we noticed in the results for a system without police of-
ficers, in the systems with police officers, there are also points
where the state concentrations are similar. Their positions
move as the police officers’ concentrations increase. These
translations suggest a change in the state predominant in the
system. Furthermore, there is a point when the three states of
the systems are similar, configuring the order-disorder transi-
tions like opinions models [12,36].

To verify this idea, we search for phase boundaries de-
fined by the points in which the agents’ concentrations are
similar and when all agents reach a passive state. Every point
corresponds to police officers’ concentration and legitimacy
value and depends on a pair of similar agent states. Thus, the
Cap coordinate ( ) is when the concentrations of active and
passive agents are similar. The Cja coordinate ( ) indicates
similarity in the jailed and passive state, and the Cja point
( ) when jailed and actives agents are similar concentration.
Each point formed a curve defining different regions on the
phase diagram shown in Fig. 9. For both the Moore neighbor-
hood in Fig. 9(a) and the random neighborhood in Fig. 9(b),
we observe phases classified according to the transitions de-
scribed for the system without police officers. There are six
ordered phases with a majority state. Each one has a label
indicating the order of the predominant state. For example,
the PAJ phase has dominant passives agents, followed by
active and the jailed agents, and so on for the other phases.
The system reaches a consensus in the passive phase when
all agents are passives and legitimacy equal 0.90. This value
is determined by the threshold value selected. The black
region indicates when there are only police officers in the
system.

The system reaches a disordered phase labeled a triple
point when the active, passive, and jailed states are in similar
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FIG. 7. Agents concentration variations in a system with police officers for different values of police officers concentrations, legitimacy,
vision one, and threshold fixed. When the interactions occur in a Moore neighborhood, the predominance of active agents decreases when the
police officers’ concentrations increase because of increased jailed agents. As a result, we can see a translation of the concentration similarity
points (segmented lines) in (a), (b), (c), and (d). These translations show changes of the predominant state and the existence of a point in
which the three states of the system are similar, suggesting a phase change. In a random neighborhood, we can see the same dynamics of
translation of the concentration similarity point in (e), (f), (g), and (h). However, police officers can capture more active agents because of
the random selection of their neighborhoods. Thus, the predominance of jailed agents results until the system reaches a high legitimacy. The
vertical solid line depends on the fixed threshold and indicates when the system reaches a consensus. This figure shows simulations results for
a one-dimensional lattice with N = 210 sites, but with N = 28 sites, we observe the same result.

0.00 0.25 0.50 0.75 1.00

Legitimacy

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

〈E
〉

v = 1

Moore Neighborhood(a)

C = 0.10

C = 0.30

C = 0.50

C = 0.70

0.00 0.25 0.50 0.75 1.00

Legitimacy

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

〈E
〉

v = 1

Random Neighborhood(b)

C = 0.10

C = 0.30

C = 0.50

C = 0.70

FIG. 8. The global average energy variations in a system with
police officers for different values of police officers concentrations,
legitimacy, vision one, and threshold fixed. In a Moore neighbor-
hood, the energy reaches a minimum value for low police officers
concentrations and increases as legitimacy increases, as shown in
(a). When the system reaches a consensus, the energy shows a
global minimum. As it increases the police officers’ concentration,
it is possible to observe that the energy maintains a constant value
before reaching a consensus of passive agents. The maximum energy
value indicates when the majority agent states have similar con-
centrations. In a random neighborhood, the energy has a constant
value and increases as legitimacy increases, as shown in (b). In both
cases, the global minimum of energy increase as a police officer’s
concentration increases. This figure shows simulations results for a
one-dimensional lattice with N = 210 sites, but with N = 28 sites, we
observe the same result.

concentrations. The position of this point and the regions of
the phases depends on the neighborhood. Most phases have an
observable area for the Moore neighborhood. The part where
jailed agents predominate is minor because police officers can
only capture active agents among their nearest neighbors. In
contrast, police officers are more likely to catch an active
agent in a random neighborhood. Thus, we can observe a
translation of the triple point and an increase in the regions’
size with predominant jailed agents and a decrease in the
areas where active agents are dominant. It is important to
note that now it is more difficult to see the order-disorder
transition. Unlike the system without police officers, where
we observe the transition for all parameters, in the system
with police officers, the disordered phase is only a point in
this diagram.

We can observe the system transition with the station-
ary probability density function of the agents’ concentration
in Fig. 10. As for legitimacy increases, the system changes
from the disordered phase to an ordered phase with a pas-
sive state majority. It then reaches a consensus phase in a
Moore neighborhood in Figs. 10(a), 10(b), and 10(c). For a
random neighborhood, the transition from the ordered phase
with the active state to a disordered phase, then the consen-
sus phase, as we see in Figs. 10(d), 10(e), and 10(f). The
final passive agents’ concentration depends on the police of-
ficers’s concentration fixed to observe the transition. So, in
the Moore neighborhood, the final concentration is 0.6 and,
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FIG. 9. Phase diagrams for a system with police officers and vision one. Every point in this diagram corresponds to police officers’
concentration and legitimacy value when the different states are at similar concentrations. For example, the Cap points ( ) are the points at
which the concentrations of active and passive agents are similar. These points determine different ordered phases with a majority, and each
label indicates the order of the predominant state. For example, in the PAJ phase, passive agents are predominate, followed by active and jailed
agents, and so on. The triple point in these curves’ intersection indicates when the three states are in similar concentrations, so we observe a
disorder in the system. The system reaches a consensus when legitimacy is greater than or equal to 0.90. The black region indicates when there
are only police officers in the system. With Moore neighborhood show six differents order phases with a majority, one point where the system
reaches a disorder, and a consensus phase. With random neighborhoods, order phases with majority change because police officers can capture
more active agents and predominantly jailed agents. However, the system reaches a consensus phase in the same conditions because the fixed
threshold determines this change. This figure shows simulations results for a one-dimensional lattice with N = 210 sites, but with N = 28 sites,
we observe the same result.

in a random neighborhood, the passive agents’ concentration
is 0.9.

2. Results with vision seven

We show the agents’ concentration variations for dif-
ferent police officers’ concentrations and vision seven in
Fig. 11. When the interactions occur in a Moore neigh-
borhood, we can see a variation of the concentration of
agents when the legitimacy increases in Figs. 11(a), 11(b),
11(c), and 11(d). With low legitimacy, active agents ex-
ist, but jailed agents are predominant. Then as legitimacy
increases, the passive agents are dominant. As police offi-
cers’ concentration increases, the active agents’ concentration
minimizes. Passive agents increase constantly, and jailed
agents decrease.

With interactions in the random neighborhood, the jailed
agent concentration has predominant values for low legiti-
macy, as we can see in Figs. 11(e), 11(f), 11(g), and 11(h).
Furthermore, the active agent’s concentration starts initially
with a low value, and passive agents are predominant as legit-
imacy increases. As police officers’ concentration increases,
the concentration of active agents disappears, passive agents

increase constantly, and jailed agents decrease. This behavior
indicates a change in the importance of the police officers’
role to dissuade a protest. When the agents have vision seven,
the relevant police officers’ role is to prevent citizen agents
from becoming active and prevent the emergence of a protest.

Now, we can observe the global average energy versus le-
gitimacy for a Moore and random neighborhood in Figs. 12(a)
and 12(b), respectively. On the one side, when the interactions
occur in the Moore neighborhood, and police officers’ con-
centration equals Cpol = 0.10, the energy starts close to 〈E〉 ≈
−0.4. Next, it maintains a constant behavior until the energy
decreases quickly to the lower value of around 〈E〉 ≈ −0.8.
On the other side, in the random neighborhood, and police
officers’ concentration equals Cpol = 0.10, the energy has a
lower value, around 〈E〉 ≈ −0.3. Then increases to reach a
maximum value close to 〈E〉 ≈ −0.4 and decreases quickly
to the lower value around 〈E〉 ≈ −0.8. Note that, in both
cases, we observe the initial energy value when jailed agents
are predominant. Then, the energy maximum shows when the
jailed and passive agents concentration is approximately 0.4,
and police officers concentration is 0.10. Finally, we see the
global energy minimum when all agents are passive. How-
ever, in both neighborhoods, as police officers’ concentrations
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FIG. 10. Stationary probability density function of the concen-
tration of agents for a system with police officers and vision one. We
see two transitions when the system increases legitimacy and fixes
police officers’ concentration. In the Moore neighborhood, we can
see a disordered phase, then order with passive agents majority, and,
finally, a consensus phase in (a), (b), and (c). The same dynamics
occur in the random neighborhood, with an order with active agents
majority, a disordered phase, and then a consensus phase in (d), (e),
and (f). This figure shows simulations results for a one-dimensional
lattice with N = 210 sites, but with N = 28 sites, we observe the same
result.

increase, the energy has a decreasing behavior until reaching
the lower energy value. We note that the global energy mini-
mum increases as a police officer’s concentration for all cases.

For low police officers concentrations, points where the
state concentrations are similar exist, suggesting changes in
the predominant state in the system. To search for a point
where the system shows an order-disorder transition, we built
a phase diagram. Every point corresponds to police officers’
concentration and legitimacy value and depends on a pair of
similar agent states. Then, we can observe the phases formed
for the system with police officers’s vision seven in Fig. 13.
We see the same six phases observed in the system for the
Moore neighborhood with vision one in Fig. 13(a). The re-
gion’s size for every phase changes notably because of the
increase in agents’ vision and the police officers’ activity.
As a result, we note that the regions with the predominance
of passive agents are more significant than the others. Be-
sides, we can observe a triple point where the disordered
phase occurs, the area where the system only has police
officers, and a consensus phase with only passive agents.
For the random neighborhood, the effect of vision seven
is more significant, as shown in Fig. 13(b). Although the
size of the regions dominated by passive agents is similar
to those of the Moore neighborhood, we can notice that
the JAP phase and the point at which all concentrations are
similar disappears. The JAP phase has most jailed agents
followed by active and passive agents. As a result, we ob-

serve that there is no order-disorder transition. However,
the system change between different order phases with a
majority state depending on the police officers’ concentra-
tion and legitimacy values. It reaches a consensus when all
agents are in the passive state at the value of legitimacy is
0.90 because this depends on the threshold value fixed at the
beginning of simulations.

We show the stationary probability density function of
the agents’ concentration in Fig. 14 to observe the system
transition. For the Moore neighborhood, we selected the po-
lice officers’ concentrations 0.06 and varied the legitimacy.
We can see, as legitimacy increases, the system change from
the disordered phase to an ordered phase with a passive state
majority in Figs. 14(a) and 14(b). Then reaches a consensus
phase in Fig. 14(c). We selected a lower value of police offi-
cers’ concentrations for the random neighborhood to observe
the possibility of finding similar concentrations for the three
states as legitimacy increases. Nevertheless, only find order
with majority phases, as shown in Figs. 14(d) and 14(e), and
the consensus phase in Fig. 14(f).

IV. DISCUSSION AND CONCLUDING REMARKS

This paper studied the one-dimensional civil disorder
model with the whole lattice occupied to characterize their
evolution on the steady state. To do this, we performed ex-
tensive numerical simulations of the model with and without
police officers, considering visions one and seven in Moore
and random neighborhoods to study the effects of interactions
on the system’s dynamics. We used the agent state concen-
tration and introduced a Potts-like energy function as global
quantities to characterize the model.

In the system without police, the dynamics only depend
on values assigned as initial conditions. One of them is
hardship, a local parameter uniformly distributed between val-
ues zero and one for each agent. In the model, this parameter
allows for a heterogeneous society of agents. The other two,
legitimacy and threshold, are global parameters that we use
as control parameters for our simulations. The threshold is a
quantity defined as non-negative and determines a limit for an
agent’s state change.

Given that the product of hardship and legitimacy symbol-
izes the grievance in the state change equation, we interpret
this threshold as a tolerance for grievance. The higher the
threshold value, the more disposed agents are to tolerate
grievance before rebelling against authority. This parameter
takes different values between zero and one, which we inter-
pret as an essential property of a community that depends on
its culture or way of life. Thus, we find communities with a
low threshold and quickly protest for a grievance and com-
munities with a very high threshold that lives with a minimal
grievance and does not rebel against authority. On the other
hand, legitimacy is the community’s perception of the regime
or the system’s authority. Thus, a low legitimacy produces
more significant grievance, and high legitimacy favors the
passivity of the system.

In our results for the variations in the concentration of
agents as a function of legitimacy, we observe that active
agents are predominant for low values of legitimacy. As legit-
imacy increases, we find a point where the concentrations of
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FIG. 11. Agents concentration variations in a system with police officers for different values of police officers concentrations, legitimacy,
vision seven, and threshold fixed. The first and second-row figures show interactions in a Moore and random neighborhood respectably. We
can see the predominance of jailed agents with low police officers concentrations in Moore and random neighborhoods in (a) and (e). Note that
the concentration of jailed agents is more significant in the random neighborhood because police officers can capture more agents. However,
as the police officers’ concentrations increase, we can see the predominance of passive agents for both kinds of neighborhoods. Besides, we
observe the same dynamics of translation of the concentration similarity (segmented lines) as in a system with vision one but only for low
police officers’ concentrations. The vertical solid line depends on the fixed threshold and indicates when the system reaches a consensus. This
figure shows simulations results for a one-dimensional lattice with N = 210 sites, but with N = 28 sites, we observe the same result.

active and passive agents are similar, and then passive agents
become predominant. According to the legitimacy variation,
the predominance changes depend on the threshold values. We
note that passive agents are always dominant for threshold
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FIG. 12. The global average energy variations in a system with
police officers for different values of police officers concentrations,
legitimacy, vision seven, and threshold fixed. As for legitimacy in-
creases, the energy reaches a global minimum in Moore and random
neighborhoods. However, the energy only shows a maximum with
police officers’ concentration values lower or equal to 0.10. Then,
as police officers’ concentration increases, the energy constantly de-
creases until the system reaches a consensus. Besides, in both cases,
the global minimum of energy increase as a police officer’s concen-
tration increases, as we can see in (a) and (b). This figure shows
simulations results for a one-dimensional lattice with N = 210 sites,
but with N = 28 sites, we observe the same result.

values greater than 0.50 and coexist with active agents.
However, for high legitimacy values, we notice that all
agents in the system become passive. These changes in the
predominance of a state among the agents are indicators of
phase changes. We build the phase diagram based on the
concentration points of similar agents or when all agents
are passive, and we observe order-disorder transitions. We
identify the AP and PA phases as order phases with a majority
state. Active agents are predominant in the first and passive
agents in the second. We find a disordered phase in which
the agents’ concentrations are similar when crossing between
these phases. When all the agents are passive, the system
reaches the consensus phase. We study the transitions with the
stationary probability density function of the concentration of
the agents, and we observe a typical scenario of continuous
transitions [36].

The energy shows one maximum and two minimum values
for low threshold values. One of them is a local minimum,
where the active agents predominate in the system. The other
is a global minimum or ground state, where all agents in
the system are passive. The system reaches the maximum
value when the concentrations of active and passive agents
are similar. In contrast, when the system has higher threshold
values, the energy is maximum and quickly converges to a
minimum. We can see the translation of these energy points
as the threshold increases, allowing us to identify the phase
changes. Thus, the local minimum indicates the ordered phase
with an active agents majority, the maximum the disordered
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FIG. 13. Phase diagrams for a system with police officers and vision seven. Every point in this diagram corresponds to police officers’
concentration and legitimacy value when the different states are at similar concentrations. We can see the same phases and transitions order-
disorder from the system with vision one in the Moore neighborhood in (a). Nevertheless, the size of each phase change. With random
neighborhood, the disordered phase and the JAP phase disappear due to increased police officers’ action with vision seven, as shown in (b).
In both cases, the system reaches a consensus when the legitimacy is greater than or equal to 0.90 because the fixed threshold determines this
change. The black region indicates only police officers in the system. This figure shows simulations results for a one-dimensional lattice with
N = 210 sites, but with N = 28 sites, we observe the same result.

phase, and the global minimum or ground state is the consen-
sus phase.

The local energy minimum observed for threshold val-
ues greater than zero and less than 0.50 is a metastable
point. The active agents’ predominance generates energy and
stops the system from reaching the ground state. In other
words, the system is not entirely stable due to grievance.
However, as legitimacy increases, the system can reach a
consensus. On the other hand, when the threshold values are
greater than 0.50, the local minimum disappears and becomes
an energy maximum. The maximum is an unstable point for
all threshold values because the system can fall to the local or
global minimum depending on how legitimacy varies. Since
the concentrations of active and passive agents are similar,
the system increases energy due to grievance generating a
scenario of instability comparable to a polarized society. In
this context, we understand polarization as a situation of equal
opinion searching for a consensus. It is important to note that
the maximum energy that our results show is the maximum
possible given the initial conditions of random positioning of
the agents. However, it is possible to find an absolute maxi-
mum for the energy by positioning the agents deliberately to
form the checkerboard appearance.

Finally, the global minimum is a stable point of the system
since all the agents are in the same passive state in the con-
sensus phase. When threshold values exceed 0.50, the system
can reach the global minimum for low legitimacy values.

Nevertheless, for threshold values less than 0.50, we find that
reaching consensus requires higher legitimacy values. Indeed,
the greater the tolerance for grievance, the less legitimacy is
required to reach consensus. This result reflects the existence
of societies with high thresholds, in which reaching consensus
requires low legitimacy values, unlike other societies in which
reaching or maintaining consensus requires high legitimacy.

From these results, we can reveal that the principle under-
lying the dynamics of the model is a principle of minimum
grievance, equivalent to that observed in the model of worker
protest in a factory. This principle allows us to interpret that
the system seeks minimal grievance or a consensus. Naturally,
reaching and maintaining consensus requires high values of
legitimacy or high values of tolerance, the latter being the
one that determines the value of legitimacy necessary in a
heterogeneous society. Thus, the emergence of protests is due
to global conditions of legitimacy or threshold that generate a
grievance, increasing the system’s energy. This grievance gen-
erates energy variations that can lead the system to instability
or metastability.

In the system with police, the agents can be active, passive,
or jailed, and the dynamic depends on the vision and the
neighborhood. For this reason, we study the system separately,
considering two different views. We fix the threshold value
and consider the legitimacy and concentration of police offi-
cers in the system as a control parameter because the police
officer’s role is to deter a protest. Besides, the agents’ state
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FIG. 14. Stationary probability density function of the concen-
tration of agents for a system with police officers and vision seven.
We can see two transitions in the Moore neighborhood when the
system increased legitimacy and fixed police officers’ concentration.
A disordered phase, then orders with passive agents majority, and
finally, a consensus phase in (a), (b), and (c). However, in the random
neighborhood, only observe order-with majority phases and then a
consensus phase in (d), (e), and (f). This figure shows simulations
results for a one-dimensional lattice with N = 210 sites, but with
N = 28 sites, we observe the same result.

switch depends on the number of active agents and police
officers in their neighborhood.

The concentration of agents allows us to identify the pre-
dominance of states in the system. We find that active agents
predominate in the low legitimacy regime only when the
system has vision one and Moore neighborhood. For the rest
of the cases, the jailed agents always predominate. As in the
system without police, as legitimacy increases, the predomi-
nant state changes, and passive agents become the majority.
In addition, we again note points where concentrations are
similar. For legitimacy values greater than or equal to 0.90, all
agents in the system are passive. It is essential to mention that
the increased concentration of police officers in the system
facilitates the predominance of passive agents. Therefore, in
general, the concentration of passive agents increases as le-
gitimacy increases. In particular, this increase is linear in the
system with vision seven because the agents do not switch to
the active state as police presence increases in a neighborhood.
In addition, when the system reached the legitimacy value
in which jailed and passive concentrations are similar, the
number of jailed agents began to drop rapidly.

The phase diagrams allow us to identify the domains’
limits based on the changes in the predominance of a state
in the system. The diagrams show order-disorder transitions
for the system with vision equal to one. We identify six or-
dered phases with a majority state, a disordered phase at a
specific point in the diagram, and a consensus phase where all
agents in the system are passive. The disorder point’s position

APJ

AJP

PAJ

PJA

JPA

JAP

Disorder (Triple point)

Consensus

APJ

Phases

v = 1, Moore

v = 1, Random

v = 7, Moore

v = 7, Random

FIG. 15. Schematic visualization of different phases found at the
one-dimensional civil disorder model with police officers on the
steady state. We observe six ordered phases with a majority state, a
disordered phase, and a consensus with vision one. With vision seven
and Moore neighborhood, we observe the same phases. However,
there is neither the disordered phase nor the ordered phase, with most
jailed agents followed by active and passive agents (JAP phase) in a
random neighborhood.

and the phases’ sizes depend on the type of neighborhood.
The random neighborhood makes it easier to capture active
agents. So, the disorder point requires less concentration of
police than in the Moore neighborhood, and the most exten-
sive phases are those with a predominance of passive agents.
When the system has vision seven, the differences depend
on the neighborhood. In a Moore neighborhood, we observe
order-disorder transitions with the same phases observed in
the system with vision one. However, in a random neighbor-
hood, we only observe 5 phases of order with a majority,
and we do not observe the order-disorder transition. In this
neighborhood, police officers significantly increase activity.
So, they can capture many active agents in the low legitimacy
regime, preventing the emergence of active agents with high
legitimacy values. We show a summary of the different sce-
narios of the system with police officers in steady state in
Fig. 15. Finally, the study of the stationary probability density
functions of the concentration of the officers shows us that
the phase changes are continuous at the same as in the system
without police.

From the results we obtained for energy, we can note essen-
tial differences in behavior according to the concentration of
police officers in the system. When the police concentration
has values less than or equal to 0.10, we can see that the
energy shows a local minimum, a maximum, and a global
minimum. The local minimum shows an ordered state with
a majority. We observe the most active agents in the case of
vision one and a Moore neighborhood. In the other cases, the
jailed agents always predominate. As for legitimacy increases,
the energy reaches a maximum when at least two agent states
are in similar concentrations. For example, for the system
with vision one and a Moore neighborhood, this maximum
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shows when the concentration of active and passive agents
are similar. In the other cases, we observe that the jailed and
the passive are in a similar concentration. Therefore, the max-
imum energy only shows changes between phases of order
with a majority and cannot be identified with the state of
disorder of the system. Finally, we observe the global energy
minimum when all agents in the system are passive, indicating
that the system is in the consensus phase.

When the concentration of police officers has values
greater than 0.10 but less than 0.70, we observe different
behavior of energy depending on the vision and the type of
neighborhood. For vision one and a Moore neighborhood, the
initial energy is maximum. Then, as legitimacy increases, en-
ergy remains constant until the legitimacy value indicates the
phase with passive agents majority. Then, the energy decays
quickly to the minimum in the consensus phase. The initial
energy for vision one and a random neighborhood is a local
minimum. We observe a minimal increase until it reaches a
maximum and quickly decays to a global minimum. The max-
imum shows the transition from jailed agents’ majority phase
to the passive agents’ majority phase and then reaches the
consensus phase. For vision seven and both neighborhoods,
we see that the energy starts at the maximum possible value,
indicating a phase where the prisoners predominate. Then,
energy steadily decays toward the global minimum in the
consensus phase.

Finally, for regimes where the police concentration is
greater than or equal to 0.70, we see for all cases that the
initial energy has a closer value to the minimum. As le-
gitimacy increases, the energy constantly decreases until it
reaches the minimum associated with consensus. In general,
we can note that the minimum energy for all cases is not
an absolute minimum. Despite reaching the consensus phase
and all the agents being passive, there are police officers in
the system. Therefore, its value depends on the police offi-
cers’ concentration and their random position on the lattice.
This result leads us to conjecture that the energy value will
be closer to the absolute minimum for an arbitrary initial
configuration with two clusters of police officers and passive
agents.

Regarding the observed stability points of energy, we see
similarities for the system without police officers. The local
energy minimum observed for low police concentration is a
metastable point for the same reason as the system without
police. For all visions and neighborhoods, this point shows
the existence of grievance, either because there are active
agents or prisoners. Therefore, the system can change to the
global minimum seeking consensus as legitimacy increases.
The point of maximum energy is generally unstable for low
values of police concentration because it can fall to the local
or global minimum with variations in legitimacy. For high
police concentrations, the maximum remains constant at low
legitimacy, and as legitimacy increases, it reaches the mini-
mum rapidly. Finally, the global energy minimum is stable for
all cases because the system reaches a consensus. However,
the increase of police officers’ concentration makes its value
change. Based on the results obtained, we can still interpret
the system based on the principle of minimum grievance
because the system tends toward a global minimum as legiti-
macy increases. However, the energy is insufficient to identify

the system’s prevailing state and the effects of police concen-
tration on the dynamics.

Since the system now considers three possible states for
agents and police officers, we must complement the analysis
with the concentration of agents. With these two macroscopic
quantities together, we can identify the most relevant function
of the police based on the vision and the type of neighborhood.
When considering vision one, the capture of active agents
is the most relevant police function to dissuade a protest.
In the Moore neighborhood with low police concentration,
the system requires high legitimacy values for active officers
are not predominant. As the concentration of police officers
increases, we observe a significant decrease in the activity of
active agents, so the system needs a lower value of legitimacy
to change the active majority. In the random neighborhood,
police officers increase the capture of active agents, allowing
them not to be a dominant state in the system for low values of
legitimacy. In addition, as the concentration of police officers
increases, the activity of active agents rapidly decreases, in-
creasing the concentration of jailed agents. Nevertheless, high
values of legitimacy are still needed for passive agents to be
predominant, and subsequently, the system reaches consensus.

When the system has vision seven, we observe that there
are still active agents with a low concentration of police
officers, but they are not predominant. Therefore, the sys-
tem requires increasing legitimacy to reach the predominance
of passive agents. As the concentration of police officers
increases, the activity of active agents disappears. As for le-
gitimacy increases, the passive agents increase, and the jailed
agents decrease linearly. Hence, in these cases, the relevant
role of police officers is to prevent the appearance of a protest
by preventing the officers from becoming active.

Although the police activity considerably reduces the ac-
tive agents’ activity in both cases, the permanent presence
of jailed agents indicates a grievance in the population and
an increase in the system’s energy. Hence, we can conclude
that the system will not be utterly stable if there is an internal
grievance. This affirmation indicates that dissuading a protest
by capturing active agents is ineffective in reducing grievance.
Nevertheless, our results show that as the concentration of po-
lice officers in the system increases, the system needs a lower
value of legitimacy to reach consensus or minimum energy.
Observing the minimum obtained, we note that it is not an
absolute minimum and depends directly on the concentration
of police officers in the system. Therefore, the greater the
concentration of police officers, the value of the minimum
energy increases. In other words, dissuading protests to facil-
itate or maintain consensus has an energy cost for the system
proportional to the number of police officers or the amount of
force used.

We do not observe any significant variation of the system’s
behavior without police officers in terms of the variations in
lattice size, the vision of the agents, or the type of neighbor-
hood. So, we confirm that the dynamics only depend on the
initial random conditions, such as the positioning of agents in
the lattice and the definition of local parameters. Therefore,
we conjecture that the system’s dynamics will be the same
regardless of the topology or dimension of the grid. In ad-
dition, the use of the movement rule will not generate state
changes in the agents because the defined rules do not depend
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on the neighborhood in the system without police. In this con-
text, the global quantities introduced and the phase diagram
present new elements to analyze the model’s dynamics and
make new interpretations to understand the dynamics of social
protests.

In the results obtained for the system with police officers,
we did not notice significant variations of the dynamics with
the variation of the size of the system. However, the dynamics
dependent directly on the vision and the neighborhood prod-
uct of the definition of the agents’ rules. The police officers’
activity increased significantly with the elections of a random
neighborhood and increased vision. The global quantities in-
troduced allowed us to identify the most relevant role and
effect of the police officers in the system. It is essential to
mention that the size of the system determines the maximum
possible vision of the agents. Hence, for visions close to the
maximum possible, we conjecture that the results will be
similar to those shown for vision seven.

On the other hand, considering the movement of the agents
and other topologies or lattice dimensions, we expect consid-
erable changes in the system’s dynamics with police officers.
When Epstein presented this model in two dimensions, he re-

ported very particular dynamics for specific parameters, such
as the punctuated equilibrium phenomenon. Therefore, our
results can serve future research as a first approximation to
characterize the results reported by Epstein or even find new
states or phenomena not yet reported in the current literature.

It is essential to note that we base our interpretations on
the numerical results obtained from this simplified model.
However, in the real world, the dynamics of social protests are
more complex and involve many other factors. Nevertheless,
studying this model from the perspective of sociophysics can
yield new elements that allow us to address the complexities
of the dynamics of social protest.
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