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Abstract

The study of black holes is a fascinating and active area of research in theoretical physics.

In recent years, the development of effective field theory (EFT) has provided a robust

framework for studying the properties and behavior of black holes. In this thesis, we apply

the principles of EFT to study black holes and Q-balls. Using the EFT for the black holes

in 3+1 D, we will look at the hairy black hole background to study its fluctuations in a

model-independent way and analyze the quasinormal modes of the hairy black holes. This

allowed us to show the possible gravitational wave signatures of hairy black holes. Skyrme

model is an EFT of QCD which describes mesons, and we will focus on the pions with

vanishing topological/Barynoic charge. This opens the door for studying non-topological

solitonic configurations, which are Q-balls. We also research the mini-superspace of the

2+1 D pure gravity, which lets us explore the Lorentzian path integral and the Euclidean

geometries’ partition function. We obtain the logarithmic correction to the BTZ black hole

entropy naked singularities without using CFT. Using the Euclidean partition function,

we also calculate the logarithmic corrections to the entropy of the finite temperature BIon

solution.

Keywords – Hairy black hole, Effective Field Theory, Quasinormal modes, Thermodynamics,

Thermal fluctuations, Q-balls, Skyrme model, 3D pure gravity
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Chapter 1. Introduction 1

Chapter 1

Introduction

Quantum gravity (QG) is undoubtedly one of the biggest open problems in physics and is

often considered one of the field’s most fundamental and challenging problems. The problem

of quantum gravity is searching for a theory that can reconcile the principles of quantum

mechanics and general relativity, two of the most successful and well-established theories in

physics.

In almost the last hundred years, there has not been any significant improvement in our

understanding apart from realizing the difficulties involved in considering a quantum version

of the gravitational field. Generations of physicists and mathematicians have attacked the

problem with their ingenuity which mainly led to mathematical and theoretical models of

how the Universe at the Planck scale should behave. Some primary models include string

theory, loop quantum gravity, and causal dynamical triangulation. So far, the Universe

doesn’t seem to care about those models keeping our glass everlastingly filled with curiosity.

We cannot comprehend gravity at the quantum scale for various fundamental

reasons/limitations. Quantum mechanics (QM) requires a well-defined Hilbert space on a

spacetime background, but in the case of QG, the spacetime itself should be part of the

Hilbert space. This is a limitation put forth by our well-established theory of QM. There is

also a lack of understanding of what exactly the two degrees of freedom of the gravitational

field represent at the quantum level. There are many other fundamental and technical

reasons for our failures, which will be discussed later.

In this thesis, we will explore physics with fundamental tools that have shown the

experimental and observational prevalence in the past. Of course, we should be open
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to novel mathematical and physical ideas like string theory, AdS/CFT, etc. But, so far,

it has neither improved our fundamental understanding of nature’s internal mechanism

nor shown any experimental/observational hope! It also makes fundamental principles of

physics obscure. It is better to return to our roots and rethink our approach toward QG.

We may even discover that nature does not have gravity quantized, and gravity might be

an emergent phenomenon of some other fundamental field1.

Here, we will explore toy models using fundamental tools, giving us a better insight into the

path toward QG. Studying these toy models doesn’t give us a full sight of QG problems.

Still, it helps us understand different aspects of it through the fundamental principles, which

might eventually have experimental/observational consequences. The toys we will be playing

with are the black holes and Q-balls.

Black holes have been a testing ground for QG for many decades. There is a fascinating

and active area of research in theoretical physics. Black holes are among the most extreme

and mysterious objects in the universe, and they have long captured the imagination of

scientists and the public alike. Despite their exotic nature, black holes are a well-established

prediction of Einstein’s theory of general relativity. According to this theory, black holes are

formed when a massive star collapses under its own gravity, creating a region of space-time

with a strong gravitational pull that nothing, not even light, can escape.

Since their discovery, black holes have been the subject of intense study by physicists, who

have developed a range of theoretical models and computational techniques to understand

their properties and behavior. In recent years, the detection of gravitational waves from

black hole mergers (3) by the LIGO has opened up new avenues of research, providing

unprecedented insights into the dynamics of these fascinating objects.

On the other hand, venturing into Q-balls exposes us to the intricacies of a gauge theory

which will eventually improve our understanding of general relativity (GR), which can be

understood as a gauge theory. Q-ball is a class of non-topological solitonic objects that can

arise in specific theories of scalar fields. They have been proposed as a possible candidate

for dark matter (44; 47; 48; 49; 50; 51; 52) and could be related to the asymmetry observed

between matter and antimatter (53; 54). They could also have observable gravitational

wave signatures (55; 56). Both black holes and Q-balls can be studied using theoretical

models based on the fundamental principles of physics. In particular, the development of

1In that case, one possibility of the emergence of graviton could be as a Goldstone boson from the underlying
fundamental theory, (9).
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effective field theory (EFT) has provided a robust framework for studying the properties

and behavior of these objects.

GR can be understood as a gauge theory, a theoretical framework used to describe the

behavior of physical systems in terms of local symmetries. In general, a gauge theory is

characterized by the presence of a gauge field, which is a field that describes the local

symmetries of the system, and a set of gauge transformations, which are transformations

that leave the physical laws of the system invariant.

In the case of general relativity, the gauge field is the metric tensor, which describes the

curvature of spacetime, and the gauge transformations are diffeomorphisms, which are

smooth, continuous transformations of spacetime coordinates. The gauge transformations in

general relativity are associated with the principle of general covariance, which states that the

physical laws of the theory should be invariant under arbitrary coordinate transformations.

One of the key benefits of understanding general relativity as a gauge theory is that it

allows for a systematic and controlled expansion in powers of energy/derivatives, making

it easier to study the behavior of the theory at different energy scales. It also provides a

framework for understanding the behavior of the theory in the presence of perturbations

and for understanding the role of symmetries in the behavior of the theory. Even though

the gauge symmetries of GR and Q-balls are different, the study of Q-balls lets us explore

the gauge theory aspect.

In this thesis, we will use the methods of EFT to study theoretical models of black holes and

Q-balls. By constructing effective Lagrangians for the relevant degrees of freedom of these

objects and using the techniques of EFT, we will investigate the behavior of black holes

and Q-balls in various regimes and explore their implications for our understanding of the

fundamental laws of physics. We will also explore the mini-superspace of 2+1 dimensional

AdS pure gravity with techniques of the path integral and the partition function.

1.1 But, what is Effective Field Theory?

Effective field theory (EFT) is a theoretical framework to construct approximate descriptions

of physical systems at low energies or long distances. It is a powerful tool for studying

systems that exhibit a separation of scales. The relevant degrees of freedom and interactions

at a given energy or length scale can be described by an effective theory valid only within a

limited range of energies or distances.
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In EFT, one identifies a physical system’s relevant degrees of freedom and the symmetries

that constrain their interactions. The effective Lagrangian, which encodes the dynamics

of these degrees of freedom, is then constructed as an expansion in powers of the relevant

energy or distance scale, with the lowest-order term in the expansion corresponding to the

most relevant interactions. Higher-order terms in the expansion encode the effects of less

relevant interactions and can be systematically included to improve the theory’s accuracy.

EFT has found a wide range of applications in various areas of physics, including particle

physics, condensed matter physics, and cosmology. In particle physics, EFTs describe the

interactions of elementary particles at energies much lower than the scale at which the

underlying fundamental theory is expected to break down. In condensed matter physics,

EFTs are used to describe the behavior of systems with many interacting degrees of freedom,

such as superconductors and superfluids. In cosmology, EFTs describe the universe’s

evolution and the properties of dark matter and dark energy.

Overall, EFT is an essential tool in the arsenal of theoretical physicists and has played a

central role in many significant developments in our understanding of the physical world.

EFT allows us to write down the action principle for the energy scale of interest. For

example, let’s consider the case of a scalar field theory with a single real scalar field denoted

by ϕ(x). The action for this theory is given by

Sϕ =

∫
d4x

√
−g
[
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 − λ

4!
ϕ4
]

(1.1.1)

where m is the mass of the scalar field and λ is the coupling constant. This action is written

in terms of the most relevant degrees of freedom at the low-energy scale, which are the value

of the field ϕ(x) and its derivative ∂µϕ(x).

The expansion in powers of energy is then performed by introducing a momentum scale Λ

and expanding the action in powers of pϕ/Λ, where p is the momentum of the field. The

leading-order term in the expansion is the so-called tree-level action, given by the first two

terms in the action above. The higher-order terms in the expansion, called loop corrections,

represent the effects of virtual particles with momenta higher than Λ on the low-energy

dynamics of the system. These higher-order terms can be computed systematically using

perturbation theory.

In practice, constructing an EFT involves several technical steps, including identifying the

relevant degrees of freedom, the symmetry properties of the system, and the power counting
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rules that determine the importance of different terms in the action. We can formulate GR

as an EFT which allows us to consider an expansion in the powers of metric derivatives.

For an excellent review of GR as an EFT, please check (6; 7).

At low energies, the gravitational action consists of the Einstein-Hilbert term, the Ricci

scalar, R. Varying it leads to Einstein’s equation of motion, and we can do great physics

with it at low energies. To probe at higher energies, we should consider the most general

Lagrangian with higher derivative terms that remain invariant under the gauge symmetries

of GR, the diffeomorphisms. This way, the gravitational action will capture the physics

at high energies without knowing the underlying theory of QG. The energy scale is set by

the reduced Planck mass M2
p = (8πG)−1 and the first few terms of the most general action

ordered in the energy/derivative expansion are

S =
M2

p

2

∫
d4x

√
−g
[
2Λ +R+

1

M2
p

(
c1R

2 + c2RµνR
µν
)
+ ...

]
(1.1.2)

with Λ of order ∂0, R of order ∂2, R2 and RµνR
µν of order ∂4 and the ellipses are for the

higher order terms. The coefficients like c1 and c2 are used to renormalize any divergences

coming from the higher derivative terms. Renormalized c1 and c2 take care of the one-loop

divergences, which were calculated by ’t Hooft and Veltman (8).

The small-scale/high-energy physics will correspond to a quantum field which will be a

fluctuation in the background metric

gµν = ḡµν + δgµν (1.1.3)

The effective action 1.1.2 tends to capture the physics of these quantum fluctuations. Now

that we have identified the relevant degree of freedom, we expand all the terms in the

action up to one’s desire of the order in fluctuations and derivatives2. The simplest case of

fluctuations in Minkowski background with Λ << Mp

gµν = ηµν + hµν/Mp (1.1.4)

2Caveat: As we have no idea of the underlying theory, we just hope that the higher order terms manifest
some physics from the QG which could lead to some phenomenology.
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will lead to an expansion

S =

∫
d4x

[
(∂h)2 +

h(∂h)2

Mp
+
h2(∂h)2

M2
p

+ ...

]
(1.1.5)

where we have suppressed indices of hµν for simplicity. We will receive corrections from

higher-order terms as we go to higher energies (≥Mp).

1.1.1 EFT of Goldstone bosons

This thesis explores the solutions in 3 + 1 dimensions of the theories with spontaneously

broken symmetries. Goldstone’s theorem shows that when a continuous symmetry is

spontaneously broken in a physical system, a massless particle must be associated with each

broken symmetry generator. These particles are called Goldstone bosons, a consequence of

the symmetry-breaking process. Hence, we will explore an effective action for Goldstone

bosons as they are the relevant degrees of freedom.

Here we will be studying hairy black hole solutions as a solution to an EFT that has an

effective action for the Goldstone boson associated with the breaking of r diffeomorphism

symmetry. We will construct an effective action for the Goldstone boson of broken r-

diffeomorphism and study features of its solution, hairy black holes. Its construction follows

similar to the effective actions in Eqs. 1.1.2 and 1.1.5, written down for the fluctuations

around a hairy black hole background. It is a well-curated action that considers the dynamics

of scalar fluctuations at the quadratic order in a hairy black hole background. The scalar

hair breaks the r-diffeomorphism symmetry, so the generic action in the unitary gauge

consists of all the invariant terms on a constant r-hypersurface

S =

∫
d4x

√
−gL (gµν , Rµναβ , g

rr,Kµν ,∇µ, r) (1.1.6)

The terms are invariant under the residual symmetries on the hypersurface, which are

temporal and angular variance. A detailed description of the action can be found in the

2nd chapter.

We will study Q-balls in the Skyrme model, an EFT of quantum chromodynamics (QCD).

In the low energy limit, the relevant degrees of freedom are mesons because the quark and

gluon degrees of freedom are confined. The lightest quarks’ masses are negligible in this low

energy limit, and they are the up and down quarks. The approximate description of the

flavor symmetry corresponds to SUL(N)× SUR(N), with N being the number of flavors.
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QCD famously exhibits spontaneous breaking of approximated chiral symmetry, which gives

rise to a Goldstone boson with a small mass term3. For N = 2, the effective action of

QCD with two flavors is given by SU(2) Skyrme action. The relevant degrees of freedom

in this action consists of the PNGB. This associated PNGBs are the pions with masses

(π± ≈ 140MeV, π0 ≈ 135MeV ). The solutions of the Skyrme equation are topological

solitons (Skyrmions) with a baryonic charge. We will study solutions of the Skyrme equation

of motion with zero baryonic charges, which is possible with a suitable hedgehog ansatz,

which leads to the pionic Q-balls.

1.2 Metric notations

The generic metric in terms of the lapse and shift functions N(xµ) and N i(xµ), respectively,

is

ds2 = −N2(xµ)dt2 + gij(x
µ)
(
dxi +N i(xµ)dt

) (
dxj +N j(xµ)dt

)
(1.2.1)

where µ goes over all the spacetime coordinates while i runs over spatial coordinates. For

a 3+1 D spacetime, xi ≡ (r, θ, ϕ) and for a 2+1 D spacetime xi ≡ (r, ϕ). This thesis will

explore solutions in 2+1 D and 3+1 D.

We will study less generic cases of the 1.2.1, which motivates us to utilize EFT techniques.

In 3+1 D, we will look at hairy black hole solutions and Q-balls. For a generic static black

hole considered in chapter 2 there is no shift, so we have

N2(r) = f(r) and gij(r) ≡ (f−1(r), r2, r2 sin2 θ) (1.2.2)

while chapter 6.2.2 on Q-balls consists of a flat metric

N2(r) = 1 and gij(r) ≡ (1, r2, r2 sin2 θ) (1.2.3)

In 2+1 D, we will look at the BTZ black hole and naked singularities whose collective set is

called BTZ mini-superspace characterized by

N2(r) =

(
r2

l2
− 8GM +

16G2J2

r2

)
, Nϕ(r) = −4GJ

r2
(1.2.4)

3When the broken symmetry is not exact, the Goldstone boson is not massless, and it is also known as a
pseudo-Nambu-Goldstone boson (PNGB).
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gij(r) ≡ (N−2(r), r2) now with i ≡ (r, ϕ) (1.2.5)

1.3 But, what is the outline of the thesis?

In chapter 2, which is based on (1), we applied the EFT approach toward understanding

black holes in a model-independent manner. With the focus on the following question: does

the effective theory of black holes provide any information about the possible existence of

hair? To probe any physical system, the behavior of fluctuation in a specific background

under consideration is most important. In this chapter, we consider black hole space-time

with hair as a particular type of background whose properties can only be understood by

looking at the nature of fluctuation around it. The conventional EFT approach deals with

writing down the theory of background itself in terms of fundamental fields. In the present

context, the approach was to consider the prior existence of a background of interest and

then write down the most general theory for the fluctuations in the given background based

on symmetry. This approach has been successfully applied in inflationary cosmology, which

is popularly known as an effective theory of inflation (19). In this chapter, we use the same

technique in the background of spherically symmetric black holes with hair which also enjoys

the exact symmetry.

We have first written down the most general model-independent effective Lagrangian for the

fluctuation in a given hairy black hole background. We have considered an asymptotically flat

and de-Sitter black hole background for our detailed analysis. The background cosmological

constant is assumed to be generated from the hair. Generally, the behavior of fluctuation

encodes essential information about background hair. Therefore, to understand the behavior

of the fluctuation, we have chosen a particular set of effective theory parameters. Using

the sixth-order WKB approximation associated with those fluctuations, we have computed

the quasinormal modes, which appeared to carry different features compared to usual black

hole quasinormal modes. In general, for the four-dimensional Schwarzschild black hole in

the asymptotically flat/dS background, the real oscillation frequency of the quasinormal

modes decreases, and the imaginary part of the frequency increases with the increase of the

overtone number (n) while the multipole number (l) is kept fixed. Interestingly what came

out from our quasinormal mode analysis for the effective field theory fluctuation is that both

the real and imaginary frequencies increase with increasing overtone number. Motivated

by our EFT analysis, we also constructed a class of higher derivative scalar field theory.

For this theory also, we confirmed the aforementioned exciting behavior of the quasinormal
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modes.

In the next chapter, chapter 3, we will study a non-trivial configuration of scalar fields that

form a condensate called Q-balls without gravity. In other words, Q-balls are localized,

non-topological lumps of the scalar field with a continuous charge distribution. It was first

proposed by Coleman in the complex scalar field theory (66). Our focus in this chapter is

on the question: can Pionic Q-balls exist in the Skyrme model?

This chapter will demonstrate how under suitable hedgehog ansatz, we can bring the

Skyrme equation of motion in a form analogous to the equations in the complex scalar

theories. The Skyrme model is an EFT of the QCD (78; 79; 81; 82; 80). The Skyrme

model possesses a conserved topological charge interpreted as a Baryonic charge. Thus,

configurations with vanishing Baryonic charges are interpreted as Pionic configurations,

while configurations with non-vanishing topological charges contain Baryons. Hence, we will

only consider configurations with disappearing topological charges in the present work. As

we will see, one of the advantages of the Skyrme model is that the geometry of the action

uniquely determines the effective potential appearing in the “Q-ball equations" (so that any

arbitrariness in the choice of the potential disappears).

Chapter 3 is an ongoing project. Still, we have successfully demonstrated how, under the

suitable ansatz, the effective potential satisfies all the critical requirements for a theory

to sustain a Q-ball solution. So, a Q-ball in the Skyrme model will correspond to a Pion

condensate held together by the non-linearity of the theory. This is a more pragmatic

scenario than previous Q-ball solutions in the literature. This project is not yet finished

due to the sensitivity associated with the numerical analysis.

Chapter 4 is an overview of the quantum mechanics of the gravitational field. It also has a

short review of the partition function and Euclidean quantum gravity, which will set the

stage for the subsequent chapters.

In chapter 5, which is based on (2), we applied the techniques of Euclidean quantum

gravity to a finite temperature BIon solution to analyze the quantum fluctuations. A finite

temperature BIon solution is a brane-anti-brane wormhole configuration. In this chapter,

it will be shown that these quantum fluctuations produce logarithmic corrections to the

entropy of this finite temperature BIon solution. These corrections to the entropy also

correct the internal energy and the specific heat for this finite temperature BIon.

Chapter 6 is more of a pedagogical introduction to the Hamiltonian formalism in 2+1 D
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gravity and surface terms. It highlights the difficulties involved in the path toward QG. We

propose a possible measure for the gravitational path integral, but not much can be done

in this formalism! In short, approaching QG seems intractable. Maybe, Universe doesn’t

have a quantized graviton, and gravity might be an emergent phenomenon of some other

fundamental field.

Chapter 7 is still an ongoing project which uses EFT to construct a mini-superspace of 2+1

D AdS pure gravity and Euclidean partition function to calculate the logarithmic corrections

to the BTZ black hole entropy. This mini-superspace contains all the stationary geometries

which are locally AdS3 with J/l ≤ |M |. They consist of BTZ black holes, conical defects

and excesses (CD/CE), and over-spinning (OS) singularities, (4; 5).

Chapter 8 summarizes the results found in this thesis.
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Chapter 2

Effective Field Theory of Hairy Black

Holes and Their flat/dS limit

Abstract

Effective theory of fluctuations based on underlying symmetry plays a vital role in

understanding the low energy phenomena. Using this powerful technique, we study the

fluctuation dynamics keeping in mind the following central question: does the effective

theory of black holes provide any information about the possible existence of hair? Assuming

the symmetry of the hair is that of the underlying black hole space-time, we start by writing

down the most general action for the background and the fluctuation in the effective field

theory framework. Considering the Schwarzschild and Schwarzschild de Sitter black hole

background with a spherically symmetric hair we derived the most general equation of

motion for the fluctuation. For a particular choice of theory parameters, quasinormal modes

corresponding to those fluctuations appeared to have distinct features compared to the

usual black hole quasinormal modes. On the other hand, the background equations from

the effective theory of Lagrangian seemed to suggest that the underlying theory of the

hair under consideration should be a higher derivative in nature. Therefore as a concrete

example, we construct a class of higher derivative scalar field theory that gives rise to

spherically symmetric hair through background cosmological constant. We also calculated

the quasinormal modes whose behavior was similar to the one discussed in the effective

theory.



2.1. Introduction 12

2.1 Introduction

The general theory of relativity has been proven to successfully explain a large variety of

gravitational phenomena in a wide range of length scales. The theory also provides us with

a class of vacuum solutions called black holes. Black holes are the most fascinating objects

in general relativity, which has not been clearly understood from different aspects despite

having a long history of various path-breaking research. On the other hand, it is believed

to be the simplest object in our universe, which is characterized by only three parameters:

mass, charge, and angular momentum. Over the years, it has also been understood that

those are the only three charges that a black hole can carry. In black hole physics, this

is known as the black hole no-hair theorem (10; 11). A lot of work has been done in

the literature on the possible existence of hairy black holes for various theories. Let us

particularly mention a class of modified gravity theories (12), which has gained significant

attention in the recent past because of their applicability in various physical contexts. The

existence of black hole hairs has been extensively discussed in those theories in (13; 14; 15).

We will also discuss a particular class of these theories in the present chapter. Having talked

about an extensive research area in the domain of black hole physics, it has to be admitted

that all those endeavors towards understanding black holes are mostly confined within

the theoretical regime, without much to do with the observation. Thanks to the recent

breakthrough on the observational front in gravitational waves (16; 17) originating from

the merger of binary black holes, has finally opened up the exciting possibility of verifying

as well as understanding those large volumes of theoretical works and most importantly in

understanding the more profound underlying principles of the nature of space-time. All the

studies on black holes so far were model-dependent, where one considers a specific theory of

gravity and its black hole solutions.

On the other hand, when it comes to observations, all the observable quantities are based

upon the properties of fluctuations around the black hole background without much to do

with a specific theory of gravity. This motivates us to understand black holes in an effective

field theory framework. As the name suggests, it will be a model-independent description of

fluctuations around a black hole in space-time. In this chapter, our analysis will be focused

on the following question: does the effective theory of black holes provide any information

about the possible existence of hair? Our study of possible hairy black hole solutions will

be valid for a class of asymptotically flat and dS black holes. As has been pointed out

before, black holes with hair have been the subject of intense research for many years. For
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a fascinating short review, the reader is referred to (18) and references therein.

The effective field theory approach has been proven to be a universal tool for understanding

low-energy phenomena in many areas of physics. One exciting application of this approach,

which has gained significant attention in the recent past, is the effective theory of inflation

(19). The idea behind this theory was to understand the model-independent dynamics of

fluctuation in a time-dependent inflaton background. The inflaton’s spontaneous breaking

of time translation symmetry is the most crucial ingredient. Motivated by this, we initiated

the present work. Our basic underlying assumption in this work would be to consider the

existence of a hairy black hole that breaks spatial translation symmetry. For a generic

theory, a non-trivial background solution always breaks a certain amount of symmetry

of the underlying theory. For a theory of gravity, a diffeomorphism is the fundamental

underlying symmetry. The existence of non-trivial black hole hair will break the symmetry

mentioned above. Therefore, the main idea in our approach will be to write down all possible

terms in the effective Lagrangian, which obey the residual diffeomorphism symmetry in the

above-mentioned hairy black hole background.

Our present study will consider the most straightforward situation where the background is

a spherically symmetric black hole with the hair having the exact symmetry. The origin of

the hair in the effective field theory framework is not essential for our study. More general

situations will be discussed in our future publications. Before we embark on our analysis,

let us mention some independent studies on fluctuations in the black hole background.

In reference (20), the authors have studied the fluctuation dynamics in static black hole

background considering the less symmetric situation with angular diffeomorphism invariance.

This, in principle, will lead to more than one degree of freedom as opposed to the case

considered in our current chapter for a hairy black hole. In another work, (21), more

elaborate formalism has been developed irrespective of specific hairy background, and it is

valid even for non-hairy black holes. However, to achieve the full diffeomorphism invariant

action, the formalism requires starting with a large number of independent parameters.

Then systematic analysis needs to be performed to reduce the number of parameters. While

we were studying properties of fluctuations in a hairy black hole background based on the

formalism used in the effective theory of inflation, the paper (22) came up where the same

formalism has been considered. They studied the properties in greater detail.

This chapter is organized as follows: in section 2, we write down the most general Lagrangian

for the background and the associated fluctuations assuming r-diffeomorphism symmetry
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to be broken by some unknown field. We aim to understand the hairy black holes in the

effective field theory framework. Therefore we will assume a spherically symmetric black

hole background with hair which also inherits the symmetry of the background. By using

the well-known Stückelburg mechanism, we identify the scalar Goldstone mode associated

with the broken r-diffeomorphism symmetry and derive its equation of motion. While

deriving the equation, the background naturally plays a vital role. Therefore, the fluctuation

equation encodes the information about the nature of hair in the background. Considering

the most straightforward asymptotically flat/dS/AdS black hole backgrounds, our effective

field theory approach shows that they can support hair, generating background cosmological

constant dynamically. However, it turns out that the theory of hair, in general, should

be a higher derivative in nature. This fact may be intimately tied with the conventional

no-hair theorem, which will be discussed in the future. Considering this observation, we

will construct a specific higher derivative scalar field theory in the subsequent section.

This section is ended by discussing the qualitative behavior of the quasinormal modes for

the Goldstone modes, which behave distinctly as opposed to the conventional black hole

quasinormal modes. Interestingly enough, this distinct behavior also can be seen from

our underlying theory, discussed in detail in section 3. This section will discuss a class of

higher derivative theory of the scalar field. The vacuum expectation value of the scalar

breaks r-diffeomorphism symmetry with a background cosmological constant. With this

background, we study the behavior of quasinormal modes. Finally, we finish the chapter

with the conclusion.

2.2 Effective field theory setup

In this section, we will formulate the theory. As already mentioned, we assume there

exists a hairy black hole with spherical symmetry. It naturally breaks the r-diffeomorphism

symmetry. Therefore, without requiring any specific gravity model, we can write down

the most generic Lagrangian, which will be invariant under the residual diffeomorphism

symmetry. Under the residual symmetry transformation x′i = xi + ξi (i ≡ t, θ, ϕ), the list

of covariant quantities contains grr and all the geometrical objects defined on an arbitrary

r = constant hypersurface, namely the extrinsic curvature Kµν , three-dimensional Ricci

scalar R(3). However, one important point we missed is the degree of symmetry of the

r-constant hypersurface, which is not maximally symmetric. The spatially flat cosmological

background is one example where the t-constant hypersurface is maximally symmetric.

Therefore, for any spherically symmetric background, the extrinsic curvature Kµν of r-
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constant hyper-surface does not become proportional to the induced metric. As a result, one

needs to consider the rotational symmetry and general time reparametrization invariance

separately, as pointed out and discussed in detail in the reference (22). Therefore, in

the framework of effective field theory, we need many independent parameters compared

to the extremal case to understand the dynamics of fluctuation in the hairy black hole

background. With these important points and ingredients, the most generic Lagrangian for

the background and the fluctuation can be expressed as

S =

∫
d4x

√
−g

{
M2

Pl

2
R− Λ(r)− c(r)grr − α(r)K̄µνK

µν +
1

2!
M2(r)

4(δgrr)2

+
1

3!
M3(r)

4(δgrr)3 − M̄1(r)
3

2
(δgrr)(δKµ

µ) + M̄2
4 (r)K̄µνδg

rrδKµν

+M2
5 (r)(∂rδg

rr)2 +M2
6 (r)(∂rδg

rr)δKβ
β +M2

7 (r)K̄αβ(∂rδg
rr)δKαβ

+
m̂2

2(r)

8
gµν∂µ(δg

rr)∂ν(δg
rr)− M̄2(r)

2

2
(δKµ

µ)
2 − M̄3(r)

2

2
δKµ

νδK
ν
µ

+M11(r)K̄µνδK
β
βδK

µν +M12(r)K̄µνδK
µρδKν

ρ + λ1(r)K̄µρK̄
ρ
νδK

β
βδK

µν

− m̂2
1(r)

2
δgrrδR(3) +M14(r)K̄µνδg

rrδRµν(3)

}
. (2.2.1)

All the parameters take care of the dimensions of the corresponding term, and all are

functions of r. The background extrinsic curvature is given by K̄µν = 1
2

g′µν√
g(r)

. The above

action contains all the possible terms at the quadratic level. The interested reader can find

an excellent description of why these are the only terms possible in the appendix of (22). In

the following discussion, we will keep up to the fourth derivative order of the fluctuation. For

the above general Lagrangian, we consider the following form of the spherically symmetric

hairy black hole background:

ds2 = −f(r)dt2 + g(r)dr2 +R(r)dΩ2 ; ϕ ≡ ϕ0(r). (2.2.2)

At this point, let us mention that ϕ represents the hair, whose explicit nature is unimportant

to us. Because of r-diffeomorphism symmetry of the underlying theory, one can always

choose unitary gauge, δϕ = 0 such that the extra scalar degree of freedom is eaten in the

metric and manifest itself as a gravitational degree of freedom which we parametrized by

the fluctuation of the metric δgrr = grr − 1/g(r). Consequently, we can express all the

covariant geometric quantities defined on r-constant hypersurface in terms of those metric

fluctuations. Based on these general arguments, the first four terms in the above action
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encode the information about the hairy black hole background given in Eq. (2.2.2). Since

the coefficient of arbitrary linear fluctuation is proportional to the equation of motion, the

rest of the terms in the Lagrangian will start from quadratic order in fluctuation. Hence

unperturbed background will be parametrised by three unknown functions Λ(r), c(r) and

α(r), and associated stress-energy tensor can be expressed as

Tµν =− 2√
−g

δS
δgµν

= −gµν
[
c(r)grr + Λ(r) + α(r)KαβK

αβ
]
+ 2c(r)δrµδ

r
ν − α(r)KαβK

αβnµnν

−∇β

(
α(r)Kβ

µnν
)
−∇β

(
α(r)Kβ

νnµ
)
+∇β

(
α(r)Kµνn

β
)
. (2.2.3)

By using the Einstein’s equation Rµν − 1
2Rgµν = (1/M2

Pl)Tµν , the expressions for the two

unknown parameters (Λ(r), c(r)) are given in the appendix A1. Equation for α(r) satisfies

the following constraint equation,(
f ′(r)

f(r)
− R′(r)

R(r)

)
α′(r) +

(
f ′′(r)

f(r)
− f ′2(r)

2f2(r)
− R′′(r)

R(r)
− f ′(r)g′(r)

2g3/2(r)
√
f(r)

+
f ′(r)R′(r)

2f(r)R(r)

+
g′(r)R′(r)

2g(r)R(r)
+ 2

g(r)

R(r)

)(
M2

Pl + α(r)
)
+

(
R′2(r)

R2(r)
− f ′2(r)

f2(r)
− 2

g(r)

R(r)

)
α(r) = 0. (2.2.4)

For a given black hole background, α(r) can take different solutions, which essentially encode

the information about the hair and the underlying gravity theory. For simplicity, we will

take the trivial solution of the Eq. 2.2.4 i.e., α(r) = 0, provided we satisfy the following

constraint:(
f ′′(r)

f(r)
− f ′2(r)

2f2(r)
− R′′(r)

R(r)
− f ′(r)g′(r)

2g3/2(r)
√
f(r)

+
f ′(r)R′(r)

2f(r)R(r)
+
g′(r)R′(r)

2g(r)R(r)
+ 2

g(r)

R(r)

)
= 0.

(2.2.5)

In this chapter, we will be considering mainly Schwarzschild, Schwarzschild-AdS, and

Schwarzschild-dS background solutions. One can check that for those backgrounds, Eq.

2.2.5 is automatically satisfied. We will consider the more general cases involving α elsewhere.

Considering the above background effective theory parameters, we are now in a position

to consider the experimentally observable fluctuation dynamics. Using the diffeomorphism

symmetry, in the next section, we will identify the Goldstone boson mode and its dynamical

equation in the hairy black hole background mentioned above.
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2.2.1 Stückelberg mechanism: Goldstone boson mode

We have already discussed the extra scalar degree of freedom is contained in the r-

diffeomorphism broken Lagrangian given by Eq. 2.2.2. As emphasized before, in the

last section, we have expressed the r-symmetry broken Lagrangian (Eq. 2.2.1) in unitary

gauge. Therefore, the associated Goldstone mode is absorbed inside the gravitational degree

of freedom. The well-known Stückelberg mechanism extracts the Goldstone mode described

above by unfolding the unitary gauge. By this, one also can restore the r-symmetry, which

the mode will non-linearly realize. To restore the symmetry, one reparametrises the broken

symmetry again as:

r → r̃ = r + π(xµ), (2.2.6)

t→ t̃ = t , xi → x̃i = xi, (2.2.7)

which will transform the background scalar field ϕ0(r) as

ϕ0(r̃) = ϕ0(r) + ϕ′0(r)π. (2.2.8)

Therefore, by using this trick, we can restore the r-diffeomorphsim symmetry by considering

the following combined transformations:

r → r + ξr ; π(x) → π(x)− ξr, (2.2.9)

and simultaneously extract the dynamical degrees of freedom as π(x) field, identified as

the Goldstone boson mode. Using these new coordinates, we separate the Goldstone boson

mode considering all transformed quantities:

g̃αβ = gαβ + δβr g
αν∂νπ + δαr g

µβ∂µπ + δαr δ
β
r g

µν∂µπ∂νπ, (2.2.10)

g̃µν = gµν − grν∂µπ − gµr∂νπ + grr∂µπ∂νπ, (2.2.11)

∂̃r =
(
− ∂rπ + (∂rπ)

2
)
∂r + ∂r, (2.2.12)

∂̃ī = (−∂īπ + ∂ī(π∂rπ))∂r + ∂ī, (2.2.13)

δK̃īj̄= −K̄ ′
īj̄π +

1√
grr

∇ī∂j̄π. (2.2.14)

While calculating the action, in the present chapter, we will consider terms up to quadratic

order in the π field. At this level, the tensor mode will not be coupled with the scalar
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mode. Therefore, the tensor mode analysis will be done separately. However, the reader

can see the reference (22) for details on this issue. Higher-order interaction terms will be

considered separately. Specifically, it would be interesting to understand the correction

to the quasinormal modes considering the loop effect. Finally, the covariant quadratic

Lagrangian for the Goldstone boson turns out to be,

Lππ =
1

4
c(r)gµν∂µπ∂νπ − 1

2

(
Λ′′(r)− c′′(r)

4g(r)
+
α′′(r)

4g(r)
gīl̄gk̄j̄∂rgl̄k̄∂rgīj̄

)
π2 +

c′(r)

2g(r)
π∂rπ

+
2M2(r)

4

g2(r)
(∂rπ)

2−α(r)
4

gīm̄gn̄j̄∂rgm̄n̄

[
− 1

g(r)
∂r
(
g(r)∂īπ∂j̄π

)
+
gαβ

2
∂rgīj̄∂απ∂βπ

+g l̄k̄∂k̄π(∂īπ∂rgl̄j̄ + ∂j̄π∂rgīl̄ − ∂l̄π∂rgīj̄)

]
−α

′(r)

2
gīl̄gk̄j̄∂rgl̄k̄π∇ī∂j̄π

− 1

2
M̄2(r)

2g(r)
(
□̄π
)2 − 1

2
M̄3(r)

2g(r)gīk̄g l̄j̄
[
∇ī∂l̄π

][
∇k̄∂j̄π

]
− M̄1(r)

3√
g(r)

∂rπ(□̄π)

−1

2

(
M̄2(r)

2K̄ ′̄i
īK̄

′j̄
j̄ + M̄3(r)

2K̄ ′̄i
j̄K̄

′j̄
ī

)
π2 + M̄2(r)

2K̄ ′̄i
ī

√
g(r)π□̄π

+M̄3(r)
2K̄ ′̄i

j̄

√
g(r)π∇j̄∂īπ + M̄1(r)

3 K̄
′̄i
ī

g(r)
ππ′ − M̄4(r)

2 K̄īj̄K̄
′̄ij̄

g(r)
ππ′ − 2M2

6 (r)K̄
′̄i
ī∂r

(
∂rπ

g(r)

)
π

+
M11(r)

2
∂rgl̄k̄

(
K̄ ′̄i

īK̄
′l̄k̄π2 − K̄ ′̄i

ī

√
g(r)π∇l̄∂k̄π − K̄ ′l̄k̄√g(r)π□̄π)

+
M12(r)

2
∂rgīl̄

(
K̄ ′l̄k̄K̄ ′̄i

k̄π
2 − 2K̄ ′l̄k̄√g(r)π∇ī∂k̄π

)
+
λ1(r)

4
∂rgīl̄∂rgm̄j̄g

l̄m̄
(
K̄ ′k̄

k̄K̄
′̄ij̄π2 − K̄ ′k̄

k̄

√
g(r)π∇ī∂ j̄π − K̄ ′̄ij̄√g(r)π□̄π)

+
m̂2

2(r)

2g5(r)
g′(r)2(∂rπ)

2 +
m̂2

2(r)

2g3(r)
(∂2rπ)

2 − m̂2
2(r)

g4(r)
g′(r)∂rπ∂

2
rπ +

m̂2
2(r)

2g2(r)
gīj̄(∂r∂īπ)(∂r∂j̄π)

− M̄2
4 (r)g

īl̄gk̄j̄∂rgl̄k̄∂rπ∇ī∂j̄π +
λ1(r)

4
∂rgīj̄∂rgn̄l̄g

j̄n̄gīōg l̄s̄□̄π∇ō∂s̄π

+4M2
5 (r)

[
∂r

(
∂rπ

g(r)

)]2
+ 2M2

6 (r)
√
g(r)∂r

(
∂rπ

g(r)

)
□̄π −M7(r)g

īl̄gk̄j̄∂rgl̄k̄∂r

(
∂rπ

g(r)

)
∇ī∂j̄π

+
M11(r)

2

√
g(r)∂rgīj̄g

īm̄gj̄n̄□̄π∇m̄∂n̄π +
M12(r)

2

√
g(r)∂rgīj̄g

īn̄g l̄k̄gj̄m̄∇n̄∂k̄π∇m̄∂l̄π

−
(
m̂2

1(r)

g(r)
gīj̄ +M14(r)(g

rr)3/2gā̄igb̄j̄∂rgāb̄

)
∂rπ

[
− ∂l̄π∂rΓ

l̄
īj̄ + ∂j̄π∂rΓ

l̄
īl̄ − ∂l̄

(
g l̄k̄∂īπ∂rgk̄j̄

)
+∂j̄

(
g l̄k̄

2

(
∂īπ∂rgk̄l̄ + ∂l̄π∂rgīk̄

))
− gm̄k̄

(
∂īπ∂rgk̄j̄

)
Γl̄
l̄m̄ − g l̄k̄

2

(
∂l̄π∂rgk̄m̄ + ∂m̄π∂rgl̄k̄

)
Γm̄
īj̄

+
gm̄k̄

2

(
∂īπ∂rgk̄l̄ + ∂l̄π∂rgīk̄

)
Γl̄
j̄m̄ +

g l̄k̄

2

(
∂j̄π∂rgk̄m̄ + ∂m̄π∂rgj̄k̄

)
Γm̄
īl̄

]
(2.2.15)
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where □̄ = gīj̄∇ī∂j̄ and ī, j̄ = 0, 2, 3. In the above Lagrangian, there exist higher time

derivative terms such as (π̈2,
...
π 2, π̇

...
π ). In general, those terms may contribute to unwanted

ghosts, leading to instability, unless we fine-tune the model parameters in such a way that

at the equation of motion level, it cancels all the higher derivative terms. For simplicity

of our calculation, in order to remove the ghost, we impose the following straightforward

constraints on our effective theory parameters: M̄2(r)
2 = −M̄3(r)

2 and M11(r) = −M12(r).

In the present work, as mentioned, we will consider simple cases where the background

space-time is asymptotically flat and de Sitter with scalar hair from the effective theory

perspective. From the action, we can clearly see that the leading order kinetic term for the

scalar field fluctuation comes from the background c(r) function. However, an important

observation that will be discussed in detail in the subsequent section is that the c(r) function

becomes zero in the asymptotic region for asymptotically flat/dS/AdS black holes. Therefore,

fluctuating Goldstone boson mode seems to become strongly coupled as one goes towards

the asymptotic region of the black holes under consideration. This fact may have some

interesting connection with the no-hair theorem, which we plan to study in the future. For

the case of asymptotically AdS black holes, a hairy solution with the minimally coupled

scalar field was first found for a 2+1 dimensional black hole in (23), and in 2004 hairy

solution for a 3+1 dimensional black hole was found in (24). In both cases, the well-

known Breitenlohner-Freedman (BF) bound (26) is satisfied, guaranteeing that global AdS

spacetime is stable under perturbations. While in the case of (25), one needs to introduce

local instability, specifically near the horizon, either by introducing electromagnetic coupling

or considering the mass of the real scalar field violating the Breitenlohner-Freedman (BF)

bound. For our present purpose, we will not be considering those situations. However, we

can realize an interesting particular case when the function c(r) is zero throughout the

region of the black hole space-time. Our Lagrangian seems to suggest that we still can

have Goldstone boson fluctuations, whose dynamics will be controlled by the set of effective

theory parameters (Mi, M̄i, m̂i). Therefore, pure flat/dS/AdS metric can support the hair

having the same symmetry as the black holes with well-behaved fluctuation. However, the

cosmological constant will be generated dynamically from the shift symmetry-breaking

scalar hair solution for these cases. In the subsequent sections, we will study in detail two

exceptional cases.
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2.2.2 dS, AdS and flat Schwarzschild limit

Our goal for this subsection would be to understand the details of the special cases we

mentioned at the end of the previous section. Given the second-order action for the

Goldstone mode, it won’t be easy to understand the fundamental properties of Goldstone

mode. Therefore, we restrict our discussion to particular black hole backgrounds widely

studied in the literature. Our major discussion will mainly be focused on asymptotically

dS/flat Schwarzschild black holes. However, the AdS case will be briefly discussed for

completeness. We consider the following background metric components,

f(r) = 1− 2M
r + ϵ r

2

l2c
, (2.2.16)

g(r) =

(
1− 2M

r + ϵ r
2

l2c

)−1

, (2.2.17)

R(r) = r2 ; ϕ = ϕϵ0(r), (2.2.18)

where ϵ = (−1, 1, 0) corresponds to asymptotically AdS, dS, and flat Schwarzschild black

holes, respectively. For these metric functions, the background parameters of our effective

field theory Eq.A1.1 and Eq.A1.2 turn out to be Λ(r) = −ϵ 3
l2c

, c(r) = 0 and α(r) = 0.

Important to notice that the background cosmological constant is induced dynamically from

the background scalar field. Therefore, any bare value of the cosmological constant can

be absorbed in the scalar field vacuum expectation value, and the effective cosmological

constant would be Λ(r), which is constant.

In this limit, the quadratic action for the scalar fluctuation boils down to the following

expression:

Lππ =
2M2(r)

4

g2(r)
(∂rπ)

2 +
1

2
M̄3(r)

2g(r)
(
□̄π
)2 − 1

2
M̄3(r)

2g(r)gīk̄g l̄j̄
[
∇ī∂l̄π

][
∇k̄∂j̄π

]
− M̄1(r)

3√
g(r)

∂rπ(□̄π) +
m̂2

2(r)

2g5(r)
g′(r)2(∂rπ)

2 +
m̂2

2(r)

2g3(r)
(∂2rπ)

2 − m̂2
2(r)

g4(r)
g′(r)∂rπ∂

2
rπ

+
m̂2

2(r)

2g2(r)
gīj̄(∂r∂īπ)(∂r∂j̄π)−M̄2

4 (r)g
īl̄gk̄j̄∂rgl̄k̄∂rπ∇ī∂j̄π + 4M2

5 (r)

[
∂r

(
∂rπ

g(r)

)]2
+2M2

6 (r)
√
g(r)∂r

(
∂rπ

g(r)

)
□̄π −M7(r)g

īl̄gk̄j̄∂rgl̄k̄∂r

(
∂rπ

g(r)

)
∇ī∂j̄π

−M12(r)

2

√
g(r)∂rgīj̄g

īm̄gj̄n̄□̄π∇m̄∂n̄π +
M12(r)

2

√
g(r)∂rgīj̄g

īn̄g l̄k̄gj̄m̄∇n̄∂k̄π∇m̄∂l̄π

−
(
m̂2

1(r)

g(r)
gīj̄ +

M14(r)

g3/2(r)
gā̄igb̄j̄∂rgāb̄

)
∂rπ

[
− ∂l̄π∂rΓ

l̄
īj̄ + ∂j̄π∂rΓ

l̄
īl̄ − ∂l̄

(
g l̄k̄∂īπ∂rgk̄j̄

)
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+∂j̄

(
g l̄k̄

2

(
∂īπ∂rgk̄l̄ + ∂l̄π∂rgīk̄

))
− gm̄k̄

(
∂īπ∂rgk̄j̄

)
Γl̄
l̄m̄ − g l̄k̄

2

(
∂l̄π∂rgk̄m̄ + ∂m̄π∂rgl̄k̄

)
Γm̄
īj̄

+
gm̄k̄

2

(
∂īπ∂rgk̄l̄ + ∂l̄π∂rgīk̄

)
Γl̄
j̄m̄ +

g l̄k̄

2

(
∂j̄π∂rgk̄m̄ + ∂m̄π∂rgj̄k̄

)
Γm̄
īl̄

]

+
λ1(r)

4
∂rgīj̄∂rgn̄l̄g

j̄n̄gīōg l̄s̄□̄π∇ō∂s̄π−
λ1(r)

4
∂rgīl̄∂rgm̄j̄g

l̄m̄
(
K̄ ′k̄

k̄

√
g(r)∇ī∂ j̄π + K̄ ′̄ij̄√g(r)□̄π)π

+

[
M̄3(r)

2

2

(
K̄ ′̄i

īK̄
′j̄

j̄ − K̄ ′̄i
j̄K̄

′j̄
ī

)
+
M12(r)

2

(
∂rgīl̄K̄

′l̄k̄K̄ ′̄i
k̄ − ∂rgl̄k̄K̄

′̄i
īK̄

′l̄k̄
)

+
λ1(r)

4
∂rgīl̄∂rgm̄j̄g

l̄m̄K̄ ′k̄
k̄K̄

′̄ij̄
]
π2+M̄1(r)

3 K̄
′̄i
ī

g(r)
ππ′ − M̄3(r)

2K̄ ′̄i
ī

√
g(r)π□̄π

+M̄3(r)
2K̄ ′̄i

j̄

√
g(r)π∇j̄∂īπ − M̄4(r)

2 K̄īj̄K̄
′̄ij̄

g(r)
ππ′ − 2M2

6 (r)K̄
′̄i
ī∂r

(
∂rπ

g(r)

)
π

+
M12(r)

2
∂rgl̄k̄

(
K̄ ′̄i

ī

√
g(r)∇l̄∂k̄π + K̄ ′l̄k̄√g(r)□̄π)π−M12(r)∂rgīl̄K̄

′l̄k̄√g(r)π∇ī∂k̄π.

(2.2.19)

Our plan is to understand the properties of hairs from the effective field theory

perspective. So far, the usual approach to figuring out the hairy black hole solutions

was from the background effective field theory. In the present approach, we consider the

effective theory of fluctuations. Most importantly, our starting point is the existence

of background scalar hair which enjoys the same symmetry as that of the black holes.

Importantly, this was one of the main criteria of the black hole no-hair theorem.

Our study is based on the idea of the effective theory of inflation. In the inflation

model, the approximate shift symmetry plays a very important role in constraining

the theory parameters, which can be assumed to be time-independent and study

the properties of fluctuation. However, for the present case, we do not have special

symmetry which can help us to understand the nature of the effective theory parameters

(M2(r)
4, M̄3(r)

2, M̄3
1 (r), m̂

2
2(r), M̄

2
4 (r),M

2
5 (r),M

2
6 (r),M7(r),M12(r),M14(r), λ1(r), m̂

2
1(r)).

From our action’s structure, we can construct the theory for a background, which we will

do in the next section. Our action shows that for three different asymptotic limits, we may

have hair with its detectable fluctuating degrees of freedom identified as π(x) field. In order

to understand further, let us consider the following decomposition of π = e−iωtS(r)Ylm(θ, ϕ),

and the equation of motion for S(r) turns out to be

4
d

dr

(
M2(r)

4f2(r)r2
dS(r)

dr

)
+m̂2

1(r)

[
f ′(r)

f(r)
r2ω2 −

(
f ′(r)

2
+
f(r)

r

)
l(l + 1)

]
S′(r)

− d

dr

(
m̂2

2(r)r
2f(r)

dS(r)

dr

)
ω2 +

d

dr

(
m̂2

2(r)f
2(r)

dS(r)

dr

)
l(l + 1)
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− d2

dr2

[
r2m̂2

2(r)f
3(r)

d2S(r)

dr2
+ r2m̂2

2(r)f
′(r)f2(r)

dS(r)

dr

]
+ Vl(r)S(r)

+
d

dr

[
r2m̂2

2(r)f(r)f
′(r)2

dS(r)

dr
+ r2m̂2

2(r)f
′(r)f2(r)

d2S(r)

dr2

]
+8

d

dr

[
r2M2

5 (r)f
′(r)

d

dr

(
S′(r)f(r)

)]
− 8

d2

dr2

[
r2M2

5 (r)f(r)
d

dr

(
S′(r)f(r)

)]
−4M2

6 (r)
f ′(r)

f1/2(r)
l(l + 1)S′(r)− 4

d

dr

[
r2
M2

6 (r)ω
2

f1/2(r)

]
S′(r)−4

M2
6 (r)r

2ω2

f1/2(r)
S′′(r)

+4
d

dr

[
M2

6 (r)f
1/2(r)

]
l(l + 1)S′(r) + 2

d

dr

[
M7(r)

f ′(r)

f(r)
r2ω2

]
S′(r) + 2M7(r)

f ′(r)

f(r)
r2ω2S′′(r)

−4
d

dr

(
M7(r)

f(r)

r

)
l(l + 1)S′(r)− 4

r
M7(r)f(r)l(l + 1)S′′(r)−2M2

6 (r)K̄
′̄i
īr

2∂r

(
S′(r)f(r)

)
+M14(r)f

3/2(r)

[
2f ′(r)

f2(r)
rω2 −

(
f ′(r)

rf(r)
+

2

r2

)
l(l + 1)

]
S′(r)

+

[
M̄3(r)

2
(
K̄ ′̄i

īK̄
′j̄

j̄ − K̄ ′̄i
j̄K̄

′j̄
ī

)
+M12(r)

(
∂rgīl̄K̄

′l̄k̄K̄ ′̄i
k̄ − ∂rgl̄k̄K̄

′̄i
īK̄

′l̄k̄
)

+
λ1(r)

2
∂rgīl̄∂rgm̄j̄g

l̄m̄K̄ ′k̄
k̄K̄

′̄ij̄
]
r2S(r)− d

dr

(
M̄1(r)

3r2K̄ ′̄i
īf(r) + M̄4(r)

2r2K̄īj̄K̄
′̄ij̄f(r)

)
S(r)

=

[
M̄3(r)

2r2
K̄ ′̄i

ī

f3/2(r)
+
λ1(r)

4
∂rgīl̄∂rgk̄j̄g

l̄k̄r2
K̄ ′̄ij̄

f3/2(r)
+

d

dr

(
M̄3

1 (r)r
2√

f(r)

)
+
d

dr

(
m̂2

1(r)r
2 f

′(r)

f(r)

)
+
d

dr

(
r2M2

4 (r)
f ′(r)

f2(r)

)
− 2

d

dr

(
r2M2

6 (r)
f ′(r)

f3/2(r)

)
− d

dr

(
r2M7(r)

f ′2(r)

f2(r)

)
− d2

dr2

(
r2M7(r)

f ′(r)

f(r)

)
+ 2

d

dr

(
rM14(r)

f ′(r)

f1/2(r)

)]
ω2S(r), (2.2.20)

where ω is identified as the frequency of the mode and l is the multipole number corresponding

to the mode. Vl(r) is called the “effective potential" which takes the following form,

Vl(r) =

[
M̄3(r)

2 K̄ ′̄i
ī

f1/2(r)
+
λ1(r)

4
∂rgīl̄∂rgk̄j̄g

l̄k̄ K̄ ′̄ij̄

f1/2(r)
− M̄3(r)

2

r2f(r)

− d

dr

(
M̄3

1 (r)
√
f(r)

)
+
d

dr

(
m̂2

1(r)
(f ′(r)

2
+
f(r)

r

))
+
λ1(r)

r4
+

d

dr

(
M2

4 (r)

r

)
−2

d

dr

(
M2

6 (r)
f ′(r)

f1/2(r)

)
+ 2

d2

dr2

(
M2

6 (r)f
1/2(r)

)
+ 2

d

dr

(
M7(r)

f ′(r)

r

)
−2

d2

dr2

(
M7(r)

f(r)

r

)
+2

M12(r)

r3
√
f(r)

+ 2
d

dr

(
M14(r)

f3/2(r)

r

( f ′(r)
2f(r)

+
1

r

))]
l(l + 1).

(2.2.21)

One can clearly identify an important difference between the above fluctuation equation and
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the usual black hole linear perturbation equation for the scalar mode. The above structure

of the effective equation seems to suggest that the underlying theory for the black hole

scalar hair should be a higher derivative in nature and therefore, in general, may not be

stable under small fluctuations. Hence, it would be important to understand the underlying

theory for scalar hair from the effective theory perspective. This is what we are going to

study in the next section. To this end let us emphasize the fact that for a given set of

theory parameters we can in principle solve the above fluctuation equation and compute

the quasinormal frequencies. Therefore, as emphasized, we will restrict our study based

on some assumptions which transform our complicated equation into a simplified form.

These assumptions and restrictions may be able to capture the qualitative nature of the

quasi-normal frequencies, which we will discuss subsequently. Considering all parameters to

be zero except M2(r), M̄1(r) and M̄3(r), we get a simplified equation as

4
d

dr

(
M2(r)

4f2(r)r2
dS(r)

dr

)
+ V0(r)S(r)

=

[
M̄3(r)

2

(
r2
f ′′(r)

2f2(r)
− r2

f ′2(r)

4f3(r)
+ r

f ′(r)

f2(r)
− 2

f(r)

)
+

d

dr

(
M̄3

1 (r)r
2√

f(r)

)]
ω2S(r).

(2.2.22)

The potential V0(r) is

V0(r)= M̄3(r)
2

(
r
f ′′(r)f ′(r)

f(r)
− 2f ′′(r)

f1/2(r)
− r

f ′3(r)

2f2(r)
+

3f ′2(r)

2f(r)
+

2f(r)

r2
− 2f ′(r)

r

)
− d

dr

[
M̄1(r)

3

(
r2
f ′′(r)f1/2(r)

2
− r2

f ′2(r)

4f1/2(r)
+ rf ′(r)f1/2(r)− 2f3/2(r)

)]

+

[
M̄3(r)

2

(
f ′′(r)

2f(r)
− f ′2(r)

4f2(r)
+
f ′(r)

rf(r)
− 2

r2
− 1

r2f(r)

)
− d

dr

(
M̄3

1 (r)
√
f(r)

)]
l(l + 1)

(2.2.23)

If one introduces the following coordinate transformation, dr∗ = dr/(2M2(r)
4f2(r)r2), then

above equation transforms into

d2S

dr∗2
+ (ω2

eff − Veff )S = 0, (2.2.24)

where the effective frequency and the effective potential spectrum are expressed as

ω2
eff = −r2M2(r)

4f2(r)

[
M̄3(r)

2

(
r2
f ′′(r)

2f2(r)
− r2

f ′2(r)

4f3(r)
+ r

f ′(r)

f2(r)
− 2

f(r)

)
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+
d

dr

(
M̄3

1 (r)r
2√

f(r)

)]
ω2, (2.2.25)

Veff = −r2M2(r)
4f2(r)V0(r). (2.2.26)

Note the important difference between Eq. 2.2.24 and the usual Regge-Wheeler type

black hole perturbation equation. The frequency is effectively position-dependent, and the

potential has complicated parameter dependences. Therefore, an important constraint has

been arrived at from the above equations, which is M̄1 ̸= 0. We only need to specify two

parameters to understand the dynamics of fluctuations. Considering the usual definition,

the effective frequency function should be finite in all the regions of the radial coordinate.

By choosing M̄3 = 0 and selecting the other two parameters appropriately as

M2(r)
4 ∼ − 1

f(r)2r2
, M̄1(r)

3 ∼
√
f(r)

r
, (2.2.27)

which enables us to write ωeff and Veff as

ω2
eff ∼ ω2, and (2.2.28)

Veff ∼ − d

dr

[
r
f ′′(r)f(r)

2
− r

f ′2(r)

4
+

(f2(r))′

2
− 2

f2(r)

r
+
f(r)

r
l(l + 1)

]
(2.2.29)

All equations are written up to their dimensional constant. For this parametrization, we also

have r = r∗. One specifically should notice the important difference that the centrifugal term

appears as a multiplicative factor in the expression for the effective potential as opposed to

the potential for scalar perturbation in the usual black hole background. Some comments are

in order for the complicated structure of the effective potential and the choices of parameters.

First of all, it is to be noted that the ωeff in its most general form is dependent on position.

This itself is a problem for solving the equations of perturbations. The particular choice

of the parameters helps one write the frequency independent of position, thereby enabling

one to use standard methods of finding the quasinormal frequencies. On the other hand,

it is also challenging to work with the general form of the equation. Hence, the simplified

equation above with the potential (2.2.29) can give us a hint into the behavior of the black

hole towards small perturbations. We will, therefore, look at the particular potential given

in Eq. 2.2.29, via the WKB approach (27) to gather information about the nature of the

quasinormal frequencies.

There are a few reasons for using the WKB approach to find out quasinormal modes. It
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is well known that these modes being the late-time responses of the black holes to any

linear order perturbations, have already been observed in the gravitational wave signal

from the black hole-black hole or black hole-neutron star mergers in recent gravitational

wave detections. Therefore, the accuracy of calculation of the quasinormal modes is one of

the most important issues among many others, because these modes will give information

on black hole parameters as well as they will help in constraining possible gravitational

theories via observations. It is to be mentioned here different numerical techniques already

are present in the literature to find quasinormal modes up to the desired accuracy. However,

as pointed out clearly in (28), although these techniques are mainly based on convergent

procedures, the analysis is extremely non-trivial and is different for different spacetimes.

One, therefore, needs different separate numerical procedures to study different black hole

space-time depending on the nature of the master differential equation. WKB method, on

the contrary, provides a unique procedure, which on one hand remains unchanged for various

different master equations, and on the other hand, it provides sufficient numerical accuracy

too. Because our goal is to look at different toy models in various black hole backgrounds,

we found the WKB method to be a universal tool to comment on the stability of space-time.

It has been already shown (28; 29) that when one increases the order in the WKB series

from three to six, the relative error diminishes drastically by a few times or even by orders.

However, in many scenarios, this formula does not allow one to compute quasinormal modes

which have n ≥ l with much accuracy. But, in this work, we have particularly omitted the

modes with n ≥ l to get some idea about the behavior of the perturbations with sixth order

WKB method and keeping our main target as the understanding of hairy black holes in the

effective field theory framework.

The sixth-order WKB method developed by Konoplya (29) gives values accurately as one

gets by performing numerical integration of the master differential equation. The sixth-order

WKB formula for a general black hole potential V (r) is given by
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Figure 2.2.1: Left one is a plot of the potential vs. radial distance for different l values
with n = 0. l increases from 0 to 4 in steps of 1 from bottom to top. Asymptotically flat
Schwarzschild geometry is chosen as the metric function in the potential (2.2.29). The right
one is a plot of Re. vs. Im. ω for different values of l. The red curve has n = 0, blue has
n = 1 and black has n = 2, showing a clear difference with the standard behavior of QN
frequencies with multipole number and overtone.

i(ω2 − V (r0))√
−2V ′′(r0)

− Λ2 − Λ3 − Λ4 − Λ5 − Λ6 = n+
1

2
. (2.2.30)

Here, V (r0) is the peak value of V (r), V ′′
(r0) = d2V

dr2∗
|r=r0 , r0 is the value of the radial

coordinate corresponding to the maximum of the potential V (r) and n is the overtone

number. Λi’s are the higher order WKB correction terms, whose expressions can be found in

(29). Thus, using the potential Veff given by Eq. 2.2.29 in Eq.2.2.30, we plot (see Fig. 2.2.1

and 2.2.2) the nature of the potential (for arbitrary choices of the parameters), variation of

the real and imaginary parts of the quasinormal frequencies with multipole numbers l and

overtone n. In finding out the quasinormal frequencies, we have used the asymptotically

flat Schwarzschild metric as the metric function in the effective potential.
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Figure 2.2.2: Plot of the real and imaginary parts of ω vs multipole number l = 2, 3, 4
and 5 for different n values. The blue dashed plot corresponds to n = 0, the red dotted
curve corresponds to n = 1, and the black one corresponds to n = 2.

Note the fundamental difference in the behavior of the quasinormal frequencies with changing

the overtone (n) and multipole number (l). In general, for the four-dimensional Schwarzschild

black hole in an asymptotically flat background, the real oscillation frequency decreases,

and the imaginary part of the frequency increases with the increase of the overtone number

while the multipole number is kept fixed. However, in our case, both the real oscillation

frequency as well as the imaginary part of the frequency increases with the increase of the

overtone. We will see in the next sections that this behavior remains for a specific theory

that contains all the information discussed above.

From the stability point of view, it is well known that the evolution of the perturbations in

a black hole spacetime has three distinct parts: firstly, there is a response to perturbations

at very early times, where the form of the signal depends crucially on the initial conditions,

secondly, at an intermediate stage, the signal is dominated by quasinormal frequencies, i.e.,

the exponential decay, also called the ring down phase. The quasinormal modes determine

the frequency and damping times. The signal depends only on the black hole parameters

in this particular phase. Finally, due to the backscattering of the curvature of space-time,

at late times, the propagating wave shows a falloff of the field at the tail phase. This

tail phase is completely independent of the initial data, and it persists even if there is no

horizon. In this work, we neglect the back reaction and solely focus on the second part of

the perturbative response, i.e., the ringing phase.

For the general case, as we will see in the next section, it is tough to identify the effective

potential for a particular underlying model.
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2.3 Underlying theory

Based on our previous analysis, in this section, we will consider a possible underlying

model which has a hairy solution with the flat/dS black holes. Our approach here will

be the same as the model of ghost condensation (30). However, an important difference

lies in the existence of spherically symmetric scalar hair. Therefore, the order parameter

for spontaneous breaking of r-translation symmetry is given by vacuum expectation value

of ⟨∂µϕ⟩. From this, it is supposed that the system has shift symmetry, implying the

absence of non-derivative coupling. We are considering the spherically symmetric black

holes with scalar hair, which enjoys the same symmetry as the black hole metric. Hence,

we have ϕ ≡ ϕ(r), and therefore, ⟨∂rϕ⟩ ≠ 0. Given the effective action we derived in the

previous section, we consider the following two functions of the basic composite field variable

X = −1/2(∂ϕ)2 as P (X) = −αX2 + βX4, and F (X) = M̃3g
µν∂µX∂νX. For our purpose,

we call P (X) as the kinetic potential term and F (X) as the kinetic gradient term. All

the parameters, α, β, are positive dimensionful constant with α = M̃−4
1 , β = M̃−12

2 and

M̃3 ≡ M̃−6
3 . All M̃ ’s are of dimension one. The Lagrangian for the above scalar hair will

be expressed as

Lϕ =
√
−g [P (X) + F (X)] ,

=
√
−g
[
−M̃−4

1 X2 + M̃−12
2 X4 + M̃−6

3 gµν∂µX∂νX
]
. (2.3.1)

The expression for the action will be

S =

∫
d4x

[√
−g

M2
Pl

2
R−Lϕ + J

]
, (2.3.2)

where J is the parameter, we will tune to get different values of the cosmological constant.

Here, we will not discuss this fine-tuning issue. Our goal for this chapter would be

to understand the quasinormal modes of those hairy black holes, where the condensed

spherically symmetric scalar hair contributes to the effective cosmological constant, which

can add up with the bare cosmological constant parameterized by J . The expression for

the stress-energy tensor appears to be

Tµν = −P (X)gµν + J gµν − 2P ′(X)∂µϕ∂νϕ− F (X)gµν

+ 2M̃−6
3 ∂µX∂νX − 4M̃−6

3 gαβ∂α(∂µϕ∂νϕ)∂βX. (2.3.3)
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At the minimum of the kinetic potential, P (X) = −M̃−4
1 X2 + M̃−12

2 X4 ,

X0 = ±

√
M̃12

2

2M̃4
1

= ± M̃6
2√

2M̃2
1

≡ ±c, (2.3.4)

the energy-momentum tensor takes the following form,

Tµν = −P (X0)gµν + J gµν . (2.3.5)

Therefore, by appropriate choice of the value of J , we can have spherically symmetric

hairy black holes which are asymptotically dS/AdS/flat. The solution for the scalar field is

therefore parametrized by

P ′(X0) = 0, F (X0) = 0, ∂µX0 = 0,

⇒ ϕ0(r) = c1/2
∫

dr

(f(r))1/2
. (2.3.6)

At this point, it is worth pointing out that for X0 > 0 the solution must be of the

cosmological type which is precisely the ghost condensation model (30). However, in order

to have scalar hair with the same symmetry as that of the black hole, we need to consider

X0 < 0. Considering the value of X0, one arrives at P (X0 = −c) = − M̃12
2

4M̃8
1

< 0 which

contributes negative cosmological constant (AdS) in the background. Therefore, by tuning

the value of J , we can also obtain dS and Schwarzschild solutions. Once we have spherically

symmetric hair, the Lagrangian for the Goldstone fluctuation ϕ = ϕ0(r) +φ(x) turns out to

be

Lφφ =4
[
4M̃−12

2 (grr)4(∂rϕ0)
6 + M̃−6

3 grr[∂r(g
rr∂rϕ0)]

2
]
(∂rφ)

2 + 4M̃−6
3 grr(grr∂rϕ0)

2(∂2rφ)
2

+ 8M̃−6
3 (grr)2∂rϕ0∂r(g

rr∂rϕ0)∂rφ∂
2
rφ− 4M̃−6

3 grr(∂rϕ0)
2(∂rφ̇)

2

+ 4M̃−6
3 gij(grr∂rϕ0)

2(∂r∂iφ)(∂r∂jφ) + 16M̃−12
2 X2

0g
rr∂rϕ0(g

µν∂µφ∂νφ)∂rφ

+ 4M̃−6
3 gµν∂µ

(
grr∂rϕ0∂rφ

)
∂ν
(
gαβ∂αφ∂βφ

)
+ 32M̃−12

2 X2
0 (g

rr)2∂rϕ0(∂rφ)
3 (2.3.7)

Now, let us mention the connection between the scalar field fluctuation δϕ = φ(x) with

the previously discussed Goldstone boson mode in the gravity sector. Considering the

general coordinate transformation r → r + π, the scalar field transforms as ϕ′(x′) =

ϕ0(r + π) + φ(r + π) = ϕ0(r) + φ(x) + π(x)ϕ′0(r) +O(π2). Hence, to the linear order the

scalar field fluctuation φ is identified with the Goldstone mode π(x) as δϕ(r) ≡ φ = −πϕ′0(r).
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More importantly, in the spherically symmetric hairy background, the kinetic potential

term P (X) does not contribute to the time variation of the fluctuation. This is the reason

we have introduced the kinetic gradient term F (X). Therefore, X can be thought of as

an effective composite degree of freedom which is behaving like a Higgs field, and the

formation of spherically symmetric hair is essential and is similar to the well-known Higgs

mechanism in terms of the composite field X of dimension four operators. By combining

the bare cosmological constant J and the vacuum of the scalar field hair, the net effective

cosmological constant is expressed as

Λ =
3

l2c
=

1

M2
p

(
M̃12

2

4M̃8
1

+ J

)
=

1

M2
p

(
X2

0

2M̃4
1

+ J

)
. (2.3.8)

The dependence of the cosmological constant on scalar hair is seen in the above equation.

The governing equation for the radial component of the scalar field fluctuation φ(x) =

e−iωtS(r)Ylm(θ, ϕ) will take the form of the following fourth-order differential equation,

S
′′′′
(r) + 4

(
f ′(r)

f(r)
+

1

r

)
S′′′(r)

−
[

2M̃6
3

M̃4
1 f(r)

− 9f ′2(r)

4f2(r)
− 5f ′′(r)

2f(r)
− 9f ′(r)

f(r)r
− 2

r2
− ω2

f2(r)
+
l(l + 1)

f(r)r2

]
S′′(r)

−
[
2
M̃6

3

M̃4
1

(
f ′(r)

f2(r)
+

2

f(r)r

)
− f ′(r)f ′′(r)

f2(r)
− 3f ′2(r)

2f2(r)r
− f ′′′(r)

2f(r)

− 2
f ′′(r)

f(r)r
− f ′(r)

f(r)r2
− 2ω2

f2(r)r
+
l(l + 1)f ′(r)

f2(r)r2

]
S′(r) = 0. (2.3.9)

In order to get the numerical solution for the quasinormal modes, it is convenient to express

the above equation in terms of the dimensionless coordinate r̃ = r
r0

, theory parameter

m2
0 =

M̃6
3 r

2
0

M̃4
1

and W 2
0 = (r0ω)

2. So the above equation in the new coordinate is

d4S(r̃)

dr̃4
+ 4

(
f ′(r̃)

f(r̃)
+

1

r̃

)
d3S(r̃)

dr̃3

−
[
2m2

0

f(r̃)
− 9f ′2(r̃)

4f2(r̃)
− 5f ′′(r̃)

2f(r̃)
− 9f ′(r̃)

f(r̃)r̃
− 2

r̃2
− W 2

0

f2(r̃)
+
l(l + 1)

f(r̃)r̃2

]
d2S(r̃)

dr̃2

−
[
2m2

0

(
f ′(r̃)

f2(r̃)
+

2

f(r̃)r̃

)
− f ′(r̃)f ′′(r̃)

f2(r̃)
− 3f ′2(r̃)

2f2(r̃)r̃
− f ′′′(r̃)

2f(r̃)

− 2
f ′′(r̃)

f(r̃)r̃
− f ′(r̃)

f(r̃)r̃2
− 2W 2

0

f2(r̃)r̃
+
l(l + 1)f ′(r̃)

f2(r̃)r̃2

]
dS(r̃)

dr̃
= 0 (2.3.10)
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This is the final master equation that we will be analyzing for two different black hole

backgrounds. Extra care must be taken as our master equation is the fourth order in the

derivative. We have two theory parameters (m0, X0) which are functions of (M̃1, M̃2, M̃3).

X0 sets the background value of the cosmological constant and also provides a scalar

field profile. Now, in the following two sub-sections, our goal would be to compute the

quasinormal modes considering asymptotically flat Schwarzschild and Schwarzschild de

Sitter backgrounds. The present value of the cosmological constant of our universe will

determine the value of X0. For our analysis we consider two sample values of m2
0 = 10−1

and 10−6.

2.3.1 Quasinormal mode analysis in asymptotically dS/flat hairy black
holes

In anti-de Sitter space, we already know the existence of spherically symmetric scalar hair

(24; 25) for minimally coupled and two derivative scalar fields. However, for an asymptotically

dS/flat black hole background, it has been proven to be very difficult to find a hairy solution

where hair also enjoys the same symmetry as the black holes. However, if one relaxes these

assumptions, the time-dependent scalar hair in the spherically symmetric black holes has

already been found (18). However, for a general shift symmetric scalar field theory known

as Horndeski theory with an additional non-minimal coupling with Gauss-Bonnet gravity

can give rise to spherically symmetric scalar hair as has recently been shown in (31). To

the best of our knowledge, we are, for the first time pointing out the existence of scalar

hair with the same symmetry as that of the black holes for a minimally coupled but higher

derivative scalar field theory introduced earlier.

For simplicity, we also consider the shift symmetric theory, which we found easy to construct,

observing the effective theory Lagrangian derived in previous sections. Our goal in this

subsection would be to understand the behavior of quasinormal mode frequencies in the

aforementioned hairy black hole background for asymptotically flat and dS black holes. AdS

black holes will be discussed in a separate publication with their implications to AdS/CFT

in detail.

Before going into the discussion of the quasinormal frequencies for black holes in the

above-mentioned background, a little bit of discussion on black hole perturbations and

corresponding quasinormal modes are in order. A perturbed black hole is generally described

by the metric gαβ = g0αβ + δgαβ , where g0αβ is the background space-time, i.e., the space-time
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of the non-perturbed black hole and δgαβ denotes the perturbation over the background. In

the linear approximation, the perturbations δgαβ are much smaller than the background,

i.e. δgαβ << g0αβ . Once we perturb a black hole by some fields or by perturbing the metric

itself, the background responds to the perturbations by the emission of gravitational waves,

which evolves in time in the following three stages: first, there is a relatively short period of

initial outburst of radiation; second, a long period of damped oscillations dominated by the

quasinormal modes and lastly, at very late times the quasinormal modes are suppressed by a

power law or exponential tails in certain specific space-time geometries (see (37; 38; 39; 40)

for a review). For all practical purposes, the second stage, i.e., the quasinormal ringing, is

the most important one in the context of gravitational waves because these modes carry

unique information about the black hole parameters.

In general, in a spherically symmetric black hole background, the study of perturbations

due to linearised fields (with spin 0, 1, or 2) can be reduced to the study of an Schrödinger

like second order differential equation. To determine the oscillation modes of a black hole,

which corresponds to the solutions of the mentioned differential equation, one has to impose

physically motivated boundary conditions at the two boundaries of the problem, viz. at the

horizon and spatial infinity. For the spacetimes of our interest, the potential in the Schrö

dinger-like equation goes to zero at the horizon and at the asymptotic infinity/cosmological

horizon. In this limit, solutions to the wave equations are purely ingoing at the horizon and

purely outgoing at infinity. This means that at the classical level, nothing should leave the

horizon, and nothing should come out from infinity to disturb the system.

Quasinormal modes differ from other problems involving small oscillations in the sense that

the black hole system is dissipative. Waves can move either to infinity or into the black

hole horizon. Therefore, a normal mode analysis of the system is not possible. However,

there exists a discrete infinity of quasinormal modes, which are defined as eigenfunctions

of the operators describing the governing equation of the perturbation, which satisfies the

above-mentioned boundary conditions. The corresponding eigenfrequencies consist of a real

and an imaginary part; the latter is related to the damping time of the mode. Quasinormal

frequencies are sorted out generally by their imaginary part and are labeled by an integer

n, which, in the literature, is called the overtone number. The fundamental quasinormal

mode corresponding to the overtone number n = 0 is the least damped mode. It usually

dominates the ringdown waveform because it has the smallest imaginary part and is the

longest-lived mode.
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We have already introduced the dimensionless coordinates, and with the help of that, the

metric in new coordinate with M0 =
M
r0

= l̃2−ϵ
2l̃2

and l̃2 = l2c
r20

takes the following form,

f(r̃) = 1− 2M0

r̃
+ ϵ

r̃2

l̃2
. (2.3.11)

We will employ the usual numerical methodology to solve the system’s quasinormal modes. In

the usual quasinormal mode analysis, in most cases, the governing equation is Schrödinger-

like wave equation. Therefore, by looking at the effective potential various analytical

approximate methods have been developed over the years. However, our equation is in the

fourth order for the present case. Therefore, we will solve the problem numerically. In the

transformed coordinate, the near horizon limit, namely, in r̃ → 1, the master equation will

take the following form,

S
′′′′
(r̃) + 4

S′′′(r̃)

(r̃ − 1)
+

(
9

4
+

W 2
0

f ′2(1)

)
S′′(r̃)

(r̃ − 1)2

−
(

2m2
0

f ′(1)
− f ′′(1)

f ′(1)
− 3

2
+
l(l + 1)

f ′(1)
− 2W 2

0

f ′2(1)

)
S′(r)

(r − 1)2
= 0. (2.3.12)

Assuming the near horizon solution to be S(r̃) = (r̃ − 1)ν we get,

ν(ν − 1)

{
ν2 − ν − 2 +

(
9

4
+

W 2
0

f ′2(1)

)}
= 0. (2.3.13)

We have four roots which are ν = 0, 1, and

ν± =
1

2
± iW0

f ′(1)
. (2.3.14)

For the asymptotically flat Schwarzschild and Schwarzschild de Sitter black holes, the above

two imaginary roots will take the following forms respectively,

ν±Sch =
1

2
± iW0, (2.3.15)

ν±dS =
1

2
± iW0 l̃

2

l̃2 − 1
, (2.3.16)

where “+” corresponds to outgoing and “− ” corresponds to ingoing mode near the horizon

of the black hole. For very large values of l̃2 we will have ν±Sch ∼ ν±dS . From Eq. 2.3.10, we

have only one free parameter in theory, which is m2
0. In the following two sub-sections, our

goal would be to find out the behavior of the Goldstone mode in the asymptotic region and
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the associated quasinormal frequencies.

2.3.2 Quasinormal frequencies for asymptotically flat Schwarzschild black
hole

This section will deal with numerically finding out the quasinormal frequencies for the

asymptotically flat Schwarzschild black holes with scalar hair, as discussed in the previous

sections. We employed the method developed by Chandrasekhar and Detweiler (32) for

finding the quasinormal frequencies. The procedure is to integrate the equation numerically

by using “shooting" from both ends of the radial coordinate. Two asymptotic solutions, one

near the horizon with the ingoing mode (r̃−1)ν
− and another one near the asymptotic infinity

with the outgoing mode (r̃− 1)ν
+ are matched at some intermediate point r̃int. While doing

this matching, we need to ensure that at the matching point, the two aforesaid solutions

assume the same numerical value and their derivative, or in other words, the Wronskian

of the two solutions must vanish. Given the fixed boundary conditions near the horizon

and at the infinity, the above matching condition will follow only for specific discrete but

complex frequency values W0. This gives us the required quasinormal frequencies. However,

while doing this numerical analysis, we need to choose the value of the intermediate point

judiciously and the numerical infinity r̃inf so that the frequency obtained remains stable.

Within the range of r̃inf = (50, 100) with a given value of the intermediate point r̃int ∼ 7,

we found stable quasinormal frequencies. One of the main difficulties probably lies in the

fact that our equation is a higher derivative in nature, and we can not extract a well-defined

potential that generically exits in the usual quasinormal mode analysis. The importance

of the effective potential is that its nature along the radial coordinate provides valuable

information while doing numerical quasi-normal mode analysis. Hence in addition to the

non-applicability of the standard analytic WKB method, which we have used already in the

previous section, numerical analysis for the present higher derivative equation also becomes

non-trivial. In fact, at both boundaries, the general solution of our differential equation is a

mixture of exponentially growing and exponentially decaying modes. One must choose the

pure exponentially growing modes to calculate the quasinormal frequencies. Numerically,

too large values of the radial coordinate attract contributions from unwanted exponentially

suppressed modes, which may become significant after the integration. This gives rise to

different frequency values for different infinity choices in the same mode. This problem is

generally avoided by choosing small values of numerical infinities but keeping large enough

order in the series expansion.



2.3. Underlying theory 35

l = 1 l = 2 l = 3

n W0R − iW0I W0R − iW0I W0R − iW0I

1 0.728− 0.218i 0.965− 0.242i 1.153− 0.206i
2 0.871− 0.313i 1.444− 0.424i 1.721− 0.337i
3 1.302− 0.416i 1.628− 0.429i 2.132− 0.450i
4 1.594− 0.447i 2.038− 0.451i 2.436− 0.456i
5 1.979− 0.456i 2.377− 0.465i 2.800− 0.470i
6 2.336− 0.469i 2.742− 0.474i 3.151− 0.479i
7 2.704− 0.477i 3.102− 0.483i 3.510− 0.487i
8 3.069− 0.486i 3.466− 0.490i 3.871− 0.494i
9 3.437− 0.492i 3.831− 0.497i 4.233− 0.500i
10 3.804− 0.498i 4.196− 0.503i 4.596− 0.506i

Table 2.3.1: Quasinormal frequencies of Schwarzschild black hole for overtone numbers
n = 1 to 10 for m2

0 = 10−6. Different multipole numbers (l = 1 to 3) corresponding to the
different overtones are shown in the table.

Keeping all these things in mind, in order to proceed, we first figure out the asymptotic

behavior of the solution for the Goldstone mode fluctuation π in the r → ∞ limit. For

asymptotically flat black holes, the master Eq.2.3.10 takes the following asymptotic form as

S′′′′(r̃) +
4

r̃
S′′′(r̃) +

(
W 2

0 − 2m2
0

)
S′′(r̃) +

2

r̃

(
W 2

0 − 2m2
0

)
S′(r̃) = 0. (2.3.17)

The corresponding general solution turns out to be

S(r̃) ∼ −B1

r̃
−B2

e−ir̃
√

W 2
0−2m2

0

r̃(W 2
0 − 2m2

0)
+B3

ieir̃
√

W 2
0−2m2

0

2r̃(W 2
0 − 2m2

0)
3/2

+B4, (2.3.18)

where B’s are the integration constants fixed by the appropriate boundary conditions. The

outgoing boundary condition is fixed by the mode corresponding to the coefficient of B3, and

the condition on the theory parameters should be 2m2
0 =

4M̃6
3 r

2
0

c2
< W 2

0 . Another important

point we want to make at this point is that as the spacetime is asymptotically flat, the bare

cosmological constant J satisfies

Λ =
3

l2c
=

1

M2
p

(
M̃12

2

4M̃8
1

+ J

)
= 0, (2.3.19)

which immediately sets the bare value of the cosmological constant in terms of our theoretical

parameters. With this ingredient, we further proceed to solve for the quasinormal modes

for a class of asymptotically flat Schwarzschild black holes. In the numerical integration
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l = 1 l = 2 l = 3

n W0R − iW0I W0R − iW0I W0R − iW0I

1 0.770− 0.208i 1.026− 0.219i 1.211− 0.194i
2 0.905− 0.304i 1.466− 0.442i 1.756− 0.332i
3 1.331− 0.418i 1.651− 0.410i 2.147− 0.451i
4 1.613− 0.437i 2.055− 0.449i 2.451− 0.451i
5 1.996− 0.453i 2.391− 0.461i 2.812− 0.468i
6 2.350− 0.466i 2.754− 0.472i 3.162− 0.477i
7 2.716− 0.475i 3.113− 0.481i 3.520− 0.486i
8 3.081− 0.484i 3.476− 0.489i 3.879− 0.493i
9 3.447− 0.491i 3.840− 0.496i 4.241− 0.499i
10 3.813− 0.497i 4.205− 0.502i 4.604− 0.505i

Table 2.3.2: Quasinormal frequencies of Schwarzschild black hole for a different value of
m2

0 = 10−1.
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Figure 2.3.1: Plot of the real and imaginary parts of W0 for the Schwarzschild black hole
for the first 10 overtones

method described above, we express the solution for S(r̃) for finite but large r̃ as an infinite

series as

S(r̃) =
eir̃

√
W 2

0−2m2
0

r̃
H(r̃) = eir̃

√
W 2

0−2m2
0

∞∑
n=0

gn
r̃n+1

. (2.3.20)

We have obtained the quasinormal frequencies using the numerical integration and by fixing

different guess values of the frequency and found stable values corresponding to different

overtones. These are tabulated in Tables 2.3.1 and 2.3.2. The nature of these frequencies

thus obtained differs significantly from the nature of the pure Schwarzschild quasinormal

frequencies. As the overtone number increases, the real oscillation frequency increases

rapidly, which is the opposite behavior compared to the Schwarzschild black hole. On the

other hand, it is known that the fundamental overtone will have the lowest damping and,
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therefore, the longest life. This feature is present here. However, the rate of increase of the

imaginary part of the frequency in our case is slow compared to the Schwarzschild black

hole. The real vs. imaginary parts of the complex quasinormal frequencies for different m2
0,

overtones n, and multipole number l are plotted in Fig. 5.3.3.

2.3.3 Quasinormal frequencies for Schwarzschild de Sitter black holes

We come to the final example of the applicability of our theory and will numerically find

out the quasinormal frequencies for Schwarzschild de Sitter black holes. Similar to the

discussion stated in detail for the asymptotically flat black holes, the asymptotic master

Eq.2.3.10 in r → ∞ for the present case takes the following form,

S′′′′(r̃) +
12

r̃
S′′′(r̃) +

(
34− 2m2

0l
2
c

ϵ

)
S′′(r̃)

r̃2
+

(
2− m2

0l
2
c

ϵ

)
8

r̃3
S′(r̃) = 0. (2.3.21)

Taking the asymptotic solution to be of the form, S(r̃) = r̃−p, the solution of the above

equation for ϵ = −1 (dS black hole), one finds p = 0, 3 and following conjugates

p+ =
1

2

(
3 +

√
9− 8m2

0 l̃
2

)
,

p− =
1

2

(
3−

√
9− 8m2

0 l̃
2

)
.

The outgoing boundary condition sets an important constraint on our theoretical parameter,

which is given by 9 < 8m2
0 l̃

2. Similar to the Schwarzschild case discussed before, we consider

the following ansatz for the solution at the asymptotic infinity, taking into account outgoing

mode (r̃−p− ≡ e−p− ln r̃), as

SdS(r̃) = e−p− ln r̃
∞∑
n=0

gn
r̃n

≡ e−p− ln r̃HdS(r) (2.3.22)

Applying the same numerical method, we again solve for the HdS function. However, in order

to solve numerically, we have taken into account the following constraints. The condition of

outgoing mode at the horizon gives us a lower bound on m0 as

9

8l̃2
< m2

0 =
6M̃6

3

X2
0 l̃

2
M2

Pl (2.3.23)

The above equation exhibits the dependence of our model parameter m0 on the scalar hair

parametrised by X0. Now, since our present study considers the Schwarzschild de Sitter
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l = 1 l = 2 l = 3

n W0R − iW0I W0R − iW0I W0R − iW0I

1 0.743− 0.261i 0.950− 0.217i 1.151− 0.203i
2 1.453− 0.420i 1.653− 0.334i

Table 2.3.3: Quasinormal frequencies of Schwarzschild-dS black hole for m2
0 = 10−6 and

l̃2 = 108

black hole, assuming J = 0, the value of the de Sitter cosmological constant can be set by

the non-zero scalar hair X0. Therefore, combining the above condition Eq. 2.3.23 with the

value of the cosmological constant Eq. 2.3.8, we can find the following constraint on our

model parameter space as,

3M2
PlM̃

12
2

32M̃4
1

< M̃6
3 (2.3.24)

Our goal is to establish a possible connection with the observations and to extract the

possible allowed range of values of the model parameters (M̃1, M̃2 and M̃3). Therefore,

we assume our present modified gravity model with the higher derivative scalar field

Eq. 2.3.2 as a phenomenological model for our Milky way black hole with the present

value of the cosmological constant of our universe. Therefore, we identify our theoretical

value of the cosmological constant Λth = M̃12
2 /(4M̃8

1M
2
p ) to that of the observed value

Λth = Λobs ∼ 10−47GeV 2 ∼ 10−123M2
Pl, and also take the size of the supermassive black

hole at the center of the Milky Way galaxy to be r0 ≈ 1.17 × 1010m. With those values,

one can arrive at the following constraint on our theory parameters,

1.6× 10−53r20m
−2 <m2

0 ⇒ 9.45× 10−85GeV 2 <
M̃6

3

M̃4
1

(2.3.25)

⇒ 0.1875c2 <M̃6
3M

2
Pl (2.3.26)

⇒ 0.375 <
M̃6

3

M̃4
1Λ

. (2.3.27)

For the above constraint equation, we consider m0 = 10−6. As an example, choosing the

following set of numerical values of the parameters M̃1 ∼ 10−7/4 GeV and M̃2 ∼ 10−5 GeV

we get the condition

m2
0 = 4

M̃6
3 M̃

4
1Λ

M̃12
2

M2
Plr

2
0 ∼ 4× 106(M2

PlM̃
6
3GeV

−6r20) (2.3.28)
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l = 1 l = 2 l = 3

n W0R − iW0I W0R − iW0I W0R − iW0I

1 0.818− 0.243i 1.014− 0.204i 1.208− 0.192i
2 1.495− 0.417i 1.690− 0.333i

Table 2.3.4: Quasinormal frequencies of Schwarzschild-dS black hole for m2
0 = 0.1 and

l̃2 = 108

which leads to m2
0 ∼ 10−6 in unit of r0 choosing M̃3 = 10−2GeV . Our numerical results

for the quasinormal modes are given in the table 2.3.3, 2.3.4 for two sets of m2
0. Our

numerical analysis was unstable enough for this case to give the quasinormal modes for

higher overtones. However, the qualitative behavior of the modes remains the same as that

of the Schwarzschild black hole case discussed earlier.

2.4 Conclusion

Effective field theory is a powerful approach to understanding the low-energy behavior for a

wide range of physical phenomena. In the present chapter, we applied this approach toward

understanding black holes in a model-independent manner. In order to probe any physical

system, the behavior of fluctuation in a certain background under consideration is most

important. In this chapter, we consider black hole space-time with hair as a particular

type of background whose properties can only be understood by looking at the nature of

fluctuation around it. The conventional effective field theory approach deals with writing

down the theory of background itself in terms of fundamental fields. In the present context,

the approach was to consider the prior existence of a background of interest and then

write down the most general theory for the fluctuations in the given background based on

symmetry. This is the approach that has been successfully applied in inflationary cosmology,

which is popularly known as an effective theory of inflation. In this chapter, we apply the

same technique in the background of spherically symmetric black holes with hair which also

enjoys the same symmetry. As mentioned earlier, our current investigation is motivated

by the following question: does the effective theory of black holes provide any information

about the possible existence of hair?

We have first written down the most general model-independent effective Lagrangian for the

fluctuation in a given hairy black hole background. We have considered an asymptotically flat

and de-Sitter black hole background for our detailed analysis. The background cosmological

constant is assumed to be generated from the hair. Generally, the behavior of fluctuation



2.4. Conclusion 40

encodes essential information about background hair. Therefore, in order to understand the

behavior of the fluctuation, we have chosen a particular set of effective theory parameters.

By using the sixth-order WKB approximation associated with those fluctuations, we have

computed the quasinormal modes, which appeared to carry different features when compared

with that of usual black hole quasinormal modes. In general, for the four-dimensional

Schwarzschild black hole in the asymptotically flat/dS background, the real oscillation

frequency of the quasinormal modes decreases, and the imaginary part of the frequency

increases with the increase of the overtone number (n) while the multipole number (l) is kept

fixed. Interestingly what came out from our quasinormal mode analysis for the effective field

theory fluctuation is that both the real and imaginary frequencies increase with increasing

overtone number. Motivated by our effective field theory analysis, we also constructed a

class of higher derivative scalar field theory. This theory also confirmed the aforementioned

exciting behavior of the quasinormal modes.
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Chapter 3

Gauged Q-Balls in the gauged Skyrme

model

Abstract

We analyze and discuss Q-balls and U(1) gauged Q-balls in the gauged Skyrme model. We

find the constraints analytically on the frequency appearing in the Skyrme ansatz, which

ensures the existence of such non-topological solitons. Asymptotically, this condensate of

pions has an overall charge less than π/4 in units of electronic charge, e. We also analyze

how the minimal coupling with Maxwell changes constraints.
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3.1 Introduction

There is no doubt that many of the most important problems in high energy physics and,

especially, QCD are closely related to topologically non-trivial solutions (see (41; 42; 43; 45;

46; 57; 58)). Indeed, non-Abelian gauge theories are dominated by the non-perturbative

effects as soon as the energy scale is not extremely large.

On the other hand, there is an essential class of classical solutions (which are denoted

as “non-topological solitons") which are extremely relevant both at the theoretical and

phenomenological level (see (59; 60; 61; 62; 63; 64; 65; 66; 69) and references therein). The

non-topological solitons analyzed in the present chapter are called (gauged) Q-balls. Such

configurations are relevant both in astrophysics (due to the relations with bosons stars:

see (70; 71)) and in particle physics (due to their tremendous cosmological implications

(72; 73; 74; 75)). One of the leading open problems (which will be discussed in this chapter)

is finding the necessary conditions for Q-balls and gauged Q-balls to exist in realistic

situations. As the above references clearly show, unlike what happens with topological

solitons, the existence of (gauged) Q-balls is closely related to the form of the effective

interaction potential for the U(1) charge scalar field. Thus, one of the main goals of the

present chapter is to derive an effective potential for the U(1) charged scalar field (which

will be introduced in a moment) directly from the low energy limit of QCD, avoiding this

way any arbitrariness in the choice of the potential.

At leading order in the large Nc ’t Hooft expansion, the Skyrme model is the low energy

limit of QCD (77; 78; 79; 81; 82; 80). This model is a non-linear scalar field theory for an

SU(N)-valued scalar field U , N being the flavor number (we will consider the SU(2) case in

the present chapter). The Skyrme model possesses a conserved topological charge interpreted

as a Baryonic charge. Thus, configurations with vanishing Baryonic charges are interpreted

as Pionic configurations, while configurations with non-vanishing topological charges contain

Baryons. Hence, we will only consider configurations with vanishing topological charges

in the present work. As we will see, one of the advantages of the Skyrme model is that

the effective potential appearing in the “Q-ball equations" is uniquely determined by the

geometry of the action (so that any arbitrariness in the choice of the potential disappears).

On the other hand, the Skyrme model, until very recently, has always been considered a

tough nut to crack from the analytic point of view (since, for instance, the BPS bound in

terms of the Baryonic charge cannot be saturated; consequently, it is challenging to find

analytic solutions with the usual methods adopted in the theory of BPS solitons). Even
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more challenging is the gauged Skyrme model in which the minimal coupling with the

Maxwell field is considered. In (68; 67), Q-balls were found in the baby Skyrme model with

a V-shaped potential.

However, a systematic method to construct a generalized hedgehog ansatz which is neither

static nor necessarily spherically symmetric but keeps all the other nice properties of the

usual hedgehog ansatz alive have been developed in (83; 84; 85; 86; 87; 88; 90) for the

Skyrme model, and such strategy has been proven useful also in the Einstein-Yang-Mills

case in (106; 107; 108; 109; 110). Working in this ansatz, we can bring the Skyrme equation

of motion in the form analogous to the equations in the complex scalar theories only after

using a non-trivial change of variables applicable only for the non-gauged Skyrme model.

Ansatz for the Maxwell field will consist of only electric potential. Under these ansatzes,

the Skyrme and the gauge field variables depend only on the radial coordinate, simplifying

the system enough to be analyzed while retaining many elegant features.

Our analysis highlights that ungauged Skyrme action and the equation of motion in the

hedgehog ansatz have all the qualities supporting a Q-ball solution as specified by Coleman

(66). Specifically, the qualities of the effective potential are qualified to host a Q-ball solution.

Whenever a theory has an effective potential to host a Q-ball solution, it can be extended to

a gauged Q-ball solution. Although, we were not yet able to find a numerical solution for a

gauged Q-ball due to the sensitivity induced by the trigonometric functions in the equations.

From our general understanding, we know they exist! We get the standard vital relation

of energy per unit charge, E
Q = ω, where ω is the angular frequency of the Skyrme field in

the internal space. Asymptotically, the overall physical charge Qphys
gauged of the gauged Q-ball

tends to be less than π/4 in units of electronic charge, e. That is what we would expect for

an astrophysical object.

The roadmap in this chapter is as follows; in section 2, we will introduce the gauged Skyrme

model and its field equations. In section 3, we will review ungauged and gauged Q-balls of

the complex scalar theories. In section 4, we will use the generalized hedgehog ansatz and

analyze field equations. Sections 5 and 6 are dedicated to ungauged and gauged Q-balls,

respectively. In section 7, we check the stability against small perturbations. In section 8,

we discuss numerical analysis. In section 9, we look at the phenomenological implications

for detecting gauged Q-balls and discuss why we have not yet detected any signatures. We

end with a section about conclusions.
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3.2 The gauged Skyrme model

The action of the U(1) gauged Skyrme model in four dimensions, which corresponds to the

low energy limit of QCD at leading order in the ’t Hooft expansion reads

I =

∫
d4v

4

[
KTr

(
LµLµ +

λ

8
GµνG

µν

)
+ 4Km2Tr

(
U + U−1 − 2I

)
− FµνF

µν

]
, (3.2.1)

Lµ = U−1DµU , Gµν = [Lµ, Lν ] , Dµ = ∇µ +Aµ [t3, . ] , d
4v = d4x

√
−g , (3.2.2)

U ∈ SU(2) , Lµ = Lj
µtj , tj = iσj , Fµν = ∂µAν − ∂νAµ , (3.2.3)

where K and λ are the positive Skyrme couplings, d4v is the four-dimensional volume

element, g is the metric determinant, m is the Pions mass, Aµ is the gauge potential, ∇µ

is the partial derivative, and σi’s are the Pauli matrices. The experimental values of the

Skyrme couplings and Pion masses are

K ∼ (93MeV)2 and λ ∼ 1

29.7K
(3.2.4)

mπ± ∼ 140MeV and mπ0 ∼ 135MeV (3.2.5)

It is worth emphasizing that even when the field equations have to be solved numerically, a

suitable ansatz can be extremely helpful, especially if one can reduce the three non-linear

SU(2) coupled field equations for the gauged Skyrme model together with the four Maxwell

equations (with the U(1) current arising from the Skyrme model) to just two coupled ODEs.

In this way, the numerical task of analyzing the electromagnetic properties of the gauged

Q-balls (to be discussed in the following sections) is vastly simplified.

3.2.1 Field equations

The field equations of the model are obtained by varying the action in Eq. (3.2.1) w.r.t.

the U field and the Maxwell potential Aµ. To perform this derivation it is useful to keep in

mind the following relations

δULµ = [Lµ, U
−1δU ] +Dµ(U

−1δU) ,

δUGµν = Dν [Lµ, U
−1δU ]−Dµ[Lν , U

−1δU ] ,
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where δU denotes derivative w.r.t the U field, and

δ

δAµ

(
Tr(LνL

ν)

)
= 2Tr(ÔLµ) ,

δ

δAµ

(
Tr(GαβG

αβ)

)
= 4Tr

(
Ô[Lν , Gµν ]

)
.

Here we have used
δGβ

α

δAµ
= δµβ[Ô, L

α] + δαµ [Lβ, Ô] ,

and we have defined
δLν

δAµ
= δµνÔ , Ô = U−1[t3, U ] .

From the above, the field equations of the generalized gauged Skyrme model turns out to be

0 =
1√
−g

K

2
Dµ

[√
−g
(
Lµ +

λ

4
Dµ[Lν , Gµν ]

)]
− 2Km2

(
U − U−1

)
,

Jν =
1√
−g

∇µ

(√
−gFµν

)
, (3.2.6)

where the current Jµ is given by

Jµ =
K

2
Tr
[
Ô

(
Lµ +

λ

4
[Lν , Gµν ]

)]
. (3.2.7)

3.2.2 Energy-momentum tensor and topological charge

Using the standard definition

Tµν = −2
∂L
∂gµν

+ gµνL , (3.2.8)

we can compute the energy-momentum tensor of the theory under consideration

Tµν = T Sk
µν + Tmass

µν + TU(1)
µν , (3.2.9)

with TU(1)
µν the energy-momentum tensor of the Maxwell field

TU(1)
µν = FµαF

α
ν − 1

4
gµνFαβF

αβ .
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According to Eq. (3.2.8), a direct computation reveals that

Tmass
µν =Km2gµνTr(U + U−1 − 2I) ,

T Sk
µν =− K

2
Tr
(
LµLν −

1

2
gµνLαL

α +
λ

4
(gαβGµαGνβ − 1

4
gµνGαβG

αβ)

)
,

The topological charge of the gauged Skyrme model is given by:

B =
1

24π2

∫
Σ
ρB , (3.2.10)

ρB = ϵijkTr
[(
U−1∂iU

) (
U−1∂jU

) (
U−1∂kU

)
− ∂i

[
3Ajt3

(
U−1∂kU + (∂kU)U−1

)] ]
.

(3.2.11)

Note that the second term in Eq. (3.2.10), the Callan-Witten term, guarantees both the

conservation and the gauge invariance of the topological charge. When Σ is space-like,

B is the Baryon charge of the configuration. However, in the following, we will consider

configurations where the topological charge vanishes.

3.3 Review of Q-balls

This section will take a quick look at the fundamentals of Q-balls of complex scalar theories.

3.3.1 Q-balls of complex scalar field

The simplest yet elegant version of Q-balls was given by Coleman (66). He demonstrated

the existence of Q-ball configurations in the U(1) invariant theory of a single complex scalar

field with non-derivative interactions.

Lcs = −∂µϕ∂µϕ∗ − U(|ϕ|2) (3.3.1)

with the U(1) invariant ansatz, ϕ(t, r) = eiωtf(r) and asymptotically f → 0. The field

equation and the mass of the free field are

△f − dU(f)

df
= 0 (3.3.2)

m =
d2U

df2

∣∣∣∣
f=0

(3.3.3)
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where, △ is the Laplacian. The conserved charge is

Q = −i
∫
d3x (∂0ϕϕ

∗ − ϕ∂0ϕ
∗) (3.3.4)

Q-ball is the absolute minima of energy for a fixed charge, and the charge is the number of

particles. That is, this configuration of Q number of particles has lower energy than the

energy of the Q free particles. The energy per unit charge is

E

Q
= ω < m (3.3.5)

where m is the mass of the complex scalar field. Q-balls cease to exist for ω > m.

3.3.2 Gagued Q-balls of complex scalar field

Gauged Q-balls are built upon the background theory of the complex scalar field. They

exist in the same potential as that of the ungauged case. The single complex scalar field’s

gauged Q-balls were first studied in (121). The complex scalar field is coupled to the gauge

field Aµ. The fields are defined as

ϕ(t, r) = f(r)eiωt and g(r) = ω − eA0(r) (3.3.6)

whose Lagrangian is

Lgcs = 4π

∫
dr r2

[
1

2
(f ′)2 +

1

2e2
(g′)2 +

1

2
f2g2 − U(f)

]
(3.3.7)

variation with f and g gives,

△f + fg2 − dU(f)

df
= 0 (3.3.8)

△g − e2f2g = 0 (3.3.9)

and the corresponding asymptotic (r → ∞) boundary conditions are

f → 0 and g → ω (A0 → 0) (3.3.10)
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with these conditions, numerical solutions for gauged Q-balls were found in (121).

Asymptotically they also have U(f) ∼ m2f2/2 and a linear eom

△f + f
(
ω2 −m2

)
= 0 (3.3.11)

=⇒ f ∼ 1

r
e−r

√
m2−ω2 (3.3.12)

3.4 The ansatz and the corresponding field equations

Here we will generalize the ansatz introduced in (83) to the case of the ungauged Skyrme

model. We will consider the flat metric in spherical coordinates:

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
As far as the SU(2)-valued configuration U is concerned we use the standard parameterization

U±1(xµ) = cos (α)12 ± sin (α)niti , nini = 1 , (3.4.1)

n1 = sinΘ cosΦ , n2 = sinΘ sinΦ , n3 = cosΘ . (3.4.2)

The problem is finding a suitable ansatz that respects the above condition and simplifies

the field equations as much as possible. A close look at Eq. (3.2.6) reveals that a good set

of conditions is

α = α (r) , Θ = π/2, Φ = ωt . (3.4.3)

As far as the U(1) gauge potential is concerned, the corresponding ansatz is

Aµdx
µ = u(r)dt . (3.4.4)

and let,

g(r) = ω − 2u(r) (3.4.5)

Plugging this ansatz in the eom 3.2.6 leads to

(
1− λg(r)2 sin2 α

)
△α(r)− 2λg(r)g′(r)α′(r) sin2 α

+
1

2
g(r)2 sin 2α

(
1− λ(α′(r))2

)
− 4m2 sinα = 0,
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△g(r)− 4Kg(r) sin2 α(1 + λ(α′(r))2) = 0 (3.4.6)

We will solve these equations to get Q-ball solutions, and we have checked that the following

effective Lagrangian leads to 3.6.1!

L = 2πK

∫
dr r2

[
g(r)2 sin2 α−

(
1− λg(r)2 sin2 α

)
(α′(r))2 + 8m2 (cosα− 1) +

1

4K
(g′(r))2

]
(3.4.7)

The total energy functionals in this ansatz are1

Egauged = 4πK

∫
dr r2

[
g2 sin2 α

(
1 + λ

(
α′)2)+ (α′)2 − 8m2 (cosα− 1) +

1

4K

(
g′
)2]

(3.4.8)

and for the ungauged Skyrme model

Eungauged = 4πK

∫
dr r2

[
ω2 sin2 α

(
1 + λ

(
α′)2)+ (α′)2 − 8m2 (cosα− 1)

]
(3.4.9)

Now, we look at the charge in the gauged case,

Qgauged = 8πK

∫
dr r2 g sin2 α

(
1 + λ(α′)2

)
(3.4.10)

and for the non-gauged case,

Qungauged = 8πKω

∫
dr r2 sin2 α

(
1 + λ(α′)2

)
(3.4.11)

These conserved charges Qgauged and Qungauged are the number of pions, which is the

difference between the number of positive and negative pions. From this, we get the physical

charge, which is a multiple of electron charge e,

Qphys
gauged = eQgauged (3.4.12)

Qphys
ungauged = eQungauged (3.4.13)

In the case of ungauged Q-balls, the minimum energy solution is defined by

δ (E − ωQ) = 0 (3.4.14)

1Please check appendix A2.1 for calculational details
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This variation leads to the equation of motion, and its solution will satisfy Eq. 3.4.14.

3.5 Q-Balls in Skyrme model

The first case is to analyze Q-balls in the ungauged Skyrme model with the hedgehog ansatz.

That is, we switch off Aµ = 0 in the Eq. 3.4.7

L = 2πK

∫
dr r2

[
ω2 sin2 α−

(
1− λω2 sin2 α

)
(α′(r))2 + 8m2 (cosα− 1)

]
(3.5.1)

and variation with respect to α gives the equation of motion

[
1− λω2 sin2 α

]
△α+

1

2
ω2 sin 2α(1− λ(α′)2)− 4m2 sinα = 0 (3.5.2)

The potential of the model is,

U(α) = 8m2 (1− cosα) (3.5.3)

and according to Coleman (66), new particles appear in the spectrum whenever the minima

of U/α2 is at some point α0 ̸= 0. Although this condition was put forward for a theory with

a linear kinetic term, we will show that the potential U(α), which is a part of Lagrangian

with a non-linear kinetic term, also falls under the same umbrella. In figure 3.5.1, we see

that the minima occur at every even multiple of π except at zero, that is, α0 = 2π, as all of

them are the same point.
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Figure 3.5.1: Minima of U(α) at α0 ̸= 0.

We will show its equivalence by linearizing the kinetic term with a change of variable that
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lets us write the eom in a canonical form. A form familiar in the study of Q-balls,

H(α) =

∫ α

ds
√
1− λω2 sin2 s (3.5.4)

=⇒ △H√
1− λω2 sin2 α

= △α− λω2

2

sin 2α (∇α)2

1− λω2 sin2 α
(3.5.5)

Using this, we can write the above equation in a form suitable for the Q-ball discussion

△H +
ω2 sin 2α− 2dU/dα

2
√
1− λω2 sin2 α

= 0

d2H(r)

dr2
+

ω2 sin 2α

2
√
1− λω2 sin2 α

− dU/dα√
1− λω2 sin2 α

= −2

r

dH(r)

dr
(3.5.6)

where α(r) is an inverse of the elliptic integral of the second kind, Eq. 3.5.4 and let

α(r) ≡ E(H,λω2). For the asymptotic case, that is, for r → ∞ the field H(r) → 0 giving

E(H,λω2) ∼ H(r) and the EOM linearizes

d2H(r)

dr2
+
(
ω2 − 4m2

)
H(r) = 0 (3.5.7)

H(r) → C
e−r

√
4m2−ω2

r
(3.5.8)

where C is a constant with a dimension of length. As already noted, the energetically

favorable condition of ω < m is also essential for the field’s exponential decay. For a pionic

Q-ball, we must have

0 < ω ≤ 2m = ω0 (3.5.9)

When ω > 2m, the asymptotic decay becomes oscillatory, resulting in a plane wave solution.

In a way, the bounded configuration of the pions gets dispersed in the plane waves. We get

the same exponential decay of the field from Eq. 3.5.2, which shows asymptotic behavior is

independent of the change of variables. Please see the appendix A2.2 for the form of the

asymptotic energy.

The EOM,

d2H(r)

dr2
+

1

2
√

1− λω2 sin2 α

d

dα

(
ω2 sin2 α− 2U

)
= −2

r

dH(r)

dr
(3.5.10)
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can be recast in a form resembling an energy conservation equation with

dH

dα
=
√
1− λω2 sin2 α (3.5.11)

Plugging this identity in the EOM gives,

d2H

dr2
+

1

2

d

dH

(
ω2 sin2 E(H,λω2)− 2U

)
= −2

r

dH

dr
(3.5.12)

multiplying above equation by (dH/dr) and then integrating gives

(
dH

dr

)2

+ ω2 sin2 E(H,λω2)− 2U = −
∫

4

r

(
dH

dr

)2

dr + C (3.5.13)

The effective potential is

Veff (H) = −ω2 sin2 E(H,λω2) + 2U (3.5.14)

= −ω2 sin2 E(H,λω2) + 8m2
(
1− cos E(H,λω2)

)
(3.5.15)

Now, we can check the Coleman criteria for a potential to host a Q-ball as in figure 3.5.1,

and we can see that (figure 3.5.2) they come out to be the same.
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Figure 3.5.2: Minima of U(H) at H0 ̸= 0.

Hence, we have established that U(α) has qualified to be a Q-ball potential. This is crucial

because, with U(α), we have a foundation for the existence of gauged Q-balls. Whenever a

potential supports an ungauged Q-ball solution, it also supports a gauged Q-ball. Change

of variables is limited only to the case of ungauged Q-balls; therefore, we can’t justify it

for the gauged case. But with U(α) qualified to be Q-ball potential, we are assured that

gauged solutions exist!
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Then we can write the energy conservation law with a dissipative term as(
dH

dr

)2

− Veff (H) = −
∫

4

r

(
dH

dr

)2

dr + C (3.5.16)

We can paint an analogy of this equation of motion with the Newtonian equation of motion

for a point particle subject to viscous damping if we think of r as a time coordinate and

H(r) as the particle’s position. Then the Q-ball solution is interpreted as the unit mass

particle which moves in the effective potential (−Veff ), which is plotted in figure 3.5.3,

along with the potential plot. In the plot 3.5.3d, we have ω > 2m.

We can choose a starting position at time zero (r = 0), H(0) ≡ H0 ̸= 0 So, we have

dH/dr = 0, and this fixes the constant of integration to be C = −Veff (H0), which is like

choosing the energy of the point particle system. From the effective potential plot 3.5.3b,

we see that Veff (H0 ≈ 6.27) = 0.

(
dH

dr

)2

− Veff (H) = −
∫

4

r

(
dH

dr

)2

dr (3.5.17)
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Figure 3.5.3: U(H) and Veff plots

After choosing the starting point H0. The particle will be stationary at H0 due to the

frictional/viscous term, and once enough time passes (for large r = R >> 1), we can neglect

the frictional term. After which, the particle will start sliding to the left and losing energy.
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Eventually, it will reach its final destination. We can visualize this by looking at the −Veff
plot in figure 3.5.3b. For 0 ≤ r ≤ R, the solution would be H ∼ H0 which decreases to 0 as

r → ∞. The radius of the Q-ball will be given by R. So, at late times∫ H

H0

dH√
Veff (H)

= r −R (3.5.18)

The denominator should be real, which imposes

Veff (H) ≥ 0 =⇒ 8m2
(
1− cos E(H,λω2)

)
≥ ω2 sin2 E(H,λω2) (3.5.19)

As we start going further out from the Q-ball, that is, from the radius R, the field H

exponentially decreases. Due to which E(H,λω2) ∼ H(r) << 1, and the above bound

manifests the Eq. 3.5.9.∫ H(r)

H0

dH√
−ω2 sin2 E(H,λω2) + 8m2 (1− cos E(H,λω2))

= r −R (3.5.20)

=⇒
∫ α

α0

dα

√
1− λω2 sin2 α

−ω2 sin2 α+ 8m2 (1− cosα)
= r −R (3.5.21)

In theory, we have four parameters (λ,K,m and ω), out of which three are found

experimentally except ω. Hence, fixing three parameters, we have a restricted range

for ω to get a Q-ball. At a large distance, we can approximate the integral to be∫ H<<1

H0

dH

H
=
√
−ω2 + 4m2 (r −R) (3.5.22)

=⇒ H0 = H(r)e−
√
4m2−ω2(r−R) (3.5.23)

3.6 Gauged Q-balls in Skyrme model

To study the gauged case, we make a variation of the Lagrangian in Eq. 3.4.7 concerning

α(r) and g(r) at a fixed ω to get the EOMs,

(
1− λg(r)2 sin2 α

)
△α(r)− 2λg(r)g′(r)α′(r) sin2 α

+
1

2
g(r)2 sin 2α

(
1− λ(α′(r))2

)
− 4m2 sinα = 0 (3.6.1)
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and,

△g(r)− 4Kg(r) sin2 α(1 + λ(α′(r))2) = 0 (3.6.2)

Where △ = ∇2 is the Laplacian. Eq. 3.6.2 is a constraint equation due to the absence of ġ

term in the Lagrangian.

Asymptotically at the leading order, the electric potential u(r) → 0, yielding the boundary

condition as g(r) r→∞−−−→ ω. We can get crucial information from the charge using Eq. 3.6.2

for u(r) as,

△u = −2Kg(r) sin2 α(1 + λ(α′(r))2) (3.6.3)

and plugging this in the Eq. 3.4.10 gives

Qgauged = −4π

∫
dr r2△u r→∞−−−→ 2πr2g′ = −πr2u′ (3.6.4)

=⇒ lim
r→∞

u(r) ∼
Qgauged

πr
+ C (3.6.5)

Setting the integration constant C = 0 yields at the leading order g(r) r→∞−−−→ ω. Now let us

scrutinize the linearized asymptotic equations. Up to the subleading order in r, we have

g∞ = ω −
2Qgauged

πr
(3.6.6)

Asymptotically, sinα ∼ α and with this, we get a linearized equation, and its solution has a

similar form to that of the complex scalar field (123)

α′′(r) +
2

r
α′(r) +

(
ω2 −

4ωQgauged

πr
− 4m2

)
α(r) = 0 (3.6.7)

α(r)∞ = c1
e−r

√
A2

π
1F1

(
1 +

2ωQgauged√
A2π

; 2; 2r
√
A2

)
+ c2

e−r
√
A2

π
U

(
1 +

2ωQgauged√
A2π

, 2, 2r
√
A2

)
(3.6.8)

where A2 = 4m2 − ω2 while 1F1 and U are the confluent hypergeometric functions of the

first and second kind, respectively. The asymptotic fall-off can be deduced from them as

α∞(r)
r→∞−−−→ e−rA

r1+
2ωQgauged

πA

(3.6.9)
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From this, we get the usual bound on the frequency,

ω2 ≤ 4m2 (3.6.10)

3.6.1 Energy per unit charge

Energy and charge are parametrized by ω, so we look at

dEgauged

dω
= 4πK

∫
dr r2

{
2g
dg

dω
sin2 α

(
1 + λ

(
α′)2)+ g2

d

dω

[
sin2 α

(
1 + λ

(
α′)2)]

+ 2α′dα
′

dω
+ 8m2 sinα

dα

dω
+

1

2K
g′
dg′

dω

}
(3.6.11)

Asymptotically both α and g vanish so that we can drop the surface terms arising from

integration by parts,

dEgauged

dω
= 4πK

∫
dr r2

{
2g
dg

dω
sin2 α

(
1 + λ

(
α′)2)+ g2

d

dω

[
sin2 α

(
1 + λ

(
α′)2)]

− 2
(
△α− 4m2 sinα

) dα
dω

− 2

K
△udu

dω

}
(3.6.12)

Utilizing Eq. 3.6.1 we can write

dEgauged

dω
= 4π

∫
dr r2

{
g
d

dω

[
2Kg sin2 α

(
1 + λ

(
α′)2)]− 2△udu

dω

}
(3.6.13)

It further simplifies with the help of Eq. 3.6.3

dEgauged

dω
= 4π

∫
dr r2

{
(ω − 2u)

d

dω
(−△u)− 2△udu

dω

}
(3.6.14)

= ω
dQgauged

dω
+ 8π

∫
dr r2

(
u△du

dω
−△udu

dω

)
(3.6.15)

Further, integrating by parts, we find that∫
dr r2u△du

dω
=

∫
dr r2△udu

dω
(3.6.16)

This gives,

dEgauged

dω
= ω

dQgauged

dω
(3.6.17)
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Therefore,

dEgauged = ωdQgauged (3.6.18)

Following similar steps for ungauged case give us

dEungauged = ωdQungauged (3.6.19)

3.7 Stability analysis

We check the classical stability of gauged Q-balls under small perturbations in α(r) and

g(r). That is, we perturb around the background solutions α0(r) and g0(r) and expand

the EOMs up to the linear order in ϵ. We will demonstrate the stability against small

perturbations in the asymptotic region. It came to us as a surprise that there is no mention

of a detailed analysis of asymptotic perturbations in the literature. Through this analysis,

we were able to find a bound on the asymptotic physical charge Qphys
gauged. Examining the

classical stability of gauged Q-balls is highly non-trivial, and, in general, stability conditions

are distinct from those of the ungauged Q-balls (126)

α(r) = α0(r) + ϵa(r) (3.7.1)

g(r) = g0(r) + ϵb(r) (3.7.2)

Expanding Eq. 3.6.1 and Eq. 3.6.2 till the first order in ϵ, along with using the EOMs for

the background fields, gives

[
−2λbg0 sin

2 α0 +
(
1− λg20 sin 2α0

)
a
]
△α0 +

(
1− λg20 sin

2 α0

)
△a

− λ
[
2 (g0b)

′ α′
0 sin

2 α0 +
(
g20
)′
a′ sin2 α0 +

(
g20
)′
aα′

0 sin 2α0

]
+
(
g20a cos 2α0 + 2g0b sin 2α

) (
1− λ(α′

0)
2
)
− λg20a

′α′
0 sin 2α0 − 4m2a cosα0 = 0 (3.7.3)

and

△b− 4K
[
2λg0a

′α′
0 sin

2 α0 +
(
g0a sin 2α0 + b sin2 α0

) (
1 + λ(α′

0)
2
)]

= 0 (3.7.4)

In the asymptotic limit α0 ∼ α∞ and g0 ∼ g∞, and we will analyze them up to the order of

O(r−2).
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The perturbation equation boils down to an ODE resembling the Hydrogen atom ODE

△a+

(
4Q2

gauged

π2r2
− 4ω

Qgauged

πr
−A2

)
a = 0 (3.7.5)

△b = 0 (3.7.6)

We can get rid of the first derivatives a′ and b′ by a change of variable; that is, we define

a =
Ψ1

r
and b =

Ψ2

r
(3.7.7)

with this, we get

Ψ′′
1 +

(
4Q2

gauged

π2r2
− 4ω

Qgauged

πr
−A2

)
Ψ1 = 0 (3.7.8)

Ψ′′
2 = 0 (3.7.9)

To check for stability, we write these equations analogously to the Schrodinger equation

with an eigenvalue of F 2. This is because if the perturbation is stable, it will have the same

sign as the potential.

−Ψ′′
1 +

(
A2 + 4ω

Qgauged

πr
−

4Q2
gauged

π2r2

)
Ψ1 = F 2Ψ1 (3.7.10)

−Ψ′′
2 = F 2Ψ2 (3.7.11)

The solutions are Whittaker functions,

Ψ1 = c1Mp,q

(
2ir
√
F 2 −A2

)
+ c2Wp,q

(
2ir
√
F 2 −A2

)
(3.7.12)

where, p = 2iQgaugedω

π
√
F 2−A2

and q =

√
π2−16Q2

gauged

2π

Ψ2 = c3e
−r

√
−F 2

+ c4e
r
√
−F 2 (3.7.13)



3.8. Phenomenological implications 59

We can expand Whittaker functions in terms of confluent hypergeometric functions,

Mp,q

(
2ir
√
F 2 −A2

)
= e−ir

√
F 2−A2

(
2ir
√
F 2 −A2

) 1
2
+q

1F1

[
1

2
+ q − p; 1 + 2q, 2ir

√
F 2 −A2

]
(3.7.14)

The confluent hypergeometric function is defined only for 1 + 2q > 0 (124), due to which we

get a bound on the charge as

−π
4
e ≤ Qphys

gauged(∞) ≤ π

4
e (3.7.15)

3.8 Phenomenological implications

Phenomenological signatures of gauged Q-balls could exist in the stream of particles

evaporating off the surface of the Q-balls. Evaporation of global U(1) Q-balls was first

studied in (127), at the leading semiclassical order where the Q-ball was considered a classical

background. With the Yukawa interaction, they calculated the neutrino pair production

rate. This analysis was extended to the case of gauged Q-balls in (128), with the coupling

of the scalar field with fermions by Yukawa interaction.

Gauged Q-balls could arise as the Bose-Einstein condensed phase of pions in the early

Universe, along with possible implications on cosmic evolution. Their formation in the early

Universe during the QCD epoch could have left some scars on the primordial gravitational

waves (PGW) and primordial black holes (PBH). In (129), authors discussed the possible

gravitational wave signatures arising from the pion condensation in the early Universe. They

demonstrated that with the increased sensitivity of future detectors like LISA and SKA, we

should be able to detect signatures of pion condensates, primarily due to the enhancement

of the PGW spectra and change in the fraction of PBHs with a mass more significant than

one solar mass.

3.9 Conclusion

Skyrme model fixes the potential form, leaving no room for arbitrariness in the potential.

The hedgehog ansatz allows us to analyze the Skyrme equations of motion, which has a

fertile ground for hosting ungauged and gauged Q-balls. We saw in figure 3.5.1 the potential

satisfies Coleman’s condition for the existence of Q-balls. The ungauged Q-ball is the
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solution seen in the plot of the effective potential 3.5.3b. It could be visualized as a point

particle that sits at the peak of the Veff for a very long analog time (which is r) until the

frictional term is negligible, which then rolls down to zero asymptotically.

Whenever a potential supports an ungauged Q-ball solution, it usually also supports a

gauged Q-ball, which can be found numerically. We are still in the process of numerical

evaluation of the solution. The reason for not yet accomplishing it is the intricacies and

sensitivities involved with the Skyrme eom, specifically the trigonometric functions.
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Chapter 4

But, what about Quantum Gravity?

Quantum gravity is a theoretical framework that attempts to merge quantum mechanics and

general relativity to explain the behavior of gravity at the quantum level. This is a highly

active area of research, and there are currently several different approaches to developing

a consistent theory of quantum gravity. Some primary methods include string theory,

loop quantum gravity, and causal dynamical triangulation. Despite significant progress, a

complete and consistent theory of quantum gravity remains an open problem in physics.

4.1 Roadblocks in quantizing gravity

1. The principles of quantum mechanics and general relativity are challenging to reconcile:

Quantum mechanics and general relativity is two of the most successful theories in physics,

but they are based on fundamentally different principles. Quantum mechanics describes the

behavior of matter and energy at the microscopic level, while general relativity describes the

behavior of space-time and gravity at the macroscopic level. However, these two theories are

incompatible, and it is not clear how to combine them into a single consistent framework.

2. Quantum gravity is a highly non-linear theory: The gravitational field is a non-linear

field, which means that it exhibits a complex and highly non-linear behavior. This makes

it challenging to study using the methods of quantum mechanics, which are based on the

assumption of linearity. As a result, developing a consistent theory of quantum gravity is a

complex and challenging problem.

3. Quantum gravity is plagued by infinities and other singularities: Many of the attempts to
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quantize the gravitational field have been beset by infinities and other singularities, which

arise due to the non-linear nature of gravity. These infinities and singularities make it

challenging to define a consistent and well-behaved theory of quantum gravity. They are

one of the main obstacles to progress in this field.

4. There is a lack of experimental data and observations to guide the development of quantum

gravity: Unlike other areas of physics, there is a lack of empirical data and observations that

can be used to guide the development of quantum gravity. This makes it difficult to test the

theoretical predictions of quantum gravity and to determine whether they are consistent

with the observed behavior of the universe.

4.2 Wait, but why should we quantize gravity?

The idea of quantizing gravity, or describing the gravitational force as a quantum mechanical

phenomenon, arises from the fact that the other fundamental forces in nature, such as

electromagnetism and the strong and weak nuclear forces, are described by quantum field

theories. These theories successfully explain a wide range of phenomena, from the behavior

of atoms and molecules to the interactions of elementary particles. Therefore, it is natural

to ask whether gravity can also be described by a quantum field theory, in which the

gravitational force would be mediated by quantum mechanical particles known as gravitons.

It is exciting and essential to try to quantize gravity for several reasons. First, a consistent

theory of quantum gravity would provide a more fundamental description of the gravitational

force. It could potentially explain phenomena currently not well understood, such as the

nature of dark matter and the Universe’s origin. Second, a quantum theory of gravity

would be required to understand the behavior of gravitational systems in regimes where

quantum effects are essential, such as in the early Universe or near black holes. Finally,

a quantum theory of gravity would provide a framework for reconciling general relativity,

which describes gravity on large scales, with quantum mechanics, which represents the

behavior of microscopic systems. Overall, quantizing gravity is a challenging but fascinating

problem in theoretical physics that could have important implications for our understanding

of the Universe.
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4.3 But, what about the path integral of gravity?

The gravitational path integral is a mathematical technique used in quantum gravity to

calculate the amplitude for a gravitational field to evolve from one configuration to another.

It is the sum of all possible classical gravitational field configurations between the initial and

final states, weighted by each configuration’s exponent of the classical gravitational action.

The gravitational path integral is a way to extend the concept of the path integral, which is

typically used in quantum mechanics and quantum field theory, to the case of gravity.

That sounds promising, but one of the biggest challenges is to define the measure. In path

integral formalism, the measure is a mathematical concept that describes the weight or

probability of a particular path or trajectory of a particle or system. The measure is a

crucial part of the path integral formalism, as it determines the probability of a particle or

system is in a particular state and can help to predict its behavior in different situations.

The measure is typically determined by quantum mechanics principles and depends on the

specific system being studied.

We tried to define a path integral measure in the case of 2+1 AdS pure gravity, but more

on that in chapters 6 and 7. So, now let’s get back to the background discussion of path

integral by discussing scenarios where it has led to intriguing results and insights!

4.3.1 Euclidean quantum gravity

We are far from having a theory of QG. Perhaps the gravitational field is not quantized

in nature, and something more fundamental lurks behind the four-dimensional Universe’s

curtains. In any case, we can relish the semi-classical effects of quantum fields and classical

backgrounds. To name a few significant advancements, the black hole entropy (130; 131)

(a.k.a. Bekenstein–Hawking entropy), the Hawking radiation (131). More recently, the

quantum corrected background metric forms horizons around naked singularities in 2+1

AdS gravity (132; 133; 134; 135).

The framework of Euclidean QG captures some of the essences of the black hole

thermodynamics as the wick-rotated gravitational action is a free energy of the gravitational

system (136). With the wick rotation, we can define the partition function for gravity.

The partition function is a mathematical function used to calculate a physical system’s

thermodynamic properties in statistical mechanics. It is typically denoted by the letter

"Z". It is defined as the sum of the Boltzmann factors for each possible state of the system,
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weighted by the degeneracy (number of ways in which a given state can be achieved) of

that state. The partition function is a critical quantity in statistical mechanics because it

encodes all of the information about the statistical properties of the system, such as its

internal energy, entropy, and heat capacity. We can derive Hawking radiation (137), black

hole entropy (136), and log-corrections to the black hole entropy with the partition function.

4.3.1.1 Wait, but how is it related to a path integral?

The partition function and the path integral are two closely related concepts in statistical

mechanics and quantum field theory. Their relation comes from the fact that they are

expressions of the same underlying principle: the sum of all possible configurations or paths.

In the case of the partition function, the configurations are the possible states of the system,

and the sum is over the Boltzmann factors for each state. In the case of the path integral, the

configurations are the possible paths a particle can take, and the sum is over the exponents

of the classical action for each path. Thus, both the partition function and the path integral

are expressions of the idea that the behavior of a physical system can be understood by

summing over all possible configurations or paths.

Both of them can supply different aspects of the theory. Namely, statistical information

like microstates of the black hole could be explained through partition function. While

something like a transition amplitude or the probability of a black hole metric completely

evaporating away in radiation could be studied through a path integral. In this case, the

transition will be between a black hole metric and a flat metric.

4.4 But, what would it imply if nature doesn’t follow QG?

If it turns out that gravity cannot be quantized, or described as a quantum mechanical

phenomenon, then it would have significant implications for our understanding of the

fundamental nature of the Universe. It would mean that gravity is fundamentally different

from the other fundamental forces in nature, such as electromagnetism and the strong and

weak nuclear forces described by quantum field theories. This would imply that there is no

quantum version of the gravitational force and that gravity cannot be explained in terms of

the exchange of gravitons or other quantum mechanical particles.

If gravity is not quantizable, then it would also have implications for our understanding of

the behavior of gravitational systems in regimes where quantum effects are essential. For

example, it would mean that we cannot use quantum mechanics to explain the behavior of
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the early Universe or the behavior of objects near black holes. This would be a significant

limitation on our ability to understand and predict the behavior of these systems.

Overall, the question of whether gravity can be quantized is a fundamental one that is still

the subject of much debate and research in theoretical physics. If it turns out that gravity

cannot be quantized, then it would have far-reaching implications for our understanding of

the Universe and the fundamental forces that govern it.
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Chapter 5

Quantum Corrections to a Finite

Temperature BIon

Abstract

In this chapter, we will analyze a finite temperature BIon, which is a finite temperature

brane-anti-brane wormhole configuration. We will analyze the quantum fluctuations to this

BIon solution using Euclidean quantum gravity. It will be observed that these quantum

fluctuations produce logarithmic corrections to the entropy of this finite temperature BIon

solution. These corrections to the entropy also correct the internal energy and the specific

heat for this finite temperature BIon. We will also analyze the critical points for this finite

temperature BIonic system, and analyze the effects of quantum corrections on the stability

of this system.

5.1 Introduction

In string theory, it is possible to analyze certain physical objects in a region of spacetime in

terms of very different objects. Thus, it is possible to analyze a system of many coincident

strings in terms of D-brane geometry, and this is done in the BIon solution (138; 139).

So, this BIon solution can describe an F-string coming out of the D3-brane or a D3-brane

parallel to an anti-D3-brane, such that a wormhole connects them with an F-string charge.

This configuration is called as the brane-antibrane-wormhole configuration. It is also possible
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to use such a solution to analyze D-branes probing a thermal background (140; 141). This

can be done using the blackfold approach (142; 143; 144; 145). In this method, a large

number of coincident D-branes form a brane probe. Furthermore, as this probe is in thermal

equilibrium with the background, this method has been used to heat up a BIon. This was

done by putting it in a hot background. It is also possible to analyze the thermodynamics

of this finite temperature BIon solution (140; 141). In this chapter, we will analyze the

effects of thermal fluctuations on the thermodynamics of this system.

The entropy-area law of black holes thermodynamics (146; 147), is expected to get modified

near the Planck scale due to quantum fluctuations (148). These quantum fluctuations

in the geometry of any black holes are expected to produce thermal fluctuations in their

associated thermodynamics. It is interesting to note that the thermal fluctuations produce

a logarithmic correction term to the thermodynamics of black holes (149; 150; 151; 152).

The consequences of such logarithmic correction have been studied for a charged AdS black

hole (155), charged hairy black hole (156), a black saturn (157), a Hayward black hole

(158) a small singly spinning Kerr-AdS black hole (159), and a dyonic charged AdS black

hole (160). In non-perturbative quantum general relativity, the density of microstates were

associated with the conformal blocks has been used to obtain logarithmic corrections to

the entropy (161). It has also been demonstrated that the Cardy formula can produce

logarithmic correction terms for all black holes whose microscopic degrees of freedom are

characterized by a conformal field theory (162). The logarithmic correction has also been

studied from the black hole in the presence of matter fields (163) and dilatonic black holes

(164). Leading order quantum corrections to the semi-classical black hole entropy have been

obtained (165), and applied to Gödel black hole (166; 167). The logarithmic corrections

were also used to study different aspects of regular black holes satisfying the weak energy

condition (168), three-dimensional black holes with soft hairy boundary conditions (169),

and certain aspects of Kerr/CFT correspondence (170). The logarithmic corrected entropy

also corrects some hydrodynamical quantities, and so the the field theory dual to such

corrected solutions has also been studied (175; 171; 172; 174; 173).

The logarithmic corrections to the entropy of various black holes have also been obtained

using the Euclidean Quantum Gravity (176; 177; 178). In this approach, Euclidean Quantum

Gravity (179) is used to obtain the partition function for the black hole, which is then used

to obtain the logarithmic corrections to the thermodynamics of that black hole. As the

logarithmic corrections occur almost universally in the thermodynamics of black holes, in

this chapter, we will analyze the consequences of such corrections for a thermal BIon. We
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compute the quantum correction to the black hole entropy, internal energy, specific heat

using the Euclidean Quantum Gravity (179). We find that the logarithmic correction affects

the critical points, and the corrections significantly change the stability of this system.

5.2 Gravitational Partition Function

Now, we start with the Euclidean Quantum Gravity that is obtained by performing a Wick

rotation on the temporal coordinates in the path integral. Thus, we obtain the gravitational

partition function in Euclidean Quantum Gravity (179),

Z =

∫
[D]e−IE =

∫ ∞

0
ρ(E)e−βEdE, (5.2.1)

where IE is the Euclidean action for the BIon solution (140; 141), and β ∝ 1/T . The density

of states ρ(E) is easily obtained from (5.2.1) by performing an inverse Laplace transform,

so that one obtains

ρ(E) =
1

2πi

∫ a+i∞

a−i∞
eS(β)dβ. (5.2.2)

Here, S(β) is the entropy, and its exact form is given in terms of the partition function

and the total energy as S(β) = βE + lnZ, where S0 = S(β0). The integral (5.2.2) can

be evaluated using the method of steepest decent, around the saddle point β0, so that

[∂S(β)/∂β]β=β0 vanishes, and the equilibrium relation E = −[∂ lnZ(β)/∂β]β=β0 is satisfied.

Therefore, the equilibrium temperature is given by T0 = 1/β0, and we can expand the

entropy S(β) around the equilibrium point β0 as follows

S(β) = S0 +
1

2
(β − β0)

2

[
∂2S(β)

∂β2

]
β=β0

+ · · · . (5.2.3)

Here, the first term S0 = S(β0) denotes the entropy at the equilibrium, the second term

represents the first-order correction over it. If we restrict ourselves to this first order and

replace (5.2.3) with (5.2.2), we obtain

ρ(E) =
eS0

√
2π

{[
∂2S(β)

∂β2

]
β=β0

}− 1
2

, (5.2.4)
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for [∂2S(β)/∂β2]β=β0 > 0, where we choose a = β0 and β − β0 = ix with x being a real

variable. Thus, the expression of the microcanonical entropy S turns out to be (149; 150)

S = ln ρ(E) = S0 −
1

2
ln

{[
∂2S(β)

∂β2

]
β=β0

}
. (5.2.5)

Note that the entropy S(β) given in (5.2.3) is different from S as given by (5.2.5), the

former S(β) being the entropy at any temperature, whereas the latter one, S is the

corrected microcanonical entropy at equilibrium, which is computed by incorporating small

fluctuations around the thermal equilibrium. However, the result obtained in (5.2.5) is

completely model-independent and, it can be applied to any canonical thermodynamical

system including a BIon solution. Thus, the first-order correction is solely governed by the

term ln[∂2S(β)/∂β2]β=β0 . This can be simplified to a generic form of the entropy correction

given by ln(CT 2) (149; 150).

Now for a system with equilibrium temperature β0, and the equilibrium entropy S0, the

fluctuation around this equilibrium entropy, ln[∂2S(β)/∂β2]β=β0 do not depend on β0 or S0.

However, the exact form of these fluctuations can be obtained by assuming that this system

is dual to a conformal field theory, and using the modular invariance of the conformal field

theory (150; 151). This is done by assuming that S(β) = aβm + bβ−n, with m,n, a/b > 0,

and observing that at equilibrium this function has an extremum, with β0 = (nb/am)1/m+n.

Using this observation, it can be demonstrated that this term [∂2S(β)/∂β2]β=β0 (which

represents first-order correction around the equilibrium) has to be proportional to ln[S0β
2
0 ]

(149; 150; 151; 152). As the Hawking temperature, T for the black hole is obtained at the

equilibrium, so we identified the equilibrium temperature β0 with T . Thus, the thermal

fluctuations around the equilibrium entropy can be expressed in terms of the equilibrium

entropy S0 and equilibrium temperature T . It may be noted that such corrections to the

entropy of AdS black holes have been obtained from the entropy of the boundary theory

using AdS/CFT correspondence (180; 181; 182; 183), and it has been observed that the

corrections to entropy can be expressed as a logarithmic function of the original equilibrium

temperature T .

As this correction term is proportional to the logarithmic function of the area, it is of the

universal form of the leading order corrections to the entropy of the black hole (189; 190;

191; 192; 193; 194). It may be noted that even though the form of these corrections is

universal, the exact value of the constant of proportionality to these corrections is model
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dependent (189; 190; 191; 192; 193; 194). Hence, as the constant of proportionality is model

dependent, we will use a free parameter γ = [0, 1] (184; 185; 186; 187; 188). Now it is

obvious that when we neglect these thermal fluctuations γ → 0, we obtain the original

equilibrium results. Furthermore, for γ ̸= 0, these corrections are proportional to the

logarithmic function of the area, and hence are the leading order corrections to the entropy

(189; 190; 191; 192; 193; 194). Furthermore, as these are the leading order corrections to the

equilibrium entropy, so they are expected to be less than the original equilibrium entropy

of the black hole (for the perturbative expansion to be valid) (184; 185; 186; 187; 188). It

may be noted that when the black hole is large, we can neglect thermal fluctuations, and at

that stage, the original equilibrium entropy can describe the system. Thus, S0 is a good

approximation to entropy when S0 >> ln(S0T
2). However, as the black hole reduces in size

due to Hawking radiation, we need to consider the corrections to entropy due to thermal

fluctuations. Thus, we need to consider γ ln(S0T 2), when S0 > ln(S0T
2). These corrections

are still smaller than the original equilibrium entropy, but they are large enough to change

the behavior of the system, so they cannot be neglected. At first, we can use the leading

order corrections, and then we have to use higher order corrections. These corrections can

be obtained by considering higher-order perturbative corrections around the equilibrium

(195; 196). However, as the black hole approaches the Planck scale and S0 ∼ ln(S0T
2), the

perturbative expansion around equilibrium breakdown and this expansion cannot be used

to obtain the corrections to the entropy. This corresponds to the breaking of spacetime

manifold by quantum fluctuations, which occur near Planck scale (197; 198). So, this

perturbative approximation cannot be used for analyzing Planck-scale black holes.

Now, as this expansion for leading order corrections, holds for any black hole whose degrees

of freedom can be analyzed using a CFT (150; 151; 152), and it has been argued that

degrees of freedom of a BIon can also be analyzed using a CFT (153; 154), we can use these

corrections for analyzing a BIon. So, we propose that the quantum correction to the entropy

of a BIon can be expressed as

S = S0 −
γ

2
ln (S0T

2)Y ∼ S0 −
γ

2
ln (S0T

2)− γ

2
Y, (5.2.6)

where S0 is the original entropy of the BIon solution (140; 141), and Y in general, is a

function of other quantities (such as the properties of branes and string charges). Thus, a

full analysis of this system should incorporate such quantities, but as a toy model, we will

only analyze the corrections produced by γ ln (S0T 2)/2 on the thermodynamics of such a
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system and neglect the effect of Y . This can possibly be justified by fixing certain quantities

in the system and analyzing it as a toy model. So, here the last term of (5.2.6), along with

the higher order corrections to entropy (199) are neglected, and the leading order corrections

to the entropy from thermal fluctuations are considered.

It may be noted that such logarithmic corrections terms are universal, and occur in almost

all approaches to quantum gravity. However, the coefficient of such logarithmic correction

term is model dependent (189; 190; 191; 192; 193; 194). As the corrected expression used in

this chapter involves a free parameter γ = [0, 1] (184; 185; 186; 187; 188), it will hold even

using different approaches. Any other approach to this problem can only change the value

of this coefficient γ, which is not fixed in this chapter. Thus, the validity of the (5.2.6) can

be argued on general grounds, and the main aim of the chapter is to analyze the effects of

such logarithmic corrections on the thermodynamics of a BIon solution.

So, to obtain quantum corrections to the entropy of a BIon solution, we need to use the

original entropy S0 and original equilibrium temperature T of the BIon solution (140; 141).

Now a BIonic system is a flat spacetime configuration of a D-brane parallel to an anti-D-

brane, connected by a wormhole, which has an F-string charge. Geometrically, it is composed

of N coincident D-branes which are infinitely extended, and has K units of F-string charge,

ending in a throat, with minimal radius σ0 (at temperature T ). To construct a wormhole

solution from this, all we have to do is to attach a mirror solution at the end of the throat.

It is well known that the blackfold action can be used to describe the D-brane for probing

the zero-temperature background. However, it was shown that one can also use DBI action

for probing the thermal backgrounds (141), where it is ensured that the brane is not affected

by the thermal background, but the degrees of freedom living on the brane are ’warmed up’

due to the temperature of thermal background. Thus, the thermal background acts as a

heat bath to the D-brane probe, and due to this, the probe stays in thermal equilibrium

with the thermal background, which is a ten-dimensional hot flat space. This is constructed

in the blackfold approach. Thus the thermal generalization of the BIon solution has been

carried out, and the thermodynamic quantities for this configuration are given by (140; 141)

M =
4T 2

D3

πT 4

∫ ∞

σ0

dσ
σ2(4cosh2α+ 1)F (σ)√
F 2(σ)− F 2(σ0) cosh

4 α
, (5.2.7)

S0 =
4T 2

D3

πT 5

∫ ∞

σ0

dσ
4σ2F (σ)√

F 2(σ)− F 2(σ0) cosh
4 α

, (5.2.8)
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F =
4T 2

D3

πT 4

∫ ∞

σ0

dσ
√
1 + z′2(σ)F (σ), (5.2.9)

where M is the total mass, S0 is the entropy and F is free energy of the BIon. Here,

TD3 is the D3-brane tension, z is a transverse coordinate to the branes and F (σ) =

σ2(4 cosh2 α − 3)/ cosh4 α, with σ being the world volume coordinate and σ0 being the

minimal (sphere) radius of the throat or wormhole. Here α is a function of the temperature.

The chemical potentials for the D3-brane and F-string are as follows

µD3 = 8πTD3

∫ ∞

σ0

dσ
σ2 tanhα cos ζF (σ)√
F 2(σ)− F 2(σ0)

(5.2.10)

µF1 = 2TF1

∫ ∞

σ0

dσ
tanhα cos ζF (σ)√
F 2(σ)− F 2(σ0)

(5.2.11)

It should be noted that these relations satisfy the first law of thermodynamics dM =

TdS0 + µD3dN + µF1dK as well as the Smarr relation, 4(M − µD3N − µF1K)− 5TS0 = 0.

One can also calculate internal energy and the specific heat of the BIon solution as

U0 =
4T 2

D3

πT 4

∫ ∞

σ0

dσF (σ)

[√
1 + z′2(σ) +

4σ2√
F 2(σ)− F 2(σ0) cosh

4 α

]
, (5.2.12)

C0 = T

(
dS0
dT

)
= −

20T 2
D3

πT 5

∫ ∞

σ0

dσ
4σ2F (σ)√

F 2(σ)− F 2(σ0) cosh
4 α

, (5.2.13)

which indicates that the system has a negative specific heat.

5.3 Corrected Thermodynamics for the BIon

Let us now look for the thermal corrections to the above equations by considering logarithmic

correction to the entropy S given by the equation (5.2.6). The entropy (5.2.8) of N coincident

D-branes, with a throat solution gets corrected as

S =
4T 2

D3

πT 5

∫ ∞

σ0

dσ
4σ2F (σ)

cosh4 α
√
F 2(σ)− F 2(σ0)

− γ

2
ln

[
4T 2

D3

πT 3

∫ ∞

σ0

dσ
4σ2F (σ)

cosh4 α
√
F 2(σ)− F 2(σ0)

]
. (5.3.1)

In order to analyze the expression for the corrected entropy, we can assume cosh2 α(σ0) =
3
4 ,

which means that F (σ0) = 0 produces a relatively easy solution. It is indeed a possible
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Figure 5.3.1: Behavior of the corrected entropy as a function of t ≡ T̄ for K = 1 and TD3 = 1.

solution of the equation of motion at σ0 (140). However, we would like to work on a regime

where the branch is connected to the extremal BIon (140). In this formulation one obtains

cosh2 α =
3

2

cos δ
3 +

√
3 cos δ

3

cos δ
, (5.3.2)

where cos δ = T̄ 4
√

1 +K2/σ4, with T̄ 4 = 9π2T 4N/(4
√
3TD3). We further assume an

infinitesimal δ (corresponding to σ2 > K at low temperature T̄ ≈ 1), so that cos δ ≈ 1 and

sin δ ≈ δ ≈ T̄ 4[1 + 1/(2σ4)]. Here we have considered K = 1, as it can always be absorbed

Figure 5.3.2: Behavior of the corrected entropy as a function of σ0 for K = 1, TD3 = 1 (a)
T̄ = 0.5 (b) T̄ = 1.
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in σ by means of a re-scaling. Now the remaining parameter is TD3, which we can set to

one, TD3 = 1. So, we can plot the corrected entropy (5.3.1) by varying the T̄ , σ0 and γ

as depicted in Figs. 5.3.1, 5.3.2 and 5.3.3. In Fig. 5.3.1, we draw the corrected entropy

in terms of T̄ for different values of σ0. We should note that there is a minimal radius

σmin = T̄ 2(1 − T̄ 8)−
1
4 corresponding to each plots, with σ0 ≥ σmin. In panel (a) of Fig.

5.3.1, we have considered σ0 = 0.2, such that T̄ ≥ 0.45 and, in such a situation, we can

see that the corrected entropy is larger than the uncorrected one. This means that the

logarithmic corrections have increased the value of the entropy. A similar thing happens in

panel (b), where σ0 = 1, thus, T̄ ≥ 0.9. However, the system behaves differently, when we

consider σ0 = 2 and T̄ ≥ 0.99, as shown in Fig. 5.3.1(c). Here we see that the corrected

entropy is smaller than the uncorrected entropy. Therefore, the behavior of the entropy

with the logarithmic correction depends on both the parameters, namely, the temperature

and σ0.

In Fig. 5.3.2, we plot the corrected entropy as a function of σ0 for T̄ ≥ 0.5, i.e. σmin = 0.25.

In this case, we see that there exists a critical σc for each of the plots, and when the value

of σ0 is less than the value of σc, the corrected entropy is larger than the uncorrected one.

Whereas, when σ0 > σc, the corrected entropy is less. However, the critical points depend

on the temperature, for instance, in the case when T̄ = 0.5, i.e. in Fig. 5.3.2(a), we notice

that σc ≈ 0.7, while in Fig. 5.3.2(b), i.e. for T̄ ≈ 1, σc ≈ 1.6. We should note that the

region compatible with our assumption is σ0 > 1. Fig. 5.3.3 demonstrates the behavior

of the entropy with respect to γ, which is the coefficient that determines the amount of

corrections on the system. By choosing T̄ ≥ 1, we can see that the entropy is a decreasing

function of γ for σ0 = 2, while it is an increasing function of γ for σ0 = 1. It means that

for the small throat (smaller than σc), the thermal fluctuation increases the entropy, which

may yield more stability to the system, with a maximum value of the entropy. On the other

hand, a bigger throat may make the system unstable.

The logarithmic correction also modifies the internal energy and the specific heat. Let us

analyze the effects of the modification of the internal energy first, which we compute as

follows

U =
4T 2

D3

πT 4

∫ ∞

σ0

dσF (σ)

[√
1 + z′2(σ) +

4σ2√
F 2(σ)− F 2(σ0) cosh

4 α

]
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Figure 5.3.3: Behavior of the corrected entropy in terms of γ to see cases of γ = 0 and γ = 1.
We set K = 1, T̄ = 1 and TD3 = 1.

− γT

2
ln

[
4T 2

D3

πT 3

∫ ∞

σ0

dσ
4σ2F (σ)√

F 2(σ)− F 2(σ0) cosh
4 α

]
. (5.3.3)

We can perform a graphical analysis similar to the entropy to give similar results. However,

we focus only on the internal energy behavior with the parameter γ variation. Fig. 5.3.4

Figure 5.3.4: Behavior of internal energy in terms of γ, with K = 1 and TD3 = 1 (a) T̄ = 0.9 (b)
T̄ = 1.
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Figure 5.3.5: Behavior of the specific heat with respect σ0 for K = 1 and TD3 = 1 (a) T̄ = 0.9
(b) T̄ = 0.7.

shows that, although the variation of the internal energy is smaller with the logarithmic

corrections, however, the slope of the increasing or decreasing functions depends on the

value of the temperature and the radius of the throat, as expected. For a larger radius, the

entropy is decreased due to thermal fluctuations, while for a smaller radius, the entropy

is increased. Let us now see the effects of the specific heat. The exact expression of the

Figure 5.3.6: Behavior of the specific heat with respect to γ for K = 1, T̄ = 0.9 and TD3 = 1.
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corrected specific heat is given by

C = T
d

dT

(
S − γ

2
ln[ST 2]

)
, (5.3.4)

which has been analyzed in Fig. 5.3.5. Here, we show the effect of the logarithmic correction

on the specific heat inside the allowed region 1 ≤ σ0 for Fig. 5.3.5(a), and for the whole

range in Fig. 5.3.5(b) in order to explore the general approximate behavior. In the case

of γ = 0, we find that the specific heat is entirely negative; however, in the presence of

thermal fluctuations, there are some regions where it is positive. This means that in the

presence of the logarithmic correction, there is a special radius σs for which the specific

heat is negative, σ0 > σs, while it is positive for σ0 < σs. Here again the value of the σs
depends on the temperature, for instance, in Fig. 5.3.5(a) it is obvious that when we choose

T̄ = 0.9, we obtain σs ≈ 1.03. On the other hand, in Fig. 5.3.5(b), when we increase σ0,

the difference between the corrected and uncorrected case slowly vanishes. It indicates that

the thermal fluctuation becomes relevant for the smaller radius. Also, we can see from Fig.

5.3.5(b) an asymptotic behavior which may be interpreted as a first-order phase transition

as found in (140). Here we show that it occurs due to thermal fluctuations. We can confirm

this by analyzing the free energy (F) and find that ∂F
∂T̄

= 0 at the phase transition point. It

is indicated that we have a first-order phase transition in this system.

Also, we demonstrate the variation of the specific heat with the parameter γ in Fig. 5.3.6.

Figure 5.3.7: Behavior of the specific heat with respect to T̄ for K = 1, σ0 = 0.02 and TD3 = 1.
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It is evident that the effect of the logarithmic correction is to increase the specific heat and,

for γ > 0.65 (approximately) the specific heat is entirely positive, while for γ = 0, it is

completely negative. Finally in the Fig. 5.3.7, we can analyze the variation of the specific

heat with T̄ to plot its asymptotic behavior. At this asymptotic point, the first derivative of

the free energy with respect to the temperature is zero, so it is a first-order phase transition.

5.4 Conclusion

Quantum fluctuations are essential when dealing with objects of very small length scales.

They can be neglected when the object is large compared to the Planck scale, but quantum

fluctuation becomes vital for small objects. Now at the Planck scale, the background

spacetime breaks down, and it isn’t easy to analyze this system. However, there is a stage

before such a total breakdown when the quantum fluctuations can not be neglected but can be

analyzed as perturbations around a fixed spacetime. This corresponds to analyzing thermal

fluctuations around equilibrium for a black hole. We analyze the quantum corrections for

the BIonic systems using such fluctuations around the equilibrium. We explicitly include the

correction terms produced by such thermal fluctuations. After including these correction

terms, we also analyze the system’s behavior at the critical points. Moreover, we demonstrate

that these correction terms are essential by analyzing the stability conditions for this system.

In fact, we can show numerically that these quantum fluctuation affects the critical points,

thus affecting the stability of the system. The stability increases under certain conditions.

For instance, when the throat is more minor, the inclusion of fluctuations increases the

stability. Our analysis explicitly shows how the quantum fluctuation terms become essential

with the decrease of the radius. In Fig. 5.3.5(b), we observe that by increasing the radius

σ0, the correction term slowly vanishes, and the corrected result becomes identical to the

uncorrected one. Apart from the stability analysis, we have computed the corrections to

the internal energy and specific heat due to the quantum fluctuation. We confirmed that

the first-order phase transition occurs in this system by analyzing the free energy. We have

also analyzed the change in the behavior of the corrected system with the temperature.

It may be noted that here we have only analyzed the system numerically. However, to

demonstrate that the system actually has phase transition, it is essential to analyze it

analytically. It would thus be necessary to examine this system analytically. However, as

this system is very complicated, it might be interesting to study a simpler model of black

branes analytically. Such an analysis can give a better under fluctuations that affect the
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system. It is possible to construct a BIonsystem’s stabilizing system of M2-branes, and

M5-branes (200). It would be interesting to analyze the system at a finite temperature.

Then the thermodynamics of this system can be studied. It would be possible to study the

quantum fluctuations to the geometry of a BIon in M-theory, which could produce thermal

fluctuations in the thermodynamics of this system. It would be interesting to analyze the

critical points for such a system and study the effects of these fluctuations on the stability

of this system. It may also be noted that the thermodynamics of the AdS black hole has

been studied in M-theory (201; 202). It is possible to analyze the quantum corrections to

these black holes, which can also be done in Euclidean Quantum Gravity. It would also be

interesting to generalize the work of this chapter to such AdS black holes in M-theory.
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Chapter 6

Lorentzian path integral of 3D pure

gravity

6.1 Introduction

In this chapter, we try to analyze the path integral for pure 3D gravity by using Hamiltonian

formalism, which will assist in defining the path integral measure and the boundary term of

the action. For a non-relativistic point particle, the path integral can be viewed as a lattice

regularization in analogy with Riemann integral. We divide the time interval into small

units of ϵ and sum over all paths in each interval of measure ϵ.

K ∼
∫ N−1∏

i=1

dxi e
−iS(x)/ℏ (6.1.1)

The Hamiltonian formalism allows us to paint a picture analogous to a point particle. ADM

decomposition lets us foliate the 2+1 D spacetime into constant time hypersurface. Now we

can see where it is going; it is analogous to dividing the time interval into ϵ’s for the point

particle. So, we must have fixed initial and final surfaces and sum over all the geometries

to get the gravitational path integral. For example, consider the initial and final surfaces

to be of the naked singularity and BTZ black hole, respectively. This builds a platform

for calculating transition amplitudes/probabilities between these geometries. That sounds

ambitious and promising, but unfortunately, we can’t go very far with it!

The set of all surfaces is called super-space, and the metric defined in this space is the
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Wheeler-DeWitt metric (Gijkl). We define the gravitational measure by again drawing

inspiration from the point particle. The point particle Lagrangian is

Lpp = gµν ẋ
µẋν − V (6.1.2)

and the determinant of the coefficient of the kinetic term, that is, |gµν | goes into defining the

probability amplitude or the transition amplitude between any two quantum wave functions

Zpp =< ψ|ϕ > =

∫
dx

√
−g ψ∗ϕ (6.1.3)

In the next section, we will see how we can write the gravitational Lagrangian in a form

analogous to Lpp,

L =

∫
d2x

[√
g

4N
Gijklġij ġkl −

√
g

N
Gijkl

(
ġijNl|k +Ni|jNl|k

)
+N

√
g(R− 2Λ)

]
(6.1.4)

6.2 Proposal for the gravitational path integral measure

We have a spacetime manifold with topology R× Σ, where Σ is a time constant spacelike

hypersurface which in the case of 2+1 gravity is just a two-geometry or a two-dimensional

surface. That is, we slice the bulk manifold for constant times t. Σ will have coordinates xi,

where (i = 1, 2) along with an induced metric gij(t, x). Normal deformation or displacement

of Σ is given in terms of a lapse function N = (−g00)−1/2 while the shift function gives the

deformations along the hypersurface N i = gijgoj .

Induced metric on Σ is given using the metric on the full spacetime gµν as

gij = eµ ie
ν
j gµν (6.2.1)

Extrinsic curvature contains the velocity term

Kij =
1

2N

(
−ġij +Ni|j +Nj|i

)
(6.2.2)

here the vertical bars in Ni|j represent covariant derivative with respect to the induced

metric gij in Σ. The next step is to separate second-time derivatives from the gravitational
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Lagrangian by adding a divergence term

L =

∫
d2xL =

∫
d2xN

√
(2)g

(
KijKij −K2 + (2)R− 2Λ

)
−
∫
d2x

[
2∂t(

√
(2)gK)− ∂i

(√
(2)gKN i −

√
(2)ggij∂jN

)]
(6.2.3)

We can write this Lagrangian in the form of kinetic and potential term

L =

∫
d2x

[√
(2)g

4N
Gijklġij ġkl −

√
(2)g

N
Gijkl

(
ġijNl|k +Ni|jNl|k

)
+N

√
(2)g((2)R− 2Λ)

]

−
∫
d2x

[
2∂t(

√
(2)gK)− ∂i

(√
(2)gKN i −

√
(2)ggij∂jN

)]
(6.2.4)

where,

Gijkl =
1

2
(gikgjl + gilgjk − 2gijgkl) (6.2.5)

Gijkl =
1

2

(
gikgjl + gilgjk − 2gijgkl

)
(6.2.6)

is known as the Wheeler-DeWitt metric. This is a metric on the superspace, which is a

space of all gij associated with a surface Σ. From now on exclusively in this chapter we will

write N⊥ ≡ N ,
√

(2)g ≡ √
g and (2)R is the intrinsic curvature associated with Σ which

depends on gij . So, we have

L =

∫
d2x

[√
g

4N
Gijklġij ġkl −

√
g

N
Gijkl

(
ġijNl|k +Ni|jNl|k

)
+N

√
g(R− 2Λ)

]
(6.2.7)

The coefficient of the kinetic term is taken to be the weight functional for the measure

w[g] =

√
−
(√

g

4N

)3

|G| = 1

8N3/2g3/4
(6.2.8)

Details of the calculation of |G| are given in the appendix A3. Here the dynamics are over

the space of metrics, which is the superspace, with the metric on the superspace being Gijkl.

So the path integral will sum over all the three-geometries.

Z =

∫ DgijDġij
8N3/2g3/4

e−
i
ℏ(

∫
dtL[gij ,ġij ]+B[gij ,ġij ]) (6.2.9)
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6.3 Gravitational Hamiltonian and the Boundary term

We now make a transition from the configuration space (gij , ġij) to the phase space (gij , π
ij)

by defining the conjugate momenta of gij

πij =
∂L
∂ġij

= −√
g
(
Kij −Kgij

)
(6.3.1)

πi j = −√
g
(
Ki

j −Kδij
)

= −
√
g

N

[
1

2

(
N i

|j + gjlg
ikN l

|k

)
−Nk

|kδ
i
j

]
(6.3.2)

We can now express the velocities in terms of conjugate momenta πij

ġij =
2N
√
g
(πij − πgij) +Ni|j +Nj|i (6.3.3)

With that, we can write down the canonical Hamiltonian for gravity

Hc = πij ġij − L

H =

∫
d2xHc =

∫
d2x

[
NH+N iHi

]
=

∫
d2x

[
N
√
g
Gijklπ

ijπkl −N
√
g (R− 2Λ)− 2Niπ

ij
|j

]
(6.3.4)

The constraints are

H =
1
√
g
Gijklπ

ijπkl −√
g (R− 2Λ) (6.3.5)

Hi = −2πij |j (6.3.6)

The action in phase space variables is

I[gij , π
ij ] =

1

16πG3

∫
dtL+ B =

1

16πG3

∫
dt d2x

[
πij ġij −Hc

]
+ B (6.3.7)

We will set G3 = 1
8 only in this chapter. Einstein’s equation can be reproduced as Hamilton’s

equation of motion (ġij = δHc/δπ
ij ; π̇ij = −δHc/δgij) by demanding the surface terms

to vanish which is done by taking the variation of the boundary term to be negative of

the surface terms (203), to within a constant. The geometries we are interested in are

time-independent ġij = 0, so the action after taking into account constraints H = 0 and
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Hi = 0 consists of the surface terms. The action, in terms of the constraints, is

I = − 1

2π

∫
dtd2x

[
NH⊥ +N iHi

]
+ B[gij , πij ] (6.3.8)

whose variation produces surface terms to be canceled by the boundary term.

δI = − 1

2π

∫
dt d2x

[
Aijδgij +Bijδπ

ij
]

+
1

2π

∫
dt dsl

[
g1/2Gijkl(ξ̂⊥δgij;k − ξ̂⊥,kδgij) + 2ξ̂iδπl i + (2ξ̂iπk mg

lm − ξ̂lπi mg
km)δgik

]
+ δB = 0 (6.3.9)

The boundary term is

δB = − 1

2π

∫
dt dsl

[
g1/2Gijkl(ξ̂⊥δgij;k − ξ̂⊥,kδgij) + 2ξ̂iδπl i + (2ξ̂iπk mg

lm − ξ̂lπi mg
km)δgik

]
(6.3.10)

where, the surface integral contains a normal vector nl = δrl
√
grr pointing in the radial

direction

dsl = nl dϕ
√
gϕϕ = dϕ

√
grrgϕϕδ

r
l (6.3.11)

ξ̂µ are the deformation vectors related to the Nµ and killing vectors as

ξ̂⊥ = N ξt (6.3.12)

ξ̂r = ξr +N rξt (6.3.13)

ξ̂ϕ = ξϕ +Nϕξt (6.3.14)

The conformal killing vectors are (204)

ξt = lT (t, ϕ) +
l3

r2
T̄ (t, ϕ) +O(r−4) (6.3.15)

ξr = rR(t, ϕ) +O(r−1) (6.3.16)

ξϕ = Φ(t, ϕ) +
l2

r2
Φ̄(t, ϕ) +O(r−4) (6.3.17)
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and relations among them are

l∂tT (t, ϕ) = ∂ϕΦ(t, ϕ) = −R(t, ϕ) (6.3.18)

l∂tΦ(t, ϕ) = ∂ϕT (t, ϕ) (6.3.19)

T̄ (t, ϕ) = − l

2
∂tR(t, ϕ) (6.3.20)

Φ̄(t, ϕ) =
1

2
∂ϕR(t, ϕ) (6.3.21)

We can break down all these expressions into left movers and right movers by looking at

l∂2t T (t, ϕ) = ∂ϕ∂tΦ(t, ϕ) and l∂ϕ∂tΦ(t, ϕ) = ∂2ϕT (t, ϕ)

l∂ϕ∂tT (t, ϕ) = ∂2ϕΦ(t, ϕ) and l∂2tΦ(t, ϕ) = ∂ϕ∂tT (t, ϕ)

=⇒ □T = 0 and □Φ = 0 (6.3.22)

Before looking at the solutions of these wave equations, let’s make a coordinate

transformation to x±

t =
l

2
(x+ + x−) and ϕ =

1

2
(x+ − x−) (6.3.23)

l∂t = ∂+ + ∂− and ∂ϕ = ∂+ − ∂− (6.3.24)

In these coordinates, solutions to the wave equations are

T (t, ϕ) = T+(x+) + T−(x−) (6.3.25)

Φ(t, ϕ) = T+(x+)− T−(x−) (6.3.26)

using which we get

R = −
(
∂+T

+ + ∂−T
−) (6.3.27)

T̄ =
1

2

(
∂2+T

+ + ∂2−T
−) (6.3.28)

Φ̄ = −1

2

(
∂2+T

+ − ∂2−T
−) (6.3.29)

Now the asymptotic Killing vectors can be decomposed into left and right coordinates

ξt = l
(
T+ + T−)+ l3

2r2
(
∂2+T

+ + ∂2−T
−)+O(r−4) (6.3.30)
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ξr = −r
(
∂+T

+ + ∂−T
−)+O(r−1) (6.3.31)

ξϕ = T+ − T− − l2

2r2
(
∂2+T

+ − ∂2−T
−)+O(r−4) (6.3.32)

Let

ξ+ = T+ +
l2

2r2
∂2−T

− and ξ− = T− +
l2

2r2
∂2+T

+ (6.3.33)

=⇒ ξt = l(ξ+ + ξ−) and ξϕ = ξ+ − ξ− (6.3.34)

The boundary conditions specify the behavior of the canonical coordinates (gij , π
ij) and of

Nµ at the spatial infinity, which at the classical level should have the form of

ds2 → −r2dt2 + dr2

r2
+ r2dϕ2

Boundary conditions follow from (204), and the sub-leading terms might hold the information

on the quantum structure of the geometry

grr =
l2

r2
, grϕ =

frϕ
r3
, gϕϕ = r2 +Ml2 (6.3.35)

N = r +
f⊥

r
, N r =

f r

r
, Nϕ =

fϕ

r2
(6.3.36)

πr r ∼ O(r−3), πr ϕ ∼ J/l +O(r−2), πϕ r ∼ O(r−4), πϕ ϕ ∼ O(r−3) (6.3.37)

and for the inverse

grr ∼ gϕϕ = r2 +Ml2, grϕ ∼ −grϕ = −
frϕ
r3
, gϕϕ ∼ grr =

1

r2
(6.3.38)

variations -

δgrr = 0, δgrϕ =
δfrϕ
r3

, δgϕϕ = δM (6.3.39)

Under these boundary conditions, the leading contributions to the boundary term are

δB = − lim
r→∞

1

2π

∫
dt dϕ

{
ξtδM + ξϕδ J

}
= − lim

r→∞

1

2π

∫
dt dϕ δ

{
ξtM + ξϕJ

}
(6.3.40)
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This can be integrated to give the boundary term along with a constant of integration

B = − (t2 − t1)
(
ξtM + ξϕJ

)
(6.3.41)

The path integral over the phase space variables is

Z =

∫
Dgij Dπij

√
−
(√

g

4N

)3

|G| e−
i

2πℏ(
∫
dt d2x[πij ġij−Hc]+2πB) (6.3.42)

We calculated the boundary term for the mini-superspace and not the full superspace, so

the partition function for the mini-superspace is

Z =

∫
dM dJ

8N3/2g3/4
e

i(t2−t1)
ℏ (ξtM+ξϕJ) (6.3.43)

For the mini-superspace geometries, we have

N3/2g3/4 = r3/2 (6.3.44)

and the r here is like trace index, which we must integrate out! After that

Z =
1

8

∫ ∞

−∞
dM

∫ M

−M
dJ e

i(t2−t1)
ℏ (ξtM+ξϕJ) (6.3.45)

=
ℏ

4(t2 − t1)ξϕ

∫ ∞

−∞
dM sin

(
(t2 − t1)ξ

ϕ

ℏ
M

)
e−i

(t2−t1)
ℏ ξtM (6.3.46)

This is an oscillatory integral, and we don’t know how to handle it! Picard-Lefschetz’s theory

has recently been applied to oscillatory integrals (205) to make the Lorentzian path integral

more robust! The crux of the approach implements the steepest descent over complex

contours to make the integral absolutely convergent. The problem we ran into applying

these techniques in 2+1 gravity is that the saddle points of the action are not well-defined

as it is linear in M and J, not quadratic.
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Chapter 7

Partition function of 3D pure gravity

7.1 Introduction

The path toward understanding the quantum mechanics of the gravitational field is arduous.

The natural setting of the universe is in terms of the Lorentzian signature for the metric.

Lorentzian signature geometries are harder to tame, and so far, there have not been significant

advancements in our understanding of quantum gravity (QG). Experiments were the key to

initial successes and further developments of the quantum mechanics and quantum field

theories of electrodynamics, strong and weak interactions in the 20th century. Of course,

the other side of this success story is theory and mathematics. Developing theories and

experiments are essential for advancing our fundamental understanding of nature. That

being said, we are still struggling to shed some light on the QG because of the lack of

experiments and observations. Unfortunately, this chapter will discuss theoretical results

toward our understanding of the QG. Hopefully, we will have more to say on the experimental

side in the future!

We will focus on the 2 + 1 AdS pure gravity as this theory is rich in various features shared

by 3 + 1 gravity. There are numerous reasons to study 2 + 1 AdS gravity; one of them is

they have zero degrees of freedom (DoF). Even with the simplicity of the zero DoF, we are

faced with the challenges of handling a Lorentzian metric and an oscillatory integral, as we

saw in the previous chapter. We want to simplify the model by tweaking a few game rules.

Doing so puts us in a different physical scenario, the Euclidean world, in contrast with the

Lorentzian world. These two worlds are not equivalent, as a coordinate transformation does

not relate to them. We can still learn some exciting features from the Euclidean sector,
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which could improve our insights into the Lorentzian sector.

Euclidean sector allows us to define a canonical ensemble of inverse temperature β. We can

construct a canonical partition function for this ensemble and derive various thermodynamical

quantities, like the internal energy and entropy. We can think of this canonical ensemble as

one of an ideal gas as the individual geometries don’t interact with each other.

7.2 BTZ mini-superspace of 2+1 AdS gravity

The BTZ mini-superspace contains all the 2 + 1 AdS stationary geometries. They consist of

BTZ black holes, conical defects and excesses (CD/CE), and over-spinning (OS) singularities,

(4; 5). The Euclidean mini-superspace consists of the metric with imaginary Lorentzian

time (t = −iτ),

ds2 = N2(r)dτ2 +
dr2

N2(r)
+ r2

(
dϕ+Nϕ(r)dτ

)2
(7.2.1)

N2(r) =

(
r2

l2
− 8GM +

16G2J2

r2

)
, Nϕ(r) = −4GJ

r2
(7.2.2)

where, M, J ∈ R. Geometries are classified based on the values of M and J . BTZ black

hole have M ≥ J/l ≥ 0, CD/CE have M < −|J |/l and OS have |M | ≤ |J |/l. We will

discard OS geometries in this discussion and focus exclusively on the BTZ black hole and

CD/CE.

Roots of N2(r) = 0 correspond to the horizons (r±) of the black hole,

r± = ±l
√
2G
[√

M + iJ/l ±
√
M − iJ/l

]
(7.2.3)

M =
r2+ + r2−
8Gl2

and J =
ir+r−
4Gl

(7.2.4)

For NS we have, M < 0 and J ≤ |M | with M = −|M |. The roots of N2(r) = 0 for NS are

given by λ±

λ± = ∓il
√
2G
[√

|M |+ iJ/l ±
√
|M | − iJ/l

]
(7.2.5)

|M | = −
λ2+ + λ2−
8Gl2

and J =
iλ+λ−
4Gl

(7.2.6)



7.3. Temperature of Naked Singularities (NS) 90

7.3 Temperature of Naked Singularities (NS)

In the Euclidean version of geometries, the period in time and angular coordinate correspond

to the β and Φ. The periods of the Euclidean BTZ were found in (206) by making

identifications in hyperbolic three-space H3. The boundary topology of the Lorentzian

solution is cylindrical, which turns into a two-torus with a Dehn twist after identifying in τ

and ϕ. Here, we extend this analysis to the Euclidean version of the BTZ mini-superspace

naked singularities (CD/CE).

We proceed by changing the coordinates to the cartesian coordinates for the upper half-plane.

x =

(
r2 − λ2−
r2 − λ2+

)1/2

cos

(
|λ+|
l
ϕ+

λ−
l2
τ

)
e

|λ+|
l2

τ−λ−
l
ϕ (7.3.1)

y =

(
r2 − λ2−
r2 − λ2+

)1/2

sin

(
|λ+|
l
ϕ+

λ−
l2
τ

)
e

|λ+|
l2

τ−λ−
l
ϕ (7.3.2)

z =

(
λ2− − λ2+
r2 − λ2+

)1/2

e
|λ+|
l2

τ−λ−
l
ϕ (7.3.3)

where, |λ+| = iλ+ and r ≥ λ−. This is startling as the Euclidean NS acquires a horizon in

the form of λ−. The singularity is only exposed for the geometries with J = 0. The metric

in these coordinates is

ds2 =
l2

z2
(
dx2 + dy2 + dz2

)
(7.3.4)

These coordinates are invariant under the identifications (τ ∼ τ + β, ϕ ∼ ϕ+Φ), where the

periods are

βNS =
2πl2|λ+|
λ2− − λ2+

and ΦNS =
2πlλ−
λ2− − λ2+

(7.3.5)

If we wake up in the Euclidean world, we won’t be able to differentiate between the time

and angular directions as both are circular. The temperature has to be well-defined, so the

inverse temperature β has to be associated with the periodicity in the time direction. This

discloses to us which is the actual temporal direction. The temperature of AdS3 vacuum

with |M | = 1 and J = 0 is

βAdS3 =
2πl√
8G

(7.3.6)
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For the BTZ black hole, the periods are,

βBTZ =
2πl2r+
r2+ − r2−

and ΦBTZ =
2πl|r−|
r2+ − r2−

(7.3.7)

7.4 Partition function

The well-known Euclidean action for the BTZ black is (4; 206)

IBTZ = −βBTZ
(
M − ΩBTZJ

)
+

πl√
2G

[√
M + iJ/l +

√
M − iJ/l

]
(7.4.1)

The first two terms come from the asymptotic boundary, while the last term is from the

interior boundary at the outer horizon. In the same spirit, we have the Euclidean action for

a Euclidean naked singularity is

INS = βNS
(
|M |+ΩNSJ

)
+

iπl√
2G

[√
|M |+ iJ/l −

√
|M | − iJ/l

]
(7.4.2)

In the saddle point approximation, we can recover the Bekenstein-Hawking entropy for

the BTZ black hole along with the log correction, which arises from the Jacobian of the

partition function. The partition function has the form,

Z[β,Φ] =
G

ℏ

∫
dMdJ ρ(M,J) eI[β,Φ;M,J ]/ℏ (7.4.3)

The Jacobian of the transformation of (M,J) to (r+, r−)

|J | = −
i(r2+ − r2−)

16G2
(7.4.4)

The partition function measure holds the information coming from the quantum regime and

makes itself explicit as a logarithmic correction

dMdJ = |J |dr+dr− (7.4.5)

The partition function in 7.4.3 becomes,

ZBTZ [β,Φ] = − i

16

∫
dr+dr−

(
r2+ − r2−

)
G2ℏ2

e
−β

(
r2++r2−
8Gl2ℏ −Ω

ir+r−
4Glℏ

)
+

2πr+
4Gℏ
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≈ e
−β

(
r2++r2−
8Gl2ℏ −Ω

ir+r−
4Glℏ

)
+

2πr+
4Gℏ +ln

(
r2+−r2−
G2ℏ2

)
(7.4.6)

Therefore, we have

ln ZBTZ [β,Φ] ≈ −β
(
r2+ + r2−
8Gl2ℏ

− Ω
ir+r−
4Glℏ

)
+

2πr+
4Gℏ

+ ln

(
r2+ − r2−
G2ℏ2

)
(7.4.7)

The canonical ensemble entropy is

SBH = (1− β∂β) ln ZBTZ [β,Φ]

=
2πr+
4Gℏ

+ ln

(
r2+ − r2−
G2ℏ2

)
(7.4.8)

The log correction matches the log correction found by doing CFT calculations in the

microcanonical ensemble but with a different numerical coefficient (3/2 for the CFT

calculations). Logarithmic correction to the BTZ black hole entropy was first found by

Carlip (207), and he speculated that the numerical factor of 3/2 would be universal if the

entropy is calculated from a single CFT. This numerical factor is nothing more than an

artifact of the CFT calculation. Although, this numerical factor and the form of the log

correction match its 3 + 1 counterpart (208). Here, we got the quantum correction to the

black hole entropy without implementing any techniques from CFT.

Using similar tools for the Euclidean naked singularity, which has forged an outer horizon-like

artifact (λ−), we get

ln ZNS [β,Φ] ≈ β

(
−
λ2+ + λ2−
8Gl2ℏ

+Ω
iλ+λ−
4Glℏ

)
+

2πλ−
4Gℏ

+ ln

(
λ2− − λ2+
G2ℏ2

)
(7.4.9)

The canonical ensemble entropy is

SNS = (1− β∂β) ln ZNS [β,Φ]

=
2πλ−
4Gℏ

+ ln

(
λ2− − λ2+
G2ℏ2

)
(7.4.10)

For non-spinning NS, entropy consists only of the log term,

SNS = ln

(
8|M |l2

Gℏ2

)
(7.4.11)
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Chapter 8

Conclusion

Overall, we have shown how fruitful it is to use EFTs as it is a powerful approach to

understanding the vast spectrum of low-energy physics. Here, we applied this approach in

four dimensions for analyzing hairy black holes and Q-balls in the Skyrme model. Both

of these solutions come from theories that have a spontaneously broken symmetry, r-

diffeomorphism for the hairy black hole, and approximated chiral symmetry for Q-balls.

EFTs, let us isolate these relevant degrees of freedom that reveals interesting physics!

In the 2nd chapter, we addressed the question: does the effective theory of black holes

provide any information about the possible existence of hair?, and the answer is yes, it indeed

does! Asymptotically flat/dS hairy Schwarzschild black holes have features in quasinormal

modes, which are in contrast with the non-hairy black holes. Specifically, with an increase

in the overtone number, the hairy black holes exhibit an increase in the real and imaginary

frequency parts of the quasinormal oscillations. For non-hairy black holes, only the imaginary

part of the frequency increases while the real part decreases. In this way, we have a proposal

for the possible detection signature of the hairy black hole in the gravitational wave data.

One more exciting thing to note is that the scalar hair gave rise to the cosmological constant

in the case of the dS black hole.

In the 3rd chapter, we addressed the question: Can Q-balls, ungauged and gauged, exist in

the Skyrme model?, and the answer is yes! The existence of ungauged Q-balls can be easily

seen through the lens of a point particle living in the Veff , figure 3.5.3b. While we have still

not found a numerical solution for a gauged Q-ball, we are confident that they exist based

on the form of the potential. We demonstrated this following the hedgehog ansatz, under
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which the potential and effective potential satisfy all the conditions put forth by Coleman

(66).

Q-balls provide a foundation to study pion stars, making studying Q-balls in the Skyrme

model a perfect and realistic candidate! So far, we have not detected a pion star. Still, it is

reasonable to consider their existence, given that neutron stars exist. Besides black holes,

neutron stars are the densest known object in the Universe. In a way, they represent a

penultimate state for the densest object, which helps gain insights into black hole physics.

But nature could host another intermediate state between a neutron star and a black hole,

a pion star as a combination of two and three quarks is abundant in the Universe. Studying

pion stars will give us unprecedented insights into compact objects and black holes.

In the 5th chapter, we explored quantum fluctuations around the equilibrium of a BIon

configuration. The analysis was carried out solely numerically. Through this, we found that

the fluctuations give rise to corrections in the thermodynamic properties of the configurations;

specifically, the entropy receives log corrections. This analysis parallels that of a black hole.

We also demonstrated numerically that these quantum fluctuations affect the critical points,

thus affecting the system’s stability. The stability increases under certain conditions. For

instance, when the throat is smaller, the inclusion of fluctuations increases the stability.

This numerical analysis can be used to study black holes.

Chapters 6 and 7 highlight the hardships involved in path integral quantization of gravity. We

put forward a proposal for the path integral measure, but the equations are still intractable.

The proposed measure comes with the determinant of the Wheeler-DeWitt metric

w[g] =

√√√√−

(√
(2)g

4N

)3

|G| (8.0.1)

Finding a well-defined measure could allow us to study exciting properties of the 2 + 1 D

pure gravity, like the transition amplitude/probability for the evaporation of the BTZ black

hole. Without matter fields, this probability should be zero; a well-defined measure will

allow us to calculate it.

Using Euclidean techniques, we analyzed the thermal properties of the BTZ mini-superspace.

Specifically, we considered Euclidean BTZ black holes and naked singularities (conical

defects and excesses). The Euclidean version of 2+1 D NS was not studied before, so

we carefully analyzed it in the cartesian coordinates and found periodicities in time and
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angular direction. Surprisingly, Euclidean NS gets a horizon-like artifact given by λ−. The

temperature and angular potential are

βNS =
2πl2|λ+|
λ2− − λ2+

and ΦNS =
2πlλ−
λ2− − λ2+

(8.0.2)

In the saddle point approximation for the geometries in the BTZ mini-superspace, we

got the logarithmic correction to the black hole entropy coming from the Jacobian of the

transformation of (M,J) to (r+, r−),

SBH =
2πr+
4Gℏ

+ ln

(
r2+ − r2−
G2ℏ2

)
(8.0.3)

Previously, the logarithmic corrections were calculated using CFT techniques, but here we

showed the corrections without employing CFT. We also calculated the entropy of NS with

logarithmic correction.

SNS =
2πλ−
4Gℏ

+ ln

(
λ2− − λ2+
G2ℏ2

)
(8.0.4)

That is the story so far! It is exceptionally challenging to probe gravity at quantum scales.

With the path integral approach, we run into two significant issues measure and oscillatory

integral. However, new ways of handling Lorentzian path integrals, Picard-Lefschetz theory,

have come into the light, like in the simple toy model of the FRW cosmology (205). We

tried that approach for the BTZ mini-superspace, but it is not applicable as this technique

requires an action quadratic in M and J .
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Appendix A

A1 Supplements for the EFT of Black holes

Solving Einstein’s equation, we get

Λ(r) =
M2

Pl

g(r)

(
− f ′(r)R′(r)

4f(r)R(r)
+
g′(r)R′(r)

4g(r)R(r)
+
g(r)

R(r)
− R′′(r)

2R(r)

)
−
(
f ′2(r)

2f2(r)
+

f ′(r)g′(r)

4g3/2(r)
√
f(r)

− f ′(r)R′(r)

4f(r)R(r)
+
R′2(r)

4R2(r)
− f ′′(r)

4f(r)

)
α(r)

g(r)
+

f ′(r)

2f(r)g(r)
α′(r),

(A1.1)

c(r) =
M2

PlR
′(r)

4R(r)

(
f ′(r)

f(r)
+
g′(r)

g(r)
− R′′(r)

2R(r)
+
R′2(r)

R2(r)

)
−
(
f ′2(r)

2f2(r)
+

f ′(r)g′(r)

4g3/2(r)
√
f(r)

− f ′(r)R′(r)

4f(r)R(r)
+
R′2(r)

4R2(r)
− f ′′(r)

4f(r)

)
α(r)+

f ′(r)

4f(r)
α′(r).

(A1.2)

A2 Q-balls

A2.1 Energy of Q-balls

The total energy functional in this ansatz can be calculated using the above effective

Lagrangian is,

E =

∫
d3x

√
−gT00 =

∫
d3x

√
−g
[
T Sk
00 + Tmass

00 + T
U(1)
00

]
(A2.1)

= −4πK

∫
dr r2Tr

[
1

2
L2
0 +

1

2
L2
r +

λ

8
G2

0r + 2m2(U + U−1 − 2I)

− 2

K

(
gαβF0αF0β +

1

4
gαρgσβFαβFρσ

)]
(A2.2)
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where,

1

2
TrL2

0 = −g2 sin2 α
1

2
TrL2

r = −
(
α′)2

1

8
TrG2

0r = −g2
(
α′)2 sin2 α

Tr (U + U−1 − 2I) = 4 (cosα− 1)

T
U(1)
00 =

1

8

(
g′
)2

Putting it all together

Egauged = 4πK

∫
dr r2

[
g2 sin2 α

(
1 + λ

(
α′)2)+ (α′)2 − 8m2 (cosα− 1) +

1

4K

(
g′
)2]
(A2.3)

and for the ungauged Skyrme model

Eungauged =

∫
d3x

√
−g
(
T Sk
00 + Tmass

00

)
= 4πK

∫
dr r2

[
ω2 sin2 α

(
1 + λ

(
α′)2)+ (α′)2 − 8m2 (cosα− 1)

]
(A2.4)

A2.2 Asymptotic energy of ungauged Q-balls

The energy of this system from A2.4 as r → ∞ goes to zero exponentially fast.

Eungauged = 4πK

∫
dr r2

[
ω2 sin2H +

(
H ′)2 (1 + λω2 sin2H

)
− 8m2

K
(cosH − 1)

]
=⇒ Eungauged

R→∞−−−−→ 4πK

∫ R

dr r2
[
(H ′)2 +

(
ω2 + ω2

0

)
H2
]

(A2.5)

=⇒ Eungauged = 32πKC2m2

∫ R

dr e−r
√

ω2
0−ω2 → 0

A3 Determinant of the Wheeler-DeWitt metric

Wheeler-DeWitt metric is a metric on the superspace that depends on three functions gij .

Let us denote the set of indices as A = {11, 12, 22} so that we have the components of gij
as gA. Using this notation, we can see that the metric Gijkl = GAB is three-dimensional.
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Its form in 3 dimensions is different from the one in 4 dimensions.

Gijkl =
1

2
(gikgjl + gilgjk − 2gijgkl) (A3.1)

Gijkl =
1

2

(
gikgjl + gilgjk − 2gijgkl

)
(A3.2)

One should require that GijklG
klmn = 1/2

[
δmi δ

n
j + δmj δ

n
i

]
, which is the identity in the space

of symmetric tensors: 1/2
[
δmi δ

n
j + δmj δ

n
i

]
Amn = Aij . Then,

Gijkl =
1

2
(gikgjl + gilgjk − 2/(D − 1)gijgkl) (A3.3)

where D = (number of spatial dimensions), so 2/(D− 1) = 2 in our case. Then GijklG
ijkl =

D(D + 1)/2 = (number of independent components of a symmetric tensor), which in our

case is 3.

If we take their product, we can realize that they are indeed inverse of each other.

GijklG
ijkl = 3 (A3.4)

In the matrix form for g12 = 0
0 0 −g11g22
0 g11g22 0

−g11g22 0 0




0 0 −g11g22

0 g11g22 0

−g11g22 0 0

 =


1 0 0

0 1 0

0 0 1

 (A3.5)

Gijkl = GAB =


G1111 G1112 G1122

G1112 2G1212 G1222

G1122 G1222 G2222

 (A3.6)

=


0 0 (g12)

2 − g11g22

0 −
[
(g12)

2 − g11g22
]

0

(g12)
2 − g11g22 0 0

 (A3.7)

The determinant of the W-DW metric is

DetGijkl =
[
(g12)

2 − g11g22
]3 (A3.8)



A3. Determinant of the Wheeler-DeWitt metric 99

GAB = Gijkl =
1

2

(
gikgjl + gilgjk − 2gijgkl

)
(A3.9)

=⇒ GAB =


0 0 (g12)2 − g11g22

0 −
[
(g12)2 − g11g22

]
0

(g12)2 − g11g22 0 0

 (A3.10)

The determinant of the inverse W-DW metric GAB is

DetGAB =
[
(g12)2 − g11g22

]3
= −|gij |3 = −|gij |−3. (A3.11)

For g12 = 0,

GAB =


0 0 −g11g22

0 g11g22 0

−g11g22 0 0

 (A3.12)

The determinant of the inverse W-DW metric GAB is

DetGAB = −
[
g11g22

]3 (A3.13)
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