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Resumen

La motivación de esta tesis está impulsada por el reciente desarrollo de divisores de haces de fibra
óptica de cuatro núcleos de alta calidad, lo cuales alcanzan una relación de división casi perfecta
del 25% entre los cuatro núcleos que se encuentran en el mismo material de revestimiento.
Una aplicación importante de estos divisores de haces ópticos en el contexto de información
cuántica, es la realización de interferencia de dos fotones, ya que es un fenómeno fundamental
para el procesamiento de información de tecnologías cuánticas fotónicas. Aun más, constituye
la base para realizar medidas de estados máximamente entrelazados y puede utilizarse para
producir correlaciones cuánticas. Como primera investigación, usando estados coherentes débiles
de entrada para estudiar la interferencia de cuarto orden en un divisor de haz de fibra óptica
de cuatro núcleos, mostramos experimentalmente que las correlaciones cuánticas, en forma de
discordia geométrica, pueden ser controladas y máximizadas al manipular la intensidad de los
estados de entrada. Como segunda investigación, diseñamos y estudiamos teóricamente un
analizador de estados de Bell fotónico para estados de dimensión cuatro. Con interferencia
de dos fotones en un par de divisores de haces de cuatro núcleos, logramos discriminar de
manera óptima los 4 × 4 estados de Bell, lo que da lugar a siete salidas. Luego, mostramos
que con un par de fotones ancilla entrelazados podemos identificar probabilíticamente (pero
inequívocamente) un sólo estado de Bell. Esta tesis debería contribuir al uso de correlaciones
cuánticas y la implementación de mediciones de Bell en protocolos de comunicación cuántica
en las redes de telecomunicaciones futuras, en particular, aquellas que aprovechan las fibras
estructuradas espacialmente.
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Abstract

The motivation of this thesis is driven by the recent development of high-quality four-core optical
fiber beamsplitters, which achieve a near-perfect 25% split ratio between the four cores placed
within the same cladding material. An important application of these optical beamsplitters
in the context of quantum information is the realization of two-photon interference, as it
is a fundamental phenomenon for information processing of photonic quantum technologies.
Moreover, it forms the basis for performing measurements of maximally entangled states and
can be used to produce quantum correlations. As a first investigation, using weak coherent
input states to study fourth-order interference in a four-core optical fiber beam splitter, we show
experimentally that quantum correlations, in the form of geometric discord, can be controlled
and maximized by manipulating the intensity of the input states. As a second investigation, we
design and theoretically studied a photonic Bell state analyzer for four-dimensional states. With
two-photon interference in a pair of four-core beam splitters, we achieve optimal discrimination
of the 4×4 Bell states, resulting in seven outcomes. Then, we show that with a pair of entangled
ancilla photons, we can probabilistically (yet unequivocally) identify a single Bell state. This
thesis should contribute to the exploitation of quantum correlations and the implementation of
Bell measurements in quantum communication protocols in future telecommunication networks,
in particular, those that take advantage of spatially structured fibers.
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Chapter 1

Introduction

Quantum information science promises to revolutionize how information is transmitted, processed,
and stored, giving way to paradigms such as quantum teleportation [1], quantum cryptography
[2], quantum computing [3, 4] and many others [5, 6, 7]. Different physical systems have been
investigated to implement these quantum protocols [8]. However, photons stand out as an
effective carrier for processing and encoding information since they are transportable, propagate
rapidly, are easy to manipulate, and do not interact with the environment [9]. Another key
element in this revolution is the transport of quantum states from one place to another. In
this regard, to be viable, quantum communication will most likely need to employ the same
technological infrastructure as classical telecommunications.

A main goal in telecommunications is to increase the transmission capacity of optical channels.
Currently, data rates are nearing the physical limits that are possible in single-mode optical
fibers [10, 11]. This problem has led to several interesting encoding schemes and technologies
[12], one of them are multicore optical fibers, which promise to be a solution to the capacity
problem. This type of fiber is composed of multiple cores embedded in the same cladding [12].
Each core is propagated a single mode of light, and it has been shown that the relative phase
fluctuations between quantum states propagating in different cores are much more stable and
less than for multiple single-mode fibers [13, 14, 15].

Multicore fibers are expected to have an even more significant impact on quantum information
protocols [16] since they allow us to exploit higher dimensions. A d-level quantum system offers
a higher information capacity and noise resilience in quantum communications [17], a larger
violation of Bell inequalities [18] and more efficient quantum simulation [19] and computation
[20]. In addition, high-dimensional entangled states enhance robustness against eavesdropping,
and quantum cloning [21, 22]. Many experiments with multicore technology have been realized
in this direction [23, 24, 25, 26, 27, 28].

However, a complete toolbox for the manipulation of photonic quantum information encoded
in multicore fibers is still lacking. One crucial element, a fiber-embedded multicore beam
splitter, has only been recently developed. These are multi-port interference devices that
coherently combine light from input fiber cores and can be used to decrease the optical depth
of linear circuits [28, 29], as well as to build multi-path interferometers with applications in
optical metrology [30, 31], for example. Multicore beam splitters have been employed in a few
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single-photon experiments [23, 25, 28].
An important application of optical beam splitters in the context of quantum information is

the realization of two-photon interference [32]. It can be used to produce quantum correlations
when the quantum state is post-selected in the number basis [33, 34], and it is essential to
perform measurements of the maximally entangled states, the so-called Bell states [35, 36, 37].
The present thesis mainly focuses on these two topics to study two-photon interference at a
four-core fiber beam splitter.

We begin in chapter 2 by introducing fundamental concepts that we will use in the following
chapters to help us put our work into context. Then, in chapter 3, we motivate and introduce
multicore fiber technology using photons encoded in the path degree of freedom. The following
two chapters are concentrated the principal contribution of this thesis.

In chapter 4, we show how post-selected quantum correlations can be controlled and
maximized by adjusting the intensity ratio of two independent weak coherent input pulses
at telecom wavelengths. When considering the complete Poissonian photon statistics, the
input and output states are each a tensor product of coherent states and thus present no
correlations. However, in Ref. [38], it was shown that using post-selection in the photon number,
the output state produced by the equal intensity of the input pulse could in fact, demonstrate
non-classical correlation in the form of quantum discord [39]. Though discord does not always
imply entanglement [39], recent studies have shown that it plays an important role in quantum
tasks such as quantum computing [40], remote state preparation [41], quantum cryptography
[42], quantum illumination and quantum metrology [43, 44].

In chapter 5, we design a photonic Bell state analyzer for four-dimensional states using
only linear optical components, e.g., phase shifters, beam splitters, mirrors, etc. Ideally, this
device allows us to discriminate all the d2 Bell states, where d is the dimension of the states.
Nevertheless, in Ref. [45], it has been shown that when d = 4, the optimal measurement
separates the 16 Bell states into seven groups. In order to build an optimal fiber-based bell
state analyzer, we translate to fiber devices the setup shown in Ref. [45], where they use
hyperentangled photons in polarization and path propagating in free space to discriminate
the 16 Bell states. To improve our high-dimensional Bell state measurement, we increase the
dimension of the system by introducing ancillary photons. We show we can probabilistically
and unequivocally identify two Bell states.

Finally, in chapter 6, we present the main results obtained in chapter 4 and 5, concluding
the work done with possible extensions for the future.
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Chapter 2

Quantum Mechanics

The motivation of this chapter is to review some basic topics in quantum mechanics and
quantum information that will be necessary for a better understanding of this thesis. All this
without pretending to show the complete deduction of certain fundamental aspects exhaustively.
As a note, much of the content is based on the seminal book by Nielsen and Chuang [6].

We begin by describing mathematically the quantum properties of a physical system in
section 2.1, where we also introduce the density matrix and extend the concept of state to
dimension d. In section 2.2, we briefly see how quantum states evolve. Then, in section 2.3,
we give the necessary formalism to describe a composite quantum system made up of two or
more subsystems, where we also present the famous Bell-States. We continue in section 2.4
with the effects of measurements on quantum systems and show the importance of Bell state
measurements. Next, as a measure of closeness between quantum states, we present the fidelity
in section 2.5. Finally, in section 2.6, we introduce two measures of quantum correlations.

2.1 Quantum states

Every isolated physical system is described by a Hilbert space H with inner product, which
has an associated unitary complex vector |ψ⟩ called quantum state. This vector describes the
system in its entirety. For |ψ⟩ to be a unit vector, it must obey the normalization condition
|⟨ψ |ψ⟩ | = 1.

An isolated system is also called a closed system since it does not interchange information
with any other system. Another important fact about quantum states is that two states that
only differ by a global phase are completely equivalent since measurements on them give the
same outcome.

For quantum states that are not fully known, also known as open systems, it is convenient to
use an alternative formulation: the density operator or density matrix. Suppose we have an
observer that wants to make a measurement on |ψi⟩ but does not know in which of all the states
in a set {|ψi⟩} the system is prepared. The observer only has access to the probabilities {pi} of
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each of the states. Then the observer can only write the density operator of the system, defined
by the equation

ρ =
∑

i

pi|ψi⟩⟨ψi|. (2.1)

Density operators are physically meaningful if and only if it satisfies the following properties:

a) (Normalization) The trace of ρ is equal to one.

b) (Positivity) ρ is a positive semi-definite operator, i.e., their eigenvalues are greater or equal
to zero.

If there exists a vector |ψ⟩ such that the density matrix can be written as |ψ⟩ ⟨ψ|, then we say
that the state is pure. Otherwise, we say that the state is mixed. A state ρ can be determined
as pure or mixed by calculating its purity tr(ρ2) ≤ 1, where the equality holds if and only if the
state is pure.

2.1.1 Qudits

Quantum states that belong to d-dimensional Hilbert space H = Cd are called qudit states, in
analogy with the name qubit for two-dimensional quantum systems. A qudit is an arbitrary
superposition of some set of orthonormal basis states {|ψi⟩}i∈{0,...,d−1}, such as

|Ψ⟩ ≡
d−1∑
i=0

pi |ψi⟩ , (2.2)

where the complex numbers pi obey the normalization condition
∑

i |pi|2 = 1. By increasing the
dimension of the state, we can expand the amount of information (number of bits) encoded in
the quantum system, being able to encode up to log2(d) bits per qudit.

Of our special interest in this thesis will be qudits that live in a 4-dimensional Hilbert
space, which we will write as

|υ⟩ = α |0⟩ + β |1⟩ + γ |2⟩ + δ |3⟩ . (2.3)

These states are often called ququarts.

2.2 Evolution

The time evolution of a closed quantum system is described by a unitary transformation. That
is, the state |ψ⟩ at time t1 is related to the state |ψ′⟩ at time t2 by a unitary matrix1 U , such as

|ψ′⟩ = U |ψ⟩ . (2.4)

1A complex square matrix U is unitary if U†U = UU† = 1
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In the case of density operators, their evolution is given by

ρ = UρU†. (2.5)

2.3 Composite Systems

The Hilbert space H of a d-dimensional composite physical system is the tensor product of the
Hilbert space Hi of each subsystem, that is,

H = H0 ⊗ H1 ⊗ ...⊗ Hd−1. (2.6)

In particular, if all the subsystems are prepared in a pure state {|ψi⟩}, the state of the system is

|ψ⟩ = |ψ⟩0 ⊗ |ψ⟩1 ⊗ ...⊗ |ψ⟩d−1 . (2.7)

Similarly, for a mixed state ρ we have

ρ =
∑

i

piρ
i
0 ⊗ ρi

1 ⊗ ....⊗ ρi
d−1, (2.8)

for some probability distribution pi such that
∑

i pi = 1. If a state can be written in the form
(2.7) or (2.8), we call it separable. Otherwise, we say it is entangled.

The state represented by each subsystem in (2.8) is known as the reduced density matrix. It
allows us to precisely describe the subsystem of a larger system by tracing over the subspaces
we are not interested in. To define it, let us consider the simplest case where the composite
system is in a two-dimensional Hilbert space H = HA ⊗ HB , then the reduced density matrix of
the A subsystem is

ρA = trB{ρAB} (2.9a)

=
∑

i

pi trB{ρi
A ⊗ ρi

B} (2.9b)

=
∑

i

piρ
i
A tr{ρi

B} (2.9c)

=
∑

i

piρ
i
A, (2.9d)

where trB(·) is the partial trace over HB .
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2.3.1 Bell States

A special type of entangled states are Bell states. For two qubits, the basis of the maximally
entangled Bell states can be written as

∣∣Ψ±〉
AB

= 1√
2

(|0⟩A |1⟩B ± |1⟩A |0⟩B), (2.10a)∣∣Φ±〉
AB

= 1√
2

(|0⟩A |0⟩B ± |1⟩A |1⟩B). (2.10b)

If we want to scale up in dimensionality (for powers of two), we can take two Bell states and
combine them, such that we have a maximally entangled Bell state in a Hilbert space H = C4

∣∣Φ+〉 ∣∣Φ+〉 = 1
2(|0⟩A |0⟩B + |1⟩A |1⟩B)(|0⟩A |0⟩B + |1⟩A |1⟩B) (2.11)

= 1
2(|0⟩A |0⟩B + |1⟩A |1⟩B + |2⟩A |2⟩B + |3⟩A |3⟩B), (2.12)

where we have relabeled |0⟩ = |00⟩, |1⟩ = |01⟩, |2⟩ = |10⟩, and |3⟩ = |11⟩ for A and B bipartitions.
By applying the local Pauli operators X, Z, or combinations of these, we can transform a Bell
state into another. For example,

(I ⊗ Z)
∣∣Φ+〉 (ZX ⊗ I)

∣∣Φ+〉 →
∣∣Φ−〉 ∣∣Ψ−〉 . (2.13)

Thus, we can find 16 different transformations that give us 16 orthogonal Bell states that form
a basis for d = 4

∣∣Ψ±〉 ∣∣Ψ±〉 = 1
2(|0⟩A |1⟩B ± |1⟩A |0⟩B)(|1⟩A |0⟩B + |0⟩A |1⟩B),∣∣Φ±〉 ∣∣Φ±〉 = 1
2(|1⟩A |1⟩B + |0⟩A |0⟩B)(|1⟩A |1⟩B + |0⟩A |0⟩B),∣∣Ψ±〉 ∣∣Φ±〉 = 1
2(|0⟩A |1⟩B ± |1⟩A |0⟩B)(|1⟩A |1⟩B + |0⟩A |0⟩B),∣∣Φ±〉 ∣∣Ψ±〉 = 1
2(|1⟩A |1⟩B + |0⟩A |0⟩B)(|0⟩A |1⟩B ± |1⟩A |0⟩B). (2.14)

Nevertheless, this is not the only way to define Bell states for higher dimensions. We could
apply the following local transformation over (2.12) also when d = 4

Xm |j⟩d → |j ⊕m⟩ , (2.15)

Zn
d |j⟩ → ωjn

d |j⟩ , (2.16)

with ωjn
d = ei 2π

d jn and ⊕ the sum modulo d. Using these transformations on state (2.12), we
can have a set of maximally entangled Bell states of the form

|Bn,m⟩ = 1√
d

d−1∑
j=0

ei 2π
d jn|j⟩A|j ⊕m⟩B , (2.17)
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2.3.2 Mutually Unbiased Bases

Two orthonormal bases {|e1⟩ , ..., |ed⟩} and {|f1⟩ , ..., |fd⟩} in a Hilbert space H = Cd are called
mutually unbiased bases (MUBs) if they satisfy

| ⟨ei| fj⟩|2 = 1
d
, (2.18)

for all i, j ∈ {1, ..., d}. In general, for such d dimensional Hilbert space H, we have d+ 1 MUBs
whenever d is a prime power [46]. Therefore, for d = 4, there are five mutually unbiased bases
of the form

M0 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, (2.19a)

M1 =
{

1
2(1, 1, 1, 1), 1

2(1, 1,−1,−1), 1
2(1,−1,−1, 1), 1

2(1,−1, 1,−1)
}
, (2.19b)

M2 =
{

1
2(1,−1,−i,−i), 1

2(1,−1, i, i), 1
2(1, 1, i,−i), 1

2(1, 1,−i, i)
}
, (2.19c)

M3 =
{

1
2(1,−i,−i,−1), 1

2(1,−i, i, 1), 1
2(1, i, i,−1), 1

2(1, i,−i, 1)
}
, (2.19d)

M4 =
{

1
2(1,−i,−1,−i), 1

2(1,−i, 1, i), 1
2(1, i,−1, i), 1

2(1, i, 1,−i)
}
, (2.19e)

where the elements of Mi are the vectors of the basis.

2.4 Measurements

Quantum measurements are described by a collection {Mm} of measurement operators acting
on the Hilbert space of the system being measured. These operators satisfy the completeness
relation

n∑
m=1

M†
mMm = I, (2.20)

where the index m refers to the measurement outcomes that may occur in the experiment. If
the state of the quantum system is |ψ⟩, the probability of obtaining the outcome labeled by m
immediately before the measurement is

p(m) = ⟨ψ|M†
mMm |ψ⟩ , (2.21)

and the state of the system immediately after the measurement is

|ψm⟩ = Mm |ψ⟩√
⟨ψ|M†

mMm |ψ⟩
. (2.22)

Instead, if the state of the quantum system is a density matrix ρ, the probability of obtaining
the outcome m is

p(m) = tr(M†
mMmρ), (2.23)
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and the state immediately after the measurement is

ρm = MmρM
†
m

tr(M†
mMmρ)

. (2.24)

From the previous results, we can notice that in quantum mechanics, we can only probabilistically
predict the outcome of the measurement, and furthermore, by the act of measuring, we perturb
the state of the system. This is one of the main differences with classical mechanics, where we
can typically predict the measurement outcomes with certainty, and the physical properties of
the system can, in principle, be left unperturbed by the measurement process.

2.4.1 Projective measurements

The simplest type of measurement is the projective measurement, which is defined by a Hermitian
operator O called observable. This operator has a spectral decomposition

O =
∑
m

pm |m⟩ ⟨m| , (2.25)

where Pm = |m⟩ ⟨m| is a projector, and |m⟩ and pm are the respective eigenvectors and
eigenvalues of the operator O. In addition to being Hermitian, projectors are idempotent
(P 2

m = Pm) since the eigenstates |m⟩ are orthogonal. In this way and according to (2.23), the
probability to obtain an outcome pm upon measuring the state ρ = |ψ⟩ ⟨ψ| is

p(m) = tr{P †
mPmρ} (2.26a)

= tr{Pmρ} (2.26b)

= ⟨m| ρ |m⟩ , (2.26c)

and recalling (2.24) the state after the measurement is ρm = |m⟩ ⟨m|.

2.4.2 Bell-state Measurement

An important projective measurement is those performed on the Bell basis, the so-called Bell state
measurement (BSM). This type of measurement is crucial for many quantum communication
protocols and quantum information tasks such as quantum teleportation [1, 47, 48], super
dense coding [35, 49], quantum repeaters [50, 51], quantum target detection [52], entanglement
swapping [53], and quantum computing [54].

As a simple example to illustrate the importance of BSM, we can study their usefulness
in the entanglement swapping protocol. Let’s consider that Alice has the state |Φ+⟩AC , and
Bob has |Φ+⟩BD. Each one sends one of their photons to a BSM that performs a projective
measurement onto one of the entangled Bell states. For the sake of simplicity, consider that the
result corresponds to the projection given by ΠCD = |Φ+⟩CD ⟨Φ+|CD, as is shown in Figure 2.1.
The state of the unmeasured photons is equal to

ρAB = trCD{ΠCD

∣∣Φ+〉
AC

∣∣Φ+〉
BD

〈
Φ+∣∣

AC

〈
Φ+∣∣

BD
} =

∣∣Φ+〉
AB

〈
Φ+∣∣

AB
. (2.27)
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Figure 2.1: Illustration of the entanglement swapping protocol. Alice and Bob have a
pair of entangled photons in the partitions {A,C} and {B,D}, respectively. Each one sends
one of its photons to a BSM. As a result, the two unmeasured photons, that were produced
independently and have never interacted before, are now entangled. Source: made by the author.

As we can see, the resulting unmeasured photons produced independently and never previously
interacted are now entangled thanks to the BSM.

A device that contains all the BSM for a given dimension is called a Bell-state analyzer
(BSA), and ideally, it can distinguish any arbitrary Bell state as input. Further on in chapter 5
of this thesis, we will study a BSA in dimensions 2 and 4.

2.5 Fidelity

A common measure of closeness between quantum states is fidelity. In general, for two density
operators acting on the same Hilbert space, the fidelity is given by

F (ρ, σ) =
(

tr
√√

ρσ
√
ρ

)2
. (2.28)

Some of the important properties of quantum state fidelity are:

a) (Bounded values) F (ρ, σ) ∈ [0, 1]. Note that F (ρ, σ) = 1 if and only if ρ = σ.

b) (Simplified expression) If σ represent a pure state, σ = |ψσ⟩ ⟨ψσ|, then the fidelity can be
calculated as

F (ρ, σ) = ⟨ψσ|ρ|ψσ⟩. (2.29)

c) (Symmetry) F (ρ, σ) = F (σ, ρ).
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2.6 Measure of Quantum Correlations

Quantification of quantum correlations present in a quantum state is important to understand
and efficiently use the state for quantum information protocols. Here we introduce three measures
for correlations, the first two for entanglement and the third one for non-classical correlations in
general.

2.6.1 Negativity and Logarithmic Negativity

In particular, negativity is a measure of bipartite quantum entanglement. It was derived from
the positive partial transpose (PPT) criterion for separability [55]. Negativity for a subsystem
A is defined as

N (ρ) ≡
∥∥ρΓA

∥∥
1 − 1

2 , (2.30)

and vanishes for unentangled states [56]. Here ρΓA is the partial transpose with respect to
the part A of the bipartite quantum state, and ∥X∥1 = tr{

√
X†X} is the trace norm. For a

separable state ρ acting on HA ⊗ HB the partial transpose of ρ with respect the subsystem A is

ρΓA := (I ⊗ T )(ρ) =
∑
ijkl

pij
kl(|i⟩⟨j|)

T ⊗ |k⟩⟨l| =
∑
ijkl

pij
kl|j⟩⟨i| ⊗ |k⟩⟨l|. (2.31)

According to Ref. [57], a more easily interpreted and useful quantity is given by the logarithmic
negativity, defined as follows

LN(ρ) = log2 ||ρΓA ||1. (2.32)

2.6.2 Quantum Discord

Two systems are correlated if together they contain more information than when we treat them
separately. This intuitive definition is formally captured by mutual information. For two classical
systems with random variables A and B, the mutual information is

I(A : B) = H(A) +H(B) −H(A,B), (2.33)

where the Shannon entropy is denoted by H(A) = −
∑

a p(a) log p(a) which describes the
ignorance about the random variable A with values a occurring with probability p(a), while
H(A,B) is the Shannon entropy of the joint probability distribution p(a, b). According to Fig.
2.2, mutual information can be also written as

J(A : B) = H(A) −H(A|B), (2.34)

with H(A|B) =
∑

b p(b)H(A|B = b) being the Shannon entropy of A conditioned on the
measurement of B, i.e, the random variable A depends upon the measurement B and the
resulting outcome b. Note that both descriptions for the mutual information, (2.34) and (2.33),
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Figure 2.2: Venn diagram to show how different measures of information associated
with the correlated variables A and B are related. The circle on the left (red and violet)
is the Shannon entropy H(A), with the red being the Shannon conditional entropy H(A|B).
The circle on the right (blue and violet) is the Shannon entropy H(B), with the blue being
H(B|A). The area contained by both circles is the Shannon joint entropy H(A,B), and the
intersection (violet area) is the mutual information I(A : B). Source: made by the author.

are equivalent.

For quantum systems, we replace the classical probability distributions by the density
matrices of two parties ρA, ρB and ρAB, the Shannon entropy by the Von Neumann entropy
S(ρ) = −tr{ρ log(ρ)}, and the conditional Shannon entropy by the conditional Von Neumann
entropy S(ρA|ρB). Thus, we can define the quantum mutual information and its alternative
version, analogous to (2.33) and (2.34) as follows

I(ρ) = S (ρA) + S (ρB) − S(ρAB), (2.35)

JA(ρ) = S (ρB) − S (ρA|ρB) . (2.36)

Contrary to the classical case, equations generally (2.35) and (2.36) differ when the systems
involved share quantum correlations since measurements of B giving an outcome b can perturb
the states of A. The difference between these two quantities defines quantum discord [58]

DA(ρ) = I(ρ) − JA(ρ). (2.37)

Note that JA represents the part of the correlations that can be attributed to classical correlations,
and these depend on the eigenbasis in which we are measuring. To ensures that JA captures all
classical correlations independently of the measurement, it is necessary to maximize over the set
of all possible projective measurements {PA

j }

DA(ρ) = I(ρ) − max
{P A

j
}
J(ρ){P A

j
}. (2.38)
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This definition of Quantum discord can be interpreted as the minimal loss of classical correlations
due to the local projective measurements.

Quantum discord has the following properties [59]:

a) It is not symmetric, i.e., in general, DA ̸= DB, which is expected since the conditional
entropy is not symmetric.

b) For pure states, it is a measure of entanglement.

c) Is non-negative, DA ≥ 0.

d) Is invariant under local unitary transformations, since ρAB = (UA ⊗ UB)ρAB(UA ⊗ UB)†.

e) Discord is bounded from above as DA ≤ S(ρA), while JA ≤ min{S(ρA), S(ρB)}.

f) Discord vanishes, DA = 0, if and only if the state is classical-quantum (see below).

A bipartite state ρAB is classical-quantum (CQ) like (or quantum-classical when A exchanges
roles with B) if it can be written as

ρAB =
∑

i

pi |ψi⟩ ⟨ψi| ⊗ ρi, (2.39)

where {|ψi⟩} is an orthonormal basis, {pi} is a probability distribution, and ρi are the quantum
states in B [60]. Then, the CQ states have zero discord because there always exists a von
Neumann measurement {Pi = |ψi⟩ ⟨ψi|} such that

∑
i

(Pi ⊗ IB)ρAB(Pi ⊗ IB) = ρAB . (2.40)

So the measurement on A does not perturb the state [59].

2.6.3 Geometric quantum discord

As one might guess, evaluation of the quantum discord in the form of eq. (2.38) in general
requires considerable numerical minimization. An analytical expression of this correlation
quantifier was derived by Dakic et al. [61] for a two-qubit case. They begin by proposing the
following geometric measure of quantum discord

D(ρ) = min
χ∈Ω0

∥ρ− χ∥2, (2.41)

where Ω0 denotes the set of zero-discord states and || · ||2 = Tr(·)2 is the square norm in
the Hilbert-Schmidt space. We can see that the last two definitions of quantum discord are
similar in the sense that both seek to minimize the discord, whether over a set of states or
measurements. Definition (2.38) does this by maximizing JA over a set of measurements, and
(2.41) does it by minimizing the distance between ρ and a set of zero-discord states Ω0.
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Hence, in the particular case where our state is composed of two qubits with Hilbert
space HA = HB = C2, we can write the density matrix ρ in its Bloch representation [62]:

ρ = 1
4

I2 ⊗ I2 +
3∑

i=1
ri

Aσi ⊗ I2 +
3∑

i=1
ri

BI2 ⊗ σi +
3∑

i,j=1
Cijσi ⊗ σj

 , (2.42)

where I2 is the 2 × 2 identity matrix, the vectors ri
A = tr{ρ(σi ⊗ I)} and ri

B = tr{ρ(I ⊗ σi)} are
components of the local Bloch vectors, Cij = tr{ρ(σi ⊗ σj)} is the correlation tensor, and σi are
the Pauli matrices. Then, taking into account a zero-discord state of the form

χ = p1|ψ1⟩⟨ψ1| ⊗ ρ1 + p2|ψ2⟩⟨ψ2| ⊗ ρ2, (2.43)

and further calculations detailed in [61], we will have that equation (2.41) can be also written as

D(ρ) = 1
2(∥r⃗A∥2 + ∥Cij∥2 − kmax), (2.44)

with kmax the largest eigenvalue of the matrix K = r⃗Ar⃗
T
A + CCT . So, this expression can be

easily calculated analytically whenever we can write the state in its Bloch representation.
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Chapter 3

Quantum Information with Fiber
Devices

We can use different physical systems to encode quantum information [8]. Some of these are
photons [9], atoms [63], nuclear spin [64], electron spin systems [65], Josephson junctions and
superconducting devices [66]. However, photons stand out as an effective system to process and
encode information since they are transportable and propagate fast, are easy to manipulate,
and do not interact with the environment, which implies high coherence [9].

To work with photons, there are many degrees of freedom (dof) to encode the information. On
the one hand, we could use polarization, but it is limited to dimension two, so it is commonly used
to generate qubits [67]. On the other hand, for higher dimensions, we could use orbital angular
momentum (OAM), which is used for experiments of high-dimensional entangled states with
spontaneous parametric down-conversion (SPDC) [18, 68, 69]. For the generation and measure
of OAMs, there are commercially available spatial light modulators. However, they cannot
propagate in single-mode fibers (only multimode, which has high losses compared to SMF), so
they are not yet so useful for quantum communications with the current fiber technology [16].
Another option is to encode photons in linear momentum dof, i.e., in the propagation direction
of the photon. This “path-encoding” is more convenient if we want to work with optical fibers.
As we increase the path modes, we also increase the dimension of our system, as we will see below.

In this chapter, we first show in section 3.1 how to transmit photonic quantum states in
optical fiber, focusing on multicore fibers. Then in section 3.2 we present the central device of
this thesis, the 4 × 4 multicore fiber beam splitter. Finally, in section 3.3, we show the second
quantization formalism that will help us to work more efficiently with the states that will be
input to the 4 × 4 beam splitter.
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3.1 Transmission of Photonic Quantum States

One way to send photons encoded in path information from one place to another is through an
optical fiber, which is a waveguide made of materials that have low-loss [70]. Nowadays, the
most commonly used fibers are single-core fibers, like the one shown in Fig 3.1. The cladding
covers the core, which has a slightly lower refractive index. This characteristic allows the light
to be confined within the core due to the total internal reflection along the direction of the fiber
axis. The number of modes M supported by a single-core fiber is restricted by the parameter

V = 2π
(a
λ

)
NA, (3.1)

that depends on the radius of the core a, the numerical aperture of the fiber NA and the
wavelength λ of the optical field guided by the fiber. When V < 2.405 [70], the number of
allowed modes is reduced to one, and the fiber is then called single-mode fiber (SMF).

Figure 3.1: Structure of a typical a) single-mode and a b) multimode fiber. a) It
is composed of a single-core, with a diameter between 8-10.5 µm, and a cladding generally
made of high-quality silica glass. We have an outer coating and an outer jacket to protect these
components. b) It has the same structure as an SMF, with the core diameter being greater than
50 µm. Source: made by the author.

However, the data rates in single-mode fibers are nearing their physical limits, known as
the "capacity crunch" [10, 11]. For this reason, an important goal in telecommunications is to
increase the transmission capacity of optical channels. One promising solution to this problem
is the use of multicore optical fibers (MCF) [12]. It is a fiber with multiple cores embedded in a
common cladding. Each core is propagated a single mode of light, and it has been shown that
the relative phase fluctuations between quantum states propagating in different cores are much
more stable and less than for multiple single-mode fibers [13, 14, 15].

An example of a four-core fiber (4CF) is shown in Fig. 3.2. Here, the distance between
the closest cores is 50µm, a sufficient distance so that there is no coupling among them. This
characteristic allows the spatial mode of each fiber to be treated independently. So, in general,
a MCF can be used to propagate qudits states. If we send one photon through a MCF with d
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Figure 3.2: Illustration of a multicore optical fiber. The same cladding contains four
independent cores, in which only the fundamental mode can be transmitted. Source: taken from
[28].

cores, the resulting qudit will be

|Ψ⟩ =
d−1∑
i=0

pi |i⟩ , (3.2)

where the index indicates the ith core mode through which the photon is propagating. For two
photons that are sent by two different cores of the MCF, the state will be

|Ψ⟩ =
d−1∑

i,j=0
(i ̸=j)

pij |i⟩ |j⟩ , (3.3)

and so on. In the case of sending a photon through a 4CF, the state produced is a ququart (see
eq. (2.3)).

3.2 Multicore Devices

We already mentioned that MCFs could be a possible solution for the transmission capacity in
telecommunications. However, these types of fibers promise to have an even more significant
impact on photonic quantum information protocols [16], and optical devices compatible with
MCFs are needed for its implementation.

The first device is the multiplexer (MUX), which involves a group of SMF, each connected
to a single core of the MCF. In this way, the MUX makes it possible to send light from standard
SMF into MCF and vice versa. Moreover, it allows the independent control of each of the MCF
cores. An example of a MUX for a 4CF is shown in Fig. 3.3.

Another novel device is the multicore fiber beam splitter (MCF-BS). It is produced directly
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Figure 3.3: Multiplexer device. Single-mode to multicore fiber multiplexer device. Source:
taken from [71].

Figure 3.4: Illustration of a 4×4 multicore fiber beam splitter. Source: taken from [28].

from a MCF using a tapering technique [72], which consists of locally heating a small transverse
area of the fiber with length L. At the same time, a symmetrical longitudinal tension is applied.
Due to the stretching tension, the fiber will become thinner with a final diameter of D at the
center of the heated zone. Consequently, the cores become closer together, and light leaks from
one core to the others due to evanescent effects.

In particular, for this thesis, we will work with a 4x4 multicore fiber beam splitter (4CF-BS)
shown in Fig. 3.4. This device was fully characterized in Ref. [28], where it was shown
experimentally and with a quantum tomography process that the unitary matrix that describes
the multiport device is

B4 = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (3.4)

Furthermore, the split ratio between the cores is approximately 25%, allowing high-quality
second-order [23, 25, 28] and fourth-order [71] interference.
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3.3 Quantum States of Light in Fiber

As we presented at the beginning of this thesis, the main resource of this work is the two-photon
interference in a 4CF-BS. However, the representation of the state in (3.3) is not the most
convenient to use in this context since, for indistinguishable particles, this formalism is redundant,
and symmetrization (or anti-symmetrization) must be introduced to eliminate this redundancy.
A simpler and more precise description is that of second quantization. In this formalism, the
states are represented by the Fock states or photon number state |n⟩, which form a complete
basis in a Hilbert space, known as Fock space.

In general, n photons in an arbitrary jth spatial mode of the fiber can be written as

(a†
j)n |0⟩ =

√
n! |n⟩j , (3.5)

where a† is the bosonic creation operator acting on the jth mode, and |0⟩ is the vacuum state.
The Fock state is an eigenstate of the number operator n̂ = a†â, with â being the annihilation
operator, such that

n̂ |n⟩ = n |n⟩ , n ∈ R. (3.6)

These states are mutually orthogonal ⟨m|n⟩ = δmn, and they form a complete set of orthonormal
states, i.e.,

∑∞
n=0 |n⟩ ⟨n| = I.

For bosons, both creation and destruction operators obey the following canonical commutation
relations

[ai, a
†
j ] = δij , (3.7)

[ai, aj ] = [a†
i , a

†
j ] = 0, (3.8)

and they act on the state |n⟩ as

a† |n⟩ =
√
n+ 1 |n+ 1⟩ , (3.9)

a |n⟩ =
√
n |n− 1⟩ . (3.10)

Note that eq. (3.10) is the particular case when n = 1 in eq. (3.5). Another observation is that
the state in eq. (3.3) can also be written with the second quantization formalism, such as

|Ψ⟩ =
d−1∑

i,j=0
(i ̸=j)

pij |1⟩i |1⟩j =
d−1∑

i,j=0
(i ̸=j)

pija
†
i |0⟩ a†

j |0⟩ . (3.11)

Theoretically, we can describe any unitary transformation in Fock space with quantum
mechanics. However, in this thesis, we are especially interested in working on quantum
information with indistinguishable photons and linear optics. In this context, the evolution of
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Figure 3.5: Distribution p(n) for a coherent state at different |α|2. Source: made by
the author.

the creation operators will be given by a m×m unitary matrix U such as [73]

a⃗†
out = Ua⃗†

in, (3.12)

where a⃗†
in/out = (a†

1, ..., a
†
m)T . However, it is difficult to generate pure Fock states for practical

purposes. Stable lasers are generally used for experiments using photons. The states that
describe the light produced by a laser are coherent states |α⟩, which are eigenstates of the
annihilation operator

â |α⟩ = α |α⟩ , (3.13)

with α being a complex amplitude. Coherent states can also be written in the Fock basis as
follows

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ . (3.14)

Then the probability p(n) that a coherent state contains n photons is

p(n) = e−|α|2 |α|2n

n! , (3.15)

which is a Poissonian distribution, so we find that the mean photon number is ⟨n⟩ = |α|2, and
the uncertainty is equal to ∆n = |α|. So we can rewrite equation (3.16) as

p(n) = e−⟨n⟩ ⟨n⟩n

n! . (3.16)
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This distribution heavily depends on the value of |α|2, as shown in Fig. 3.5. When |α|2 ≥ 1, the
distribution is symmetric and resembles a normal distribution. In this limit, one can even make
a Gaussian approximation for a distribution centered in |α|2 and with width |α|. On the other
hand, when |α|2 ≤ 1, we have an asymmetric distribution weighted heavily towards the lower
values of n. In the latter limit, the states are called weak coherent states and can be viewed as
an approximation to a superposition of a few Fock states, say from zero to three photons, since
the probability of having a larger number decays drastically.
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Chapter 4

Maximazing Quantum Discord

Using classical weak coherent states as inputs as telecom wavelengths, we study fourth-order
interference in a 4 × 4 multi-port beam splitter and show that quantum correlations, in the
form of geometric quantum discord, can be controlled and maximized by adjusting the intensity
ratio between the two inputs. Though discord does not imply entanglement [58], recent studies
have shown that it plays an important role in quantum tasks such as quantum computing [40],
remote state preparation [41], quantum cryptography [42], quantum illumination and metrology
[43, 44]. A more comprehensive review of discord and its relation to quantum phenomena and
protocols can be found in Refs. [59, 74, 75].

The novelty of this work is two-fold. The first aspect is based on the use of the 4CF-BS. To
our knowledge, there have been very few single-photon experiments using this device [23, 25, 28].
Moreover, experiments using more than one photon have only been reported once before [26].
Thus, our study of two-photon interference with weak coherent states is novel in this regard, as
it used this new device completely compatible with multi-core fiber infrastructure and that has
not been widely considered for quantum information technology.

Secondly, while there are already experiments producing quantum discord from the
interference of coherent states at a 2 × 2 beam splitter (Ref. [38]), as far as it is known this
experimental scheme has not been investigated any further. For example, how can one control
the amount of discord, or the type of states produced? Here we provide some answers to these
questions by showing how one can manipulate the input state to the beam splitter to maximize
the discord. To the best known, this is the only way to increase discord without altering the
Poissonian statistics of the input states.

The results of this work have been reported in npj Quantum Inf 7, 172 (2021) [71].
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4.1 Experimental Setup

We constructed an experimental setup shown in Fig. 4.1. We start with a continuous wave
laser of wavelength λ = 1546nm, that is coupled through a SMF to a lithium niobate (LiNbO3)
intensity modulator (IM), producing a train of 5 ns width quasi-Gaussian pulses at a repetition
rate of 2.78 MHz. The pulses are attenuated and sent into a SMF 50/50 fiber beam splitter (BS0),
obtaining two weak coherent states (WCS) (see Section 3.3). These pulses were attenuated in
order to have an average photon number of |α|2 = 0.46 at the detectors. This implies that 36.9%
of the pulses will have one or more photons. Of these non-vacuum events, 78.8% correspond to
pulses containing only a single photon, 18.1% to two photons, and only 3% to more than two
photons (see eq. (3.16)).

One of the outputs of the BS0 is connected to a polarizer controller (PC), which is used
to set the polarization between the pulses. In the other output of the BS0 we have a 72 m
fiber roll which adds a delay to one of the pulses with respect to the other1. Since the relative
delay is much greater than the coherence length of the laser, the WCSs are mutually incoherent
when they overlap at the 4CF-BS. In this way, single photons do not interfere with themselves,
so we ensure that there is no second-order interference. However, fourth-order (two-photon)
interference can occur when photons reach the inputs i1 and i3 of the 4CF-BS through MUX1.
The 4CF-BS and MUX were well described in Section 3.2.

Figure 4.1: Illustration of the experimental setup. Weak coherent pulses interfere
incoherently on a four-core fiber beamsplitter. CW: continuous wave laser, IM: intensity
modulator, Att: attenuator, BS: single-mode fiber 2 × 2 beamsplitter, PC: polarizer controller,
MUX: fiber multiplexer for single-core SMF fiber to multi-core fiber and vice versa, 4CF-BS:
four-core fiber beamsplitter, PM: phase modulation, FG: function generation, Dj : triggered
single photon detector (j=0,1,2,3), FPGA: field programmable gate array device.

The four cores of the 4CF-BS are separated into four outputs through a MUX2, which are
connected to two independent SMF-based two-arm interferometers. Polarization-noise in the

1Photons are delayed 5 ns every 1 m of fiber, so 72 m are equivalent to a delay of 360 ns.
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SMF decreases the quality of overlap in each output BS and therefore reduces the visibility of
fourth-order interference. To delete polarization information [76, 77], two additional PCs are
used in outputs o1 and o2. The interferometers are also phase-controlled with fiber-coupled
LiNbO3 phase modulators (PM0 and PM1), which are used to make measurements on differents
basis. The PM0 is driven by a field programmable gate array (FPGA), while the PM1 is
independently controlled by a simple electrical signal generator, a function generator.

With four triggered single-photon detectors (SPD) we registered coincidence detections for
two-photon events. The SPD were configured with 5 ns detection windows and 10% detection
efficiency. The pulse generation via IM in the WCS source and the triggered measurements at the
SPDs are synchronized by a field programmable gate array (FPGA). Given the pulse generation
rate mentioned at the beginning (for |α|2 = 0, 46), and the detection efficiency of about 25.000
single counts · s−1 are recorded from each SPD. Furthermore, the FPGA is configured to record
all possible two-photon coincidence counts in a 1 ns wide coincidence window, achieving a rate
of ≈ 400 total coincidence counts · s−1.

4.2 Input and Output with Post-Selection

Since we are working with WCS, the mutually incoherent amplitudes obey |α| ≪ 1 and |α′| ≪ 1
(see eq. (3.14)). Ignoring terms containing more than two photons, the input state entering the
4CF-BS can be written as

ρin = N [p2p
′
0 |2, 0⟩ ⟨2, 0| + p0p

′
2 |0, 2⟩ ⟨0, 2| + p1p

′
1|1, 1⟩⟨1, 1|] (4.1)

where pn is the Poisson probability distribution given by the equation (3.16), N is a normalization
constant, and the bras and kets notation refers to input modes i1 and i3. Using the fact that
p2p

′
0 = p2

1/2, we can rewrite (4.1) as

ρin = N ′ (|2, 0⟩
〈
2, 0

∣∣+γ2∣∣ 0, 2〉 ⟨0, 2| + 2γ|1, 1⟩⟨1, 1|
)
. (4.2)

Here the parameter γ = |α|2/|α′|2 is the ratio between mean photon numbers of the input
pulses. Without loss of generality, we consider the range 0 ≤ γ ≤ 1, as γ > 1 can be handled by
simply interchanging α and α′. Be aware that the parameter γ will take an important role
during this chapter.

To calculate the output modes of the 4CF-BS we use a Python script (see Appendix A1)
where we transform each component using

a⃗out = B4a⃗in (4.3)

with B4 given by equation (3.4) and a⃗in/out = (â†
0, â

†
1, â

†
2, â

†
3)T . For the two-photon state

|2, 0⟩ = â†
1 |0, 0⟩ /

√
2 the field operators transform as

(â†
1)2 → 1

4(â†
0 + â†

1 − â†
2 − â†

3)2. (4.4)
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Here and below we omit the subscripts “in”, to the left, and “out”, to the right. For the state
|0, 2⟩ = (a†

3)2 |0, 0⟩ /
√

2 we have

(a†
3)2 → 1

4(â†
0 − â†

1 − â†
2 + â†

3)2. (4.5)

Finally, for the state |1, 1⟩ = a†
1a

†
3 |0, 0⟩ we have the following expression

a†
1a

†
3 → 1

4(â†2
0 − â†2

1 + â†2
2 − â†2

3 − 2a†
0a

†
2 + 2a†

1a
†
3). (4.6)

Since photons are indistinguishable2, when they enter by different modes, it is not possible
to identify which of the two followed a certain path. Then the two photons interfere at the
4CF-BS, which explains the absence of the terms a†

0a
†
1, a†

0a
†
3, a†

1a
†
2 and a†

2a
†
3 in eq. (4.6), as

they vanish due to destructive interference. This does not occur in terms (4.4) and (4.5), since
it is possible to determine which direction the photons followed. We also study two-photon
interference experimentally in Section 4.3.

Using the above transformations on the input state (4.2), the output state will be given by a
10 × 10 density matrix. The elements of the output matrix are given by all possible combinations
of two-photon states coming out from the four output cores of the 4CF-BS. For example, state
|2000⟩ corresponds to two photons in output mode 0, state |1010⟩ to one photon in mode 0 and
one photon in mode 2, state |0020⟩ to two photons in output mode 2 and so on. The complete
density matrix was calculated with a Python program (see Appendix A2), such as

ρout = 1
8
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

. (4.7)

The output state depends explicitly upon the ratio γ between mean photon numbers in the
input WCSs such as t = (1 + 4γ + γ2)/(1 + γ)2, u = (1 − γ)/(1 + γ), v = (1 − 4γ + γ2)/(1 + γ)2

and w = (1 + γ2)/(1 + γ)2.

2For two photons to be indistinguishable, they must have the same characteristics, such as polarization, wavelength,
and temporal and spatial length
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4.3 Fourth-Order Interference

An analytical way to study fourth-order interference is by considering equal intensity WCSs so
that γ = 1. Thus, the output state will look like

1
16



3
2 − 1

2
3
2 − 1

2 0 − 3√
2 0 0 1√

2 0
− 1

2
3
2 − 1

2
3
2 0 1√

2 0 0 − 3√
2 0

3
2 − 1

2
3
2 − 1

2 0 − 3√
2 0 0 1√

2 0
− 1

2
3
2 − 1

2
3
2 0 1√

2 0 0 − 3√
2 0

0 0 0 0 1 0 −1 −1 0 1
− 3√

2
1√
2 − 3√

2
1√
2 0 3 0 0 −1 0

0 0 0 0 −1 0 1 1 0 −1
0 0 0 0 −1 0 1 1 0 −1

1√
2 − 3√

2
1√
2 − 3√

2 0 −1 0 0 3 0
0 0 0 0 1 0 −1 −1 0 1



(4.8)

Then, the probabilities Pjk to detect one photon in an output core j and the other in an output
mode k, with j < k, are P01 = P03 = P12 = P23 = 1/16 and P02 = P13 = 3/16. Note that these
probabilities correspond to the diagonal elements of the 6 × 6 block in the lower right of the
density matrix in eq. (4.8). To verify that these values correspond to two-photon interference,
we can study the case of distinguishable photons. So instead of having 10 events with different
probabilities, we will have 16 events equally likely. Then, the case in which one photon outputs
mode j and the other outputs mode k, and the event in which the opposite occurs, add up to a
probability of 1/8. Comparing the indistinguishable and distinguishable cases, we can state that
events with Pjk = 1/16 < 1/8 correspond to interference minima (destructive interference), and
those with Pjk = 3/16 > 1/8 to interference maxima (constructive interference).

In the following, we study two-photon interference experimentally. For this, we review
the visibility V, which is a measure that helps us to quantify the quality of the interference. In
the case of WCS, the predicted visibility is

V = max − min
max + min ≤ 1

2 , (4.9)

which gives a classical limit for fourth-order interference. In the case of quantum mechanics, unit
visibility is achievable in principle with a pair of input Fock states. Therefore, an observation of
larger than 50% visibility corresponds to nonclassical behavior [78, 79].

So in our setup, fourth-order interference was explored by rotating the polarization of the
input mode i3 with the first fiber PC in the WCS source (see Fig. 4.1). Thus, we can change
continuously between distinguishable and indistinguishable photons. We can define the output
probability as a function of a distinguishability parameter θ related to the overlap between
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Figure 4.2: Experimental results showing interference of mutually incoherent WCSs
at a 4CF-BS. a) Single count probabilities remain unchanged under variation of polarization
states. b) Coincidence count probabilities Pjk between detectors Dk and Dj showing interference
of mutually incoherent WCSs at a 4CF-BS. Constructive and destructive fourth-order interference
can be observed in the coincidence probabilities between pairs of detectors as a function of
the orthogonality of the polarization states, while the single count probabilities (top) remain
unchanged. Error bars (smaller than symbols) correspond to Poissonian count statistics. The
solid gray curves represent the gaussian curve that fits experimental data.

polarization states. Then we have

Pjk = 1
8(1 ± Vf(θ)), (4.10)

where the plus (minus) sigh refers to constructive (destructive) interference and f(θ) describes
the overlap between the polarization states of the two input WCSs. In these measurements,
the four SMFs of the MUX2 were directly connected to the SPDs. In Fig. 4.2b are shown
the Coincidences counts Cjk between detectors Dj and Dk were recorded as a function of θ.
When the polarization states are orthogonal, photons are distinguishable, and all combinations
of coincidence counts have the same count rates. However, when the polarization is parallel,
two-photon interference occurs, resulting in an increase in coincidence counts C02 and C13, and
suppression of the coincidences at other detector pairs. In Fig. 4.2a the single counts at each
detector are shown, which remain constant as the polarization is varied. This confirms that the
behavior of the coincidence counts is due to fourth-order interference and not due to an increase
or decrease of single counts. For time integrations of 10s, and using the average values at the
interference maximum and minimum, we obtain visibility of V = 0.48 ± 0.02. In this way, the
near-perfect visibility shows that we have high-quality fourth-order interference and serves as a
benchmark for the quality of the 4CF-BS.
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4.4 Post-Selected Bipartite State

As an application of two-photon interference at the 4CF-BS device, we now study the bipartite
quantum correlations that can be produced. To do so, we divide the output modes into two
partitions; A ∈ {o0,o1} and B ∈ {o2,o3}. Hence we only consider events where one photon is
detected in portion A and the other in partition B.

Following the results from section 4.2, and the total density operator given in (4.7), the
post-selected bipartite density operator is

ρ(γ)AB = 1
4


t u u v

u w w u

u w w u

v u u t

 , (4.11)

which corresponds to the ρij
out elements with i, j = 6, 7, 8, 9. Note that normalization requires

t + w = 2 (see section 2.1). Therefore, the output state depends explicitly upon the ratio γ
between mean photon numbers in the input WCSs.

The purity is given by tr{ρ(γ)2
AB} = (1 + 4γ2 + γ4)/(1 + γ)4, and reaches a minimum value

of 3/8 when γ = 1, i.e, when the WCSs have equal intensity. For this specific value of γ, the
post-selected matrix results in

ρ(1)AB = 1
8


3 0 0 −1
0 1 1 0
0 1 1 0

−1 0 0 3

 . (4.12)

This state is diagonal in the Bell-state basis

ρ(1)AB = 1
4
(∣∣Φ+〉 〈Φ+| + 2|Φ−〉 〈Φ−| + |Ψ+〉 〈Ψ+∣∣) , (4.13)

and it is an example of the so-called "X” state, which has been widely studied in the literature
[80, 81, 82]. The reduced density matrices for the state in (4.13) are maximally mixed,
ρA = ρB = I/2.

Returning to the general case, the post-selected output state ρ(γ)AB , despite being separable,
displays quantum correlations. To evaluate these correlations, we use the geometric discord D
[61], since it can be calculated without numerical optimization, and can be directly related to
figures of merit of quantum tasks [41]. As we saw in section 2.6.3, it is useful to write the state
(4.11) in its Bloch representation, such as

ρ(γ)AB = 1
4

I2 ⊗ I2 + uσx ⊗ I2 + uI2 ⊗ σx +
∑

j

Cjjσj ⊗ σj

 . (4.14)

Here the local Bloch vectors are r⃗A = r⃗B = (u, 0, 0) and the nonzero elements of the correlation



4.4. Post-Selected Bipartite State 28

Figure 4.3: Theoretical geometric quantum discord. It reaches a maximum for γ ≈ 0.435
when the two input WCSs have unequal intensities.

matrix between the qubits are

Cxx = 1
2(w + v), (4.15a)

Cyy = 1
2(w − v), (4.15b)

Czz = 1
2(t− w). (4.15c)

Recalling the definitions of w, v and t, it is easy to see that Cxx = u2 and Cyy = Czz. As a last
step, we need to find the maximum eigenvalue of the matrix K = r⃗Ar⃗

T
A + CCT , which is

K = 1
4


4u2 + (w + v)2 0 0

0 (w − v)2 0
0 0 (t− w)2

 , (4.16)

with eigenvalues k1 = Cxx + C2
xx and k2 = k3 = C2

yy, therefore kmax = max[Cxx + C2
xx, C

2
yy].

Following (2.44), the general expression for the geometric quantum discord is

D(γ) = 1
2
(
Cxx + C2

xx + C2
yy + C2

zz − max
[
Cxx + C2

xx, C
2
yy

])
. (4.17)

By plotting this quantity (see figure 4.3), we observe that discord has a maximum value in
D(γ ≈ 0.435) = 0.178, versus D(1) = 0.125 when the intensities of the pulses are equal. As a
reference, for a two-qubit separable state the maximum attainable value is Dmax

sep = 1/4 [83].
From figure 4.3, we can also notice that discord adopts two behaviors before and after the “kink”
in γ ≈ 0.435. It is at this point that there is a change in which argument is maximum for kmax.
This is more clear to see in Fig. 4.4, where for values of γ ≤ 0.435 we have k1 ≤ k2, then

D(γ ≤ 0.435) = C2
yy, (4.18)
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Figure 4.4: Plot to compare the eigenvalues of the matrix K. For values of γ ≤ 0.435
we have k2 ≥ k1 and for the opposite case of γ we have k1 ≥ k2. Note that we have changed the
scales for a better visualization. Made by the author (see Appendix A3).

and for greater values of γ we have k2 ≥ k1, so the geometric discord adopts the form of

D(γ ≥ 0.435) = 1
2(C2

xx + Cxx + C2
yy). (4.19)

Recall that geometric discord is a minimum distance from the state to the entire set of
zero-discord states, i.e, the distance to the closest classical states. Thus, for different values of γ,
the state ρ(γ)AB can be closer to two different classical states. Therefore, the inflection point is
where the state is equidistant to two different states of zero discord. Similar non-analytical
points, corresponding to sudden changes of discord have been studied in the context of quantum
dynamics quantum [84, 85, 86, 87], phase transitions [88, 89], and quantum-classical transitions
[90, 91]. Nevertheless, in our case, the kink appears as a function of the initial conditions γ, and
not by any of these transitions. Implying that we can control the type of state produced using
the intensity ratio γ.

As a final remark, let’s consider the definition of the coherence of a density matrix

Cs = 2| ⟨σ+⟩ | = 2| ⟨σx⟩ + i ⟨σy⟩ |. (4.20)

This can be shown by taking a generic density matrix ρ = |α|2 |0⟩ ⟨0| + λ∗ |0⟩ ⟨1| + λ |1⟩ ⟨0| +
|β|2 |1⟩ ⟨1|, with λ = α∗β. Then, calculating the expectation value of the ladder operator σ+
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with the state ρ, we have

⟨σ+⟩ = tr{ρσ+} = tr
{(

|α|2 λ∗

λ 1 − |α|2

)(
0 1
0 0

)}
= λ. (4.21)

Note that factor two in (4.20) appears only by normalization since using the Cauchy-Schwarz
inequality we have |α∗β|2 ≤ |α|2|β|2 = |α|2(1 − |α|2) ≤ 1/4 ⇒ λ ≤ 1/2. So when the parameter
λ reaches its maximum value, the coherence will be equal to one

Figure 4.5: Theoretical local coherence for S = A,B. The single-qubit coherence decrease
as the intensity mismatch γ goes from 0 to 1.

On the other hand, the reduced density matrices of the output state (4.11) is equal to

ρS = 1
2(I2 + uσx) = 1

2

(
1 u

u 1

)
with S ∈ {A,B}. (4.22)

Then, recalling (4.20), the coherence for ρS is CS(γ) = |u| for each single-qubit. The plot for
the marginals coherences is shown in the Fig. 4.5, where it can be seen that it is a linearly
decreasing function.

4.4.1 Application: Remote State Preparation

In quantum teleportation [1], the goal is to transmit an unknown state from a sender (Alice) to
a receiver (Bob) quantum state. The remote state preparation protocol (RSP) has the same
goal, with the difference that Alice sends a known state, in which it has been shown that the
classical communication costs are less than those of teleportation [92].

A direct application to the states we produce is for the RSP protocol. Looking in the
literature, we notice that the set of states for γ ≤ 0.435 are of the class described by Dakić et.
al [41]. In this paper, they first show that non-zero quantum discord is the necessary resource
for RSP implementation. Secondly, they demonstrate that geometric quantum discord equals
fidelity for this protocol. Finally, they prove that states with quantum discord can outperform
entangled states in this scenario. According to these results, we note that our separable state in
eq. (4.11) achieved a higher discord than the values presented in Ref. [41], so we could achieved
even higher fidelities for RSP.
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4.5 Experimental Evaluation of Quantum Correlations

Our measurement setup allows us to easily estimate local coherences simultaneously with joint
projective measurements. Moreover, following the theoretical model (4.11), the local coherences
are monotonic functions of γ. Thus, for convenience, we experimentally estimated the geometric
discord D as a function of the local coherence CS .

For the measurements, two-arm interferometers were used, where due to the post-selection,
each one corresponds to a subsystem, A and B, with an associated spatial qubit. These
interferometers can perform projective measurements on the local bases composed of eigenstates
of the form

|ϕ⟩ = 1√
2

(|0⟩ ± eiϕ |1⟩), (4.23)

where the state |0⟩ corresponds to the state in the modes {o1, o2}, and |1⟩ corresponds to the
states in the modes {o0, o3}. The measurements are configured by controlling the phase in
each interferometer through PM0 in mode o0, and PM1 in mode o3. In this case, for ϕ = 0 we
project onto the σx eigenstates, while for ϕ = π/2 we project onto the σy eigenstates. So the
two-path interferometers and phase modulators can be used to directly measure ⟨σi⟩S , giving
the single photon coherence CS shown in (4.20), the elements of the correlation matrix Cij for
i, j = x, y, and the first two elements of the Bloch vector r⃗S = (⟨σx⟩ , ⟨σy⟩ , ⟨σz⟩). With this, we
are almost able to estimate the discord experimentally, but the elements that depend on σz are
still missing. On the one hand, considering the near-perfect 25% split ratio of the 4CF-BS and
according to our theoretical model, we can approximate ⟨σz⟩S = 0. Finally, to obtain the full
correlation matrix, we need to include the errors in our setup.

Figure 4.6: Geometric discord D for the post-selected bipartite output state as
a function of the local coherence CS (S = A,B). The dashed gray upper curve is the
theoretical prediction from (4.17). The red and blue points correspond to experimental points
obtained by considering the local marginals coherences of A and B, respectively. The black
curve is a theoretical model taking into account dephasing and polarization mode mismatch.
The experimental error bars were obtained by Monte Carlo simulation of 500 runs obeying the
same Poissonian count statistics.
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The main source of errors in our setup corresponds to changes in the polarization state and
phase fluctuations within the output fibers in the two-arm interferometers used for measurement.
Both of these errors lead to phase damping (dephasing), which does not affect the diagonal
elements of the single photon and two-photon density matrices, and can be modeled by considering
phase damping channels characterized by a parameter δ [93]. The secondary source of error is
the mode mismatch at the 4CF-BS. We modeled mode mismatch by considering an auxiliary
dof of each input mode and then traced them out to obtain the relevant quantum state. With
this, the two-photon density matrix becomes

ρ(γ)AB = 1
4


t′ uδ uδ v′δ2

uδ w′ w′′δ2 uδ

uδ w′′δ2 w′ uδ2

v′δ2 uδ uδ t′

 (4.24)

where t′ =
(
1 + g+γ + γ2) /(1 + γ)2, u = (1 − γ)/(1 + γ), v′ =

(
1 − g+γ + γ2) /(1 + γ)2, w′ =(

1 + g−γ + y2) /(1 + γ)2, w′′ =
(
1 − g−γ + γ2) /(1 + γ)2, and g± = 2(1 ± V) is due primarily

to imperfect polarization mode matching characterized by fourth-order interference visibility
(V = 0.48 ± 0.02) obtained in section 4.3. Here δ is a real parameter that describes the phase
damping (0 ≤ δ ≤ 1) due to fluctuations in the two-arm interferometers.

Measurements with the interferometers are made with respect to zero relative local phases.
That is, we use the local interference maxima at detector D0 for A, and D2 for B to define the
phase origin. We characterized the phase damping due to rapid phase fluctuations and changes
in the polarization state by analyzing the single-photon interference visibility with only a single
WCS input into the setup. We obtained visibilities ∼ 0.9 ± 0.03 in this case (averaged over
roughly one hour), thus giving δ ∼ 0.9. We assume that any additional loss in single photon
coherence is due to bipartite correlations. With this, and using the state (4.11) we find that
Czz ≈ (1 − C̄)/2, where C̄ is the local coherence averaged over system A and B. In addition, we
take Cjz = Czj ≈ 0 for j = x, y, as predicted by the density operator (4.11).

Our experimental results are shown in Figure 4.6. The gray dashed line corresponds to our
theoretical model. Red and blue points correspond to discord calculated using the local marginals
for system A and B respectively. These do not overlap with the ideal theoretical model due to
the experimental imperfections that we already mentioned. The black solid line corresponds to
the model considering phase damping, which is compatible with the experimental points. This
experimental data show that the quantum correlations can be increased by manipulating the
intensity mismatch of the input WCSs.

4.6 Conclusion

We presented results demonstrating fourth-order interference of mutually incoherent classical
laser pulses in a 4 × 4 multi-core fiber beamsplitter device. We observed photon/photon
interference with visibility compatible with the ideal theoretical value. As an implication of
fourth-order interference in this type of multi-port device, we studied post-selected quantum
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discord. We showed that the geometric discord can be maximized by controlling the intensity
mismatch ratio between the input weak coherent pulses.

It has been shown that discord can be an interesting source for quantum information even
when the bipartite state is separable [40, 41]. A particular Werner state is often cited as the
separable Bell-diagonal state with the largest geometric discord of DWerner = 1/9 [59, 61, 75].
Curiously, we note the state produced by two-photon interference with equal intensity WCS
described by our model is also separable, Bell-diagonal, and gives a larger value for geometric
discord D(γ = 1) = 1/8. We note that this state has been previously produced in Ref. [38] in a
similar setup using fourth-order interference. As shown in this chapter, using WCS with different
intensities leads to states that are no longer Bell-diagonal, resulting in an even greater geometric
discord that the two examples mentioned above, achieving a maximum of D(0.435) = 0.178.
Moreover, the set of states ρAB(γ ≤ 0.435) (where incidentally the majority of our experimental
data resides) are of the class described in Ref. [41], for which the geometric discord coincides
with the fidelity gain in RSP protocols. Therefore, our separable state in eq. (4.11) can achieve
even higher fidelities than in [41] for RSP.
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Chapter 5

Four-Dimensional Bell State
Measurement Device

As was mentioned in subsection 2.4.2, measurements in the maximally-entangled basis, the
Bell basis, are fundamental in quantum communication protocols and quantum information
processing. For photonic qubits, these Bell-state measurements (BSM) can be achieved using
two-photon interference [94]. However, a complete Bell state analyzer (BSA), one that identifies
all of the d2 Bell states with 100% efficiency is impossible with linear optical devices alone,
even in theory [95]. Although only a probabilistic BSM is possible, this approach is much more
attractive due to the high efficiency of linear optical components, in contrast to non-linear
optical processes, which have much lower success probabilities [96]. In the two-dimensional case,
achieving a success probability higher than 50% [95] is impossible without auxiliary photons.

Nevertheless, ways to increase the performance of linear optical BSA have been proposed by
increasing the size of the Hilbert space. One approach to discriminate all four 2 × 2 photonic
Bell states is to use additional entanglement in an auxiliary degree of freedom of the photon
pair [36, 97], which is known as hyperentanglement. Another way to increase the size of the
Hilbert space is by introducing ancillary photons. It was shown that with two ancillae photons
it is already possible to overcome the 1/2 limit [37, 98, 99] and was recently experimentally
proven in Ref. [100].

Many quantum communication protocols can be improved by employing d-dimensional
quantum systems with d > 2 [17]. However, performing a high-dimensional BSA (HDBSA)
in a d × d Hilbert space is even more challenging than the 2 × 2 case. Some proposals have
been presented for the realization of a HDBSA only based on linear optics components
[45, 101, 102, 103], but all of them use hyperentanglement as a resource. This form of photon
entanglement limits quantum teleportation since a third party cannot independently supply the
input state, so it can only be generated locally.

Here we study a BSA of photonic ququarts (d = 4) using our high-quality 4CF-BS. We
show first that two-photon interference at a pair of 4CF-BS achieves optimal discrimination of
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the d2 = 16 Bell states, corresponding to seven classes. We study its performance in quantum
information protocols. Then, we show that a pair of entangled ancilla photons can be used to
probabilistic (yet unequivocally) identify two Bell states.

5.1 Two-dimensional Standard Bell State Analyzer

For photonic BSA, the typical two-dimensional scheme is shown in Fig. 5.1. It consists of a
beamsplitter (BS), two polarized beamsplitters (PBS), and detectors. The 2 × 2 Bell-states are
commonly encoded in polarization (|0⟩ ≡ |H⟩ and |1⟩ ≡ |V ⟩), although it can be in any other
dof. Then, the inputs are

Figure 5.1: Standard Bell-State analyzer. Source: made by the author.

∣∣Φ±〉 = 1√
2

(|H⟩a |H⟩b ± |V ⟩a |V ⟩b), (5.1)∣∣Ψ±〉 = 1√
2

(|H⟩a |V ⟩b ± |V ⟩a |H⟩b), (5.2)

where a and b are the spatial modes with which they enter the BSA. Since the state |Ψ−⟩ is
antisymmetric, the two photons follow different outputs of the BS, while photons in |Ψ+⟩ and
|Φ±⟩ end up in the same output [35, 36]. Then, with the PBS we separate H and V polarizations.
The resulting two-photon detection events are summarized in the table 5.1. As we can see, we
can fully discriminate |Ψ±⟩ states. However, the states |Φ±⟩ cannot be uniquely identified. The
total success probability of this unambiguous BSA is 50%, being the maximum that can be
achieved with linear optics [95].
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Input Detection Signatures
|Ψ−⟩ DHCV , DV CH

|Ψ+⟩ DHDV , CV CH

|Φ±⟩ DHDH , DV DV , CHCH , CV CV

Table 5.1: Two-photon detection events for a standard Bell-State analyzer.

5.2 Four-dimensional Optimal Bell State Analyzer

Our main motivation in this thesis are the possible applications we can develop with the 4CF-BS,
so we would like to explore how we could use it to build a HDBSA and what is the best
performance we can achieve considering that in the 2-dimensional case we are only able to
distinguish three groups of the four Bell-states.

As a starting point, we consider Wei et al. [45] work, where it was shown that for a 4 × 4
Hilbert space, an unambiguous Bell state discrimination is impossible and that the best we can
achieve is to group the 16 Bell states into seven classes. Moreover, with the scheme designed by
Kwiat and Weinfurter (KW) [97] (see Fig. 5.2), Wei et al. proposed an experimental BSA using
hyperentangled photons.

Figure 5.2: Kwiat-Weinfurter scheme for the embedded Bell-state analysis. BS: 2 × 2
beamsplitter, PBS(α): polarized beamsplitter rotated in α degrees. Source: taken from [45]
with modifications by the author.

In Ref. [45], they start constructing the 16 Bell-like states from two photons with polarization
and momentum mode degrees of freedom. The subsystem belonged to the photon A is {H,V } ⊗
{ā, c̄} and for the photon B we have {H,V } ⊗ {b̄, d̄}. The resulting states will be a combination
of the four polarization, and momentum Bell states as in equation (2.10). Then,

∣∣Φ±〉 = 1√
2

(|H⟩A |H⟩B ± |V ⟩A |V ⟩B),
∣∣Ψ±〉 = 1√

2
(|H⟩A |V ⟩B ± |V ⟩A |H⟩B), (5.3a)∣∣ϕ±〉 = 1√

2
(|ā⟩A

∣∣b̄〉
B

± |c̄⟩A

∣∣d̄〉
B

),
∣∣ψ±〉 = 1√

2
(|ā⟩A

∣∣d̄〉
B

± |c̄⟩A

∣∣b̄〉
B

). (5.3b)

Since our goal is to use the 4CF-BS to achieve this optimal HDBSA, we must only translate
the polarization and momentum modes to momentum modes. To do this, we relabel the input
modes to eliminate the polarization dof and use only path dof. We note that the polarization
dof can be mapped to spatial mode dof using a polarizing beam splitter or similar devices, so
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our approach has no loss of generality. Thus, each combination of path mode and polarization
mode will represent a unique momentum mode in our system, such as

|0⟩A ≡ |H⟩ ⊗ |ā⟩ , |0⟩B ≡ |H⟩ ⊗
∣∣b̄〉 , (5.4a)

|1⟩A ≡ |V ⟩ ⊗ |ā⟩ , |1⟩B ≡ |V ⟩ ⊗
∣∣b̄〉 , (5.4b)

|2⟩A ≡ |H⟩ ⊗ |c̄⟩ , |2⟩B ≡ |H⟩ ⊗
∣∣d̄〉 , (5.4c)

|3⟩A ≡ |V ⟩ ⊗ |c̄⟩ , |3⟩B ≡ |V ⟩ ⊗
∣∣d̄〉 . (5.4d)

Here the kets |j⟩C with j = 0, 1, 2, 3 and C = A,B represents the photon C in the j-mode,
implying that in the rest of the path modes we only have vacuum. For example, the state |1⟩A

represents the photon A in momentum mode 1. We can also express the states (5.4) with the
creation operator |j⟩A = a†

j |0⟩ for the photon in the subspace A and |j⟩B = b†
j |0⟩ for the photon

in the subspace B.
As an example, let us write the following state in momentum and polarization dof

|Ψ+⟩|ψ+⟩ = 1√
2

(|H⟩A |V ⟩B + |V ⟩A |H⟩B) 1√
2

(|ā⟩A

∣∣d̄〉
B

+ |c̄⟩A

∣∣b̄〉
B

)

= 1
2(|H ā⟩

∣∣V d̄
〉

+ |V ā⟩
∣∣Hd̄

〉
+ |H c̄⟩

∣∣V b̄
〉

+ |V c̄⟩
∣∣Hb̄

〉
). (5.5)

Then, with our notation, the state becomes in

|Ψ+⟩|ψ+⟩ = 1
2(|0⟩A |3⟩B + |1⟩A |2⟩B + |2⟩A |1⟩B + |3⟩A |0⟩B) (5.6)

= 1
2(a†

0b
†
3 + a†

1b
†
2 + a†

2b
†
1 + a†

3b
†
0) |vac⟩ . (5.7)

where |vac⟩ is the vacuum state.

The next step to build our optimal fiber-based BSA is to know the evolution of the KW
scheme according to equation (3.12), and hence we must find the unitary matrix that describes
it. Here the input and output creation operators are represented by the vector υ⃗ that is equal to

(υ⃗)in/out =



a†
0

a†
1

b†
0

b†
1

a†
2

a†
3

b†
2

b†
3


. (5.8)

The first elements in the KW scheme are two beamsplitters (see Fig. 5.2). Since BSs preserve
polarization, we can write each one as two BSs in parallel acting on subspaces for each polarization
state (H or V). Horizontal polarization passes through one BS and vertical polarization across
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the other. The creation operators that represent this action transform as follows

a†
j → 1√

2
(b†

j − b̂†
j), (5.9)

b̂†
j → 1√

2
(a†

j + b̂†
j). (5.10)

Then, the unitary matrix for the BS system acting on (5.8) looks like

BS = 1√
2



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1


, (5.11)

The next element corresponds to a PBS(0), which transmits photons with horizontal polarization
and reflects photons vertically oriented. As seen from equations (5.4), the even modes are
horizontally polarized, so they remain unchanged. On the other hand, the odd modes are
vertically polarized, so they transform as

b†
j → a†

j⊎2 (5.12)

a†
j → b†

j⊎2 (5.13)

where ⊎ indicates the sum modulo 4. Then, the unitary matrix that describes the PBS(0) is

PBS(0) =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0


. (5.14)

The last component in the KW scheme is a PBS(45), which is equivalent to having a half-wave
plate (HWP) rotated by 22.5◦ degrees, followed by a PBS(0). Note that the HWP(22.5) behaves
(in the polarization dof) as a BS in path representation, so for even modes, the creation operators
transform as

c†
j = 1√

2
(c†

j − c†
j+1), (5.15)
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and for odd modes as

c†
j = 1√

2
(c†

j + c†
j−1), (5.16)

where c = a, b. In this way, the unitary matrix for the half-wave plate is the following

HWP(22.5) = 1√
2



1 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 −1 1


. (5.17)

We ignore the last PBS(0) since it is used just for measurement. Thus, multiplying all this
together, we can find the unitary of the system that will give us the evolution only in momentum
dof

UKW = 1
2



1 0 1 0 0 −1 0 1
−1 0 −1 0 0 −1 0 1
−1 0 1 0 0 1 0 1
1 0 −1 0 0 1 0 1
0 −1 0 1 1 0 1 0
0 −1 0 1 −1 0 −1 0
0 1 0 1 −1 0 1 0
0 1 0 1 1 0 −1 0


. (5.18)

Now that we know the evolution of the KW scheme, the next challenge to obtain our optimal
fiber-based BSA is to reconstruct the matrix (5.18) using fiber components exclusively. For this,
we use the scheme shown in Fig. 5.3 which in principle is only composed of two 4CF-BS in
parallel with the following unitary matrix

BSMCF = 1
2



1 1 0 0 1 1 0 0
1 1 0 0 −1 −1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 −1 −1
1 −1 0 0 1 −1 0 0
1 −1 0 0 −1 1 0 0
0 0 1 −1 0 0 1 −1
0 0 1 −1 0 0 −1 1


. (5.19)

This matrix is obtained by calculating the tensor product (B4)A ⊗ (B4)B and then rearranging
the modes to act on the vector (5.8).
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Figure 5.3: Scheme for Bell-state Measurement in dimension 4 × 4. On the left, we
apply a π phase on the modes |3⟩A and |1⟩A. Then, we reconnect the fibers, which we describe
using the operation “reconnect 1”. Next, we let act two 4MCF-BS, and finally, we swap the
fibers again as shown on “reconnect 2”. At the end of the setup the photons in the modes a†

j

will be collected by the detectors Aj and the photons in the modes b†
j will reach the detectors

Bj . Source: Made by the author.

In order to get (5.18) and not modify both 4CF-BS, we reconnect the fibers into different
modes before and after the BSMCF. In the laboratory, this is done by simply connecting
the fibers correctly. While mathematically, we could relabel the modes according to the
connections. However, a more transparent way of representing these connections is by writing
the corresponding unitary matrices that describe them

R1 =



0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0


, R2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (5.20)

Finally, a π-phase is also applied in the modes |1⟩A and |3⟩A at the beginning of the setup to
exactly get (5.18). Even so, this element can be omitted since the phase of the output state
does not really matter to us, we only care about where the photon was detected.

Thus, multiplying this array of matrices in the order shown in Figure 5.3, we will obtain our
optimal fiber-based HDBSA.
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5.2.1 Classifying the Bell States

For the classification of the 16 Bell states, the evolution of the system was needed, in order to
write the output state as a function of the output creation operators

υ⃗out = UKW υ⃗in. (5.21)

where the vector υ⃗ is described in eq. (5.8). As illustrated in Fig. 5.3, the states with modes a†
j

will “click” on the detectors Aj and the states in the modes b†
j will “click” on the detectors Bj .

Thus, by looking at the output two-photon states, we will see that some of the output states
end up in the same group of detectors, and when this happens, we classify these states in the
same class. We did the calculation for the 16 Bell states and then analyzed the output states
with a Python program (see Appendix A4), finding that indeed the states are grouped into
seven distinct classes as is summarized in Table 5.2.

To be more illustrative, let’s take as an example the state in (5.7) as input. For the first
term in the superposition the creation operators transform as

a†
0 → 1

2(a†
0 − a†

1 − b†
0 + b†

1) (5.22)

b†
3 → 1

2(a†
0 + a†

1 + b†
0 + b†

1) (5.23)

If we calculate the evolution of the remaining terms and multiply them in the corresponding
order, we obtain the output state

(
∣∣Ψ+〉 ∣∣ψ+〉)out = 1

4(a†
0b

†
1 − a†

1b
†
0 + a†

2b
†
3 − a†

3b
†
2) |vac⟩ . (5.24)

Repeating the above procedure for the other states, we will find that there is another unique
state that has the same contributions, but with different signs

(
∣∣Ψ−〉 ∣∣ψ−〉)out = 1

4(a†
0b

†
1 − a†

1b
†
0 − a†

2b
†
3 + a†

3b
†
2) |vac⟩ . (5.25)

Therefore, both states will form a class that we will identify as 3. In addition and for the sake
of completeness, we explicitly write down the input states classified according to the detection
patterns (see Table 5.2)

Class 1

|Ψ+⟩|ψ−⟩ = 1
2(|0⟩A|3⟩B + |1⟩A|2⟩B − |2⟩A|1⟩B − |3⟩A|0⟩B), (5.26a)

|Ψ−⟩|ψ+⟩ = 1
2(|0⟩A |3⟩B − |1⟩A |2⟩B + |2⟩A |1⟩B − |3⟩A |0⟩B), (5.26b)

|Φ+⟩|ϕ−⟩ = 1
2(|0⟩A|0⟩A + |1⟩A|1⟩B − |2⟩A|2⟩B − |3⟩A|3⟩B), (5.26c)

|Φ−⟩|ϕ+⟩ = 1
2(|0⟩A|0⟩B − |1⟩A|1⟩B + |2⟩A|2⟩B − |3⟩A|3⟩B). (5.26d)
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Class Input Detections Signatures

1 |Ψ+⟩ |ψ−⟩, |Ψ−⟩ |ψ+⟩ A0A0, A1A1, A2A2, A3A3

|Φ+⟩ |ϕ−⟩, |Φ−⟩ |ϕ+⟩ B0B0, B1B1, B2B2, B3B3

2 |Φ+⟩ |ϕ+⟩, |Φ−⟩ |ϕ−⟩ A0A1, A2A3, B0B1, B2B3

3 |Ψ+⟩ |ψ+⟩, |Ψ−⟩ |ψ−⟩ A0B1, A1B0, A2B3, A3B2

4 |Ψ+⟩ |ϕ−⟩, |Φ+⟩ |ψ−⟩ A0B2, A1B3, A2B0, A3B1

5 |Ψ−⟩ |ϕ+⟩, |Φ−⟩ |ψ+⟩ A0A2, A1A3, B0B2, B1B3

6 |Ψ+⟩ |ϕ+⟩, |Φ−⟩ |ψ−⟩ A0B3, A1B2, A2B1, A3B0

7 |Ψ−⟩ |ϕ−⟩, |Φ+⟩ |ψ+⟩ A0A3, A1A2, B0B3, B1B2

Table 5.2: Two-photon detection pattern for high-dimension Bell state measurement.

Class 2

|Φ+⟩|ϕ+⟩ = 1
2(|0⟩A|0⟩B + |1⟩A|1⟩B + |2⟩A|2⟩B + |3⟩A|3⟩B), (5.27a)

|Φ−⟩|ϕ−⟩ = 1
2(|0⟩A|0⟩B − |1⟩A|1⟩B − |2⟩A|2⟩B + |3⟩A|3⟩B). (5.27b)

Class 3

|Ψ+⟩|ψ+⟩ = 1
2(|0⟩A |3⟩B + |1⟩A |2⟩B + |2⟩A |1⟩B + |3⟩A |0⟩B), (5.28a)

|Ψ−⟩|ψ−⟩ = 1
2(|0⟩A|3⟩B − |1⟩A|2⟩B − |2⟩A|1⟩B + |3⟩A|0⟩B). (5.28b)

Class 4

|Ψ+⟩|ϕ−⟩ = 1
2(|0⟩A|1⟩B + |1⟩A|0⟩B − |2⟩A|3⟩B − |3⟩A|2⟩B), (5.29a)

|Φ+⟩|ψ−⟩ = 1
2(|0⟩A|2⟩B + |1⟩A|3⟩B − |2⟩A|0⟩B − |3⟩A|1⟩B). (5.29b)

Class 5

|Ψ−⟩|ϕ+⟩ = 1
2(|0⟩A|1⟩B − |1⟩A|0⟩B + |2⟩A|3⟩B − |3⟩A|2⟩B), (5.30a)

|Φ−⟩|ψ+⟩ = 1
2(|0⟩A|2⟩B − |1⟩A|3⟩B + |2⟩A|0⟩B − |3⟩A|1⟩B). (5.30b)

Class 6

|Ψ+⟩|ϕ+⟩ = 1
2(|0⟩A|1⟩A + |1⟩B |0⟩B + |2⟩A|3⟩B + |3⟩A|2⟩B) (5.31a)

|Φ−⟩|ψ−⟩ = 1
2(|0⟩A|2⟩B − |1⟩A|3⟩B − |2⟩A|0⟩B + |3⟩A|1⟩B) (5.31b)



5.3. Applications in Quantum Communication 43

Class 7

|Ψ−⟩|ϕ−⟩ = 1
2(|0⟩A|1⟩B − |1⟩A|0⟩B − |2⟩A|3⟩B + |3⟩A|2⟩B), (5.32a)

|Φ+⟩|ψ+⟩ = 1
2(|0⟩A|2⟩B + |1⟩A|3⟩B + |2⟩A|0⟩B + |3⟩A|1⟩B). (5.32b)

Let us note that our classification of Bell states is different from that obtained in [45]. This is
due to the change of variables and the reordering of modes. Moreover, there are

(16
7
)

= 11490
ways to group the 16 Bell states, therefore, it is possible to have different classifications for a
4 × 4 BSA.

5.3 Applications in Quantum Communication

In this chapter, we will discuss the performance of our fiber-based HDBSA in different protocols
for quantum communication, but first, it will be useful to define the projectors from the previously
identified classes. Note that each projective measure will be written as a sum of two orthogonal
projectors of rank one in a 4 × 4 subspace, except for class 1 which is a sum of four orthogonal
projectors of rank one. Let’s begin with class 2 in (5.27), such as

P2 =
∣∣Φ+〉 ∣∣ϕ+〉 〈Φ+∣∣ 〈ϕ+∣∣+

∣∣Φ−〉 ∣∣ϕ−〉 〈Φ−∣∣ 〈ϕ−∣∣
=
∣∣Φ+〉

03

〈
Φ+∣∣

03 +
∣∣Φ+〉

12

〈
Φ+∣∣

12 , (5.33)

where the subscripts indicate the modes that are involved for photons A and B, respectively.
For example, the first term in (5.33) is the projector of the following 2 × 2 Bell state

∣∣Φ+〉
03 = 1√

2
(|0⟩A |0⟩B + |3⟩A |3⟩B). (5.34)

For class 3, we obtain something similar, such that

P3 =
∣∣Ψ+〉 ∣∣ψ+〉 〈Ψ+∣∣ 〈ψ+∣∣+

∣∣Ψ−〉 ∣∣ψ−〉 〈Ψ−∣∣ 〈ψ−∣∣
=
∣∣Ψ+〉

03

〈
Ψ+∣∣

03 +
∣∣Ψ+〉

12

〈
Ψ+∣∣

12 . (5.35)

As we can see from (5.33) and (5.35), the measurement operators can be reduced to a sum of
two orthogonal projectors of rank one in a 2 × 2 subspace, so P2 and P3 remain as projectors of
rank two. Similarly, we have that the projector of the states in class 1 is reduced, in turn, to a
sum of four orthogonal projectors of rank one

P1 = (
∣∣Φ−〉 〈Φ−∣∣+

∣∣Ψ−〉 〈Ψ−∣∣)03 + (
∣∣Φ−〉 〈Φ−∣∣+

∣∣Ψ−〉 〈Ψ−∣∣)12, (5.36)

so P1 remains as a projector of rank four. We cannot completely simplify the measurement
operators for all the other classes as 2 × 2 Bell-states projectors. For example, in the case of the
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class 5 we have

P5 =
∣∣Ψ−〉 ∣∣ϕ+〉 〈Ψ−∣∣ 〈ϕ+∣∣+

∣∣Φ−〉 ∣∣ψ+〉 〈Φ−∣∣ 〈ψ+∣∣
= 1

2

[∣∣Ψ−〉
01

〈
Ψ−∣∣

01 +
∣∣Ψ−〉

23

〈
Ψ−∣∣

23 +
∣∣Ψ+〉

02

〈
Ψ+∣∣

02 +
∣∣Ψ+〉

13

〈
Ψ+∣∣

13

+ 1
2(|01⟩ ⟨23| − |01⟩ ⟨32| − |10⟩ ⟨23| + |10⟩ ⟨32| + |23⟩ ⟨01| − |23⟩ ⟨10| − |32⟩ ⟨01|

+ |32⟩ ⟨10| − |02⟩ ⟨13| − |02⟩ ⟨31| − |13⟩ ⟨02| − |13⟩ ⟨20| − |20⟩ ⟨13| − |20⟩ ⟨31|

− |31⟩ ⟨02| − |31⟩ ⟨20|)
]
. (5.37)

Thus, the projective measurements of the states from classes 5 to 7 are kept as a rank two
projector in a 4 × 4 subspace.

5.3.1 Teleportation

Quantum teleportation is one of the most essential protocols in quantum information, and it is
fundamental for developing many quantum technologies [104]. In this protocol, an unknown
state is transferred from one system to another at a distance [92]. A general scheme is shown in
Fig. 5.4 to illustrate how the protocol is implemented. We have two spatially separated parties,
Alice and Bob, who share a two-photon Bell state. In principle, as long as both parties share
this entangled state, the distance between them can be arbitrarily large. A third party, say
Charlie, provides Alice with the arbitrary unknown state which will be teleported to Bob. Then,
she performs a BSM on her two photons and classically communicates the measurement result
to Bob. Depending on the classical information that Bob receives, he applies a local unitary
operator on his photon. This allows Bob to reconstruct the state provided by Charlie but now
encoded on his photon.

Figure 5.4: General scheme to illustrate quantum teleportation protocol. Alice and
Bob share a two-photon Bell state. Charlie provides Alice with an arbitrary unknown state |φ⟩,
which will be teleported to Bob. She performs a Bell state measurement on her two photons
and classically communicates the outcome to Bob. Depending on the classical information that
Bob receives, he applies a local unitary on his photon. This allows Bob to reconstruct the state
|φ⟩, but now encoded on his photon. Source: Made by the author.
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In our teleportation scheme, Alice has the state |φ⟩C = α|0⟩ + β|1⟩ + γ|2⟩ + δ|3⟩ that will be
teleported to Bob. The density matrix for this state is

ρC =


|α|2 αβ∗ αγ∗ αδ∗

βα∗ |β|2 βγ∗ βδ∗

γα∗ γβ∗ |γ|2 γδ∗

δα∗ δβ∗ δγ∗ |δ|2

 , (5.38)

where α, β, γ, δ ∈ C. We will assume the quantum state above and the states below are
normalized. We will consider normalization in the programs in Appendix A.

In our version of the protocol, we will use the projective measurements given by our optimal
fiber-based HDBSA on Alice’s subsystem and the state |φ⟩C that we want to teleport. To study
the efficiency of the measurements, we implemented the protocol with Alice and Bob sharing
different types of entangled states. We compare each case by the amount of information Bob
receives at the end of the teleportation. So considering that Bob does not need to apply any
unitary on his photon, the state of Bob at the end of the protocol is

ρB = trAC{Π |AB⟩ |φ⟩ ⟨AB| ⟨φ|}, (5.39)

where the ket |AB⟩ is the state shared by Alice and Bob, and Π is a projective measurement
made by our HDBSA

One way to measure how much information Bob has is through the fidelity (see section 2.5)
between the state |φ⟩C and ρB. Since the state in the C partition is pure, we can write the
fidelity using the expressión in eq. (2.29), i.e, F (ρB) = ⟨φ| ρB |φ⟩. Note that in the ideal case,
the fidelity should be one.

i) 4 × 4 Identity Matrix
This is the simplest case and corresponds to when Alice does nothing. Therefore, Bob’s
state is the 4 × 4 identity matrix I4 = (|0⟩⟨0| + |1⟩⟨1| + |2⟩⟨2| + |3⟩⟨3|)/4, since nothing
have been done over his subsystem. Then, we have

F (I4, |φ⟩) = ⟨φ| I4 |φ⟩ = 0.25 (5.40)

The motivation for writing this case is merely to use it as a reference.

ii) Classical Correlation
Let us continue by considering that Alice and Bob share a classically correlated state of
the form

ρAB = 1
4(|00⟩ ⟨00| + |11⟩ ⟨11| + |22⟩ ⟨22| + |33⟩ ⟨33|) (5.41)

The state of the whole system is of the form

ρABC = ρAB ⊗ |φ⟩ ⟨φ| . (5.42)

We will use an ideal projective measurement ΠAC = |Φ+⟩ ⟨Φ+| in a four-dimensional
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subspace for Alice’s photons. Then the reduced density matrix of Bob is equal to

ρ
(2)
B = trAC{P2(ρAB ⊗ |φ⟩ ⟨φ|)}. (5.43)

We evaluate this state in the definition of fidelity for pure states (see eq. (2.29)) to calculate
the distance between (5.38). Then, the general expression for fidelity is written as

F (ρ(2)
B , |φ⟩) = (|α|4 + |β|4 + |γ|4 + |δ|4). (5.44)

Since the state to teleport has to be arbitrary, we need to evaluate the performance of our
HDBSA for all possible state superpositions in the general form of |φ⟩C . For this purpose,
we use the MUBS for d = 4 presented in section 2.3.2, given that we can reconstruct any
density matrix with these bases [46].
Once the general expression for fidelity has been found, we use all the vectors defining the
MUBS to evaluate the fidelity. This calculation is done with a Python program (see
Appendix A5) where we replace the vector (α, β, γ, δ), that characterizes the state |φ⟩C ,
by the vectors that define the MUBS (see eq. (2.19)). Finally, we average between all
possible outcomes, obtaining the total fidelity.

In the case of (5.44), we have that the mean fidelity is

F
(2)
cl = 1

20(1 × 4 + 0.25 × 16) = 0.4 (5.45)

This result agrees with Ref. [105], where the optimal single-copy state estimation for a
ququart is predicted to be 0.4, implying that evaluating the state with the MUBS is a
good approach to compute the overall fidelity.

iii) Qubit case
Here we consider that Alice and Bob share a 2-dimensional Bell state of the form

∣∣Φ+〉
A

∣∣Φ+〉
B

= 1√
2

(|00⟩ + |33⟩). (5.46)

Then the state describing the whole system is

∣∣Φ+〉 ∣∣Φ+〉 |φ⟩ = 1√
2
[

(α|000⟩ + β|001⟩ + γ|002⟩ + δ|003⟩) (5.47)

+ (α|330⟩ + β|331⟩ + γ|332⟩ + δ|333⟩)
]
. (5.48)

Recalling eq. (5.39) and using an ideal projective measurement ΠAC = |Φ+⟩ ⟨Φ+| in a
2-dimensional subspace, we have

ρ
(2)
qubit = |α|2|0⟩⟨0| + α∗δ|3⟩⟨0| + αδ∗|0⟩⟨3| + |δ|2|3⟩⟨3|, (5.49)
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To calculate the fidelity between |φ⟩C and ρ
(2)
B we use the definition (2.29), such as

F (ρ(2)
B , |φ⟩) = |α|2 + |δ|2. (5.50)

This state has been already normalized. For the same argument as in the classical case,
we calculate the average fidelity with the MUBS for d = 4, such as

F
(2)
qubit = 1

20(1 × 2 + 0.5 × 16 + 0 × 2) = 0.5. (5.51)

Assuming a perfect 2 × 2 BSM, we expect an average fidelity of 0.5 when a maximally
entangled pair of qubits is used as the quantum resource.

iv) Ququart
Finally, to fully exploit our HDBSA, we consider the case when Alice and Bob share an
entangled ququart of the form

∣∣Φ+〉 ∣∣Φ+〉
AB

= 1
2(|00⟩ + |11⟩ + |22⟩ + |33⟩). (5.52)

Therefore, the state that describes the whole system is given by

∣∣Φ+〉
A

∣∣Φ+〉
B

|φ⟩C =1
2[(α|000⟩ + β|001⟩ + γ|002⟩ + δ|003⟩)

+ (α|110⟩ + β|111⟩ + γ|112⟩ + δ|113⟩)

+ (α|220⟩ + β|221⟩ + γ|222⟩ + δ|223⟩)

+ (α|330⟩ + β|331⟩ + γ|332⟩ + δ|333⟩)]. (5.53)

Then, replacing the state (5.53) in (5.39) and using the projector P2, we have that Bob’s
state after the teleportation is

ρ
(2)
B =(|α|2|0⟩⟨0| + |β|2|1⟩⟨1| + |γ|2|2⟩⟨2| + |δ|2|3⟩⟨3|

+ βγ∗|1⟩⟨2| + β∗γ|2⟩⟨1| + α∗δ|3⟩⟨0| + αδ∗|0⟩⟨3|) (5.54)

=(α|0⟩ + δ|3⟩)(α∗⟨0| + δ∗⟨3|) + (β|1⟩ + γ|2⟩)(β∗⟨1| + γ∗⟨2|). (5.55)

The fidelity can be calculated analytically, resulting in

F (ρ(2)
B , |φ⟩) = (|α|4 + |β|4 + |γ|4 + |δ|4 + 2|β|2|γ|2 + 2|δ|2|α|2). (5.56)

Using the MUBs for d = 4 as in the previous cases, we have

F
(2)
ququart = 1

20(0.5 × 16 + 1 × 4) = 0.6. (5.57)

Our optimal HDBSA could also project Alice’s states with the measurement operator
P3. When Bob receives the classic information resulting from this measurement, he needs
to apply a unitary over his state to obtain the same fidelity as using the measurement
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Bell state Local
Measurement Unitary

P1 I
P2 I
P3 X12X03
P4 Z2Z3X01X23
P5 X01X23Z3Z1
P6 X01X23
P7 X02X13

Table 5.3: Correspondence between the Bell state measurement made on Alice’s state and the
unitary that Bob will need to apply on his system. The operator Xmn is the Pauli matrix that
takes the state |m⟩ to |n⟩ with m,n = 0, 1, 2, 3 and Zm is the Pauli matrix that add a π phase
on the state |m⟩.

operator P2. Such as

ρ
(3)
B =U3(|δ|2|0⟩⟨0| + |γ|2|1⟩⟨1| + |β|2|2⟩⟨2| + +|α|2|3⟩⟨3|

+ β∗γ|1⟩⟨2| + βγ∗|2⟩ ⟨1| + αδ∗|3⟩⟨0| + α∗δ|0⟩⟨3|)U†
3 (5.58)

If we compare this density matrix with (5.54), it is clear that we must apply the unitary
U3 = X12X03, where the operator Xmn is the Pauli matrix that takes the state |m⟩ to |n⟩
with m,n = 0, 1, 2, 3. By calculating the fidelity for the state (5.58), we obtain exactly the
expression (5.56) and therefore a value of 0.6 as average fidelity.

The correspondence between the Bell state measurement made on Alice’s state and the
unitary that Bob must apply to his system is summarized in table 5.3. For all the projectors
the average fidelity is 0.6, except for projector P1 where the fidelity gives a value of 0.3,
with no possibility of improvement. When we look at the operators that compose the
unitary in table 5.3 applied on the states of classes 2 to 7, these local operators always try
to bring at least one state to the form

∣∣Φ+〉 ∣∣Φ+〉 = 1
2(|0⟩A |0⟩B + |1⟩A |1⟩B + |2⟩A |2⟩B + |3⟩A |3⟩B) (5.59)

However, class 1 has already two states of this form and even if we try to change the phases
so that one of the states is only positive, the fidelity will not be improved. Therefore, the
overall fidelity of the scheme is

Fququart = 1
16(0.6 × 12 + 0.3 × 4) = 0.525 (5.60)

Interestingly, the average fidelity with this imperfect 4 × 4 BSA is slightly larger than a
perfect BSA in conjunction with 2 × 2 Bell states.
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5.3.2 Entanglement Swapping

As briefly presented in subsection 2.4.2, entanglement swapping allows the transfer (teleportation)
of entanglement between two photons belonging to two different quantum systems that have
never interacted before. According to Fig. 2.1, one of the systems, called Alice, has two photons
{A,C} and the other system, called Bob, has two more {B,D}. Alice’s (Bob’s) photons are
entangled and are described by the Bell state |Φ+⟩ |ϕ+⟩. Then the whole system is

|Φ+⟩
∣∣ϕ+〉

AC
|Φ+⟩

∣∣ϕ+〉
BD

= 1
4(|00⟩ + |11⟩ + |22⟩ + |33⟩)AC(|00⟩ + |11⟩ + |22⟩ + |33⟩)BD.

(5.61)

In addition, Alice (Bob) sends the photon C (D) to a BSM, which performs a projective
measurement Π. After performing the measurement, the state is given by the following density
matrix

ρAB = tr{Π(
∣∣Φ+〉 ∣∣ϕ+〉

AC

∣∣Φ+〉 ∣∣ϕ+〉
BD

〈
Φ+∣∣ 〈ϕ+∣∣

AC

〈
Φ+∣∣ 〈ϕ+∣∣

BD
)}. (5.62)

In the ideal case, the BSM makes the following projective measurement

ΠCD
id =

∣∣Φ+〉 ∣∣ϕ+〉
CD

〈
Φ+∣∣ 〈ϕ+∣∣

CD
. (5.63)

The resulting density matrix by performing this measurement is ρid
AB = |Φ+⟩ |ϕ+⟩AB ⟨Φ+| ⟨ϕ+|AB .

To quantify the amount of entanglement that subsystems A and B possess after the entanglement
swapping, we calculate the logarithmic negativity LN(ρ) introduced in the subsection 2.6.1.
Using a program in python (see Appendix A6) is easy to obtain the logarithmic negativity
of the state ρid

AB such as LN(ρid
AB) = 2. Note that for the 2-dimensional ideal case that was

previously presented in the subsection 2.4.2, the logarithmic negativity for the 2 × 2 Bell state
|Φ+⟩ in eq. (2.27) is equal to LN(ρAB) = 1. These results will be useful as a reference for what
we should obtain.

We would like to know how much entanglement is shared between Alice and Bob when we
perform the projective measurements presented at the beginning of this section. Let us first
try with the projector P2 in eq. (5.33). Recalling eq. (5.62), and using P2 as a projective
measurement, the density operator is equal to ρ(2)

AB = (|Φ+⟩03 ⟨Φ+|03 + |Φ+⟩12 ⟨Φ+|12)/
√

2, where
the super index (2) is to indicate that we are projecting with eq. (5.33). Then the logarithmic
negativity is LN(ρ(2))AB = 1.

Due to the similarity between classes 2 through 7, we see that, despite the high-dimensional
nature of the BSA, the best we can do in these cases is to produce entanglement that is equivalent
to a maximally entangled 2 × 2 Bell pair.

5.3.3 Superdense Coding

Superdense coding [35] allows the transmission of log2(d2) bits of information by just sending
one qudit. The protocol involves two parties, Alice (sender) and Bob (receiver), who share a
two-photon entangled state. Since our HDBSA can only distinguish seven classes, Alice will
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only be able to send log2(7) ≈ 2.7 bits of information per ququart to Bob. Depending on the
bits that Alice wants to send, she performs one of seven local operations on her photon to
transform the state to itself or to six others. For example, if Alice and Bob share the entangled
state |Φ+⟩ |ϕ+⟩, she can apply a local operator (see subsection 2.3.1) to transform this state to
{|Ψ+⟩ |ψ−⟩ , |Ψ+⟩ |ψ+⟩ , |Φ+⟩ |ψ−⟩ , |Ψ−⟩ |ϕ+⟩ , |Φ−⟩ |ψ−⟩ , |Φ+⟩ |ψ+⟩}.

This case is better than when Alice and Bob share an entangled qubit. As we saw in section
2.3.1, an optical BSA can only distinguish three groups of Bell state. Therefore, Alice can only
send log2(3) ≈ 1.58 bits. We could try using two entangled pairs of qubits as a resource to send
2 log2 3 ≈ 3.17 bits, which is greater than log2 7 ≈ 2.8 bits. However, four-photon detection has
an efficiency of η4 in contrast to the two-photon case where the efficiency is η2. Then we can
compare the average amount of information sent:

η4 × 3.17 = η2 × 2.8 ⇒ ηcrit ≈ 0.94. (5.64)

Therefore, as long as the detection efficiency is less than 94%, the single ququart pair is superior.
Although our HDBSA cannot unequivocally separate the 16 Bell states, we achieved a better
result for superdense coding compared with the one and two-qubit cases.

5.4 Four-dimensional Bell State Analyzer with Ancillary
Photons

In the previous section, we saw that with our HDBSA we achieve an advantage in superdense
coding protocol using ququarts. However, quantum teleportation and entanglement swapping,
which are protocols that carry more interest in the scientific community, are very limited in
terms of dimensionality. We obtain practically the same results as using qubits (d = 2).

At the beginning of the chapter, we mentioned some works whereby the performance
of the 2 × 2 BSA can be improved by increasing the Hilbert space. Is it possible that
by adding ancillary photons to our HDBSA, we can at least distinguish one of the 16
Bell states in a probabilistic way? While the probability of success would be low, once it
works, the fidelity would be equal to one for quantum teleportation, or the quality of the
entanglement we produce in the entanglement swapping protocol would be equal to the ideal case.

In this way, our goal is to probabilistic (yet unequivocally) identify a single Bell state.
Therefore, to improve our HDBSA scheme we introduce two entangled ancillary photons with
momentum degree of freedom: {e†

0, e
†
1, e

†
2, e

†
3, f

†
0 , f

†
1 , f

†
2 , f

†
3 }. We want these ancillary photons to

interfere with the outcomes of the original HDBSA scheme so through eight 2 × 2 BS as shown
in Figure 5.5.

Considering that we aim to separate the states of a specific class, the strategy consists
in writing the state of the ancillary photons analogously to the output state in the original
HDBSA scheme, so that interference can occur. The main difference between the ancilla and
the undetected photons is that we exchange a†

j → e†
j and b†

j → f†
j . Therefore, we can look at

the detection signatures in Table 5.2 and get an idea about the state prior to the detection. For
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Figure 5.5: Scheme for 4 × 4 Bell-state measurement with ancillae. To the previous
HDBSA scheme shown in Fig. 5.3, we add eight 2 × 2 beamsplitters represented in green
rectangles, which interfere with the original outcomes. Source: Made by the author.

example, the states being detected in class 2 are of the form

(|Φ+⟩|ϕ+⟩)out = 1
2(−a†

0a
†
1 − a†

2a
†
3 + b†

0b
†
1 + b†

2b
†
3) |vac⟩ , (5.65)

(|Φ−⟩|ϕ−⟩)out = 1
2(−a†

0a
†
1 + a†

2a
†
3 + b†

0b
†
1 − b†

2b
†
3) |vac⟩ . (5.66)

Thus, the ancilla states are written as

|Υ2⟩ = 1
2(e†

0e
†
1 + e†

2e
†
3 + f†

0f
†
1 + f†

2f
†
3 ) |vac⟩ (5.67)

Introducing this state to the new scheme in Fig. 5.5, for the first output state in class 2 we have

∣∣Φ+〉 ∣∣ϕ+〉 |Υ2⟩ → 1
16

[
â†2

0 â
†2
1 − â†2

0 ê
†2
1 − â†2

1 ê
†2
0 + â†2

2 â
†2
3 − â†2

2 ê
†2
3 − â†2

3 ê
†2
2 − b̂†2

0 b̂
†2
1 + b̂†2

0 f̂
†2
1 + b̂†2

1 f̂
†2
0

−b̂†2
2 b̂

†2
3 + b̂†2

2 f̂
†2
3 + b̂†2

3 f̂
†2
2 + ê†2

0 ê
†2
1 + ê†2

2 ê
†2
3 − f̂†2

0 f̂†2
1 − f̂†2

2 f̂†2
3 + 2(a†

0a
†
1a

†
2a

†
3

−a†
0a

†
1b

†
0f

†
1 + a†

0a
†
1b

†
1f

†
0 − a†

0a
†
1b

†
2f

†
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0a
†
1b

†
3f

†
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0a
†
1e

†
2e

†
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0a
†
2e

†
1e

†
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†
3e

†
1e

†
2

+a†
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†
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†
1e
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and for the second output state, we obtain
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0 â
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where the terms in red are repeated for both outcomes. We observe that the output states
share half of the events, but the other half are unique for each state, which implies that we can
now distinguish between these outcomes 50% of the time. However, we must also check that
by introducing the ancillary photons whether the seven classes are still indistinguishable from
each other and whether we can now discriminate between states of the same class, other than 2.
We wrote a program in Python (see Appendix A7) to settle these doubts. The heart of the
code is illustrated in Fig. 5.6, where the sets represent the states and the elements represent the
events before being detected. Fig. 5.6a shows the case of two states that belong to different
classes. We note that the intersection of both sets is equal to vacuum since they do not have
any term in common (and which makes the classes distinguishable). These cases are discarded
by the program. Instead, Fig. 5.6b shows that for states belonging to the same class (excluding
class 1), the intersection corresponds to half of the elements of both sets, as long as we use the
correct ancilla. Then, we are able to discriminate between two states, contained in the same
class, 50% of the time. In addition, with the program, we checked that the sign of the ancilla
states does not alter these results.

The above translates into the overall success probability of the scheme, resulting in

Psucc = (0.5ξ1 + 0.5ξ2), (5.70)

where the variables ξ1 and ξ2 are the probabilities that an entangled photon source generates
the Bell states that we are trying to distinguish. In the best case, the source only generates the
two Bell states we are discriminating, then the success probability is Psucc = 1/2. If the source
generates the 16 Bell states with equal probability, we have that ξ1 = ξ2 = 1/16, so Psucc = 1/16.
Finally, in the worst case, the source does not generate the states we are discriminating against.
Nevertheless, we can always avoid this case by changing the ancilla state to distinguish a Bell
state that is generated by the source.
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Figure 5.6: Venn diagram representing the idea of the program with which we
check the distinguishability between states. Sets represent the classes, and the elements of
the sets represent the events before being detected. a) For states belonging to different classes,
the intersection of both sets is equal to vacuum since they do not have any term in common.
These case is discarded by the program b) For states of the same class, half of the elements are
repeated, but the other half are not. This result implies that we will be able to discriminate
between both states 50% of the time. Source: Made by the author.

5.4.1 Aplication: Target Detection

A direct and useful application for our improved HDBSA is in quantum target detection (QTD),
also known as quantum illumination. The QTD scenario has demonstrated an enhancement over
its classical counterpart even when noise and loss are so great that no entanglement survives at
the detector [106].

The protocol is illustrated in Fig. 5.7, where we have a source that produces a pair of
photons, A and B, in some Bell state. The signal photon B is sent to an object immersed in a
noisy background described by a fully mixed state ρn = I/d. If the target is there, the photon
will be reflected and go to the BSM. If the object is not there, the photon will be lost. On the
other hand, idler photon A is isolated and sent directly to the BSM.

Figure 5.7: Quantum target detection scheme. Only the case in which the object reflects
photon B and reaches the BSM is illustrated. Source: Made by the author.

The quantum gain of QDT is strongly related to the dimension of the Hilbert space we
are working with. Using entangled quantum states the effective signal-to-noise ratio is ∼ d2.
While using unentangled states the same ratio is ∼ d [106]. Therefore, entanglement reduces
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the signal-to-noise ratio by a factor d in comparison with the unentangled case [106]. Note that
QDT has already been implemented only using linear optics devices, but for d = 2 [52].

However, with linear optics for d=4, the effective signal-to-noise ratio is ∼ d2/2 = 8, because
the minimum number of Bell states we can discriminate is two. We can overcome this limit
by using our improved HDBSA. As we saw in section 5.4, we can always choose the ancillary
photons depending on the Bell state generated by the source. This allows us to measure the
Bell pair 50% of the time successfully and hence, have an ideal signal-to-noise ratio (∼ d2 = 16).
Then, the average effective signal-to-noise ratio is equal to

SN = 0.5 × 8 + 0.5 × 16 = 12, (5.71)

which is an improvement of the protocol of quantum target detection with linear optics.

5.5 Conclusion

We designed a four-dimensional Bell state analyzer based entirely on fiber optical devices
and using only path modes without involving non-linear processes. From two-photon
interference in a pair of 4CF-BS, we separate the 16 Bell states into 7 groups, which has
been shown to be optimal when we try to discriminate Bell states in a 4-dimensional Hilbert
space [45]. We studied quantum teleportation, entanglement swapping, and superdense
coding protocols as an application. In the latter, using the HDBSA we encoded more
information for ququarts than for qubits or even for two qubits, exploiting the high
dimensionality of the measurement. However, in the two remaining protocols that are more
interesting than superdense coding, we obtain results equal to or slightly better than using qubits.

Motivated to improve the performance of our HDBSA for quantum teleportation and
entanglement swapping, we increase the size of the Hilbert space by introducing two ancillary
photons that interfere with the outputs of the original HDBSA. With this new scheme, we can
distinguish a single Bell state 50% of the time from the same classes containing two states.
Even though this HDBSA with auxiliary photons gives a low success probability when the
states are equiprobable (psucc = 1/16), once it works, we can achieve a maximum fidelity for
quantum teleportation or a high-quality entanglement between the non-interacting parties in
the entanglement swapping protocol. A direct and handy application is for quantum target
detection where the quantum advantage scales with the dimension [52, 106]. Here only one Bell
state is generated, leading to a success probability of psucc = 0.5 of measuring and detecting
the target that is in a noisy background. The HDBSA also allows us to improve the average
signal-to-noise ratio from 8 to 12 in the d = 4 case.
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Chapter 6

Conclusion

In this thesis, we studied two main applications for a 4 × 4 optical fiber beamsplitter using
two-photon interference. The first one is the manipulation of quantum discord, and the second
one is the design of a high-dimensional Bell state analyzer. These works do not involve nonlinear
processes and are fully based on fiber devices, so we exploit the momentum degree of freedom of
photons.

Our first result is presented in chapter 4. Using two weak coherent pulses as inputs, we
first achieve a good quality two-photon interference in a 4 × 4 optical fiber beamsplitter. The
photons after this device present correlations (different from entanglement since the input state
is separable), so we post-select the output state and use a geometric measure of quantum discord
to study this correlation. We found that the geometric discord can be maximized by adjusting
the intensity mismatch ratio between the input weak coherent pulses.

The experimental group of quantum optics and information of the University of Concepción
is involved in a project that connects the Faculty of Physical and Mathematical Sciences with
the Faculty of Engineering through a 1 km multicore optical fiber. One of the first protocols
we could implement with this link is remote state preparation using the experimental setup
presented in chapter 4. It has been shown that states with quantum discord can outperform
entangled states in this scenario [41]. In addition, the remote state preparation protocol is easier
to achieve than quantum teleportation using entangled states.

One of the main problems in implementing linear optics quantum teleportation is the
limitation in the Bell measurement. Even though full measurement has been achieved [45, 102,
103], they are based on hyperentanglement, which limits quantum teleportation since a third
party cannot independently supply the input state. A solution to this measurement problem
also allows other quantum protocols, such as entanglement swapping, which is a key ingredient
for quantum nodes in quantum networks [9].

In chapter 5, we first design a high-dimensional Bell state analyzer for d = 4 that discriminate
the 16 Bell states into 7 groups, which has been shown to be optimal for a 4-dimensional
Hilbert space [45]. We discussed the performance of the HDBSA for quantum teleportation,
entanglement swapping, and superdense coding. However, in the last two protocols, which are
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the most interesting, we obtain results equal to or slightly better than using qubits. We then
show that a pair of entangled ancilla photons can be used to probabilistic and unequivocally
identify two Bell states.

Note that Wang et. al. [101] made quantum teleportation using a hyperentangled Bell
detection with a success probability of 1/32. On the other hand, Xiao-Min et. al. [107]
implemented high-dimensional quantum teleportation of a qutrit using only path mode, achieving
a success probability of 1/54 and introducing ancillary photons they obtain a probability of
1/18. Compared with these two experiments, we obtain a higher success probability of 1/16
with our HDBSA when the Bell states are equiprobable. Nevertheless, Zang et. al. [108] in
the four-dimensional case they have a success probability of 5/32 which is greater than 1/16.
However, they need eight photons while we just need four, so following the calculations in
subsection 5.3.3, our HDBSA is better as long as the detection efficiency is less than ∼ 80%.

Looking ahead, we could explore other ancilla states, such as entangled qubits or
non-entangled ququarts, and study if there is any advantage over the HDBSA proposed. Further
on, we could implement the HDBSA in the laboratories of the quantum optics and information
group of the University of Concepción to do long distances quantum experiments, as those
presented in chapter 5, using the after mentioning 1 km multicore link, with and without
ancillary photons.

This thesis should contribute to the exploitation of quantum correlations and the
implementation of Bell measurements in quantum communication protocols in future
telecommunication networks, particularly those that exploit spatially structured fibers.
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Appendix A

Python Programs

A1 Evolution Creation Operators

Python program to calculate the output creation operators representing the two-photon state
after the 4CF-BS corresponding to the eqs. (4.4), (4.5) and (4.6).

1 #%%

2 import sympy as sp

3

4 # Matrix for the 4CF -BS. Note that we didnt consider the factor 1/2

5 BS4 = sp. Matrix ([[1 ,1 ,1 ,1] ,

6 [1,1,-1,-1],

7 [1,-1,1,-1],

8 [1 , -1 , -1 ,1]])

9

10 # Creation operators .

11 a0 = sp. Matrix ([[1] ,[0] ,[0] ,[0]])

12 a1 = sp. Matrix ([[0] ,[1] ,[0] ,[0]])

13 a2 = sp. Matrix ([[0] ,[0] ,[1] ,[0]])

14 a3 = sp. Matrix ([[0] ,[0] ,[0] ,[1]])

15

16 # How interact the different modes od the 4CF -BS

17 BS4*a0 ,BS4*a1 ,BS4*a2 ,BS4*a3

18 #%%

19 # is direct to get the evolution of the operators a1 ^2 and a3^2, but for we need

to define the variables

20 A0 ,A1 ,A2 ,A3= sp. symbols ("a_0 :4", real=True)

21

22 # Then the evoluted operator a1a3 is

23 sp. expand (( A0+A1 -A2 -A3)*(A0 -A1 -A2+A3))

A2 Output Density Matrix

Python program to calculate the 10 × 10 output matrices in eqs. (4.7) and (4.8).

1 import sympy as sp

2
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3 g= sp. Symbol (" gamma ")

4

5 A2000 = sp. Matrix ([[1] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0]])

6 A0200 = sp. Matrix ([[0] ,[1] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0]])

7 A0020 = sp. Matrix ([[0] ,[0] ,[1] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0]])

8 A0002 = sp. Matrix ([[0] ,[0] ,[0] ,[1] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0]])

9 A1100 = sp. Matrix ([[0] ,[0] ,[0] ,[0] ,[1] ,[0] ,[0] ,[0] ,[0] ,[0]])

10 A1010 = sp. Matrix ([[0] ,[0] ,[0] ,[0] ,[0] ,[1] ,[0] ,[0] ,[0] ,[0]])

11 A1001 = sp. Matrix ([[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[1] ,[0] ,[0] ,[0]])

12 A0110 = sp. Matrix ([[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[1] ,[0] ,[0]])

13 A0101 = sp. Matrix ([[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[1] ,[0]])

14 A0011 = sp. Matrix ([[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[0] ,[1]])

15

16 BS4a1 = (sp.sqrt (2) *( A2000 + A0200 + A0020 + A0002 ) + 2*( A1100 -A1001 -A0110 -A0101

+ A0011 -A1010 ))/4

17 BS4a3 = (sp.sqrt (2) *( A2000 + A0200 + A0020 + A0002 ) + 2*( A1001 -A1100 -A1010 + A0110

-A0101 -A0011 ))/4

18 BS4a1a3 = (sp.sqrt (2) *( A2000 -A0200 + A0020 -A0002 ) + 2*( A0101 -A1010 ))/4

19

20 rho_output = (( BS4a1 * BS4a1 .T+ (g**2)* BS4a3 * BS4a3 .T)/2 + 2*g* BS4a1a3 * BS4a1a3 .T)

*16

21

22 rho_output_g1 = rho_output .subs(g ,1) /4

23

A3 Max Term

With this python program we obtain the plot shown in Fig. 4.4, which helps us to find the
maximum eigenvalue of the matrix K (see eq. (4.16)).

1 import numpy as np

2 import matplotlib . pyplot as mlp

3

4 g= np. arange (0 ,1 ,0.01)

5

6 t = (1+4* g+g**2) /(1+g)**2

7 v = (1 -4*g+g**2) /(1+g)**2

8 u = (1-g)/(1+g)

9 w = (1+g**2) /(1+g)**2

10

11 Cxx = (w+v)/2

12 Cyy = (w-v)/2

13 Czz = (t-w)/2

14

15 k1= Cxx + Cxx **2

16 k2 = Cyy **2

17

18 def D(k):

19 D= (Cxx+Cxx **2+ Cyy **2+ Czz **2 -k)/2

20 return D

21

22 mlp.plot(g, k2/6, label =r" $k_1$ ",color ="red")
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23 mlp.plot(g,k1/6, label =r" $k_1$ ", color =" orange ")

24 mlp. scatter (0.435 , 0.03 , label =r"$\ gamma \ approx 0.435 $", color =" black ")

25 mlp. xlabel (r"$\ gamma$ ", size =15)

26

27 mlp. legend ()

28 mlp. savefig (" maxterm_comparison .pdf")

29

30 # mlp.plot(g, D(k1))

31 # mlp.plot(g, D(k2))

32 # mlp.grid ()

33 # mlp.ylim (0 ,0.2)

34

35

A4 Classes Clasification

Python program to classify the classes shown in eqs. (5.26) to (5.32).

1 import sympy as sp

2 from IPython . display import display , Math

3

4 A0 , A1 ,A2 ,A3 = sp. symbols ("A_0 :4", real=True)

5 B0 , B1 ,B2 ,B3 = sp. symbols ("B_0 :4", real=True)

6

7 UMCF=sp. Matrix ([[1 ,1 ,0 ,0 ,1 ,1 ,0 ,0] ,

8 [1,1,0,0,-1,-1,0,0],

9 [0 ,0 ,1 ,1 ,0 ,0 ,1 ,1] ,

10 [0,0,1,1,0,0,-1,-1],

11 [1,-1,0,0,1,-1,0,0],

12 [1,-1,0,0,-1,1,0,0],

13 [0,0,1,-1,0,0,1,-1],

14 [0 ,0 ,1 , -1 ,0 ,0 , -1 ,1]])

15

16 phase =sp. Matrix ([[1 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

17 [0,-1,0,0,0,0,0,0],

18 [0 ,0 ,1 ,0 ,0 ,0 ,0 ,0] ,

19 [0 ,0 ,0 ,1 ,0 ,0 ,0 ,0] ,

20 [0 ,0 ,0 ,0 ,1 ,0 ,0 ,0] ,

21 [0,0,0,0,0,-1,0,0],

22 [0 ,0 ,0 ,0 ,0 ,0 ,1 ,0] ,

23 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,1]])

24

25 Re1=sp. Matrix ([[0 ,0 ,0 ,0 ,0 ,0 ,0 ,1] ,

26 [0 ,0 ,0 ,0 ,0 ,1 ,0 ,0] ,

27 [0 ,0 ,0 ,1 ,0 ,0 ,0 ,0] ,

28 [0 ,1 ,0 ,0 ,0 ,0 ,0 ,0] ,

29 [0 ,0 ,1 ,0 ,0 ,0 ,0 ,0] ,

30 [1 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

31 [0 ,0 ,0 ,0 ,0 ,0 ,1 ,0] ,

32 [0 ,0 ,0 ,0 ,1 ,0 ,0 ,0]])

33

34 Re2=sp. Matrix ([[1 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,
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35 [0 ,1 ,0 ,0 ,0 ,0 ,0 ,0] ,

36 [0 ,0 ,0 ,0 ,1 ,0 ,0 ,0] ,

37 [0 ,0 ,0 ,0 ,0 ,1 ,0 ,0] ,

38 [0 ,0 ,1 ,0 ,0 ,0 ,0 ,0] ,

39 [0 ,0 ,0 ,1 ,0 ,0 ,0 ,0] ,

40 [0 ,0 ,0 ,0 ,0 ,0 ,1 ,0] ,

41 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,1]])

42

43 U= Re2*UMCF*Re1 /2

44

45 a = [A0 ,A1 ,B0 , B1 ,A2 ,A3 ,B2 ,B3]

46 def a_in(j):

47 """ Given the input creation operators and the matrix that gives me the

evolution of the system , I can have the output creation operators that will

act on the empty state . output creation operators that will act on the

vacuum state . This function is in the form of eq. (3.12) of the thesis .

48 j (str): mode in which my state is

49

50 output : output operators

51 """

52 aj = 0

53 for i in range (0 ,8):

54 aj += U1[i, j]*a[i]

55 return aj

56

57 # CLASS 1

58 display (Math(r"|\ Phi ^{ -} \ rangle |\ phi ^{+} \ rangle "));

59 sp. expand (a_in (0)*a_in (2) -a_in (1)*a_in (3)+a_in (4)*a_in (6) -a_in (5)*a_in (7))/2

60

61 display (Math(r"|\ Phi ^{+} \ rangle |\ phi ^{ -} \ rangle "));

62 sp. expand (a_in (0)*a_in (2)+a_in (1)*a_in (3) -a_in (4)*a_in (6) -a_in (5)*a_in (7))/2

63

64 display (Math(r"|\ Psi ^{+} \ rangle |\ psi ^{ -} \ rangle "));

65 sp. expand (a_in (0)*a_in (7)+a_in (1)*a_in (6) -a_in (4)*a_in (3) - a_in (5)*a_in (2))/2

66

67 display (Math(r"|\ Psi ^{ -} \ rangle |\ psi ^{+} \ rangle "));

68 sp. expand (a_in (0)*a_in (7) -a_in (1)*a_in (6)+a_in (4)*a_in (3) - a_in (5)*a_in (2))/2

69

70 # CLASS 2

71

72 display (Math(r"|\ Phi ^{+} \ rangle |\ phi ^{+} \ rangle "));

73 sp. expand (a_in (0)*a_in (2)+a_in (1)*a_in (3)+a_in (4)*a_in (6)+a_in (5)*a_in (7))/2

74

75 display (Math(r"|\ Phi ^{ -} \ rangle |\ phi ^{ -} \ rangle "));

76 sp. expand (a_in (0)*a_in (2) -a_in (1)*a_in (3) -a_in (4)*a_in (6)+a_in (5)*a_in (7))/2

77

78 # CLASS 3

79 display (Math(r"|\ Psi ^{ -} \ rangle |\ psi ^{ -} \ rangle "));

80 sp. expand (a_in (0)*a_in (7) -a_in (1)*a_in (6) - a_in (4)*a_in (3)+ a_in (5)*a_in (2))/2

81

82 display (Math(r"|\ Psi ^{+} \ rangle |\ psi ^{+} \ rangle "));

83 sp. expand (a_in (0)*a_in (7)+a_in (1)*a_in (6)+ a_in (4)*a_in (3)+a_in (5)*a_in (2))/2

84
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85 # CLASS 4

86 display (Math(r"|\ Psi ^{+} \ rangle |\ phi ^{ -} \ rangle "));

87 sp. expand (a_in (0)*a_in (3)+a_in (1)*a_in (2) -a_in (4)*a_in (7) -a_in (5)*a_in (6))/2

88

89 display (Math(r"|\ Phi ^{+} \ rangle |\ psi ^{ -} \ rangle "));

90 sp. expand (a_in (0)*a_in (6)+a_in (1)*a_in (7) -a_in (4)*a_in (2) -a_in (5)*a_in (3))/2

91

92 # CLASS 5

93 display (Math(r"|\ Psi ^{ -} \ rangle |\ phi ^{+} \ rangle "));

94 sp. expand (a_in (0)*a_in (3) -a_in (1)*a_in (2)+a_in (4)*a_in (7) -a_in (5)*a_in (6))/2

95

96 display (Math(r"|\ Phi ^{ -} \ rangle |\ psi ^{+} \ rangle "));

97 sp. expand (a_in (0)*a_in (6) -a_in (1)*a_in (7)+a_in (4)*a_in (2) -a_in (5)*a_in (3))/2

98

99 # CLASS 6

100 display (Math(r"|\ Psi ^{+} \ rangle |\ phi ^{+} \ rangle "));

101 sp. expand (a_in (0)*a_in (3)+a_in (1)*a_in (2)+a_in (4)*a_in (7)+a_in (5)*a_in (6))/2

102

103 display (Math(r"|\ Phi ^{ -} \ rangle |\ psi ^{ -} \ rangle "));

104 sp. expand (a_in (0)*a_in (6) -a_in (1)*a_in (7) -a_in (4)*a_in (2)+a_in (5)*a_in (3))/2

105

106 # CLASS 7

107 display (Math(r"|\ Psi ^{ -} \ rangle |\ phi ^{ -} \ rangle "));

108 sp. expand (a_in (0)*a_in (3) -a_in (1)*a_in (2) -a_in (4)*a_in (7)+a_in (5)*a_in (6))/2

109

110 display (Math(r"|\ Phi ^{+} \ rangle |\ psi ^{+} \ rangle "));

111 sp. expand (a_in (0)*a_in (6)+a_in (1)*a_in (7)+a_in (4)*a_in (2)+a_in (5)*a_in (3))/2

112

A5 Teleportation Fidelities

Python program to calculate the fidelities in the teleportation protocol between the state
teleported and the state received for the cases shown in subsection 5.3.1.

1 import numpy as np

2 # %%

3 def MUBS(f):

4 """ M0 """

5 print (f(1 ,0 ,0 ,0) ,f(0 ,1 ,0 ,0) ,f(0 ,0 ,1 ,0) ,f(0 ,0 ,0 ,1))

6 """ M1 """

7 print (f(0.5 ,0.5 ,0.5 ,0.5) , f(0.5 ,0.5 , -0.5 , -0.5) , f(0.5 , -0.5 , -0.5 ,0.5) , f

(0.5 , -0.5 ,0.5 , -0.5))

8 """ M2 """

9 print (f(0.5 , -0.5 , -0.5j , -0.5j), f(0.5 , -0.5 ,0.5j ,0.5j), f(0.5 ,0.5 ,0.5j , -0.5j),

f(0.5 ,0.5 , -0.5j ,0.5j))

10 """ M3 """

11 print (f(0.5 , -0.5j , -0.5j , -0.5) , f(0.5 , -0.5j ,0.5j ,0.5) , f(0.5 ,0.5j ,0.5j , -0.5) ,

f(0.5 ,0.5j , -0.5j ,0.5) )

12 """ M4 """

13 print (f(0.5 , -0.5j , -0.5 , -0.5j), f(0.5 , -0.5j ,0.5 ,0.5j), f(0.5 ,0.5j , -0.5 ,0.5j),

f(0.5 ,0.5j ,0.5 , -0.5j))

14
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15 def F_classical (a, b, c, d):

16 norm = (abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2)

17 ff = (abs(a)**4+ abs(d)**4+ abs(c)**4+ abs(b)**4)/norm

18 return ff

19

20 def F_qubit (a, b, c, d):

21 # This expression it is already normalized

22 ff = (abs(a)**2+ abs(d)**2)

23 return ff

24

25 def F1_ququart (a, b, c, d):

26 norm = 2*( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2)

27 ff= (( abs(a)**4 + abs(b)**4 + abs(d)**4 + abs(c)**4

28 -(a*np. conjugate (d))**2 -(np. conjugate (a)*d)**2

29 -(b*np. conjugate (c))**2 - (c*np. conjugate (b))**2)/norm)

30 return ff

31

32 def F2_ququart (a, b, g, d):

33 norm = (abs(a)**2 +abs(b)**2 +abs(g)**2 +abs(d)**2)

34 ff = (abs(a)**4 +abs(b)**4 +abs(g)**4 +abs(d)**4 +2* abs(b)**2* abs(g)**2

35 +2* abs(d)**2* abs(a)**2)/norm

36 return ff

37

38 # We do not write the fidelity for class 3 since it is exactly the same than for

class 2.

39

40 def F4_Uququart (a, b, c, d):

41 norm =(2*( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2))

42 ff= ((( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2) **2

43 +( np. conjugate (b)*c+np. conjugate (c)*b +np. conjugate (a)*d

44 +np. conjugate (d)*a)**2)/norm)

45 return ff

46

47 def F5_Uququart (a, b, c, d):

48 norm =(2*( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2))

49 ff= (( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2) **2

50 +( np. conjugate (b)*c+np. conjugate (c)*b +np. conjugate (a)*d

51 +np. conjugate (d)*a)**2)/norm

52 return ff

53

54 def F6_Uququart (a, b, c, d):

55 norm =(2*( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2))

56 ff= ((( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2) **2

57 +( np. conjugate (b)*c-np. conjugate (a)*d -np. conjugate (d)*a

58 +np. conjugate (c)*b)**2)/norm)

59 return ff

60

61 def F7_Uququart (a, b, c, d):

62 norm =(2*( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2))

63 ff= ((( abs(a)**2 +abs(b)**2 +abs(c)**2 +abs(d)**2) **2

64 +( np. conjugate (c)*b-np. conjugate (a)*d -np. conjugate (d)*a

65 +np. conjugate (b)*c)**2)/norm)

66 return ff
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A6 Logarithmic Negativity

Python program to calculate the logarithmic negativity as a measure of entanglement between
the states swapped in subsection 5.3.2.

1 import numpy as np

2

3 def negativity ( rho_transpuesto ):

4 norm_rho = np. linalg .norm( rho_transpuesto , ord="nuc")

5 return (norm_rho -1) /2

6

7 def log_negativity ( rho_transpuesto ):

8 norm_rho = np. linalg .norm( rho_transpuesto , ord="nuc")

9 return np.log2( norm_rho )

10

11 def trace_one (rho):

12 return np. trace (rho)

13

14 # partial transpose matrix of the eq. (2.27)

15 rhoTP_qubit = 1/2* np. array ([[1 , 0, 0,0],

16 [0, 0, 1,0],

17 [0, 1, 0,0],

18 [0, 0, 0 ,1]

19 ])

20

21 # partial transpose matrix of rho ^{ id}_{AB}

22 rhoTP_id = 1/4* np. array ([[1 , 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

23 [0, 0, 0,0,1, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

24 [0, 0, 0,0,0, 0, 0,0,1, 0, 0,0,0, 0, 0,0],

25 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,1, 0, 0,0],

26 [0, 1, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

27 [0, 0, 0,0,0, 1, 0,0,0, 0, 0,0,0, 0, 0,0],

28 [0, 0, 0,0,0, 0, 0,0,0, 1, 0,0,0, 0, 0,0],

29 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 1, 0,0],

30 [0, 0, 1,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

31 [0, 0, 0,0,0, 0, 1,0,0, 0, 0,0,0, 0, 0,0],

32 [0, 0, 0,0,0, 0, 0,0,0, 0, 1,0,0, 0, 0,0],

33 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 1,0],

34 [0, 0, 0,1,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

35 [0, 0, 0,0,0, 0, 0,1,0, 0, 0,0,0, 0, 0,0],

36 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,1,0, 0, 0,0],

37 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0 ,1]

38 ])

39

40 # partial transpose matrix of rho ^{(2) }_{AB}

41 rho2TP = 1/4* np. array ([[1 , 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],#00

42 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],#01

43 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],#02

44 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,1, 0, 0,0],#03

45 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],#10

46 [0, 0, 0,0,0, 1, 0,0,0, 0, 0,0,0, 0, 0,0],#11

47 [0, 0, 0,0,0, 0, 0,0,0, 1, 0,0,0, 0, 0,0],

48 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],
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49 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

50 [0, 0, 0,0,0, 0, 1,0,0, 0, 0,0,0, 0, 0,0],

51 [0, 0, 0,0,0, 0, 0,0,0, 0, 1,0,0, 0, 0,0],#22

52 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

53 [0, 0, 0,1,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

54 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

55 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0,0],

56 [0, 0, 0,0,0, 0, 0,0,0, 0, 0,0,0, 0, 0 ,1]

57 ])

A7 Discrimination Criteria

Python program where we introduce the ancillary photons to the original HDBSA. With the
funcion criteria we are able to discriminate when two classes have different outcomes, and hence,
we can discriminate them.

1 import sympy as sp

2 from IPython . display import display , Math

3 sp. init_printing ()

4

5 A0 , A1 ,A2 ,A3 = sp. symbols ("A_0 :4", real=True , positive = True)

6 B0 , B1 ,B2 ,B3 = sp. symbols ("B_0 :4", real=True , positive = True)

7 E0 , E1 ,E2 ,E3 = sp. symbols ("E_0 :4", real=True , positive = True)

8 F0 , F1 ,F2 ,F3 = sp. symbols ("F_0 :4", real=True , positive = True)

9

10 def anc_in (j):

11 """ Given the input creation operators and the matrix that gives me the

evolution of the system , I can have the output creation operators that will

act on the empty state . output creation operators that will act on the empty

state . This function has the form a_in = SUM U_wei a_out

12 input

13 j (str): mode

14 output : output creation operator

15 """

16 anc = [A0 ,A1 ,B0 , B1 ,A2 ,A3 ,B2 ,B3 ,E0 ,E1 ,F0 ,F1 ,E2 ,E3 ,F2 ,F3]

17 aj = 0

18 for i in range (0 ,16):

19 aj += AncillaUnitary [i, j]* anc[i]

20 return aj

21

22 def terms_abs (a, ancilla ):

23 # Considering the classes have interacted with the ancillas already ,

24 # this function take the absolute value of every term and store each

25 # term in a list

26 list = []

27 for i in sp. expand ((a* ancilla )).args:

28 list. append (abs(i))

29 return list

30

31 def inter (lst1 , lst2):

32 # Function that takes the two list and return the intersection of the

33 # elements of both lists .
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34 temp = set(lst2)

35 lst3 = [ value for value in lst1 if value in temp]

36 return lst3

37

38 def criteria2 ( ancilla ):

39 # For the indicated ancilla , the function analyze the different classes

40 # and return the sets that this ancilla allows to distinguish

41 for i in range (len( list_classes )):

42 for j in range (len( list_classes )):

43 term_i = terms_abs ( list_classes [i], ancilla )

44 term_j = terms_abs ( list_classes [j], ancilla )

45 xx = inter (term_i , term_j )

46 if xx != [] and len(xx) < len( term_i ) :

47 # If the intersection of both classes are different from the

48 # empty set and if the set of the intersection is smaller than

49 # the set of any of the classes , print the following

50 print ("the sets "+ list_names [i]+" and "+ list_names [j]

51 +" are distinguishable , with "+ str(len(xx))

52 +" terms in common . Each class has "

53 +str(len( term_i ))+", " + str(len( term_j ))+" elements " )

54

55 def terms_diff (list1 ,list2 ,anc):

56 # Given the return of " criteria2 ", with this function we can know

57 # the amplitude of the elements that makes two states distinguishable

58 diff = set( terms_abs (list1 , anc))-set( terms_abs (list2 , anc))

59 return diff

60

61 # Unitary matrix of the BS where the original outcomes will interefere with the

ancillary photons

62 BS2=sp. Matrix ([[1 ,0 ,0 ,0,0 ,0 ,0,0,1,0,0,0,0,0,0,0],

63 [0 ,1 ,0 ,0,0 ,0 ,0,0,0,-1,0,0,0,0,0,0],

64 [0 ,0 ,1 ,0,0 ,0 ,0,0,0,0,1,0,0,0,0,0],

65 [0 ,0 ,0 ,1,0 ,0 ,0,0,0,0,0,-1,0,0,0,0],

66 [0 ,0 ,0 ,0,1 ,0 ,0,0,0,0,0,0,1,0,0,0],

67 [0 ,0 ,0 ,0,0 ,1 ,0,0,0,0,0,0,0,-1,0,0],

68 [0 ,0 ,0 ,0,0,0 ,1,0,0,0,0,0,0,0,1,0],

69 [0 ,0 ,0 ,0,0 ,0,0,1,0,0,0,0,0,0,0,-1],

70 [-1,0 ,0 ,0,0 ,0 ,0,0,1,0,0,0,0,0,0,0],

71 [0 ,1 ,0 ,0,0 ,0 ,0,0,0,1,0,0,0,0,0,0],

72 [0 ,0 ,-1,0,0 ,0 ,0,0,0,0,1,0,0,0,0,0],

73 [0 ,0 ,0 ,1,0 ,0 ,0,0,0,0,0,1,0,0,0,0],

74 [0 ,0 ,0 ,0,-1 ,0 ,0,0,0,0,0,0,1,0,0,0],

75 [0 ,0 ,0 ,0,0 ,1 ,0,0,0,0,0,0,0,1,0,0],

76 [0 ,0 ,0 , 0,0 ,0 ,-1,0,0,0,0,0,0,0,1,0],

77 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,1,0,0,0,0,0,0,0,1],

78 ])

79 AncillaUnitary = BS2/sp.sqrt (2)

80

81

82

83 # We reewrite the classes found in Apendix A4

84 class10 =(( anc_in (0)* anc_in (0) -anc_in (1)* anc_in (1)+ anc_in (4)* anc_in (4) - anc_in

(5)* anc_in (5)
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85 -anc_in (2)* anc_in (2)+ anc_in (3)* anc_in (3) - anc_in (6)* anc_in (6)+ anc_in (7)*

anc_in (7))/4

86 )

87 class11 =( anc_in (0)* anc_in (0) -anc_in (1)* anc_in (1) -anc_in (4)* anc_in (4) + anc_in (5)

* anc_in (5)

88 -anc_in (2)* anc_in (2)+ anc_in (3)* anc_in (3)+ anc_in (6)* anc_in (6) -anc_in (7)*

anc_in (7))/4

89 class12 =( anc_in (0)* anc_in (0)+ anc_in (1)* anc_in (1) -anc_in (4)* anc_in (4) -anc_in (5)*

anc_in (5)

90 -anc_in (2)* anc_in (2) -anc_in (3)* anc_in (3)+ anc_in (6)* anc_in (6)+ anc_in (7)*

anc_in (7))/4

91 class13 =( anc_in (0)* anc_in (0)+ anc_in (1)* anc_in (1)+ anc_in (4)* anc_in (4) + anc_in (5)*

anc_in (5)

92 -anc_in (2)* anc_in (2) -anc_in (3)* anc_in (3) - anc_in (6)* anc_in (6) -anc_in (7)*

anc_in (7))/4

93 # ---------------------------------------------------------------

94 class20 = (- anc_in (0)* anc_in (1)+ anc_in (4)* anc_in (5)+ anc_in (2)* anc_in (3)

95 - anc_in (6)* anc_in (7))/2

96 class21 = (- anc_in (0)* anc_in (1) -anc_in (4)* anc_in (5)+ anc_in (2)* anc_in (3)

97 + anc_in (6)* anc_in (7))/2

98 # ---------------------------------------------------------------

99 class30 = ( anc_in (0)* anc_in (3) -anc_in (1)* anc_in (2)+ anc_in (4)* anc_in (7)

100 - anc_in (5)* anc_in (6))/2

101 class31 = ( anc_in (0)* anc_in (3) -anc_in (1)* anc_in (2) -anc_in (4)* anc_in (7)

102 + anc_in (5)* anc_in (6))/2

103 # ---------------------------------------------------------------

104 class40 = ( anc_in (0)* anc_in (6) -anc_in (1)* anc_in (7) -anc_in (4)* anc_in (2)

105 + anc_in (5)* anc_in (3))/2

106 class41 = ( anc_in (0)* anc_in (6)+ anc_in (1)* anc_in (7) -anc_in (4)* anc_in (2)

107 - anc_in (5)* anc_in (3))/2

108 # ---------------------------------------------------------------

109 class50 = ( anc_in (0)* anc_in (4) -anc_in (1)* anc_in (5) -anc_in (2)* anc_in (6)+ anc_in

(3)* anc_in (7))/2

110 class51 = ( anc_in (0)* anc_in (4)+ anc_in (1)* anc_in (5) -anc_in (2)* anc_in (6) - anc_in

(3)* anc_in (7))/2

111 # ---------------------------------------------------------------

112 class60 = ( anc_in (0)* anc_in (7) -anc_in (1)* anc_in (6)+ anc_in (4)* anc_in (3) - anc_in

(5)* anc_in (2))/2

113 class61 =(- anc_in (0)* anc_in (7) -anc_in (1)* anc_in (6)+ anc_in (4)* anc_in (3)+ anc_in (5)

* anc_in (2))/2

114

115 # ---------------------------------------------------------------

116 class70 =( anc_in (0)* anc_in (5) -anc_in (1)* anc_in (4)+ anc_in (2)* anc_in (7) - anc_in (3)

* anc_in (6))/2

117 class71 =(- anc_in (0)* anc_in (5) -anc_in (1)* anc_in (4)+ anc_in (2)* anc_in (7)+ anc_in

(3)* anc_in (6))/2

118

119 # DIFFERENT TYPES OF ANCILLA STATES THAT WE TRIED

120

121 anc2Plus = ( anc_in (8)* anc_in (9)+ anc_in (12)* anc_in (13)+ anc_in (10)* anc_in (11)

122 + anc_in (14)* anc_in (15))/2

123 anc20 = (- anc_in (8)* anc_in (9)+ anc_in (12)* anc_in (13)+ anc_in (10)* anc_in (11)

124 - anc_in (14)* anc_in (15))/2
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125 anc21 = (- anc_in (8)* anc_in (9) -anc_in (12)* anc_in (13)+ anc_in (10)* anc_in (11)

126 + anc_in (14)* anc_in (15))/2

127 anc21minus = (- anc_in (8)* anc_in (9)+ anc_in (12)* anc_in (13) -anc_in (10)* anc_in (11)

128 + anc_in (14)* anc_in (15))/2

129

130 anc1Plus = ( anc_in (8)* anc_in (8)+ anc_in (9)* anc_in (9)+ anc_in (10)* anc_in (10)

131 + anc_in (11)* anc_in (11))/2

132 anc3Plus =( anc_in (8)* anc_in (11)+ anc_in (9)* anc_in (10)+ anc_in (12)* anc_in (15)

133 + anc_in (13)* anc_in (14))/2

134 anc4Plus =( anc_in (8)* anc_in (14) -anc_in (9)* anc_in (15) -anc_in (12)* anc_in (10)

135 + anc_in (13)* anc_in (11))/10

136 anc5Plus =( anc_in (8)* anc_in (12) -anc_in (9)* anc_in (13) -anc_in (10)* anc_in (14)+

anc_in (11)* anc_in (15))/2

137 anc6Plus =( anc_in (8)* anc_in (15) -anc_in (9)* anc_in (14)+ anc_in (12)* anc_in (11) -

anc_in (13)* anc_in (10))/2

138 anc7Plus =( anc_in (8)* anc_in (13) -anc_in (9)* anc_in (12)+ anc_in (10)* anc_in (15) -

anc_in (11)* anc_in (14))/2
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