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RESUMEN

Proposicion de una arquitectura holonica basada en productos inteligentes para
el aumento de la flexibilidad en planificacion de la produccion y logistica.
Patricio Saez Bustos
Marzo 2023

En la era de la industria 4.0 los problemas de la planificacion y el control de la
produccion son muy relevantes en los sistemas de manufactura y su solucion es
esencial para la optimizacion de los procesos en la cadena de suministro y la
logistica. Para resolver estos problemas se han utilizado modelos Optimos
(programacion  matematica), heuristicas, metaheuristicas, simulaciones y
metodologias asociadas a herramientas de machine learning. Sin embargo, los
resultados de modelos O6ptimos son demandantes computacionalmente y su
aplicacion en ambientes productivos reales es impracticable. Alternativamente
métodos de aproximacion a resultados Optimos (como heuristicas), permitirian
direccionar el problema a sistema de control dindmicos y en tiempo real.

En la presente tesis doctoral se aborda la programacion de talleres de trabajo tipo job
shop y la programacion del plan maestro de produccion. En la programacion de
talleres de trabajo se secuencian las operaciones con el fin de optimizar alguna
medida de interés, para nuestro caso la minimizacion del makespan. La
programacion del plan maestro de produccién es uno de los problemas de mayor
relevancia en la industria moderna ya que busca identificar cuanto y cuando se debe
producir. Para este caso se busca obtener planes méas estables, evitando fenémenos
perjudiciales como la nerviosidad. Estas programaciones (de taller y de plan
maestro) son altamente susceptibles a perturbaciones, haciendo necesario generar
alternativas que nos permitan amortiguar el deterioro global de las soluciones.

Los trabajos que componen esta tesis doctoral introducen estrategias de planificacion
de la produccién usando los paradigmas de los sistemas holdnicos, sistemas
multiagentes, sistemas controlados por el producto y productos inteligentes para
incrementar la flexibilidad de los procesos. Los modelos propuestos se basan en
arquitecturas holonicas con diferentes tipos de inteligencia embebida en los recursos
lo que permite proveerlos de capacidad de decision para el flujo de su propio
proceso. Esta capacidad de decision a parte de optimizar los procesos permite a los
recursos adaptarse a cambios 0 perturbaciones internas o externas al sistema,
generando sistemas mas agiles y con capacidad de adaptacion.



Particularmente, se generaron modelos de inteligencia artificial con agentes
representando virtualmente a productos inteligentes bajo una perspectiva de los
sistemas controlados por el producto. En una primera instancia se trabaja sobre
configuraciones de taller estdndar sujetas a perturbaciones en los tiempos de
proceso. Bajo estas condiciones el modelo propuesto reduce hasta en un 10.95% los
tiempos de finalizacion post perturbacion. El estudio se continud analizando la
resolucion del clésico problema del Job Shop Scheduling Problem en diferentes
escalas y bajo una perspectiva descentralizada. Las funciones de inteligencias
implementadas fueron heuristicas ampliamente utilizadas en la literatura; shifting
bottleneck heuristic y algoritmo evolutivo. La medida de desempefio evaluada es el
makespan bajo condiciones Optimas en cortos periodos de ejecucion. Las
metodologias propuestas obtienen resultados cercanos al optimo en problemas de
baja escala. En mayores escalas y en cortos tiempos de ejecucion, la metodologia
propuesta obtiene mejores resultados que modelos éptimos incrementando la
capacidad de respuesta con tiempo computacional similar. Por tltimo, al trabajar con
el plan maestro de produccion es posible reducir la nerviosidad presente en el
sistema sin un incremento sustantivo en el costo de produccién. Es asi como se
obtiene una disminucion del 11.42% en la nerviosidad con un incremento del 2.39%
de los costos totales.

Como trabajo futuro se considera explorar instancias de problemas a escala real,
incorporando nuevas perturbaciones y mejorando la toma de decisiones a traves de
una funcion de inteligencia méas robusta. Ademas, para tener una medida real de
flexibilidad es que se debe realizar una revision bibliografica para proponer una
medida cuantitativa para su evaluacion. Junto con esto, es necesario generar agentes
con funciones de inteligencia mas complejas asociadas a herramientas de
inteligencia artificial que nos entreguen mayor conocimiento del proceso
optimizando no solo la nerviosidad del sistema.



Y justo cuando la oruga penso que era su fin...

se transformo en mariposa...
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GLOSARIO

FMS: Sistema flexible de manufactura

HMS: Sistema holdnico de manufactura

ABM: Modelo basado en agentes

MAS: Sistema multiagente

PDS: Sistema controlado por el producto

JSSP: Problema de programacion de talleres (Job Shop Scheduling Problem)
SBH: Heuristica cuello de botella

LPT: Regla de secuenciacion por tiempo de procesamiento mas largo
SPT: Regla de secuenciacion por tiempo de procesamiento mas corto
IP: Programacion entera

HMS-MAS: Sistema Holonicos Multiagente

Nervousness: Nerviosidad en un sistema productivo

PPC: Planificacion y control de la produccion

Netlogo: Software de simulacion basado en agentes

Makespan: Tiempo de finalizacion de la produccién

EA: Algoritmo evolutivo

PDS-EA: Sistema controlado por el producto con algoritmo evolutivo
GAP: Andlisis de brecha de conocimiento

MPS: Programacion maestra de produccion

RFID: Identificacion por radiofrecuencia



CAPITULO 1. INTRODUCCION

En el contexto de la industria moderna, se tienen ambientes altamente competitivos que
evolucionan rapidamente de acuerdo con la disponibilidad de nuevas tecnologias y la
globalizacion de los procesos. Esto ha empujado a las empresas a ser cada vez mas
reactivas, innovadoras y 4giles. Sin embargo, al mismo tiempo que existe una evolucién
en el desarrollo de los sistemas, los procesos de la industria se ven afectados por nuevos
problemas que inciden directamente en los mercados mundiales. Esto enfoca las
investigaciones cientificas en el mejoramiento continuo del rendimiento y la calidad de

los sistemas de produccién.

En la actualidad los sistemas de manufactura buscan la forma de reducir la rigidez
imperante, incorporando tecnologias que permitan flexibilizar los procesos productivos.
Esta rigidez se ve reflejada en la dificultad que tienen los sistemas para adaptarse a
cambios en las programaciones y a la poca agilidad para afrontar perturbaciones. Para
subsanar este problema se proponen sistemas mas flexibles con capacidad de reaccion,
sin interrumpir la linea de produccion y manteniendo un desempefio satisfactorio
(GréRBler & Pohler, 2017).

Las empresas modernas proponen la utilizacién de sistemas de fabricacion flexibles
(FMS) para seguir siendo competitivas en el mercado. Aunque si bien, los FMS existen
desde hace décadas, siguen siendo una de las soluciones fundamentales para que un
sistema resista los requisitos cambiantes del mercado, reaccionando eficientemente ante
perturbaciones internas y externas (Saez & Herrera, 2021). Los FMS basan sus
capacidades en una alta conectividad entre los recursos, permitiendo una toma de

decision descentralizada en diferentes puntos del proceso (Cardin et al., 2018).

Esta alta conectividad y la incorporacion de tecnologias de la informacion entregan a los
sistemas productivos una nueva forma de organizacion y de control, monitorizando,
analizando y automatizando los procesos de manufactura. Este tipo de manufactura
denominada inteligente genera nuevos paradigmas basados en la cooperacion de recursos

autonomos, capaces de catalogar, procesar y analizar la informacion obtenida (Muhuri et
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al., 2019).

Dentro de este contexto, en esta tesis se propone la implementacion de estos nuevos
paradigmas, particularmente los Sistemas Holonicos de Manufactura (HMS). Los HMS
se han convertido en parte central de los modelos de control descentralizado en la
industria, ya que han mostrado ser una eficiente manera de llevar los conceptos teoricos a
la préctica. Los HMS se basan en la comunicacion y la cooperacion de los recursos
presentes en el sistema dando una representacion virtual a cada componente fisico,
generando modelos mucho mas cerca de los sistemas naturales y alejandose de ser
simples estructuras fisicas automatizadas, sino mas bien, entidades capaces de
autoorganizarse autonomamente (mezclando el mundo fisico y virtual), para resolver

problemas antiecondémicos e ineficiencias (Mcfarlane et al., 2002).

La aplicacion de sistemas de control basados en HMS permite la adaptacion a las
condiciones cambiantes del mercado, generando una representacion del mundo real y
operando en los procesos a través de procedimientos que actian de forma remota. Para
esto, la simulacién asume un papel crucial visualizando el comportamiento de las

soluciones durante la fase de disefio y antes de su implementacion real.

Para la representacion de los procesos de manufactura se utiliza particularmente el
modelado basado en agentes (ABM). Este tipo de modelo simula conductas de
fendmenos complejos como comportamientos emergentes y de auto organizacion. Estas
conductas entregan una gran capacidad de adaptacién ante las perturbaciones con un alto
grado de autonomia sin intervencion externa al proceso. Estas caracteristicas
proporcionan automatizacién, modularidad y robustez, solucionando al menos el 25% de
los problemas de fabricacion (Barbosa & Leitao, 2011; Lee, 2008).

El modelo propuesto incorpora el paradigma Holonicos con la simulacion basada en
agentes (ABM) en un proceso productivo donde cada recurso tiene la capacidad de
comunicarse y cooperar, permitiendo la posibilidad de que el sistema sea controlado por
el producto (PDS). Un PDS hace evolucionar la visién hacia un sistema mas

interoperable e inteligente, en el que se define el producto como capaz de tomar
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decisiones e influir en su proceso llevando a la practica los conceptos establecidos por
los HMS (Herrera, 2011).

Los PDS sumados a productos inteligentes entregan autonomia y crean nuevas
oportunidades de mejora en reactividad y agilidad, debido a la descentralizacion de la
toma de decisién y la generacion de soluciones en cortos periodos de tiempo. Los
productos inteligentes y los PDS pueden coexistir de forma dinamica y temporal, o
incluso ser parte de las coordinaciones en los diferentes niveles de la empresa (Herrera et
al., 2010). ElI modelo propuesto muestra que la coordinacion entre las entidades de un
sistema productivo es factible y destaca la importancia de la reactividad en la toma de

decisiones para la generacion de ambientes productivos mas estables.

1.1 Contribucién de tesis

La presente tesis doctoral propone un modelo de Planificacion y Control de la
Produccién (PDS) que utiliza Herramientas de Sistemas Multiagente (HMS) y Modelado
Basado en Agentes (ABM) para mejorar la flexibilidad y optimizacion en el uso de
recursos en sistemas productivos. La principal contribucion de esta propuesta es mostrar
que los PDS son una herramienta confiable para enfrentar perturbaciones en la
planificacion de la produccion y minimizar la nerviosidad presente en un plan maestro de

produccion.

Los articulos que componen este manuscrito entregan un contexto de la aplicacion del
modelo propuesto. En los primeros modelos presentados se aplica un PDS a un sistema
productivo con una arquitectura estandar evaluando las consecuencias de perturbaciones
en los tiempos de produccion. Continuamos el estudio aplicando el modelo propuesto a
problemas clasicos de la literatura (Job Shop Scheduling Problem) con una funcion de
inteligencia para la toma de decisiones basada en una heuristica de descomposicion. En
el tercer articulo, se continua con el analisis a problemas clasicos en la literatura, pero se
utiliza como funcion de inteligencia para la toma de decisiones un algoritmo evolutivo
que permite mejorar las soluciones propuestas en cortos periodos de tiempo. Por Gltimo,

se aplica el modelo PDS para la planificacion y control de la produccién en un caso de
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estudio sintético con 12 productos y un horizonte de planificacion de 52 semanas, con el

objetivo de reducir la nerviosidad del sistema. El detalle de los articulos es el siguiente:

(1) Séez Bustos, P., Herrera Lépez, C. (2021). Implementation of a Holonic Product-Based
Platform for Increased Flexibility in Production Planning. In: Trentesaux, D.,
Borangiu, T., Leitdo, P., Jimenez, JF., Montoya-Torres, J.R. (eds) Service Oriented,
Holonic and Multi-Agent Manufacturing Systems for Industry of the Future.
SOHOMA 2021. Studies in Computational Intelligence, vol 987. Springer, Cham.
https://doi.org/10.1007/978-3-030-80906-5_12.

(2) P. Saez, C. Herrera, J.E. Pezoa, A product-driven system approach to generate fast
solutions to the job shop scheduling problem., IFACPapersOnLine, Volume 55, Issue
10,2022, Pages 1930-1937, ISSN 2405-8963,
https://doi.org/10.1016/j.ifacol.2022.09.681.

(3) Séez P, Herrera C, Booth C, Belmokhtar-Berraf S, Parada V (2023) A product-driven
system with an evolutionary algorithm to increase flexibility in planning a job shop.
PLoS ONE 18(2): e0281807. https://doi.org/10.1371/journal.pone.0281807

(4) Séez, Patricio. Herrera, Carlos. Parada Victor. A product-driven system approach to
reduce nervousness in master production Schedule. International Journal of Production
Research. 2023

En el articulo “Implementation of a Holonic Product-Based Platform for Increased
Flexibility in Production Planning” se propone una Plataforma HMS con una
arquitectura altamente distribuida para la toma de decisiones en un sistema de
produccién estandar. En este articulo se analiza la performance en base al makespan
como medida de desempefrio en presencia de perturbaciones de demanda. Nuestro
objetivo es mostrar la necesidad de proveer de flexibilidad en el proceso de toma de
decisiones en los sistemas productivos. Los resultados de este articulo muestran que el
PDS logra disminuir hasta un 10.95% los tiempos de finalizacion, en presencia de

incrementos de hasta un 400% en los tiempos de produccion.
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En el articulo “A product-driven system approach to generate fast solutions to the
job shop scheduling problem”, se estudia el tiempo de ejecucion y la capacidad de un
PDS para encontrar buenas soluciones en sistemas del tipo jobshop. Este trabajo se
enfoca en resolver el Job Shop Scheduling Problem (JSSP) a través de un Sistema
inteligente de manufactura. Dada la alta carga computacional (que se incrementa con el
tamafo del problema), los métodos convencionales no son mayormente usados en la
préctica industrial. Por esto se propone un modelo de inteligencia artificial que usa los
productos inteligentes para tomar decisiones y resolver el JSSP en cortos periodos de
tiempo. Se experimenta con instancias disponibles en la literatura y se compararon los
resultados en 60 segundos de ejecucién con metodologias optimas (programacion
entera), heuristicas de descomposicion (SBH), y reglas de secuenciaciéon evaluando el
performance de acuerdo con el makespan obtenido y el presente en la literatura. Los
resultados indican que el modelo propuesto entrega en algunas instancias mejores

soluciones que metodologias éptimas en cortos periodos de ejecucion.

En el articulo “An adaptive product-driven system using evolutionary algorithms to
increase the flexibility in scheduling problems at different scales” se considera un
modelo HMS-MAS para incrementar la flexibilidad de un sistema de produccion a través
de respuestas rapidas y con resultados cercanos al optimo en problemas de diferente
tamarfio. Para la toma de decisiones se considera una funcién de inteligencia basada en un
algoritmo evolutivo, donde cada agente tiene la capacidad de tomar decisiones en base a
las mejoras consecutivas de las soluciones encontradas. EI modelo fue testeado en 102
instancias presentes en la literatura comparando los resultados con metodologias
optimas, heuristicas y reglas de secuenciacién de amplio uso en la industria. Las
principales contribuciones de este articulo son: Proponer un nuevo modelo adaptativo
que resuelve el JSSP en diferentes escalas incluyendo como funcion de inteligencia un
algoritmo evolutivo para la busqueda de mejores soluciones y la utilizacién del
paradigma HMS-MAS con productos inteligentes en arquitecturas altamente distribuida
en cortos tiempos de ejecucion. Como resultado el articulo sugiere que el PDS produce
soluciones cercanas al optimo en cortos periodos de tiempo sin importar la escala del

problema estudiado.
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En el articulo “A product-driven system approach to reduce nervousness in master
production Schedule” se propone un sistema controlado por el producto que
complementa los resultados obtenidos por modelos éptimos del plan maestro de
produccion. Este modelo se basa en productos inteligentes que toman las decisiones de
produccién con una funcion de inteligencia capaz de reducir la nerviosidad del sistema
sin incrementar en una misma magnitud el costo de ejecucion. Los resultados finales
muestran una relacion dispar entre el incremento del costo de produccion y la
disminucion del nerviosismo del sistema. La sensibilidad en el incremento del costo
versus la reduccion de la nerviosidad logra disminuir el nerviosismo en 11.42% con un

incremento del 2.39% de los costos.

1.2 Organizacion general de tesis

Este documento de tesis esta organizado de la siguiente forma. EI Capitulo 2 presenta el
trabajo denominado “Implementation of a Holonic Product-Based Platform for Increased
Flexibility in Production Planning”, con sus principales contribuciones. El Capitulo 3
describe el trabajo “A product-driven system approach to generate fast solutions to the
job shop scheduling problem”. El Capitulo 4 describe el modelo propuesto en “An
adaptive product-driven system using evolutionary algorithms to increase the flexibility
in scheduling problems at different scales”. El Capitulo 5 presenta el articulo A product-
driven system approach to reduce nervousness in master production Schedule. El

capitulo 6 las principales conclusiones de los trabajos presentados.

1.3 Articulos publicados

- Séez Bustos, P., Herrera Lopez, C. (2021). Implementation of a Holonic Product-
Based Platform for Increased Flexibility in Production Planning. In: Trentesaux, D.,
Borangiu, T., Leitdo, P., Jimenez, JF., Montoya-Torres, J.R. (eds) Service Oriented,
Holonic and Multi-Agent Manufacturing Systems for Industry of the Future.
SOHOMA 2021. Studies in Computational Intelligence, vol 987. Springer, Cham.
https://doi.org/10.1007/978-3-030-80906-5_12.

- P. Séez, C. Herrera, J.E. Pezoa, A product-driven system approach to generate fast
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solutions to the job shop scheduling problem., IFACPapersOnLine, Volume 55, Issue
10,2022, Pages 1930-1937, ISSN 2405-8963,
https://doi.org/10.1016/j.ifacol.2022.09.681.

- Séez P, Herrera C, Booth C, Belmokhtar-Berraf S, Parada V (2023) A product-driven system
with an evolutionary algorithm to increase flexibility in planning a job shop. PLoS ONE
18(2): e0281807. https://doi.org/10.1371/journal.pone.0281807.
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Abstract. In the Industry 4.0 era, production planning problems are very relevant
to production systems and are essential parts of the supply chain. Broadly speak-
ing, production planning problems are tackled using models and methodologies,
aiming for optimal solutions. This work introduces realism and stability to opti-
mal production planning strategies using a holonic, product-driven manufacturing
platform with increased flexibility. A model based on an anarchic holonic archi-
tecture and embedded intelligence logic provides decision-making capacity in a
“production lot” in the face of disturbances. The proposed model is validated by
comparing the results obtained with a lot-streaming mathematical programming
model. Results show that significant changes in lot processing times (disturbances)
generate significant changes in completion times. The proposed platform reduces
up to 10.95% completion times in face of disturbances, generating significant
benefits by increasing flexibility.

Keywords: Industry 4.0 - Holonic manufacturing system - Multi-agent system -
Anarchic manufacturing - Lot-streaming - Smart product - Flexibility

1 Introduction

Production planning and control (PPC) is recognized as a complex problem in the indus-
try, that requires achieving customer satisfaction and optimizing available resources.
This complexity is explained by a large number of interrelated elements and variables.
In specific cases, the problems are theoretical, without real application. Among the most
studied production systems are manufacturing production systems organized as flow
shops and job shops or task workshops [1-4]. In particular, both types of production
systems are present in an industry (independently or jointly), becoming also a central
part of the literature’s works.

Conventional production planning systems work by developing hierarchies between
different product aggregation levels [5], resulting in monotonous and static production
scheduling [6]. New perspectives, such as multi-agent systems (MASs) and holonic
manufacturing systems (HMSs), have attracted increasing interest in the industry by
introducing agility, adaptability, autonomy, and, above all, flexibility in production sys-
tems [7, 8]. HMSs manage production in decentralized and distributed decision-making
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Abstract: Many optimal algorithms, heuristics, metaheuristics, simulation approaches, agent-based
models, and machine learning tools attempt to solve the job shop scheduling problem (JSSP). This article
proposed a model of artificial intelligence with agents representing intelligent products from the perspective
of product-driven systems (PDS) to solve this problem at different scales. The intelligent products make all
decisions in a distributed way aiming to minimize the makespan and increase the computational efficiency
for the JSSP. The agents embed the intelligence function using a based shifting bottleneck heuristic (SBH)
approach. The novelty of the proposed approach lies in the automation of decisions in a highly distributed
architecture to increase manufacturing flexibility. The results are compared with an optimal integer
programming model (IP), SBH, and two conventional heuristics considering instances commonly used in
the literature. Concerning the makespan, the proposed approach obtains a fast solution near optimal in
instances with a low number of resources and better results than IP and conventional heuristic in instances
with a more significant number of resources, increasing the response capacity with a similar computational
time.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(htips://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Agent-based models, job-shop, sequencing, shifting bottleneck heuristic, intelligent products,

product-driven system.

1. INTRODUCTION

In modern production, procedures are increasingly flexible in
the face of internal or external disturbances. This process has
caused the design of new techniques (such as intelligent
agents) to adaptively control or hybridize methodologies to
solve specific problems (Adam et al., 2010).

The assignment of tasks and processes to be performed by
different machines and on different jobs is called a production
scheduling problem. This assignment is one of the most
challenging tasks that companies face today and has been the
focus of extensive research (Fuchigami & Rangel, 2018).
Different methods and approaches have been tested and
applied to the problem of production scheduling to solve
problems. However, the time difference between the
beginning and the completion of a series of tasks or makespan
represents one of the most important objectives because it is
directly related to customer satisfaction performance
indicators.

The job-shop scheduling problem (JSSP) is considered an NP-
hard problem (Asadzadeh, 2015) and has been extensively
studied (Fuchigami & Rangel, 2018).1In the literature, there are
exact methods, such as integer programming and branch and
bound, to solve the JSSP. However, the high computational
load exponentially increases with the size of the problem
(Nowicki & Smutnicki, 2005). For real industrial problems,
the computational time of a given algorithm or method should

not be too long for practical use. It has been decided to use a
wide variety of heuristic procedures in the industry, which
provide good results in a reasonable amount of time (Bozek &
Werner, 2018).

Decomposition-based heuristics and metaheuristics such as the
bottleneck algorithm (Adams et al, 1988); Local search
algorithms such as taboo search (Bozek & Werner, 2018) and
Simulated Annealing (Monostori et al., 2006), are used for
large-scale problem cases, trying to provide flexibility in the
manufacturing processes. These heuristics develops solutions
for complex problems by breaking a problem into a series of
smaller subproblems, which are more manageable and casier
to solve. One of the most used decomposition heuristics is the
shifting bottleneck heuristic (SBH), which was proposed by
Adams et al. (1988). This algorithm decomposes the JSSP into
subproblems that iteratively program a single machine.
According to Ovacik and Uzsoy (1992), a decomposition
method has better results than dispatch rules in both its average
and the worst case.

The intelligent product is the representation of an order or
physical product linked to the information and the rules that
govern its manufacture, storage, or transport, allowing it to
influence operations (Wong et al., 2014). The use of intelligent
products brings essential benefits to a product-driven
production approach and the JSSP (Herrera et al. 2014;
Herrera et al. 2016). In this sense, it has been used to improve
the entire life cycle of products, i.e., design, production,

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
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Abstract

The scheduling of a job shop production system occurs using models to plan operations for
a given period while minimizing the makespan. However, since the resulting mathematical
models are computationally demanding, their implementation in the work environment is
impractical, a difficulty that increases as the scale problem grows. An alternative approach
is to address the problem in a decentralized manner, such that real-time product flow infor-
mation feeds the control system to minimize the makespan dynamically. Under the decen-
tralized approach, we use a holonic and multiagent systems to represent a product-driven
job shop system that allows us to simulate real-world scenarios. However, the computa-
tional performance of such systems to control the process in real-time and for different prob-
lem scales is unclear. This paper presents a product-driven job shop system model that
includes an evolutionary algorithm to minimize the makespan. A multiagent system simu-
lates the model and produces comparative results for different problem scales with classical
models. One hundred two job shop problem instances classified as small, medium, and
large scale are evaluated. The results suggest that a product-driven system produces near-
optimal solutions in short periods and improves its performance as the scale of the problem
increases. Furthermore, the computational performance observed during the experimenta-
tion suggests that such a system can be embedded in a real-time control process.

Introduction

Industry 4.0 requires manufacturing systems to be flexible, dynamic, and able to react immedi-
ately to disruptions. These are critical aspects in the design stage, for which it is necessary to
resort to modeling that integrates the advantages of traditional modeling [1]. Such models are
the basis of the manufacturing process control system [2], and should consider the integration

PLOS ONE | https://doi.org/10.1371/journal.pone.0281807 February 16, 2023
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CAPITULO 2.

Implementation of a Holonic Product-Based Platform for Increased Flexibility in

Production Planning

Cita: Séez Bustos, P., Herrera Lopez, C. (2021). Implementation of a Holonic Product-
Based Platform for Increased Flexibility in Production Planning. In: Trentesaux, D.,
Borangiu, T., Leitdo, P., Jimenez, JF., Montoya-Torres, J.R. (eds) Service Oriented,
Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA
2021. Studies in Computational Intelligence, vol 987. Springer, Cham.
https://doi.org/10.1007/978-3-030-80906-5_12.

Abstract. In the Industry 4.0 era, production planning problems are very relevant to
production systems and are essential parts of the supply chain. Broadly speaking,
production planning problems are tackled using models and methodologies, aiming for
optimal solutions. This work introduces realism and stability to optimal production
planning strategies using a holonic, product-driven manufacturing platform with
increased flexibility. A model based on an anarchic holonic architecture and embedded
intelligence logic provides decision-making capacity in a “production lot” in the face of
disturbances. The proposed model is validated by comparing the results obtained with a
lot-streaming mathematical programming model. Results show that significant changes
in lot processing times (disturbances) generate significant changes in completion times.
The proposed platform reduces up to 10.95% completion times in face of disturbances,

generating significant benefits by increasing flexibility.

Keywords: Industry 4.0, Holonic manufacturing system, Multi-agent system, Anarchic

manufacturing, Lot-streaming, Smart product, Flexibility.

2.1 Introduction

Production planning and control (PPC) is recognized as a complex problem in the

industry, that requires achieving customer satisfaction and optimizing available
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resources. This complexity is explained by a large number of interrelated elements and
variables. In specific cases, the problems are theoretical, without real application. Among
the most studied production systems are manufacturing production systems organized as
flow shops and job shops or task workshops (Fan & Cheng, 2016; Raileanu, 2010;
Shahzad & Mebarki, 2016; Wu et al., 2019). In particular, both types of production
systems are present in an industry (independently or jointly), becoming also a central part

of the literature’s works.

Conventional production planning systems work by developing hierarchies between
different product aggregation levels (Ma et al., 2019), resulting in monotonous and static
production scheduling (Rolén & Martinez, 2012). New perspectives, such as multi-agent
systems (MASs) and holonic manufacturing systems (HMSs), have attracted increasing
interest in the industry by introducing agility, adaptability, autonomy, and, above all,
flexibility in production systems (Kruger & Basson, 2019; Mcfarlane et al., 2002). HMSs
manage production in decentralized and distributed decision-making architectures, while
MASSs provide a greater degree of flexibility and reconfiguration to production systems.
In this case, the agents provide a physical representation of the system components,
including machines, equipment, products, lots, etc., thus providing different perspectives

and control scenarios (Leitdo et al., 2015).

An HMS platform with an anarchic decision-making architecture was developed to study
the need for more flexible production plans (Ma et al., 2019). This architecture promotes
the need for the decentralization of decisions, delivering this action to the lowest links in
the production chain, in this case to production lots. Therefore, production lots exhibit
behavior similar to an intelligent product with features such as those set by (Herrera,
2011; Mcfarlane et al., 2002; Wong et al., 2014). The validation of our platform was
performed by comparing the results of a practical example to minimize makespan. A lot-
streaming mathematical programming model optimally solved the production planning
problems considered in this work. Subsequently, the system was disturbed by changing
machines’ processing times (typical disturbances in production systems due to failures,
machine lock, starving, etc.). In this way, the deterioration impact of planning and the
contribution of a distributed decision-making system such as the one proposed can be
assessed. Our goal is to show the need for systems that provide more flexibility in
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decision-making processes.

The article is organized as follows: Section 2.2 describes a bibliographic review
associated with flexibility issues in PPC; measures and tools used for the analysis and
incorporation of flexibility into production processes are analyzed along with the
participation of MAS and HMS models for this purpose. Section 2.3 presents the
materials and methods. The construction of the holonic model and the mathematical
programming model developed to obtain optimal solutions are also presented. Section
2.4 describes the experimentation developed for each of the test instances. Section 2.5
shows our application’s main results by considering a standard case and one with

disruptions in process times. Finally, Section 2.6 summarizes our work.

2.2 Bibliographic Review

Flexibility is an attribute that gives manufacturing systems the possibility that at a certain
level of variation in the quantities to be produced and/or at interruptions in the
production line there will be no significant changes in planning (Yadav & Jayswal,
2018). In Slack (1983) examined the concept of flexibility in manufacturing, defining a
framework of attributes that influence the different aspects of flexibility. However, the
idea of flexible manufacturing systems was proposed in 1960 by David Williamson, who
devised the so-called “24 system” of machines capable of producing 24 h a day without

human intervention.

Scheduling problems have been extensively studied in the literature and are a
fundamental part of production systems theory. Thus, many articles on flexible
manufacturing systems can be found in the literature with techniques that provide the
necessary flexibility (Demirel et al., 2018; Lee, 2008; Zhou et al., 2019). The techniques
analyzed are in the fields of simulation, artificial intelligence (Al), and Petri networks,
among others. However, there are also works based on mathematical programming, such
as that developed by Stecke & Solberg (1981), who used mixed nonlinear programming
for machine grouping to minimize part movement. While known to deliver optimal
results, such methods can be affected during actual operation by the high execution times
of the implemented algorithms (Topaloglu & Kilincli, 2009).

Doctorado en Ingenieria Industrial, Direccion de Postgrado-Universidad de Concepcion

13



One of the most widely used performance indicators to be minimized in production
planning is the completion time (makespan) (Ahmadi-Darani et al., 2018; Gu et al., 2010;
Topaloglu & Kilincli, 2009). This concept must be accompanied by other indicators,
such as costs or failure rates in more complex models to achieve a closer version of
reality. In Choi and Wang (2012), flexibility was incorporated into a sequential
production environment using a new decomposition method combined with sequencing
rules (shorter process times are processed first) and a genetic algorithm, which minimize

makespan by delivering flexibility to the process.

Distributed processes such as MASs and HMSs provide an excellent opportunity to
respond to changes in production environment conditions effectively. Wang et al., (2018)
provided real-time production planning supported by a new architecture based on a MAS
model in conjunction with the Internet of Things (lIoT). This model proposed an optimal
machine allocation strategy depending on component status. However, this approach
does not incorporate a complete decentralization of the decision-making process. On the
other hand, in the work of S. Raileanu et al. (2010), production planning was
implemented by a HMS generating control at different levels. Communication with these
levels occurs in the upper layers, with recommendations sent to lower layers which

communicate with each other to solve and optimize tasks.

2.3 Materials, Methods and Proposal

The use of scheduling and lot-streaming techniques to solve programming problems has
been widely used to reduce completion times optimally. Lot-streaming is a technique that
considers “n” jobs on “m” machines, where jobs are divided into sublots to minimize the
delay and completion time of tasks (see Figure 2.1). In works such as those described in
(Kumar et al., 2000; Potts & Baker, 1989; Trietsch & Baker, 2008; Tseng & Liao, 2008),
lot-streaming is used in various programming problems, the most studied being those

about sequential process (flow shop and job shop) organization.

In today’s industrial practices, many of the problems include objectives that conflict with

each other. These problems are solved by various optimization models, which work with
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subproblems simultaneously or individually (Gharaei & Jolai, 2018). In this work, an
HMS-based approach is proposed for smart lots that make production process decisions

for the products contained therein.

B)

0[ 1 j 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10|11|12|13|14|15|16[1?[13119|2u|21[22|23|24|

M1 |1 |2 |
Cma;{='24
b)]
o[1|2[3]4[5]6|7[8]9[10[11[12]1314]15]16|17]18]19]20]|21|22|23]24]
M1 1 \1 |1 |1 |1 |2 |2 |
M2 1] 2] [
Cum;c::ZQ

Figure 2.1. (a) Scheduling two jobs into two sequential machines (M1 and M2); (b)
Scheduling jobs using the lot-streaming technique, dividing work into sublots (Tseng &
Liao, 2008).

The proposed architecture has been simulated on the NETLOGO platform (Wilensky,
1999). The architecture is composed of two serial stations in which production processes
are developed for batches. At the first station is the M1 machine, where the production
process starts sequentially. At the second station, the machines M2, M3, and M4 finish
the production process (each lot can be processed on only one second-stage machine), as

shown in Figure 2.2.

Product lots planning calculates the target global function to minimize completion time
or makespan. This objective refers to finishing production as quickly as possible and is
calculated by lots at the end of their production processes. Decisions are reused to

perform a learning process for future generations of solutions.
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Figure 2.2. Stages of the production process.

2.3.1 Interactions Between Agents

A MAS simulation is used to solve this problem for a part lot in an anarchic structure
perspective (Ma et al., 2019). The type of HMS system is given because the agents of the
MAS model represent physical system components. In the work of Yu et al. (2018), three
categories of agents were developed: work agents, machine agents and control agents;
however, our system, having an anarchic architecture, delegates authority and autonomy
in decision- making to the lowest level of system entities without centralized control or
supervision, so there will be only two categories: lot agents and machine agents. Machine

agents are static and only receive nonparticipating lot agents; lot agents are dynamic

entities that control the realization of the products they represent.

The parameters and steps used in our algorithm are presented in the following

pseudocode:
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Home:

Create lot variable and lot family;
Create variables for lots: process times, layout position,
andmemory;
Setting function ()
Create differentiated machines between type I and II (series
and parallel, respectively);
Create undifferentiated lots and positioned in the initial
machine;
Differentiation Function ()
Identify existing lot types and categorizes lots; Normal
production times are allocated per lot; Initial Position
Function ()
Assign the position variable in each lot a random i value be-
tween 1 and n with n s number of lots;
Execute function ()
If the lots have not finished processing then;
If the lots are in the initial machine then;
Compare their positions, the one with priority
initiates processing (Priority: lower position in the
layout) ;
If lots finish processing then;
Ask machines in parallel if they are processing
If machines are not processing then;
Lot moves to unemployed machine
Else
Lot asks lots in process who finishes beforeStarts
processing
Else
Continue processing
Else
Continue processing
Else
Makespan Function (); Calculate completion time
Lots keep in memory the position in which the best result was
obtained

Lots move to starting position
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According to the pseudocode above, each lot corresponds to an agent defined by the
minimum accepted size lot. The generated agents follow the concept of intelligent
products proposed by C. Wong et al. (2018) and C. Herrera (2011), where each entity
(product lot) consists of the following characteristics:

1. Agent has a unique identity.

2. Agent can communicate effectively with its environment.

3. Agent can retain or store data about itself.

4. Agent implements a language to display its features, production requirements, and so
on.

5. Agent can participate or make decisions relevant to its results.

In particular, an agent has the following characteristic profile:

1. Unique identity: Each agent has a specific and unrepeatable 1D (although there are
shared features when talking about lots of the same product).

2. Effective communication: Communication between agents (lots) is active and
indifferent to location. This is based on the decision-making process and choosing the
best sequence for the common goal.

3. Retention and storage of information about itself: An agent has a memory of its
processing time on each machine. Besides, it saves the position that improves each of the
objective functions.

4. Language: Based on group consultations with all agents or with agents in sectors of
the production process.

5. Relevant decision making: Decision to process or not, in addition to the choice of the

machine on which to process.

Communication between agents is classified according to the different possibilities of
interactions present in the model. These interactions are defined as visual, auditory, and

verbal.

Visual interactions refer to whether the product agent displays its entity (level 1), its
nearby environment (level 2), or the entire medium (level 3). Auditory interactions
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correspond to the ability to capture media information from level 1 that identifies the
agent as independent of the environment. It develops at a level 2 where it captures local
and selective information, to reach a level 3 in which it captures information from the
entire environment. Finally, verbal interactions indicate the level of delivery of agent-
product information, from disconnection with the medium (level 1), delivery of timely
information (level 2), or delivery of information to the entire medium (level 3) (See
Figure 2.3).

The interaction between agents has a fixed query-based structure. The structure of the
interaction between system components is shown in Figure 2.4. This representation
follows the UML sequence structure and shows the conceptual architecture of an
intelligent system.

Visual(3)

Verbal(2) || Auditory(3)

Figure 2.3. Shows the characterization of the agent-product for testing.

X

Observer:A .
— tar —
E— SetUp() i
Differentiation()
o Becute()
= Training() =
[« MakespanCalculation()
i T create 3D
D Memory() kEI
[I:l Schedule()
[ S—— Position() ...
Makespan()
[« SetSchedule()
. BestResult() |

Figure 2.4. Sequence UML diagram
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The first object in the diagram presented in Figure 2.4 is the “observer”. It describes user
interaction with the model and the receipt of the best results by agents. The second multi-
object component (comprises all lots present in the simulation) displays the sequential
structure of lot operations, taking the indications entered by the observer. Additionally, it
explains the sequence of actions executed by agents (lots), from the configurations of
their attributes to indicating the best result to the observer, taking the best position stored
in their memory. The third and fourth objects are created from the lots by configuring
each agent and saving the best position for each of the objective functions: makespan and

utilization.

The structure of our work is exemplified in the UML diagram of classes presented in
Figure 2.5. Model interactions focus on the observer and lots through a configuration
layer that creates machines and lots, allowing lot differentiation depending on the
products they contain. The diagram continues with an accurate class, attending to
decision-making at the lowest levels, which reads and writes attributes autonomously.
Finally, the scheduling object corresponds to the result of the production configurations

that the agents run.

Observer

+ Minimun Lot()
+ Quantity of products per lot()
+ Objetive Function()

Setting

+ Create Machine()
+ Create Lots()
+ Differentiation()

Lots

+ Production time in serial machine()

+ Production time in parallel machine()
+ Actual Position() Schedule
+ Makespan Position()

+ Makespan()
+ Analysis()
+ Decision()

Figure 2.5. UML diagram of classes for the proposed model
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The lot class corresponds to all the agents present in the model and aims to complete its
production process through the sequence of machines established for the system (Figure
2.5). This model consists of a sequential machine where the production process begins
and continues with the decision-making process of agents, and a second production
process involving three identical and unrelated parallel machines. No process has a setup
time; however, each machine could have a different rhythm (due to breakdowns or some
other cause external to the process). Each machine can serve one lot at a time (with a
number of products defined by the minimum lot accepted) and ends in an analysis stage.
Machines learn from the generated sequence to position themselves back in the

production queue and restart the process.

2.3.2 Mathematical Programming Model

For comparison, a mathematical lot-streaming model is formulated as well. This math-
ematical programming model will allow us to develop a generic configuration with
optimal results to validate the actual results. The configuration that was considered for
the mathematical programming model is shown in Figure 2 (2-stage hybrid system),
where the first stage corresponds to mass production and the second to parallel

production. This model was developed and validated in (Herrera, 2011).

The problem with the lot-streaming that we address in our work is to divide the quantities
to be produced of each product into sub lots to reduce the total sequencing duration
(makespan). Sub lots are constrained by minimum amounts defined by the decision-
making process, and the model parameters are included in Table 2.1.

The complete model is developed below:

Table 2.1. Parameters and variables for the mathematical model

Parameters
P; Number of products per lot
Qumin Minimum sub lot size
TPA, Unit production time in machine A for product p
TPB, Unit production time in machine B for product p
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] Number of lots
K Number of machines in stage two (parallel)
M Big number
Variables
Xijk Number of products i in lot j assigned to machine k
Wi 1 if product i is assigned to lot j in stage 1 and O otherwise
Wik 1 if product i is assigned to position j in machine k in stage 2 and
0 otherwise
STA; Start time of stage 1 for lot j
STBjy, Start time of stage 2 for lot j in machine k

Obijective Function:

mMin Cmax
subject to:
] K
(1) szijk = Nl i= 1,2
j=1k=1
(2)  Xijk = Qmin * Wij i=1,2,Vj,Vk
(3) Xk S M *wyjy i=1.2,Vj,Vk
K
(5) ZW”" =1 i=1,2,Vj
k=1
(6) STA; =
K K
(7) STA] = STA]_l + TPAl * Z xljk + TPA2 * Z xzjk V]
k=1 k=1
(8) STB(j—1yk = ST4; Vj,Vk
(10)  Cmax = STBj + TPBy * Xqj + TPBy * xq vk

Restrictions (1), (2) and (3) refer to the number of products assigned to each lot and their
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lower (Q,irn) and upper limits M. Constraints (4) and (5) are assignments for each lot j
and machine k, respectively. Restrictions (6), (7), (8) and (9) indicate the start times of
each lot in both stage one and stage two. Finally, constraint (10) sets the maximum end

time value.

2.4 Experiments

Next, we analyze the consequences of lack of flexibility in production. A practical
example was generated with 2 products distributed in minimum lots of 100 units, with a
maximum production of 1200 units (total units considering the two products). This
example follows the structure presented in Figure 2.2, with two production stages to
manufacture a product. Machines can work these products with different production
times. The first stage starts working semi-finished products and the second stage finishes
products. The programming results generated by the lot-streaming model, as well as
those obtained by the MAS platform, will be affected by disturbances in the processing
time of the machines when identifying the planning consequences and analyzing their

behavior.

2.4.1 Description of Experimentation

Our goal is to verify the need for flexible production plans capable of adapting to
disruptions during production processes. Lot production will be simulated in a planning
horizon that allows existing lots to be completed. The production will be generated
respecting its maximum volume (established at 1200 units) and the demand originated by
combinations of minimum lots of both products (e.g., DP1 DP2 1200, with DP1 as the
demand for product 1 in lots of 100 units and DP2 as the demand for product 2 in lots of
100 units).

The simulation parameters are as follows (Table 2.2):

Table 2.2. Simulation parameters

Parameters Values

Types of products 2
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Lots Demand dependent (100 products per lot)
Parameters Values
Production Maximum of 1200 units in total (product 1 + product 2)

Normal production time

Production time: product 1 in stage 1 x 1

Production time: product 1 in stage 2 x 3

Production time: product 2 in stage 1 x 2

Production time: product 2 in stage 2 x 8

Internal disturbances

Increased production time for products 1 and 2 in stage 1

100, 200 and 400 (%)

Increased production time for products 1 and 2 in stage 2

100, 200 and 400 (%)

2.5 Results

Table 2.3 lists the production data associated with the analyzed practical example. Nine
volumes of production were assessed. Additionally, the number of lots per product and
completion times are set for the mathematical programming (PM) algorithm and

multiagent platform (PMAS).

Table 2.3. Production overview and volume of lot (T.F.: End time in hours)

Demand |Prod.1|Prod.2 |Lots (Prod.1) |Lots (Prod.2) |T.F.PM |T.F. PMAS
Demandl| 1000 200 10 2 19 19
Demand2| 900 300 9 3 20 20
Demand3| 800 400 8 4 22 22
Demand4 | 700 500 7 5 24 24
Demand5| 600 600 6 6 26 26
Demand6 | 500 700 5 7 28 28
Demand7| 400 800 4 8 29 29
Demand8| 300 900 3 9 32 32
Demand9 | 200 1000 2 10 34 34

It is clear from Table 2.3 that both the linear programming and the solutions found in the
adaptive platform are identical, meaning that at any production rate under normal

conditions, both solutions are optimal. The increase in production time for lots 1 and 2 in

stage 1 is shown in the data expressed in Table 2.4,
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The multiagent simulation results for different production times are identical in both
cases (PM and PMAS). However, the production planning obtained under normal
conditions is affected by increasing its value by approximately 67% for the 400%
increase in processing time. Since this stage is sequential, all processes are delayed;

therefore, the agents’ adaptation does not influence the completion time.

Table 2.4. Increased production time in stage 1 (times in hours)

TP stage increase 1 TP stage increase 1 TP stage increase 1
Demand 100% 200% 400%
Pm PMAS Pm PMAS Pm PMAS
Demand1 31 31 45 45 59 59
Demand2 33 33 48 48 63 63
Demand3 35 35 51 51 67 67
Demand4 37 37 54 54 71 71
Demand5 39 39 57 57 75 75
Demand6 41 41 60 60 79 79
Demand7 43 43 63 63 83 83
Demand8 45 45 66 66 87 87
Demand9 48 48 69 69 91 91

The results for increasing production time for lots 1 and 2 in stage 2 are shown in Table2.
5.

Table 2.5. Increased production time in stage 2 (times in hours)

TP stage increase 2 TP stage increase 2 TP stage increase 2
Demand 100% 200% 400%
Pm PMAS Pm PMAS Pm PMAS
Demand1 35 34 69 66 137 130
Demand?2 39 37 77 71 153 139
Demand3 41 40 81 78 161 154
Demand4 47 45 93 89 185 177
Demand5 51 47 101 91 201 179
Demand6 53 51 103 100 203 196
Demand7 56 55 110 109 218 217
Demand8 59 57 113 111 221 219
Demand9 66 66 130 130 258 258

Doctorado en Ingenieria Industrial, Direccion de Postgrado-Universidad de Concepcion




The results of this simulation demonstrate the importance of flexibility in production
scheduling. This is because the completion times obtained from the programming given
by the mathematical model are greater than those obtained by the simulation platform.
Production planning given by exact models such as PM only guarantees optimality in
typical or theoretical situations, while the model generated in the simulation platform can
adapt to environmental conditions and modify the initial planning. When this
modification is made online as designed in an 10T architecture, that is, as disturbances
occur, agents can react and modify their sequencing.

While completion times increase considerably compared to the data found under normal
conditions, this model improves completion times by adapting to production conditions.
Table 2.6 shows the percentage of damping results for end time in each instance. There is
an average damping of 3.92%, with a max. of 10.95% and a min. of 0.

Table 2.6. Increased production time in stage 2 (times in hours)

TP increase in stage 2 TP stage increase 2 TP stage increase 2

Demand 100% 200% 400%
Reduction (%) Reduction (%) Reduction (%)
Demand1 —2,86 —4,.35 =5,11
Demand2 -5,13 7,79 -9.15
Demand3 —2.,44 =3,70 —4,35
Demand4 —4.26 —4,30 —4,32
Demand5 7,84 -9,90 -10,95
Demand6 -3,77 -2.91 -3.45
Demand? -1,79 -0,91 —0,46
Demand8 -3,39 -1,77 —-0,90
Demand9 0 0 0

2.6 Conclusion

This article’s objective was to analyze the need of flexibility in production systems and
deliver alternatives to existing static models. The proposed platform incorporates two
distributed anarchic structures, in an intelligent product approach. This provides a
tremendous advantage for production planning systems because human intervention is

not needed to change the planning. More interestingly, the production lots reorganize and
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communicate themselves to achieve the common goal.

Compared to the lot-streaming technique, the platform achieved the same results for both
initial conditions and disturbances within the sequential machines. This shows us that the
developed platform can identify the optimal solution for all instances of the batch
defined. We note that, for sustained increases in production times of 100%, 200%, and
400%, long completion times up to 88% are obtained, where alternatives such as the
presented platform would deliver a reduction of up to 10.95% in completion times.

In future research, we will consider larger problems on a real scale. Additionally, the
incorporation of new disturbances will be considered when analyzing their impacts on

production and the effect that the architecture, as the one presented here, would have.
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CAPITULO 3.

A product-driven system approach to generate fast solutions to the job shop scheduling

problem.

Cita: P. Séez, C. Herrera, J.E. Pezoa, A product-driven system approach to generate fast
solutions to the job shop scheduling problem., IFACPapersOnLine, Volume 55, Issue
10,2022, Pages 1930-1937, ISSN 2405-8963,
https://doi.org/10.1016/j.ifacol.2022.09.681.

Abstract: Many optimal algorithms, heuristics, metaheuristics, simulation approaches,
agent-based models, and machine learning tools attempt to solve the job shop scheduling
problem (JSSP). This article proposed a model of artificial intelligence with agents
representing intelligent products from the perspective of product-driven systems (PDS)
to solve this problem at different scales. The intelligent products make all decisions in a
distributed way aiming to minimize the makespan and increase the computational
efficiency for the JSSP. The agents embed the intelligence function using a based
shifting bottleneck heuristic (SBH) approach. The novelty of the proposed approach lies
in the automation of decisions in a highly distributed architecture to increase
manufacturing flexibility. The results are compared with an optimal integer programming
model (IP), SBH, and two conventional heuristics considering instances commonly used
in the literature. Concerning the makespan, the proposed approach obtains a fast solution
near optimal in instances with a low number of resources and better results than IP and
conventional heuristic in instances with a more significant number of resources,

increasing the response capacity with a similar computational time.

Keywords: Agent-based models, job-shop, sequencing, shifting bottleneck heuristic,
intelligent products, product-driven system.

3.1 Introduction

In modern production, procedures are increasingly flexible in the face of internal or
external disturbances. This process has caused the design of new techniques (such as

intelligent agents) to adaptively control or hybridize methodologies to solve specific
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problems (Adam et al., 2010).

The assignment of tasks and processes to be performed by different machines and on
different jobs is called a production scheduling problem. This assignment is one of the
most challenging tasks that companies face today and has been the focus of extensive
research (Fuchigami & Rangel, 2018). Different methods and approaches have been
tested and applied to the problem of production scheduling to solve problems. However,
the time difference between the beginning and the completion of a series of tasks or
makespan represents one of the most important objectives because it is directly related to

customer satisfaction performance indicators.

The job-shop scheduling problem (JSSP) is considered an NP- hard problem (Asadzadeh,
2015) and has been extensively studied (Fuchigami & Rangel, 2018). In the literature,
there are exact methods, such as integer programming and branch and bound, to solve the
JSSP. However, the high computational load exponentially increases with the size of the
problem (Nowicki & Smutnicki, 2005). For real industrial problems, the computational
time of a given algorithm or method should not be too long for practical use. It has been
decided to use a wide variety of heuristic procedures in the industry, which provide good

results in a reasonable amount of time (Bozek & Werner, 2018).

Decomposition-based heuristics and metaheuristics such as the bottleneck algorithm
(Adams et al., 1988); Local search algorithms such as taboo search (Bozek & Werner,
2018) and Simulated Annealing (Monostori et al., 2006), are used for large-scale
problem cases, trying to provide flexibility in the manufacturing processes. These
heuristics develops solutions for complex problems by breaking a problem into a series
of smaller subproblems, which are more manageable and easier to solve. One of the most
used decomposition heuristics is the shifting bottleneck heuristic (SBH), which was
proposed by Adams et al. (1988). This algorithm decomposes the JSSP into subproblems
that iteratively program a single machine. According to Ovacik and Uzsoy (1992), a
decomposition method has better results than dispatch rules in both its average and the

Worst case.

The intelligent product is the representation of an order or physical product linked to the
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information and the rules that govern its manufacture, storage, or transport, allowing it to
influence operations (Wong et al., 2014). The use of intelligent products brings essential
benefits to a product-driven production approach and the JSSP (Herrera et al. 2014;
Herrera et al. 2016). In this sense, it has been used to improve the entire life cycle of
products, i.e., design, production, distribution, operation, and disposal phases. Moreover,
it improves the quality and performance of the product by applying self-learning, self-
diagnosis, self-adaptation, and self-optimization methods (Leitdo et al., 2015; Barata &
da Cunha, 2019).

This article presents the JSSP and how to solve it through an artificial intelligence-based
approach that uses intelligent products that make scheduling decisions in instances with a
different number of resources (machines and products). The proposed approach uses an
agent-based model (ABM) to implement a product-driven system (PDS) with SBH as the
embedded intelligence function for decision-making. For the experimentation, we
compare the results obtained in 60 seconds of execution (fast solution), with the results
of an optimal integer programming model, SBH, and two heuristic methods, considering
the makespan and the computational effort as performance measures. Thus, the main
contribution of this work is to propose a methodology based on intelligent products
represented by agents that communicate with each other to obtain near-optimal JSSP

makespan in an efficient and decentralized way.

The article develops as follows: Section 2 shows a literature review of JSSP, SBH, ABM
and Intelligent products. Section 3 explains the proposed approach and shows the design
of the computational experiments. Section 4 shows the main results of the proposed
approach by considering two instances from the literature. Section 5 discusses the results.

Finally, section 6 ex-presses the conclusion.

3.2. Literature review

3.2.1 Intelligent manufacturing for JSSP

The problem of production scheduling corresponds to allocating tasks on available
machinery over time. Commonly, the term scheduling in production systems refers to the

sequencing of operations that must ensure compliance with a series of constraints
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established in the process and the optimization of some performance measure of interest.

The physical distribution of available resources in the manufacturing system must be
known to solve this kind of problems. It is also necessary to know the required
manufacturing process for each product and define the flow that each process must
follow through the system. Finally, the capacity is also essential, i.e., the number of
products that each resource must be able to process, which is limited and specified (Fan
& Cheng, 2016).

3.2.2 Job-shop scheduling problem

The JSSP is described as a set of n P; jobs, withi = 1, ..., n, which must be processed in
a set of m machines Mk with k = 1,...,m. Each P; job has a sequence of j operations
executed in a specific order through a process that occurs during an uninterrupted period
(Yu et al., 2015). Each operation has a processing time T;;, the processing time of
product P; on machine M,,. Figure 3.1 shows an example diagram of the JSSP with m =4

andn = 3.

This kind of system must comply with the following constraints:

Figure 3.1. Block diagram of a job-shop type of manufacturing system with 4 machines

and 3 products
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- A job cannot visit the same machine twice.
- Each machine can process only one job at a time.
- Each job can be processed by one machine at a time.

- Jobs Pi must comply with the rules of precedence of its sequence.

A schedule determines the sequence of execution of all operations for all jobs on the
machines. The result of this scheduling is represented on a Gantt chart. Thus, there is a
global concern to improve the performance of the job-shop systems, improving the

efficiency of various operations in the production system.

3.2.3 Integer programming application

To solve the job-shop scheduling problem in an optimal way, integer programming was
used. An integer programming model from a disjunctive network is implemented, as

explained by Mason (2002). This formulation defines times ST;; as the start time for
operations O;; (product i on machine j). Also, there are a set OPS of all operations and
set C of all edges of precedence; O;; < O;; + 1; my; refers to the machine on which

operations 0;; are executed. Generalizing yields, the following mathematical model.

mMin Crayx )
s.t.

Cmax - STij = pij:v (1]) € OPS (3)
ST]] - STrS = Prs O STI‘S - STI] = Pij » v (1])(I'S) € OPS with mj; = Myg (4)
ST; = 0 ©)

In this model, (1) is the function objective; (2) and (3) are the precedence constraints for
jobs and competition time, respectively; (4) is the disjunction constraint for the jobs and

(5) is a non-negativity constraint.
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Figure 3.2. Disjunctive graph for the JSSP. Source: (Mason et al.,2002)

The main difficulty in solving the model is in the third set of constraints, where the
conditional "or" (disjunction) does not enable the evaluation using typical solution

techniques.
3.2.4 SBH

SBH was originally proposed by Adams et. al (1988) as a powerful decomposition
method for the JSSP problem aimed at minimizing delay. This method uses the
advantages of the disjunctive network introduced by B. Roy and B. Sussmann (1964) to
model the interactions between subproblems generated in the decomposition. A network
G considers the JSSP of type nxm (n jobs sequenced in m machines) and generates N-
type nodes (operations) and two different sets of arcs A and B, defining the graph G =
(N, A, B), see Figure 3.2. This Figure appears in In S. Topaloglu and G. Kilincli (2009),
to show an example of a disjunctive network with three jobs and four machines. In this
example, job 2 has sequence 2,1,4,3,4 (conjunctive), while the groups of nodes {(4,2a),
(4,3), (4,2b), (4,3)} and {(2,2), (2,1), (2,3)} are connected by disjunctive arcs.

Each N node denoted as N (i, k), represents the operation of job i on machine k in the
network (except virtual nodes with zero process times at the start and end of the
network). Conjunctive arcs A represent the jobs routes and correspond to the precedence
constraints. If there is an arc from node (i, k) to node (j, k), operation (i, k) is precedent
to operation (j, k). Disjunctive arcs B correspond to the resource constraints. Thus, they
are undirected arcs that connect the operations executed on the same machine. Each JSSP
operation can start when it has finished the execution of its predecessor operations (if

any).
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To complete the SBH, the following steps are followed:

- Identify the available machines and establish an initial set MO.

- Identify and solve the subproblems of each machine i of set M-MO.

- Identify critical machine k of set M-MO.

- Sequence the critical machine using the solution in step 2 by arranging the disjunctive
arcs associated with the critical machine in the appropriate direction. We set MO:MO U
{k}.

- (Optional) Reoptimize the sequence for each machine m of the MO0-k set by exploring
information.

- If MO=M, stop.

Applegate and Cook (1991) show that the quality of the obtained solutions is directly
affected by the disaggregation of the main problem and how the generated subproblems
are solved. Recently, the SBH has been studied with other performance measures such as
the total delay (Sahin et al., 2013), maximum delay (Lin & Uzsoy, 2016) and number of
late jobs (Yadav & Jayswal, 2018). In addition, the SBH has been worked in conjunction
with other heuristics such as genetic algorithms (Monch et al., 2007) and simulations
(M6nch & Zimmermann, 2011).

3.2.5 Agent-Based Modelling

ABM is a modeling approach that describes a complex system as a set of autonomous
decision-making entities termed as agents. The ABM essentially reproduces a
community of autonomous agents. Through their interactions, ABM simulates the
appearance of collective behavior phenomena from the behavior of individual agents.
The agents are entities with different levels of intelligence, whose construction is not
exempt from problems. In the architecture perspective, we talk about a symbolic physical
system that can generate an intelligent action from a system of physical symbols to a
processing automaton. This capacity to generate intelligent actions has the complication
of translating a real-world description into a symbolic description by representing the

information captured in entities to make the agents reason (Shukla et al., 2019).
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A particular class of ABMs uses different classes of agents, each with specific roles,
called Multi-Agent Systems (MAS). In Wang (2018), a program of a JSSP system
(flexible type) is generated in real-time based on a MAS. In turn, in Guizzi (2019), a
system of the interactions between two types of agents is proposed: job and resource

agents.

3.2.6 Intelligent products

In recent years, the industry's trend has been to incorporate technologies and Al, such as
the use of robots, automated production programming, autonomous operation systems,
etc., (Shukla et al., 2019). To incorporate these new technologies, detailed processes
knowledge is necessary to generate a system, whose components are intelligent products
(Meyer et al., 2011; Mcfarlane, 2012).

The concept of an intelligent product for many is simply the tangible physical entity,
which can be part of a core product, an actual product (tangible physical product), or an
augmented product (nonphysical part containing product information) (Wu et al., 2019).
Another critical point is to specify the level of intelligence possessed by the product in
question. To measure this characteristic, G. Meyer (2009) provides a three-dimensional

orthogonal frame to classify the intelligence levels, as shown in Figure 3.3.

In the work of 1. Kovalenko et al. (2019), multi-agent control strategies are used (product
agents, which follow the definitions and concepts established by intelligent products),
where the flexibility of complex and dynamic manufacturing systems is improved,
corroborating the benefit of an Intelligent Product immersed in the industry.

The characteristics of the proposed agent-product are:

- It has a unique identity.

- It can communicate both with other product agents and with machine agents.

- It has memory capacity according to the objective function delivered

- Set your own production requirements by making important decisions for your

destination.
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- Decision making
- Problem notification

- Information handling

Intelligent through - - Intellipent item

Intelligent at object -

Location of intelligence Aggregation level of int@

Figure 3.3. Classification model of an intelligent product. Source: (Meyer et al., 2009).

- Intelligent container

In addition, in the explored context, he has knowledge of the real world with information
processing, actively communicating with the different actors of the system.

3.2.7 The product-driven approach

The goal of product-driven approach is to synchronize material flows, and information
flows in the manufacturing environment. On the one hand, the physical product interacts
with other physical entities; on the other hand, its digital part interacts with the
environment to control and manage the production. Shahzad and Mebarki (2016) ed on
JSSP and developed an algorithm, based on intelligent agents, using an ant colony
approach to minimize the makespan. However, it does not address the complete case
where each product is intelligent and controls its own process. In Gharaei & Jolai (2018)
work, a MAS is used in production programming. The authors incorporate different roles
for the agents in the model, e.g., machine agents, monitoring agents, and evaluation
agents. The main reason for its use is to add the necessary flexibility to address changes
in production conditions (Saez & Herrera, 2021). However, the decisions are not entirely
decentralized (due to the presence of evaluation agents) nor focused on the product as in

our proposal.
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Although studies address this problem using multi-agent models (Jarvis et al., 2018;
Kovalenko et al., 2019; Leitdo et al., 2015), they present hierarchical or heterarchical
architectures with process controllers. In our case, the proposed approach generates a
machine allocation strategy based on a complete decentralized decision-making process,
reusing this information to carry out a learning process for future generations of
solutions. Furthermore, this perspective allows each agent to make decisions relevant to
their destination, following a type of architecture as indicated in the work of A. Ma (Ma
et al.,, 2019), guaranteeing the complete distribution of the decision. Therefore, the
novelty of our proposal is the use of the intelligent product paradigm in a product-driven
system under a distributed architecture to obtain better performance in reduced

computing times.

In recent works W. Bouazza et al., (2021), implemented a generic system model
controlled by Intelligent Products to generate a decisional strategy. That allows an
efficient change of a programming rule to another using a novel approach based on

Hyper-Heuristics (HH).

The HH unite decision strategies with an optimization- simulation mechanism. This
methodology can be interesting under certain conditions, where combining different rules
at the appropriate time improves the manufacturing system performance overall and
reactivity. The work of J. Campos et al., (2020) provides a specific solution for the
dynamic programming of product-driven production with a design based on MAS. They
implemented this model in a flexible hybrid flow with multiple constraints inspired by
the pharmaceutical industry. The designed model has simple agents that behave under
condition-action rules. However, these agents are limited in their actions and knowledge.
These works differ from ours in the type of application problem. Our proposal focuses on
a JSSP with agents that incorporate an embedded intelligence function (SBH heuristics).
Each agent decides in a distributed manner, analyzing the makespan based on the

response speed.
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3.3. Experimentation
3.3.1 Application of the SBH methodology

Now, we consider the steps proposed in S. Topaloglu and G. Kilincli (2009) to
implement the SBH methodology. The makespan is defined as the length of the longest
path from the start node to the end node. This path is formed by a set of operations that
starts at time O and ends at a time equal to the makespan. The direction of each
undirected edge (corresponding to the resource relations) is executed in a plan, so that an
operation starts immediately when its predecessor operations have finished. A start time

ST;; is defined for an O;; operation, with an Oy, predecessor operation and with TF;; =

The latest start time ST;; of an operation is defined as the maximum start time of an
operation, without causing an increase in makespan. The latest end time TF’;; (with
TF';j = ST';; + p;;) is defined as the maximum end time of an operation without causing

an increase in makespan.

Two types of operations are distinguished: those that comply with ST;; = ST';; and
those that satisfy ST;; < ST’;;. The operations that fulfill the first condition are critical
because a delay in time would increase the makespan. Those that fulfill the second
condition are noncritical since a delay in their time of no more than ST';; — ST;;, will

not change the makespan.

3.3.2 Application of product-driven system with ABM methodology

The proposed approach is implemented from the perspective of an intelligent product.
This approach has two types of agents: products and machines. For each family of

agents, the possible states for each agent are:

- Agent-product: free, in process, and finished
- Agent-machine: available and in process
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An agent-product can move from the free state to being in process and subsequently to
being finished, while a machine can pass from an available state to be in process and
afterwards become available again. The agent-machines are considered static entities that
only provide information about the processing time of their tasks. The agent-products
comply with the characteristics of an intelligent product, i.e., they have a unique
identification, they can communicate with the machines around them and among other

agent-products, and they take the operation decisions or wait at an agent machine.

Version 6.1.1 of the NetLogo simulation platform is used for modeling (Wilensky,
1999). Such platform provides a suitable environment to test and monitor the
performance of the model. The proposed approach uses the parallelism in ABM models,
where all simultaneously execute each instruction given to the agents. Figure 3.4 shows
the flow chart for the decision-making process for all agent-products. These decisions
follow the process described for the SBH methodology, generating initial conditions, and

solving subproblems.

Desicion-making process

MO is a set of
available
machine

Generate set MO

Positioning in M

Agent product
({Initial condition)

M is a first
machine in MO

Move to other
machine

No
- Is it & priority
Friority product product?
Production decision
Yes

Any other
product here?

Agent product
(Solve the Subproblem)

due learning process

Agent product
(Processes)

Learnig process

Save the best
production decision

Figure 3.4. Flow chart for the intelligent product decision making process.
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There are three stages in the decision-making process. In the first stage, the production
sequence is stored in each agent- product, positioning it in the first machine of its
sequence. Then, we continue with the resolution of the subproblems (when two agents-
products need the same machine at the same time instant). In the final stage, all the
agents-products have completed their work and generated the learning process. In the
learning process, each agent-product saves the position of the machines in its production
sequence and the production decisions of the sub-problems for use in future generations.

3.3.3 Experimental design

The instances used were presented in Adams et al. (1988) and consist of 15 different
problems named abz5, abz6, abz7, abz8, and abz9 (instances with low number of
resources), and swv1l, swv12, swv13, swv14, swv15, swv16, swv17, swv18, swv19, and
swv20 (instances with a larger number of resources). The instances are generated with
random processing times in different intervals of uniform distributions. The
characterization is ten jobs on ten machines (for the instances abz5 and abz6); 20 jobs on
15 machines (for the instances abz7, abz8, and abz9), and 50 jobs on ten machines (for

the instances swvll, ..., swv20) with different process times.

The integer programming model was implemented and solved with CPLEX under NEOS
Server services. The server used is a Dell PowerEdge R410 with the following
configuration: CPU - 2x Intel Xeon X5660 @ 2.8GHz (12 cores total), HT Enabled,;
Memory - 64GB RAM,; Disk - 2x 500GB/2TB SATA drives setup in RAID1; Network -
1Gb/s Ethernet.

The proposed approach with a product-driven system (PDS) was implemented in version
6.2 of the Netlogo platform. The heuristics and proposal approach were implemented in a
processor AMD Ryzen 5 3550H @ 2.1 GHz (8 cores in total); memory — 12GB RAM.

3.4. Results

The results of the performance of the proposed approach are compared with the different
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Figure 3.5. GAP obtained for the models for each instance.

methods mentioned above. In addition, we use the best results obtained in 60 seconds to
generate a proper comparison and guarantee agility and flexibility in decision making.
Optimal results are used as a baseline measure and are obtained from the literature.

3.5. Discussion and analysis of results

The results obtained by integer programming model (IP), PDS, and SBH are the closest
to the optimum in instances with a low number of resources. The results show that
computational times in the proposed approach are considerably less than IP in instances
with a more significant number of resources. These computational times are closer to
those obtained by heuristics such as SBH. However, the performance margin obtained by
PDS over SBH is higher in 4 of 5 instances (abz5, abz7, abz8 and abz9). In the other
cases, SBH obtains better results leaving PDS in second place. This new perspective
(with a fast solution) integrates the possibility of making the process more flexible,

responding with good results regardless of the number of resources.

The SPT and LPT heuristics generate good results according to the computational time
required to complete the process. However, completion times are longer than all used

models.
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Figure 3.5 shows the GAP obtained by each model in each instance studied. In the case
of IP, instances abz5 and abz6 had an optimal resolution. However, for instances abz7,
abz8, abz9, and all instances svw, the proposed model obtains better results than IP in 60
seconds. Remarkably, the results for the proposed approach in instances with a low
number of resources (abz7, abz8, and abz9) are better in short periods than all the
methodologies used. However, for the instance, abz5 and abz6, the IP and SBH
(exclusively abz6) heuristic were superior to the proposed approach. For the instances
with a larger number of resources, the proposed approach obtained better results than IP,
SPT, and LPT in 60 seconds of execution. However, SBH obtained better results in this

instance.

Computational evidence suggests that our model based on intelligent products delivers
comparable results to other more popular methods with high computational complexity
(Yu et al., 2015). We note that results agree with those found by other authors using
these techniques (Abar et al., 2017; Senouci et al., 2019). Thus, ABM can solve
sequencing processes in workshop environments with almost optimal values, making this

method a flexible methodology to solve JSSPs with different amounts of resources.

3.6. Conclusion

The proposed approach used the product-driven system to solve the JSSP, and evaluate
the makespan as a performance measure. The adopted methodology enables one to face
the complexity in this type of problems by describing the dynamics of manufacturing
processes in terms of an intelligent product. Our results are consistent with those of other
researchers and argue that heuristics perform better than sequencing rules. Thus,
procedures such as integer programming obtain the best results. However, the IP result

depends on the formulation of the mathematical model.

Based on the implemented methodology, it was possible to prove that an agent model
with decisions made by intelligent products can address production scheduling problems
and provide greater flexibility. Better results are obtained in short periods than tools

highly used in the literature, allowing adaptation to unforeseen changes. The design of
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this methodology allows interactions between agents that provide a detailed description

of a holonic dynamic.

The results concerning makespan are near to the optimal in instances with a low number
of resources and obtained better results than IP and conventional heuristic in instances
with more resources. The experimental evidence shows that the modeled intelligence
directly affects the ability to obtain good results with fewer replications. However, the
preliminary results encourage further exploration of this line of research due to the
versatility of obtaining production plans without human intervention and reduced

computational time.

Future research will be necessary to generate agents with improved communication
capacity and implement more realistic events in planning, such as work cells,
simultaneous products, and failures. In addition, it will include the implementation of a
more sophisticated simulation with agents generated under the logic of intelligent

products to minimize the nervousness of the system.
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CAPITULO 4.

A product-driven system with an evolutionary algorithm to increase flexibility in planning a
job shop
Séez P, Herrera C, Booth C, Belmokhtar-Berraf S, Parada V (2023) A product-driven
system with an evolutionary algorithm to increase flexibility in planning a job shop.
PLoS ONE 18(2): e0281807. https://doi.org/10.1371/journal.pone.0281807

Abstract: The scheduling of a job shop production system occurs using models to plan
operations for a given period while minimizing the makespan. However, since the
resulting mathematical models are computationally demanding, their implementation in
the work environment is impractical, a difficulty that increases as the scale problem
grows. An alternative approach is to address the problem in a decentralized manner, such
that real-time product flow information feeds the control system to minimize the
makespan dynamically. This paper presents a product-driven system model that includes
an evolutionary algorithm to minimize the makespan of the job shop scheduling problem.
A multiagent system simulates the model and produces comparative results for different
problem scales with classical models. One hundred two job shop problem instances
classified as small, medium, and large scale are evaluated. The results suggest that a
product-controlled system produces near-optimal solutions in short periods and improves
its performance as the scale of the problem increases. The results corroborate the

advantage of using real-time information to optimize a production plan.

4.1 Introduction

The planning of production systems has benefited from information and communication
technologies, allowing the emergence of models with the capacity for self-learning, self-
diagnosis, self-adaptation, and self-optimization (Barbosa et al., 2015). Although there is
a wide variety of production systems, job shop systems constitute a significant part, and
their scheduling to optimize resources is a computational challenge (Pinedo, 2012). The
job shop scheduling problem (JSSP) emerges from that situation as a problem belonging

to the NP-hard class (Asadzadeh, 2015). Consequently, the computational requirement
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precludes its practical use in large-size situations. JSSP has been widely studied,
visualizing a centralized and static approach. However, the integration of current
technologies broadens the conception of production systems, giving rise to more
sophisticated organizational ideas (Oborski & Wysocki, 2022). Thus, the JSSP can be
approached in a decentralized and dynamic way, achieving that the flow of products
during the operation contributes with real-time information that supports the decision-

making of the production control system.

The development of intelligent systems makes it possible to dynamically meet the
computational challenge offered by production systems. Such systems occur in situations
of different sizes, making it difficult to use a single method for production scheduling
(Bozek & Werner, 2018; Nowicki & Smutnicki, 2005). Exact methods for JSSP cannot
always be used in practice due to their computational cost; thus, it is necessary to resort to
heuristic methods that produce a solution sacrificing optimality (Kim et al., 2020).
Product-driven systems (PDS) face such difficulties for JSSP. They are systems that
consider the information coming from the product cycle to support decision-making in
the control system. Then, the products are equivalent to agents actively participating in
the control system (Herrera et al., 2016; Sallez, 2014).

The advantage of using a PDS lies in the increased agility and reactivity of the production
system. A PDS provides the ability to react to disturbances related to itself or other parts
of the manufacturing system (Pannequin & Thomas, 2012). Furthermore, the PDS
considers product intelligent artificial entities to implement and coordinate the control
process. Such products allow the reconfiguration of resources to provide agility in the
face of production changes (Oltean et al., 2018). The PDS implementation occurs by
applying concepts of a holonic manufacturing system (HMS) with a multiagent system
(MAS). An HMS has a fundamental unit called a holon, which describes an entity in its
physical and virtual forms. HMSs are not simple automated physical structures but
entities capable of autonomous self-organization, mixing the physical and virtual worlds
to avoid waste and inefficiencies (Mcfarlane et al., 2002). In turn, a MAS constitutes a
form of development based on the distribution, autonomy, and cooperation of virtual
entities called agents (Leitdo et al., 2015). Consequently, a PDS dynamically addresses
the optimization of the JSSP (Peng et al., 2019).
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Several studies demonstrate the benefits of using a PDS even when decision-making is
decentralized. Mihoubi et al. (2020), found good performance in minimizing production
system execution times. In turn, Bouazza et al. (2021), considered a PDS as a decision
strategy for efficient scheduling rule changes using a hyperheuristic and found good
performance in minimizing execution times. Shen and Norrie (1999), used agents as
negotiating entities, emphasizing flexibility by combining an MAS with a genetic
algorithm. Likewise, Wang and Choi (2014) presented a proposed holonic decomposition
to minimize the makespan of a flexible JSSP. The proposed method uses autonomous and
cooperative holons to construct solutions. It follows that, in the decentralized approach to
the problem, difficulties arise in dealing with combinatorics resulting from the fact that
products may change from one rule to another. Consequently, the search space increase
produces an increase in computational time. This issue, which has been less explored in
the literature, can be addressed with an evolutionary algorithm that could potentially

improve the solution.

This manuscript proposes a PDS model that considers parameters associated with the
HMS and MAS to increase flexibility in planning a Job Shop production system. The
model produces a fast response with a near-optimal solution for problems of different
sizes. In addition, the model considers intelligent products to support decision-making by
considering a function based on evolutionary algorithms. The use of evolutionary
algorithms brings more efficiency to the search process by modifying the representation
of the modeled system. The model's performance was tested with JSSP instances studied
in the literature and compared with an integer programming model, a heuristic method,
and dispatching rules. A comparison with this method allows us to analyze the robustness
of the proposed model. Dispatch rules offer a fast alternative solution, although with
lower accuracy. In turn, heuristics that are more elaborate methods obtain better
solutions. Exact models guarantee the determination of the optimal solution but with a

high computational cost.

The main contributions of this manuscript are as follows:
- It proposes a new model for the production planning of a job shop system. The model

includes an evolutionary algorithm to search for better solutions applied through
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intelligent products.

- The proposed model uses the holonic-multiagent paradigm with intelligent products
for decision-making in a highly distributed architecture. The product agents can apply
evolutionary algorithms to optimize perturbed outcomes.

- Experimentation is performed on JSSP instances used in the literature.

- The model is adaptive in solving JSSP of different sizes and obtains near-optimal

results in short execution times.

4.2 Proposed model

This section describes the model proposed to solve the JSSP and the algorithm used to
determine the optimal solution. This model is a product-driven system with an
evolutionary algorithm (PDS-EA) that represents a productive job shop system in which
machines and products interact through production jobs or operations. The process
corresponds to an MAS that considers machines and products as agents of the system. In
the holonic model, the machine agent and the product agent correspond to a virtual
representation of their physical entities. The JSSP solution search occurs with an
evolutionary algorithm operated by the product type agents. This process is generic and

useful for representing several real industry situations.

Operating agents that possess the characteristics of an intelligent product, defined in the
work of C. Wong et al. (2014), represent the system's mobile entities. That means they
have a unique identification, can communicate with machines around them and other
operation agents, and make operational decisions on a machine. In addition, machine
agents are considered static entities that only provide information about the processing
time of their tasks. Figure 1 depicts a scheme of the general model that follows an
example selected from the literature (Shahzad & Mebarki, 2016). The example considers
the scheduling of three products on three machines, as shown in Table 4.1. Figure 4.1
show, in the first stage, the model configured through the product and operation agents,
configuring the processing sequence of each of them. In the second stage, the operation
agents generate feasible production sequences and calculate the associated makespan. In
this stage, the operation agents learn the sequences that generate the best results. The best

results from the second stage improve through an evolutionary process in the third stage.

Doctorado en Ingenieria Industrial, Direccidn de Postgrado-Universidad de Concepcion

53



—

Configuration
N

Adaptation and learning
It

Improvement
I\

-

Product agent

Operation
agent

Sequence of
operation
(Chromosome
generation)

A

/

If necessary,

O41 [ O12 | O13 | Oy | Oy | Opg | Oy | Ogp | Ops agents mutate
sequence
Learning (first stage)
Is it the best
makespan? Operation agents
Makespan calculation save position in
sequence
If there is no improvement in the best composition
obtained. Go to the second stage
1 [
012 011 C)13 0, Oy, Ogs O34 O3, Os3
O | O13 | O12 | Oy | Op | Oz | O3y | O3 | Oss ~
O O12 Oy O13 O3 O3 O3 O3, O3 =
Learning (second stage)
Is it the best
makespan? Operation agents
Makespan calculation save position in
sequence

STOP

If there is no improvement in the best makespan obtained.

Figure 4.1. Execution procedure of the proposed approach.
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Table 4.1. A problem instance with three products and three machines

M1 M2 M3
J1 011 01, 013
J2 0, 0, 0,3
J3 03, 03, 033

The PDS-EA model can be represented schematically by separating the physical and

virtual stages. Both stages are represented horizontally in the diagram in Figure 4.2; the

columns represent the elements of the model that, in the physical part, correspond to

acquisition, entities, and visualization. In turn, the virtual part represents the information

inputs, architecture, intelligence function, representation of the entities, agent's response

to the problem, interaction, and results.
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I o .
e 1
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Figure 4.2. Schematic presentation of PDS/EA.
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The information flow of the PDS-EA model starts at the acquisition modules that
represent physical sensors. Such modules capture information and transform it into data
for each virtual entity. The entities represented virtually by agents follow a distribution
given by the highly distributed architecture. In this architecture, all the entities associated
with the products guide the decisions of their process. Such decisions are generated based
on an intelligence function embedded in each agent to evaluate individual and collective
performance. This evaluation occurs through three stages: data collection and reading,
solution learning and improvement, and scheduling generation. In the data collection and
reading stage, product and machine agents collect sequence data and operation times
required to complete jobs. In the learning and improvement stage, the operation agents

calculate the makespan of the problem through the intelligence function.

The PDS-EA model uses an intelligence function that is an evolutionary algorithm with
an elitist selection strategy for makespan minimization. The advantage of using an elitist
strategy instead of a probabilistic reproduction is that the best solution improves
monotonically concerning the previous generation. The potential disadvantage is the
convergence of the population to a local minimum. The balance between the two aspects
occurs by regulating the mutation rate. Thus, a mutation evolved on a single chromosome
is proposed instead of a gene-by-gene mutation. This process avoids the violation of the

production sequence of each product in the JSSP.

The development of the actions of the PDS-EA model is represented through an UML-
type sequence diagram. Figure 4.3 depicts the order of actions performed by the operation
agents. The first decision occurs with the sequencing of operations generated by all
product agents. Then, the operation agents evaluate the sequence's feasibility, verifying
the assignment of jobs to the machines according to the JSSP. If the generated sequence
is not feasible, mutations are performed to make the sequence feasible. The makespan is
then evaluated. If this improves with subsequent iterations, the product agents store the
position in the generated sequence in memory and use it to minimize the makespan.
Suppose there is no change in the best makespan after generations. In that case, a second
stage begins in which the operation agents evaluate new sequences through an
evolutionary swapping mechanism between the operation agents' positions. If the

operation agent generates an unfeasible sequence, they mutate their positions until
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feasible. The procedure ends when no improvement occurs after a certain number of

iterations. This whole procedure is represented by a flowchart, as shown in Figure 4.4.
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Figure 4.3. Diagram of the sequence for the action of the product agent.
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Figure 4.4. Flow diagram for the intelligent process in product decision-making.
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The model simulation was performed with NetLogo Version 6.2 (Wilensky, 1999). The
proposed approach uses parallelism in MAS, where each instruction is executed by agents
simultaneously. In addition, the platform provides a suitable environment for testing and

monitoring the model's performance.

We compare the results obtained by the PDS-EA model with three heuristics and an exact
model. The heuristics used are the bottleneck heuristic (SBH) proposed by Adams et al.
(1988), sequencing by shortest processing time (SPT), and sequencing by longest
processing time (LPT). The exact model is an integer programming problem (IP) (Zhang
et al., 2019). The problem instances were classified according to their scale as small (SS),
medium (MS), and large (LS). This classification results from the number of operations,
products, and machines. One hundred-two instances from the literature are used (Table
2). The first column of Table 4.2 shows the authors proposing the test instances. The
following columns contain the name of the problem instances and the number of jobs and
machines. The last column presents the ranking by the scale of each group of instances.
SS contains instances with fewer than 100 operations, MS with more than 100 and fewer
than 400 operations, and LS with more than 400 operations. The results of the PDS-EA
model with SBH, SPT, LPT, and IP obtained for all test instances are compared,

measuring the makespan at different execution times.

The proposed algorithm is compared with three types of standard approaches to the
problem. The first approach decomposes the problem into subproblems of less
complexity, known as the shifting bottleneck heuristic (SBH) (Mdnch & Zimmermann,
2011). The second approach considers dispatching rules that are computationally easy to
implement because they assign jobs according to the processing time. Specifically, the
short processing time (SPT) assigns jobs from shortest to longest, and conversely, the
long processing time (LPT) assigns jobs from longest to shortest. In turn, the integer
programming (IP)-based method determines the optimal solution of the problem when it

is possible according to the available computational resources.

The makespan evaluates the PDS-EA performance by a deviation ratio. Let m, be the
makespan obtained by the PDS-EA and m; be the makespan obtained by the IP algorithm.
The deviation ratio R for a runtime of 10 minutes is defined according to Equation 1. In
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addition, the gap between m, and the lower bound value known for each instance
problem is evaluated.
R =my,/m; (1)

4.3 Results

The PDS-EA, on average, matches the results of exact methodologies at medium and low
scales and performs better with large-scale instances. Such performance is presented in
Table 2, whose first column presents the scales under study, followed by the average,
minimum and maximum results for the different execution times. For SS instances, PDS-
EA obtains values close to those obtained by the exact method (R=1). The average for
MS instances is 23.8% higher, obtaining the best result with one hour of execution (6%
higher than the value of the exact methodology). For LS instances, PDS-ES outperforms
IP on average with R=0.523. In addition, with LS instances, all run times obtain R<1, and

the best result occurs at 2 min of execution.

Table 4.2. Average (Av.) makespan of the first 10 minutes and best result within 1 hour

of execution time for SS, MS, and LS instances.

Inst. | Imin | 2min | 3min | 4min | 5min { 6min | 7min | 8min | 9min | 10min | 60min | Av.
SS |1.21 {1.10 |1.10 |1.06 [1.05 |1.04 {1.04 |{1.04 |1.04 |1.04 |[1.03 |1.07
MS |1.34 |1.30 |1.29 |1.27 |1.25 |1.23 |1.22 |1.21 [1.22 {1.20 |1.06 |1.23
LS |0.85 |0.31 {0.34 {0.40 |0.46 [0.47 {0.50 |0.53 |0.53 |0.53 |0.79 |0.52

The performance comparison of PDS-EA with IP, SBH, SPT, and LPT is performed with
the gap calculated for each instance's optimal or lower bound value. With small-size
instances, IP outperforms the other algorithms. In turn, PDS-EA outperforms all
heuristics after 2 minutes of execution. Figure 4.5a shows the gap for the five methods
during one hour of computational time for SS instances. During such a period, PDS-EA
evolves gradually, decreasing the makespan difference related to the best-known
makespan. After an hour, the exact method is still in process to determine the static
optimal solution. Straight lines in the figure represent the heuristic-determined value
found immediately at the beginning of the period. The PDS-EA obtains the best result

when one hour of computational time is reached. This result differs from the best result
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found with IP by 3% but improves by 9.08% the best heuristic value obtained with SBH.

PDS-EA in S5 Instances

x & IP
a) —w= PDS-EA
70 sBH
—-- T
—= LPT
60
50
3
o 40
<
(&)
0] e e e e s —
" _
10
—x
B I s ' P P " A . N + A
Imin  2min 3min  4min  Smin  6min  7min  Bmin  9min  10min 3600 min
Execution time (min)
PDS-EA in MS Instances
20
“a P
b) —w= PDS-EA
70 sBH
——- @7
— LPT
60
50
?\i
a 4
<
(U]
30
20
10
Imin  2min  3min  4min  Smin  6min  7min  Bmin  9min  10min 3600 min
Execution time (min)
PDS-EA in LS Instances
A IP
== PDS-EA
o I | R SBH
-
70 —o- LPT
60
9
)
a
3
40
30
20
10

Imin  2min  3min  4min  5min  6min 7min  8min  9min 10min 3600 min
Execution time (min)

Figure 4.5. PDS-EA gaps for SS, MS, and LS instances.
a. GAP values each minute of simulation Average GAP for SS instances; b. GAP values
for each minute of simulation Average GAP for MS instances; ¢c. GAP values each

minute of simulation Average GAP for LS instances.
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With MS instances, the PDS-EA model performs better than the heuristics from minute
10 onward. The best results occur with IP, which outperforms PDS-EA by 4.97% on
average. Figure 4.5b shows the gap for the five methods during one hour of
computational time for MS instances. The PDS-EA outperforms the heuristics by 7.58%
on average. With the LS instances, the SBH maintains its performance and achieves a gap
of less than 20%. This behaviour is observed in Figure 4.5c. Although PDS-EA performs
better than the exact method after one hour of computational time, the gaps are larger
than for smaller instances. At the end of the period, PDS-EA and IP continue with a

decreasing trend, suggesting that convergence is slower for larger instances.

PDS-EA obtains good solutions for the three problem sizes studied. Its main advantage is
that the method dynamically optimizes the makespan as time progresses. Figs 4.5a, 4.5b,
and 4.5c show that the gradual algorithm produces a better makespan than the heuristic
algorithm and the dispatch rules.

Although the inclusion of the evolutionary algorithm in the PDS-EA involves an increase
in computational time, its performance is maintained for large instances. Figure 4.5c
shows a gradual decrease in the gap to values close to 30% after 1 hour of computational
time. Compared to the other sizes, the algorithm requires more time to enter a phase of
lower gaps. Even so, it is observed that the process continues to move toward lower gap
values, suggesting that a longer simulation time could further reduce the gap. Figure 4.6
shows the gap obtained in all instances for PDS-EA and IP. A similar behavior is
observed when the number of operations is approximately 100. However, for higher
numbers, both algorithms have a clear difference. For problems of approximately 300

operations, the difference seems to stabilize.
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Figure 4.6. Gap for PDS-EA and IP for all instances ordered by the number of operations.

Computational experiments suggest that the proposed PDS-EA offers competitive results
compared to exact and heuristic methods. The PDS-EA architecture generates a stable
system capable of reacting to changes without human intervention in short periods.
Therefore, PDS-EA can solve sequencing processes in job shop environments at different
scales, adapting to the complications of each instance. Thus, PDS-EA positions
distributed decision-making as a competitive alternative for job scheduling problems in

production systems.

4.4 Conclusion

This paper presents a decentralized decision-making model to minimize the makespan of
a job shop problem. From the flow of products in the different machines, real-time
information feeds the model to correct the course of the operations, keeping in mind the
minimization of the makespan. The model contemplates a genetic algorithm selecting the
best decision at each instant. To test the model, an agent-based system simulates the
operations. Data from the literature allow comparison with four standard approaches: an
integer programming algorithm and three approximate methods. Simulation of one hour
of computational time, the gap concerning the best-known solution for each approach's
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small, medium and large-size instances is recorded.

The proposed model's comparative result varies with the number of instances it faces.
With small instances, the proposed model underperforms during the whole simulation
hour against the exact method, which can find the best solution quickly. With medium-
sized instances, a balance is observed between the proposed method and the exact method
approaching the hour of simulation time. With large instance sizes, the proposed method
outperforms the exact method during that period. In turn, despite being very fast in
finding the solution, the approximate methods do not present good performance, with
small and medium-sized instances being surpassed by the proposed and exact methods.
However, with large instances, the SBH rule produces a better solution than all the

solutions generated by the proposed method during the hour of simulation time.
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CAPITULOGS.

A product-driven system approach to reduce nervousness in master production schedule.

Cita: Patricio Saez, Carlos Herrera, Victor Parada. A product-driven system approach to

reduce nervousness in master production schedule.

Abstract: A critical problem for raw material processing companies occurs in the
construction of the master production schedule. Scheduling is highly susceptible to
fluctuations in demand, which is the primary source of instability and nervousness in the
system. Flexible systems that avoid nervousness without increasing the overall cost are
necessary to minimize the impact of demand fluctuations. Product-oriented systems are
an alternative to face this problem; however, it is unclear how they perform
computationally under specific conditions. This paper proposes a product-driven system
to complement the master production plan generated by a mathematical model. This
system considers intelligent agents that make production decisions with an intelligence
function capable of reducing nervousness without significantly increasing the production
cost. In the analyzed case, a decrease in nervousness of 11.42% is obtained, involving a

cost increase of 2.39%.

Keywords: Product-driven, Nervousness, Schedule, Intelligent product, Agent based

model, Holonic manufacturing system.

5.1 Introduction

Conventional manufacturing management is constantly evolving due to the incorporation
of new technologies that make it possible to reduce the problems caused by fluctuations
in market demand and operational disturbances. Thus, conventional production planning
and control models have been transformed into new flexible models to react dynamically
during the production period. They are models capable of reacting to disturbances arising
from changes in scheduling. Consequently, they respond to disturbances in routing due to

operating machinery, production, expansion, processes, products, and production

Doctorado en Ingenieria Industrial, Direccidn de Postgrado-Universidad de Concepcion

66



volumes (Cardin et al., 2018; GraRler & Pohler, 2017; Kovalenko et al., 2019; Yadav &
Jayswal, 2018).

Flexibility in production systems is commonly included in the master production plan.
This plan provides the production quantity of each product according to the requirements
and market demands and is therefore used for strategy definition and decision-making
(Mortezaei & Zulkifli, 2013). The master production plan is devised using optimization
models that in general do not contemplate the details of the operations; therefore, they do
not guarantee viable production. To correct unfeasibility, the operations are adjusted,
generating instability in the system and giving rise to the phenomenon known as

production plan nervousness (Mortezaei & Zulkifli, 2013).

Nervousness has frequently been cited as an obstacle to implementing stable production
systems. The phenomenon produces distrust in planning and a need for permanent
supervision (Damand et al., 2013). Since the leading cause of nervousness is the
fluctuation of demand, incorporating this phenomenon into a model is a complex task
(Atadeniz & Sridharan, 2020). Incorporating new technologies in manufacturing systems
and using artificial intelligence tools have made it possible to mitigate the effects
produced by nervousness (Campos et al., 2020).

Despite the strong impact of nervousness on production stability, the topic has received
limited attention in the literature. Instability is considered the cause of nervousness
because, when a high level of nervousness is recorded, an increase in production plan
instability arises (Kabak & Ornek, 2009; Sivadasan et al., 2013). Often, instability works
indifferently with the concept of nervousness; however, each concept can be considered a
consequence of the other (Pujawan & Smart, 2012; V. Sridharan & LaForge, 1990).
Some of the most widely accepted proposals to mitigate nervousness have been based on
automatic reprogramming for the system to react to exception conditions (Li & Disney,
2017). However, jobs cannot be reprogrammed in practice due to the inflexibility of

conventional routines.

Recent developments considering nervousness in production systems have been based on

experimental studies and quantitative modeling (Azouz et al., 2018). Although the
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literature lacks clarity regarding the most appropriate way to mitigate nervousness, some
studies have suggested that frequent rescheduling provides better responsiveness to
demand fluctuations. In contrast, others have suggested that frequent schedule changes
should be avoided (Pujawan & Smart, 2012). In turn, including the cost of production in
the analysis results in the conclusion that an improvement in stability does not mean a
substantial increase in the total cost of production (Herrera et al., 2016). However, to
have more clarity on the performance of a given model, the proposal must be

computationally simulated.

Product-driven production systems (PDSs) are models that naturally allow for the
inclusion of the nervousness phenomenon. A PDS is an interoperable system in which the
product is the controller of resources and adapts to disturbances because it considers
products as artificial and intelligent entities to implement and coordinate the control
process (Herrera, 2011; Mcfarlane et al., 2002; Meyer et al., 2009). Then, the products
allow for the dynamic reconfiguration of resources to provide agility in the face of
production changes generated by nervousness. The implementation of a PDS occurs with
the holonic system concept (HMS) through a multiagent system (MAS). In an HMS, the
process entities, which can be machines, robots, or workers, are modeled as holons
consisting of physical and virtual components. Similarly, holons are entities capable of
autonomous self-organization, mixing the physical and virtual worlds (Mcfarlane et al.,
2002). In turn, an MAS constitutes a form of development based on the distribution,
autonomy, and cooperation of virtual entities called agents (Leitdo et al., 2015). Bearing
in mind the characteristics of PDSs, it seems natural to include the nervousness of the
system as an additional component. However, there is no clarity on the effect of this

phenomenon's inclusion on the computational performance of PDSs.

This paper presents a PDS that considers the nervousness management of a production
planning system. The PDS considers intelligent products as functional units and makes
autonomous production decisions to manage nervousness in an environment under
realistic conditions. A decrease in system nervousness occurs due to the decentralized
decision-making generated by the information coming from intelligent products. The
evaluation of the computational performance of the proposed PDS occurs with a

production planning scenario with 12 products over a planning horizon of one year. The
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novelty of this proposal is the generation of flexible production planning with the ability
to decrease the nervousness of the system, generating more stable plans and dampening

the increase in production costs.

The article is organized as follows. Section 2 presents a literature review and describes
key concepts, such as master production plan, nervousness, PDSs, and intelligent
products. Section 3 describes the proposed PDS. Section 4 shows the experimental

design, Section 5 presents the results obtained, and Section 6 concludes the paper.

5.2 Related work

Production planning determines the quantity of a product to be produced, the time at
which it should be produced, and in some cases, the section of the facility where each
production stage should be performed. The planning takes place by a mathematical model
that optimizes decision-making while minimizing costs or maximizing profits. The model
determines the quantity produced in each period over a finite horizon without exceeding
the system's capacity and satisfying the demand of future periods. Lot-sizing modeling is
one of the relevant techniques that allows for planning to be performed (Ramya et al.,
2019).

Production planning that considers time has been addressed in the literature through
moving horizon planning for various production processes (Demirel et al., 2018; Ju et al.,
2018; Kabak, 2009; Lalami et al., 2017; Lin & Uzsoy, 2016). However, although moving
horizon planning is a common practice in the industry, there is still little clarity in the
literature on its impact on the stability of the production process when combined with
artificial intelligence tools (Ziarnetzky et al., 2018). A study with real-world data was
developed in the automotive industry, considering multiple impact assessment tests to

meet the requirements of a plant (Lalami et al., 2017).

In modern industry, it is necessary for production planning to respond to dynamic market
conditions by mitigating the effects of nervousness. Planning should reduce lead times,
provide greater agility to processes, improve product quality, and reduce manufacturing

costs (S. C.L. Koh et al., 2002). However, fulfilling these objectives usually requires a
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sequence of reconfigurations of operations, causing a permanent modification of the
established schedule, generating instability, and increasing production nervousness
(Salido et al., 2017). Several studies have presented methodologies and tools for
measuring, detecting, and eliminating production instability (Schuh et al., 2019).
Instability and nervousness have often been studied indifferently (Pujawan & Smart,
2012; V. Sridharan & LaForge, 1990). Other works have considered instability as a
consequence of system nervousness (Kabak & Ornek, 2009; Sivadasan et al., 2013). With
a higher level of specificity, Tunc et al. (2013) mentioned two types of nervousness that
occur as a consequence of the quantities involved or of the configurations made. Some of
the most widely accepted proposals to mitigate nervousness resort to automatic
reprogramming, so the system reacts to exceptional conditions (Li & Disney, 2017).
However, reprogramming is sometimes not straightforward due to the inflexibility of

conventional programs.

Several studies have considered the mitigation of nervousness based on the quantity of
production, inventory, or safety stock (Hasachoo & Masuchun, 2016a; Koh & Saad,
2006; V. Sridharan & LaForge, 1990). Other proposals for nervousness mitigation have
focused on the planning horizon and the amount of production or storage. In the former,
planning horizon freezing has been used (Atadeniz & Sridharan, 2020; Kadipasaoglu &
Sridharan, 1995; Lalami et al., 2017; S. v. Sridharan et al., 1988). Additionally, the
rolling horizon method (Inderfurth, 1994; Kazan et al., 2000; Mdnch & Zimmermann,
2011; van der Sluis, 1993) and increases in the forecast horizon (Carlson et al., 1982;
Hasachoo & Masuchun, 2016b) have been studied. Other authors have considered the
dynamic lot-sizing model (Carlson et al., 1979; Xie et al., 2003) and control rules (de
Kok & Inderfurth, 1997).

A fundamental component in the design of a PDS is the intelligent product, which has
different definitions (Wong et al., 2014; Valckenaers et al., 2009; Kiritsis,
2011;Ké&rkkainen et al., 2003; Ventd, 2007; Mcfarlane, 2012). The definition used in our
proposal is that of Wong et al. (2014). Their definition states that an intelligent product
must have five characteristics: it must possess a unique identity, be able to communicate
effectively with its environment, retain or store data about itself, be able to participate or

make decisions relevant to its destiny, and have a communication language to display its
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characteristics. Thus, intelligent products are the entities responsible for making decisions
and planning the system's future. Consequently, an intelligent product gives the PDS a
particular orientation toward the synchronization of material flows and information flows.
The characteristics of intelligent products provide the basis for the product-controlled
production approach. They are entities that take the initiative during the execution of the
production plan by reacting appropriately to disturbances that might occur (Herrera et al.,
2016). This approach facilitates the design, distribution, and operation phases of
production. The consequence is improved product quality and performance resulting from
self-learning, self-diagnosis, self-adaptation, and self-optimization (Barbosa et al., 2015).

A PDS is a distributed control system to support operational decision-making, the design
of which is facilitated by including the holonic paradigm, which specifies that each
product is represented by physical and virtual components (Mihoubi et al., 2020). In turn,
the virtual component is interpreted as an agent, which is why a PDS corresponds to a
multiagent system. Agent-based models have entities with an active and autonomous role,
originating actions without direct human intervention. C. Herrera et al. (2014) studied a
production system with such characteristics by simulating the coordination of the
different decision levels. The authors analyzed production planning and control processes
and found that coordination between active batches is effective at distributed levels
compared to conventional approaches. In addition, the study by J. Campos et al. (Campos
et al., 2020) provided a solution to a dynamic scheduling problem by dividing the process
into three stages. Each stage involves different agents with specific roles, although the

authors did not directly consider a master scheduling model.

Integrating a PDS with a holonic system and its implementation through a multiagent
system could generate computational times that do not allow for real-time production
control. In turn, the decentralized decision-making of such systems could provide feasible
solutions that minimize nervousness for a given period but with higher production costs.
In addition, practical solutions adopted in the industry have considered static production
modeling that could be incorporated into a PDS as an initial situation to be dynamically
corrected with individual intelligent product decisions. Integrally, these topics have
received less attention in the production planning literature, and there is little clarity

regarding the computational performance that a PDS with such features could have.
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5.3 PDS proposed

The proposed PDS implements a master plan for a production system that operates with
production cycles and periods, considering the existence of nervousness. The master
production plan is obtained from the optimization problem solution, which provides the
optimal gquantity to produce in each cycle and period of each product. Each product is
represented by a virtual agent that transforms the information into valuable data for
decision-making. Thus, the agents constitute a highly distributed architecture. In turn,
each agent contains an intelligence function that evaluates its individual and collective
performance. Nervousness is evaluated as the difference between the quantity to be
produced of each product in a given cycle and a given period. Section 5.3.1 presents the
optimization model, and Section 5.3.2 contains the nervousness evaluation. Section 5.3.3

presents the PDS architecture.

5.3.1 The optimization problem

The mathematical model that produces the master production plan considers the
minimization of the production cost subject to the constraints that specify the quantity to
be produced at a given time. This formulation extends the formulation presented in the
literature for lot-sizing problems by including production costs, inventory, setup, and
backorder costs (Quadt, 2004; Ramya et al., 2019). Let the following decision variables

be defined as follows:

X+ = Quantity of product i in period t in cycle k.

sit = Quantity of inventory product i in period t in cycle k.

r;y = Backlog of product i in period t in cycle k.

Vie = Setup of product i inperiodt (y;; = 1ex;; > 0,Vi,Vt, Vk).

The model requires the following input:

d;; = Demand of product i in period t.
pit = Production cost of product i in period t.
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h;: = Inventary cost of product i in period t.
b;s = Backorder cost of product i in period t.
qit = Setup costo of product i in period t.

C; = Capacity in period t.

The mathematical formulation is in Equations (1) to (5).

n ot
min fk = z Z(pitxit + hitSie + bieTic + QicYic) (1)
i=1t=k

Subject to:

Xit < My, i€[l,..,n],telk,..,t'] (2)
n

z Xit < Cp,telk, ..., t' (3)
i

SiOO = SiOTli' Tl-o = T‘i(,)u-, l € [1, ,Tl] (4)

Si(t—l) - ri(t—l) + Xit = dit + Sit — Tit ,i € [1, ...,n], te [k, ...,t,] (5)

The objective function of model f* in Equation (1) corresponds to the minimization of
the production cost in the intervals of time horizon sliding [k, ..., t']. In this way, k and t'
=k + n— 1 are the first and last periods, respectively, of the mobile planning horizon of
length n in each cycle k. Constraints (2) relate production and the corresponding setup,
where setup = 1 when there is production and 0 otherwise. Constraints (3) restrict the
production according to the available capacity during the period. Constraints (4) and (5)

set the initial conditions of inventory, backorders, and the balance between the two.

5.3.2 Measurement of system nervousness

Nervousness measures the difference in the quantity to be produced of product i in period
t during production cycle k compared to the previous cycle and period. The calculation is
based on two parameters -- the magnitude of change and the frequency of changes -- so
that significant changes or a high frequency of changes in production implies high values
of nervousness. Two metrics express the nervousness per cycle and period. Let N be the
planning horizon, P be the number of products in the planning, C;; be the number of

schedule changes of product i in cycle k and C;; be the number of schedule changes of
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product i in period t. Furthermore, let QX be the production quantity for product i in
period t in cycle k. Then, in Equation (6), N,; is the nervousness in cycle k for product i,
and in Equation (7), N,;is the nervousness in period t for product i. Equation (8) presents

the measure of nervousness N.

Noi = Ci * {X0 |Qfes =0k 1LV Kk (6)
Npei = Gy * {Eio 10TV =QE 1}V £ (7)

N = Ng; + Npti (8)

The parameter @, in Equation (9) quantifies the ratio between cost and nervousness for
each cycle k. This parameter identifies the magnitude of the change in each cycle by

calculating the area under the curve of cost and nervousness.

¥ etkyak
[ n(k)ak

e = Vke{k=1,..k=60}(9)

5.3.3 PDS Architecture

The system architecture contains physical and virtual layers, each of which has three
levels -- configuration, interactions, and results -- as shown in Figure 5.1. Each product is
represented in the virtual layer by an agent, transforming the information into valuable
data for decision-making. The configuration of the virtual layer represents the results
generated by the optimization model as data for communication and decision-making by
each agent. Thus, the physical layer of the system interacts with other physical entities,
and its virtual layer interacts with the environment for production control and
management. Decision-making and communication among agents are distributed on the
same hierarchical scale. The intelligence function of the agents considers decision rules
for obtaining a global objective considering all of the system's entities. Such decision
rules are known and applied by all of the agents of the system through internal and
interagent communication. This information is processed and stored in the physical part
of the components. At the results level, the model outputs correspond to the production

planning, virtually and physically representing the planning.
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Figure 5.1. PDS architecture

The virtual layer contemplates an intelligence function that evaluates individual and
collective performance, looking for the system's stability with a sustained cost increase.
To this end, the intelligence function measures the nervousness of each agent using
Equation (8). Each agent complies with the characteristics of an intelligent product
defined by Wong et al. (2014); i.e., they have a unique identifier and can communicate

with the surrounding agents of the same product type, as shown in Figure 5.2.

Communication
it
o 0
Product; Product
Virtual Y
Stage
Intra-agent Intra-agent
Inter-agent
— sha. Action
Physical_<
Stage Evaluation
-

Figure 5.2. Diagram of agent communication.
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The architecture operation comprises a sequence of actions represented in Figure 5.3.
Initially, the algorithm that solves the mathematical model generates the optimal
production. The agents evaluate the nervousness and cost of the scheduling performed,
determining the production required for a minimum increase in production cost. Then, the
agents communicate with agents of the same product type in the respective cycle and
period to evaluate the production quantity. Simultaneously, agents communicate with
agents of another product family to avoid exceeding the system's production capacity and
to satisfy each product's demand (see Figure 5.4). Then, the possibilities of decreasing
nervousness are evaluated by modifying the production quantities and calculating the
costs associated with such modifications. When a production quantity modification
occurs that improves the value of nervousness, the agents store the production values.
This communication architecture and agent interactions respond to a perturbation of the

system because of the permanent evaluation of quantities.
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Figure 5.3. Sequence diagram.
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5.4 Experimental design

The production plan considers 12 products and a production horizon of 52 periods. The
planning horizon is n = 8 with an interval between periods of At = 1. The demand for
each product obeys a normal distribution d%~n(u, p) = (120, p), Vi, Vt, Vk to simulate
different variations of p. In the first stage, a master production plan is generated for each
product in the active period and a demand projection for the subsequent periods. The
complete simulation has parameters close to an industrial case.

Version 6.2 of the NetLogo simulation platform is used for the simulation, which
provides a suitable environment for testing and monitoring model performance
(Wilensky, 1999).

5.5 Results

The PDS presents an initial phase of significant variation in cost and nervousness until it
reaches a steady state. This phenomenon emerges from a simulation with three control
variables: per period, per cycle, and per period cycle. In period-based control, intelligent
products analyze the production quantities during each period and modify the production

plan to reduce nervousness. In cycle control, intelligent products analyze the production
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Figure 5.5. a) Results of the model based on control by period. b) Results of the model
based on control by cycle. c) Results of the model based on control by simultaneous

period cycle.

quantities in the planning horizon. In period-cycle control, intelligent products look for
stability per period and per cycle by considering consecutive periods of the planning
horizon. In each type of control, Equations (6), (7), and (8) update the nervousness.
Figure 5 shows the results of the variations of cost and nervousness for each type of
control. The decrease in nervousness occurs with the consequent increase in cost
concerning the initial values. For example, considering control by period (Figure 5.5a),
there is an increase of 11.21% in cost and a reduction of 14.72% in nervousness in the
eighth cycle. In turn, in control by cycle (Figure 5.5b), an increase of 2.39% in cost and a
reduction of 18.27% in nervousness are observed. Figure 5.5¢ shows the behavior of the
PDS according to the period-cycle control. A more significant decrease in nervousness is
observed than with the two previous types of controls. In the same programming cycle,
an increase of 11.27% in cost and a reduction of 34.44% in nervousness are observed.

The PDS results indicate an uneven relationship between decreased nervousness and
increased costs. Thus, the more significant that the decrease in nervousness is, the smaller
that the increase in the cost of the production plan is. This dynamic generated by the
system is consistent with the modification of the plan that minimizes the cost; i.e., any
change in the production plan calculated through the mathematical model generates an
increase in cost. However, the benefit of such a modification implies more stable plans.
As the production cycles proceed, both cost and nervousness reach an equilibrium

because it is no longer possible to modify production quantities.
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In Figure 5.6, we observe the results for different values of &, which compares the
initial cost increase with the benefits of nervousness reduction. The behavior is similar in
the three types of control applied, obtaining a more noticeable change when using the

cycle-period control, which optimizes in a balanced way between cycle and product.

In all types of control, cost increases with decreasing nervousness are observed in the first
cycles of the simulation. However, after this initialization stage, a period of stability is
reached during which there are no substantial differences in the magnitude of the changes
associated with costs and nervousness. For example, by applying cycle control, a
reduction of 11.42% in nervousness is achieved with an increase of 2.39% in the cost of
the production plan. The computational results suggest that using a PDS is promising in
reducing nervousness without substantial increases in production costs. Thus, a PDS can
improve the master production plan by minimizing nervousness and adapting to changing

environments.

5.6 Conclusions

This work proposes a production planning system that contemplates nervousness
management. The system reduces nervousness and adjusts production using the concept
of intelligent products and starting from a production plan for the planning period. The
initial production plan is produced with a mathematical cost minimization model. The
proposed system is evaluated numerically considering a 12-product production system

and a planning period of one year. The evolution of the system performance during the

Doctorado en Ingenieria Industrial, Direccidn de Postgrado-Universidad de Concepcion

60

79



period is reflected in the production costs and system nervousness.

Experimental evidence shows that PDSs reduce nervousness without increasing the cost
in the same proportion. In this sense, a 2.39% increase in cost results in a nervousness
reduction of up to 11.42% when using cycle control. The PDS generates flexible
solutions without the need to perform multiple executions of the algorithm that solves the
mathematical model, which, although it generates the optimal solution, requires a long

computational time.

The system built includes a mathematical model, a metric to measure nervousness and a
definition of an intelligent product. In the literature, several variants for each of these 3
options have been observed, generating a combination of possible situations. Future
research could allow us to explore this combination of possibilities generating a

production planning control system according to the needs of each industry.
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CAPITULO 6. CONCLUSIONES

La presente tesis doctoral propone una arquitectura holdnica basada en productos
inteligentes para el aumento de la flexibilidad en planificacion de la produccion vy
logistica. Este sistema hibrido, permite simular sistemas industriales en los que los
productos puedan estar activos, tomando decisiones y garantizando una cierta estabilidad
de los planes de produccidn, asi como de agilidad a nivel de taller. Esta estabilidad se
debe a la capacidad de adaptacion a perturbaciones internas o externas del sistema, a
través de la implementacion de nuevos paradigmas como los HMS, MAS, PDS y
productos inteligentes, permitiendo la cooperacién de los recursos para la obtencién de

objetivos en comun.

El desarrollo de estudios que combinen los paradigmas de auto-organizacion, auto-
adaptacion y auto-optimizacion, como el PDS, podria ofrecer nuevas perspectivas no
exploradas hasta ahora, ampliando asi el espectro de herramientas para futuros trabajos.
Si bien las medidas cualitativas y cuantitativas clasicas pueden ofrecer informacion
valiosa, estas medidas solo afiaden valor verdadero si su evaluacion es factible de
implementar. En lo que se refiere a la implantacion de nuevos sistemas de control, los
trabajos futuros tendran como objeto ingresar nuevos criterios de evaluacion con el fin de

representar fehacientemente los procesos de la industria.

Los articulos presentados en esta tesis se basan en una arquitectura de modelos de
optimizacion, completamente descentralizados y distribuidos. Estos modelos son
implementados a través de agentes inteligentes (representacion virtual de un recurso
fisico) capaces de cooperar, organizar y tomar decisiones relevantes tanto para su ciclo
productivo como para el de los demas agentes presentes en el modelo. Esto genera un
espacio para una nueva linea de investigacion la que busca hibridar metodologias para
lograr planes de produccién mucho mas estables y capaces de afrontar las dindmicas de

los mercados. Los articulos presentados obtuvieron las siguientes conclusiones.

En el articulo denominado “Implementation of a Holonic Product-Based Platform for

Increased Flexibility in Production Planning” se analizo la necesidad de incrementar la
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flexibilidad en los sistemas de produccion en arquitecturas altamente distribuidas. El
modelo propuesto entregd una gran ventaja en los sistemas de produccion sin la
intervencion humana. Mas especificamente fue capaz de reorganizar lotes de produccién
en torno a un objetivo comun. En la comparacion de los resultados se utilizo un sistema
de produccion estandar resuelto a través de la técnica de lot streaming, al cual se le aplico
una perturbacién en los tiempos de produccion. Los resultados indicaron que la
plataforma desarrollada puede responder satisfactoriamente a cambios en los tiempos de
produccion reduciendo un 10.95% el makespan post perturbacion.

En el articulo denominado “A product-driven system approach to generate fast solutions
to the job shop scheduling problem” se propuso un PDS para resolver el JSSP evaluando
el makespan como medida de desempefio. EI modelo propuesto incorpor6 los conceptos
del producto inteligente con una funcién de inteligencia basada en el algoritmo SBH para
la toma de decisiones. Los resultados obtenidos fueron comparados con técnicas optimas
(programacion entera), heuristicas (SBH) y reglas de despacho, comprobando que un
modelo PDS con decisiones tomadas por productos inteligentes puede abordar problemas
de programacion de produccion y brindar mayor flexibilidad. Se obtuvo mejores
resultados que herramientas ampliamente utilizadas en la literatura en cortos tiempos de
ejecucidn, permitiendo la adaptacion a cambios no previstos. Particularmente, referentes
al makespan se obtuvo resultados cercanos del 6ptimo en instancias con pocos recursos y
mejores resultados que la programacion entera y las heuristicas convencionales en

instancias con mas recursos.

En el articulo denominado “An adaptive product-driven system using evolutionary
algorithms to increase the flexibility in scheduling problems at different scales”, se utilizo
un modelo denominado PDS-EA para la toma de decisiones descentralizadas para la
minimizacién del makespan en un JSSP. La funcion de inteligencia incorporada es un
algoritmo evolutivo para la seleccion del mejor resultado. Se utilizaron 102 instancias de
prueba ampliamente utilizadas en la literatura divididas en instancias de baja, media y
gran escala. Los resultados se compararon con técnicas estandar, de modelos dptimos
(programacion entera), métodos aproximados (heuristicas) y reglas de despacho. La

experimentacion se basa en una simulacion que analiza el gap en los primeros 10 min y el
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mejor resultado a 60 min de ejecucion.

Los resultados de este articulo dependen de la escala en la cual se aplicd. En instancias de
baja y media escala el modelo propuesto tiene un rendimiento cercano al método exacto,
acercandose a la hora de tiempo de simulacién. Sin embargo, con instancias de gran
tamafo, el método propuesto supera al método exacto durante ese periodo. La
arquitectura PDS-EA genera un sistema estable capaz de reaccionar a cambios sin
intervencion humana en periodos cortos de tiempo. Por tanto, PDS-EA puede resolver
procesos de secuenciacion en entornos de taller a diferentes escalas, adaptandose a las

complicaciones de cada instancia.

En el articulo denominado “A product-driven system approach to reduce nervousness in
master production Schedule”, se presenté un modelo PDS bajo el concepto del producto
inteligente. Para la experimentacion se generd un plan maestro de produccion para
simular condiciones reales de la industria. En una primera etapa se calcularon los
resultados optimos del lot-sizing para inicializar el modelo (menor costo posible). Sin
embargo, cualquier cambio en el plan de produccién obtenido impacta directamente en
los costo, debido a que no posee la capacidad de responder a perturbaciones. Por esto, la
metodologia propuesta demostrd que un modelo basado en productos inteligentes puede
tomar las decisiones necesarias para generar un plan de produccion flexible en
conjuncién con modelos Optimos como punto de partida. La evidencia experimental
mostré que el modelo PDS logra reducir el nerviosismo sin incrementar el costo en una
misma magnitud. Por ejemplo, con solo un incremento del 2.39% del costo lo logra

obtener una reduccién del nerviosismo de hasta un 11.42% en un control por ciclo.

Se considera para futuras investigaciones explorar instancias de problemas a real escala,
incorporando nuevas perturbaciones y mejorando la toma de decisiones a través de una
funcion de inteligencia méas robusta. Esto debido a la necesidad de aportar conocimiento
en necesidades reales de la empresa moderna. Si bien la evidencia experimental muestra
que la arquitectura y las inteligencias utilizadas poseen la capacidad de obtener buenos
resultados independiente de la escala del problema. Estos resultados también indican que

seran necesarias investigaciones futuras para generar agentes con mayor capacidad de
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comunicacion e implementar eventos mas realistas en la planificacion, como celdas de

trabajo, productos simultaneos y fallas.

Por otra parte, la necesidad de mas exploracion en esta linea de investigacion se debe a la
versatilidad que se entrega en el plan maestro sin intervencion humana generando
flexibilidad y adaptacién a cambios sin la necesidad de generar maltiples ejecuciones de
modelos 6ptimos como el lot-sizing (modelos de harta carga computacional). Por esto es
necesario generar agentes con funciones de inteligencia mas complejas asociadas a
herramientas de inteligencia artificial que nos entreguen mayor conocimiento del proceso
optimizando no solo la nerviosidad del sistema, sino que otras variables de decisidn

importantes, como la produccion a tiempo u optimizacion de recursos.
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