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Abstract

This paper compares welfare measures for Multiple Discrete-Continuous (MDC) choice models

with Additively Separable Utility (ASU) and Non-Additively Separable Utility (NASU) functions. The

uncommonly used NASU approach offers flexibility for integrating complementarity and substitution

patterns among alternatives. Nevertheless, welfare measures calculation is more complicated and it

has rarely discussed in the literature. In contract, ASU models allow us to calculate welfare measure

more easily. In this article, we use the generalized ASU and NASU functions and the minimization

of the expenditure function to estimate welfare measures. Our empirical analysis uses data from the

Canadian Nature Survey which includes information regarding the number of days dedicated to different

recreational activities. Our results show statistically significant differences in welfare measures for

changes in prices. Welfare measures from NASU function are lower than those from a ASU function.

Keywords: choice modeling, discrete/continuous, welfare measure
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Chapter 1

Introduction

1.1 Introduction

The study of consumer behavior generally requires the understanding of two types of decisions. On the

one hand, individuals must decide which goods to acquire and which goods not to acquire (discrete de-

cision), on the other hand, for which goods to acquire, individuals must decide how much of these will

acquire (continuous decision). For example, an individual must decide whether to visit parks A and/or

B, and then how many visits to park A and/or B. In principle, researchers are interested in explaining

both decisions in an integrated utility model and not each as a mutually exclusive decision of the other.

Initially researchers have used simple discrete choice models to understand consumer choice pref-

erences (discrete decision), these models assume that the individual chooses only one alternative within

a set of available alternatives (for example multinomial logit, nested logit (McFadden, 1977) and mixed

logit (Train, 1998; 2003)). However, individuals commonly face situations where they can choose more

than one alternative within the set of alternatives. Additionally, the individual chooses a continuous

amount of the alternatives he chooses (continuous decision), this has been commonly generalized as

multiple discrete-continuous (MDC) choice. These kinds of decisions are commonly observed in the

behavior of individuals, for example, in the environmental context, consumers should choose what recre-

ational activities they prefer to develop (fishing, hiking, hunting, etc.) and how many times they prefer

to develop them (twice fishing, never hiking, once hunting, etc.)

Commonly modeling MDC choices is underpinned by the microeconomic problem of maximizing

consumer utility. Among the most used approaches is the multiple discrete-continuous extreme value

model (MDCEV) of Bhat (2008), which is the generalization of the multinomial logit model (MNL),

one of the main advantages of this formulation is the closed form of the expression of probability.
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This chapter first presents a framework for understanding and modeling the MDC model. Then, the

main guidelines of this investigation are presented (justification, objectives, purpose, and limitations).

1.1.1 MDC choice models

The first efforts to model the MDC choice are made through the use of simple choice models, the ap-

proaches used were: bundles, stitching, and stream. The first approach begins by identifying all sets

of elementary alternatives and then, each set is used as a composite alternative in a single model of

choice. The second approach begins with the union of simple discrete choice models, which model

multiple discrete decisions through correlation methodologies between univariate utility maximization

problems. Finally, the third approach models the multiple discrete choice decision as to the result of

future consumption decisions. However, these three approaches are not based on a utility maximization

model.

Early efforts to model the structure of MDC through an underpinning in preference theory were

referred to as the first-order conditions (FOC) approach of Karush-Kuhn-Tucker (KKT) for restricted

maximization of random utility, an approach attributed to Hanemann et al. (1978) and Wales and Wood-

land (1983). This approach begins with the formulation of a utility function whose arguments include

the level of consumption of each product and also the quality and other attributes of the products (for ex-

ample, in the case of recreational activities an attribute may be the existence of a guide). Then, from the

problem of maximization of such utility function subject to linear budget restriction and non-negativity

are generated the first-order conditions that dominate when a positive or zero amount of each good is

consumed. Incorporating a random term (from the researcher’s perspective) into the utility function

makes it possible to establish probability aspects for the observed vector of the consumption set that

serves as basic elements for estimating the maximum likelihood of utility function parameters.

It is important to note that in the structure of MDC prevails the structure of corner solutions. In this

situation, individuals do not acquire any quantity of one or a set of available goods. Corner solutions

contrast with the commonly known interior solutions, where the individual acquires positive quantities

of the set of goods available. When the consumer acquires a positive quantity of up to one or two goods

it is known as an extreme corner solution, however, when the consumer acquires positive quantities of

more than two goods but not all of them is known as a general corner solution. The analysis of extreme

corner solutions is relatively simple, however, general corner solutions are complex to analyze (Hane-

mann, 1984).

The main element for the utility maximization problem in the context of MDC is the use of a

non-linear utility structure (increasing and continuously differentiable) with decreasing marginal util-
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ity, which presents imperfect substitution and allows the choice of multiple alternatives within a set

of alternatives. According to Maler (1974) this utility function should consider the concept of weak

complementarity1, which implies that the individual does not receive utility of the attributes of a non-

essential good if it does not consume it, for example in the environmental context there is weak comple-

mentarity between environmental quality and the demand for recreational activities when the demand

for recreational activity is zero and there are no effects on the utility function of the individual due to

improvements environmental. The main proposals for non-linear utility functions come from the Lin-

ear Expenditure System (LES) and Constant Elasticity of Substitution (CES) approaches (for more see

Hanemann et al., 1978; Kim et al., 2002; von Haefen and Phaneuf, 2005 and Phaneuf and Smith, 2006).

However, Bhat (2008) proposed an approach that subsumes the earlier specifications as special cases,

he used a multiplicative log-extreme value error in the baseline preference for each alternative, and this

was popularized as Multiple Discrete Continuous Extreme Value (MDCEV).

1.1.2 MDCEV choice model

At the beginning of its formulation, the KKT approach seemed to be attractive, however, the assump-

tions established by Wales and Woodland (1983) generated difficulties in the likelihood function due to

multidimensional integration. Moreover, MDCEV’s approach provided a closed form that was quickly

used in different fields of research.

The MDCEV approach can be applied to cases to complete or incomplete demand systems. The

“elementary” goods in the primary interest set may be referred to as “internal goods” (this applies to a

complete or incomplete demand system). Through the Hicks approach of composite commodities, it is

possible to replace “elementary” goods in each set that is not of primary interest with a single composite

alternative that represents the entire set. This approach allows for the consideration of composite goods

as essential goods, it is common for the Hicksian approach to use only an essential good with different

inside goods.

The specifications of the utility functions for the case where only inside goods and the combination

of inside goods and essential good are considered are presented below. It is important to mention that

this will be presented through an Additively Separable Utility function (ASU) approach, which implies

that the marginal utility of a good depends only on the consumption of that good and not on other goods,

that is, with this assumption the existence of complementarity and substitution patterns is restricted.

1See Hanemann, 1984 and von Haefen, 2004 for a discussion.
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1.1.2.1 Functional form of utility specification

1.1.2.1.1 Only inside goods

The generalization of these functional forms comes from Bhat (2008), where a Box-Cox transformation

of the quantities consumed was used2, this is

U(x) =

K∑
k=1

γk
αk

Ψk

[(
xk
γk

+ 1

)αk

− 1

]
(1.1)

where x is the consumption vector of alternatives k (k = 1, ...,K), γk > 0, Ψk > 0, and αk ≤ 1

for all k are required for this specification to be consistent with the properties of a utility function. In

accordance with Bhat (2008) the interpretation of parameters is

• Ψk, represent the marginal utility of consuming alternative k at the point of zero consumption

(baseline marginal utility). Since ∂U
∂xk

= Ψk(
xk

γk
+ 1)αk−1, therefore, if xk = 0 we have that

∂U

∂xk
|xk=0 = Ψk, (1.2)

it is noted that the marginal utility of the good k depends only on the consumption of the same

good and not of the other goods;

• γk, are translation parameters that allow for corner solutions (i.e. zero consumption levels for

alternatives) and also influence satiation. The lower the value of γk, the greater the satiation

effect in consuming xk; and

• αk, are parameters control the rate of diminishing marginal utility of additional consumption. If

αk is equal to one, then there are no satiation effects (i.e. constant marginal utility).

The satiation parameters, along with the baseline utility parameters, influence the quantity decision

of individuals. However, the parameters γk and αk cannot be identified separately so we have normal-

ized the model with respect to one of these parameters, his leads to the definition of γ (αk −→ 0, ∀k to

estimate γk parameters) and α (γk = 1, ∀k to estimate αk parameters) profiles, are given by

U(x) =

K∑
k=1

γkΨk ln

(
xk
γk

+ 1

)
, (1.3)

U(x) =

K∑
k=1

Ψk

αk
ln

(
(xk + 1)αk − 1

)
, (1.4)

respectively. Now, to find the optimal allocation of goods first arises the Lagrangian function for the

UMP subject to a linear budget constraint, this is

2The Box-Cox transformation is applied over x∗
k = (xk

γk
+ 1), i.e., (x∗

k)
αk =

(x∗
k)

αk−1

αk
.
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L = U(x) + λ

(
E −

K∑
k=1

pkxk

)
, (1.5)

whereE is the total budget and λ represents the marginal utility of income. The KKT-FOC are given

by:

Ψk

(
x∗k
γk

+ 1

)αk−1

− λpk = 0, if x∗k > 0, k = 1, 2, ...,K,

Ψk

(
x∗k
γk

+ 1

)αk−1

− λpk < 0, if x∗k = 0, k = 1, 2, ...,K,

(1.6)

Optimal demands satisfy equation (1.6) and budget constraint. From the budget restriction, it follows

that it is necessary to estimate K-1 optimal consumption since the quantity of any good can be inferred

through the consumption of all other goods. To adapt to this condition it is established that there is a

good for which the individual consumes a quantity other than zero (this implies that the individual must

participate at least in one of the alternative K), then, if we assume that this is true for the first good

(k = 1), the KKT-FOC for this good can be written as

λ =
Ψ1

p1

(
x∗1
γ1

+ 1

)α1−1

, (1.7)

now substituting λ in the equation (1.6) for the other goods and taking logarithms, the new KKT-

FOC are given by

vk + lnΨk = v1 + lnΨ1, if x∗k > 0, k = 1, 2, ...,K,

vk + lnΨk = v1 + lnΨ1, if x∗k = 0, k = 1, 2, ...,K,
(1.8)

where vk = (αk − 1) ln

(
x∗
k

γk
+ 1

)
− ln pk, for k = 1, 2, ...,K.

1.1.2.1.2 Inside goods with an essential good

If considered an essential good, then, the utility functional form needs to be modified as follows

U(x) =
Ψ1

α1

(
(x1 + γ1)

α1

)
+

K∑
k=2

γk
αk

Ψk

[(
(
xk
γk

+ 1)αk − 1

)]
, (1.9)

where γ1 ≤ 0, γk > 0 for k > 1, note that the essential good is defined as the first alternative

(k = 1). The magnitude of γ1 may be interpreted as the required lower bound for consumption of

the essential good. Similar to the case of the function without an essential good, the analysis will

generally not be able to estimate both αk and γ for the essential and other goods. The same procedure

undertaken for the only inside goods case, this is, the KKT-FOC are the same as in (1.8), let replacing

vj = (αk − 1) ln(x∗j + γk)− ln pk for essential good.
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1.1.2.2 Econometric estimation

The baseline random marginal utility for each good is defined as

Ψk = exp(β′zk + εk), ∀ k = 1, 2, ...,K, (1.10)

where zj is a set of individual characteristics and/or attributes of the alternative k3 and εk captures

the idiosyncratic (unobserved) characteristics that impact the baseline utility of good k (note that the

parameterization ensures that the baseline utility is positive). Note that the term stochastic is defined for

all alternatives, therefore it develops in the scenario of inside goods and at the same time is considered

an essential good. Now, substituting Ψk (equation (1.10)) in the KKT-FOC of equation (1.8), you have

to

Vk + εk = V1 + ε1, if x∗k > 0, k = 2, ...,K,

Vk + εk < V1 + ε1, if x∗k = 0, k = 2, ...,K, (1.11)

where Vk = vk + β′zk for k = 1, 2, ...,K. Finally, to complete of modeling procedure, the re-

searcher needs to define the error structure. If it is assumed that εk are independently distributed across

all alternatives (k = 1, 2, ...,K) and independent of zk, and considering a standard Extreme Value

Distribution (EVD), the individual’s contribution to the likelihood becomes

li = |J |
∫ ε1=∞

ε1=−∞

K∏
i=2

1

µ
λ

(
V1 − Vi + ε1

µ

)
·

M∏
s=K+1

Λ

(
V1 − Vs + ε1

µ

)
1

µ
λ
ε1
µ
dε1, (1.12)

where λ and Λ denote the standard extreme value density and the cumulative distribution, respec-

tively, M refers to the number of alternatives that are chosen and µ is scale parameter. The Jacobian

becomes (Bhat (2008)):

|J | =
( M∏

i=1

ci

)( M∑
i=1

1

ci

)
, with ci =

1− αi

e∗i + γipi
, (1.13)

and after solving the integral in the likelihood function Bhat’s solution is

li =
1

µM−1

( M∏
i=1

ci

)( M∑
i=1

1

ci

) ∏M
i exp

vi
µ

(
∑K

k=1 exp
vk
µ )M

(M − 1)!. (1.14)

We can observe that this expression can collapses to the conditional logit model when M = 1, this

is li = exp
vi
µ∑K

k=1 exp
vi
µ

. The expression for the probability of the consumption pattern of the goods (rather

3for example, the context of outdoor recreation, environmental quality at different sites is an important variable that explains

the behavior of site visits (Herriges and Kling, 1999 and Phaneuf and Smith, 2004.)
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than the expenditure pattern) can be derived to be:

li =
1

p1

1

µM−1

( M∏
i=1

fi

)( M∑
i=1

pi
fi

) ∏M
i exp

vi
µ

(
∑K

k=1 exp
vk
µ )M

(M − 1)!, (1.15)

where fi = 1−αi

x∗
i +γi

. Note that this expression is not independent of the good that is labeled as the

first. That is, different probabilities of the same consumption pattern will arise depending on the good

that is labeled as first. However, the term 1
p1

may be ignored from the likelihood function because it is

a constant in the probability function of each individual.

Now, the expression for vi depends on the profile to be estimated, for example for the case where

only one essential good is considered, the vi terms are given by

• Vk = β′zk + (αk − 1) ln(x∗k + 1)− ln pk ∀k > 2 and V1 = (α1 − 1) lnx∗1, as alpha profile, or

• Vk = β′zk − ln(
x∗
k

γk
+ 1)− ln pk ∀k > 2 and V1 = (α1 − 1) lnx∗1, as gamma profile.

As can be inferred, the use of this MDC approach allows the integration of discrete and continuous

choices into a single analytical model. This is clearly a contribution to the understanding of the structure

of preferences since previously there were efforts by Bockstael et al. (1987), Hausman et al. (1995) and

Parsons and Kealy (1995) to integrate both decisions, they used a two-stage procedure, in a first stage

they estimate a repeated logit model and then, they incorporate the variables proxy for price and quan-

tity, which are exogenous in the estimation of demand, however, this procedure does not allow them to

integrate both decisions into a single model of consumer utility.

As mentioned the MDCEV model was widely used by researchers. However, researchers are also

interested in obtaining patterns of complementarity and substitution between goods, For this purpose, a

constant effort has been evidenced lately by a group of researchers that extends the MDCEV approach

with an ASU function towards the use of a non-additively separable utility function. This will be re-

viewed in detail in the next chapter.

1.1.3 Justification

The form of the utility function used in the maximization problem is important because it is the char-

acteristics of the maximization that will allow us to deepen the interpretations and applications of the

results. One of the functional forms that is commonly used corresponds to the additively separable

utility (ASU) function, the use of this type of functional form for example facilitates the calculation of

welfare measures. However, the ASU function does not allow capturing patterns of complementarity

between products such as the non-additively separable utility (NASU) function. From the results of the

11



maximization problem with a NASU function can be inferred relationships between different products,

for example, in the context of recreational activities, it will be possible to determine whether two recre-

ational activities, such as hunting and fishing are complementary or substitute activities.

In general, individuals make decisions of choice not only considering attributes of good to consider

but in practice, they have considered attributes of a set of alternatives, of which not necessarily all should

be consumed. In this sense, the study of the application of different functional forms in the problem of

maximizing consumer utility with a KT approach provides important information regarding the struc-

ture of preference of individuals, since the compression of the transition of an ASU function to a NASU

contributes to the exploration of the existing interrelationship within the set of alternatives when making

a choice decision.

Despite the recurrent use of the ASU function, it is important to mention that it is restrictive as it

reduces flexibility in terms of complementarity patterns. However, the use of a NASU function (which

does allow capturing patterns of complementarity) is not easy due to the complexity of finding a like-

lihood function. This is worrying because the cost-benefit analysis uses the results of the use of the

functional forms ASU and NASU, which are inputs for the calculation of welfare measures (Lloyd-

Smith, 2018), and which are also inputs to policy design based on cost-benefit analysis (Boadway,

1974). Therefore, failure to consider complementarity patterns in the solution of the maximization

problem may lead to different outcomes when they are incorporated, which in practice may lead to poor

policy design.

Welfare analysis and cost-benefit analysis are conditioned to the knowledge of the structure of pref-

erence of individuals. Therefore, if the researcher does not consider that different preference structures

incorporate (or not) attributes of complementarity, he may fail in the design of quantitative instruments

that support policy design. For example, the effort in obtaining welfare measures depends directly

on the complexity of the preference structure, therefore it is expected that results and applications are

commonly presented in a context of an ASU function.

1.1.4 Objectives

1.1.4.1 Main objetive

Explore and compare the estimation of a demand system through a discrete/continuous choice model

with KKT focus for a generalized corner solution with ASU and NASU functional forms.
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1.1.4.2 Purpose

Evaluate the effect of the incorporation (and not) of complementarity patterns (on the preference struc-

ture) on the estimated parameters and welfare measures calculation of the discrete/continuous choice

problem.

1.1.4.3 Specific objectives

1. Provide a theoretical framework for the discrete/continuous choice model through the utility max-

imization problem with the use of NASU functions.

2. Estimate discrete/continuous choice model using ASU functional form

3. Estimate discrete/continuous choice model using at least one NASU functional form.

4. Compare statistically the satiation and baseline utility parameters of the ASU and NASU func-

tional forms.

5. Compare statistically the welfare measures of the ASU and NASU functional forms.

1.2 Limitations

While this paper proposes a framework for comparing the estimation of discrete-continuous choice mod-

els with ASU and NASU functional forms, the approach adopted has two main limitations. The first

concerns the use of a single restriction on the consumer’s problem. And the second is related to the

non-consideration of time.

The use a single constraint (monetary) on the consumer problem makes it difficult to reveal socio-

demographic heterogeneity in the satiety rate. In addition, the benefits of using NASU functional forms

can be better exploited if one considers a restriction of total income that considers for example the bud-

get and time of individuals (Castro et al., 2012; Astroza et al., 2017; Pellegrini et al., 2021).

The fact that the data collection process can be in several days for the same individual provides

correlations and substitution between days. This implies that to incorporate the time factor it is necessary

to formulate a unified model that at least considers two fundamental aspects. First, you need to enforce

the day-level restrictions people face (as many restrictions as the number of days modeled). And second,

consider possible interactions between the allocation of time to activities on different days, such as

substitution, complementarity, and heterogeneity (Calastri et al., 2020)
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1.2.1 Proposal outline

This paper is structured as follows. Chapter 2 presents the modeling of the MDC decision through

the NASU approach. Chapter 3 defines the framework for calculating welfare measures in the MDC

choice approach. Chapter 4 presents the results of the ASU and NASU estimates and then compares

the estimated parameters and welfare measures between the different approaches. Finally, Chapter 5

discusses the main implications and contributions of the results and concludes with the limitations and

future directions of research in the context of MDC choice modeling.
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Chapter 2

Formulation of the Multiple discrete

Continuous models with a

Non-Additively Separable Utility

functional forms approach

This chapter aims to define a frame of reference in incorporating NASU functional forms into the MDC

choice approach. Section 2.1 provides an understanding of NASU functions and their main implications

for preference analysis. Then, sections 2.2, 2.3, 2.4 and 2.5 set out the main approaches1 that have been

addressed by researchers to incorporate the NASU functions forms into the MDC choice approach, as

will be shown shortly, the main challenge relates to the generalization of the Jacobian to use in the func-

tion of likelihood.

2.1 Non-Additively Separable Utility

An ASU function assumes that the marginal utility of a good is independent of the consumption of other

goods. For example, if an individual participates in recreational activities such as fishing and hunting,

the ASU function assumes that the marginal utility of fishing will not be affected by participation in

hunting (and vice versa). This assumption is important for the following reasons.

• The marginal substitution ratio between any pair of goods i, j depends exclusively on the quanti-

1Each author’s original notation is initially presented. It is then homogenized for comparisons.
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ties consumed of the goods i, j, therefore it is independent of the other goods ( ̸= i, j). As Pollak

and Wales (1995) points out, this has a direct impact on preferences. For example, consider an

individual who participates in three recreational activities: hiking (x1), bird watching (x2), and

photography (x2). Now, consider a person who tends to hiking and bird watching, or hiking

and photograph, but not just walk. This individual can choose (20, 1, 20) over (10, 10, 20) but

also prefer (10, 10, 1) over (20, 1, 1). This violates the concept of additive utility because if the

individual prefers (20, 1, 20) over (10, 10, 20), he should prefer (20, 1, x3) over (10, 10, x3) ac-

cording to the utility additive. This implies that the use of an ASU function restricts the ability to

incorporate flexible replacement patterns.

• The specification of a quasi-concave and increasing utility function with respect to consumption,

together with the consideration of an ASU function, implies that goods cannot be inferior and

cannot be complements, that is, they must be perfect substitutes (see Deaton and Muellbauer

(1980))

Therefore, it is understood that the use of an ASU form is restrictive in terms of complementarity

and substitution patterns in the consumption of different goods. For example, through an ASU function,

it is not possible to identify whether two recreational activities such as fishing or hunting are comple-

mentary to each other.

This prompted an effort by researchers to develop theoretical frameworks that would be able to

capture these patterns in the study of preferences (Song and Chintagunta, 2007; Mehta, 2007; Bunch,

2009; Lee and Allenby, 2009 and Lee et al., 2010). However, it was Vásquez and Hanemann (2008)

who extended Bhat’s, 2008 ASU approach and presented a quadratic version of it, through which the

marginal utility of each good is allowed to depend on the level of consumption of the other goods. The

approach of Vásquez and Hanemann (2008) is a NASU approach and from his work, he developed a

line of research that focuses on the specification of the parameters of interaction that are incorporated

in the utility function, then Bhat et al. (2015) refers to some limitations of the approach of Vásquez and

Hanemann (2008), and then other extensions arise which will be discussed below.

2.2 Vásquez and Hanemman’s approach

Vásquez and Hanemann (2008) extended the ASU function of Bhat (2008) allowing the marginal utility

of each good to depend on the level of consumption of other goods, this is

U(x) =
M∑

k=1

γk

αk

Ψk

[(
xk

γk

+ 1

)αk
− 1

]
+

1

2

M∑
k=1

M∑
m−1

θkm

[
γk

αk

((
xk

γk

+ 1

)αk
− 1

)][
γm

αm

((
xm

γm

+ 1

)αm

− 1

)]
, (2.1)

where xk is the quantity of good k and αk, γk, θkm andΨk are parameters to be estimated in the

model with the same assumptions, Ψk ≥ 0, αk ≥ 1 and γk > 0. The parameters θkm allow quadratic
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effects as well as allow the marginal utility of good k to be dependent on the level of consumption

of other goods, therefore if θkm > 0 the alternatives k and m are complements and if θkm < 0 the

alternatives k and m are substitutes. Taking the derivative of (2.1) with respect to xk

∂U

∂xk
= Ψk

(
xk
γk

+ 1

)αk−1

+

M∑
m=1

θkm

(
xk
γk

+ 1

)αk−1
γk
αm

[(
xm
γm

+ 1

)αm

− 1

]
, (2.2)

where (2.2) corresponds to marginal utility of good k. Now, at xk = 0 we have

∂U

∂xk
|xk=0 = Ψk +

K∑
m=1

θkm
γm
αm

[(
xm
γm

+ 1

)αm

− 1

]
, (2.3)

in contrast to ∂U
∂xk

of the expression (1.1), it is now noted that the marginal utility of the good k

depends on both the good k and other goods, and it is clear that Ψk is no longer the baseline marginal

utility at the point at which good k has not been consumed. Therefore, Ψk represents the desirability of

xk before any consumption decision has been made.

Then, the maximization problem is

max
xk

U(x) =

M∑
k=1

γk

αk

Ψk

[(
xk

γk

+1

)αk
−1

]
+

1

2

M∑
k=1

M∑
m−1

θkm

[
γk

αk

((
xk

γk

+1

)αk
−1

)][
γm

αm

((
xm

γm

+1

)αm

−1

)]
, (2.4)

subject to

M∑
k=1

pkxk =

M∑
k=1

ek = E. (2.5)

Most the literature has defined the error term inside Ψk either by a multiplicative approach as

Ψk = expβ
′zk expεk or an additive approach Ψk = β′zk + εk, and the assumptions on εk are ei-

ther a extreme value distribution or a normal distribution. Vásquez and Hanemann (2008) showed that

the multiplicative approach (in the simple case) is convenient since the FOC are reduced to an expres-

sion easy to manipulate with the logarithm operator, and these can be used directly in the likelihood

function. However, in this new formulation, the multiplicative approach does not help to simplify the

model.

There are two solutions to this problem. First, you can consider the additive approach, Ψk =

β′zk+εk. Second, the multiplicative approach, Ψk = expβ
′zk expεk , can be maintained but incorporate

the definition of an outside good that helps to simplify the calculation of FOC.

2.2.1 Linear stochastic structure

For this case the FOC can be expressed as

17



0 ≤β
′zk + εk
pk

(
ek
pkγk

+ 1

)αk−1

+
1

2

M∑
m=1

θkm
pk

(
ek
pkγk

)αk−1
γm
αm

((
em

pmγm
− 1

)αk−1)
. . .

− β′zk + ε1
p1

(
e1
p1γ1

+ 1

)α1−1

− 1

2

M∑
m=1

θ1m
p1

(
e1
p1γ1

+ 1

)α1−1
γm
αm

((
em

pmγm
+ 1

)
− 1

)
,

(2.6)

where ek > 0 for equality and ek = 0 for inequality. The last component in expression (2.6)

corresponds to the marginal utility of income λ. Now, if ak = ( ek
pkγk

+1)αk−1 and a1 = ( e1
pkγ1

+1)α1−1,

let the FOC can be expressed as

0 ≤εk
pk
ak − ε1

p1
a1 +

β′zk
pk

ak − β′z1
p1

a1 +
1

2pk
ak

M∑
m=1

θkmγm
αm

((
em

pmγm
+ 1

)αm

− 1

)
. . .

− 1

2p1

M∑
m=1

θ1mγm
αm

((
em
pmγk

+ 1

)αm

− 1

)
,

0 ≤εk
pk
ak − ε1

p1
a1 + Vk − V1 = εk − pk

p1

a1
ak
ε1 +

pk
ak
Vk − pk

ak
V1,

εk ≤pk
p1

a1
ak
ε1 −

pk
ak
Vk +

pk
ak
V1,

εk ≤a∗ka∗1ε1 − a∗kVk + a∗kV1 = V ∗
1 − V ∗

k + ε∗1,

(2.7)

this area is given by

∫ V ∗
1 −V ∗

k +ε1

−∞
exp εk exp exp−εk

dεk = exp− exp−(V ∗
1 −V ∗

k +ε1)

, (2.8)

and the likelihood function follows a pattern similar to the case of the ASU function

li = |Jk|
∫ ε1=∞

ε1=−∞

K∏
i=2

1

µ
λ

[
V ∗
1 − V ∗

k + ε∗1
µ

] M∏
s=K+1

[
V ∗
1 − V ∗

k + ε∗1
µ

]
]
1

µ
λ

[
ε1
µ

]
dε1. (2.9)

The main problem is that there is no simple solution for the Jacobian that can be generalized to any

consumption pattern and the integral in the likelihood function does not have a closed-form solution

(Vásquez and Hanemann, 2008). However, the integral can be calculated by simulation or numerically,

for example, if it is included a random parameter structure βn = β + ση (β is the mean effect and σ a

deviation with respect to this mean), then

L(β) =

∫ ∫ ε1=∞

ε1=−∞

K∏
i=2

1

µ
exp−(V ∗

1 −V ∗
i +ε∗1) exp− exp

− 1
µ

(V ∗
1 −V ∗

i +ε∗1)

. . .

M∏
s=K+1

exp− exp
− 1

µ
(V ∗

1 −V ∗
i +ε∗1) 1

µ
exp−ε1 exp− exp−ε1

dε1f(β)d(β),

(2.10)

which can be calculated using simulation.
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2.2.2 Outside good

The alternative to overcome the difficult manipulation of the likelihood function is to assume the exis-

tence of an outside good (Z) that does not have an error term. In this case

U(x, Z) = U(x) +
1

ρ
Zρ, (2.11)

where U is the Quadratic Box-Cox utility function. Now, the FOC are simpler since the definition

of the marginal utility of income can be expressed as

∂U∗

∂Z
= Zρ−1 − λ, (2.12)

from wich λ = Zρ−1. Then, it is replaced, the FOC can be expressed as

0 ≤exp (β′zk + εk)

pk

(
ek
pkγk

+ 1

)αk−1

. . .

+
1

2

M∑
m=1

θkm

((
ek
pkγk

+ 1

)αk−1)(
γm
αm

[(
em

pmγm
+ 1

)αm

− 1

])
− Zρ−1

(2.13)

and

εk ≤ β′zk + ln

(
− pk

2

(
ek
pkγk

+1

)αk−1 M∑
m=1

θkm

(
γm
αm

[(
em

pmγm
+1

)αm

− 1

])
−Zρ−1

)
, (2.14)

which has the same likelihood function as the simple case except we do not have any integrals (the

outside good does not have an error term). Bhat (2008) gives two arguments against the outside good

formulation.

First, it is arbitrary to assume one good does not have an error term while all others are stochas-

tic variables. Second, in his simple formulation, the likelihood function does not reduce to the simple

discrete choice model when K = 1. However, Vásquez and Hanemann (2008) established that these

arguments may be less important than the advantage of having a simple likelihood function which facil-

itates the estimation of this more complex model.

2.3 Bhat’s approach

Bhat et al. (2015), modifies Vásquez and Hanemann (2008) functional form and proposes to delete the

terms of interaction θkm for all k = m, where three specifications are developed: Deterministic utility-

random maximization (DU-RM), where the researcher knows how consumers value goods, but also

recognizes that there may be a difference between the calculated optimal consumption; Random utility

deterministic maximization (RU-DM), the researcher introduces stochasticity directly into the utility

function to recognize that the researcher does not know all the factors that the consumer considers in his
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or her wine valuation pattern; and Random utility-random maximization (RU-RM), where the random

utility approach is combined, as well as random maximization specifications in what can be considered

the most realistic situation.

Initially, they introduce the following specification for the utility function

U(x) =
K∑

k=1

Ψk
γk

αk

[(
xk

γk

+ 1

)αk
− 1

]
+

1

2

K∑
k=1

∑
m̸=k

θkm

[
γk

αk

((
xk

γk

+ 1

)αk
− 1

)][
γm

αm

((
xm

γm

+ 1

)αm

− 1

)]
, (2.15)

Now, taking a derivative with respect to xk and set xk = 0, we have

∂U

∂xk
= Ψk

(
xk
γk

+ 1

)αk−1

+

M∑
m̸=k

θkm

(
xk
γk

+ 1

)αk−1
γk
αm

[(
xm
γm

+ 1

)αm

− 1

]
, (2.16)

∂U

∂xk
|xk=0 = Ψk +

∑
m̸=k

θkm
γm
αm

[(
xm
γm

+ 1

)αm

− 1

]
, (2.17)

where expressions (2.16) and (2.17) represent the utility marginal of the good k and utility marginal

of the good k when xk = 0. This case the interpretation of Ψk is similarly to Vásquez and Hanemann

(2008).

2.3.1 Deterministic utility-random maximization

If it is considered the NASU function of (2.15), deterministic utility form, the KKT-FOC corresponding

to the utility maximization problem are

π̃k

(
xk
γk

+ 1

)αk−1

− λpk = 0, if xk > 0, k = 1, 2, ...,K,

π̃k

(
xk
γk

+ 1

)αk−1

− λpk < 0, if xk = 0, k = 1, 2, ...,K,

(2.18)

where π̃k is the baseline marginal utility (expression (2.17)). Stochastics can now be explicitly

introduced into KKT-FOC exponentially multiplicatively as follows

π̃k exp (εk)

(
xk
γk

+ 1

)αk−1

− λpk = 0, if xk > 0, k = 1, 2, ...,K,

π̃k exp (εk)

(
xk
γk

+ 1

)αk−1

− λpk < 0, if xk = 0, k = 1, 2, ...,K.

(2.19)

The probability expression collapses to the following Multiple Discrete-Continuous Extreme Value

Model closed-form,
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li = |JM | 1

µM−1

∏K
i exp

vi
µ

(
∑M

k=1 exp
vk
µ )M

(M − 1)!, (2.20)

where this expression is similiar to Bhat (2008), however vk = ln(π̃k)−ln(pk)+(αk−1) ln(xk

γk
+1)

and the element of the Jacobian are given by

Jih = ωh+1ph+1

[
θ1,h+1

π̃1
− (1− zih)

θi+1,h+1

˜πi+1

]
+ ω1p

2
1

θ1,i+1

˜πi+1
+ ph+1(L1p1 + zihLi+1), (2.21)

where i = 1, 2, ...,M −1, h = 1, 2, ...,M −1, ωk = 1
pk

(
xk

γk
+1

)αk−1

, for k = 1, 2, ..,K, zih = 1

if i = h, zih = if i ̸= h and Lk = 1−αk

pk(xk+γk)
. Unfortunately, there is no concise form the determinant

of the Jacobian for M > 1. For the deterministic utility random-maximization formulation with an

essential outside good, the econometrics simplify considerably.

The procedure is similar to the previous one, however now we work with expression (2.15) but for

the case of an essential good (with β′z1 = 0, Ψ1 = 1, and p1 = 1). then the final expression for

probability in this essential good case is the same as expression in (2.20) but vk = ln(π̃k) − ln(pk) +

(αk − 1) ln

(
xk

γk
+ 1

)
with k > 2 and v1 = (α1 − 1) ln(x1 + γ1).

The Jacobian elements, in this case, simplify, with θ1m = 0 for all m(k ̸= 1), the elements now are

given as follows:

Jih = ωh+1

[
− (1− zih)

θi+1,h+1

˜πi+1

]
+ ph+1(L1 + zihLi+1). (2.22)

2.3.2 Random utility deterministic maximization

Considering the following NASU function for the no-essential good case

U(x) =
K∑

k=1

Ψk exp (ξk)
γk

αk

[(
xk

γk

+1

)αk
− 1

]
+

1

2

K∑
k=1

∑
m̸=k

θkm

[
γk

αk

((
xk

γk

+1

)αk
− 1

)][
γm

αm

((
xm

γm

+1

)αm

− 1

)]
,

(2.23)

where ξk is IID random term with a scale parameter of σ and this term captures idiosyncratic charac-

teristics that impact the baseline (marginal) utility of good k at the point at which no expenditure outlays

have yet been made on any alternative. For expression in (2.23), the KKT-FOC are given by

ηk

(
xk
γk

+ 1

)αk−1

− λpk = 0, if xk > 0, k = 1, 2, ...,K,

ηk

(
xk
γk

+ 1

)αk−1

− λpk < 0, if xk = 0, k = 1, 2, ...,K,

(2.24)
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where ηk = Ψk exp (ξk) +Wk and Wk =
∑

m̸=k = θkm
γm

αm

[
(xm

γk
+ 1)αm − 1

]
. With definition

of ωk (expression (2.21)), let Rk = η1
ω1

ωk
and Ψk = exp (β′zk) (the first alternative be the one to

which the consumer allocates some non-zero budget amount). Then, the KKT-FOC may be simplified

as follows

exp (ξk) =
Rk|ξ1

exp (β′zk)
, if xk > 0, k = 2, ...,K,

exp (ξk) <
Rk|ξ1

exp (β′zk)
, if xk = 0, k = 2, ...,K.

(2.25)

Then, let ζk = exp (ξk) and assumed that g(·) and G(·) a re the standardized versions of the prob-

ability density function and standard cumulative function characterizing ζk, respectability. Them, the

probability that the individual allocates expenditure to the first M of the K goods may be derived to be

li =

∫ ζ1=+∞

ζ1=0

|JM |ζ1|
([ M∏

i=2

1

σ
g

{
1

σ

Rk|ξ1
exp (β′zk)

}])( K∏
s=M+1

G

{
1

σ

Rk|ξ1
exp (β′zk)

})
f(ζ1)dζ1, (2.26)

where f(·) is the density function characterizing ζ1, and the element of Jacobian, JM |ξ1 (i, h =

1, 2, ...,M − 1) are given by

Jih =
1

exp (β′zi+1)

[
ω1

ωi+1

(
(η1|ζ1)(p21L1 + ph+1Li+1zih) + ph+1θ1,h+1ωh+1

)
+ . . .

ph+1

(
p1θ1,h+1ω1 − θi+1,h+1ωh+1(1− zih)

)]
,

(2.27)

where zih = 1 if i = h, zih = 0 if i ̸= h and Lk = 1−αk

pk(xk−γk)
. The model can be estimated using

maximum likelihood consumption techniques (as DU-RM formulation). If, ηk > 0 for each good k,

then the marginal utility of 1 any good at any point of consumption should be positive2.

For the essential good case the econometrics again simplify considerably, we have that W1 = 0,

β′z1 = 0, Ψ1 = 1, p1 and η1 = ζ1 = Ψ1 exp (ξ1). Now, the stochasticity is introduced here similar to

Vásquez and Hanemann (2008) and takes the following form

U(x) =
1

α1
(x1 + γ1)

α1η1

K∑
k=2

Ψk exp (ξk)
γk
αk

[(
xk
γk

+ 1

)αk

− 1

]
+ . . .

1

2

K∑
k=2

∑
m̸=k

θkm

[
γk
αk

((
xk
γk

+ 1

)αk

− 1

)][
γm
αm

((
xm
γm

+ 1

)αm

− 1

)]
,

(2.28)

and the probability expression take the same form as in expression (2.26) with the following modi-

fications

ωk =
1

pk

(
xk
γk

+ 1

)αk−1

for k = 2, ...,K,

ω1 = (x1 + γ1)
α1−1,

(2.29)

2For increasing utility functions
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and then the elements again can be computed in closed form and are as follows (i, h = 1, 2, ...,M − 1):

Jih =
1

exp (β′zi+1)

[
ω1

ωi+1

{
(η1|ζ1)(L1 + ph+1Li+1zih)− ph+1θi+1,h+1ωh+1(1− zih)

}]
. (2.30)

2.3.3 Random utility random maximization

From (2.23) for the case with no essential good but now add stochasticity originating from consumer

mistakes in the optimizing process, the KKT-FOC corresponding to the utility maximization problem

are

ηk exp εk

(
xk
γk

+ 1

)αk−1

− λpk = 0, if xk > 0, k = 1, 2, ...,K,

ηk exp εk

(
xk
γk

+ 1

)αk−1

− λpk < 0, if xk = 0, k = 1, 2, ...,K,

(2.31)

where ηk has the same definition as above, and the εk are independent and identically extreme value

distributed3. Let V ar(εk) + V ar(ξk) = π2σ2

6 for k = 1, 2, ...,K. In the RU-RM specification it is

assumed that the ξk terms are normally distributed, this is particularly convenient when one wants to

accommodate a flexible error covariance structure through a multivariate normal-distributed coefficient

vector β and/ or account for covariance in utilities across alternatives through the appropriate random

multivariate specification for the ξk terms. To developed the probability function for consumptions, let

V ar(εk) = µ2(π2σ2)
6 and V ar(ξk) = (1−µ2)(π2σ2)

6 for k = 1, 2, ...,K, where µ is a parameter to be

estimated (0 ≤ µ ≤ 1), the if µ −→ 0, and when there is no covariance among the ξk terms across alter-

natives, the RU-RM specification approaches the RU-DM specification. However, if µ −→ 1, the RU-RM

specification approaches the DU-RM specification.Thus, the parameter µ determines the extent of the

mix of the RU-DM and DU-RM decision postulates leading up to the observed behavior of consumers.

One can impose the constraint that 0 ≤ µ ≤ 1 through the use of a logistic transforms µ = 1
1−exp (−µ∗)

and estimate the parameter µ∗.

The probability expression for consumptions in the RU-RM model specification takes the following

mixed MDCEV form

li =

∫ ∞

ξ=−∞

[
|JM |ξ| 1

(µσ)M−1

[ ∏M
i=1 exp (

Vi

µσ )|ξi∑K
k=1 exp (

Vi

µσ )|ξi

]
(M − 1)|

]
dF (ξ), (2.32)

where Vk = ln(ηk)− ln(pk)+(αk−1) ln(xk

γk
+1),ηk = Ψk exp(ξk)+Wk, Wk is defined as earlier,

and F is the multivariate normal distribution of the random element vector ξ = (x1, x2, ..., xK)4. Then,

the elements of the Jacobian are given by

3Recall that the ξk terms represent stochasticity due to the analyst’s inability to capture consumer preferences. εK terms

represent stochasticity due to consumer errors in utility maximization.
4Each of whose elements has a variance of (1−µ2)(π2σ2)

6
.
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Jih = ωh+1ph+1

[
θ1,h+1

(η1|ξ1)
− (1− zih)

θi+1,h+1

(ηi+1|ξi+1)

]
+ ω1p

2
1

θi+1,h+1

(ηi+1|ξi+1)
+ ph+1[L1zihLi+1]. (2.33)

When there is an essential essential good, the probability expression remains the same, but with

Vk = ln(Vk) − ln(pk) + (αk − 1) ln(xk

γk
+ 1) for k > 2, V1 = (α1 − 1) ln(x1 + γ1), θ1m = 0 for all

m(m ̸= 1), W1 = 0, β′z1 = 0, Ψ1 = 1, p1 = 1, and η1 = exp (ξ1). Then the Jacobian elements in

this case are given as follows

Jih = ωh+1

[
− (1− zih)

θi+1,h+1

(ηi+1|ξi+1)

]
+ ph+1[L1 + zihLi+1]. (2.34)

Similar to the earlier two formulations, ηk > 0 for k = 1, 2, ...,K is required for that the marginal

utility of consumption for any alternative always is positive.

2.4 Musalem’s approach

Musalem et al. (2013) indicates that both the contributions of Vásquez and Hanemann (2008) and Bhat

et al. (2015) have a problem, which is that the number of parameters to be estimated grows rapidly with

a number of alternatives. Musalem et al. (2013) model the agent’s utility as follows

U(−→q ) =
S∑

s=1

gs

( ∑
n∈N

uns(qns)

)
+ u0(q0), (2.35)

where uns(qns) is the utility contribution of consuming good n ∈ Ns, which should be increasing

concave and equal to zero when qns = 0, gs is the total utility derived from all goods in subset s, wich

should be increasing concave and equal to zero when
∑

n∈Ns
= 0, y u0(q0) is the utility derived from

consuming the outside good, which should be increasing concave and equal to zero when q0 = 0. Then,

the utility contribution of good n to subset s, uns(qns), is

uns(qns) =
δns
ρ

(−1 + (1 + qns)
ρ), (2.36)

where δns > 0 representing preference for good n, ρ is a diminishing returns (satiation), this param-

eter that allows the matginal utility of good n to change with qns. They write sub-set specific utility in

a similar mode

gs

( ∑
n∈Ns

uns(qns)

)
=
κs
γ

(
− 1 +

{
1 +

∑
n∈Ns

uns(qns)

}γ)
, (2.37)

where κs > 0 represents a preference for any positive consumption in s and γ is a diminishing

returns parameter that allows the marginal utility of subset s to change with consumption of any of its

elements. iF γ = 1, then (2.37) collapses to an additively separable formulation which is to Bhat (2008),

however γ is a additional parameter to relax additive separability.They asumme that,
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u0(q0) =
δ0
ρ
qρ0 , (2.38)

where δ0 controls the magnitude of the outside good contribution to total utility. Then, given these

definitions ((2.37) and (2.38)) we have that

∂U(−→q ,
−→
θ )

∂qn
=

(
1 + gs

{ ∑
n∈Ns

uns(qns)

})γ−1

κsδns(1 + qnst)
ρ−1, (2.39)

where for any pair of goods n and n′ belonging to the same subset

∂U(−→q ,
−→
θ )

∂qn

∂U(−→q ,
−→
θ )

∂qn′

=
δns(1 + qns)

ρ−1

δn′s(1 + qn′s)ρ−1
, (2.40)

where the ratio depends on the parameters of alternatives n and n′ and ρ, however not on any other

δjs parameters for j ̸∈ {n, n′}.

Regarding the interpretation of parameters: κs modifies the marginal utility of consuming any alter-

native within subset s; δns directly affects the marginal utility of consuming good n within a subset s; ρ

and γ determine the optimal distribution of spending across and within subsets, on the one hand, ρ gov-

erns the rate at which subset utility decreases with spending on any single good within a subset and on

the other hand, γ is the rate at which total utility varies across goods within a subset. The combinations

of values of the and parameters and the optimal strategies employed by the agent are described in the

table 2.1.

Table 2.1: Different budget allocation strategies as a function of ρ and γ

ρ low ρ high

γ high many alternatives in few subsets few alternatives in few subsets

γ low many alternatives in many subsets few alternatives in many subsets

source: Musalem et al. (2013)

For parameterization Musalem et al. (2013) assumes that

δinst = exp(β′
i
−→x nst + ϵinst), (2.41)

where −→x nst is a vector of observed good characteristics (including a constant); βi is the agent’s

vector of preference weights for those characteristics; and ϵinst represents unobserved characteristics

that modify the utility contribution of the good n belonging to subset s for agent i during period t5. For

the outside good they assume that δi0t = exp(ϵi0t). For parameterize subset utility it is assumed

5The exponential function ensures inst¿ 0 else product n is not a “good”.
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κist = exp(v′i
−→w st + εist), (2.42)

where −→w st is a vector of observed subset characteristics on occasion t; vi is the agent’s vector

of preference weights for those characteristics; and εist denotes unobserved subset characteristics that

modify the utility contribution of all good belonging to subset ”s for agent i in the period t. Then, from

(2.41) and (2.42) the equation (2.35) can be expressed as

U(−→q it) =

S∑
s=1

exp(β′
i
−→x nst + ϵinst)

γi

(
− 1 +

{ ∑
n∈Nst

exp(β′
i
−→x nst + ϵinst

ρi

(−1 + (1 + qinst)
ρi )

}γi
)

+ . . .

ϵi0t

ρi

q
ρiγi
i0t ,

(2.43)

where ϵinst, ϵi0t and εist are know to agent i at the time t but not to be econometrician. Thus, the

errors represent researcher uncertainty about preferences. ϵinst and ϵi0t are assumed to be indepen-

dently distributed extreme value with zero mode and scale σϵ and εist are assumed to be independently

normally distributed with zero mean and variance σ2
ε .

Then, S+ and S0 are the collection of subsets with positive consumption and the set of subsets

with zero demand, respectively. For any subset s ∈ S+, let N+
s denote the set goods with positive

consumption in the subset and let its complement be N0
s = Ns/N

+
s . Define ms as the smallest index

N+
s

6. For any n ∈ N0
s the ratio KKT-FOC for goods ms and n ∈ N0

s can be written as

δns(1 + qns)
ρ−1

δmss(1 + qmss)
ρ−1

<
pns
pmss

, (2.44)

taking logs and substituting in for δns and δmss,

ϵns < Vmss + ϵmss − Vns, (2.45)

for all n ∈ N0
s and Vns = β−→x ns + (ρ− 1) ln(1 + qns)− ln(pns). Then, for n ∈ N+

s , the log ratio

of KKT-FOC of n and ms implies

ϵns = Vmss + ϵmss − Vns. (2.46)

for all n ∈ N+
s with n ̸= ms. And εs is obtained from the log ratio of KKT-FOC for goods ms and

the outside good

ϵs = −v′ws − (γ − 1) ln

(
1 +

∑
n∈Ns

uns(qns)

)
− Vmss − ϵmss + (ργ − 1) ln(q0) + ϵ0. (2.47)

Then, the likelihood of the subset is
6For example, if the agent purchases 0 units of good 1, 6 unit of good 2 and 4 units of good 3 in a three-good subset s. , then

Ns = {1, 2, 3}, N+
s = {2, 3}, N0

s = {1} and ms = 2.
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L+({−→q s}s ∈ S+|{ϵmss}s∈S+ , ϵ0)

=

[ ∏
s∈S+

∏
n∈N0

s

F (ϵns < Vmss + ϵmss − Vns)

]

·
[ ∏
n∈S+

∏
n∈N+

s ,n>m

f(ϵns = Vmss + ϵmss − Vns)

]

·
[ ∏
s∈S+

f(ϵs = −v′ws − (γ − 1) ln(As(
−→q s))− Vms − . . .

− ϵmss + (ρ− 1) ln(q0) + ϵ0)

]
· |J |,

(2.48)

where f(·) is the probability density function and F (·) is the cumulative distribution function of a

random variable; As(
−→q s) = 1 +

∑
n∈N u(qns); J is the Jacobian of the transformation of all positive

quantities into the unobserved good and subset characteristics; and |J | denotes the absolute value of the

determinant of the Jacobian. The Jacobian expression given by

∂ϵs
∂qn′s′

=



− (ρ−1)pn′s′
q0

if s ̸= s′,

− (ρ−1)pn′s′
q0

− (ρ−1)
1+qn′s′

− γ−1
As(

−→qs)

(
exp

β′xn′s′+ϵ
n′s′ (1 + qn′s′)

ρ−1

+ (ρ−1)
1+qn′s′

∑
n∈Ns,n>ms

u(qns)

)
if s = s′ and n′ = ms,

− (ργ−1)pn′s′
q0

− γ−1
Ac(

−→qs)

(
exp

β′xn′s′+ϵ
n′s′ (1 + qn′s′)

ρ−1

− (ρ−1)
1+qn′s′

u(qn′s′)

)
if s = s′ and n′ > ms.

(2.49)

Now, consider a subset s ∈ S0. The log ratio between the KKT-FOC for each good n ∈ s and the

outside good implies

ϵns < (ργ − 1) ln(q0) + ϵ0 − v′ws − εs − Vns, (2.50)

if and only if qns = 0. Conditioning on {ε : s ∈ S0} and ϵ, the likelihood of observing no spending

in these subsets is given by

L0({−→q s}s ∈ S0|{ϵs}s∈S0 , ϵ0) =
∏
s∈S0

∏
n∈Ns

p(ϵns < (ργ − 1) ln(q0) + ϵ0 − v′ws − εs − Vns).

(2.51)

Finally, the full likelihood contribution of one agent on one choice occasion is
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L(−→q |{ϵmss}s∈S+ , {ϵs}s∈S0 , ϵ0) = L+({−→q s}s∈S+ |{ϵmss}s∈S+ , ϵ0)L0({−→q s}s∈S0 |{ϵs}s∈S0 , ϵ0),

(2.52)

which depend on the values of unobserved good and subset characteristics, so the unconditional

likelihood is obtained by integration over their distributions.

2.5 Pellegrini’s approach

Pellegrini et al. (2019) extend the model at Bhat et al. (2015) through the incorporation of a new inter-

action term into the utility function7. Propose two functional forms, first

U(x) =

K∑
k=1

ψkγk ln

(
xk
γk

+ 1

)
+

1

2

K∑
k=1

∑
m ̸=k

θkm ln(xk + 1) ln(xm + 1). (2.53)

This functional form is similar to that presented by Deaton and Muellbauer (1980), however, this case

allows corner solutions. And second,

U(x) =

K∑
k=1

ψkγk ln

(
xk
γk

+ 1

)
+

1

2

K∑
k=1

∑
m ̸=k

θkm ln(xk · xm + 1), (2.54)

where, complementary and substitution patterns are shaped through a product of pair goods within

a single logarithm. The KKT-FOC are given by

(
x∗k

γk + 1

)−1

ψk +

K∑
m ̸=k

ln(xm + 1)θmk

xk + 1
−λpk = 0, if x∗k > 0, k = 1, ...,K,

(
x∗k

γk + 1

)−1

ψk +

K∑
m ̸=k

ln(xm + 1)θmk

xk + 1
−λpk < 0, if x∗k = 0, k = 1, ...,K,

(2.55)

for the first functional form, and

(
x∗k

γk + 1

)−1

ψk +

K∑
m ̸=k

xmθmk−λpk = 0, if x∗k > 0, k = 1, ...,K,

(
x∗k

γk + 1

)−1

ψk +

K∑
m ̸=k

xmθmk−λpk < 0, if x∗k = 0, k = 1, ...,K,

(2.56)

for the second functional form. The estimation strategies used by Musalem et al. (2013) are similar

to those proposed by Bhat et al. (2015).

7The definition of the parameters is the same as in Vásquez and Hanemann (2008) and Bhat et al. (2015).
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Chapter 3

Welfare measures

This chapter presents the general approach to the calculation of welfare measures in the MDC approach.

It begins with a review of the first contributions. Then, the approach commonly used for ASU functions

is presented. And finally, an alternative procedure is presented that allows for estimating welfare mea-

sures for NASU functions.

The calculation of welfare measures for unified demand systems was explored by Von Haefen et al.

(2004), who allowed the prevalence of corner and interior solutions and present his proposal as an al-

ternative to the theoretical framework of the Random Utility Model, which was widely used due to

computational limitations that existed to work with demand systems.

While working with demand systems involves essentially two problems (choice of parsimonious

utility function and specification of unobserved heterogeneity), if these are handled correctly, KT’s ap-

proach to demand systems is potentially appropriate. However, the calculation of welfare measures for

welfare systems presents additional difficulties.

The calculation of welfare measures comes from a restricted optimization problem. The compen-

satory variation (CV) for a change from (p0, q0) to (p1, q1) can be implicitly expressed using the indirect

utility function through

V (p1, q1, y − CV,Θ, ε) = V (p0, q0, y,Θ, ε), (3.1)

where y is income and Θ is a vector of parameters (Ψk, γk and β to ASU function and Ψk, γk,

β and θjk to NASU function). This is not easy to fix because there is no closed solution for CV and
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iterative numeric bisection algorithms are required to solve, against this Phaneuf et al. (2000) developed

a strategy to analytically find each of the 2K possible indirect utility functions and determine what is

the maximum, however, this proposal seems to work well when the number of alternatives is small, it

becomes more complicated. To address this problem, researchers have designed different routines that

depend on some properties of utility functions.

3.1 ASU functions

Von Haefen et al. (2004) developed an iterative routine that uses KKT conditions and the separable

additivity property to find optimal consumption levels and find a solution for the CV, However, the

numeric bisection routine is complex to deal with due to the use of the implicit definition of CV (see

equation (3.1)), the theoretical framework of this routine is that it is only necessary to find the level of

consumption of an external good in order to find the levels of consumption of all other goods, therefore

to separate that outside good are provided with separable additivity of the utility function. von Haefen

(2007) proposes the use of the explicit definition of CV to make the Von Haefen et al. (2004) routine1

more efficient, where it finds optimal consumption levels that minimize the expenditure function that

allow to satisfy the following explicit expression of CV

CV = y − e(p1, q1, U0,Θ, ε), (3.2)

where e(. . . ) is the function of expenditure and U0 = V (p0, q0, y,Θ, ε) is the initial utility level.

Lloyd-Smith (2018) modifies the algorithm proposed by von Haefen (2007) and makes it more efficient

for certain scenarios, however both the routines of von Haefen (2007) and Lloyd-Smith (2018) (inde-

pendent of computational efficiency) present a great limitation in common, both are based on separable

additivity of utility functions, this implies these routines do not work under the assumption of separable

non-additivity.

3.2 NASU functions

Considering functional forms other than ASU adds an additional problem to the calculation of welfare

measures. This is mainly because the algorithm proposed by Von Haefen et al. (2004) (seminal for

von Haefen (2007) and Lloyd-Smith (2018)) separates the external good from the others, however, in a

1To find the details of the bisection algorithm check von Haefen (2007).
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NASU function this is not possible because the level of consumption of the external good depends on

the other goods.

Vásquez and Hanemann (2008) stress that the KKT conditions of the NASU problem prevent the

separation technique from the external good applied by Von Haefen et al. (2004), therefore the algorithm

is not adequate. This is why they propose a restricted optimization routine to find the optimal consump-

tion levels (outside good and others) that minimize the spending function restricted to non-negativity

conditions and the initial utility level (U0). With the consumption levels found, the level of expenditure

necessary to reach (U0) is calculated and thus obtains the measure of welfare expressed in equation (3.2).

This paper works with the approach of Vásquez and Hanemann (2008), since this approach can be

applied in both ASU and NASU cases.
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Chapter 4

Estimation and Results

This chapter presents estimates for different approaches in modeling MDC choice. First, it describes the

data set used and presents some considerations. Second, estimation considerations are set out for both

the ASU and NASU approaches. And third, the parameters and measures of welfare estimated through

the functional forms considered are presented and compared.

4.1 Data description

The data used comes from the Canadian Nature Survey and was obtained through (Lloyd-Smith, 2020).

Options are presented for the number of days dedicated to recreation in 17 outdoor activities for 500

individuals. The data includes 17 recreation alternatives and 500 individuals are surveyed to find out

how many days they are willing to spend on each of the alternatives. The data includes information on

three individual characteristics: university (a dummy variable if the person has completed a university

degree), age index (a person’s age divided by the average age in the sample), and urban (a dummy vari-

able if a person lives in an urban area).

However, this document considers one subset1 of alternatives: Nature-based Recreation (NBR),

which considers recreational activities such as: hiking, beach, camping, cycling, ski cross, ski down

and golf. This consideration is due to the fact that, as demonstrated in the literature, the number of

parameters to be estimated grows rapidly when considering a high number of alternatives and even

more in the NASU approach. For the final estimate, only individuals are considered to consume at least

one recreational alternative (according to Bhat et al. (2015)). This reduces the NBR sample from 500

individuals to 330, this is because the alternative considered as essential good is Hiking, which presents

a positive consumption in 330 individuals of the sample.

Table 4.1 below shows how many alternatives individuals choose from the sample, only 65 individu-

1The different types of sets of recreational alternatives are presented in the Canadian National Survey.
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als choose only one alternative, therefore the other individuals (80.30%) choose at least two alternatives.

In table 4.2 shows the number of individuals who consume and do not consume each of the alternatives,

and the average consumption and prices of each of the alternatives

Table 4.1: Choice of individuals

Alternatives chosen Number of individuals % of the sample

1 65 19.70%

2 72 21.82%

3 72 21.82%

4 52 15.76%

5 41 12.42%

6 19 5.76%

7 9 2.73%

Note: note that the sample does not have individuals choosing zero alternatives, this is because all individuals

choose at least one alternative, which corresponds to the essential good.

Table 4.2: What goods do individuals consume?: NBR case

Alternative (good) Not consume Consume Average consumption Average price

hiking 0 330 59.879 32.072

beach 138 192 8.727 55.106

camping 224 106 3.094 62.350

cycling 201 129 12.382 43.366

golf 233 97 5.303 130.011

ski cross 240 90 3.545 32.316

ski down 259 71 2.100 153.620

Note: the second and third column (they consume and do not consume) shows the number of individuals who

consume and do not consume each of the goods. So the number of individuals who consume the good x plus the

number of individuals who do not consume the good x add up to the number of total individuals. The fourth column

shows the average consumption of each good.

4.2 Estimation considerations

4.2.1 Form ASU

From the functional form in (1.9) (for the case of an essential good) and using the gamma profile with

αk = 0 ∀k, an optimization algorithm is constructed to find the β and γ vectors that maximize the
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maximum likelihood function for the expression in (1.15). Two variables specific to individuals are

considered: age and urban index (with a constant). According Bhat (2008), the following identification

and stability conditions for estimation are considered:

1. The α parameters are set to 0 for all k = 1, ...,K or α1 = α2 = ... = αk = 0 (i.e. essential and

other alternatives).

2. Parameter µ is set at 1.

3. The price of the essential good is set at 1, i.e., p1 = 1.

4. Ψ1 not include any observed explanatory variables as the coefficients of all explanatory variables

for this alternative are normalized to zero.

5. To satisfy the conditions of γk > 0 and Ψk > 0, it is parameterized as γk = exp(γ∗k) and

Ψk = exp(β′zk).

6. The essential good is defined as the first alternative of the set of alternatives, for this case: Hiking.

Through these considerations it will be possible to estimate K − 1 vectors of explanatory variables

coefficients, K − 1 γ parameters and K − 1 Ψ parameters. Castro et al. (2012) found that similar con-

straints for the γ-profile provide stable estimates.

4.2.2 Form NASU

For this case we will work with the gamma profile of the general case presented by Bhat et al. (2015),

that is.

U(x) =

K∑
k=1

Ψkγk ln

(
xk
γk

+ 1

)
+

1

2

K∑
k=1

K∑
m ̸=k

θkmγkγm ln

(
xk
γk

+ 1

)
ln

(
xm
γm

+ 1

)
, (4.1)

this decision implies that the BMU level will be

π =
∂U(x)

∂xk
|xk=0= Ψk +

K∑
m ̸=k

θkmγm ln

(
xm
γm

+ 1

)
. (4.2)

Then the likelihood function corresponds to the expression in (2.20). The general estimation con-

siderations are similar to those of the ASU case, however, new conditions are incorporated due to con-

sideration of the interaction parameters. Regarding the terms of interaction, the interaction matrix must

initially be defined as
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θ =


θ11 θ12 . . . θ1k

θ21 θ22 . . . θ2k
...

...
. . .

...

θj1 θj2 . . . θjk

 (4.3)

then, considering that θij = 0 ∀ i = j and θ1k = 0 ∀ k ̸= 1 (Bhat et al., 2015) the interaction

matrix, for the example of 7 alternatives2, is defined as

θ =



0 0 0 0 0 0 0

0 0 θ2,3 θ2,4 θ2,5 θ2,6 θ2,7

0 θ3,2 0 θ3,4 θ3,5 θ3,6 θ3,7

0 θ4,2 θ4,3 0 θ4,5 θ4,6 θ4,7

0 θ5,2 θ5,3 θ5,4 0 θ5,6 θ5,7

0 θ6,2 θ6,3 θ6,4 θ6,5 0 θ6,7

0 θ7,2 θ7,2 θ7,4 θ7,5 θ7,6 0


. (4.4)

Therefore, the interaction parameters to estimate correspond to θjk ∀ j, k = 2, ..,K excluding j = k

terms.

4.3 Estimation results

This paper considers one subset3 of alternatives: Nature-based Recreation (NBR), which considers

recreational activities such as: hiking, beach, camping, cycling, ski cross, ski down and golf. This

consideration is due to the fact that, as demonstrated in the literature, the number of parameters to be

estimated grows rapidly when considering a high number of alternatives and even more in the NASU

approach. For the final estimate, only individuals are considered to consume at least one recreational

alternative (according to Bhat et al. (2015)). This reduces the NBR sample from 500 individuals to

330, this is because the alternative considered as essential good is Hiking, which presents a positive

consumption in 330 individuals of the sample. The following is the descriptive statistics of the group of

individuals to consider.

4.3.1 Satiation parameters

Parameters γ in addition to allowing corner solutions (Vásquez and Hanemann, 2008 and Bhat et al.,

2015) also serve as parameters of satiety. That is, the higher the value of γ, the lower the satiety effect

on the consumption of the x alternative. Therefore, to evaluate if there are differences between these

estimated parameters through the different approaches we can consider the following hypothesis contrast

2The essential good corresponds to the alternative 1, j = 1.
3The different types of sets of recreational alternatives are presented in the Canadian National Survey.

35



H0 : γj,ASU = γj,NASU ,

H1 : γj,ASU ̸= γj,NASU ,
(4.5)

where γji corresponds to the estimated satiety parameters for the j alternative through the ASU

or NASU approach. Table 4.3 presents the estimation results of the γ parameters, note that although

the parameters through the NASU approach are minor, there is no evidence of a significant difference

between the two approaches.

Table 4.3: γ̂k parameters

Alt.
ASU NASU

est. s.e. est. s.e.

Beach 4.88 0.74 4.49 0.53

Camping 4.32 0.72 4.09 0.64

Cycling 14.03 2.66 13.81 1.31

Golf 21.9 7.39 10.14 1.91

Ski cross 5.63 1.07 5.56 1.05

Ski down 5.97 1.42 5.08 1.16

Note: the s.e.(γ̂) was calculated through the delta method.

4.3.2 Baseline marginal utility parameters

As presented in previous sections, the term BMU is not similar for the ASU (equation (1.2)) and NASU

(equation (2.17)) approaches, as the latter contains the term interaction between alternatives. Now, it is

initially possible to review differences through the following hypothesis contrast

H0 : BMUj,ASU = BMUj,NASU ,

H1 : BMUj,ASU ̸= BMUj,NASU ,
(4.6)

where BMUj corresponds to the Baseline Marginal Utility of the alternative j through the ASU

or NASU approach. Table 4.4 shows that for this case there are no significant differences between the

BMU estimated for both approaches, this may be because the estimated interaction parameters are small

values, so eventually, if these were “larger” could show significant differences.
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Table 4.4: BMU parameters

Alt.
ASU NASU

est. s.e. est. s.e.

Beach 3.43 0.57 3.74 0.44

Camping 1.19 0.23 1.06 0.27

Cycling 1.5 0.27 1.46 0.24

Golf 2.6 0.51 2.89 0.55

Ski cross 0.8 0.15 0.81 0.28

Ski down 2.47 0.52 2.67 0.56

Note: the s.e.(BMU) was calculated through the delta method. The consumption values of the other alternatives

are set at mean.

4.3.3 Interactions parameters

Table 4.5 presents the results for estimates of interaction parameters. It is important to remember that

understanding these parameters will allow inferring whether the alternatives are complementary or sub-

stitutes, as observed, only Camping-Ski down, Golf-Ski down and Cycling-Ski down have a parameter

θij > 0, that is, they have complementarity relationshiop. This implies that all relationships between

the other pairs of alternatives are substitution.
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Table 4.5: θ̂k parameters

Alt.
ASU NASU

est. s.e. est. s.e.

Beach-Camping 0 – -0.0221 0.03

Beach-Cycling 0 – -0.0573 0.02

Beach-Golf 0 – -0.0736 0.01

Beach-Ski cross 0 – -0.0233 0.01

Beach-Ski down 0 – -0.1388 0.04

Camping-Cycling 0 – -0.0163 0.01

Camping-Golf 0 – -0.0203 0.01

Camping-Ski cross 0 – -0.0354 0.01

Camping-Ski down 0 – 0.0494 0.04

Cycling-Golf 0 – -0.0427 0.01

Cycling-Ski cross 0 – -0.0039 0.00

Cycling-Ski down 0 – 0.0054 0.02

Golf-Ski cross 0 – -0.0018 0.00

Golf-Ski down 0 – 0.0121 0.03

Ski cross-Ski down 0 – -0.003 0.02

Note: The LR statistic (q = 15), for the models used ASU and NASU, amounts to 61.86 with a p-value of 2.53e-07.

4.3.4 Welfare measures

For both the ASU and NASU approach, we calculate the compensating variation following the approach

presented by Vásquez and Hanemann (2008), calculations are made for two scenarios:

1. Individual variation: the price of only one alternative will be increased by one monetary unit,

while the price of the other alternatives (6 remainings) will be increased by one monetary unit.

For example, the price of Beach is increased by one unit, and the prices of Camping, Cycling,

Golf Ski cross, and Ski down remain constant.

2. Variation in pairs:the price of two alternatives will be increased simultaneously in one monetary

unit and at the same time the price of the other alternatives (5 remaining) will remain constant.

For example, one unit increases the prices of Beach and Camping, and the prices of Cycling, Golf

Ski cross, and Ski down remain constant.

Therefore, the hypothesis for evaluating differences between the calculation of both approaches
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corresponds to

H0 : CVj,ASU = CVj,NASU ,

H1 : CVj,ASU ̸= CVj,NASU ,
(4.7)

where CVj corresponds to the CV of a change in the price of alternative (or alternatives) j through

the ASU or NASU approach. Table 4.6 shows the results of the compensatory variation (mean) calcu-

lations for the different price changes. It is observed that the calculations of welfare measures through

the NASU approach are lower than those obtained through the ASU approach, even in this case, the

differences between both approaches can be significant (observing the t-values of the difference test.).

For example, for the case where only the price of Ski Cross varies, when calculating the confidence

interval of the CV through ASU approach we have that this is (1.59;1.75), then the confidence inter-

val for the CV through the NASU approach is (1.41;1.55), from this it is observed that the confidence

intervals are not contained within each other. On the other hand, the results for the maximum values

of compensatory variations obtained, where it is observed that in all the scenarios of price variations

there are significant differences between both approaches, this is the values obtained through the NASU

approach are statistically lower than those of the ASU approach.
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Table 4.6: Compensating Variation

∆Alt.

Mean Maximum

ASU NASU Hypothesis ASU NASU Hypothesis

est. s.e. est. s.e. t-statistic est. s.e. est. s.e. t-statistic

Beach (B) 4.03 0.23 3.61 0.19 1.00 25.36 2.5 16.49 1.12 2.45

Camping (CA) 1.98 0.08 1.77 0.06 1.50 9.3 0.85 6.07 0.36 2.67

Cycling (CY) 2.44 0.11 2.08 0.09 1.80 12.96 1.23 7.91 0.5 2.92

Golf (G) 3.64 0.2 3.14 0.15 1.43 22.32 2.19 13.86 0.93 2.71

Ski cross (SC) 1.67 0.05 1.48 0.04 2.11 6.82 0.6 4.37 0.24 2.92

Ski down (SD) 3.23 0.17 2.68 0.12 1.9 19.11 1.85 11.26 0.74 3.03

B-CA 6.02 0.31 5.38 0.25 1.14 34.66 3.36 22.56 1.49 2.49

B-CY 6.48 0.35 5.7 0.28 1.24 38.33 3.73 24.41 1.63 2.6

B-G 7.68 0.44 6.76 0.34 1.18 47.68 4.71 30.35 2.05 2.56

B-SC 5.71 0.29 5.09 0.23 1.19 32.18 3.1 20.86 1.37 2.53

B-SD 7.27 0.4 6.29 0.31 1.38 44.47 4.36 27.75 1.86 2.69

CA-CY 4.43 0.2 3.86 0.15 1.63 22.27 2.08 13.99 0.86 2.82

CA-G 5.63 0.28 4.91 0.22 1.44 31.63 3.04 19.93 1.3 2.7

CA-SC 3.66 0.14 3.25 0.11 1.64 16.13 1.45 10.44 0.61 2.76

CA-SD 5.21 0.25 4.45 0.19 1.73 28.41 2.72 17.33 1.11 2.89

CY-G 6.09 0.32 5.23 0.25 1.51 35.29 3.42 21.78 1.43 2.79

CY-SC 4.12 0.17 3.57 0.13 1.83 19.79 1.82 12.28 0.74 2.93

CY-SD 5.68 0.29 4.77 0.22 1.78 32.08 3.1 19.17 1.24 2.97

G-SC 5.32 0.26 4.63 0.2 1.50 29.14 2.79 18.23 1.18 2.75

G-SD 6.88 0.38 5.83 0.28 1.59 41.43 4.06 25.12 1.67 2.85

SC-SD 4.91 0.23 4.16 0.17 1.88 25.93 2.46 15.63 0.99 2.99

All 17.02 0.87 14.78 0.68 1.45 95.89 9.25 59.98 3.91 2.73

Note: column ∆Alt. indicates the alternatives that changed in +1 unit the price. Standard errors are calculated

through bootstrap.

40



Chapter 5

Conclusions

The use of choice experiments became popular in the context of economic valuation with contributions

such as those of McFadden (1977) and Train (1998; 2003). However, researchers have focused more on

calculating welfare measures than on understanding the incidence of how attributes entering the utility

function might affect the calculation of welfare measures1.

5.1 Contributions and implications

This paper aimed to evaluate the effect of the incorporation (or not) of complementarity patterns (in the

preference structure) in the estimation of the MDC decision and welfare measures calculation. Through

comparison strategies, for the forms ASU and NASU functions, it was found that (1) the terms of inter-

action between alternatives of choice have a significant impact on the consumer’s decision, (2) there are

no significant differences between the satiety and BMU parameters (3) there are significant differences

(on more than one) between the calculation of welfare measures between the ASU and NASU approach.

5.1.1 Inference of flexible relations between alternatives

As described in the previous chapters, the ASU approach does not allow capturing patterns of com-

plementarity between alternatives. That is, through the ASU approach, it is not possible to determine

whether recreational activities Cycling, Hiking, Garden, and Photo are substitutes or complementary,

because the modeling of the preference structure only allows them to be substituted for each other.

However, through the extension to the NASU approach, significant relationships were found between

the alternatives that are not the product of an initial restriction but are inferred from the flexibility of the

1Authors such as Torres et al. (2011) have delved into the incidence of preference structure in choice models, however, they

do not extend to the case of MDC modeling with NASU approaches
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preference structure modeling.

This understanding can be an orientation for policymakers. Following the case of recreational ac-

tivities, a policy designer may be interested in designing policies to encourage recreational activities,

for this he must choose how and which recreational activities to encourage. Therefore, if the ASU ap-

proach to policy design is followed, only activities will be considered (restrictively) as substitutes for

each other, that is, if it encourages two recreational activities such as Camping and Beach, will not be

able to identify previously whether individuals would consider attending only one activity (substitutes)

or participating in both (complementary). Therefore, it is through the use of a NASU approach that the

policymaker can guide the promotion of recreational activities that complement each other and then pro-

mote, separately, recreational activities that are substitutes. For example, in this paper it was found that

the Campping and Beach activities have substitution relationships with each other, therefore it would be

a mistake on the part of the policy designer to try to increase participation in Hiking through a promo-

tion plan in the Beach activity because these two are not complementary, but the policy designer will

not have this information through the use of an ASU approach.

5.1.2 Welfare measures

Due to the difficulties that arise in the estimation process when working with NASU functions, re-

searchers have not been able to strongly explore the richness of these preference structures in the analy-

sis of welfare measures, The analysis is therefore limited to the ASU approach, where alternatives will

only be substitutes for each other.

However, in this work it was possible to work with at least one NASU functional form, which al-

lowed comparing welfare measures obtained through the ASU and NASU approaches. Therefore, this

work contributes to the understanding of the calculation of welfare measures with consideration of com-

plementarity and substitution patterns.

Welfare measures were first estimated by conditioning the preference structure to substitution-only

alternatives (ASU), then allowing flexibility to incorporate complementarity patterns (NASU) into the

preference structure. The main results indicated that welfare measures that were calculated through the

NASU approach may be, with some probability, significantly lower than those obtained by the ASU

approach.

This result becomes relevant in the context of cost-benefit analysis because it is conditioned to the

calculation of welfare measures. Therefore, if the investigator does not discriminate between the ASU

and NASU approaches he could be overestimating welfare measures, which distorts the orientation of
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the cost-benefit analysis. In this sense, it will be the task of each of the researchers to evaluate the

incidence of complementarity patterns in the calculation of welfare measures: in this paper, it was

proposed to follow the Vásquez and Hanemann (2008) procedure, both for ASU and NASU approach,

At the moment, it is the only way to estimate welfare measures through the NASU approach.

5.2 Limitations and directions

5.2.1 Complementary structure

This paper explored the estimation of the MDC decision through a NASU approach using the com-

plementarity structure proposed by Bhat et al. (2015). However, there are other proposals to model

the ”interaction” structure between alternatives, such as those proposed by Musalem et al. (2013) and

Pellegrini et al. (2019), which lead to additional work for researchers at the time of construction and

estimation of the Jacobian matrix. However, these models have a transverse constraint which is the

symmetry of complements.

The assumption of complement symmetry may be (or not) valid (or invalid) for some choice sce-

narios, therefore it may be recognized as a constraint in modeling the complementarity structure. Two

alternatives have a relationship of asymmetric supplements when one depends more on the other, but

individuals get more useful by consuming both, for example, in the context of recreational activities

Hiking and Landscape Photography may present an asymmetrical complementarity relationship since

we could assume that Landscape Photography depends more on the Walk because you need to explore

different places to get good photographs.

Lee et al. (2010) explored the MDC decision through an asymmetric supplement approach, they

consider cereals and milk as consumption alternatives, this modeling is limited to a choice set of two

alternatives and does not allow the integration of substitution effects, However, this can be considered

as a starting point, since the relationship between the problem raised in this paper and the integration

of asymmetric complements has not been fully explored. Therefore, one of the directions to follow in

modeling the MDC choice through a NASU approach is the integration of symmetrical, asymmetric,

and substitution patterns.
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