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CONCEPCIÓN - CHILE

2023





Prefacio

Esta tesis es presentada como parte de los requisitos para optar al grado
académico de Doctor en Ciencias de la Ingenieŕıa con mención en Ingenieŕıa
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Abstract

A massive amount of scientific data is generated daily in different areas of knowl-
edge. The challenges of research are increasingly sophisticated and demand a
higher amount of information to make decisions, and also technological tools are
increasingly more available for researchers. In many cases, this information, in
addition to being collected and processed, must be transmitted among different
research centers located over considerable distances. Internet and other dedi-
cated cyberinfrastructures are needed to achieve this goal. Transferring scientific
information between remote sites involves challenges in performance, security, co-
existence, and resource allocation. Therefore, Energy Science Network (ESnet)
proposed the concept of Science DMZ that provides design patterns for an opti-
mized network environment to exchange scientific data.

Due to their nature, the Scientific Big Data (SBD) flows are connection-
oriented, demanding high and constant throughput under low delay and jitter
to reach reasonable transmission times. This imposes fundamental challenges to
network design, especially congestion control mechanisms, buffer estimation, and
anomaly detection, which are tackled in this thesis. This dissertation addresses
two disruptive technologies to respond to these challenges: data-driven models
and data-plane programmable devices.

We evaluated our solutions through production networks and testbeds using
a hardware-based data plane and routing devices. Results showed that the pro-
posed solutions could effectively improve the networks’ performance and effectively
adapt the Science DMZ design to non-dedicated networks.
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Resumen

Diariamente, se genera una gran cantidad de datos cient́ıficos en diferentes áreas
del conocimiento. Los desaf́ıos de investigación son cada vez más sofisticados y
demandan una mayor cantidad de información para tomar decisiones, y además,
las herramientas tecnológicas están cada vez más al alcance de los investigadores.
En muchos casos, esta información debe ser recopilada y procesada, y transmitida
entre diferentes centros de investigación ubicados a considerable distancia. Se
recurre Internet y otras ciberinfraestructuras dedicadas para lograr este objetivo.
La transferencia de información cient́ıfica entre sitios remotos implica desaf́ıos en
el rendimiento, la seguridad, la coexistencia y la asignación de recursos. Por lo
tanto, ESnet propuso el concepto de Science DMZ que proporciona patrones de
diseño para un entorno de red optimizado para intercambiar datos cient́ıficos.

Debido a su naturaleza, los flujos de datos cient́ıficos masivos son orientados
a la conexión, demandando un alto y constante tasa de transmisión, con baja
latencia y variabilidad deseables, para alcanzar tiempos de transmisión razonables.
Esto impone desaf́ıos fundamentales al diseño de la red, especialmente en los
mecanismos de control de congestión, estimación de los buffers y detección de
anomaĺıas, temas objeto de estudio de la presente tesis. Esta disertación aborda
dos tecnoloǵıas disruptivas para responder a estos desaf́ıos: modelos impulsados
por datos y dispositivos programables en el plano de datos.

Las soluciones fueron evaluadas empleando redes de producción y testbeds
utilizando dispositivos reales de enrutamiento y procesamiento en el plano de
datos. Los resultados mostraron que las soluciones desarrolladas podŕıan mejorar
efectivamente el rendimiento de las redes académicas y adaptar efectivamente los
patrones de diseño de Science DMZ a redes no dedicadas.
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1
Introduction

Current scientific applications, such as collaborative research experiments, as-
tronomical observations, weather prediction, and hyperspectral imaging in medicine
or biology, may quickly generate Tera bytes (TB) of data daily. For instance: (i)
the Belle 2 High Energy Physics experiment is expecting to collect at least 250 PB
of raw data in its first five years of operation [1]; (ii) during the second run, the
CERN computing center has saved up to 10 GB of data per second, this informa-
tion was transmitted to globally distributed computing centers by using the grid
computing paradigm [2], and (iii) instruments used in the earth remote sensing
could generate hyperspectral image datasets in terms of GB [3]. The Chilean sci-
entific community also faces this overflowing growth in generating scientific data.
In the north of Chile, the ALMA radio observatory generates approximately 600
GB daily, the AURA optical observatory produces 1 TB per night, and the Large
Synoptic Survey Telescope, currently under construction, is expected to generate
28 TB per day. SBD is usually transferred to processing and storage sites, which
may be located from hundreds of meters to thousands of kilometers. A special-
ized computer network device, Data Transfer Nodes (DTNs), is used to facilitate
high-speed transferring. These systems are typically PC-based Linux servers de-
signed expressly for wide-area data transfer and constructed with high-quality
components. The DTN also has high-speed access to the storage system and runs
software tailored for SBD transmissions. In the case of ALMA and AURA, these
observatories have 2 Gbps dedicated network links from their sites in the north
of Chile to facilities in Santiago. Subsequently, SBD must be exchanged over
an international long-haul to Europe and the USA [4]. However, even though
such links are dedicated, they are not exclusively used for transferring SBD since
Internet data, emails, and phone calls are also exchanged over them.

Regardless of the distance separating data sources and processing sites, SBD
is transferred over non-dedicated networks, i.e., SBD is exchanged over general-

1
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purpose networks, and massive scientific data must share limited bandwidth and
network resources with regular network traffic, such as Internet browsing, Voice-
over-IP, audio streaming, and video streaming. While SBD calls for low packet
loss rates and sustained high throughput [5], the above-mentioned data classes
demand diverse Quality-of-Service Quality of Service (QoS) [6]. An unwanted
behavior occurs when the output rate of a terminal is increased arbitrarily. In
this case, DTN, the queues of the routers overflow, and a congestion collapse
can be generated [7]. Despite the availability of high-speed, low-latency links,
adding more bandwidth is not a solution because shared networks do not meet
the requirements for SBD transmission on schedule, and transfer protocols also
impose further restrictions that dramatically reduce throughput. Moreover, when
SBD is exchanged over high-speed, high-latency links, transfer times of massive
data may take several days or weeks. The overall result for scientists and network
architects is frustrating: SBD is exchanged using flash drives and hard drives even
when nodes are interconnected and separated by a few blocks.

One of the main concerns that condition the performance of stream transmis-
sions in non-dedicated networks is the buffer size of both the transmitting nodes
and the routing devices. Bufferbloat and packet rejection are problems associated
with improper sizing or estimation of buffer sizes. Therefore solutions related to
congestion control and suitable sizing and estimation of buffers are required to
ensure adequate performance in shared cyberinfrastructures.

In addition, shared network infrastructures often use firewalls that perform
a fine-grained inspection of the flows that cross the network, which can gener-
ate considerable performance degradation when transmitting flows. One of the
premises in the Science-DMZ design pattern is to have friction-free paths for this
flow type. Therefore, it is required to propose new traffic inspection schemes that
have a reduced impact on overall performance.

Recently, programmable devices in the data plane of the Software-Defined Net-
working (SDN) layer model, have attracted the attention of researchers, architects,
and network administrators because they allow line-rate processing, facilitating
accurate measurements of network status. This technology could therefore sup-
port novel traffic control schemes.

Moreover, the last decade has seen exponential growth in the capabilities of
machine learning or data-driven algorithms to generate estimates in a wide variety
of fields. Data networks are no stranger to this trend, and there are many ini-
tiatives around improving network performance regarding security, traffic control,
and management.

Considering the above, the following research questions arise: Is it feasible to
adapt the Science DMZ design pattern to non-dedicated networks? Could data-
driven models support buffer size estimation and anomaly detection in shared
networks? Using programmable devices in the data plane in conjunction with
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suitable Machine Learning algorithms, could these be the key technologies to
enable the transfers of SBD flows over non-dedicated networks?

1.1 Hypothesis and research questions

The hypothesis that was tested during this doctoral thesis is:

The design of congestion control protocols based on explicit feedback mecha-
nisms that are implemented using P4 Programmable Data Plane (PDP) switches
would improve the performance of a Science DMZ cyber-infrastructure in terms
of flow completion time, utilization, and fairness while collecting and processing
reduced network state information.

The research questions driving this thesis are:

i) How to represent the main components of a high-performance SBD cyber-
infrastructure under the Science DMZ design pattern?

ii) How to emulate packet loss and delay scenarios to determine the behavior of
conventional implicit feedback mechanisms?

iii) How to integrate PDP Switches into a Science DMZ infrastructure?

iv) What are explicit feedback mechanisms approaches compatible with current
protocols feasible to implement in PDP switches?

v) Which Machine Learning approach allows modeling more effectively source
traffic and explicit feedback mechanisms in a Science DMZ cyber-infrastructure?

vi) How to validate the proposed explicit feedback mechanisms?

vii) How to program feedback mechanisms in PDP switches?

viii) How to reach a suitable coexistence between short flows and SBD over non-
dedicated Networks?

1.2 Objectives

General objective:

Develop explicit feedback congestion control mechanisms from PDP switches to
improve the performance of a Science DMZ cyber-infrastructure.
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Specific objectives:

i) Implement a P4-based testbed for Science DMZ cyber-infrastructure that
allows the exchange of Scientific Big Data and the implementation of perfor-
mance measurements in the data plane.

ii) Model network resources and protocols to abstract the Science DMZ cyber-
infrastructure components and optimize their behavior

iii) Use Machine Learning controllers to improve the SBD flow transmissions in
a Science DMZ

iv) Define novel explicit feedback mechanisms for congestion control based on
PDP switches capabilities.

v) Evaluate the proposed mechanisms’ performance regarding target rate, occu-
pancy, and flow completion time.

1.3 Author contributions.

The primary author’s contributions to the state-of-the-art of explicit traffic control
in Science DMZ using PDP devices are the formulation of a model that abstracts
the network state of a Science DMZ from passive data plane measurements, the
development of a Machine Learning Controller (MLC) that uses the network state
to control the flows in the network in order to improve the SBD transmissions, and
the implementation of novel rate control strategies in a Science DMZ testbed. In
addition, problems related to buffer size estimation and anomaly detection, which
are part of the Science DMZ design, were addressed during the Ph.D. studies.
Finally, considering that P4 is an innovative technology in the evolution of SDN
and could be adopted within the curricula in engineering programs, a framework
for teaching and research in that area of knowledge was proposed.

1.3.1 Network state abstraction from data plane measure-
ments.

Considering the network as a dynamic system that can be described through a
set of variables, we leverage the data plane capabilities to collect variables at
the network bottleneck: rate, Round Trip Time (RTT), queuing delay, and the
number of active flows. The above implied the development of codes in P4 that
would allow the collection of the necessary information and reporting it timely to
the control plane.
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1.3.2 MLC to improve SBD flows over non-dedicated net-
works

Two data-driven models to control SBD flows over a non-dedicate network were
built from network state traces collected through extensive experiments on a real
testbed. One of the models was trained when the DTN operates with Cubic
as the congestion control algorithm, while another model was developed when
using Bottleneck Bandwidth and Round-trip version 2 (BBR2). On the one hand,
Cubic is the default Congestion Control Algorithm (CCA) for several operating
systems because it indirectly estimates network congestion and reacts to changes
in network conditions. Its name is due to the cubic function used to increase the
Transmission Control Protocol (TCP) window size. Among the benefits of Cubic
are high scalability and fairness in networks with homogeneous conditions. On the
other hand, BBR2 is based on bandwidth and RTT estimation, offering higher
throughput and optimized latency. For the above reason, it is a suitable CCA
for DTN on Science DMZ networks. The proposed models use the foundations
of direct-inverse control supported by Artificial Neural Networks (ANNs). The
MLC takes the current and past network states to compute the output rate of
the campus network to control the congestion produced by short flows in the
non-dedicated network.

1.3.3 Coarse Estimation of Bottleneck Router’s Buffer Size
on heterogeneous networks

An estimator of the buffer size at the bottleneck in a non-dedicated network was
developed. The model leverages end-to-end measurements to predict an operat-
ing regime of the buffer size at the bottleneck link. Exploratory analysis of the
patterns showed that these classes or regimes are not linearly separable. There-
fore Machine Learning models were trained in order to discriminate between these
regimes. The classifier also works when several CCA coexist in the network, a
common aspect in non-dedicated networks.

1.3.4 Entropy Characterization of NATed Campus Net-
works

We proposed a framework for characterizing the entropy of traffic traversing a
Campus production network based on established flows instead of traditional
packet-counting approaches. In addition, the developed work considers that the
Campus Network uses the Network Address Translation (NAT) service to allow
hosts to access the Internet. This aspect differs the proposal from the existing
ones. The solution generates a negligible impact on the network’s operation as
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opposed to conventional firewalls. The entropy characterization allowed the es-
tablishment of normal and anomaly operation ranges.

1.3.5 A Novel Framework for SDN Teaching and Research

SDN is a networking paradigm that separates the network control and data planes,
allowing for centralized, software-based management and configuration of the net-
work. This approach provides greater flexibility and programmability to the net-
work, enabling more efficient use of network resources and easier management
of network policies. PDP switches are a key enabler of SDN. They provide the
necessary flexibility and programmability, allowing precise network telemetry and
offloading functions traditionally belonging to the control plane, offering dynamic
network control and management. SDN can provide several ways to support a
Science DMZ, including network segmentation, traffic prioritization, dynamic re-
source allocation, security, and network monitoring and analytics.

As a contribution to the Electrical Engineering Department of the University
of Concepción, and particularly to the telecommunications engineering program,
a framework for teaching and research in SDN was structured. The key idea is
to leverage the close relationship between SDN, real-world ICT problems, and in-
novative services development. Thus, the proposed framework integrates actors,
stakeholders, phases, components, and interrelationships in an applied research
environment. The above ensures that the contributions of this Ph.D. thesis and
other related work are fed back into the curriculum, thus facilitating the develop-
ment of new initiatives in the field.

1.3.6 Journal papers and conference presentations.

The following journal papers and conference presentations were obtained as a
result of this thesis, and they allowed the dissemination of this research work:

• Vega C. Kfoury, E. Gomez, J., Pezoa, J. Figueroa, M., and Crichigno, J.
(2023). Machine Learning Controller for Data Rate Management in Science
DMZ Networks (under review). Computer Networks.

• Vega, C., Pezoa, J. E., Kfoury, E. F., and Crichigno, J. (2021). Coarse Es-
timation of Bottleneck Router’s Buffer Size for Heterogeneous TCP Sources.
In 2021 IEEE International Conference on Communications Workshops (ICC
Workshops) (pp. 1-6). IEEE.

• Vega, C., Prieto, Y., Pezoa, J. E., Sobarzo, S. K., & Ghani, N. (2019). A
Novel framework for SDN teaching and research: A Chilean University case
study. IEEE Communications Magazine, 57(11), 67-73.
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• Prieto, Y., Vega, C., Pezoa, J. E., and Crichigno, J. (2019). Shared-risk-
aware Design for Survivable Migration in SDN Environments. In 2019
16th IEEE Annual Consumer Communications and Networking Conference
(CCNC) (pp. 1-6). IEEE.

• Crichigno, J., Kfoury, E., Bou-Harb, E., Ghani, N., Prieto, Y., Vega, C.,
and Torres, D. (2019). A flow-based entropy characterization of a NATed
network and its application on intrusion detection. In ICC 2019-2019 IEEE
International Conference on Communications (ICC) (pp. 1-7). IEEE.

1.4 Thesis Manuscript Structure

The thesis manuscript presented here is organized as follows. Chapter 2 presents
the related work on the topics addressed by this study. Also, it frames the role
of data-plane devices and Machine Learning (ML) techniques to improve the per-
formance of SBD over non-dedicated networks. Chapter 4 tackles the bottleneck
router’s buffer size coarse estimation problem using Machine Learning models. In
Chapter 3 describes and evaluates the Machine Learning Rate Controller to out-
perform SBD transmissions over non-dedicated networks. Chapter 5, a flow-based
entropy characterization of academic networks, is proposed to detect possible traf-
fic anomalies. Chapter 6 presents a teaching and research framework to integrate
the findings of SDN related projects to the academy. Finally, Chapter 7, presents
the conclusions and main contributions of the present study, as well as future
work based on the findings and results.





2
State-of-the-art and motivations

The present chapter presents the state-of-the-art of Scientific Big Data (SBD)
transmissions in non-dedicated networks. Firstly we address the concept of Sci-
ence DMZ and its relevance for data-intensive transmissions for scientific purposes.
Secondly, we review the Programmable Data Plane (PDP) approach and its ap-
plications. Thirdly we discuss the end-to-end and network-assisted rate control
strategies and review the role of Machine Learning (ML) in improving traffic
control. Fourthly, we present the common issues of large data transfers over non-
dedicated networks and the engineering solutions to deal with them. Finally, we
conclude the state-of-the-art with some remarks and motivations.

2.1 Science DMZ

The term Science DMZ was first introduced in the Energy Science Network
(ESnet) by Dart et al. as a design pattern that is suitable for optimizing the
interactions between Wide Area Networks (WANs), campus networks, and com-
puting systems [8]. The so-called “Science DMZ paper” also addresses use cases
where the Science DMZ pattern has been set into practice at the University of
Colorado, Pennsylvania State University, Virginia Tech Transportation Institute,
National Oceanic and Atmospheric Administration, and the National Energy Re-
search Scientific Computing Center. The authors also claim that there is a need to
improve the transport protocols, the extension of virtual circuits, the adoption of
high throughput standards, such as 100-Gigabit Ethernet, and the deployment of
Software-Defined Networking (SDN) solutions to enhance the performance of the
SBD exchange. Several institutions and academic collaboration networks world-
wide [9, 10, 11] have joined this initiative, favoring the technological platform for
exchanging large volumes of scientific information.

The main motivations for adopting the Science DMZ design pattern are as

9
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follows:

• Collaboration: Many scientific experiments require collaboration between
researchers in different parts of the world. The Science DMZ provides a
platform for seamless collaboration, enabling researchers to share data and
resources with colleagues regardless of their location, which can significantly
enhance the efficiency and effectiveness of scientific research.

• Optimized Network Performance: The Science DMZ provides a dedicated
network environment optimized for SBD transfers with minimal friction.
Engineers focus on designing, configuring, and optimizing network infras-
tructure to ensure it can handle the high volumes of data generated by
scientific experiments.

• Scalability : The Science DMZ architecture is designed to scale up or down
as needed, allowing researchers to handle the increasing volume of data
generated by modern scientific experiments. This scalability can help the
network handle large data volumes and quickly adapt to changing research
needs.

• Security : SBD transfers need to be secured to keep the integrity and con-
fidentially of scientific traffic with the minimum overhead. Therefore novel
approaches for access controls, monitoring, and auditing capabilities are
needed.

Figure 2.1 depicts an academic network cyberinfrastructure. First, consider
only the network outside the dotted frame that corresponds to a regular Campus
Network where the resources are shared among all users and frictions generated
by devices such as firewalls are present. Also, the Campus Networks support
heterogeneous traffic in terms of delay and flow size; hence the overall performance
can be highly affected. Now consider including the network segment of the dotted
frame in the cyberinfrastructure, which shows the essential elements of the Science
DMZ cyberinfrastructure, according to the comprehensive tutorial of [6]. In the
architecture, Data Transfer Nodes (DTNs) are specialized Linux devices built and
configured for generating and receiving SBD traffic, at high rates, from and to
external labs. The proposed network topology also considers using a monitoring
server to track the connections and automatically generate reports of end-to-
end performance metrics. Besides, an offline security appliance, like an Intrusion
Detection Systems (IDS), is used to protect the network in a timely fashion. A
storage system, designed according to the requirements of the SBD application,
is necessary to allocate the raw and processed data either acquired or generated,
for instance, by the supercomputer.
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Figure 2.1: Science DMZ cyberinfrastructure components.

From the state-of-the-art in Science DMZ research, two issues have been iden-
tified where efforts have been focused: performance and security. Regarding per-
formance, ESnet proposes a set of good practices for network device selection and
DTN tuning. The use of pacing, parallel flows, and novel congestion control pro-
tocols such as Bottleneck Bandwidth and Round-trip (BBR) are recommended
strategies to maximize the performance of SBD transmissions [12, 13]. Network
architects also have exploited SDN technology to deploy virtual circuits, thereby
dealing with SBD traffic in actual network implementations. The authors in [1]
examined architectural models for leveraging OpenFlow switches and the SDN
model within the science-networking context. Then, they presented designs for
SC12 SCinet Research Sandbox. In Thailand, the National Research and Edu-
cation Network was boosted by the adoption of SDN to control the operation on
six research DMZ nodes [14]. The results showed that the throughput among
these nodes increased from 100 Mbps to 900 Mbps. The AmoebaNet, an SDN-
enabled service for SBD [15], was proposed to address three significant insights
in Science DMZ: the last mile problem, the scalability problem, and the pro-
grammability problem. The solution considered traffic control based on Quality
of Service (QoS) policies, obtaining acceptable performances in differentiated traf-
fic. However, it required the addition of functions specified in the SDN controller
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and modifications in the DTNs.

Conventional firewalls are unsuitable for Science DMZ due to the performance
degradation they present at high transmission rates. One of the main concerns is
the security in this particular deployment type. Several authors have addressed
these problems by implementing non-invasive mechanisms for traffic analysis in
Science DMZ. Several authors have addressed these problems by implementing
non-invasive mechanisms for traffic analysis in Science DMZ. Insider attack de-
tection system for Science DMZ is implemented in [16] by measuring the CPU
load, disk usage, along with network activity. In [17], efficient traffic monitoring
for Science DMZ is studied, avoiding the typical Deep Packet Inspection (DPI)
mechanism and considering a lightweight side-channel based abnormality detec-
tion supported by a basic rule.

2.2 Programmable Data Plane Switches

Last decade’s advances in the development of Application-Specific Integrated Cir-
cuits (ASICs) and Field Programmable Gate Arrays (FPGAs) showed that it is
possible to achieve Tbps forwarding speeds with a set of packet processing capa-
bilities [18, 19, 20]. These capabilities enabled the hardware designers to abstract
flexible functions, such as parsing packets and matching header fields, thereby al-
lowing SDN controller applications to leverage these capabilities through a com-
mon open interface in the data plane. A high-level programming language is
required to take advantage of these abilities effectively. Besides, hypervisors use
software switches to steer packets to and from Virtual Machines (VMs) in data
centers. These software switches are typically based on a large body of code,
which is challenging to manage and update [21]. The P4 open-source language
emerged immediately as a feasible solution that tackles three main goals of yielding
a data plane programmable network device: reconfigurability, protocol indepen-
dence, and target independence. P4 is a language extensible for ASICs, FPGAs,
and virtual-based switches, among other devices [22].

P4 uses Protocol-Independent Switch Architecture (PISA), which is a pipeline
forwarding architecture for the programming data plane. Figure 4 depicts PISA,
which is composed of three main programmable elements: (i) a parser that ex-
tracts packet headers based on a defined policy; (ii) a set of match-action stages
organized in pipeline, which perform operations like packet ordering or filtering,
form the headers using Arithmetic Logic Units (ALUs) with computational capa-
bilities and stateful memories; and (iii) a deparser that reassembles the packets
that the output ports will forward. The P4 language Ecosystem is overgrowing
with a wide range of products, projects, and services that leverage P4 [23].

Figure 2.3 shows the workflow for the design and implementation of P4-based
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Figure 2.2: Protocol-Independent Switch Architecture

data planes. The first step is to check the architecture model of the target. The
architecture here means the function blocks present in the target and the inter-
faces between them. To be aware of the architecture, let the programmer know the
available resources and maximize them to develop a given task. Although architec-
tures may vary between manufacturers, the Programming Protocol-Independent
Packet Processors (P4) Consortium has made an effort to define a minimum set
of generic architecture elements. This gave rise to the P4 Language Specification,
whose current version is P416 [24]. Writing programs in P4 are mandatory to add
the standard library called core.p4 and a library related to the target architecture.

Write p4
code

ComplierBinary fileTarget switch

Control plane

Data Plane

Check model
architecture

Control plane Headers
Metadata

Parser
Actions
Tables

Control Blocks
Externs

Deparser
Annotations

Figure 2.3: P4 Workflow

Writing the code is a matter for the programmer and involves the development
of the following abstractions:

• Header: It is a grouping of variables that represents the data corresponding
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to the header of a protocol present in the packet (e.g., IPV4).

• Metadata: It Refers to additional information about a packet not part of
the packet header. A network device can add metadata as the packet passes
through it. This information can be used to make forwarding decisions,
apply policies, or perform other operations on the packet.

• Parser: This programmable block aims to extract the values of the packet
header that will be processed by the data plane. The parser is typically
the first stage of the packet processing pipeline in a P4 architecture, and
it performs header extraction, field extraction, field validation, and header
stacking. The programmer must model the state machine representing all
combinations in the order of appearance of the packet headers and program
the states and transitions.

• Actions: These are a set of sequences that can process arguments and return
values according to a specific action programmed, such as: changing the
egress port of the packet, changing the MAC address, dropping the packet,
or sending the packet to the control plane for further processing.

• Tables: These abstractions are entities composed of entries on which the
control plane establishes actions of the P4 program. In the tables, values
established in the headers or metadata are mapped with one or more actions.
Each table entry has a match key, such as a destination IP address and
source port of the packet. For consistency, match keys must be unique
and can only appear once in table entries. Depending on the target, the
tables can be defined as additional properties such as expiration time, a
maximum number of entries, or the default action. Tables in P4 are typically
organized into a pipeline, where each table performs a specific function in
the packet processing pipeline. The output of one table may be used as the
input for the following table in the pipeline. The above allows for flexible
and modular packet processing, where different pipelines can be defined for
different network protocols or use cases

• Control Blocks: Due to PISA architecture’s pipeline nature, the control
blocks are limited, therefore in P4 for or while are not supported. In a
P4 code, it can only include if ... else, switch and hit ... miss control
blocks. The hit..miss statement defines two exclusive code blocks to execute
depending on the table’s search result. The architecture establishes the
number and location of the control blocks.

• Externs: These are specific objects of each target that can be configured
from the control plane. Functions for efficient hash or checksum calculation
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are examples of externs used recurrently in P4 programs.

• Deparser: The deparsers are intended to perform the opposite function to
the parser. These serialize the headers modified by the programmer on the
payload of the packet. In this context, the payload corresponds to the set
of bytes in the packet that the parser has not processed.

• Annotations: These placeholders are special directives with a high range of
applications, such as: limiting the use of an action to a context, enabling
or hiding elements to the control plane, setting limits for objects, and per-
forming code verification [25].

The compilation process is carried out with the P4 source code ready, trans-
forming it into an understandable language for the target platform. This target-
specific code is loaded in the P4 switch. When the switch operates, it can interact
with the control plane through Application Programming Interfaces (APIs). The
default API implementation for communicating the control plane with the data
plane is P4Runtime. It can be used to insert, update, and delete entries in P4
tables and manipulate P4 programming elements such as counters and meters.

According to a recent exhaustive survey [26], programmable switches are ap-
plied in In-band Network Telemetry, Network Performance, Middlebox Functions,
Accelerated Computing, Internet of Things (IoT), and Cybersecurity. Although
a large part of the developments related to P4 was carried out at an experimental
level, the authors envision that this technology will be increasingly integrated into
cyberinfrastructures.

2.3 Rate Control

Rate control in networks is a crucial area of study and continuously evolves with
network technologies’ growth. The goal of rate control is to manage network
resources efficiently, ensure fair utilization, and provide a high-quality of service
to the end-users. Rate control strategies have been developed into end-to-end
and network-assisted categories. In the first one, the end devices autonomously
regulate the output rate according to indirect measurements they can make on
the state of the network. In contrast, network-assisted rate control is achieved
by having a central entity, such as a controller, which monitors and regulates the
data flows on the network.

2.3.1 Legacy end-to-end rate control

The default end-to-end rate control used on the Internet is based on the Transmission
Control Protocol (TCP) [27] whose algorithms have been refined over time. One of
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the most popular flavors of TCP Congestion Control Algorithm (CCA) is Cubic,
which is the default CCA in Linux Systems. Cubic is a loss-based CCA; they rely
on packet loss to detect congestion. However, when short flows compete with long
flows, even a few of the latter, bandwidth starvation occurs [28], affecting overall
network performance. In 2016 Google released BBR [29], a disruptive model-
based CCA that estimates the bandwidth and Round Trip Time (RTT) to infer
the Bandwidth Delay Product (BDP) and computes the host output rate. Au-
thors in [30] conclude that BBR works well for a single long flow at a bottleneck.
However, it presented coexistence issues with CUBIC, evidenced by the fairness
index in tests performed in [31] and [32]. Subsequently, Bottleneck Bandwidth
and Round-trip version 2 (BBR2) [33] was released to mitigate the drawbacks
presented by the first version by using Explicit Congestion Notification (ECN)
and packet-loss rate estimation. Tests conducted in [32] and [34] confirmed that
BBR2 outperforms BBR in terms of fairness and packet loss.

2.3.2 Legacy network-assisted rate control

Legacy network-assisted rate control mechanisms rely on router’s Active Queue
Management (AQM) algorithms. One of the first AQM algorithms is Drop-Tail,
in which the packets from all hosts are accepted until the queue size is reached.
Floyd and Jacobson in [35] proposed Random Early Detection (RED), which
performs probabilistic packet dropping to inform the hosts about network conges-
tion. The higher the queue occupancy in the router, the higher the probability
of dropping. In the test performed, RED performed better than Drop-Tail. How-
ever RED some drawbacks, including relying only on the queue occupancy, the
lack of knowledge of the number of flows that share the bottleneck, complex
parameter tuning, and not being suitable for small buffers [36, 37]. Controlled
Delay (CODEL) was proposed in [38] focusing on router queuing delay. CODEL
tracks the sojourn time and the time the packet takes between router ingress and
egress. If the sojourn time exceeds a pre-defined threshold, the packet is dis-
carded in the de-queue process [36]. Performance tests, such as those conducted
in [39], showed that CODEL overcomes RED regarding queuing delay and link
utilization. Despite the advantages mentioned above, CODEL has issues with the
router’s memory usage and scalability due to the additional computational load
involved in the queuing delay computation. Afterward, CODEL, Proportional in-
tegral Controller Enhanced (PIE) [40] was proposed by Internet Engineering Task
Force (IETF), with the premise of offering the best of RED and CODEL. PIE
relies on control theory to estimate the dropping probability based on queuing la-
tency computation. Tests performed in [41] demonstrated that PIE works better
than CODEL in terms of queuing delay under heavy congestion.
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2.3.3 Machine-Learning-based rate control

Due to the heterogeneous and complex traffic in today’s networks, it is not feasible
for a rate control mechanism to work properly in different scenarios. Therefore,
in recent years, initiatives have emerged that involve learning as an element to
be considered in the modeling and operation of rate control algorithms. There
is a set of End-to-end performance-oriented, involving upgrades in network end
devices. Remy [42], PCC [43], PCC Vivace [44], PCC Proteus [45], GCC [46],
Copa [47], Indigo [48], and ZiXia [49] are based on the calculation of an objective
function that considers measurements of the network state. The objective function
parameters in the above algorithms are tuned using recurrent neural networks or
reinforcement learning. These solutions have shown significant improvements over
legacy rate control algorithms. Other learning-based solutions train ML models
from datasets used supervised, unsupervised and Reinforcement Learning (RL)
techniques. A comprehensive survey about the previous end-to-end rate control
solutions based on ML is found in [50].

Although research focuses on end-to-end ML-based rate controllers, there is
a set of solutions for the network-assisted approach as an enhancement of the
AQM algorithms. Neural networks [51, 52], Q learning [53, 54, 55] and RL [56]
are the preferred ML algorithms. The above network-assisted rate control mech-
anisms operate with limited functions restricted by vendor or software routers
with performance impairments that make them impractical for high-performance
applications [57].

2.3.4 Rate control supported by Programmable Data Planes

Last decade’s advances in the development of ASICs show that it is possible to
achieve terabit forwarding speeds with a set of packet processing capabilities.
These capabilities enable the creation of network devices able to monitor and
control network traffic at line-rate in the data plane. P4 emerged as a de-facto
data plane programming language that tackles three main goals: reconfigurabil-
ity, protocol independence, and target independence because it is extensible for
ASIC, FPGA, and virtual-based switches, among others [58]. P4 has enabled
the deployment of rate control enhancements from various approaches, including
host-centric, enhanced feedback, traffic isolation, and fast rerouting [59]. Some
solutions [60, 61, 62, 63, 64] require software modifications to the end-hots and
would therefore be applicable when the network administrator has full control
of the network devices. Legacy AQM algorithms have been adapted and imple-
mented on P4 switches with certain limitations [65, 66, 67, 68, 69, 70]. P4 also
enabled the fast development of custom AQM algorithms such as P4-SRPT [71],
P4-ABC [72], SP-FIO [73], FDPA [74], P4QoS [75] and QoSTCP [76]. The above
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schemes benefit from the advantage of accurate measurements on the data plane,
which allows for more timely control actions on the network.

Passive measurement is one of the emerging fields for using PDPs to support
operations performed at the control plane. Due to the line rate processing ca-
pability, these devices can make accurate measurements without disturbing the
network behavior. Devices such as passive taps are commonly used to make an
exact copy of the traffic at the monitoring points. Authors in [77] proposed a
system that tracks RTTs online, using a P4 switch as a passive measurement
device. Then, they apply the meter to support interception attack detection. In
[78] p4-based, passive measurements of the number of flows and RTT were used to
control the queue of a legacy router, improving the Flow-Completion Time (FCT)
of short flows. Chen et al. used a similar approach by developing ConQuest, a
tool that measures the queuing delay to identify flows that blow up the legacy
router’s queue.
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2.4 Issues of large data transfers over non-dedicated

networks

2.4.1 Coexistence among short and long flows.

Due to the distance between the sender and receiver nodes, the SBD flows often
have two main characteristics: a huge data size and a high RTT. This kind of
traffic is named elephant flows. On the contrary, general purpose traffic is short-
lived flows with small volumes; hence, they are called mice flows. Globally, there
are dedicated infrastructures optimized for SBD traffic, such as Esnet, Internet2,
National Research and Education Netowrk, European Research and Education
Netowork, and Janet. However, in emerging countries or small institutions, such
solutions are out of budget, and therefore scientific traffic must be shared with
general-purpose traffic and, therefore over non-dedicated networks. It has been
proven in studies such as [79, 80, 81] that the presence of heterogeneous traffic
on shared infrastructures generates a high degradation of performance in terms of
utilization, latency, end-to-end throughput, and fairness index. Large flows can fill
the router queues at bottlenecks, starving short flows, causing high queuing delay
and packet loss and thus degradation in the quality of service [82]. On the other
hand, with only a small percentage of packet loss, the performance of long flows
is compromised because congestion detection and control have high convergence
times due to the RTT [83].

Several solutions have been proposed to tackle the problems related to the
coexistence of short and long flows. Some authors [84, 85, 86, 87] address the
prioritization of packets belonging to short flows in the router queue conforma-
tion. Another strategy some authors propose is using load balancing [88] and
differentiated traffic routing [89, 90, 91, 92]. The above solutions are based on the
intelligent detection of elephant and mice flows. Recently, artificial intelligence
has been used to identify elephant and mice flows as presented in [93, 94, 95].

2.4.2 Buffer Sizing

Router’s buffer sizing in a communication network has been of interest to re-
searchers due to its significant impact on the overall performance in a wide va-
riety of network deployments. If buffers are too small, the network is prone to
experience a high packet loss rate. On the other hand, if buffers are too large,
the latency and complexity as well as the router’s cost increase [96]. This situa-
tion has motivated studies and models for determining the appropriate amount of
buffer size that should be configured, and also efforts to estimate the buffer size
under a given network operation condition.

There exists a considerable body of literature around buffer sizing. Several
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studies have shown that the network performance is affected by the buffer size
setting in routers. In earlier works, the buffer size was configured considering the
link utilization. In [97], the pervasive BDP rule-of-thumb for buffer sizing is de-
fined. Such a rule states that the buffer size must be equal to the product between
the link’s capacity, C, and the RTT. This buffer size guarantees full utilization of
the link. The results were derived by observing the behavior of a small number of
simultaneous TCP flows. This rule was widely used by Internet service providers
(ISPs) and manufacturers when configuring and designing routers. However, in
practice, the number of flows sharing a link is usually large. Appenzeller et al.
[98] incorporated this observation and proved that for N desynchronized flows,
the bottleneck link could be kept fully utilized with a buffer size of approximately
C ·RTT/

√
N . Note that this new rule assumes that flows use long-lived TCP New

Reno congestion control [99], which is based on the additive increase multiplica-
tive decrease (AIMD) behavior. Thus, it does not apply to new congestion control
algorithms based on pacing, such as BBR[100] and BBRv2[101]. Supported by
the pacing technique, authors in [102] hypothesize that it is possible to obtain
a remarkable network performance by further reducing the buffer size to a few
dozen packets. This approach can be useful when the network administrator has
full control of network resources.

Previous works showed that both the congestion control protocol and the buffer
size play a crucial role in the network’s performance because they are closely re-
lated. Analyses of delay-based congestion control protocols suggested that the per-
formance of TCP-Vegas and TCP-FAST can be susceptible to the precise choice
of small buffers [103]. In [104], the authors tested Orca, their own Learning-Based
Congestion Control, for buffer sizes in the range of 3KB to 96MB. Results reported
that Orca outperforms CUBIC [105] under any buffer size condition. Recently,
Kfoury et al. [101] conducted tests for different buffer sizes, for CUBIC, BBR,
BBR2, and TCP variants. They conclude that BBR and BBR2 are suitable with
a small buffer size in terms of throughput and link utilization.

Experiments on buffer sizes have not been limited to controlled simulation of
laboratory testbeds. In [106], Facebook’s engineering team conducted a series of
experiments on its backbone using real network traffic to measure the impact of
buffer size reduction. The effect of buffer sizing on the Quality of Experience
(QoE) metrics was measured at Netflix’s network [107]. Researchers collected
data using Netflix Open Connect Architecture and production traffic from users
during peak hours. They observed that video QoE could degrade when both too
small and too large buffer sizes are configured. The authors also state that more
experiments are needed to deeply understand buffer size and CCA in video traffic
performance.

When the bottleneck link parameters are not known or updated to the senders,
the estimation of buffer parameters can support decision making in congestion
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protocols. The Delay Friendly TCP (DFTCP) [108] performs rate control based
on the estimation of the maximum size of available buffers in the routers along a
network flow path. The model computes this value from average RTT and prop-
agation delay. The parameter estimation also can be carried out from network
measurements. Consequently, it is necessary to collect meaningful information
from the network in a training process aiming to abstract the network’s operation
patterns in a general way. Authors in [109] added a bottleneck link capacity esti-
mator to BBR to improve the performance of multipath TCP connections. Ciaccia
et al. [110] proposed a statistical method based on traffic patterns, especially at
the slow-start phase, to estimate the bottleneck’s link capacity using passive mea-
surements. The authors also train a neural network to improve the estimation
accuracy of the model. ML techniques allow finding hidden patterns that favor
bottleneck parameters estimation in noisy and bursty cross-traffic, multiple bot-
tleneck links, and inaccurate time stamping. This approach is exploited in [111]
where authors estimate the available bandwidth using a reinforcement learning
model. The buffer size also impacts metrics such as link utilization, throughput,
and resource consumption. Optimizing such metrics simultaneously was studied
in [112].

2.4.3 Anomaly detection

One of the concerns in implementing Science DMZ is to ensure security without
impacting performance. In non-dedicated networks, it is common to use firewalls,
which perform detailed packet-by-packet inspection, resulting in tolerable per-
formance degradation for general-purpose applications but not for data-intensive
transmissions. Therefore, frictionless flow-based methods have been considered
for implementation in Science DMZ.

There is a renew interest in using flow-based analysis to monitor and secure
networks, driven by its substantial reduction in storage and CPU requirements.
Hofstede et al. [113] indicate that flow-based analysis leads to data reduction
of 1/2000 of the original volume, as packets are not individually processed but
aggregated. Hofstede et al. [114] present flow-based detection techniques for
SSH and web-application attacks. They also contrast the behavior of flows in
production and lab environments. In [115], an application is developed to detect
compromised hosts by using a multi-layered security detection. The first layer of
detection consists of a flow-based intrusion detection, which pre-selects suspicious
traffic. The second layer performs packet-based intrusion detection over the pre-
filtered traffic.

Early work in entropy-based anomaly detection applied to backbone networks
is presented in [116]. The proposed detection algorithms compute the entropy of
IP addresses and ports. The authors showed that changes in the entropy content
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are indicators of massive network events. The traffic data was collected from a
large ISP backbone, namely, the Swiss national research and education network.

Nychis et al. [117] describe the advantages of entropy-based analysis of multi-
ple traffic distributions in conjunction with each other. In particular, their work
suggests that for more accurate anomaly detections, IDSs should complement the
use of port and IP address distributions with other behavioral features. The dif-
ferent distributions are constructed by counting packets, and the entropy analysis
is applied to large data sets containing thousands of active IP addresses from large
networks (GEANT [118], Internet2, and others).

Berezinski et al. [119] provide a comparative study of entropy-based ap-
proaches for botnet-like malware detection. Their results indicate that, in addition
to Shannon’s entropy, Renyi’s and Tsallis’s entropies have very good detection
performance. The authors also show that anomaly detection methods based on
volume may perform poorly. Nowadays many anomalous network activities such
as low-rate distributed denial-of-service (DDoS), stealth scanning, or botnet-like
worm propagation and communication do not result in a substantial traffic volume
change. Thus, they remain hidden in a traffic volume expressed by the number of
packets, bytes, or flows.

Callegari et al. [120] also propose an anomaly detection system which measures
the variation in the entropy associated with the network traffic. Similar to [119],
different entropy definitions are used.

Homem et al. [121] propose an entropy-based technique to detect anomalies
perpetrated by encapsulating IP packets carrying malware over the DNS proto-
col. The proposed method quantifies the information entropy of different network
protocols and their DNS tunneled equivalents, and then use such quantities to
discriminate normal behavior against anomalies.

The use of NAT to conveniently hide the source of malicious behavior is dis-
cussed in [122]. By using only flow information, the authors show that machine
learning algorithms may identify devices behind NAT. Tracing such devices is par-
ticularly relevant when payload inspection does not provide information because
encryption is used at the application layer.

2.5 Teaching and Research in SDN

SDN instructional initiatives have attracted increased research focus in recent
years. For example, an SDN undergraduate-level course with five phases and
structured around three main units (basic networking, virtualization and cloud
computing, and SDN applications) was developed in [123]. Other initiatives have
focused on evaluating, from an academic point of view, SDN deployment tools
such as Mininet, FloodLigth, and Open Network Operating System (ONOS) [124].
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Others have also focused on developing educational resources like virtual labo-
ratories, [125], real-network platforms, [126], hands-on labs, [127], and physical
testbeds, [128], for the SDN teaching-learning process. These resources provide
students with a methodology to develop practical skills in production environ-
ments, albeit on a smaller scale.

Today many engineering programs have senior year Capstone Design courses,
which also serve as a quality assurance requirement for accreditation processes. In
such courses, students apply and integrate their acquired knowledge and skill sets
from previous courses. They can also incorporate engineering standards into their
implementation, along with the know-how from past work experiences. As such,
many Capstone Design courses yield notable research products such as proof of
concepts, system prototypes, conference papers, and journal articles [129]. They
are considered a primary outcome of the learning process herein and essential for
improving students’ technical skills. These vehicles also provide a robust means
for introducing students to the research process, which may lead to the generation
of transferable knowledge for industry and society.

2.6 State-of-the-art Remarks

The literature review reveals much concern in deploying the Science DMZ pattern
to support SBD transfers among scientific collaboration networks and to tackle
the technical challenges over non-dedicated networks such as traffic control, buffer
sizing and anomaly detection. Therefore, P4, in junction with data-driven ap-
proaches, emerges as a promising and flexible long-term alternative to improve
the overall network performance.
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Machine Learning Controller to improve Scientific

Big Data transmissions over non-dedicated
Networks

This section outlines the analytical and experimental procedures and techniques
used to conduct the improvement of SBD transmission over non-dedicated net-
works using dataplanes and machine learning control. We provide some key def-
initions in Section 3.1 and then the problem is stated formally in Section 3.2.
Section 3.3 describes the materials and methods to provide a detailed descrip-
tion of the research methodology in order to make the study reproducible, and
also we present the Machine Learning Controller (MLC) approach intended to
improve the SBD transmissions over non-dedicated networks. The results of the
tests conducted to evaluate the performance of the proposed solution under di-
verse scenarios are discussed in Section 3.4. The chapter concludes by presenting
the contributions and conclusions of the developed solution.

3.1 Definitions

Before addressing the problem statement of our work, it is worth formally settling
on some definitions.

Definition 1 A cyberinfrastructure is defined as Non-dedicated Network if
the resources are shared among various traffic types, including long and short
flows.

Definition 2 An Academic Cyberinfrastructure is a non-dedicated network
where SBD and general-purpose traffic generated by users of an academic institu-
tion coexist.

25
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Definition 3 A Science DMZ is a network segment of an academic cyberin-
frastructure that is tailored to exchange SBD flows. The main component of the
Science DMZ is the DTN which is a device responsible for transmitting scientific
data to a remote destination.

Definition 4 A Campus Network is a segment of an academic cyberinfrastruc-
ture that is largely dominated by the exchange of short-flow traffic from general-
purpose applications.

Definition 5 The Network State Variables is an abstraction of the current
behavior of the network dynamics, defined as a set y(t) = {y1, y2, ..., yK} composed
by K measurements at a given time t.

Definition 6 A Control Law u(t) is a function composed by a set of network
state variables Y = {y(t), y(t − 1), ..., y(t − N)}, a set of previous control laws
U = {u(t − 1), u(t − 1), ..., u(t −M)}, and a set of parameters ϕ. Hence u(t) =
f(Y ,U , ϕ).

3.2 Problem Statement

Consider the academic cyberinfrastructure simplified diagram of Figure 3.1. The
campus network is divided into four main subnets. Firstly, the academic staff sub-
net is intended for professors and academic authorities that typically interchange
emails, surf the internet, and use the internal campus platforms. Secondly, the
student’s subnet often uses the wireless campus network and commonly uses li-
brary resources, campus platforms, streaming, social networks, multimedia calls,
and so on. Thirdly, the servers and Information Technology (IT) administration
subnet supports academic databases and services and guarantees the overall net-
work operation. The named first three segments are secured by IT administration
policies implemented in devices such as firewalls and proxies that cause friction in
the network traffic. Finally, the Science Demilitarized Zone (DMZ), a friction-free
network segment, intended to share huge datasets with other research labs out-
side the network, using the non-dedicated WAN. The external resources entity
summarizes all kinds of content needed to access applications of the academic
cyberinfrastructure. As mentioned in Section 2, this diversity of flows provides a
breeding ground for network congestion, and actions to ensure adequate service
to SBD flows and short flows are required.

To deal with the above situation, the present work proposes, in summary, to
assess the current state of the network and to take a relevant control action to
guarantee a target rate at the DTN.

The network state variables vector y(t) is composed by data-plane measure-
ments, namely:
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Figure 3.1: Academic Cyberinfrastructure.

• DTN Rate, RDTN [bps].

• Campus Network Rate, RCampus [bps].

• DTN RTT, RTTDTN [s].

• Campus Netowrk RTT, RTTCampus [s].

• Queuing Delay of DTN flows, QDDTN , [s].

• Queuing Delay of Campus Network flows, QDCampus [s].

• Number of active flows, Nf .

Suppose the network administrator would like to set the DTN output rate at a
target value R∗

DTN , as part of a desired network state yd(t). To reach the desired
state, we adjust the Campus Network core switch output rate u(t), following a
control law described as follows:

g :RS1 × RS2 × RS3 × Rq → R
(yd, y(t− n), u(t−m),Ψ) 7→ g(yd, y(t− i), u(t− j),Ψ) = u(t)

(3.1)

with n = 1,..., N; m = 1,..., M. In the above formulation, Ψ = {ψ1, ψ2, ...ψq}
represents the set of parameters of a given control law function g.
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Figure 3.2 shows the block diagram of the proposed solution. The control
signal u(t) is computed using current and past observations of the network state
variables y(t) and the input u(t). The above leads to the following research
questions: Can the network state be measured in the data plane? How to define
the remaining variables of the desired state of the network? How to obtain a
control law to achieve the desired state? Moreover last but not least, is it feasible
to implement the proposed solution in a real non-dedicated cyberinfrastructure?
The answer to these questions will be addressed in the following subsections of
this chapter.

NetworkController

Figure 3.2: Rationale of Proposed Solution

3.3 Materials and Methods

3.3.1 Machine Learning Control System Architecture

According to previous experiments performed in an emulated scenario, we claim
that the variation in the output rate of the Campus Network u(t) affects the
network state variables y(t) and could be used as a control variable of the system.
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Consequently, it is necessary to have a strategy to determine the control law
from the system’s state. Because packet loss, retransmissions, and bursts occur
in a non-dedicated network, obtaining the control rule by conventional modeling
methods is ineffective.

Therefore we propose to use a MLC that relies on the widely used inverse-
direct controller strategy [130, 131, 132, 133]. Figure 3.3 shows the block diagram
of the proposed controller.

The MLC has to fill with the following requirements:

• The ML algorithm must address a regression problem, i.e. compute a rate
value at the switch from the traffic patterns obtained from the telemetry
system.

• It must operate online with a computation time less than the switch output-
rate update time. Because we use an Open vSwitch (OVS), for the current
application, the update time is defined in 100ms.

• The algorithm must deal with the non-linearity and complexity of the net-
work dynamics.

• It is desirable that the algorithm exploits hidden relationships between vari-
ables improving the feature extraction process.

• It must be functional from the start to guarantee the minimum flow com-
pletion time of SBD flows.

Considering the above requirements an Artificial Neural Network (ANN) can
be used as controller due to:

• It can perform regression tasks using continuous output layers.

• ANN can compute online the estimated output value from the patterns in
a short time depending on its architecture meeting the time requirements.

• ANN have been used in many applications and have proven to be suitable
for complex and non-linear problems.

• The model can implicitly aid the feature extraction process by finding hidden
patterns resulting from relationships between input variables.

• ANN could be used in pre-trained systems through supervised learning. The
quality of the results depends on the amount of training data. Training the
model with enough data to favor the model’s generalization is possible in
our solution.



30 3.3. Materials and Methods

The law perform for the ANN controller is formulated as follows:

û = g(yd, y(t− T ), y(t− 2T ), u(t− T ),Ψ) (3.2)

The non-linear function g and their parameters Ψ are obtained by training the
model with network observations every time T .

Network
ANN 

controller

An�-
Windup

Figure 3.3: Machine-learning Control System Architecture.

We also included an Anti-Windup filter to reduce the error and avoid satu-
ration in the control loop. The inverse-direct method seeks to lead the system’s
state to a desired state or set-point yd(t) by identifying the inverse dynamics of
the system.

Figure 3.4 shows the block diagram of the Anti-windup filter, where the inputs
are the error signal e(t) computed by y(t) − yd(t), and the output of the ANN
controller û(t). The signal u adds the contributions of the signal û, the integral
error, and w(t). The value of u is coerced by a saturator in a ±∆u(t) interval.
Finally, the u(t) signal is set in the output interface of the Campus Network
switch. The Anti-windup filter has three tuning parameters, namely: Kp, Ki, and
Kw.

3.3.2 Tuning of Controller Parameters

In order to tune the controller parameters, we proposed an objective function to
minimize the Integral Absolute Error (IAE) that accumulates absolute error over
time. Absolute error is computed as the difference between the set-point rate
R∗

DTN(t) and observed throughput RDTN(t) at the DTN.
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Figure 3.4: Anti-windup filter

min
Kp,Ki,Kw

IAE =

∫ t

0

∣∣∣∣∣R∗
DTN(τ)−RDTN(τ)

∣∣∣∣∣dτ
Kp, Ki, Kw ≥ 0

(3.3)

Due to the complexity of the system dynamics, resulting from the concur-
rence of heterogeneous flows such as: delay, packet loss and retransmissions, it is
not feasible to find a theoretical model to obtain the optimal operating values of
the parameters. However, the fact that different combinations of parameters can
be attempted on the testbed makes it possible to explore the solution space to
determine suitable operating parameters. Since the three parameters can adopt
positive continuous values, the solution space is large and therefore an effective
technique is required to find the appropriate values of the parameters. Evolu-
tionary algorithms therefore provide an effective alternative search strategy for
identifying near-optimal solutions in a high-dimensional search space [134]. As
shown in [135, 136, 137] Genetic Algorithm (GA) have proven to be a practical
method for controller tuning, in particular PID controllers. Hence a GA was used
to find the controller parameters Kp, Ki and Kw.

Selecting the parameters of the GA is worthy of considering the computational
limitations of the testbed. The maximum time allowed for an individual iperf3
test is 86400 s. In every computation of the fitness function or IAE inside the
GA, we generate traffic from the sources to their corresponding destinations for
120 seconds using a pseudo-random R∗

DTN(t) signal. Therefore the mating pool
size and the number of generations need to be enough to offer diversity and the
possibility to explore the search space and fit that maximum time restriction. The
GA parameters are summarized in Table 3.1, and match with the requirements
and computational limitations. For crossover and mutation probability we use
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typical values. To build and implement the GA, we used the python library
PyGAD [138].

Algorithm 1 shows the parameter tuning process by using the GA.

Algorithm 1 GA for MLC parameter tuning problem.

Require: Generation G; Max Generations, Gmax; Number of parents mating,
mp; Mating Pool Size, ms; Crossover Probability, pc; Mutation Probability, pm

Ensure: Best Controller Parameters: Kp,Ki,Kw

G = 0; P (G) : Initial population

Compute IAE of population (P (G))

repeat
M ← Select Parents (P (G),mp)

Pc(G)← Crossover(P (G), pm, M)

Pm(G)← Mutation(Pc(G), pm)

Compute IAE of (Pm(G))

P (G+ 1)← Selection (Pm(G), steady state selection)

G = G+ 1

Compute IAE (P (G))

Kp, Ki, Kw ← Get Best Solution (Pm(G))

until G ≥ Gmax

return Kp, Ki, Kw

Table 3.1: Genetic Algorithm Parameters
Parameter Value

Number of generations, G 100
Number of genes, g 3
Number of parents mating, mp 15
Mating pool size, ms 30
Crossover probability, pc 0.90
Mutation probability, pm 0.1

3.3.3 Experimental Testbed

Figure 3.5 shows the topology used to test our solution, and it was implemented
at Cyberinfrastructure Laboratory at the University of South Carolina with real
networking devices and emulated hosts. The campus network consists of 100
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general-purpose sender nodes (s1, s2, ..., s100) connected by an Open vSwitch
(OvS) (S1), generating commodity traffic. The Science DMZ is co-located to the
campus network and consists of a DTN sender (DTN-s) and an OvS switch (S3).
The campus network and Science DMZ are connected to the wide area network
(WAN) through a Juniper MX204 border router (BR1). An optical passive tap is
connected at each interface of the border router. Each tap replicates the observed
traffic to an Edgecore 100BF-32 P4 switch, which computes network variables at
line rate. The remote network consists of a Linux border router (BR2), an OvS
switch (S2), 100 general-purpose receiver nodes (r1, r2, ..., r100), and a DTN
receiver (DNT-r). The router BR1 is connected to the Linux Router BR2 at a
link rate of 1Gbps. Therefore, this link represents the network bottleneck.
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Figure 3.5: Testbed topology used for emulating scientific and general-purpose traffic
in a non-dedicated cyberinfrastructure.

Using the Netem tool [139], we artificially introduced a 100ms delay at the
link connecting the DTN-s and DTN-r nodes to emulate a high-latency Science
DMZ network. Netem was also used to introduce, at the switch labeled as S1, a
10ms propagation delay for the campus network traffic. Besides, all nodes were
deployed on isolated namespaces using Mininet in a Lenovo ThinkSystem SR630
server with enough computational resources.

Each sender node establishes a single TCP connection with a corresponding
receiver. Instead, the DTN-s establishes multiple TCP connections to the DTN-r
node, emulating the behavior of commonly used applications for scientific data
transmissions like Globus GridFTP [140]. The proposed solution allows set the
CCA algorithm for both the Campus Network hosts and the DTN-s.
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3.3.4 Data Collection and Computation of Network Vari-
ables

The control system architecture shown in Figure 3.3 considers a data-driven net-
work model. This model is defined in terms of seven network variables that jointly
define the network state. To achieve this objective, it was necessary to develop
codes in the data and control planes that work concurrently, as shown in Figure
3.6. We exploited the capabilities supported by the P4 switch to collect data and
pre-compute such network variables online at the data plane, which are reported
to the control plane. The computation of each variable is explained below.
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Figure 3.6: Functional block diagram of the solution.

Rate Calculation

Rate Calculation relies on codes running simultaneously at the data and control
planes. At the data plane, one counter for Campus Network traffic and one for
DTN’s traffic is permanently updated. We use Direct Counters, elements available
in the P4 switch architecture. As shown in Algorithm 2, when a packet enters
the switch, a match-action table firstly separates the incoming traffic between the
Campus Network and the DTN. Then, a counter is assigned and incremented
with the packet size, in bytes, for each traffic source.

After that, as shown in Algorithm 3, the control plane polls the counters every
T seconds through the P4 Runtime interface and computes the difference between
the current and the previous byte count per traffic, ∆BCampus and ∆BDTN . Also,
the control plane code calculates the time difference between timestamps, ∆t.
Thus, data rates are obtained from the ratio between each ∆B and ∆t.
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Algorithm 2 Update counters at data-plane

Require: Packet Size pkt.s; Packet headers hdr; DTN’s IP address IPDTN−r;
Remote Network IP Address Segment IPRN ; DTN counter, CDTN ; Campus
Network counter, CCampus

Ensure: CDTN , CCampus

while True do
if hdr.ipv4.dst addr = Longest-prefix match(DTN − r) then

CDTN ← CDTN + pkt.s

else if hdr.ipv4.dst addr = Longest-prefix match(IPRN) then

CCampus ← CCampus + pkt.s

end if

end while

Algorithm 3 Rate calculation at control-plane

Require: DTN’s IP address IPDTN−r; Remote Network IP Address Segment
IPRN ; DTN counter, CDTN ; Campus Network counter, CCampus; Sample Time,
T

Ensure: RDTN , RCampus

while True do

Current BytesCampus ← Read Counter (CCampus)

Current BytesDTN ← Read Counter (CDTN)

∆BCampus ← Current BytesCampus − Previous BytesCampus

∆BDTN ← Current BytesDTN − Previous BytesDTN

Current ts← Get Timestamp(now)

∆t← Current ts− Previous ts
RCampus ← (∆BCampus × 8)∆t

RDTN ← (∆BDTN × 8)∆t

Wait (T seconds)

end while

RTT Calculation

We adapted the method proposed in [141] for the RTT computation. In gen-
eral, the switch tracks TCP connections through the TCP sequence (SEQ) and
acknowledgment (ACK) flags of the outgoing and incoming packets, using hash
functions available in the P4 Tofino switch architecture. The RTT computation
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is obtained by subtracting the timestamps of the outgoing packet and the cor-
responding ACK incoming packet. In our solution, we seek the outgoing and
incoming flows using the passive tap at the bottleneck interface of router R1.
Next, the RTT samples are pushed to the control plane using the P4 packet Di-
gest interface. This is an effective method for communicating notifications from
the data plane to the control plane. Digest enables the timely submission of spe-
cific fields of headers and metadata with lightweight messages that are serialized
according to P4 Runtime API specification [142].

Algorithm 4 describes the operations needed at the control plane to get the
RTT of DTN and Campus Network. The flow vector structure tracks the active
flows from the Campus Network that are transiting to the destination network and
the respective estimated RTT value from the data plane. In each cycle flow vector
is updated using the database of flows saved in the data plane, including new flows
and deleting the inactive ones using a timeout. The RTT The representative RTT
value of the Campus Network, RTTCampus is obtained by averaging the values of
the vector. Then, a smoothing function driven by an α parameter is applied to
avoid fluctuations. The RTT of DTN flow, RTTDTN , is retrieved directly from
the digest interface.

Algorithm 4 RTT calculation at control-plane

Require: Campus Network flow, f ; DTN Flow, fDTN ; Sample Time, T ; Vector
of active flows, flow vector; Smooth Factor, α

Ensure: RTTDTN , RTTCampus

while True do
flow vector ← Update from data-plane(flow vector)
S ← 0

for f in flow vector do

S ← S + f.RTT

end for
Avg RTT ← S/length(flow vector)

RTTCampus ← α×RTTCampus + (1− α) ∗ Avg RTT
RTTDTN ← Retrieve from Digest (fDTN .RTT )

Wait (T seconds)

end while

Queuing Delay Calculation

According to [143], queuing delay is a crucial metric for early congestion detection.
As shown in Algorithm 5, we compute the queuing delay as the difference between
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every packet’s timestamps at ingress and egress and store such value in a register.
Register are stateful elements of the switch architecture that can be stored over
time. We also used a match-action table to separate the DTN and the Campus
Network traffic measurements.

Algorithm 5 Update Queuing Delay registers at data-plane

Require: Packet, pkt; DTN-r’s IP address IPDTN−r; Remote Network IP Ad-
dress Segment IPRN ; DNT’s switch port, DTN port; Campus Network switch
port, Campus Network port; Switch timestamp, SWts; Register, Reg

Ensure: QD RegDTN , QD RegCampus

while True do
flow id← Hash Function (pkt.hdr)

in port← pkt.intr metadata.in port

if in port = Campus Network port or in port = DTN port then

Reg(flow id)← Swts

else if in port = Bottleneck port then

if hdr.ipv4.dst addr = Longest-prefix match(DTN − r) then
QD RegDTN ← SWts −Reg(flow id)

Push to Digest(QD RegDTN)

else if hdr.ipv4.dst addr = Longest-prefix match(IPRN) then

QD RegCampus ← SWts −Reg(flow id)

end if
end if

end while

Algorithm 6 describes the tasks performed at the control plane. Every time
T , the registers are polled from the data plane, obtaining queuing delay samples
for the campus network traffic and the DTN traffic.

Active Flows Computation

Using the approach in [144], we consider that a flow is active if the flow packets
exceed a predefined threshold C TH in a time less than T TH. Algorithm 7
shows the process to update the Active Flows register AF Reg. The addition or
deletion of flows in that structure is reported to the control plane using Digest
interfaces. The capability to read protocol-specific fields using P4 is exploited to
remove flows from the registers using the FIN flag present when a TCP connection
is closing. This update process is necessary not only for the accurate computation
of the number of flows but also to optimize the device’s memory resources.
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Algorithm 6 Queuing Delay calculation at control-plane

Require: Queuing Delay Register for DTN’s traffic QD RegDTN ; Queuing Delay
Register for Campus Network traffic, QD RegCampus, Sample Time, T

Ensure: QDDTN , QDCampus

while True do

QDCampus ← Read Register (QD RegCampus)

QDDTN ← Read Register (QD RegDTN)

Wait (T seconds)

end while

At the control plane, as shown in Algorithm 8, the digest interfaces are peri-
odically polled at time T , allowing the flow vector to be updated in the control
plane. Finally, the number of active flows is calculated as the length of the flow
vector.

3.3.5 ANN Model Training

The inverse model was obtained from an ANN model. We predict the value of u(t)
from the previous two network states, y(t − T ) and y(t − 2T ), and the previous
inverse model output u(t−T ). To do so, we injected a pseudo-random step signal
at u(t) as shown in Figure 3.7 to generate different output rates at the switch S1.
We used the P4 switch as a network state sensing device, as shown on the right
side of Figure 3.6. In this way, evaluating the network state for several conditions
and identifying the system’s inverse model is possible.
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Figure 3.7: A realization of a signal used to train the MLC.
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Algorithm 7 Update Active Flows Register at data-plane

Require: packet headers, hdr; Switch Timestamp, SWts; flow identifier, flow id;
Counter Register, Counter Reg; Timestamps Register, TS Reg; Active Flow
Register, AF Reg; New flow digest interface, new flow; Timeout Digest inter-
face, timeout.

Ensure: Active Flows Register AF Reg

while True do
flow id← Hash Function (pkt.hdr)

if flow id in Counter Reg then

prev ts← TS Reg[flow id]

TS Reg[flow id]← SWts

if TS Reg[flow id]− prev ts < T TH then

if Counter Reg[flow id] = C TH then

Attach(flow id) to AF Reg

Push (flow id) to new flow Digest
else

Counter Reg[flow id]← Counter Reg[flow id] + 1
end if

else

Counter Reg[flow id]← 0
end if
if hdr.tcp.flags = FIN then

if Counter Reg[flow id] = C TH then

Remove(flow id) from AF Reg

Push (flow id) to timeout Digest
end if

end if
else

Attach (flow id) to Counter Reg

Attach (flow id) to TS Reg

end if

end while
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Algorithm 8 Active Flows computation at control-plane

Require: Digest for new flows report, newf low; Digest for timeout report,
timeout flow; Sample Time, T ; Vector of active flows, flow vector; flow iden-
tifier, flow id

Ensure: Number of active flows AF

while True do
new flow id← Retrieve from Digest(new flow[flow id])

if new flow id then

Attach(new flow id) to flow vector

end if
timeout flow id← Retrieve from Digest (timeout flow[flow id])
if timeout flow id then

Remove(timeout flow id) from timeout vector

end if

AF = length(flow vector)
Wait (T seconds)

end while

Figure 3.8 shows the block diagram of the inverse model. The inputs or pat-
terns are the observed network state variables y(t), y(t − T ), y(t − 2T ), and the
past input u(t− T ).

Inverse Model

Figure 3.8: Inverse Model Training
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Data collected was employed to train a fully connected neural network using
Keras and Tensorflow ANN libraries [145, 146]. The architecture chosen is a fully
connected Multi-Layer Perceptron Classifier (MLPC) neural network, as shown
in Figure 3.9. MLPC is a well-established and widely used neural network archi-
tecture that offers robustness, generalization, non-linear decision boundaries, and
fast convergence. Hence it matches the problem requirements. Firstly, the input
layer has the same dimension as the network variables. The input variables for
the neural network are the set I = {y(t), y(t−T ), y(t−2T ), u(t−T )}. The second
layer is a hidden layer with 64 times the dimension of the inputs. The third layer
is a pre-output layer with the same dimension as the input layer. Finally, the out-
put layer has size one and represents the predicted signal u(t). In the experiments
conducted, we reached a relative validation error of 1% using the cross-validation
technique. Two inverse models were obtained, according to the CCA configured
at the DTN, either CUBIC or BBR2. The training was done for 12,000 seconds
to provide enough information to build the model.

Input
Layer

Hidden
Layers

Output
Layer

Figure 3.9: Neural Network Architecture used for the MLC
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3.3.6 Control Law Implementation

The MLC control signals are carried using User Datagram Protocol (UDP) sockets
on the management interface between the P4 switch and the S1 switch. The
control plane generates a JavaScript Object Notation (JSON) structure containing
the computed network variables y(t), y(t−T ), y(t−2T ), and u(t−T ), every T time
interval. Then, it sends such a structure to the server, which in turn computes
the output rate u(t) feeding the trained ANN controller with the abovementioned
structure. The network administrator’s role is to set the desired network state
yd(t) considering the target DTN-s rate and the constraints of the network.

Table 3.2 shows the values used to fill the vector yd with the desired network
state. The expected value of Rcampus is the remaining capacity not required by the
DTN. The RTT values are set considering the restrictions imposed in the testbed,
namely 100ms for SBD flows and 10ms for general-purpose traffic. The expected
queuing delays are set to 0 to minimize the bottleneck congestion. Finally, the
Nf is set with the last active flows computation.

Table 3.2: Parameters of yd
k Variable name Value

1 RDTN Target Rate R∗
DTN(t)

2 Rcampus Bmax −R∗
DTN(t)

3 RTTDTN 100 ms
4 RTTCampus 10 ms
5 QDDTN 0 ms
6 QDCampus 0 ms
7 Nf Last Nf

3.3.7 Comparison Scenario

A common solution to control the campus network traffic is to use a fixed output
rate. OVS switches admit Token Bucket Filter (TBF) for traffic control. There-
fore, if the available bandwidth at the bottleneck is Bmax, the campus output rate
is set to Bmax − R∗

DTN(t). We named this scenario a trivial solution; it is the
reference point to analyze the performance of our solution.

3.4 Results

In this section we provide the results of the experiments performed at the Univer-
sity of South Carolina’s Cyberinfrastructure Laboratory with real network devices.
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The tests were replicated a significant number of times in order to have statisti-
cally reliable results. Performance evaluation focuses on FCT and link utilization
as metrics that quantify performance from a network perspective. However, Mean
Relative Absolute Error (MRAE) is also analyzed as a metric to evaluate the al-
gorithm’s ability to track the target DTN’s rate.

3.4.1 Controller Parameters

Using the models obtained in Section 3.3.5, we conduct the parameter tuning of
the controller presented in Section 3.3.1, supported by the genetic algorithm setup
show Table 3.1.

Figure 3.10 shows the convergence curve of IAE in the genetic algorithm used
to tune the controller parameters when either Cubic or BBR2 are configured at
the DTN. For the case of BBR2, the cumulative error difference between the
actual rate and the set-point is smaller than we use Cubic. Table 3.3 summarizes
the results of the parameters tuning procedure.

Figure 3.10: Convergence curve of IAE in controller parameters tuning.
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Table 3.3: Selected controller parameters.
DTN’s
CCA

Generation Kp Ki Kw

Cubic 77 0.285 1.486 1.565
BBR2 76 0.388 1.918 1.340

3.4.2 Controller performance-oriented test with multiple
long flows in Campus Network

This experiment is intended to evaluate the proposed solution from the DTN’s
performance perspective. Therefore, the senders in the Campus Network generate
long flows to their respective receivers with an induced delay of 10ms. DTN,
however, generates long flow traffic with an induced delay of 100ms.

In order to test the MLC accuracy, from a control systems perspective, we
compute MRAE, every tN samples as follows:

MRAE =
1

tN

tN∑
t=1

∣∣∣∣∣R∗
DTN(t)−RDTN(t)

R∗
DTN(t)

∣∣∣∣∣ (3.4)

In this experiment, tN = 120, and due to ∆t = 1s each trial takes 120s. We
carried out 100 trials for each MLC. Cumulative Distribution Functions (CDFs)
of MRAE are shown in Figure 3.11. The implementation of MLC, in general,
outperforms the trivial solution in terms of MRAE, with an average reduction of
4.1% and 4.5% for the MLCs of Cubic and BBR2 respectively.

3.4.3 DTN’s performance oriented test with multiple long
flows in Campus Network

While the proposed controllers adequately track the reference, evaluating the so-
lution’s performance in terms of network metrics is essential. FCT is the time
elapsed between sending the first packet and receiving the last packet for a given
TCP connection. This experiment evaluates the FCT for a 10GB data transmis-
sion from DTN-s to DTN-r. The experiment was repeated 100 times for each
MLC, obtaining the CDFs shown in Fig.3.12. An average reduction, against the
trivial solution, of 12.932 s and 39.042s of FCT for Cubic and BBR2 controllers
were found, respectively. The previous means a FCT reduction of 7.4% in the
case of Cubic’s MLC, and an average reduction of 21.71 % using the BBR2’s
MLC. We also noted that 100% of the attempts with the proposed controller
obtained a lower FCT than the trivial solution for the BBR2 case. The results
imply that transmitting more scientific data in a given time interval with the pro-
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(a) DTN: Cubic

(b) DTN: BBR2

Figure 3.11: Mean Relative Absolute Error

posed MLCs is possible. We also compute the bottleneck Link Utilization ρ using
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the data plane measurements of the previous experiment. This value is obtained
at time t, through the sum of the flow rates, including traffic generated by the
DTN RDTN and the campus network hosts Rh, divided by the maximum link
bandwidth Bmax, as follows:

ρ(t) =
RDTN(t) +

∑100
h=1R

h(t)

Bmax

(3.5)

Fig. 3.13 presents the CDFs of bottleneck link utilization for the MLCs and
their respective trivial comparison scenario. We found similar behavior in the two
situations, with an average negligible decrease of 0.57% and 0.65% in the ρ of the
proposed solutions.

3.4.4 Performance of short flows sharing the bottleneck
with long flows

The present experiment evaluates the FCT of short flows when sharing the bot-
tleneck link with long flows for the MLCs proposed. The Weibull heavy-tailed
distribution has been widely used to model the behavior of short flows on the In-
ternet [147]. The probability distribution function of a Weibull random variable
is defined as follows:

f(x;λ, k) =


k

λ

(x
λ

)k−1

e−(
x
λ)

k

if x ≥ 0

0 if x < 0.

(3.6)

Where k and λ are called the shape and scale parameters, respectively. To
model the short flows, we use two variables. Firstly, the Inter-departure Time
(IDT) measures the difference between the departure time of one packet and the
next. Secondly, the Flow Size (FS) is the number of bytes occupied by each flow.
We use the SourcesOnOff tool [148] that allows us to generate flows with given
distributions for IDT and FS. Table 3.4 summarizes the parameters that describe
the short flows from Weibull distributions in the experiments.

Table 3.4: Selected controller parameters.
Variable k λ min max

IDT 0.5 20ms 1ms 100ms
FS 0.5 100kB 10kB 10MB

The setup is similar to the one presented in Section 3.4.3, with the difference
that one of the senders generates short flows. By capturing the packets during
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(a) DTN: Cubic

(b) DTN: BBR2

Figure 3.12: DTN’s Flow Completion Time

600s and processing them with the tcptrace tool, we obtained the CDFs of figure
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(a) DTN: Cubic

(b) DTN: BBR2

Figure 3.13: Bottleneck link utilization
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3.14. When we compare the CDFs of the proposed MLCs concerning the trivial
solution, we devise that the curves are too close. There is an increment of 18.7%
and 14.4% in terms of the medians η of ρ for the Cubic and BBR2 controllers,
respectively. Considering the absolute variations, η for the MLCs trained with
Cubic and BBR2 have 25ms and 18ms increments, which are negligible for most
campus network applications.

3.5 Conclusion

We demonstrated the potential of data plane devices and machine learning algo-
rithms for improving rate control in non-dedicated networks. By posing a novel
MLC approach to adjust traffic flows dynamically, we could enhance the FCT of
data-intensive scientific flows coexisting with short flows generated in the cam-
pus network. In particular, our study highlights the importance of adaptive rate
control, which can respond online to changing network conditions and traffic de-
mands.
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(a) DTN: Cubic

(b) DTN: BBR2

Figure 3.14: Flow Completion Time for short flows.



4
Bottleneck Router’s Buffer Size estimation for

heterogeneous TCP sources

In this section we explore the problem of buffer size estimation in heterogeneous
networks. The proposed approach relies on the use of end-to-end measurements
to infer the operating regime of the bottleneck router in a non-dedicated one
with heterogeneous hosts. Section 4.1 presents the problem formulation and the
proposed solution through a classifier. Section 4.2 presents the methodology used
in the study based on the framework of a supervised learning problem. The
discussion of the results is addressed in Section 4.3, while Section 4.4 mentions
the main contributions of the proposed approach.

4.1 Problem Statement

Consider the topology in the Figure 4.1, consisting of a source network and a des-
tination network that are connected via a WAN. The source network is composed
of the set S = {s1, s2, ..sn}, i = 1, ..., n while the destination network is composed
of the set R = {r1, r2, ...rn}, i = 1, ..., n. Each sender si establishes a connection
with a ri, The link between the networks has a bottleneck that represents the por-
tion of the network where all the flows converge and thus where the congestion is
generated.

The bottleneck is characterized by the Bandwidth Delay Product (BDP),
which corresponds to BDP = BW × D, where BW represents the maximum
channel capacity and D the nominal delay at the bottleneck. In figure 4.1 BR1
represents the routing device associated with the bottleneck and has a buffer size
BS = k × BDP , where k ∈ R+. If we constrain the k values in a finite set
K = {k1, k2, ..., kj}, then there are j buffer size regimes.

Now consider the set C = {c1, c2, ...cm}, m = 1, .., n which represents the m

51
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Figure 4.1: Non-dedicated network with heterogeneous sources

possible types of senders according to a Congestion Control Algorithm (CCA)
algorithm. If m > 1 we claim the sources are heterogeneous. Finally, we denote
P = {p1, p2, ...pl}, p = 1, ..., l, the set of patterns that describes the network state
thought implicit measurements.

Considering the above, the following research question arises: How to estimate
coarsely the bottleneck router’s buffer size using a model that relies on a set P of
indirect measurements in a network with n sender-reciever pairs and m classes of
senders? The classification problem is stated as follows:

f :Rl × Rq → R
(P,Φ) 7→ f(P,Φ) =: ki, with P = P (si, ci, cm),

(4.1)

In the above formulation, si ∈ S, ri ∈ R, cm ∈ C and Φ = {ϕ1, ϕ2, ...ϕq}
represents the set of parameters of a given classifier function f .

4.2 Materials and Methods

To carry out the buffer size estimation, we used the workflow based on the su-
pervised Machine Learning (ML) approach depicted in Fig. 4.2. In brief, the
methodology is divided into four stages, namely: data collection, feature engi-
neering, training, and evaluation.
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Data
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Hyper-parameters
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Cross-validation
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Model's metrics.
Learning Curves

Figure 4.2: A workflow for the coarse buffer size coarse estimation

4.2.1 Data Collection

Experimental Setup

Figure 4.3 shows the topology used to collect data. The testbed is an extension of
the well-known dumbbell topology. The working scenario consists of 100 sender
nodes, labeled as h1 to h100, and 100 receiver nodes, labeled as h101 to h200.
For simplicity, sender and receiver nodes were emulated on isolated namespaces
using Mininet and deployed in two separate servers to ensure sufficient computa-
tional resources. During the experiments, each sender node establishes a single
Transmission Control Protocol (TCP) connection with one receiver node. TCP
Cubic, Bottleneck Bandwidth and Round-trip (BBR), and Bottleneck Bandwidth
and Round-trip version 2 (BBR2) congestion control algorithms were configured
at the sender nodes to introduce heterogeneity in the way senders react and con-
sequently in the measurements. The Netem tool was used at the switch labeled
as S1 to configure different propagation delays and random packet loss rates. The
propagation delay parameter was set to 20 ms, while packet loss percentages were
set to 0%, 1%, 2%, and 3%. We established the bottleneck link rate in 1Gbps at
the interface linking routers labeled as R1 and R2. Lastly, we qualitatively de-
scribe the bottleneck link-state coarsely using a finite set of values for the buffer
size, expressed in BDP units. Considering the above setup, BDP is the product of
1Gbps and 20ms (i.e., 2.5×106 bytes). Thus, the buffer size at R1 was configured
at 0.01 BDP, 0.1BDP, 1BDP, 10BDP, and 100BDP representing a very small,
a small, a moderate, a large, and a very large buffer sizing regime. Hence, K =
{0.01, 0.1, 1, 10, 100}. In all regimes, the buffer size is greater than the expected
size of a TCP segment.
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Figure 4.3: Topology used for data collection.

Definition of experimental scenarios

Here, an experimental scenario represents a network condition, given by a packet
loss level and buffer a size regime, evaluated by exchanging information between
the sender and receiver nodes. Table 4.1 lists the settings for the experimental
scenarios evaluated in the study. We used a nearly even distribution of congestion
control algorithms assigned to hosts and a no packet loss scenario for ML training
and validation purposes. We employed an unbalanced distribution of such con-
gestion control algorithms to test our coarse estimation method for the bottleneck
router buffer size. We also used four different packet loss levels during testing to
assess whether our inference method can generalize its predictions under unseen
training scenarios. In total, five scenarios were defined for training and validation,
and 20 scenarios for testing. For each scenario, the set of patterns P is composed
by, Round Trip Time (RTT) and Congestion Window (CWND). We got the above
measurements using iPerf3. Each scenario was executed for 120 seconds.

Construction of the ML Dataset

Measurement traces were processed to compute, at each host and for every sce-
nario, the following time-averaged metrics: throughput, RTT, and CWND at the
sender side. Also, we labeled the data with its corresponding CCA and buffer size
regime. The training and validation dataset was built by joining the data provided
by the scenarios with no packet loss and the five defined buffer size regimes in
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Table 4.1: Experimental Scenarios

Phase
Host’s CC
Algorithm

Packet Loss
(%)

Buffer Size
(BDP)

Training
and validation

34 CUBIC
33 BBR
33 BBR2

0
0.01, 0.1,
1, 10, 100

Test
60 CUBIC

25 BBR
15 BBR2

0, 1, 2, 3
0.01, 0.1,
1, 10, 100

a balanced distribution of host CCAs. The remaining scenarios with unbalanced
CCA distribution were used to build four test datasets, one for each packet loss
level.

4.2.2 Feature Engineering for the Coarse Buffer Sizing
Regimes

On the Classes and Features

Using an ML approach, we define a representation space for the coarse buffer sizing
regime in terms of explanatory variables termed as features. From the networking
literature, relevant feature variables for describing end-to-end connections are the
average throughput (in Mbps), the RTT (in ms), the CWND (in MB), and the
congestion protocol. The average throughput, the average RTT, and the CWND
features are real-valued, while the congestion protocol feature is categorical. Such
end-to-end features are used, in turn, as proxies for the latent space representing
the coarse buffer sizing regimes at the bottleneck router. Thus, we can state
the problem of inferring the buffer sizing regime as a multi-class discrimination
problem where each class is mapped onto a single coarse buffer size configured at
the router.

Dataset Cleaning and Enconding

Firstly rows with missing values due to data corruption or record data failures
were deleted from the dataset to yield robust classification models. In addition,
the categorical values associated with the congestion control protocols and buffer
size regimes were encoded using integer values to match the requirements of the
classification methods used in the present study.



56 4.2. Materials and Methods

Exploratory Analysis of Feature Variables

Table 4.2 lists the descriptive statistics for the average throughput, the RTT,
and the CWND feature variables in the training ad validation dataset. Features
exhibit a large variance, as evidenced by both the extreme values and the co-
efficient of variation. We also estimated the empirical probability distributions
for each feature by computing their histograms. In such calculations, we used
the Freedman-Diaconis rule for binning. Histograms in Fig. 4.4 show that classes
(buffer sizing regimes) overlap at several intervals in the feature space. Therefore,
it can be noted that variables cannot be used independently to infer the coarse
buffer size at the bottleneck router. Figure 4.5 shows the correlation matrix be-
tween the features variables. It can be noted that features do not exhibit a high
degree of correlation, meaning that no feature variable should be discarded during
training.

Table 4.2: Descriptive Statistics of the Training and Validation Datasets for the non-
categorical feature variables.

Stat
Throughput

(Mbps)

RTT

(ms)

CWND

(MB)

Mean 10.419 138.954 0.906

Standard Deviation 11.220 162.415 2.341

Min value 0.800 21.802 0.007

Max value 110.976 457.592 37.732

Coefficient of variation 1.077 1.17 2.583

Scaling

Since data ranges for the feature variables are very different, we normalized the
non-categorical variables in the range [0,1] to overcome the units’ differences and
contribute to the model generalization.

4.2.3 Model Training

Six classic and state-of-the-art classifiers were trained to infer the coarse buffer siz-
ing regimes. The trained classifiers are the Least Squares (LS), the Gaussian Naive
Bayes (GNB), the Linear-kernel Support Vector Machine (SVM), the Radial Basis
Function (RBF) kernel SVM, the K-Nearest Neighbors (KNN), and the Multi-
Layer Perceptron Classifier (MLPC). Each algorithm provides insights about the
data used in the problem addressed. GNB helps determine whether features are
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independent. LS and Linear-kernel SVM are used to test if the classes are linearly
separable. RBF SVM captures complex and non-linear relationships with a small
amount of data. KNN and MLPC are suitable where the data is not linearly
separable, and the decision boundary is complex. Here, we use the LS classifier
as a baseline instead of using the typical Zero Rule or random picking classifier.

We used a stratified shuffle split approach for cross-validation with five itera-
tions and a test-size of 20%. To tune the hyperparameters associated with each
classifier, we carried out an exhaustive search over a grid of candidate parame-
ters. Classification Accuracy (Acc) metric was chosen as the primary performance
measure. Acc is defined as the ratio of correct predictions to the total number of
input dataset instances. A correct prediction means that the algorithm is able to
determine the state of the network in terms of bottleneck router’s buffer size from
end-to-end measurements. Table 4.3 lists both the parameters and values used
to train the classifiers. Training and validation were carried out in Python, ex-
ploiting the benefits of the Scikit-learn library [149]. In summary, hyperparameter
tuning was employed to achieve better classification results, while cross-validation
was used to avoid overfitting and favor the models’ generalization.

Table 4.3: Training values for the hyperparameters at each classifier.

Classifier Parameters Range Spacing Values

SVM-Lineal C [1, 105] Log 6

SVM-RBF C [10−3, 1010] Log 20

gamma [10−9, 103] Log 20

KNN n neighbords [2,9] Linear 8

MLPC max iter [1000, 4000] Linear 4

alpha [10−1, 10−4] Linear 4

hidden layers [1,14] Linear 14

random state [1,9] Linear 9

Next, we present the results that support our claim that we can infer, at the
sender side, the coarse buffer size of a bottleneck link, using the summarized
information collected from network measurements and processed with state-of-
the-art ML algorithms.
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(a) Average end-to-end throughput

(b) Average RTT

(c) (c) Average CWND

Figure 4.4: Histogram of the non-categorical feature variables
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Figure 4.5: Correlation matrix for the non-categorical feature variables.

4.3 Results and Evaluation

Table 4.4 summarizes the performance of classifiers designed in this paper at
the model validation stage in terms of Acc. We provide the best values for the
trained models’ hyperparameters, that is, those with which the maximum ACC
was obtained.

Table 4.4: Summary of the classification results for all the coarse buffer sizing estima-
tors.

Classifier Validation Test

Acc Parameter Best
Acc

No Loss
Acc

Loss 1%
Acc

Loss 2%
Acc

Loss 3%

LS 0.45 0.45 0.40 0.40 0.40

Gaussian NB 0.8 0.98 0.80 0.77 0.75

SVM-Linear 0.86 C 10 0.89 0.99 0.97 0.89

SVM-RBF 0.99 C 1010 0.99 1.0 0.97 0.92
gamma 2.63× 10−5

KNN 0.98 n neighbords 2 0.98 0.98 0.96 0.91

MLPC 0.98 max iter 3000 0.93 0.95 0.93 0.90
alpha 0.1

hidden layers 13
random state 4

We comment first that our problem’s baseline classifier performance is Acc =
0.45. (We note that for a five-class Zero Rule detector, its performance is 0.2.).
Out of the five trained classifiers presented here, the lowest performance at the val-
idation stage was obtained by LS classifier. Such classifier achieved a classification
accuracy of 0.45. This is attributed to its inability to separate the classes in the
feature space domain. The highest performance was obtained by the RBF-based



60 4.3. Results and Evaluation

SVM classifier, whose classification accuracy of very close to 1 during validations.
Figure 4.6 compares the learning curves of proposed classifiers during the train-

ing and validation stages as a function of the number of examples provided to the
model. In all classifiers, we obtain a minimal gap (i.e. less than 0.05 of Acc)
between training and test curve. This finding indicates that models deal cor-
rectly with underfitting and overfitting issues and also that the training dataset
was representative to provide sufficient information for model construction. It is
observed that as data are added to the linear SVM and RBF training set, they
keep a remarkable and constant performance, and these need a reduced number
of instances to reach a suitable performance. We also note that GNB-based and
SVM lineal classifiers reduce its performance as the number of training samples
increases. This behavior is attributed to the inaccurate assumption about the
feature variables being jointly independent, as stated depicted in Fig. 4.5.

Figure 4.6: Learning curves of the classifiers.

To assess our inference models’ ability to generalize their results, we inferred
the coarse buffer sizes using test data not used during the training and validation
stages. In the first test scenario, which considers imbalanced CCAs and no packet
loss conditions, the classifiers keep similar performances to those presented during
the validation stage. These results show that the feature variables used here are
suitable to describe a particular buffer size condition. In the remaining three
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test scenarios, which also consider imbalanced CCAs yet introduce different levels
of packet losses, we observe again that the classifiers’ performance decreases in
small fractions. We highlight that the linear-kernel SVM and the MLPC model
generalize their results fairly well, since their classification accuracy decreases less
than 3% concerning the no pack loss test scenario. Above this level of packet loss,
the accuracy of the models degrades significantly. Although a packet loss level
greater than 3% is uncommon in our network scenario, this is a situation that can
occur, for example, if wireless links are present in the access network. Therefore
future works can be conducted in that direction.

4.4 Conclusion

We provide a suitable method to coarsely estimate the buffer size regime at the
bottleneck link, following the supervised ML approach. Our findings indicate
that average values of throughput, RTT, and CWND and the CCA used by the
sender-side are useful features for building buffer size inference models. Out of
our six trained models, the RBF-based SVM classifier outperforms the remaining
ones in estimating the coarse buffer size. This finding is attributed to its ability to
adapt to the classes’ non-linear separability evidenced in the exploratory analy-
sis. Furthermore, this classifier exhibited a robust performance in the presence of
heterogeneous unbalanced sources when packet losses are induced in the network.
Regarding the transfer of Scientific Big Data (SBD) flows over non-dedicated net-
works, knowing in advance the buffer size at the bottleneck can help to adjust the
Data Transfer Node (DTN) configuration including parameters of the congestion
control algorithm.
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Flow based characterization of an Academic
Cyberinfrastructure for Intrusion Detection

Science DMZ networks can be vulnerable to various security issues. Some of the
highest security issues associated with Science DMZ networks include:

• Limited access controls : Science DMZ networks are typically designed to
provide high-speed data transfer, which means they may have limited access
controls. This can make it easier for attackers to gain unauthorized access
to the network and its data.

• Friction: Many Science DMZ networks do not use encryption for data in
transit or firewall devices, making it easier for attackers to intercept and
modify network traffic.

• Inadequate monitoring : Science DMZ networks can generate large amounts
of network traffic, making it difficult to detect and respond to security inci-
dents promptly. Inspecting every packet is unfeasible due to affectation on
performance.

• Update management : Science DMZ uses no commonly specific-purpose hard-
ware and software, making it challenging to keep up with patching and up-
dates. The above can leave vulnerabilities open to exploitation by attackers.

Regarding the above, novel security solutions need to be developed to support
high-performance SBD transfers. In this chapter, an anomaly detection system
is proposed. Instead of inspecting individual packet, aggregate statistics of traffic
flows are characterized to obtain normal conditions and hence suggests operational
anomaly ranges based on the entropy measure. The Section 5.1 presents the target
context and the problem description to be addressed. Section 5.2 presents the
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materials and methods needed to develop the solution. Section 5.3 presents the
most relevant findings of the flow characterization in the campus network. Finally,
the conclusions of the study are presented in section 5.4.

5.1 Problem Statement

Consider the topology shown in Figure 5.1. The academic network behind the
Border Router establishes connections with hosts in a non-dedicated network such
as the Internet. Because of the academic network’s private addressing and the
scarcity of Internet Protocol (IP) addresses on the non-dedicated network, hosts
on the academic network use the Network Address Translation (NAT) service to
access resources on the non-dedicated network.

...

Border
Router

Non-
dedicated
Network

Academic
Network

NAT &
Firewall

Figure 5.1: NATed Academic Network

In this scenario, each flow fi, i = 1, ..., N between the academic and non-
dedicated networks can be represented with the 3-tuple {external IP, campus IP,
campus port}.

Given X a random variable, its entropy is computed as follows:

H(X) =
N∑
i=1

p(xi)log2

(
1

p(xi)

)
, (5.1)

Where x1, x2, ...xN is the range of values for X, and p(xi) is the probability
that X takes the value xi. Entropy measures the randomness of a data set. The
more random the data is, the more entropy it contains. Among all probability dis-
tributions, the largest entropy corresponds to the uniform distribution: log2(N0).
N0 is the number of distinct xi values present in a time slot.

Now, let F , U , V , W random variables representing the 3-tuple {external IP,
campus IP, campus port}, external IP, campus IP, and campus port, respectively,
their associated entropies on a given time slot ∆T are H(F ), H(U), H(V ), H(W ).
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Based on the above computation, we aim to characterize the network flows to find
patterns that allow us to distinguish between normal and suspicious traffic.

5.2 Materials and Methods

5.2.1 Topology

Based on the Problem Statement reference topology of Figure 5.1, Figure 5.2
shows the flow monitoring architecture used in this work. Here the academic
network is named campus network and the non-dedicated network is Internet.
The border router connects the campus network to the Internet Service Provider
(ISP) / Internet. The NAT device translates private IP addresses to a single
public IP address (campus IP). The campus network corresponds to the Northern
New Mexico College (NNMC). It connects 15 buildings and different departments.
There are approximately 250 faculty/staff members, 1,500 students, 20 general-
purpose computer laboratories, and faculty and staff offices. Many students access
the Internet via WiFi using personal devices.

Figure 5.2: Topology configuration.

The analysis presented is general and can use multiple metering points and flow
directions. For simplicity of implementation in the small/medium-sized network
considered here, the metering point is the single border router and the traffic
direction is inbound (from the Internet to the campus network). Large campus
networks with several border routers may require each border router to become
a metering point and to monitor inbound and outbound traffic directions. The
border router is a Cisco ASR 1000 series. Flow information is ready for export
when i) it is inactive for a certain time (i.e., no new packets received for the flow
during the last 15 seconds); ii) the flow is long lived (active) and its duration is
greater than the active timer (1 minute); and when a TCP flag indicates that
the flow is terminated (i.e., FIN, RST flag are received). For each flow, the
router exports the source and destination IP addresses, source and destination
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ports, layer-4 protocol, TCP flags observed during the connection, and connection
statistics including number of packets, number of bytes, bytes per packet, and flow
duration. The information is collected by the flow collector, which implements
NetFlow protocol version 9 [150]. To avoid confusion, instead of using source and
destination terminology, this paper will use external and campus IP addresses,
and external and campus ports. Note that from the point of view of the border
router, users’ flows have the same campus IP address (public IP), because of
NAT. The collector organizes flow data in five-minute time slots. Data analysis
is conducted for each individual time slot.

While traffic data has been collected for more than a year, the paper presents
the analysis of a typical week, from Saturday, March 25, 2017 to Friday, March 31,
2017. The traffic data observed during this week is representative of the campus
traffic.

5.2.2 Entropy Measures

We compute entropies as described in [117], [119]. However, this work uses flow
counts rather than packet counts.

Therefore we define the following probabilities based on network traces cap-
tured in the flow collector:

For each external IP address ui, the probability p(ui) is calculated as

p(ui) =
Flows with ui as external IP addr.

Total number of flows
. (5.2)

For each campus port wi, the probability p(wi) is calculated as

p(wi) =
Flows with wi as campus port

Total number of flows
. (5.3)

The normalization factor is log2(N0), where N0 is the number of active external
(campus) IP addresses (ports) observed during the time slot.

In addition, we consider the entropy of the 3-tuple {external IP, campus IP,
campus port}. For a given 3-tuple fi, the corresponding probability is calculated
as:

p(fi) =
Flows with fi as 3-tuple

Total number of flows
. (5.4)

The normalization factor is log2(N0), where N0 is the number of active flows
during the time slot.
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5.2.3 Time-series Correlation and Data Statistics

For each time slot, the five normalized entropies are computed. Let Yi,j denote the
normalized entropy of distribution i (e.g., campus IP address) observed in time
slot j, and Yi denote the time-series of normalized entropy values for distribution
i. Given the Yis, the pairwise correlation coefficients between every pair of time-
series vectors Yi and Yi′ are computed [117]:

ri,i′ =

∑
j Yi,jYi′,j − nYiYi′
(n− 1)σYi

σYi′

, (5.5)

where Yi and Y ′
i are the sample means of Yi and Yi′ , σYi

and σYi′
are the sample

standard deviations of Yi and Yi′ , and n is the number of time slots.
Additional data statistics are also computed: mean, standard deviation, maxi-

mum and minimum values. As the measured data sets from weekdays and weekend
substantially differ in volume and entropy [151], the data statistics are separately
computed for weekend and weekdays,

5.2.4 Time-series Rate of Change

The rate of change of the entropies is also approximated as an indicator of anoma-
lies. A simple approximation of the derivative of Yi with respect to time is com-
puted as the difference between consecutive time slots j and j + 1:

∆Yi,j = Yi,j+1 − Yi,j. (5.6)

5.3 Results and Evaluation

Figure 5.3 shows the total traffic and entropy quantities during a typical week.
The red portion of the curve represents the weekend (Saturday March 25, 2017
- Sunday March 26, 2017) and the green portion of the curve represents the
weekdays (Monday March 27, 2017 - Friday March 31, 2017). The corresponding
statistics for the graphs are listed in Table 5.1. The mean traffic volume on the
weekday/weekend is 1, 101/168 Mbytes in a 5-minute time slot. Thus, there is a
difference of an order of magnitude between weekday and weekend. The day and
night patterns are clear on weekdays, when users (students, faculty, and staff) are
on campus. The peak time is slightly after 12:00 noon.

Consider the campus IP’s entropy. As a small/medium-sized campus network,
the number of public IP addresses is limited (less than 50 active IP addresses.
One public IP address is used for NAT (users’ flows) and few others are used for
externally available servers). When users are on campus during weekdays, the
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Figure 5.3: Entropy time-series for the small/medium-sized network studied in this
paper. Anomalies are labeled with letters A through J .

Table 5.1: Statistical information for the week data of Fig. 5.3.
Feature Mean (µ) Std (σ) Max Min

Total traffic weekday / weekend (x106 bytes) 1,101 / 168 1,254 / 224 8,875 / 3,262 5.5 / 4.1

3-tuple entropy weekday/weekend (bits) 0.938 / 0.933 0.061 / 0.049 0.98 / 0.979 0.104 / 0.632

Campus IP entropy weekday/weekend (bits) 0.224 / 0.345 0.077 / 0.0769 0.44 / 0.503 0.011 / 0.172

Campus port entropy weekday/weekend (bits) 0.667 / 0.548 0.156 / 0.100 0.893 / 0.839 0.015 / 0.319

External IP entropy weekday/weekend (bits) 0.739 / 0.791 0.070 / 0.071 0.898 / 0.902 0.085 / 0.016

External port entropy weekday/weekend (bits) 0.486 / 0.656 0.204 / 0.098 0.926 / 0.836 0.138 / 0.309

entropy can be as low as ∼0.1. The reason of the low entropy is the use of NAT,
which maps users’ private IP addresses to a single public IP address. During
the weekday/weekend, the mean entropy is 0.224/0.345. However, note the large
variation. On weekdays, the range µ± σ is 0.301− 0.147.

The entropy of the campus port diverges from that of the campus IP. During
the day, as users connect to the network, the most popular application is browsing.
Browsers use ephemeral port numbers, behaving more randomly. At peak hour,
the distribution of the campus port approaches a uniform distribution and the
entropy approaches ∼0.9. The variation is very large during both weekdays and
weekend; e.g., on weekdays, the range µ± σ is 0.823− 0.511.

Consider the entropy of the external IP address. The entropy is much larger
than that of the campus IP. This is a reflection of users connecting to a large
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number of websites. However, note that the distribution is far from uniform, as
entropy is well below 1. This indicates that there are users connecting to the
same sites/IP addresses (e.g., popular sites include YouTube, Google, Facebook).
However, note that while the entropy variation is much lower than that of other
flow elements discussed above, the range µ± σ is 0.809− 0.669, still significant.

The external port’s entropy shows the largest variation among all distribu-
tions. During weekdays, at peak times, the entropy decreases to the lowest value,
even below 0.2 some days (Monday, Tuesday, and Wednesday). The users’ main
application is browsing, thus they connect to few well-known ports (i.e., port 80,
443) which decreases the entropy. On the other hand, the distribution changes
in opposite direction around midnight, when the entropy increases to the largest
value, ∼0.8. Note the large variation, in particular for weekdays. The range µ±σ
is 0.69− 0.282 on weekdays.

The entropy of the 3-tuple {external IP, campus IP, campus port} is the most
consistent over time with a distribution that resembles a uniform distribution.
Most flows generated by users have a unique 3-tuple. Thus, the entropy is high
during both weekdays and weekend, with mean values 0.938 and 0.933 respectively.
Note also the low variation. In a network without anomalies, the number of flows
having the same 3-tuple would be close to zero. Thus, a deviation from this
situation may indicate anomalies.

5.3.1 Event Use Cases

Entropy values should be interpreted in a day/time context. For example, a value
of 0.25 for the entropy of the external port is not abnormal for a weekday at noon;
however, it does represent an anomaly if that value is seen at 6 AM. Along these
lines, events A through J represent anomalies. Most of them deviate from the
normal values that should be observed at a given day/time.

Before describing few event examples, consider Fig. 5.4(a). External and inter-
nal ports are shown in orange and green respectively. Under normal circumstances,
most flows are unicast connections with unique 2-tuple {external IP, external port},
unique campus port (if necessary, the NAT device performs port address transla-
tion), and common campus IP (NAT public IP address shared by campus users).

Event A

This is a SYN flood event from a single perpetrator, thus the external IP’s en-
tropy is ∼0. While not as pronounced, the external port’s entropy also decreases,
because the perpetrator uses a relatively small number of ports in relation to the
number of flows being generated (875 different ports were observed). Most exter-
nal ports are used to attempt opening up to ∼1,000 connections each. Campus
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Figure 5.4: Flow patterns

IP’s and port’s entropies do not change, because the attack targeted the entire
set of campus IP addresses of the target institution (note that the campus NAT
address is one of the IP addresses of the target. Other addresses are allocated to
few servers providing specific services, including email and web services) (∼1,000
attempted connections per campus IP address and ∼230 attempted connections
per campus port). The 3-tuple’s entropy does not indicate anomalies because the
volume of any aggregate traffic changes proportionally to the total traffic. On
average, there are ∼1,080 flows from the single external IP to each campus IP.
Fig. 5.4(b) shows a simplified illustration of the flow pattern observed during
event A.

Event B

This event does not correspond to an attack but to DNS activity. Approximately
∼50 Amazon servers generate flows addressed to the local DNS server on campus.
Each Amazon server generates between ∼100 and ∼300 flows to the local DNS
server. Flows from a single Amazon server have identical 3-tuple {external IP,
campus IP, campus port}. Thus, the 3-tuple’s entropy is the best event indicator.
The campus port’s entropy decreases because of the increase in port 53 (DNS)
activity. Under normal conditions, the number of DNS flows in a 5-minute window
is typically below 1,000. During event B, the number of DNS flows increased to
more than 6,000. The total traffic in bytes is not an indicator for this event, as
the increase in DNS traffic is minimal when compared to the total traffic observed
during the time slot.

Event G

This event occurred at 9:50 AM onWednesday 03/29/17 and was a dictionary/brute-
force attack to an SSH server (campus port 22). The total traffic does not reflect
an anomaly, because SSH brute-force login attempts do not produce much volume
(the traffic volume in bytes from the perpetrator was below 0.3% of the total traf-
fic volume). However, the anomaly is captured by a drop in the 3-tuple entropy
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from ∼0.92 to ∼0.33. While a smaller change is also observed in the campus
port’s entropy from ∼0.75 to ∼0.5, this change occurs in an opposite direction to
the natural entropy change for that day and time of the week (i.e., the normal
behavior of the campus port’s entropy during a weekday should show a steady
increase until approximately noon). Similarly, although the natural tendency dur-
ing this time slot is the decrease in external port’s entropy, the anomaly sharply
reverses this trend by increasing the entropy from ∼0.35 to ∼0.6. The increase in
the external port’s entropy occurs because the perpetrator’s device opens several
connections using ephemeral ports. A reader can carefully note that an external
port’s entropy value of ∼0.6 is a valid value for a different time window, but not
for the time slot of event G. The external IP’s entropy also captures the anomaly
with a decrease in entropy from ∼0.75 to ∼0.5.

Event H

From few external IP addresses, the perpetrators of event H opened multiple con-
nections (using different external ports) to attempt to gain access to a single IP /
port on campus. Event H is similar to an SSH dictionary / brute-force attack, but
perpetrated by several devices (e.g., botnet). The external IP’s entropy decreases
as the number of flows from the perpetrators increases. Fig. 5.4(c) illustrates this
attack.

Other events labeled as C,D,E, F, I, J show similarities to those described
above. Anomalies can be detected by the rapid change in one or more entropy
measures.

5.3.2 Entropy Time-series Correlation

Table 5.2 shows the correlation between the entropy time-series.

Total traffic

During weekdays, the total traffic is negatively correlated to the entropies of
the campus IP (-0.8) and external port (-0.81). Traffic increases as a result of
users accessing mostly web applications; thus the campus IP’s entropy decreases
because users use the same campus IP address (NAT public IP). The external
port’s entropy also decreases because most traffic uses http/https. The total
traffic is directly correlated to the campus port’s entropy (0.78), because as users
on campus access the web, their respective browsers open ephemeral ports that
collectively resemble a uniform distribution. On weekend, there is a low or no
correlation between the total traffic and other time-series.
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Table 5.2: Correlation of entropy time-series.

Campus Campus External External Total

IP port IP port traffic

Weekday

3-tuple 0.23 0.1 0.6 -0.02 -0.05

Campus IP -0.85 0.6 0.89 -0.8

Campus port -0.37 -0.98 0.78

External IP 0.45 -0.36

External port -0.81

Weekend

3-tuple -0.23 -0.12 0.56 0.06 -0.03

Campus IP 0.15 -0.38 0.06 -0.38

Campus port -0.48 -0.93 0.31

External IP 0.48 -0.05

External port -0.39

Campus IP

On weekdays, the entropies of the campus IP and campus port are negatively
correlated (-0.85). As users use the network, the campus IP’s entropy decreases
because users use the same campus IP address (NAT public IP). On the other
hand, the campus port’s entropy increases because users’ browsers open ephemeral
ports. The entropies of the campus IP and external port show a direct correlation
(0.89): the more traffic is generated by users, the more NATed flows exist, and
the lower the campus IP’s entropy is. As most traffic is http/https, the external
port’s entropy also decreases. On weekend, there is a low or no correlation between
campus IP and other time-series.

Campus port

On weekdays, the strongest negative correlation is between the entropies of the
campus port and external port (-0.98). This relation is produced by the use of a
large number of browser’s ephemeral ports (each user’s browser likely uses a differ-
ent port number) to connect to few external ports (i.e., http/https). On weekend,
there is a low or no correlation between campus port and most distributions, with
the exception of external port.



5. Flow based characterization of an Academic CI for Intrusion Detection 73

External IP

The entropies of the external IP and external port are correlated on weekdays
(0.45) and on weekend (0.48). Note that the external IP has high entropy (mean
is 0.739) when compared to other flow elements. This reflects the variety of
external IP addresses users connect to.

External port

As mentioned above, the entropies of the external port and campus IP are strongly
correlated (0.89). On the other hand, the entropies of the external port and
campus port are negatively correlated on weekdays (-0.98) and on weekend (-
0.93).

3-tuple {external IP, campus IP, campus port}

The entropy of the 3-tuple shows correlation with that of the external IP on
weekdays (0.6) and on weekend (0.56). Low or no correlation is noted between
the 3-tuple and other time-series.

5.3.3 Time-series Rate of Change

Table 5.3: Statistical information, rate of change of entropy time-series.
Feature Mean (µ) Std (σ)

Total traffic weekday / weekend (x106 bytes/time unit) 0.2 / 0.18 774 / 256

3-tuple entropy change weekday/weekend (bits/time unit) ∼0 / ∼0 0.057 / 0.038

Campus IP entropy change weekday/weekend (bits/time unit) ∼0 / ∼0 0.021 / 0.03

Campus port entropy change weekday/weekend (bits/time unit) ∼0 / ∼0 0.045 / 0.058

External IP entropy change weekday/weekend (bits/time unit) ∼0 / ∼0 0.04 / 0.05

External port entropy change weekday/weekend (bits/time unit) ∼0 / ∼0 0.04 / 0.056

Fig. 5.5 shows the rate of change of the total traffic and entropy time-series,
computed according to Eq. (5.6). Corresponding values are provided in Table 5.3.
The first observation here is the large rate changes in the total traffic, in particular
during weekdays. Thus, traffic rate changes may not always be accurate indicators
of anomalies, as they occur naturally in this small/medium-sized network. In
contrast, changes in the entropy time-series from one time-slot to another (in bits
/ time unit) are small. The mean values for entropy changes are approximately
zero.
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Figure 5.5: Rate of change for the time-series shown in Fig. 5.3. Values are computed
using Eq. (5.6).

5.4 Conclusion

This chapter presented a flow-based entropy characterization of a small/medium-
sized academic network that uses NAT. Measurements from a production net-
work show that on a typical weekday, the entropies of the external and campus
ports may widely vary from below 0.2 to above 0.8 (in a normalized entropy
scale of 0-1). Similarly, the entropy of the campus IP address may vary from
0.1 to 0.4. Despite the wide range of values, findings indicate that building a
granular (small time slots) entropy characterization of flow elements facilitates
anomaly detection. Data shows that specific attacks produce entropies that devi-
ate from the expected patterns. Data also shows that the entropy of the 3-tuple
{external IP, campus IP, campus port} is high and consistent over time, resem-
bling the entropy of a uniform distribution’s variable. A deviation from this
pattern is an encouraging anomaly indicator.

The above findings remark that the entropy approach could help detect anoma-
lies at high rates. Hence, it can be useful in scenarios where a friction-free path
is desired, such as Science DMZ, because collecting the patterns, calculating the
entropies, and detecting the anomaly can be done parallel to the production net-
work. As in the studied case of congestion control, data plane programmable
devices are potential technologies to perform such procedures.



6
Framework for SDN Teaching and Research

Considering that one research aims to strengthen the learning process, we propose
a framework that leverages the close relationship between the academy, real-world
ICT problems, and innovative service. The framework is intended to be extended
to SDN, considering it is an agile and continuous development technology.

The Chapter is organized as follows. Section 6.1 describes the main motiva-
tions around establishing a framework for research and teaching in SDN and this
relationship with the devolpment of Science DMZ. Section 6.2 details the pro-
posed framework emphasizing the relationships between components, actors, and
stakeholders. The appreciation perceived by the students and alumni is addressed
in Section 6.3. Finally, Section 6.5 presents the relevant conclusions.

6.1 Motivation

Software-Defined Networking (SDN) technology traces its origins to a research
laboratory at Stanford University and has emerged as one of the most crucial
networking paradigms in the last decade. The key innovation with SDN has been
to decouple the data and control planes, allowing operators to directly manage
network resources and adapt to customer needs through programmable applica-
tions. As such, this paradigm supports agile and flexible services for a wide range
of users. Overall, SDN continues to gain attention and many of its technological
solutions have been accepted and applied in the Information and Communication
Technology (ICT) industry, showcasing the applicability of research and devel-
opment efforts in the field. Indeed, this new perspective has enabled solutions
for both private enterprise domains as well as large-scale public cloud infrastruc-
tures. Furthermore, SDN is also emerging as a critical component in upcoming 5G
core networks by providing an intelligent, flexible, and programmable architecture
[152].
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SDN is also an innovation driver to improve the Science DMZ. There are
several key applications of SDN on Science DMZ as follows:

• Network Optimization: SDN can be used to optimize network traffic flows
within Science DMZ by dynamically configuring network devices based on
real-time data flow requirements [153]. This helps to reduce network conges-
tion and latency, and ensures that data is transferred quickly and efficiently.

• Traffic Prioritization: SDN can prioritize certain types of traffic, such as
real-time data, over other types of traffic in Science DMZ networks [154].
This helps to ensure that critical data is given priority and delivered in a
timely manner, even during periods of heavy network traffic.

• Security : It has been demonstrated that SDN can help to improve network
security in Science DMZ by enabling administrators to implement granular
access controls and security policies for different types of traffic [155, 156,
157, 158] . This helps to reduce the risk of data breaches and cyber-attacks.

• Flexibility : SDN enables administrators to easily reconfigure network devices
in Science DMZs to accommodate changes in data flow patterns or research
requirements. This helps to ensure that the network can adapt quickly to
evolving research needs.

• Resource Allocation: SDN can be used to allocate network resources, such
as bandwidth and processing power, to different data flows in Science DMZs
based on their priority and importance. This helps to ensure that critical
data flows receive the necessary resources to support efficient and timely
data transfer.

Energy Science Network (ESnet) proposes that a sub-network can be created
within the Science DMZ for experimental purposes to incorporate SDN functions
and enhancements into the production network gradually [8], as shown in Figure
6.1.

Given the variety of expectations, requirements, and constraints of network-
ing users, SDN-based solutions require skillful and proficient practitioners to ad-
equately address key analysis, design, implementation, and operational require-
ments. As a result, there is a growing need to include SDN-related knowledge and
skills in undergraduate networking course curricula [159, 160]. However, teaching
such concepts poses a range of challenges as compared to other engineering cur-
riculum topics. Foremost, SDN requires key networking-related skills (design and
operation) as well as code development background. This domain also requires
up-to-date training infrastructures and related educational materials to develop
meaningful, practical experiences. Finally, commercial tools and methodologies
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Figure 6.1: Science DMZ for Software Defined Networks

in the SDN sector are continually evolving and have relatively short life cycles;
related courses can easily become dated or obsolete [123].

6.2 Framework for SDN Teaching and Research

Given the complexity of SDN-related teaching-learning and research processes,
a holistic framework was developed to leverage and understand the existing re-
lationship between key actors and stakeholders. In the proposed framework, all
the components must generate products and keep the knowledge base updated to
sustain the training enterprise over time. Figure 6.2 depicts our approach.

6.2.1 Actors and Stakeholders

Foremost, the higher education institution is considered as the principal actor in
the knowledge generation process and is represented by professors, researchers,
and ICT professionals. Accordingly, our framework promotes robust interactions
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Figure 6.2: Interactions between components, actors, and stakeholders in the proposed
SDN teaching and research framework

to help group dynamics, induce collaboration, and set the stage for achieving
common objectives. In this context, a researcher is any individual involved in
the knowledge generation process and contributing to project goals. As such, this
group includes undergraduate, Masters, and doctoral students as well as profes-



6. Framework for SDN Teaching and Research 79

sors and visiting scholars collaborating on SDN-related projects. In particular,
the undergraduate Telecommunications Engineering program at Universidad de
Concepción (UDEC) emphasizes a problem-solution based methodology which im-
parts active practical skill sets for undergraduates. Furthermore, the ICT profes-
sional staff at UDEC is also included as it can also perform network development
tasks.

The academic and research communities play a leading role in driving the di-
rection of applied SDN research, validating developed products/prototypes, and
generating up-to-date knowledge to support the teaching process. External or-
ganizations provide financial support and turn research outcomes into products.
More importantly, sponsors align research and training efforts with broader re-
gional and national needs and development plans. Many industry organizations
are quite interested in applying SDN technologies in their infrastructures and
operations. Hence the solutions proposed in this framework are aimed at spe-
cific problems identified by such industry partners. Providers are ICT companies
granting access to programmable SDN devices.

6.2.2 Phases and Components

The proposed framework uses components to outline and reduce the complexity
of the SDN teaching-learning and research process. Components are defined as
those sets of activities aimed at achieving an objective. As shown in Figure 6.2,
components must interact with each other to generate value.

In the Training phase, the Basic Knowledge and Skills component repre-
sents the set of courses developing soft skills in the students. Examples of such
skills are analyzing real-world ICT problems, interpreting texts, and communicat-
ing ideas in oral and written forms. This component also requires that students
integrate knowledge on logic, statistics, programming, and networking fundamen-
tals. These skill sets are considered essential for solving the technical challenges
presented in assignments, course projects, and research works. Overall, the re-
lated training is acquired through curriculum courses and also work/internship
experiences.

A fundamental element in this phase is the SDN Course. This new laboratory-
based course on SDN technology was designed and introduced in the curriculum.
Following Bloom’s taxonomy, its learning outcomes are: (i) Explore fundamen-
tal SDN concepts; (ii) Demonstrate hands-on knowledge on SDN networks; (iii)
Design network solutions based on SDN technology; and (iv) Evaluate the perfor-
mance of SDN networks as compared to traditional solutions. Hands-on experi-
ments are carried out using emulators and actual SDN switches and controllers.
The course was designed to encourage critical thinking, problem solving skills,
research skills, and team-work. The course employs three didactic methods: lec-
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tures, hands-on laboratories, and course projects. Course topics include SDN
architecture and protocols, data measurement tools, flow control design and pro-
gramming, and applications in security and fault tolerance. Professors minimize
the number of lectures and focus on supervise student’s work.

Course projects follow a Challenge-Based Learning (CBL) approach that en-
courages solving real-world problems [161]. Students must propose projects re-
lated to SDN deployments or a recurrent ICT industry problem that can benefit
from an innovative SDN solution. Group meetings are then held to identify the key
challenges and problems to be solved. Subsequently, working groups are formed
to develop a particular solution, thereby strengthening planning, analysis, design,
and implementation skills. Students must also manage their time and projects are
peer-reviewed by them, thus emulating discussions among colleagues in a working
environment.

The Research Process phase focuses on generating knowledge, from the per-
spective and needs of industry, academia, and government, through the following
elements:

Capstone Course: This course is an individual undergraduate thesis, with a
workload of approximately 700 hours, aiming to solve a guided Capstone Project.
As stated by CBL, students must propose a senior project for solving a practical
problem applying the theoretical knowledge and skill sets acquired through the
curriculum. (Note that Chilean undergraduate engineering programs span six
years, providing students with ample time to partner with companies to identify
relevant problems.) The addition of SDN-related coursework and training opens
up a wide range of potential topics in the ICT space. Students must submit a full
report summarizing their objectives and technical achievements. Depending upon
results, some students are encouraged to submit their works as scientific conference
papers. Papers boost interest in applied research, at the undergraduate level, and
also build a reliable pathway to pursue graduate studies.

We highlight that the Capstone Course has been used not only to develop
technical SDN solutions but also for educational purposes. In fact, all the labo-
ratory activities were developed by a student that was challenged to design new
laboratory material for a hands-on learning experience in SDN. Such a remarkable
experience was replicated to create laboratory documentation for Software-defined
Radios and Wireless Communications courses.

Research Grants: Funding plays a vital role in supporting research. Moreover,
research grants can help drive outputs to address significant problems and con-
tribute to broader industrial and societal needs. Along these lines, there are two
primary sources of academic funding in Chile, both of whom are actively sup-
porting undergraduate research projects at UDEC. In particular, the National
Commission for Scientific and Technological Research (CONICYT) focuses on
cutting-edge basic and applied research, whereas the Corporation for the Produc-
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tion Promotion (CORFO) supports more comprehensive Research, Development,
and Entrepreneurship (RDE) initiatives. In many cases, graduate students are
also involved in grant writing initiatives, providing invaluable academic training.
Graduate Programs: UDEC offers both Masters (M.Sc.) and doctoral (Ph.D.)
degree programs in Electrical Engineering. These framework components rep-
resent structured processes with high methodological and scientific rigor where
graduate students must solve problems and create new knowledge. The key fo-
cus at the Masters level is to expose and train students in acquiring a research
methodology. Notably, graduation requirements at UDEC consider submitting a
journal paper. Meanwhile, the doctoral degree emphasizes originality and knowl-
edge impact at a broader global level. Doctoral graduation requirements include
publishing one and submitting another journal paper. However, paper require-
ments can be exchanged by patent applications and grants, thereby encouraging
RDE technology transfer.

Finally, the Research Products and Development phase is the last block in the
framework. Indeed, a large part of our efforts focus on this phase, as it plays a
critical role in disseminating the generated knowledge to broader scientific and in-
dustrial communities. Foremost, masters and doctoral theses generate conference
and journal papers, some patents, and software licenses in the SDN domain. As
noted above, the Capstone Course also mandates a thesis covering the problem
space, solution design process, and outcomes. Professors, researchers, and qual-
ified ICT staff carefully review these documents to identify works exhibiting a
high degree of originality, coherence, and real-world ICT applicability, for further
publication.

6.2.3 Feedback in the Framework

As detailed earlier, our framework defines several phases with a logical progression
sequence to build sustainable SDN-related teaching and research processes, i.e.,
from training, to research, to research-product development. However, an effective
program must incorporate constant feedback from the lessons learned to update
the knowledge base. The framework includes some critical planning and updating
components. Foremost, due to continuous dynamics, the theoretical and practical
elements of the SDN course are reviewed yearly. The review process accounts for
advances in technology and standards, SDN equipment supplier product cycles,
and the needs of the scientific and academic communities. As a result, the course
syllabus is updated at the beginning of the year based upon meetings between
faculties, former students, and alumni.

The components of the research phase are updated likewise. For instance, the
Capstone Course must take into account students’ existing knowledge base and
aim to tackle current, relevant problems in SDN deployment using the latest tools
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Table 6.1: Summarized survey statements and average grades.

Statement Avg. grade

Do data networking and system management skills 6.33

developed in the SDN course surpass those in

traditional data network courses?

Did you plan to develop an SDN Capstone Project? 6.64

Are course contents studied up to date? 6.67

Are course contents presented in-depth? 6.67

Do SDN skills improve professional development? 8.08

Do SDN laboratories improve networking skills 8.42

and clarify data network basic concepts?

Was the SDN course challenging? 8.55

Does the SDN course allow students to choose

alternative solutions to networking problems? 9.00

and techniques. As a result, regular interactions are held with external researchers,
service providers, and equipment suppliers to obtain crucial feedback. Further-
more, paper publication requirements at the graduate level encourage new research
contributions. Thus, any proposed research topic must also incorporate key trends
from the industrial and academic communities. Once a research project has been
completed, a team conducts further self-assessments to identify key strengths and
weaknesses as well as an improvement plan. The team includes professors, re-
searchers, and graduate students. Inputs may be exploited by grant submissions
to increase funding success rates. Furthermore, assessments are also conducted
for unsuccessful grant proposals to identify future areas of improvement.

6.3 Former Students and Alumni Feedback

To assess students and alumni satisfaction, we designed a survey with questions
about the effectiveness of the SDN and the Capstone courses. The survey was
collected on-line from a target population of 43 former students and a response
rate of 33% was achieved, a value typically regarded as a really good response rate.
The survey contained a total of 14 questions. Out of the 14, 13 questions should
be answered using a 10-grade Likert scale. The last item was an open-ended
question requesting comment to improve the courses and their learning outcomes.
Due to space constraints, we list Table 6.1 8 out of the 14 statements proposed
to the survey respondents. The average grades for these eight statements are also
listed. We note that statements in Table 6.1 are not listed following the survey
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order.

All in all, the average grades show an excellent reception from the former
students and alumni to our courses. (Recall that in Likert scale, the grades 1, 5,
6 to 7, 8 to 9, and 10 respectively represent a strong disagreement, undecided, a
mild agreement, an agreement, and a strong agreement with a statement.) The
perception of the students is that course contents are relatively up to date and
presented in-depth. In all honesty, such evaluation was a bit surprising to us, but
from the analysis of the open-ended question, we realized that they suggest to
include Internet of Things (IoT) and cloud computing to the courses. Our former
students mildly agree that data networking and system management are better
comprehended using an SDN-based approach. Despite this mild agreement, they
do agree that SDN leverages their professional development and networking skill.
We note that students clearly realize that SDN technology leads to innovative
networking solutions. Besides, they also regard the courses as challenging.

In summary, survey results show that the combination of challenging topics,
the use of hands-on tools, and the motivation for creativity and a problem-solving
spirit produce in the students a high degree of satisfaction. Lastly, we note that
the most relevant comments and recommendations provided by our former stu-
dents for course improvement are: (1) “SDN laboratory experiences require more
network devices that those currently available;” (2) “Course topics need to be
updated;” (3) “Laboratory experiences should include IoT and cloud computing
applications;” (4) “Professors need to increase the engagement with ICT com-
panies, allowing students to deal with more practical, real-world problems;” and
(5) “Professors should spend more time on lectures instead of just supervising
students.”

6.4 Examples of the Research Process Phase De-

velopments

Next, we briefly present some examples of the SDN-related research and develop-
ment experiences we carried out at UDEC using the proposed framework.

6.4.1 Dynamic Resource Management

CORFO funded a joint project between UDEC and Universidad Santa Maŕıa to
prototype a network-provisioning and monitoring system in the National Univer-
sity Network (REUNA) production network, which connects most of the Chilean
universities. Hewlett-Packard was the equipment provider and supplied OpenFlow-
enabled switches. A team of four undergraduate students of Telecommunications
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Engineering developed their Capstone projects providing solutions for specific
components of the final prototype.

The OpenFlow application QoSApp was developed to provide Quality of Ser-
vice (QoS) support for multimedia traffic by dynamically managing network band-
width [162]. QoSApp periodically measures the RTT between links and classifies
network flows as either best-effort or QoS solving an optimal routing problem
subject to constraints on transmission delay and packet losses. Figure 6.3 shows
the overall architecture of QoSApp which consists of several modules for calcu-
lating optimal routes, monitoring network states, and managing network flows
using a Floodlight controller. Overall, this effort demonstrates a successful ap-
plication case of the proposed framework, where undergraduate students applied
their knowledge and SDN-related skills in a production network with resources
and support from sponsors.

QosApp Core

Route
Calculation

Topology
Manager Monitoring

Northbound API

Floodlight Controller

Controlled Network

Figure 6.3: Architecture of the QoSApp presented in [162]

6.4.2 Dynamic Flow Insertion and Handover in WiFi Net-
works

The ICT staff at UDEC challenged students to implement mobile user handover
between WiFi Access Points (APs). A student proposed in his Capstone project
to solve this problem by using the artificial flow insertion and measurement capa-
bilities of SDN. He designed and prototyped a laboratory testbed to evaluate the
three handover procedures depicted in Figure 6.4.
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In the first procedure, termed as Dynamic Flow Insertion, the handover is
performed by the SDN controller forwarding the flows between the ethernet inter-
faces of the APs, which keep track of the roaming users. The second procedure,
termed as Proactive Flow Insertion, exchanges data at the OpenFlow switch by
sending traffic to both APs. The third procedure, termed as Bi-Casting Recep-
tion, exploits the use of two physical wireless interfaces (wlan0 and wlan1) to
exchange data from the APs and forwarded to a virtual interface (veth1) using
Open vSwitch and OpenFlow at the clients. The assessment of the three solutions
showed that the first approach produces handover delays of 1 or more seconds and
a Lost Packet Rate (LPR) of 5%. The second approach reduces the handover de-
lay bu increases the LPR, while the third scheme introduces delay but no packet
losses.

This project shows how the CBL methodology stimulates the creativity of stu-
dents and how SDN technology further encourages the development of innovative
networking solutions.

6.4.3 Reliable Network Provisioning and Survivable Mi-
gration in SDN Environments

Disaster recovery is a significant concern in Chile. The National Council of Inno-
vation for Development (CNID) opened a call for research projects to investigate
infrastructure resilience in the presence of natural disasters and cyberattacks.
CONICYT agency funded a research project to leverage SDN technologies and
develop innovative path provisioning strategies for maximizing network reliability
under large-scale correlated failures. This project has been carried out by a team
of professors and doctoral students from Chile, Colombia, and Cuba. SDN tech-
nology offers the inherent flexibility, compatibility, and low-cost administration
for designing multi-vendor technology networks. Researchers have exploited these
features and developed a novel multi-culture design strategy to improve network
reliability and resilience. This multi-culture network design approach combines
different vendor platforms and operating systems. Next, they formulate opti-
mization problems to determine how many nodes of each vendor are required to
minimize the vulnerability of the entire network. Besides, they also optimally
determine where such nodes should be located to maximize the average network
connectivity. Results in [163] show that, for the Chilean REUNA network topol-
ogy, placing the more reliable technologies in a clustered manner improves overall
network reliability as compared to a single-vendor network. Currently, the team is
extending its multi-vendor network design concept to formulate a reliable migra-
tion methodology supported by risk-diverse SDN implementations [164]. In line
with the feedback requirement in the proposed framework, the knowledge base
generated from these particular findings will be further analyzed in future SDN
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Figure 6.4: Testbed for WiFi handover implementation depicting the three approaches
developed: Dynamic Flow Insertion, Proactive Flow Insertion, and Bi-Casting Recep-
tion.

testbed projects.

6.5 Conclusion

This chapter presented a novel framework for SDN-related teaching and research.
This framework is defined by a set of actors, stakeholders, phases, and compo-
nents, as well as their relationships. Overall, its main objective is to build a
sustainable domestic knowledge base in this vital ICT field and transition re-
search products to the broader community. As such, the framework is heavily
premised upon close working relationships with a range of external partners, e.g.,
including equipment suppliers, ICT industry corporations, funding sponsors, and
the academic and research communities.

The application of the framework has been extremely beneficial for students,
helping them build much-needed skill sets in a critical technology sector. Also,
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the framework leverages their professional development by exposing them to real-
world applied-research problems. In particular, students have been able to expand
their existing skill sets in programming, networking, statistical analysis. Also,
they acquired additional knowledge through a new SDN course and a range of
research activities. Indeed, some notable students outcomes have further validated
the effectiveness of this endeavor, as evidenced by the development of products
such as papers and software applications. Consequently, this framework provides
a robust template which can be adapted and deployed at other institutions to
further student training and research in the SDN domain.
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7
Conclusions and Future Work

The present work addressed the challenge of enhancing scientific information
sharing over non-dedicated networks and contributed solutions and insights that
could advance the state-of-the-art in this area. One of the main contributions
of this work is the effective integration of data plane devices capabilities and
intelligent control techniques using Machine Learning models applied to improve
SBD transmission over non-dedicated cyberinfrastructures. Specifically, a novel
framework was developed so that from passive measurements in the data plane,
relevant control actions are taken to guarantee the transmission of SBD flows and
anticipate congestion events. The testbed results demonstrated that the approach
increases the Flow-Completion Time (FCT) of SBD with a minimal impact on
general purpose traffic. One of the advantages of the proposed solution is that
it does not generate overhead in the production network because measurements
are taken passively, and control information is carried through the management
interface.

Pipeline processing and the limitations of the architecture impose constraints
on the design and development of algorithms at the data plane. However, detailed
knowledge of the operation of the protocols and the use of hash functions to
identify flows, stateful elements, and interfaces with the control plane allowed the
development of reliable network telemetry schemes. These measurements allow
for determining the state of the network at a given time and are the main input
for the control scheme developed.

Another relevant contribution of this work is the development of a rate con-
trol based on Machine Learning, which regulates the output rate of the Campus
network flow, anticipating congestion events that impact the scientific data flow,
thanks to the fact that the controller considers present and past states of the net-
work operation. The proposed controller has a neural network architecture with
two hidden layers to prevent considerable computation delays and allow its online
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operation on the network.
While the central focus of the present dissertation was congestion control,

the problems of bottleneck router’s buffer size estimation and anomalous traffic
detection were also addressed from the data-driven approach. The results demon-
strated the potential of leveraging the information in indirect measurements and
flow traces to identify behavioral patterns and predict network operating condi-
tions.

Considering the SDN layer model, several contributions of this work are framed
in improvements in the data plane, which are expected to be fed back to the
Department of Electrical Engineering courses and projects. In order to motivate
long-term study and research on topics related to SDN, a framework to enhance
the knowledge base was also addressed in the dissertation.

In terms of future work, there is still much to be done in the field of SBD
flows transferring over non-dedicated infrastructures. The work developed con-
sidered only TCP as the congestion protocol since it is the most widely used in
current non-dedicated networks. The proposed framework could be adapted to
no-connection oriented transport layer protocols such as User Datagram Proto-
col (UDP) and the advent of new CCA for TCP. Although the models developed
in the thesis were trained with sufficient data and under various conditions, re-
inforced learning models can be explored to dynamically adjust the controller
parameters under new CCA, chaotic conditions, or network failures. The data-
driven solutions for buffer size estimation and anomaly detection developed in this
dissertation can be implemented in future work with the support of data plane
programmable devices, further enhancing their relevance. Recently, many net-
work functions have been offloaded onto programmable devices in the data plane,
and evaluating the feasibility of offloading ML algorithms onto the data plane is
a promising field of research. Critical aspects for deploying these solutions, such
as scalability and security, deserve to be studied.
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