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Resumen

La asombrosa existencia de agujeros negros supermasivos en el Universo primitivo
es uno de los grandes misterios sin respuesta en astrofísica, en particular, cómo
obtienen sus grandes masas tan rápido. Aquí nuestro interés consiste en explorar
un nuevo escenario de formación de agujeros negros masivos: la formación por
colisiones estelares catastróficas en cúmulos estelares densos. Nuestros sistemas
están localizados en el universo temprano, con las denominadas estrellas de
población III las cuales son muy masivas y, por tanto, cúmulos de estrellas de
población III son sistemas estelares muy densos y masivos. Las simulaciones de N
cuerpos fueron corridas con el código NBODY6++GPU y pueden ser divididas
en dos grupos, uno con potencial de fondo y otro sin potencial de fondo. Se
ha establecido una masa crítica para la cual el número de colisiones es tan alto
que puede llegar a formar agujeros negros masivos al interior de estos cúmulos
estelares nucleares. Aquí, nuestro objetivo es testear la existencia de esta masa
crítica en un caso simplificado de cúmulos de estrellas de población III de igual
masa. En términos de la eficiencia para la formación de un objeto masivo,
encontramos que ocurre una transición, ya que la eficiencia es muy pequeña para
masas considerablemente por debajo del valor de masa crítica, alcanzando valores
de ∼ 20% una vez que comenzamos a acercarnos a la escala de masa crítica en
nuestras simulaciones. Nuestros resultados sugieren que ocurre una transición
crítica dependiendo de la masa del cúmulo y los objetos más masivos alcanzan
masas de aproximadamente 1.7× 105M.

Keywords – agujeros negros: formación – universo temprano – cúmulos estelares
densos – colisiones estelares catastróficas – simulaciones
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Abstract

The amazing existence of supermassive black holes in the primitive Universe is one
of the great mysteries without answer in astrophysics, in particular, how they get
their great masses so fast. Here our interest consists in exploring a new scenario
for the formation of massive black holes: the formation by catastrophic stellar
collisions in dense star clusters. Our systems are located in the early universe,
with the so-called population III stars which are very massive, and therefore
population III star clusters are very dense and massive stellar systems. The
N-body simulations we run with the code NBODY6++GPU can be divided into
two groups, one with background potential and the other without background
potential. A critical mass has been established for which the number of collisions
is so high that massive black holes can form within these nuclear star clusters.
Here, our goal is to test the existence of this critical mass in a simplified case
of population III star clusters of equal mass. In terms of the efficiency for the
formation of a massive object, we find a transition to occur, as the efficiency is
very small for masses considerably below the critical value while reaching values
of ∼ 20% once we start approaching the critical mass scale in our simulations.
Our results thus suggest such a critical transition to occur depending on the mass
of the cluster and the most massive objects reaching masses of about 1.7× 105M.

Keywords – black hole: formation – early universe – dense stellar clusters –
catastrophic stellar collsions – simulations
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Chapter 1

Introduction

1.1 Supermassive black holes in the early universe

One of the most important questions in this field is: How did the first supermassive
black holes (SMBHs) grow so large so fast? The answer is that the dominant
formation pathway of SMBHs is still a mystery. The presence of SMBHs with
masses greater than 109 M� when the Universe was a billion years old represents
an intriguing puzzle. Some of the theories to answer this question are that very
massive black hole seeds were formed, and that black holes (BHs) have grown
extremely rapidly either via accretion of the surrounding gas at super Eddington
rates or collisions with other smaller BHs. How are BHs thought to have formed?
So far there are three theories of how these massive black holes (MBHs) formed.
The first is the direct collapse of a primordial cloud, in which primordial clouds of
interstellar gas collapse under self-gravity to form supermassive stars which then
evolve into supermassive black holes. The second is growth by gas accretion. And
the third is the formation of an MBH by catastrophic stellar collisions in dense
stellar clusters.
A naive explanation (to the question we asked ourselves earlier) is that these early
SMBHs were seeded by BH remnants of the first Population III stars. Pop III stars
are expected to form in dark matter minihalos from primordial gas undergoing
molecular hydrogen cooling. The metal-free primordial gas is significantly warmer
(a few 100 K) than star-forming molecular clouds in the interstellar medium (ISM)
in our Galaxy (≈10 K). The general expectation is that inefficient cooling of the
primordial gas leads to inefficient fragmentation, making Pop III stars unusually
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massive (Inayoshi et al., 2020). Population III stars formed approximately 400
million years after the Big Bang as shown in the figure 1.1.1.

Figure 1.1.1: A representation of the evolution of the universe over 13.77
billion years. Source: (NASA / WMAP Science Team, 2006). See the page here
https://map.gsfc.nasa.gov/media/060915/index.html.

The left side in figure 1.1.1 represents the earliest time in the universe that we can
now probe when a period of "inflation" produced a burst of exponential growth
in the universe. (The size is represented by the vertical extent of the grid in this
graphic.) Over the next few billion years, the expansion of the universe gradually
slowed down as the matter in the universe attracted itself through gravity. In
recent times, the expansion began to speed up again as the repulsive effects of dark
energy started to dominate the expansion of the universe. In the figure, you can
also see the Wilkinson Microwave Anisotropy Probe (WMAP), a NASA spacecraft
operating from 2001 to 2010 which measured the temperature differences across
the sky in the cosmic microwave background (CMB), the radiant heat remaining
from the Big Bang. The residual light seen by WMAP was emitted about 375,000
years after inflation and has traversed the universe largely unhindered ever since.
The conditions of previous times are imprinted in this light and it is in this way
that we can study it; it also forms a backlight for later developments in the
universe.
In figure 1.1.2 you can see the different possible paths of black hole formation
that are studied today. Each with different objects and under different conditions.
To explain the formation of supermassive black holes, intermediate-mass black
holes (IMBHs) have also been proposed, where different candidates have been

https://map.gsfc.nasa.gov/media/060915/index.html
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identified as summarized by (Greene et al., 2020), but none have been confirmed
and from both theoretical and observational perspectives, gravitational runaway
is unlikely to take off in typical globular clusters, though the most massive star
clusters may still host such events.
Finally, interesting works have been carried out that can be read for more detail in
(Kashlinsky, 2021) about cosmological advection flows in the presence of primordial
black holes as dark matter in the context of the formation of first sources of light.
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Figure 1.1.2: MBH formation scheme. Source: (Begelman and Rees, 2009).
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1.2 Poulation III stars

The objects of this era marked the end of the cosmic dark age and the first stars
in the universe arose a few hundred million years after the Big Bang, leading to a
fundamental transformation of the early Universe and the initial enrichment with
heavy chemical elements. In the early Universe, the primordial gas from which
the first stars formed was composed mainly of hydrogen, helium, and metal-free.
It is still not known exactly how these stars were formed and the real values of the
physical characteristics of these stars since we cannot see them directly because
they are too faint to be directly detectable at high redshift, that is why we can
only study them through numerical methods in simulations with supercomputers.
The temperature of the gas at that time was very high because the cooling was
less efficient than in the present-day Universe which has more metals and dust. It
has been studied the generic spectral signature of an early population of massive
stars at high redshifts from which it has been obtained that for metal-free stars
the generic spectrum resembles a black body with an effective temperature of
105 K, making these stars highly efficient at ionizing hydrogen and helium (Bromm
et al., 2001). Supermassive Population III stars ' 104 M� have also been studied
to explain the formation of the first quasars (Haemmerlé et al., 2018). A large
number of scientists agree that the mass of these stars varies between 10 M�
and 100 M�. Since these stars are massive they live less than stars like the sun.
Variations of the initial mass function and also a universal mass function for these
stars have been studied by (Kroupa, 2001). The first stars are thought to be one
of the dominant sources of hydrogen reionization in the early Universe, with their
high luminosities and surface temperatures expected to drive high ionizing photon
production rates (Murphy et al., 2021). Because they are poor in metals these
production rates are higher (Schaerer, 2002).
Theoretical studies have been done with the use of the Λ Cold Dark Matter
(ΛCDM) model, which explains the observations of the cosmological structure
since it provides the initial conditions for the primordial star formation (Bromm,
2013a).
From this time to the present the universe has expanded rapidly and has also
cooled. Studies that include the effect of gas cooling via molecular hydrogen
suggest that the minihalos have a total mass of ≈ 106 M� and collapsed at
redshifts z ' 20-30 (Bromm, 2013b). Some of the latest studies that have been
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done related to predictions of what the James Webb Space Telescope might observe
of these stars see (Windhorst et al., 2018), a satellite that was finally launched a
few months ago on December 25, 2021. It is also a prediction that ELT-HARMONI
will be able to observe population III stars (Grisdale et al., 2021).
Population III stars were called the stars of the early universe that formed from
the primordial gas, being these very massive and with zero metallicity. Since these
stars are at high redshift, they are too weak to be studied observationally. This is
why what we know is based on theoretical studies accompanied by simulations.
At first, it was thought that this could have been a not-so-complicated process
since the environment was mostly composed of hydrogen and helium, but today
we know that this process is as complicated as the current star formation process.
Now we know that the accretion disks that build up around the first stars are
highly susceptible to fragmentation. So it has been proposed that Population
III stars are binaries or members of multiple stellar systems and clusters. It
is estimated that the masses of these stars are very wide. The masses have a
relatively flat distribution that spans the substellar regime up to several hundred
solar masses, with the most likely values being around a few tens of solar masses
(Klessen, 2019). In current numerical simulations of the star formation process,
more knowledge is lacking about the effect of higher resolution in the simulations,
a larger fraction of the star formation timescales, including important physical
processes like the protostellar feedback, magnetic fields, heating from dark matter
annihilation, WIMP dark matter, cosmic rays, relative streaming velocity between
baryons and dark matter in the center of a halo or a three-dimensional approach
to understanding more about the gas fragmentation or the dynamical impact of
stellar radiation on the infalling gas. Therefore there is still a large computational
gap to resolve to understand the star formation process.
This area of study is relatively new since it has only been possible to study it with
the development of new numerical methods and very powerful supercomputers.
There are still no simulations that include all the physical processes involved in a
single simulation since it is very complex.
At that time, H2 was formed more efficiently as

H + e− → γ + H−

H− + H→ H2 + e−
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(the H− channel) via gas-phase reactions in a cloud of primordial composition.
Future missions such as Transient High-Energy Sky and Early Universe Surveyor
(THESEUS), a space telescope that will observe Population III stars, will help
to understand among other physical processes the life cycle of the first stars and
thus the cosmic history of star formation (Tanvir et al., 2021).

1.3 Nuclear star clusters

Nuclear star clusters (NSCs) are dense and massive assemblies of stars found at
the centers of most galaxies. Many properties of NSCs vary with the properties
of their host galaxies. It has also been studied that a clear transition occurs
in galaxies with a mass of ≈ 109 M� where the characteristics of nuclear star
clusters change. The latest work on the formation of star clusters shows that
atomic-cooling halos in which the star clusters form are affected by dark matter
motions which reduce the stellar tidal disruption events rates (Sakurai et al., 2019).
A possible route of black hole seed formation has been explored that appeals to a
model by Davies, Miller & Bellovary who considered the case of the dynamical
collapse of a dense nuclear cluster of stellar black holes subjected to an inflow of
gas at the center of pregalactic discs forming at very high redshift. They found
that this route is feasible, the formation peaks at redshifts z / 10 and occur
in concomitance with the formation of seeds from other channels. The channel
is competitive relative to others and is independent of the metal content of the
parent cluster. This mechanism of gas-driven core collapse requires inflows with
masses at least 10 times larger than the mass of the parent star cluster, occurring
on time scales shorter than the evaporation/ejection time of the stellar black
holes from the core. In this respect, the results provide an upper limit to the
frequency of this process (Lupi et al., 2014). Figure 1.3.1 and figure 1.3.2 show
a schematic of the formation of nuclear star clusters and black hole seeds from
these nuclear star clusters.
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Figure 1.3.1: Flow chart of an isolated halo with Z > Zcrit, starting from gas
cooling until the formation of an NSC in the center of the halo. Source: (Lupi
et al., 2014).
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Figure 1.3.2: Flow chart reporting the NSC contraction process leading to the
formation of a single seed BH from the merger among stellar mass black holes.
Source: (Lupi et al., 2014).

Other important references are (Regan and Haehnelt, 2009) who studied pathways
to form massive black holes and compact star clusters in pre-galactic dark matter
haloes with virial temperatures ' 10 000 K where black holes form at the centers
via a stellar seed black hole, a quasistar or via a nuclear star cluster in dark matter
(DM) haloes. The latest studies of runaway collisions in dense clusters that may
lead to the formation of supermassive black hole (SMBH) seeds found that mass
loss can significantly affect the final mass of the possible SMBH seed. Considering
a constant mass loss of 5 % for every collision, it can lose between 60-80 % of the
total mass that is obtained if the mass loss were not considered. Using instead
analytical prescriptions for the mass loss, the mass of the final object is reduced by
15-40 %, depending on the accretion model for the cluster that is studied (Alister
Seguel et al., 2020). It has also been studied how supermassive stars (SMSs) with
masses ≈ 103 − 105 M� could be formed via gas accretion and runaway stellar
collisions in high-redshift, metal-poor nuclear star clusters (NSCs) and after the
formation of SMBHs through the collapse of supermassive stars (SMSs) into seed
black holes which could grow up to the SMBHs with a few times 109 M� observed
at z ≈ 7. These are highly sensitive to the initial conditions and the assumed
recipe for the accretion, due to the highly chaotic nature of the problem (Das
et al., 2021).
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Another topic of investigation is the interplay among stellar dynamics, gas
accretion, and protostellar evolution. Gas accretion onto the protostars enhances
their radii, resulting in an enhanced collisional cross-section. The fraction of
collisions can increase from 0.1 to 1 % of the initial population to about 10 %

when compared to gas-free models or models of protostellar clusters in the local
Universe. This way very massive objects can form despite initial fragmentation,
making the first massive protostellar clusters viable candidate birthplaces for
observed supermassive black holes (Boekholt et al., 2018). For clusters with a
moderate initial central concentration and a realistic IMF, the ratio of core-collapse
time to initial half-mass relaxation time is typical ≈ 0.1, in agreement with the
value previously found by direct N-body simulations for much smaller systems.
Remarkably, for all realistic initial conditions, the mass of the collapsing core
is always close to ≈ 10−3 of the total cluster mass, very similar to the observed
correlation between the central black hole mass and the total cluster mass in a
variety of environments (Gurkan et al., 2004).

1.4 Previous work on clusters and collisions of

Population III stars

One of the latest works that have been pursued is that of (Reinoso et al., 2018)
who concluded that collisions in massive Pop. III clusters were likely relevant to
form the first intermediate-mass black holes, particularly in more massive Pop.
III clusters as expected in the first atomic cooling halos. They derived a more
significant enhancement by a factor of 15 and 32 for such massive systems.
On the other hand, it has been found by (Reinoso et al., 2020), who included
a background potential and compared to the results of simulations with no
background potential with simulations that did have a background potential,
that the background potential increases the velocities of the stars, causing an
overall delay in the evolution of the clusters and the runaway growth of a massive
star at the center. In this case, the population of binary stars is lower due to
the increased kinetic energy of the stars, initially reducing the number of stellar
collisions, and the relaxation processes are also affected. On the other hand, the
external potential enhances the mass of the merger product by a factor ≈ 2 if the
collisions are maintained for a long time.
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Figure 1.4.1: Evolution of a cluster with N = 1000 stars, total mass Mstars =
104 M�, Rv = 0.14 pc, and Rstar = 100 R�. Source: (Reinoso et al., 2020).

In figures 1.4.1 and 1.4.2 the uppermost panel shows the number of mergers as
a function of time. The second panel shows the fraction of binaries, hyperbolics
(which are stars that are not gravitationally bound), chains (which occur between
stars that are part of a higher-order system), and the stars that escape from the
cluster as a function of time. The third panel shows the 10 %, 50 %, and 90 %

Lagrangian radii as a function of time. And the final panel shows the mass growth
of the most massive object in the cluster divided by the initial mass of the stars
as a function of time.
Here we can see how the collisions occur afterward when we simulate the effects
of the gas with an external potential. The number of stars that escape from the
cluster is much smaller in the presence of an external potential, the central part of
the cluster that we can see if we enclose 10% of the mass of the cluster collapses
while the outermost parts expand and finally with an external potential the mass
of the central object becomes larger in time.
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Figure 1.4.2: Evolution of a cluster with N = 1000 stars, total mass Mstars =
104 M�, Rv = 0.14 pc, and Rstar = 100 R� and in the center of the cluster an
external potential with Mext = 104 M�. Source: (Reinoso et al., 2020).

1.5 Comparison with theoretical expectations for

nuclear clusters at galaxy centers

In the paper (Escala, 2021) the author proposes a new formation scenario for
massive black hole formation driven by stellar collisions in galactic nuclei in which
massive black holes and nuclear stellar clusters are different evolutionary paths of
a common formation mechanism.
The collision time scale for any virialized stellar system is defined by

tcoll =
1

nΣ0

√
R

GM
, (1.5.1)

where n is the number density, Σ0 is the effective cross section, R is the
characteristic radius of the system, G is the gravitational constant and M is
the total mass of the cluster.
If the age of the universe, tH, is comparable or longer than the collision time tcoll
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≤ tH, it is equivalent to the following condition(
4η

300R2
�tHG

1/2

)2/3

≤MR−7/3, (1.5.2)

where η is the mass of the stars normalized by M�. And the other constants M�,
R�, tH and G are the solar mass, the solar radius, the age of the universe and the
gravitational constant, respectively.
If we consider that a virialized system has a radius R equal to R = GM/σ2,
equation 1.5.2 can be written as√

4η

300σ�tH
≤ η

M

(
σ

σ�

)3.5

, (1.5.3)

where σ is the characteristic dispersion velocity of the system and σ� is the solar
characteristic dispersion velocity of the system.
If the age of the universe, tH, is comparable or longer than the relaxation time
trelax ≤ tH, it is equivalent to the following condition

R ≤
(
tHη

0.1
ln

(
M

η

))2/3(
G

M

)1/3

, (1.5.4)

where
N = M/η. (1.5.5)

Figure 1.5.1 shows the nuclear stellar clusters as red circles, the well-resolved
MBHs as black circles, and the unresolved MBHs as white circles. The black
star is M87’s black hole shadow. The black line denotes the positions of the
Schwarzschild radius as a function of mass. The solid blue line represents the
condition given by equation 1.5.2 for tH = 1010 years (ρ̂crit ≈ 107 M� pc

−7/3 for
solar mass stars, η = 1). The horizontal green line represents the condition given
by equation 1.5.3 (≈ 3.5× 108 M�). The dashed green line denotes the condition
given by equation 1.5.4 for tH = 1010 years, which intersects with the solid blue
line at the same critical mass determined by equation 1.5.3. The positions of
NSCs are restricted within the boundaries defined by the collisional stable region
for NSCs, denoted by the thick blue and green lines. It also explains that NSCs
will be unstable for masses larger than 108 M which would explain the absence of
NSCs with these masses.
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Figure 1.5.1: Measured masses versus effective radius diagram. From: (Escala,
2021).

Figure 1.5.2 shows the observed black hole formation efficiency εBH = (1+MNSC

MBH
)−1

or what is the same εBH = MBH/MCMO as a function of the total mass in the central
massive object MCMO = MNSC +MBH, with both quantities computed using the
MBHs and NSCs masses from the dataset by (Neumayer et al., 2020), represented
by black circles. The efficiency has two dominant values for black hole efficiencies
(εBH ≤ 0.15 at MCMO ≤ 3 · 107 M� and εBH ≥ 0.9 for MCMO ≥ 3 · 108 M�) and a
transition close to a step function of the mass. Upper limits for the efficiencies
εBH are denoted by lower triangles, while lower limits for εBH by upper triangles,
displaying the same trend of the black circles but with larger scatter at lower
CMO masses.
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Figure 1.5.2: Mass of the CMO versus the observed efficiency of the black holes
formation diagram. Source: (Escala, 2021).

Figure 1.5.3 shows the collision and relaxation timescales in the mass versus
radius diagram for clusters composed of solar mass stars (η = 1), for different
cluster ages tH: 1010 yr in blue, 108 yr in green and 106 yr in purple. For each
color with a different tH, clusters on the left side of the solid curves fulfill the
condition tcoll ≤ tH or trelax ≤ tH, with the intersection of solid curves dividing the
stable trelax ≤ tcoll and the unstable tcoll ≤ trelax regions. The yellow line denotes
the same conditions for 100 M� Pop III stars with tH = 106 yr. The dotted black
line denotes the condition trelax = tcoll for clusters composed of solar mass stars (η
= 1) and the dotted red, for clusters of more massive Pop III stars (η = 100). The
collision times of the NSCs measured today can be assumed to be longer than
they were at the formation.
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Figure 1.5.3: Collision and relaxation timescales in the mass versus radius
diagram. Source: (Escala, 2021).
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Chapter 2

Methodology

2.1 NBODY6++

To perform the simulations of this thesis we used the NBODY6++ GPU code,
designed to speed up N-body simulations of large numbers of particles (Wang
et al., 2015).
The code NBODY6++ GPU directly integrates Newton’s equations of motion for
many bodies very precisely, giving us information on the dynamic evolution of
star clusters. It is used to simulate systems that collide with high precision and a
long integration time. This code has four main characteristics: it is based on
a fourth-order prediction–correction method (Hermite scheme), individual and
block time–steps, a neighbor scheme (Ahmad–Cohen scheme), a regularization
scheme for close encounters (KS-Regularization), and few-body subsystems
which are described in the manual for the computer code written by (Khalisi
et al., 2019). For further discussion of previous versions of the NBODY code see
(Aarseth, 1999, 2001).

2.1.1 Hermite scheme

Each particle is determined by its velocity v0, mass m and position r0 at time t0.
The acceleration equation and its time derivative due to all the other particles are
given for a particle i by

a0,i = −
∑
i 6=j

Gmj
R

R3
, (2.1.1)
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ȧ0,i = −
∑
i 6=j

Gmj

[
V

R3
+

3R(V ·R)

R5

]
, (2.1.2)

where G is the gravitational constant; R = r0,i − r0,j is the relative coordinate;
R=|r0,i − r0,j| the modulus; and V = v0,i − v0,j the relative space velocity to the
particle j.
The Hermite scheme follows the trajectory of the particle by first predicting a
new position and velocity for the next time step t using the Taylor series for ri(t)

and vi(t) given by

rp,i(t) = r0 + v0(t− t0) + a0,i
(t− t0)2

2
+ ȧ0,i

(t− t0)3

6
, (2.1.3)

vp,i(t) = v0 + a0,i(t− t0) + ȧ0,i
(t− t0)2

2
. (2.1.4)

(But so far the requirements for an accurate high-order integrator are still missing.)
Then, an improvement is made using Hermite interpolation which approximates
the higher accelerating terms by another Taylor series:

ai(t) = a0,i + ȧ0,i · (t− t0) +
1

2
a

(2)
0,i · (t− t0)2 +

1

6
a

(3)
0,i · (t− t0)3, (2.1.5)

ȧi(t) = ȧ0,i + a
(2)
0,i · (t− t0) +

1

2
a

(3)
0,i · (t− t0)2. (2.1.6)

From equations 2.1.5 and 2.1.6 we need to know the terms a(2)
0,i and a

(3)
0,i . They

can be calculated using rp and vp following the calculation of the equations 2.1.1
and 2.1.2 and they will be ap,i and ȧp,i respectively. We replace the values of ap,i

and ȧp,i on the left-hand side of the equation 2.1.5 and 2.1.6, after simplifying we
obtain

a
(3)
0,i = 12

a0,i − ap,i

(t− t0)3
+ 6

ȧ0,i + ȧp,i

(t− t0)2
, (2.1.7)

a
(2)
0,i = −6

a0,i − ap,i

(t− t0)2
− 2

2ȧ0,i + ȧp,i

(t− t0)
. (2.1.8)

Finally, to have a ’corrected’ position r1,i and velocity v1,i of the particle i at the
computation time t1 we need to extend the Taylor series for ri(t) and vi(t) from
equations 2.1.3 and 2.1.4 by two more orders

r1,i(t) = rp,i(t) + a
(2)
0,i

(t− t0)4

24
+ a3

0,i

(t− t0)5

120
, (2.1.9)
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v1,i(t) = vp,i(t) + a2
0,i

(t− t0)3

6
+ a

(3)
0,i

(t− t0)4

24
. (2.1.10)

This way we obtain the Hermite scheme able to obtain high-order accelerations
from the combination of low-order terms with only the first derivative of the
equations.
The local error in r and v within the two-time steps ∆ = t1 − t0 is expected to be
of order ϑ(∆t5), and the global error for a fixed physical integrator time scales
with ϑ(∆t4) (Makino, 1991).

2.1.2 Individual and block time steps

So far we understand that stellar systems have a huge dynamical range in radial
and temporal scales with time scales from periods of some days for binaries to
relaxation times of star clusters of billions of years. There typically is a large
dynamic range in the average local stellar density from the center to the very
outskirts of clusters, where it dissolves into the galactic tidal field. If we consider
the timestep required for the two closest bodies they would determine the time-step
of the force calculation for the whole rest of the system. Then, if we choose a
small time step the evolution of the system will be very time-consuming which
would not allow us to evolve the simulation for a long enough time. And if we
choose a larger time step close encounters will not be calculated correctly. So the
idea here is to mix both the small time steps and the larger time steps for the
whole system; therefore for large changes, the force is calculated via small time
steps, and for small changes, the force is applied on larger time steps.
First, the individual time-step scheme (Aarseth, 1963) was studied, and then the
block time-steps.
Each particle in NBODY6++ GPU is assigned its own ∆ti like in the block time
steps in figure 2.1.1. The particle i has the smallest time step at the beginning
of the simulation, so its phase space coordinates are calculated at each time step.
The particle k has a time step that is twice the time-step for the particle i, at
the odd time steps the full force calculation is just ’predicted’ and a full force
calculation is due at the dotted lines. The step width may be altered or not after
the end of the integration cycle for a particle for example for k and l beyond the
label ’8’. The time steps have to stay commensurable with both each other as well
as the total time, such that the hierarchy is guaranteed. This is what is called a
block step scheme.
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Figure 2.1.1: Illustration of the block time step scheme in NBODY6++ GPU
for four particles. Source: NBODY6++ GPU Manual for the computer code
(Khalisi et al., 2019). You can find this document here https://github.com/nbodyx/
Nbody6ppGPU/tree/master/doc.

A first estimate for the time step could be the rate of change of the acceleration
∆ti ∝

√
ai/ȧi. But it turns out that for special situations in many body systems,

it provides some undesired numerical errors. After some experiments, the following
formula was adopted (Aarseth, 1985).

∆ti =

√√√√η
|a1,i||a(2)

1,i |+ |ȧ1,i|2

|ȧ1,i||a(3)
1,i |+ |a

(2)
1,i |2

, (2.1.11)

where η is a dimensionless accuracy parameter that controls the error. In most
applications, it is taken to be η ≈ 0.01 to 0.02.
It can be noticed that after some time there will be a grouping of particles (block)
due to the movement at each time step.

2.1.3 Ahmad–Cohen scheme

As we consider more particles in the simulations it will take much longer to calculate
the full force for each particle within the system. Therefore, it is desirable to use
a method to speed up the calculations while retaining the collisional approach.

https://github.com/nbodyx/Nbody6ppGPU/tree/master/doc
https://github.com/nbodyx/Nbody6ppGPU/tree/master/doc
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One way to achieve this is to employ the ’neighbor scheme’ suggested by (Ahmad
and Cohen, 1973). The idea of the Ahmad-Cohen scheme is to split the force
polynomial from equation 2.1.5 on a given particle i into two parts, an irregular
and a regular component:

ai = ai,irr + ai,reg. (2.1.12)

The irregular acceleration ai,irr due to the particles in the neighborhood of a
certain particle i (in the code, FI and FIDOT are the irregular force and its time
derivative at the last irregular step; internally some routines use FIRR and FD as a
local variable). As these particles are close, they give rise to a stronger fluctuating
gravitational force, then it is calculated more frequently than the regular one of
the more distant particles that don’t change their relative distance to i so quickly
(in the code, FR and FRDOT are the regular force and its time derivative at the
last regular step; some routines use as a local variable FREG and FDR). The total
calculation in equation 2.1.1 can be replaced by a summation over the nearest
particles Nnb for ai,irr and adding a distant contribution from all the others. This
contribution is updated using another Taylor series FRDOT (that is the time
derivative at the last regular step) and the time derivative of FR (the regular
force at the last regular step) at the last regular force computation.
If a particle is a neighbor or not is determined by its distance. All particles
inside a specified ’neighbor sphere’ with a radius rs as we can see in figure 2.1.2
(Makino and Aarseth, 1992) are kept in a list, which is modified at the end of each
regular time step when a total force calculation is carried out. Particles outside
this sphere will be calculated for their irregular force FIRR. Also, approaching
particles within a surrounding shell satisfying R ·V < 0 are included. This ’buffer
zone’ serves to identify fast-approaching particles before they come in too far into
the neighbor sphere. The neighbor criterion is determined by the relative forces
between the particles, not by their distance.
The filled dots inside the sphere are in the list that is filled in to calculate the total
force at the beginning of the simulation. The irregular components are calculated
first and then the regular ones. At the same time also the first-time derivative is
calculated. From the equations 2.1.5 and 2.1.6 the position and velocity of the
particle i are predicted.
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Figure 2.1.2: A neighbor scheme for a particle marked as the asterisk. Source:
NBODY6++ GPU Manual for the computer code (Khalisi et al., 2019).

As we can see in figure 2.1.3 at the time t1,irr the "corrector" is applied only
for the irregular acceleration from the neighbors; the regular acceleration is not
corrected, but obtained by extrapolating. At the time t2,irr ocurrs the same.
The Hermite predictor-corrector method is also applied and another new list of
neighbors is created. Therefore, at certain times only the forces from neighbors
(irregular time steps) are calculated, while at other times both the forces from
neighbors and distant particles (regular time steps) are calculated.
In the code NBODY6++ GPU the variable NNBOPT controls the size of the
neighbor spheres. Its typical values are between 50 and 200 for a very wide range
of total particle numbers.
From equation 2.1.11 the accuracy can be tuned by ηirr ≈ 0.01 and ηreg ≈ 0.02
again.
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Figure 2.1.3: Illustration of the regular and irregular time steps. Source:
NBODY6++ GPU Manual for the computer code (Khalisi et al., 2019).

2.1.4 Regularization of close encounters and few-body

subsystems

The small time steps and small distances in the dynamics of close binaries are
treated via regularization. This is one of the most expensive calculations within
NBODY6++ GPU. The impact parameter determines the close encounters and is
smaller than the parameter for a 90-degree deflection,

p90 = 2G(m1 +m2)/v2
∞, (2.1.13)

where G, m1, m2, and v∞ are the gravitational constant, the masses of the two
particles, and their relative velocity at infinity. These close encounters occur more
in the center of the cluster since in this place the distances between particles are
smaller. What happens is that the relative distances between the particles are
very small and their time steps are also very small, which causes the error to grow
in these places due to the singularity in the gravitational potentials. This is the
problem that regularization resolves. The regularization defines two parameters
within NBODY6++ GPU: RMIN and DTMIN. RMIN indicates the maximum
separation for a close encounter and when these particles are closer than RMIN
(from equation 2.1.13) and the time steps are smaller than DTMIN then the
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conditions for regularization are fulfilled. DTMIN is defined as:

dtmin = κ
[ η

0.03

](r3
min

〈m〉

)1/2

, (2.1.14)

where κ is a free numerical factor, η the general time step factor, and <m>
the average stellar mass. That is why regularization is an elegant trick to deal
with particles that are as close as the diamond in figure 2.1.2. The principal
idea is to take both stars out of the main integration cycle, replace them by
their center of mass and advance the usual integration with a composite particle
instead of resolving the two components. The two members of the regularized pair
(henceforth KS pair) will be relocated to the beginning of all vectors containing
particle data, while at the end one additional center of mass (c.m.) particle is
created. One of the purposes of the code variable NAME(I) is to identify particles
after such a reshuffling of data.
Also, the two particles have to fulfill two more sufficient criteria: that they are
approaching each other, and that their mutual force is dominant. In the equations
in routine search.f, these sufficient criteria are defined as:

R ·V > 0.1
√

(G(m1 +m2)R), (2.1.15)

γ :=
|apert| ·R2

G(m1 +m2)
< 0.25, (2.1.16)

where apert is the vectorial differential force exerted by other perturbing particles
onto the two candidates, and R, R, V are scalar and vectorial distance and relative
velocity vector between the two candidates, respectively. The factor 0.1 in the
upper equation allows nearly circular orbits to be regularized. The condition γ <
0.25 demands that the relative strength of the perturbing forces compared to the
pairwise force is one-quarter at most. Then these subsystems are separated from
the rest of the system but not unperturbed.
After this, the motion of the new particle is put into a new coordinate system
(three-dimensional cartesian space). Any unperturbed two–body orbit in real
space is mapped onto a harmonic oscillator in KS–space with double the frequency.
The internal time-step of such a KS-regularized pair depends on the parameter
ETAU, which is of the order of some 50-100 steps per orbit. The first studies on
this topic were done in (Stiefel, 1965). A more modern theoretical version can be
found at (Neutsch and Scherer, 1992). The Hamiltonian formalism is explained in
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(Mikkola, 1997).
When the perturbation γ falls below a critical value of the input parameter
GMIN ≈ 10−6, it is considered to be unperturbed and the analytical solution for
the Keplerian orbit is used instead of doing numerical integration. A little bit
misleading is that such unperturbed KS–pairs are denoted in the code as ”mergers”,
e.g. in the number or merges (NM) and the energy of the mergers (EMERGE).
Merged pairs can be resolved at any time if the perturbation changes. The
two–body KS regularization occurs in the code either for short-lived hyperbolic
encounters or for persistent binaries.
In the code, the KS–pair appears as a new particle at the position of the center of
mass. The variable NTOT which contains the total number of particles N plus the
c.m.’s is increased by 1. When the pair is disrupted, NTOT has decreased again.
The maximum number of possible KS– pairs are saved in the variable KMAX,
which sets a threshold for the extension of the vector NTOT.
Close encounters between single particles and binary stars are also a central feature
of cluster dynamics. Such temporary triple systems often reveal irregular motions,
ranging from just a perturbed encounter to a very complex interaction, in which
disruption of binaries, exchange of components, and ejection of one star may occur.
Although not analytically solvable, the general three–body problem has received
much attention. So, the KS–regularization was expanded to the isolated 3– and
4–body problem, and later on to the perturbed 3–, 4–, and finally to the N–body
problem. The routines are called triple.f, quad.f, chain.f.
While occurrences of “triple” and “quad” will be rare in a simulation, the chain
regularization is invoked if a KS–pair has a close encounter with another single
star or another pair. Especially if systems start with a large number of primordial
binaries, such encounters may lead to stable (or quasi-stable) hierarchical triples,
quadruples, and higher multiples. They have to be treated by using special
stability criteria.
A typical way to treat all such special higher subsystems is to define their c.m. to
be a pseudo-particle, i.e. a particle with a known sub-structure. The members
of the pseudo-particles will be deactivated by setting their mass to zero (ghost
particles). At present, there can only be one chain at a time in the code, while
merged KS binaries and hierarchical subsystems can be more frequent.
Every subsystem — KS pair, chain or hierarchical subsystem is perturbed.
Perturbers are typically those objects that get closer to the object than Rsep
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= R/γ
1/3
min, where R is the typical size of the subsystem; for perturbers, the

components of the subsystem are resolved in their force computation as well
(routines cmfreg.f, cmfirr.f).

Figure 2.1.4: Flow chart NBODY6++ GPU. Source: NBODY6++ GPU Manual
for the computer code (Khalisi et al., 2019).
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Figure 2.1.5: Flow chart NBODY6++ GPU. Source: NBODY6++ GPU Manual
for the computer code (Khalisi et al., 2019).

In the figures 2.1.4 and 2.1.5 we can see the general structure of how the
NBODY6++ GPU code works depending on the parameters defined in the input
file.
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2.2 Description of the numerical setup

2.2.1 Input

We model dense star clusters in virial equilibrium using a Plummer distribution
for the stars (Plummer, 1911). Half of our simulations included an analytic
background potential, which helps us simulate the effects of the gas within the
cluster, which also follows a Plummer density profile.
This is a template of the input file used to carry out the simulations with
NBODY6++ GPU. The file was used for all simulations with only minor changes.
These small changes are the termination time in N-body units (TCRIT), the
virial radius of the cluster (RBAR), the mean mass of the stars (ZMBAR), and
the maximum and minimum particle mass (BODY1 and BODYN). The last three
parameters have to be the same because we are not considering stellar evolution
nor an initial mass function therefore the masses are the same throughout the
evolution of the cluster, and the initial radius of the stars in the file instar.F
which is in the folder ’.../src/Main/’. The NBODY code uses dimensionless units
with the name Nbody units. More detail on how these different variables are
defined within the code can be found in (Khalisi et al., 2019).
The input file contains more than 90 parameters that must be adjusted for each
simulation.
The names of the different input parameters are described below:

Line 1: KSTART, TCOMP, TCRITp, isernb, iserreg, iserks.
Line 2: N, NFIX, NCRIT, NRAND, NNBOPT, NRUN.
Line 3: ETAI, ETAR, RSO, DTADJ, DELTAT, TCRIT, QE, RBAR, ZMBAR.
Line 4: KZ(1), KZ(2), KZ(3), KZ(4), KZ(5), KZ(6), KZ(7), KZ(8), KZ(9),
KZ(10).
Line 5: KZ(11), KZ(12), KZ(13), KZ(14), KZ(15), KZ(16), KZ(17), KZ(18),
KZ(19), KZ(20).
Line 6: KZ(21), KZ(22), KZ(23), KZ(24), KZ(25), KZ(26), KZ(27), KZ(28),
KZ(29), KZ(30).
Line 7: KZ(31), KZ(32), KZ(33), KZ(34), KZ(35), KZ(36), KZ(37), KZ(38),
KZ(39), KZ(40).
Line 8: KZ(41), KZ(42), KZ(43), KZ(44), KZ(45), KZ(46), KZ(47), KZ(48),
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KZ(49), KZ(50).
Line 9: DTMIN, RMIN, ETAU, ECLOSE, GMIN, GMAX, SMAX.
Line 10: AlPHA, BODY1, BODYN, NBINO, NHIO, ZMET, EPOCHO,
DTPLOT.
Line 11: Q, VXROT, VZROT, RTIDE.
Line 12: MP, AP, MPDOT, TDELAY.

Line 1 contains the parameters that are defined in the file nbody6.F. The
parameters of lines 2, 3, 4, 5, 6, 7, 8, and 9 are defined in the file input.F. The
parameters of line 10 are defined in the file data.F. Scale.F contains the definitions
of the parameters of line 11 and finally xtrn10.F includes the definition of the
parameters of line 12.
The input file for NBODY6++ GPU is written as follows.
For the case with an external potential:

1 1000000.0 1.E6 40 40 0
10000 1 10 43532 190 1 10
0.02 0.01 0.25 1.0 1.0 48000.0 2.0E00 0.05 15.0
0 1 1 0 1 0 4 0 1 2
0 1 0 4 0 0 0 4 3 0
1 1 2 0 0 2 -1 0 0 2
1 0 2 0 0 0 1 1 0 0
0 0 0 0 0 4 -2 0 1 0
1.0E-03 1E-3 0.2 1.0 1.0E-06 0.01 1
1.0 15.0 15.0 0 0 0.0001 0 1.0
0.5 0.0 0.0 0.0
1.0 0.59 10000 10000

For the case without an external potential:

1 1000000.0 1.E6 40 40 0
10000 1 10 43532 100 1 10
0.02 0.01 0.17 1.0 1.0 24000.0 2.0E00 0.05 15.0
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0 1 1 0 1 0 4 0 1 2
0 1 0 0 0 0 0 4 3 0
1 1 2 0 0 2 -1 0 0 2
1 0 2 0 0 0 1 1 0 0
0 0 0 0 0 4 -2 0 1 0
1.0E-03 1E-3 0.2 1.0 1.0E-06 0.01 1
1.0 15.0 15.0 0 0 0.0001 0 1.0
0.5 0.0 0.0 0.0

We use a version of the code modified by Bastian Reinoso to include stellar
collisions avoiding the use of the stellar evolution routines from the original
version. Therefore the mass of the stars is always the same during the evolution of
the cluster unless they collide. The simulated cluster has a Plummer distribution.
Some simulations include an external analytic Plummer potential. The external
analytic Plummer potential can be added on line 5 in column number 4 which
corresponds to KZ(14)=4 with an additional line at the end of the input, which
is MP that is the total mass of the Plummer sphere in scaled units, AP the
Plummer scale factor in N-body units, MPDOT the decay time for gas expulsion
and TDELAY the delay time for starting gas expulsion. The evolution of clusters
was followed until 10 Myr. The example used is a simulation of 10,000 particles
with a Plummer potential until N-body units. Since we don’t consider stellar
evolution, the stellar mass at the beginning of the simulation and the final stellar
mass are the same, i.e. ZMBAR=BODY1=BODYN, which in this case is equal
to 15 M�. The virial radius is 0.05 [pc] and the stellar radius is 1.51 R� while
the radius of the external potential Rv,ext is the same as the virial radius of the
stellar distribution.
The crossing time is the time required for a star with a typical velocity to cross the
system. The crossing time for a system in virial equilibrium without an external
potential is defined by

tcross =

√
R3

v

GMstars

, (2.2.1)

where Rv is the virial radius of the cluster, G is the gravitationsl constant and M
is the total mass of the stars.
The relaxation time is the time needed for a system to return to a state of
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equilibrium. The half-mass relaxation time for a system with identical particles is
defined as

trh = 0.138
N

ln(γN)
tcross (2.2.2)

in the absence of an external potential.
The crossing time including an external potential is defined by

tcross,ext =

√
R3

v

GMstars

1

1 + q
. (2.2.3)

The core collapse time scale is related to the crossing time as tcc ∝ (1 + q)4tcross.
Here q is defined as q = Mext

Mstars
.

Then, the half-mass relaxation time with an external potential can be calculated
as

trh,ext = 0.138
N(1 + q)4

ln(γN)
tcross,ext, (2.2.4)

where γ = 0.4 for equal-mass stars.

2.2.2 Initial conditions

The table 2.2.1 details the initial conditions of each simulation made in this
thesis in which all simulations have 104 stars. The first column is the number of
the simulation, the second column is the initial mass of the stars in solar masses,
the third column is the initial radius of the stars in solar radius, the fourth column
is the virial radius of the cluster in parsecs, the fifth column is the total mass of
the cluster in solar masses, the sixth column is the mass of the gas in solar masses,
the seventh column is the radius of the gas in pc and the eighth column is the
crossing time in Myr. It is important to mention that the initial radii and masses
are from the paper of (Windhorst et al., 2018) and the stars in the clusters have
the same mass and radius initially.
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ID Mstar Rstar Rv Mcluster Mgas Rgas tcross

[M�] [R�] [pc] [M�] [M�] [pc] [Myr]
1 15 1.51 0.05 3× 105 1.5× 105 0.05 2.1 × 10−4

2 30 2.12 0.05 6× 105 3× 105 0.05 1.5 × 10−4

3 50 2.86 0.05 1× 106 5× 105 0.05 1.1 × 10−4

4 100 4.12 0.05 2× 106 1× 106 0.05 8.0 × 10−5

5 15 1.51 0.05 1.5× 105 — — 4.3 × 10−4

6 30 2.12 0.05 3× 105 — — 3.0 × 10−4

7 50 2.86 0.05 5× 105 — — 2.3 × 10−4

8 100 4.12 0.05 1× 106 — — 1.6 × 10−4

9 15 1.51 0.1 3× 105 1.5× 105 0.1 6.0 × 10−4

10 30 2.12 0.1 6× 105 3× 105 0.1 4.3 × 10−4

11 50 2.86 0.1 1× 106 5× 105 0.1 3.3 × 10−4

12 100 4.12 0.1 2× 106 1× 106 0.1 2.3 × 10−4

13 15 1.51 0.1 1.5× 105 — — 1.2 × 10−3

14 30 2.12 0.1 3× 105 — — 8.6 × 10−4

15 50 2.86 0.1 5× 105 — — 6.6 × 10−4

16 100 4.12 0.1 1× 106 — — 4.7 × 10−4

17 15 1.51 0.5 3× 105 1.5× 105 0.5 6.5 × 10−3

18 30 2.12 0.5 6× 105 3× 105 0.5 4.8 × 10−3

19 50 2.86 0.5 1× 106 5× 105 0.5 3.7 × 10−3

20 100 4.12 0.5 2× 106 1× 106 0.5 2.6 × 10−3

21 15 1.51 0.5 1.5× 105 — — 1.3 × 10−2

22 30 2.12 0.5 3× 105 —- — 9.6 × 10−3

23 50 2.86 0.5 5× 105 — — 7.4 × 10−3

24 100 4.12 0.5 1× 106 — — 5.2 × 10−3

Table 2.2.1: Initial conditions of the simulations.

2.3 Collision treatment

The stellar collision condition used is:

r ≤ R1 +R2, (2.3.1)

where r is the distance between both stars center of mass and R1 and R2 are the
radii of the stars. A collision occurs when two stars are separated by a distance
equal to or smaller than the sum of their radii, which also means that they are in
physical contact. When this condition is reached, then both stars are replaced
by a new star whose total mass is the sum of the masses of the stars before the
collision. Thus, the new star assumes the same density as the previously merging
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stars.
The mass and radius of the new star are given by the following equations

Mnew = M1 +M2, (2.3.2)

Rnew = R1

(
M1 +M2

M1

)1/3

, (2.3.3)

where M1 and M2 are the mass of the two stars.
The initial mass of the cluster Mcluster is related to the number of stars N and the
mass of the star Mstar

Mstar = Mcluster/N (2.3.4)

The total mass of the cluster with an external potential is calculated as

Mtot = Mstars +Mext. (2.3.5)
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Chapter 3

Analysis

3.1 Pop. III star cluster simulations

In this work, we run 24 simulations, and the evolution of all the clusters in
our sample evolved up to 10 Myr to be able to be analyzed later in the mass
versus radius diagrams. All clusters simulated here have a total of 104 stars
and in each cluster, the mass of the external potentials is equal to the mass in
stars (Mext = Mstars). Analyzing the clusters to which we included a background
potential, we noticed that they have in common that regardless of their initial
conditions, only a single star escapes at the end of their evolution of these. It is
important to note that the words ’very massive stars’ are included in the following
descriptions because the evolution of these clusters shows single collisions (a
single collision at different times with different objects within the cluster).
For the simulations 17, 18, 19, and 20 (ID 17, ID 18, ID 19, and ID 20) do not
dominate collisions (tcoll > trelax) which does not result in the formation of a most
massive object but rather the formation of several very massive stars (since the
single collisions are not with the same object). These clusters have in common
that they have an external potential and that they have a virial radius of Rv =
0.5 pc. ID17 has a mass in the cluster of Mcluster = 3× 105 M�, with each star
having a mass equal to Mstar = 15 M�, a stellar radius of Rstar = 1.51 R� and an
external potential of Mgas = 1.5× 105 M�. ID 18 has a mass of the cluster equal
to Mcluster = 6× 105 M�, with each star having a mass equal to Mstar = 30 M�,
a stellar radius of Rstar = 2.12 R� and an external potential of Mgas = 3 × 105

M�. For ID 19 the total mass of the cluster is equal to Mcluster = 1 × 106 M�,
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with each star having a mass equal to Mstar = 50 M�, a radius of Rstar = 2.86 R�

and an external potential of Mgas = 5× 105 M�. ID 20 has a mass of this cluster
equal to Mcluster = 2 × 106 M�, with each star having a mass equal to Mstar =
100 M�, a radius of Rstar = 4.12 R� and an external potential of Mgas = 1× 106

M�. All these simulations have in common that within a cluster that is mostly
stable with horizontal Lagrangian radii lines with a slight expansion of the cluster
for the different percentages of enclosed mass.
The following set of simulations 9, 10, 11, and 12 (ID 9, ID 10, ID 11, and ID 12)
have a virial radius equal to Rv = 0.1 pc and also an external potential. ID 9
has stars of equal mass of Mstar = 15 M�, a radius of Rstar = 1.51 R�, a total
mass of the cluster of Mcluster = 3× 105 M� and an external potential of Mgas =
1.5 × 105 M�. ID 10 has stars of equal mass of Mstar = 30 M�, radius of Rstar

= 2.12 R�, a total mass of the cluster of Mcluster = 6× 105 M� and an external
potential of Mgas = 3 × 105 M�. ID 11 has stars of equal mass of Mstar = 50
M�, a radius of Rstar = 2.86 R�, a total mass of the cluster of Mcluster = 1× 106

M� and an external potential of Mgas = 5 × 105 M�. The cluster in ID 12 has
stars of an equal mass of Mstar = 100 M�, a radius of Rstar = 4.12 R�, a total
mass of the cluster of Mcluster = 2× 106 M� and an external potential of Mgas =
1 × 106 M�. The mass of the most massive object for ID 9 achieves a mass of
2775 M� after the collapse at ∼ 6 Myr, for ID 10 achieves a mass of 13920 M�

after the collapse ∼ 4 Myr, in ID 11 it reaches a mass of 33700 M� where there is
a collapse between 2.5 and 3.5 Myr and the cluster in ID 12 reaches a mass of
96100 M� with a collapse at ∼ 2 Myr. In all this set of simulations, there is an
expansion of the lagrangian radii for 10%, 50%, and 90% of the enclosed mass
after only one collapse during its evolution.
In figure 3.1.1, we show simulation number 2 (ID2) with an external potential
where the collapse of the cluster occurs between 1 and 2 Myr. In those times, the
largest number of collisions in the cluster occurs, which makes the mass of the
massive object grow up to 26190 M�. In the simulations with potential, a clear
delay in the collapse of the cluster is seen in the work previously done by Reinoso
et al. (2020) which makes the crossing time vary by 0.5 in the specific case that
the mass of the external potential and the total mass in stars are equal inside the
cluster compared to simulations without this external potential. This delay is
mainly due to the increase in the kinetic energy of the stars within the cluster,
which makes the gravitational collapse take a little longer to occur. This is more
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visible when analyzing the simulations with and without the potential for the
same physical parameters. The Lagrangian radii show us that after the collapse
there is an expansion of the cluster at 10%, 50%, and 90% of the enclosed mass.

Figure 3.1.1: Evolution of a star cluster with 104 stars with an external potential
of the same mass. Each star in the cluster has the same mass and radius of 30
M� and 2.12 R�, respectively. The virial radius is 0.05 pc and the cluster has
evolved to 10 Myr. The first panel shows the number of collisions over time, the
second panel shows the evolution of the Lagrangian radii of the cluster at 10%,
50% and 90% of the enclosed mass, the third panel shows the mass of the most
massive object in the cluster divided by the initial mass of each star and the last
panel shows the number of escaping stars divided by the total number of stars.
Source: Kirsty L.K. Sehlke-Abarca et. al. in preparation.

With the same virial radius Rv = 0.05 pc and with a background potential are the
simulations number 1 (ID 1), number 3 (ID 3), and number 4 (ID 4). ID 1 has
stars of equal mass of Mstar = 15 M�, a radius of Rstar = 1.51 R�, a total mass of
the cluster of Mcluster = 3× 105 M� and an external potential of Mgas = 1.5× 105

M�. ID 3 has stars of equal mass of Mstar = 50 M�, a radius of Rstar = 2.86 R�,
a total mass of the cluster of Mcluster = 1× 106 M� and an external potential of
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Mgas = 5× 105 M�. The densest simulation of this work is ID 4 which has stars
of an equal mass of Mstar = 100 M�, a radius of Rstar = 4.12 R�, a total mass
of the cluster of Mcluster = 2× 106 M� and has an external potential of Mgas =
1 × 106 M�. These clusters reach a mass of the most massive object of 11385
M� collapsing at ∼ 2 Myr for ID 1, 59600 M� for ID 3 collapsing at ∼ 1 Myr
and a mass of 171400 M� for the densest cluster ID 4 that a collapse takes place
between 0 and 1 Myr. The ID 1 cluster shows an expansion of the Lagrangian
radii for 10%, 50%, and 90% of the enclosed mass while for ID 3 and ID 4, there
is a collapse of the innermost layer shown via the 10% line and an expansion of
the outermost layers such as the 50% and 90% line of the enclosed mass.
For the simulations 21, 22, 23, and 24 (ID 21, ID 22, ID 23, and ID 24) do not
dominate collisions (tcoll > trelax). Clusters in this sample that do not have a
background potential and have a viral radius of Rv = 0.5 pc are described below.
The only simulations in which there was no very massive object were simulations
number 21 and 22 (ID 21 and ID 22) since there are no collisions in these clusters.
In these cases, the cluster expands slightly with some escaping stars being 13 and
27 respectively. ID 21 has a total mass of Mcluster = 1.5× 105 M�, stars of equal
mass of Mstar = 15 M� and stellar radii of Rstar = 1.51 R� and ID 22 has a total
mass of Mcluster = 3× 105 M�, stars of equal mass of Mstar = 30 M� and stellar
radii of Rstar = 2.12 R�. For simulation number 23 (ID 23) there are few collisions
and very massive stars are formed. This cluster is expanding slightly and the
stars escaping is about 55. It should be noted that this cluster is characterized by
having a total mass of Mcluster = 5× 105 M�, stars of an equal mass of Mstar =
50 M� and stellar radii of Rstar = 2.86 R�. Finally, in simulation number 24 (ID
24) there are few collisions and very massive stars are formed. This cluster is also
expanding slightly and the stars escaping is about 132. It should be noted that
this cluster is characterized by having a total mass of Mcluster = 1× 106 M�, stars
of an equal mass of Mstar = 100 M� and radius of Rstar = 4.12 R�.
The following set of simulations 13, 14, 15, and 16 (ID 13, ID 14, ID 15, and ID
16) has a viral radius of Rv = 0.1 pc and do not have a background potential.
The collapse of ID 13 occurs at ∼ 2.5 Myr, in which the total mass of the cluster
is Mcluster = 1.5× 105 M�, stars of an equal mass of Mstar = 15 M� and radius
of Rstar = 1.51 R�. The mass of the most massive object reaches 5895 M� and
stars equal to 826 escape from the cluster, therefore a mass of 131715 M� remains
in the cluster. The collapse of ID 14 occurs at ∼ 1.5 Myr, in which the total
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mass of the cluster is Mcluster = 3× 105 M�, stars of an equal mass of Mstar = 30
M� and radius of Rstar = 2.12 R�. The mass of the most massive object reaches
16200 M� and stars equal to 1078 escapes from the cluster, therefore a mass of
251460 M� remains in the cluster. The collapse of ID 15 occurs at ∼ 1 Myr, in
which the total mass of the cluster is Mcluster = 5 × 105 M�, stars of an equal
mass of Mstar = 50 M� and radius of Rstar = 2.86 R�. The mass of the most
massive object reaches 33650 M� and stars equal to 1326 escapes from the cluster,
therefore a mass of 400050 M� remains in the cluster. The collapse of ID 16 occurs
before 1 Myr. Here the total mass of the cluster is Mcluster = 1× 106 M�, stars of
equal mass of Mstar = 100 M� and stellar radii of Rstar = 4.12 R�. The mass of
the most massive object reaches 89900 M� and stars equal to 1604 escapes from
the cluster, therefore a mass of 749700 M� remains in the cluster. In all these
simulations there is also an expansion of the outer layers of the Lagrangian radii
that encompass the enclosed mass at 50% and 90% of the enclosed mass.
In figure 3.1.2, we show simulation number 6 (ID6). As mentioned above for
these simulations the collapse occurs earlier, in this case before 1 Myr. The
number of collisions in this simulation is higher than in the simulation shown
in the previous figure. This makes the growth of the central object much faster
until 28800 M�. A collapse of the shell at 10% of the Lagrangian radius and an
expansion of the shells for 50% and 90% are shown. The amount of stars that
escape in simulations without potential is much higher than those that escape in
simulations with potential with 1981 stars.
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Figure 3.1.2: Evolution of a star cluster of 104 stars without an external
potential, each star in the cluster has the same mass and radius 30 M� and 2.12
R�, respectively. The virial radius is 0.05 pc and the cluster has evolved to 10
Myr. The first panel shows the number of collisions over time, the second panel
shows the evolution of the Lagrangian radii of the cluster at 10%, 50% and 90%
of the mass, the third panel shows the mass of the most massive object in the
cluster divided by the initial mass of each star and the last panel shows the
number of escaping stars divided by the total number of stars. Source: Kirsty
L.K. Sehlke-Abarca et. al. in preparation.

With the same virial radius Rv = 0.05 pc and without a background potential are
the simulations number 5 (ID 5), number 7 (ID 7), and number 8 (ID 8). ID 5 has
stars of an equal mass of Mstar = 15 M�, a radius of Rstar = 1.51 R� and a total
mass of the cluster of Mcluster = 1.5× 105 M� reaching a mass of the most massive
object of 12195 M� and stars equal to 1633 escape from the cluster, therefore
a mass of 113310 M� remains in the cluster. The collapse of the cluster occurs
before 1 Myr and after that, there is an expansion of the lagrangian radii lines
for 50% and 90% of the enclosed mass. ID 7 which has stars of an equal mass of
Mstar = 50 M�, a stellar radius of Rstar = 2.86 R� and a total mass of the cluster
of Mcluster = 5× 105 M� reaching a mass of the most massive object of 55900 M�
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and stars equal to 2304 escape from the cluster, therefore a mass of 328900 M�

remains in the cluster. The collapse of the cluster occurs before 1 Myr and there
is a first collapse of the innermost layer and then a second collapse deeper also
for 10% of the Lagrangian radius and expansion in the outermost layers for 50%

and 90% of the Lagrangian radii of the enclosed mass. On the other hand, ID
8 which contains stars of an equal mass of Mstar = 100 M�, a radius of Rstar =
4.12 R� and a total mass of the cluster of Mcluster = 1× 106 M� reaching a mass
of the most massive object of 138200 M� and stars equal to 2672 escape from
the cluster, therefore a mass of 594600 M� remains in the cluster. The collapse
of the cluster occurs before 1 Myr and there is a first collapse of the innermost
layer and then a second collapse deeper also for 10% of the Lagrangian radius and
expansion in the outermost layers for 50% and 90% of the Lagrangian radii of the
enclosed mass.

3.2 Theoretical results for Pop. III star clusters

In figure 3.2.1 the theoretical results of the simulations for 1Myr can be observed.
To make the following three figures, other parameters like the effective cross-
section, the Safronov number, and velocity dispersion which are defined later
were considered in the initial (Escala, 2021) equations, which causes a change in
the figures. For a better understanding, I will rewrite the initial equations with
the new parameters in consideration for equation 1.5.2. Star clusters that have
tcoll ≤ tH are unable to expand before the onset of runaway collisions, they will
probably collapse towards the formation of an MMO:

M ≥
(

4πMstar

3Σ0tHG1/2

)2/3

R7/3, (3.2.1)

where Mstar is the mass of a single star, Σ0 is the effective cross section, tH is the
age of the system and G is the gravitational constant. The effective cross section Σ0

is defined as Σ0 = 16
√
πR2

star(1 + Θ), where Rstar is the radius of a single star and
Θ is the Safronov number Θ = 9.54((Mstar R�)/( M�Rstar))((100 km s−1)/σ))2.
σ is the velocity dispersion of a virialized system σ =

√
GM/R, where M is the

total mass and R the characteristic radius of the system.
On the other hand, how Pop. III star clusters (PSCs) that have trelax ≤ tH

will expand their effective radius before collisions become important, moving its
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position to the collisional stable region:

R ≤ [((tHMstar)/0.1) ln (M/Mstar)]
2/3 (G/M)1/3 . (3.2.2)

From the figures 3.2.1, 3.2.2 and 3.2.3 we can see that if we consider longer
times the conditions for the solid lines and the segmented ones move from left to
right which means that clusters with a smaller virial radius are more unstable,
forming most massive objects more quickly.

Figure 3.2.1: In this figure the radius of the cluster in pc is shown on the x-axis
while on the y-axis is the mass of the cluster in M�. The different colors in the
figure represent the different initial stellar masses for both triangles and lines. In
this case, yellow represents the initial mass of each star of 15 M�, cyan represents
the initial mass of each star of 30 M�, magenta represents an initial mass of
each star of 50 M� and finally coral represents an initial mass of each star of 100
M�. Triangles pointing to the right (B) represent simulations with an external
potential on the other hand triangles pointing to the left (C) represent simulations
without an external potential. The solid lines are from the condition of equation
3.2.1 for the different σ associated with the initial conditions, while the dashed
lines are from equation 3.2.2 both for a time evolution of 1 Myr. Source: Kirsty
L.K. Sehlke-Abarca et. al. in preparation.
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Figure 3.2.2: In this figure the radius of the cluster in pc is shown on the x-axis
while on the y-axis is shown the mass of the cluster in M�. The different colors
in the figure represent the different initial stellar masses for both triangles and
lines, in this case, yellow represents an initial mass of each star of 15 M�, cyan
represents an initial mass of each star of 30 M�, magenta represents an initial
mass of each star of 50 M� and finally coral represents an initial mass of each
star of 100 M�. Triangles pointing to the right (B) represent simulations with an
external potential on the other hand triangles pointing to the left (C) represent
simulations without an external potential. The solid lines are from the condition
of equation 3.2.1 for the different σ associated with the initial conditions, while the
dashed lines are from equation 3.2.2 both for a time evolution of 5 Myr. Source:
Kirsty L.K. Sehlke-Abarca et. al. in preparation.
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Figure 3.2.3: In this figure the radius of the cluster in pc is shown on the x-axis
while on the y-axis is shown the mass of the cluster in M�. The different colors
in the figure represent the different initial stellar masses for both triangles and
lines, in this case, yellow represents an initial mass of each star of 15 M�, cyan
represents an initial mass of each star of 30 M�, magenta represents an initial
mass of each star of 50 M� and finally coral represents an initial mass of each
star of 100 M�. Triangles pointing to the right (B) represent simulations with an
external potential on the other hand triangles pointing to the left (C) represent
simulations without an external potential. The solid lines are from the condition
of equation 3.2.1 for the different σ associated with the initial conditions, while
the dashed lines are from equation 3.2.2 both for a time evolution of 10 Myr.
Source: Kirsty L.K. Sehlke-Abarca et. al. in preparation.

3.3 Efficiencies for Pop. III star clusters

In figures 3.3.1, 3.3.2 and 3.3.3 showing the efficiencies for the formation of
most massive objects we have that the x-axis shows the initial stellar mass of
the cluster Mini divided by the critical mass Mcrit and in the y-axis the efficiency



44 3.3. Efficiencies for Pop. III star clusters

εMMO of each simulation. We have

Mini = MPSC,final +MMMO +Mesc, (3.3.1)

Figure 3.3.1: Efficiencies at which MMOs are formed calculated with equation
3.3.3. The x-axis shows the initial stellar mass of the cluster Mini divided by the
critical mass Mcrit until 1 Myr. Source: Kirsty L.K. Sehlke-Abarca et. al. in
preparation.

where MPSC,final is the mass of the Pop. III star cluster remaining at the end of
the simulation, MMMO is the mass of the most massive object and Mesc is the
mass of the stars escaping from the cluster. Here we consider that the mass of
the central massive object is equal to MCMO = MPSC +MMMO.
On the other hand, the critical mass Mcrit is obtained from the condition given by
the equation 3.2.1:

Mcrit =

(
4πMstar

3Σ0tHG1/2

)2/3

R7/3. (3.3.2)
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The efficiency εMMO is obtained from the same equation used in (Escala, 2021),

εMMO =

(
1 +

MPSC

MMMO

)−1

, (3.3.3)

where the mass of the PSC is calculated as MPSC = (1 − εMMO)MCMO and the
mass of the MMO can be calculated as MMMO = εMMOMCMO.
From here we notice that the simulations in which we do not add a background
potential have a higher efficiency than when we consider this background potential
for the same physical conditions of the cluster. The highest efficiencies are reached
for denser and more massive clusters which reach a value of ∼ 20%.

Figure 3.3.2: Efficiencies at which MMOs are formed calculated with equation
3.3.3. The x-axis shows the initial stellar mass of the cluster Mini divided by the
critical mass Mcrit until 5 Myr. Source: Kirsty L.K. Sehlke-Abarca et. al. in
preparation.

It is important to note that the mass of the background potential was only
considered in the simulations and not in the subsequent calculations of the
efficiencies since this potential only affects the dynamics of the cluster and does
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not directly contribute to the growth of the most massive object to be considered
in efficiency.
The error bars are associated with the average of three simulations for the same
single configuration with a different random seed to obtain the statistics of the
simulations.

Figure 3.3.3: Efficiencies at which MMOs are formed calculated with equation
3.3.3. The x-axis shows the initial stellar mass of the cluster Mini divided by the
critical mass Mcrit until 10 Myr. Source: Kirsty L.K. Sehlke-Abarca et. al. in
preparation.

The highest efficiencies at 10 Myr are obtained from simulations ID4 and ID8
which include the densest and most massive clusters, which reach efficiencies 20 %,
since these simulations are located close, in the radius versus mass diagram, to
the line that describes the condition (tcoll ≤ tH) where collisions dominate. The
ID7 simulation reaches 16.6 %. A 12.5 % in efficiency is obtained from the ID3
and ID6 simulations. The ID5 simulation reaches a 10 % in efficiency. A little
further down the ID2 simulation has 9.09 % in efficiency. Finally, for simulations
with a virial radius Rv of 0.05 pc, the ID1 simulation achieves 7.69 % in efficiency.
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For simulations with a virial radius Rv of 0.1 pc, the ID16 simulation reaches
11.1 % in efficiency. A 10 % in efficiency is obtained by the ID12 simulation. The
ID15 simulation has an 8.33 % in efficiency. 7.14 % is obtained from the initial
conditions of the ID11 simulation. The ID14 simulation reaches 6.25 %. The ID10
and ID13 simulations have efficiencies of 4.76 % and 4.34 % respectively. And
finally, 1.85 % is obtained by the ID9 simulation.
The efficiencies of the ID17, ID18, ID19, ID20, ID21, ID22, ID23, ID24 simulations
are very close to 0 % for virial radius Rv of 0.5 pc. These last simulations are
located close, in the radius versus mass diagram, to the line that describes the
condition (trelax ≤ tH) where collisions do not dominate.
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3.4 Summary of the main results

In the following tables 3.4.1,3.4.2 and 3.4.3 we can summarize the main results
of the simulations for 1 Myr, 5 Myr, and 10 Myr.

ID MMMO Nesc MPSC MCMO

[M�] [M�] [M�]
1 30 1 149955 149985
2 60 1 299910 299970
3 33100 1 466850 499950
4 150300 1 849600 999900
5 4155 209 142710 146865
6 12660 364 276420 289080
7 31450 492 443950 475400
8 88400 712 840400 928800
9 30 1 149955 149985
10 60 1 299910 299970
11 100 1 499850 499950
12 200 1 999700 999900
13 30 10 149820 149850
14 60 27 299130 299190
15 100 65 496650 496750
16 22000 186 959400 981400
17 30 0 149970 150000
18 60 0 299940 300000
19 100 0 499900 500000
20 200 0 999800 1000000
21 0 0 149985 149985
22 0 0 299970 299970
23 50 1 499900 499950
24 100 1 999800 999900

Table 3.4.1: Main results from the simulations at 1 Myr.
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ID MMMO Nesc MPSC MCMO

[M�] [M�] [M�]
1 10650 1 139335 149985
2 25470 1 274500 299970
3 59300 1 440650 499950
4 168800 1 831100 999900
5 10815 1077 123030 133845
6 25920 1397 232170 258090
7 51000 1709 363550 414550
8 130100 1990 670900 801000
9 30 1 149955 149985
10 10530 1 289440 299970
11 30600 1 469350 499950
12 91400 1 908500 999900
13 4200 467 138795 142995
14 12810 675 266940 279750
15 27600 858 429500 457100
16 77500 1048 817700 895200
17 30 1 149955 149985
18 60 1 299910 299970
19 100 1 499850 499950
20 200 1 999700 999900
21 0 3 149940 149940
22 0 6 299790 299790
23 50 13 499300 499350
24 200 24 997400 997600

Table 3.4.2: Main results from the simulations at 5 Myr.
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ID MMMO Nesc MPSC MCMO

[M�] [M�] [M�]
1 11385 1 138600 149985
2 26190 1 273780 299970
3 59600 1 440350 499950
4 171400 1 828500 999900
5 12195 1633 113310 125505
6 28800 1981 211770 240570
7 55900 2304 328900 384800
8 138200 2672 594600 732800
9 2775 1 147210 149985
10 13920 1 286050 299970
11 33700 1 466250 499950
12 96100 1 903800 999900
13 5895 826 131715 137610
14 16200 1078 251460 267660
15 33650 1326 400050 433700
16 89900 1604 749700 839600
17 30 1 149955 149985
18 60 1 299910 299970
19 100 1 499850 499950
20 200 1 999700 999900
21 0 13 149790 149790
22 0 27 299160 299160
23 100 55 497150 497250
24 200 132 986600 986800

Table 3.4.3: Main results from the simulations at 10 Myr.
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Chapter 4

Discussion

This research provides support for the hypothesis that the scenario from Reinoso
et al. (2020) works in Pop. III clusters above the critical mass limit. Nonetheless,
there are several caveats, as we currently do not even know the mass range
and the typical mass-radius relation for Pop. III clusters, so that some very
important questions are open. Also the initial mass function of the Pop. III stars
is unclear, the binary fraction, and other factors. It is important to acknowledge
these uncertainties more specifically. Even though we do not know exactly what
the radii of these Pop. III star clusters would be, we know from the study of
parameters that we did that the smaller the radius of this cluster is, the more
massive will be the object that will form in its center and therefore the efficiencies
will be much higher. This leads us to the fact that Pop. III star clusters more
massive than 1 × 106 M� would have efficiencies greater than 20 % to form
massive objects in their center. It should be noted that the processes of formation
of structures in the universe are much more complex than just including the
dynamics of bodies within a system, but it is already a good start to include
more physical processes that interact with our main system in the future and
check those only collisions have a high contribution in the formation process. The
formation of structures in the early universe was also shaped by processes such
as accretion, fragmentation, rotation, initial mass function, and the reionization
of hydrogen, among others that should be considered for a complete analysis
of the formation of black holes. As detailed above we take a simplified case of
stellar clusters where we do not consider stellar evolution and all the stars in
the cluster have the same mass and radius. The background potential that we
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included in some of our simulations helped us to understand that although we
would be modeling the effects of the gas within the cluster, it would not have a
greater effect on the total mass of the most massive object at the same time, since
as previously studied by Reinoso et al. (2020) simulations with a background
potential could double the total mass of the most massive objects but in a much
longer time. It would make sense that for denser simulations than those carried
out in this investigation, they would be studied up to 1 Myr since by then they
would have already formed a most massive object in their center since simulations
that we made less dense for that time had not yet reached the collapse of the
cluster. In the end, this is what we seek to answer as such massive structures
were formed in such a short time.
From the figure 3.2.3 clusters in the left side of the solid lines fulfill the condition
tcoll ≤ tH or trelax ≤ tH. Clusters at 0.5 pc are in the stable region (trelax ≤ tcoll)
and the clusters at 0.1 pc and 0.05 pc, although they are in the stability region,
are almost on the edge of the instability region, where collisions are increasingly
greater crossing the unstable line (tcoll ≤ trelax). As mentioned in (Escala, 2021)
there is a mass limit of ∼ 4 × 108 M� where all the mass turns into a central
massive object. It is to be expected that simulations with masses of Pop. III
star clusters similar to the latter and bigger would allow us to see this jump
in efficiencies between 0 and 1. For now, with the results already obtained, we
can only see how the efficiency starts at 0 and slowly these efficiencies increase.
Bearing this in mind, our results are in agreement with previous works and follow
a very similar line.
On the other hand, we only know their characteristics theoretically about
population III stars, so we will have to wait to corroborate this information
in the future, which seems quite promising. In the future, we will have access
to supercomputers that allow us to make much more massive and compact
simulations, which will help us to analyze the collisions within these systems to
calculate how these efficiencies increase. This together with other works that are
being done in parallel will give us access to larger samples to be able to analyze
our graphs to have a considerable sample and achieve more general conclusions.
This added to what the promising images of the James Webb Space Telescope
(JWST) can say in the observational counterpart and of course future space
telescopes that allow us to observe the early universe such as some of them:
Transient High-Energy Sky and Early Universe Surveyor (THESEUS), JWST,
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Extremely Large Telescope (ELT), Square Kilometre Array (SKA), Wide-Field
Infrared Survey Telescope (WFIRST), EUCLID, European Extremely Large
Telescope (E-ELT), Giant Magellan Telescope (GMT), Thirty Meter Telescope
(TMT) and Laser Interferometer Space Antenna (LISA) among others, which has
us waiting for what we can observe.
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Chapter 5

Conclusion

In this investigation, therefore, support has been shown with numerical methods
of a new path for the formation of massive black holes theoretically proposed by
(Escala, 2021) to those previously proposed (Rees, 1984) and (Volonteri, 2010).
Our sample of simulations is a simplified case of star clusters of equal mass and
radius where half of our simulations have an external background potential with a
plummer profile (Plummer, 1911) and the other do not. Some of these simulations
after the simulation started to show an instability that causes a massive central
object to form in the center of these clusters through collisions. This is called
the coexistence of nuclear star clusters and black holes and it has been proposed
that they formed in the same way but that they have different evolutionary
mechanisms. Our systems, being located in the early universe, have masses and
radii of population III stars, which are characterized by being very massive. The
characteristics of these stars were taken from (Windhorst et al., 2018). We do not
include stellar evolution in our calculations since our aim here is to investigate
dynamical processes taking place before even the most massive main-sequence
stars in the cluster have evolved. The simulations were made using NBODY6++
to study the dynamics of N bodies with an extension for parallel computers
designed by (Spurzem, 1999). Our main results indicate that, on the one hand,
the efficiencies we obtained are not so high due to the mass-radius relationship
used for the stars. Even though Population III stars are very massive, the radii
used are small, which means that in the dynamics of the stars in the cluster they
have a smaller cross-section than if they had larger radii and the cross-section
had a greater range of stars moving within the cluster which would cause greater
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collisions, a more massive central object and therefore greater efficiencies. And on
the other hand, all our simulations with external potential have a delay that had
already been studied by (Reinoso et al., 2020) but now we consider characteristic
parameters of population III stars, this means that the kinetic energy of the
system is higher than when we do not consider this potential and the collapse of
the cluster takes time to occur in addition to this the system is more compact
and very few stars escape from the cluster.
Research has recently been carried out that also explores this new scenario for
the formation of black holes such as those of (Vergara et al., 2022b) and (Vergara
et al., 2022a) finding that the most massive objects reach masses of approximately
104 − 105 M� and the highest black hole formation efficiency is almost 50 % of
the stellar mass at the end of the simulation.
Three important uncertainty to consider are: first, to be able to use the initial
mass function (IMF) of primordial stars. This type of work has been studied by
(Hartwig et al., 2015), in which it is detailed that they constrain the lower-mass
limit of the (Pop III) IMF with the total number of stars in large, unbiased
surveys of the Milky Way and they conclude that the lower mass IMF limit is
0.65 M� with a confidence of 95 % and that the Pop III star formation rate peaks
at z ∼ 20 and that each successfully Pop III forming halo has an average stellar
mass content of ∼ 100 M�. It would be interesting to be able to add to our
simulations the IMF of the stars of Pop. III to be able to analyze how our results
vary in these cases. Another uncertainty to consider in the future is the rotation
of Pop. III star clusters. In studies of (Vergara et al., 2021) it was found that
rotation seems to affect the collision rate by at most 20 % and that rotation helps
to retain more stars in the system, reducing the number of escapers by a factor of
2 − 3 depending on the model and the specific realization. The third uncertainty
is if still gas would be present in these clusters and how it affects the evolution.
This has been studied in (Boekholt et al., 2018) where it is demonstrated that the
interplay between stellar dynamics, gas accretion, and protostellar evolution is
particularly relevant increasing collisions from 0.1-1% of the initial population to
about 10% when compared to gas-free models. This is because gas accretion onto
the protostars enhances their radii, which causes an enhanced collisional cross
section eventually causing major collisions inside the cluster.
With the first images of a black hole so far (Event Horizon Telescope Collaboration
et al., 2019) and (Collaboration et al., 2022) we are expectant to see what future
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generations of telescopes have to show us in the coming years such as the SKA,
WFIRST, EUCLID, JWST, and large ground-based facilities such as E-ELTs,
GMT, and TMT (Dijkstra, 2019) among others as THESEUS or detections of
other ways to study the early universe like the one found in (Bowman et al.,
2018) where they report the detection of a flattened absorption profile in the
sky-averaged radio spectrum, which is centered at a frequency of 78 megahertz
and has a best-fitting full- width at half-maximum of 19 megahertz and an
amplitude of 0.5 kelvin to study the early universe. Another way in which they
are working to study these objects is with LISA, which is planned to be launched
in the early 2030s where they will explore the possibility of discovering seed
black holes and track their growth across all cosmic epochs, by detecting the
gravitational wave signal they emit at the time of their coalescence, i.e. they pair
to form close binaries. Gravitational waves travel unimpeded through the cosmos
and carry information on the masses and spins of the merging black holes. To
this purpose they introduce key concepts on the gravitational wave emission from
binaries, describing briefly their formation pathway during halo-halo mergers and
galaxy collisions (Colpi, 2019).
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