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Resumen

La interacción entre cuatro cuerpos es de vital importancia para comprender
la evolución de los cúmulos estelares. Esto se debe a que se ha demostrado
que estas interacciones ocurren regularmente en cúmulos con altas fracciones
de estrellas binarias (por encima de ∼ 10%), y son fundamentales para decidir
el tiempo de evolución del sistema en densidades centrales grandes. En este
trabajo continuamos nuestro análisis del problema caótico de los cuatro cuerpos
presentando un tratamiento analítico general basado en un ansatz usando mecánica
estadística, donde cada resultado del problema de los cuatro cuerpos se trabaja y
considera como una variación del problema de los tres cuerpos (por ejemplo, cuando
se producen dos estrellas individuales, cada evento de eyección se modela como una
interacción de tres cuerpos asumiendo que las eyecciones están bien separadas en
el tiempo). Esta es una generalización del tratamiento en mecánica estadística del
problema de los tres cuerpos desarrollado por primera vez por Monaghan (1976a).
En nuestro caso, nos centramos en la interacción de dos sistemas binarios, después
de lo cual dividimos nuestros resultados en tres posibles escenarios (2+2, 2+1+1
y 3+1). Para cada resultado, aplicamos un enfoque basado en un ansatz para
derivar funciones de distribución analíticas, las cuales describen las propiedades
de los productos de las interacciones caóticas de los cuatro cuerpos para partículas
puntuales. Para probar nuestras distribuciones teóricas, realizamos un conjunto
de simulaciones de dispersión en el límite en que las partículas puntuales son
de igual masa usando FEWBODY. Finalmente, comparamos nuestras distribuciones
teóricas con las simulaciones para cada escenario en particular, encontrando de
manera consistente un buen acuerdo entre ambas en los escenarios en que sean
comparables.
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Abstract

The interaction between four bodies is of critical importance to understanding
the evolution of star clusters. This is because these interactions have been shown
to occur regularly in clusters with high binary fractions (above ∼ 10%), and are
critical to deciding the time evolution of the system at high central densities. In
this work we continue our analysis of the chaotic four-body problem by presenting
a general ansatz-based analytic treatment using statistical mechanics, where each
outcome of the four-body problem is regarded as some variation of the three-body
problem (e.g., when two single stars are produced, each ejection event is modeled
as its own three-body interaction by assuming that the ejections are well separated
in time). This is a generalization of the statistical mechanics treatment of the
three-body problem first developed by Monaghan (1976a). In our case, we focus
on the interaction of two binary systems, after which we divide our results into
three possible outcome scenarios (2+2, 2+1+1, and 3+1). For each outcome, we
apply an ansatz-based approach to deriving analytic distribution functions that
describe the properties of the products of chaotic four-body interactions involving
point particles. To test our theoretical distributions, we perform a set of scattering
simulations in the equal-mass point particle limit using FEWBODY. We compare
our final theoretical distributions to the simulations for each particular scenario,
finding consistently good agreement between the two whenever we are able to
compare them.

Keywords – gravitation – scattering – methods: analytical – binaries: close –
stars: kinematics and dynamics – globular clusters: general
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Chapter 1

Introduction

The four-body problem has scarcely been studied analytically. This can be
understood, at least in part, upon considering the history of the three-body
problem, and its notoriety for being a strong example of chaos in nature. With
the two-body problem solved, the temptation to find an analytic solution to
the three-body problem attracted many researchers. Generally, the goal was to
predict the positions of the particles at any future time, for any set of initial
conditions. This eventually led to the understanding that the addition of even
one extra particle renders the number of variables in the equations of motion
greater than the number of equations. The problem is unsolvable, and more
particles will only make it worse. Consequently, the four-body problem received
little attention for centuries (e.g. Nash and Monaghan (1980)).

More recently, computational advances have allowed for numerical studies of the
four-body problem (e.g. Harrington (1974); Saslaw et al. (1974); Mikkola (1983,
1984a,b); Rasio et al. (1995); Fregeau et al. (2004); Leigh and Geller (2012); Leigh
et al. (2016); Ryu et al. (2017c,b,a)). Most of these studied scattering interactions
between two binary star systems. For example, Mikkola (1983) confirmed that
stable triple systems form during encounters between identical binaries. Mikkola
(1984a) extended this result to include binaries with different initial orbital energies,
finding in the process that significantly more triples form as the ratio of binding
energies increases from unity.

The primary astrophysical motivation for this paper is binary-binary scattering
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in dense stellar systems, such as open, globular, or nuclear star clusters. In such
systems, the rate of binary-binary scatterings can dominate the rate of binary-
single scatterings provided the binary fraction satisfies fb ≳ 10% (Sigurdsson and
Phinney (1993); Leigh and Sills (2011)). In this case, binary-binary scatterings are
the dominant cluster heating source and the 4-body problem’s scattering outcomes
become critical for understanding the thermodynamic evolution of the host star
cluster. Moreover, one possible outcome of a binary-binary scattering (which does
not occur for binary-single scatterings in the point particle limit) is dynamical
formation of a triple star system (Leigh et al. (2016)). Such triple systems are of
great interest for their susceptibility to the Kozai-Lidov mechanism, which can
create accreting inner binaries or exotic astrophysical transients (e.g. Perets and
Fabrycky (2009)). The decay products of binary-binary scatterings have been
observed directly, both in the form of stable triples (e.g. Leigh and Sills (2011);
Leigh and Geller (2013)) and runaway O/B stars (e.g. Hoogerwerf et al. (2001);
Oh et al. (2015)).

The strongly chaotic nature of the generic four-body problem makes an analytic
solution to a set of specific initial conditions impossible (except for some fine-tuned
sets of measure zero). However, chaos becomes a useful tool if we are interested
in probabilistic distributions of outcomes corresponding to distributions of initial
conditions. Following the pioneering work of Monaghan (1976a,b) (hereafter the
“Monaghan formalism”), we employ statistical mechanics to compute distributions
of outcomes for the generic problem of binary-binary scattering. This project
is a more analytic continuation of the previous work done in Leigh et al. (2016)
(hereafter “Paper I”), which examined binary-binary scattering using a large suite
of numerical integrations.

In chapter 2, we made a brief summary about the Monaghan formalism. In
chapter 3, we provide an overview of the geometry and phase space of the problem.
In chapters 4, 5, and 6, we use the Monaghan formalism to compute phase
space volumes and parameter distributions for the three possible outcomes of a
binary-binary scattering event involving point particles. In chapter 7, we compute
branching ratios for these three outcomes. In chapter 8 we present the toolkit
FEWBODY to describe and explain the numerical simulations we use to test our
analytic distributions. In chapter 9 we show our results comparing the simulated
data with the analytic derivations found in the previous sections. In chapter 10
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we consider the astrophysical implications of our results, and in chapter 11 we
summarize our work.
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Chapter 2

Monaghan formalism

In this chapter, there will be a brief summary of the formalism established by
Monaghan in his works published in 1976 with respect to the distribution of
densities and the phase space centered on the problem of the three bodies and
their final states. In these works, he relates the statistical properties of the last
states with the volume of the phase space allowed by the constants of movement.
The equations from which the later theoretical distributions are derived will be
shown, which in this thesis were extended to four-bodies. The main idea is to
clarify the bases used in the development of the interaction of the four-bodies with
the method presented in this work. If a more detailed and in-depth description
is desired, the reader is suggested to review the following references Monaghan
(1976a,b)
As a general description, the formalism is based on a system in which three
particles interact, this system has the following characteristics:
Only the interactions in which the angular momentum is minimal are considered,
that is, in practice this component is not considered as a constant of motion,
which can be justified in thermodynamic systems with many particles in which
the net angular momentum is zero. Initially, the interaction is considered to have
occurred in a plane (the system is considered in three-dimensional space once the
bases have been established).
To establish the bases, it is assumed that the statistical properties of the final
state after the interaction are determined by the volume of the phase space that
the constants of movement allow. The region in which the interaction occurs is a
circle of radius R whose center corresponds to the center of mass and within this
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space the interactions are quasi-ergodic. Finally, this parameter R is the only one
adjustable and is a multiplicative factor that does not have much relevance unless
the conservation of angular momentum is important. The measured probability
corresponds to the volume of the phase space per unit of energy, which in quantum
mechanics corresponds to the density of states. Therefore, from now on in this
thesis, we will refer to it by that name. Another important point is that once the
interaction occurs, most of them end up in a binary system and an ejected particle.
The latter will be called the escaper and it is assumed that the gravitational
interaction between it and the system that remains behind is practically negligible
compared to the kinetic energy given the speed of the particle, so the component
corresponding to the gravitational energy is not considered.
Once this is established, the energy of the system is defined as

Es =
1

2

msMb

Mtotal

v 2
s +

1

2

mamb

MB

v 2
s −G

mamb

r
(2.0.1)

where
ms = escaper mass
Mt = total mass
vs = escaper velocity

(
drs
dt

)
ma = binary mass component a
mb = binary mass component b
Mb = binary mass
vb = binary velocity

(
dr
dt

)
G = universal gravitational constant
r = distance between components a and b in the binary
rs = distance between the escaper and the center of mass of the binary

With this the density of states (σ) is defined as:

σ =

∫
...

∫
δ

(
p 2
s

2m
+ EB − E0

)
drsdpsdrdp (2.0.2)

Where
p = canonical moment associated with r
ps = canonical moment associated with rs
m =msmB

M
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EB = energy of the binary
E0 = initial total energy (for conservation it should be equal to the total energy)

From this equation, statistical properties can be obtained, both for the binary
object and for the escaper. We will start with the first one.

Firstly, the integration with respect to rs and ps is performed with the intention
of obtaining properties of the binary. For the development of these integrals, polar
coordinates are used, leaving everything in function of dE and dL, the latter is
expressed in function of the eccentricity (e) by means of the formula of the orbit
of a binary, that is to say

L 2 =

(
mamb

mB

)
(Gmamb)

2

2|EB|
(1− e 2) (2.0.3)

Obtaining,

σ = π 4R 4
(ms

M

)
G 2(mamb)

3

∫ ∫
dEB

|EB| 2

ede√
1− e 2

(2.0.4)

As a main conclusion from the above, it can be said that there is no correlation
between EB and e, and since a = 1/|EB|, then there is no correlation between a
and e. These results were compared for ’relevant low angular momentum’ which
shows very good agreement. For the escaper case, Es is related to EB by means
of equation 2.0.1, in addition to noting that Es follows the distribution of EB

contained in eq. 2.0.4. finding:

σ = π 4R 2
(ms

M

)
G 2m 3

a m
3
b

∫ ∫
1

(|E0|+ Es) 2
dE (2.0.5)

Expressing this in terms of the velocity of the escaping particle, we obtain the
probability of finding an escaping particle with velocity vs in the range vs and vs

+ dvs is:

2A|E0|vsdvs
(|E0|+ Av 2

s )2
(2.0.6)

with A = msM/2(M −ms) with a maximum corresponding to vs = (|E0|/3A)1/2.
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As a fundamental result, the mass that escapes is always a small fraction of the
total mass, that is, it is the smaller mass that escapes (remember that this is the
case of the interaction between three bodies). another important result is that the
probability of the configuration increases as the absolute value of the energy (|E0|)
decreases. Starting from the aforementioned bases, the model can be presented in
three dimensions.
Now consider that the region in which the interaction occurs is a sphere of radius
R, therefore the interaction occurs in three dimensions. For this case, the integral
of the density of states corresponds to:

σ =

∫ ∫
δ

(
p 2
s

2m
+ EB − E0

)
drsdpsdrdp (2.0.7)

The same conventions presented previously are applied and it is obtained for the
case of the binary:

σ =

(
4

3
πR 3

)
4πm3/221/2

∫ ∫
(E0 − EB)

1/2drdp (2.0.8)

where introduced spherical polar coordinates yields,

σ =

(
4

3
πR 3

)
4πm3/221/2

∫ ∫
(E0 − EB)

1/2drdprdθdpθdϕdpϕ (2.0.9)

From several transformations we get

σ =

(
4

3
πR 3

)
8π 4m3/2(Gmamb)

3µ3/2

∫ ∫
(E0 − EB)

1/2

|EB|5/2
ededEB (2.0.10)

Note that µ came from transformation to spherical polar coordinate, where

EB =
1

2µ

(
p 2
r +

p 2
θ

r 2
+

p 2
ϕ

r 2sin 2θ

)
−G

mamb

r
.

Energy and eccentricity are distributed independently and the distribution of
eccentricities corresponds to 2e. Therefore, in low angular momentum systems
for motion in one plane, relatively more binaries with larger eccentricities are
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produced than in their three-dimensional counterpart. Similarly, for the escaper
case, we have:

σ =

(
4

3
πR 3

)
4π 4(µm)3/2(Gmamb)

3

∫
E

1/2
s

(|E0|+ Es)5/2
dEs (2.0.11)

With velocity distribution has the form:

v 2
s(

|E0|+ v 2
s msM

2(M−ms)

)5/2
dvs (2.0.12)

This distribution has a higher peak than the flat case but decays at the same rate
for very high speeds. The mass distribution has the following form:

σ =
4

3
πR 38

π4

3
G 3m 4

a m
4
b

(ms

M

)3/2 1

|E0|
(2.0.13)

This distribution still holds that the density of states is maximum for an escaper
with a smaller fraction of the total mass and that the probability of configurations
increases as the total energy decreases. Finally, after these bases and as a synthesis,
the following can be established as the main conclusions of the work carried out
by Monaghan: This is a very simple model but it describes very well statistically
the results obtained after the interaction of three bodies in a plane for a small
angular momentum. It only gives a qualitative description of the statistical
properties of the escaping particle. This is due to the assumption that the escaper
has no interaction with the binary left behind. It is also due to the removal of
conservation of angular momentum, which, for small total angular momentum,
has a small influence on the binary, but a very strong influence on the escape
velocity distribution. in the second paper, more importance is given to the effects
of angular momentum. Finally, assuming that the probability of a configuration
is proportional to the volume of the associated phase space, it is justified with the
agreement obtained by the simulations.
Taking into account all of these results we expand this to the four-body problem
as we explain in the next sections.



Chapter 3. Statistical mechanics of the Four-body problem 9

Chapter 3

Statistical mechanics of the

Four-body problem

In this work we consider the outcome of the generic, non-hierarchical four-body
problem. We assume all stars are point particles and neglect tidal forces, physical
collisions, the effects of general relativity, and non-gravitational forces. The four
interacting stars have masses ma, mb, mc, and md, which may differ from each
other. The interacting system has a conserved total energy, E0, and a conserved
total angular momentum, L⃗0. Our approach, which was first developed in the
Monaghan formalism to treat the chaotic three-body problem, is to consider
the statistical phase space of different outcomes of the four-body problem. By
calculating the phase space volume of a single outcome as a function of parameters
of interest (e.g. ejection velocities), we can construct distributions of these outcome
parameters. By calculating the relative volumes of different outcomes, we can
compute branching ratios between them.

There are four possible outcomes of the generic four-body problem. Following a
phase of chaotic, non-hierarchical gravitational interactions, the system eventually
forms some combination of hierarchical, bound particles and unbound, escaping
particles. The four possible combinations are

1. One escaping, unbound star and a hierarchically stable triple (the “3+1”
outcome).

2. Two escaping, unbound stars and a surviving binary (the “2+1+1” outcome).
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3. Two surviving binaries which are mutually unbound from each other (the
“2+2” outcome).

4. Four escaping, unbound stars (the “1+1+1+1” outcome).

In isothermal star clusters with Maxwellian velocity distributions, the 1+1+1+1
outcome is almost always energetically forbidden (Leigh et al. (2016)), so we
ignore it for the remainder of this work.

The primary assumption we make in analyzing the 3+1, 2+1+1, and 2+2 cases
is that the strongly chaotic interactions of a non-hierarchical four-body system
will uniformly populate the phase space available in each of these outcomes. The
same assumption motivated the statistical mechanical treatment of the three-
body problem in Monaghan (1976a,b), and was validated by post-hoc checks
using numerical orbit integrations. Because the parameter space of the four-body
problem is much larger than that of the three-body problem, we cannot hope to
fully cover it with numerical integrations, but we will check our results against
the suite of 7× 104 four-body scattering experiments presented in Paper I.

Although our primary motivation is to make statistical predictions for the outcomes
of binary-binary scatterings, our results should apply equally well to other non-
hierarchical four-body systems, such as a strong triple-single scattering, or to
other, less probable events (such as a simultaneous encounter between a binary
and two single stars).

In the following three sections, we consider the 2+2, 3+1, and 2+1+1 outcomes. It
is important to note that variables in these sections may sometimes have the same
names but different definitions. We define all variables locally at the beginning of
their respective sections.
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Chapter 4

The 2+2 outcome

We begin with the 2+2 case, as it has the greatest similarity to the classic 2+1
three-body problem. Fig. 4.0.1 shows a cartoon of the 2+2 outcome. The final
state here is two binaries; the first, composed of masses ma and mb, has total mass
mB1 = ma +mb. The second, composed of masses mc and md, has total mass
mB2 = mc +md. The binaries have individual reduced masses M1 = mamb/mB1

and M2 = mcmd/mB2, and a joint reduced mass of m = mB1mB2/M , where
M = mB1 +mB2.

The total energy of this final state is E0 = Es + EB1 + EB2, where

Es =
1

2
m ˙⃗r 2

s − GmB1mB2

rs

EB1 =
1

2
M1

˙⃗r 2
ab −

Gmamb

r1
(4.0.1)

EB2 =
1

2
M2

˙⃗r 2
cd −

Gmcmd

r2
.

In the above equations, r⃗ab is the separation vector between mass a and mass b,
r⃗cd is the separation vector between mass c and mass d, and r⃗s is the separation
vector between the two binary centers of mass, as is shown in Fig. 4.0.1.

There is likewise a well-defined final state angular momentum, L⃗0 = L⃗s+L⃗B1+L⃗B2,



12

ma

mb

mc

md

→ r1

→ r2

→ rs

Figure 4.0.1: The configuration of the 2+2 outcome.

where

L⃗s =m(r⃗s × ˙⃗rs)

L⃗B1 =M1(r⃗ab × ˙⃗rab) (4.0.2)

L⃗B2 =M2(r⃗cd × ˙⃗rcd).

The two final state binaries in this outcome have characteristic semimajor axes
a1 and a2. We choose a1 > a2. If a1 ≫ a2, then the 2+2 problem reduces to
the standard Monaghan 2+1 formalism with extra degrees of freedom. More
specifically, we can apply the loss cone formalism while treating the second binary
as a point particle (although we must account for its reservoir of energy and
angular momentum).

Operating first in this limit, we simplify further by working also in the low angular
momentum limit. In this case, the density of escape configurations per unit energy
is

σ =

∫
...

∫
δ (Es + EB1 + EB2 − E0) dr⃗sdp⃗sdr⃗1dp⃗1dr⃗2dp⃗2. (4.0.3)
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We eliminate three variables of integration with the following simplification:∫ ∫ ∫
δ

(
p2s
2m

− GmB1mB2

rs
+ EB1 + EB2 − E0

)
dp⃗s

= 4πfLC

∫ ∞

0

δ

(
p2s
2m

− GmB1mB2

rs
+ EB1 + EB2 − E0

)
p2sdps

= 4πfLCm

√
2m

(
E0 +

GmB1mB2

rs
− EB1 − EB2

)
. (4.0.4)

Under the assumption that a1 ≫ a2, we use the areal loss cone factor

fLC =
α2a21
4r2s

. (4.0.5)

Here α is a dimensionless fudge factor of order unity that ultimately must be
calibrated from numerical scattering experiments. In the classic 2+1 problem,
α ≈ 7.

We next evaluate∫ ∫ ∫
21/2πα2a21m

3/2

r2s

√
E0 −

GmB1mB2

rs
− EB1 − EB2dr⃗s

= 25/2π2α2m3/2a21

∫ R

0

√
E0 +

GmB1mB2

rs
− EB1 − EB2drs

≈ 27/2π2α2m3/2a21
√
GmB1mB2. (4.0.6)

In the last approximate equality, we have taken R ≲ 3a1. The density of states
for this outcome is now

σ ≈23/2π2α2m2(GMR)1/2(Gmamb)
2

×
∫
...

∫
dr⃗abdp⃗abdr⃗cddp⃗cd

|EB1|2
. (4.0.7)
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Further simplification (making use of isotropy) gives

σ ≈ 4a2π5(Gmamb)
7/2R1/2m

3/2
B M−3/2m2

e

×
∫ ∫

dEB1dEB2

|EB1|7/2|EB2|3/2
L1L2dL1dL2 (4.0.8)

σ ≈ 2a2π5(Gmamb)
11/2R1/2m

3/2
B M−3/2m2

eM

×
∫ ∫

dEB1dEB2

|EB1|9/2|EB2|5/2
e1e2de1de2. (4.0.9)

It is important to mention that in this derivation we have called me the mass of
the object that we consider is the one that escapes (analogous to the three-body
case in which the escaper is a single), which in this case is a binary (so mB1 = mB2

= me), for simplicity we will define A := 2a2π5(Gmamb)
11/2R1/2m

3/2
B M−3/2m2

eM,
however it is important to remember that the value of me and M will be different
for each of the three different outcomes.
Eq. 4.0.9 encodes the final probability distribution of binary energies (Eq. 4.0.8
does not because its limits of integration depend on EB1 and EB2). Specifically,
these probability distributions are

P (|EB1|)d|EB1| = A
7

2
|E0|7/2|EB1|−9/2d|EB1| (4.0.10)

P (|EB2|)d|EB2| = A
3

2
|E0|3/2|EB2|−5/2d|EB2|. (4.0.11)

However, in this simple derivation, we have followed Valtonen and Karttunen
(2006), and have neglected angular momentum conservation, rendering our results
inaccurate. We now consider the power-law ansatz of Valtonen and Karttunen
(2006),

P (|EB1|)d|EB1| = A(n− 1)|E0|n−1|EB1|−nd|EB1| (4.0.12)

P (|EB2|)d|EB2| = A(ν − 1)|E0|ν−1|EB2|−νd|EB2|. (4.0.13)

In the zero angular momentum limit of the chaotic three-body problem, n = 3,
leading us to speculate that here n = 3 and ν = 1. This, however, would imply a
UV divergence in P (|EB2|) as EB2 → ∞. We fix this by truncating at a maximum
energy Emax motivated by physics beyond the Newtonian point particle limit
of this work (e.g. physical collisions, tidal interactions, relativistically unstable
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orbits, etc.). Thus,

P (|EB2|)d|EB2| = A|EB2|−1 ln−1

(
Emax

E0/2

)
d|EB2|. (4.0.14)

These approximations will begin to break down if a1 ≈ a2.
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Chapter 5

The 3+1 outcome

In Paper I, it was demonstrated that to a good approximation, the distribution of
escaper velocities in the 3+1 outcome can be computed with a straightforward
application of the 2+1 Monaghan formalism, considering only the binding energy
of the inner binary EB. This approach works because the total binding energy,
E1, of a hierarchically stable triple (at least in the equal mass case considered in
Paper I) is dominated by that of the inner binary. Unfortunately, this approach
says little about the properties of the outer orbit of the resulting triple, and this
adaptation of the Monaghan formalism is only applicable to the inner binary and
the escaping single star.

In other words, |E1| − |EB| ≡ |ET| ≪ |E1|. A cartoon sketch of the 3+1 outcome
is shown in Fig. 5.0.1. Masses ma and mb form the inner binary component
of the stable triple, while mc is the outer tertiary component. The mass md is
escaping from the system on an unbound trajectory. We define additional masses
mB = ma +mb, mT = mB +mc, MB = mamb/mB, and MT = mBmc/mT.

5.1 Strongly hierarchical triples

When masses are comparable, the stable triple produced in the 3+1 outcome can
be thought of in the following way: the inner binary contains the bulk of the
energy E1, while the outer binary contains the bulk of the angular momentum
L⃗1. In paper I, it was showed that the standard 2+1 Monaghan formalism applies
reasonably well to the binding energy distributions, so now applying factor A
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ma

mb

mc

md

→ r1

→ r2

→ rs

Figure 5.0.1: The configuration of the 3+1 outcome.
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(with their respective values) we found

P (|EB|)d|EB| = A(n− 1)|E0|n−1|EB|−nd|EB|, (5.1.1)

where n = 9/2 if angular momentum conservation is neglected and n = 3 in
zero-angular momentum ensembles. We can determine the distribution of outer
triple binding energies at a similar level of approximation by assuming a thermal
distribution of outer eccentricities eT, i.e. dN/deT = 2et. Then, under the
assumption that the outer orbit angular momentum LT ≫ LB, we use the relation
e2T = 1− L2

T/(M2
TGmTaT) to compute

dN

daT
=

dN

deT

deT
daT

=
L2
T

M2
TGmTa2T

, (5.1.2)

or, equivalently,
dN

dET

=
2L2

T

M2
TG

2mTmBmc

. (5.1.3)

For fixed LT, Eq. 5.1.3 specifies the distribution of |ET|, which varies from 0 to a
maximum value ≲ |E1|/2.

We can proceed further under the assumption of small angular momentum in the
inner binary; in this limit, the angular distribution of L⃗B will be approximately
isotropic with respect to L⃗T. If we define a reference axis ẑ ∥ L⃗B, then the
distribution of misalignment angles

dN

d sin θ
=

1

2
, (5.1.4)

where cos θ ≡ L̂1 · L̂B = Lz
1/L1. In the remainder of this section, we denote the z

component of a vector with a superscript z, and the components orthogonal to ẑ
with a superscript ⊥.

We now complete this perturbative calculation: having assumed a distribution of
θ which is isotropic, we wish to know the distribution of a different misalignment
angle, cosψ ≡ L̂B · L̂T = Lz

T/LT. In general, ψ ≈ θ, but we aim here to quantify
the leading order deviation from isotropy in ψ. Since L⃗1 = L⃗B + L⃗T, we can write
Lz
1 = LB + Lz

T and L⊥
1 = L⊥

T. This yields

cosψ =
L1 cos θ − LB

(L2
1 + L2

B − 2L1LB cos θ)1/2
, (5.1.5)
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and the quadratic formula then provides

cos θ =
LB

L0

sin2 ψ ± cosψ

√
1− L2

B

L2
1

sin2 ψ. (5.1.6)

The final distribution of interest is dN/dψ = (dN/dθ)(dθ/dψ), which evaluates to

dN

dψ
=

1

2
cos θ

(
dψ

dθ

)−1

, (5.1.7)

where
dψ

dθ
= L2

1 sin θ cscψ
L1 − LB cos θ

(L2
1 + L2

B − 2L1LB cos θ)3/2
, (5.1.8)

and both cos θ and sin θ can be computed from Eq. 5.1.6.
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Chapter 6

The 2+1+1 outcome

The 2+1+1 case is in some ways the most distinct from the classic 2+1 problem.
It differs not only in additional degrees of freedom, but more fundamentally in
its complicated causality. The 2+2, 3+1, and 2+1 scenarios terminate a single
impulsive escape, but the 2+1+1 does not, and two different escape events must
be considered. In Fig. 6.0.1, we show a cartoon of the 2+1+1 outcome. Here
masses ma and mb form the survivor binary, while masses mc and md are escaping
on unbound orbits. The order of escape matters: the distribution of parameters
for the first escaper (mc) will differ from the parameter distribution for the second
escaper (md).

We begin by making an approximation of sequential escape: we assume that in
general, a metastable triple is formed after the escape of particle C, and that
particle D is only ejected after the gravitational influence of C becomes negligible.
This approximation lets us apply the standard 2+1 Monaghan formalism in an
iterated way. Based on the numerical scattering experiments of Paper I, we believe
it to be well justified for low virial ratios (k ≪ 1) but a poor approximation for high
virial ratios (k ≈ 1), when both ejected stars are ejected almost simultaneously.
We first estimate the distribution of binding energies ET of the metastable triple:

P (|ET|)d|ET| =
7

2
|E0|7/2|ET|−9/2d|ET|. (6.0.1)

As before, E0 is the conserved total energy of the four-body encounter. For a
given ET value, we can take the standard 2+1 distribution of binding energies for
EB (the binding energy of the final surviving binary), but if we want a distribution
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ma

mb

mc

md
→ r1

→       rs,2

→       rs,1

Figure 6.0.1: The configuration of the 2+1+1 outcome.

of ET values, we need to integrate over Eq. 6.0.1:

P (|EB|)d|EB| =
∫ |EB|

|E0|

7

2
|ET|7/2|EB|−9/2P (|ET|)d|ET|d|EB|

=
49

4
|E0|7/2|EB|−9/2 ln(EB/E0). (6.0.2)

More generally, if we substitute a power law index n for the triple binding energy
distribution (9/2 above) we find

P (|EB|)d|EB| = A(n− 1)2|E0|n−1|EB|−n ln(EB/E0). (6.0.3)

Likewise, we can apply the results of the standard 2+1 formalism.
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Chapter 7

Branching ratios

The "branching ratio" defines the probability of obtaining a given outcome, for
a given total encounter energy and angular momentum. Hence, for the chaotic
four-body problem in the point-particle limit with total energy E < 0, there are
three branching ratios to consider. In general, the relative fractions for these
different outcomes must be determined using numerical scattering simulations.
However, as we are about to show, these branching ratios can also be computed
analytically, if all particles are identical.

Consider performing N0 simulations of a chaotic four-body interaction involving
identical point-particles, with nearly identical initial conditions. Given N0

simulations, we must obtain N0 outcomes. Then, the total number of simulations
performed can be written:

N0 = N2+1+1 +N3+1 +N2+2, (7.0.1)

where N2+1+1, N3+1 and N2+2 correspond to the number of simulations resulting in,
respectively, the 2+1+1, 3+1 and 2+2 outcomes. Now, by conservation of energy,
we must also find that the total amount of energy put in across all simulations is
equal to the total energy we get back out. In other words:

N0E0 =N3+1

∫
E
dN3+1

dE
dE +N2+1+1

∫
E
dN2+1+1

dE
dE

+N2+2

∫
E
dN2+2

dE
dE

(7.0.2)
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Similarly, the total angular momentum must be conserved, ensuring that the
following must be true:

N0L0 =N3+1

∫
L
dN3+1

dL
dL+N2+1+1

∫
L
dN2+1+1

dL
dL

+N2+2

∫
L
dN2+2

dL
dL

(7.0.3)

Each term on the right-hand-sides of Equations 7.0.2 and 7.0.3 must be broken
up in to the individual contributions from each decay product (i.e., single, binary
and/or triple star(s)). The limits of the resulting integrals must then be chosen
appropriately. For example, for the 2+1+1 outcome, we have:∫

E
dN2+1+1

dE
dE =

∫
ES,1

dN2+1+1

dES,1

dES,1

+

∫
ES,2

dN2+1+1

dES,2

dES,2

+

∫
EB

dN2+1+1

dEB

dEB

(7.0.4)

∫
E
dN2+1+1

dE
dE =

1

2
mS,1

∫ ∞

0

f(ES,1)v
2
S,1dES,1

+
1

2
mS,2

∫ ∞

0

f(ES,2)v
2
S,2dES,2

+

∫ 0

−∞
f(EB)EBdEB,

(7.0.5)

where the indices 1 and 2 correspond to, respectively, the first and second ejected
single stars, and all distributions correspond to those presented for the 2+1+1
outcome.

If we divide both sides of all three equations by N0, then Equations 7.0.1, 7.0.2
and 7.0.3 constitute three equations, each with the same three unknowns. Hence,
this system of equations is solvable. The factor in front of each term corresponds
to the branching ratio for that outcome.

We caution that if the particles are not identical, then the formalism presented
here for calculating branching ratios for the different outcomes is no longer valid,
strictly speaking. We defer this issue to a future paper, along with a more thorough
comparison between the predicted branching ratios and the results of numerical
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scattering simulations.
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Chapter 8

Methods

In this section, we describe and present the numerical scattering simulations
used to test directly the analytic distribution functions derived in the preceding
sections.

8.1 Numerical scattering simulations

The numerical scattering simulations used throughout this project are the same
as presented in Leigh et al. (2016). For completeness, we repeat our description
of the code and initial set-up here.

We calculate the outcomes of a series of binary-binary (2+2) encounters using
the FEWBODY numerical scattering code1. The code integrates the usual N -body
equations in configuration- (i.e. position-) space in order to advance the system
forward in time, using the eighth-order Runge-Kutta Prince-Dormand integration
method with ninth-order error estimate and adaptive time-step. For more details
about the FEWBODY code, we refer the reader to Fregeau et al. (2004).

The outcomes of these 2+2 encounters are studied for the initial virial ratio k =

0, where k is defined as:
k =

T1 + T2
Eb,1 + Eb,2

, (8.1.1)

here the indexes 1 and 2 correspond to the two initial binaries. The initial kinetic

1For the source code, see http://fewbody.sourceforge.net.
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energy corresponding to the centre of mass motion of binary i is:

Ti =
1

2
miv

2
inf,i, (8.1.2)

where mi = mi,a +mi,b is the total binary mass and vinf,i is the initial centre of
mass velocity for binary i. The initial orbital energy of binary i is:

Eb,i = −Gmi,ami,b

2ai
, (8.1.3)

where mi,a and mi,b are the masses of the binary components and ai is the initial
orbital separation. Given this definition for the virial ratio, k = 0 corresponds to
the binaries starting from rest.

All objects are point particles with masses of 1 M⊙. All binaries have ai = 1 AU
initially, and eccentricities ei = 0. We fix the impact parameter at b = 0 for all
simulations. The angles defining the initial relative configurations of the binary
orbital planes and phases are chosen at random.

We use the same criteria as Fregeau et al. (2004) to decide when a given encounter
is complete. To first order, this is defined as the point at which the separately
bound hierarchies that make up the system are no longer interacting with each
other or evolving internally. More specifically, the integration is terminated when
the top-level hierarchies have positive relative velocity and the corresponding
top-level N -body system has positive total energy. Each hierarchy must also be
dynamically stable and experience a tidal perturbation from other nodes within the
same hierarchy that is less than the critical value adopted by FEWBODY, called the
tidal tolerance parameter. For this study, we adopt the tidal tolerance parameter
δ = 10−7 for all simulations.2 This choice for δ, while computationally expensive,
is needed to maximize the accuracy of our simulations, and ensure that we have
converged on the correct encounter outcome (see Geller and Leigh (2015) for more
details).

Because of the isotropy of our initial conditions, the typical four-body encounter
we simulate has L0 > 0. If one considers a binary-binary scattering event where
the two initial binaries have isotropically oriented angular momentum vectors of
magnitude L1 and L2 (L1 ≥ L2 by assumption), then the total angular momentum

2The more stringent the tidal tolerance parameter is chosen to be, the closer to a "pure" N -body
code the simulation becomes.
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L⃗0 = L⃗1 + L⃗2 spans a range of magnitudes from L1 − L2 to L1 + L2 with a
distribution

dN

dL0

=
L0

2L1L2

. (8.1.4)

The first moment of this distribution is

⟨L0⟩ = L1 +
L2

3L1

L2. (8.1.5)

If we specialize now to our initial conditions (equal masses m, equal initial
semimajor axes, L ≡ L1 = L2), we find that

⟨L0⟩
Lmax

=
4
√
2

15
, (8.1.6)

where we have followed Valtonen and Karttunen (2006) in defining the maximum
system angular momentum Lmax ≡ 5

2
G
√
m5/|E0|. Their numerical fitting formula

for the classic 2+1 problem predicts n = 3 + 18L̃2 for ensembles of resonant
three-body encounters with angular momentum L̃ = L/Lmax. This gives us a
naive expectation of n ≈ 5.6 for our numerical simulations.
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Chapter 9

Results

In this section, we compare the results of our numerical scattering simulations to
the fitting formulae presented in the previous sections.

9.1 Comparing to the simulations

In Figure 9.1.1, we present the final outcome distributions after the interaction
between our two initial binaries. We separate our results for different semi-major
axis ratios (a1/a2, indicated on the x-axis) and show the fraction of simulations
resulting in each of our three possible outcomes (i.e., 3+1, 2+1+1 and 2+2). For
each combination of a1/a2 we perform 10,000 scattering simulations. The results
for the 2+2, 3+1 and 2+1+1 cases are shown in red, black and blue color bars,
respectively. Note that this colour relationship will be used for all figures in this
work. We note that these branching ratios should be computable explicitly using
the equations in chapter 7, but we defer this to a future paper, since we first need
to re-derive the analytic functions in this investigation from first principles as in
Stone and Leigh (2019) or Ginat and Perets (2021) to obtain the needed angular
momentum dependences.

We see that for the case in which our initial semi-major axes are relatively similar (1
≤ a1/a2 ≤ 4) the largest outcome fraction corresponds to the 2+1+1 scenario. This
is in agreement with what was shown by Mikkola (1983) and Leigh et al. (2016) for
identical initial conditions. The trend changes as the ratio of the semimajor axis
increases. For a1/a2 > 8 the scenario that occurs the most corresponds to the 3+1
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case, that is a particle of the system is transformed into an escaper leaving behind
a dynamically stable triple system. Finally, the formation of the 2+2 case is
always the least probable, tending to decrease as the semimajor axis ratio increases.
This is because for this to occur, both binaries must form simultaneously, which
requires that both stars be ejected in similar directions, with similar ejection times
and escape velocities, rendering this outcome improbable.

In Figure 9.1.2, we present normalized histograms of the final distributions of
binary orbital energies, parameterized using the total encounter energy E0 as z =

E0/EB. This is the result of our binary-binary scattering experiments, for different
values of the semi-major axis ratio (a1/a2, as in Figure 9.1.1). For the 2+2 case,
we show the orbital energies of both final binaries, divided according to their final
orbital energies using the solid and dashed lines for the compact and wide binary,
respectively. For the 3+1 case, we show only the orbital energy of the inner binary
of the resulting triple.

For the energy range between 0 ≤ |E0|/|EB| ≤ 1, the analytical distributions
reproduce very well what was obtained through the simulations. Especially for
the 2+1+1 case, the curve is wholly reproduced, which shows that our assumption
that this outcome can be modeled by applying the three-body disintegration
scheme twice, by assuming additionally that each escape is well separated in
time, work quite well. The same happens for the 3+1 case, assuming that all the
interaction energy is held in the inner binary of the triple system, while all the
angular momentum is kept in the outer orbit of the same system. In the 2+2 case,
we see that the distribution fits well for the compact binary provided |E0|/|EB|
≤ 1, while for the case of the wider binary the distribution fits poorly. This is
likely because our assumptions here begin to break down such that very few of
these interactions are truly chaotic, and hence very few of our simulations should
actually produce results that agree with theory. This is supported by the fact
that the good agreement between our results and theory begins to decrease as
the ratio of the semimajor axis increases, particularly for a1/a2 ≥ 8. This last
point for the 2+2 configuration, and the distributions for which E0/EB > 1, will
be taken up again in chapter 10.

The binding energy distribution can be used to derive the escape velocity
distribution f(ve)dve for the escaping star(s), as given by Equation 9.1.1 with
me = mb/3 = M/4 for the 3+1 case for all identical particles Leigh et al. (2016).
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Figure 9.1.1: The fraction of different outcomes for our binary-binary scattering
simulations as a function of the ratio of the initial semi-major axes of the binaries,
or a1/a2. We vary the ratio as a1/a2 = [1, 2, 4, 8, 16, 32].



9.1. Comparing to the simulations 31

Figure 9.1.2: The distributions of final binary binding energies are shown for
each encounter outcome, parameterized using the total encounter energy E0 as z
= E0/EB. The colours are the same as in Figure 9.1.1. The solid lines represent
the values of the simulations while the dotted lines show the values obtained
analytically. The black vertical dashed line shows the ratio E0/EB = 1. Each
panel shows the distributions for a different value of the initial semi-major axis
ratio where a1/a2 = [1, 2, 4, 8]. All histograms have been normalized by the total
number of simulations that resulted in the corresponding outcome. Note that
for the 2+2 case (red color) there is a solid line and another dashed line, which
represent the simulated values for the compact and wide binary, respectively.
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This gives the following functional form (Equations 7.19 and 7.26 in Valtonen and
Karttunen (2006)):

f(ve)dve =
((n− 1)|E0|n−1(meM/mb))vedve

(|E0|+ 1
2
(meM/mb)v2e )

n
. (9.1.1)

In Figure 9.1.3 we show, for different initial a1/a2 ratios, the distribution of escape
velocities for the single star for a 3+1 outcome (black lines), as well as for both
single stars for a 2+1+1 outcome (blue lines), where the solid lines show the
simulated data and the dotted lines show the analytic fits. Note that to calculate
the distribution analytically using Equation 9.1.1, we use the values n = 4.5 to
account for the angular momentum dependence and me = mb/3 = M/4 for the
mass of the escaping particle.

Figure 9.1.4 shows the distributions of escape velocities for binaries for the
2+2 outcome (red lines). The solid lines show the results of our numerical
scattering simulations, whereas the dotted lines show our analytic fits. Note
that by conservation of linear momentum, the escape velocity distributions are
equivalent for both binaries, since we are dealing with the equal particle mass
case.

We clearly see that the analytic distribution of the escape velocities shows a clear
agreement with what was seen in the simulations. On the other hand, there is
a clear tendency for poorer agreement between the theory and the simulations
as the semimajor axis ratio increases (as in Figure 9.1.2). The velocity range as
well as the corresponding outcome fractions for the 3+1 and 2+1+1 cases show
very similar distribution as those found in Leigh et al. (2016), but in our case for
n = 4.5. The same is true for the 2+2 case where our distribution behaves as
expected for n = 4.5.

In Figure 9.1.5, we show the final distributions of orbital eccentricities for every
encounter outcome, including the inner orbits of stable triples. The solid black
line shows a thermal eccentricity distribution f(e)de = 2e, which matches the
simulated data quite well for all orbits and all encounter outcomes.



9.1. Comparing to the simulations 33

Figure 9.1.3: Comparison between simulations and analytic results for
normalized distributions of escape velocities from the single star (in km/s) for
the 3+1 (black color) and 2+1+1 (blue color) outcomes. The different insets
show the same semi-major axis ratios, number of simulations, line types and
colours as in Figure 9.1.2. The dotted black line shows the distribution of escape
velocities calculated using Equation 9.1.1 for a 3+1 outcome and assuming n = 4.5,
corresponding to approximately isotropic scattering. The dotted blue line shows
the same thing but for the 2+1+1 case assuming n = 4.5. For both analytical
curves we assume me = mb/3 = M/4. Note that for the 2+1+1 case there are 2
solid blue lines, which correspond to the 2 escapers in this scenario.
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Figure 9.1.4: The same as in Figure 9.1.3 but for both binaries in the 2+2
scenario. The different insets show the same semi-major axis ratios, number of
simulations, line types and colours as in Figure 9.1.2. The dotted red line shows
the distribution of escape velocities calculated using Equation 9.1.1 and assuming
n = 4.5, with me = mb = M/2. Note that there is only one solid red line, since
both binaries (wide and compact) have the same escape velocity distribution due
to conservation of linear momentum.
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Figure 9.1.5: The distributions of final binary orbital eccentricities are shown for
each encounter outcome. The solid blue line shows the distribution of eccentricities
for the binary for the 2+1+1 case. The solid black line shows the distribution
of eccentricities for the inner binary of the triple system for the 3+1 case while
the dashed green line shows the same for the outer orbit of the triple system
for the 3+1 case. The red solid line shows the eccentricity distribution for the
compact binary in the 2+2 case, while the red dashed line shows the distribution
of eccentricities for the wide binary in the same case. For comparison, we plot a
black dashed line showing a thermal eccentricity distribution f(e)de = 2e. The
different insets show the same semi-major axis ratios and number of simulations
as in Figure 9.1.2.
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Chapter 10

Discussion

First, we note that the agreement between our simulations and the analytic fits is
consistently good for small initial semi-major axis ratios but becomes poorer as
this ratio increases. This is because a smaller fraction of the interactions become
chaotic, which is a prerequisite to performing this comparison. Hence, we are
left with fewer simulations that should be in agreement with theory and must
omit those simulations that ended deterministically. Most of the interactions that
cause this turn out to be simple exchanges. In other words, in the limit of a
large semi-major axis ratio, the probability that the compact binary will simply
be exchanged into the wide binary becomes high, liberating one single star in
the process and forming a dynamically stable hierarchical triple system. Hence,
fitting a three-body interaction, treating the more compact binary as a heavy
single particle, is a more appropriate model in this limit.

In Figure 9.1.2, we show the simulated distributions of left-over binary orbital
energies for the most compact orbit in the final outcome and compare to our
analytic fits. We see good agreement between the two for E0/EB < 1, since beyond
this limit significant angular momentum is contained in the final orbit and our
analytic fits do not account for any angular momentum dependence. For example,
in the 3+1 case, the inner binary also contains angular momentum but we assume
that it does not. For this case, the angular momentum in the inner and outer orbits
ultimately limits the minimum binary energy in the interior because the outer
orbit cannot contain enough angular momentum to accommodate a dynamically
stable hierarchical triple. This itself explains why the 2+2 distributions also tend
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to zero, although at lower minimum binary energies, since wider binaries can be
accommodated in this case, since there is no requirement mentioned above for
dynamic stability in the triplet case.

In the same figure, we can see that in the case of the wide binary in the 2+2
scenario, our approximation does not fit the simulated values. This occurs because
the observed values are given in the domain E0/EB > 1, which means that in
this binary system there is a large amount of angular momentum. Therefore,
since our analytic formalism does not explicitly take into account the angular
momentum dependence, it is perhaps not surprising that we do not see good
agreement between the simulated data and theory in this domain.

In chapter 8, we show that we expect the analytic distributions to match the
simulated ones when n ≈ 5.6. When performing our comparisons, we adopt a value
of n = 4.5 which shows the best agreement. However, we note that our expected
value of n = 5.6 also does a good job of describing the data. This difference is
probably due to the fact that we are not considering the total angular momentum
dependence in our derivation. Moreover, for our simulations we incorporated
different initial semi-major axes in the four-body interaction, while for the initial
derivation we assumed equal semi-major axes.

In Figure 9.1.5, we see that the eccentricity distribution tends to be quite similar
to the thermal distribution. While this is theoretically expected for the three-body
case, assuming a detailed balance between binary creation and destruction Heggie
(1975), we are not aware of any expectation for the four-body case. Nevertheless,
the reason we see this agreement is probably the same as argued in Heggie (1975)
for the three-body case. This is because a thermal distribution is expected for
ergodized outcomes in three-body interactions, and since in this work we treat each
decomposition of the four-body case as a variation of the three-body decomposition,
this distribution makes sense (e.g., the 2+1+1 case is modeled as two sequential
disruptions of three-body systems).

On the other hand, we see that the distribution of eccentricities corresponding
to the external component of the triple system (green dashed line) shows a
distribution that does not quite match the thermal distribution for values close
to 1 (highest eccentricities). Here we see a paucity of triples with high outer
eccentricities relative to a thermal distribution because stable triple systems cannot
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exist if the external component has very large eccentricity. Otherwise, the triple
system will tend to break up, ending up in the 2+1+1 configuration. As expected,
this tendency is repeated in each inset (a1/a2 = 1, 2, 4, 8), but we see a tendency
for the eccentricity distribution of the outer orbits of stable triples to flatten as the
ratio of semi-major axes increases. This is likely because we begin with all binaries
being initially circular, and when there is a large ratio between their semi-major
axes a simple exchange interaction is the most likely outcome, and here the outer
orbit is more often left unaffected, remaining approximately circular.
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Chapter 11

Conclusions

In this work, we have derived analytic distribution functions using the density of
states formalism and an ansatz-based approach for the outcomes of four-body (i.e.,
binary-binary) scatterings in the equal-mass point-particle limit. We have further
confronted our analytic fits with the results of numerical scattering simulations,
and find good agreement. The highlights of our results can be summarized as
follows:

• We have derived analytic distribution functions (DFs) to describe the
properties of the product of chaotic four-body interactions in the equal-mass
point particle limit. These DFs include, for the most compact orbit in the
left-over binaries and/or triples in the final outcome state, the distributions
of orbital energies for the left-over binaries and triples, the distributions
of ejection velocities and the orbital parameters of any left-over binaries
or triples. We find good agreement between our analytic theory and the
simulations for low semi-major axis ratios, since for larger ratios the angular
momentum dependence would need to be integrated into our analytic
formalism to expect good agreement in this limit.

• For most of the relevant parameter space, binary-binary scatterings act to
systematically destroy binaries by either forming two ejected singles or a
stable hierarchical triple instead.

• The 2+1+1 outcome (i.e., one binary and two singles are formed) tends to
form the most compact binaries.
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• The 2+2 outcome (i.e., two binaries are produced) is consistently the least
likely outcome for all ratios of the initial binary semi-major axes, and tends
to produce the widest binaries. This is because, in order to form two binaries
in the end, effectively the more compact final binary must eject the other
two stars at about the same time, in similar directions and with comparable
ejection velocities. Alternatively, this can be viewed as the wider binary
having more and more difficulty in ejecting the more compact binary (in
analogy to the three-body case) as the ratio of semi-major axes increases
(at fixed particle mass).

• All outcomes of binary-binary scatterings produce binaries with a distribution
of eccentricities consistent with being thermal. This is the case except for
very large initial semi-major axis ratios, for which we find a flat eccentricity
distribution for the inner binaries of dynamically-formed triples (while
that for the 2+1+1 outcome remains consistent with thermal). Since it
is those binary-binary scatterings with the largest semi-major axis ratios
that produce the most triples, we naively expect that the inner binaries of
dynamically-formed triples should show an approximately flat distribution
of orbital eccentricities (in part since we assume initially circular orbits).
Finally, for the outer orbits of stable triples, we see a slight deviation from a
thermal distribution at high eccentricities, since here very high values for the
eccentricity are forbidden if the formed triple is to be dynamically stable.

• We have derived a prediction for the distribution of inclination angles between
the inner and outer orbital planes of stable hierarchical triples. We find that
it deviates from an isotropic distribution more and more with increasing
angular momentum.

• We have derived branching ratios for each outcome of the four-body problem
in the equal-mass point-particle limit. These yield the probabilities of
obtaining each possible outcome but require integrating into our formalism
the angular momentum dependence. This will be the focus of future work.
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