

Universidad de Concepción Facultad de Ingeniería Departamento de Ingeniería Química

"Optimización de la planta de Cloruro Férrico en la empresa OXY Chile"

Por: Benjamin Soto Besamat

Memoria de Título presentada a la Facultad de Ingeniería de la Universidad de Concepción para optar al título profesional de Ingeniero Civil Químico.

Profesor Guía Ximena García Profesional Supervisor Carolina Sánchez 15 de mayo del 2023 Concepción, Chile

Contenido

1.	Introducción1			11
2.	Des	cripc	ión general del proceso productivo actual	12
2	.1	Ant	ecedentes	12
2	.2	Etap	pas de producción	13
	2.2.	1	Reconcentración de Licor de Decapado	13
	2.2.2	2	Cloración Final	15
	2.2.	3	Absorción de Cloro	16
3.	Clo	uro l	Férrico (FeCl ₃)	16
3	.1	Prop	piedades Físicas y Químicas	16
3	.2	Proc	cesos Productivos	18
	3.2.	1	Desde óxido de hierro (III):	18
	3.2.	2	Desde hierro elemental con ácido clorhídrico:	18
	3.2.	3	Desde hierro elemental con reciclo	19
	3.2.4	4	Desde licor de cloruro ferroso	19
	3.2.	5	Desde óxidos de hierro mixto	19
	3.2.	6	Cloración directa	20
3	.3	Apl	icaciones	20
	3.3.	1	Tratamiento de aguas residuales	20
	3.3.	2	Tratamiento de agua potable	22
	3.3.	3	Minería	22
4. Objetivos			22	
4	.1	Obj	etivo General	22
4	.2	Obj	etivos específicos	23
5.	Mar	co T	eórico	23
5	.1	Vel	ocidad de reacción	23
	5.1.	1	Velocidad de reacción relativa	23
	5.1.	2	El orden de reacción y la ley de velocidad	24
	5.1.	3	La constante de velocidad de reacción	24
5	.2	Rea	ctor flujo pistón	26
	5.2.	1	Espacio-Tiempo	26
5	.3	Ley	de Hess	27
5	.4	Mét	todo de diferencias finitas	27

6.	Metodología		. 29	
6.1 Plan		Plai	nteamiento de balances de Materia y Energía	. 29
	6.1	.1	Reactor 630-R1	. 30
	6.1	.2	Reactor 630-R2	. 32
	6.2	Det	erminación de variables y condiciones críticas	. 34
	6.2	.1	Características de los equipos	. 34
6.2.2 6.2.3		.2	Flujos de entrada y salida	. 35
		.3	Cinética y entalpías de reacción de las reacciones	. 36
	6.2	.4	Concentraciones iniciales	. 38
	6.3	Sim	ulación en Aspen	. 38
	6.4	Sim	ulación en Matlab	. 39
	6.5	Sele	ección de variables de optimización	. 40
7.	Res	sultad	os y Discusión	. 41
	7.1	Car	acterísticas de los equipos	. 41
	7.1	.1	Estanque de almacenamiento 630-S1/S2	. 41
	7.1	.2	Reactor Clorador Primario 630-R1	. 42
	7.1	.3	Reactor Disolvedor de Hierro 630-R2	. 43
	7.2	Fluj	os de entrada y salida	. 45
	7.2	.1	Estanque de almacenamiento 630-S1/S2	. 45
	7.2	.2	Reactor Clorador Primario 630-R1	. 46
	7.2	.3	Reactor Disolvedor de Hierro 630-R2	. 46
	7.3	Cin	éticas y entalpías de reacción	. 48
	7.3	.1	Reactor Clorador Primario 630-R1	. 48
	7.3	.2	Reactor Disolvedor de Hierro 630-R2	. 50
	7.4	Cor	centraciones iniciales	. 56
	7.5	Sim	ulación en Aspen Plus v11	. 57
	7.5	.1	Proceso Actual	. 62
	7.5	.2	Efecto de la variación del flujo de ácido clorhídrico y su punto de alimentación	. 66
	7.6	Sim	ulación en Matlab	. 69
	7.6	.1	Proceso Actual	. 70
	7.6	.2	Efecto de la variación de temperatura del reactor 630-R2	. 74
	8.6 630	.3 Efe)-R1	ecto de la variación de la temperatura del flujo de entrada del reactor clorador prima	rio . 76

,	7.7	Sugerencias adicionales	79
8.	Co	onclusiones	80
9.	Bi	ibliografía	82
10.	Ar	nexos	85
1	Anex	xo A. Hoja de especificación del reactor disolvedor de hierro 630-R2	85
1	Anex	xo B. Hoja de especificación del reactor clorador primario 630-R1	86
1	Anex	xo C. Extracto del balance de materia original para la determinación del flujo de cloro	87
1	Anex	xo D. Tabla del promedio de los datos obtenidos en PI VISION del año 2022	87
1	Anex	xo E. Promedios de los meses de enero y febrero de carga de chatarra al reactor 630-R2	87
1	Anex	xo F. Tabla del flujo acumulado de HCl del año 2022	88
	Anex de la	xo G. Tabla de resultados de los experimentos para la determinación de parámetros cine a reacción de cloruro férrico con hierro	éticos 198
1	Anex abor	xo H. Gráficos para la determinación de las constantes de velocidad de reacción del ratorio	202
1	Anex	xo I. Tabla de constantes de la constante de velocidad utilizando la ecuación de Arrhen	ius206
	Anex licie	xo J. Tabla de densidad, contenido de cloruro ferroso y férrico en los meses de noviembre del año 2017	ore y 207
	Anex enerc	xo K. Tabla de densidad, contenido de cloruro ferroso y férrico en dos semanas del mes o del año 2023	de 214
1	Anex	xo L. Código para la simulación en matlab del reactor 630-R1	219
	Anex	xo M. Código para la simulación en matlab del reactor 630-R2	222
1	Anex	xo N. Determinación de parámetros para realizar las simulaciones	226
1	Anex	xo O. Decapado	226
1	Anex	xo P. Tipos de Decapado	227
	1.	Con H ₂ SO ₄	227
	2.	Con HCl	227
1	Anex	xo Q. Procedimiento del "Method Assistant" para la simulación de Aspen	227

Lista de Tablas

Tabla 1. Propiedades físicas del cloruro férrico anhídrido.

Tabla 2. Requerimientos mínimos de solución de FeCl3 establecidos según el estándar AWWA B407-98. (AWWA, 1998)

Tabla 3. Composición cloruro férrico producido por Oxy Chile

Tabla 4. Característica de los estanques de almacenamiento 630-S1 y 630-S2

Tabla 5. Características del reactor de cloración primaria 630-R1

 Tabla 6. Valores típicos del coeficiente de transferencia de calor por convección (Incropera, 1999)

Tabla 7. Propiedades de la pared del reactor clorador primario (Çengel, 2007)

Tabla 8. Características del reactor disolvedor de hierro.

 Tabla 9. Propiedades de la pared del reactor clorador primario (Çengel, 2007)

Tabla 10. Promedio Anual del flujo de agua y de salida de los estanques de almacenamiento

Tabla 11. Valores de los flujos de entrada y salida del reactor 630-R1

Tabla 12. Promedios de carga al reactor disolvedor de hierro

Tabla 13. Promedio Anual Flujo de Ácido Clorhídrico

Tabla 14. Valores de parámetros para la constante de velocidad y entalpía de reacción (1).

Tabla 15. Valores de parámetros para la constante de velocidad y entalpía de reacción (3).

Tabla 16. Valores de parámetros para la constante de velocidad y entalpía de reacción (6).

Tabla 17. Valores de parámetros para la constante de velocidad y entalpía de reacción (2).

 Tabla 18. Promedio de densidad, contenido de cloruro férrico y ferroso de los estanques de almacenamiento durante noviembre y diciembre del año 2017

 Tabla 19. Promedio de densidad, concentración de cloruro ferroso y férrico durante dos semanas del

 mes de enero del 2023

Tabla 20. Compuestos presentes en el primer sistema de producción de FeCl₃

 Tabla 21. Especificaciones de las corrientes de alimentación al primer sistema de producción

Tabla 22. Especificaciones de la solución resultante luego de 8 vueltas al sistema de producción

 Tabla 23. Especificaciones de la solución resultante al finalizar un ciclo de producción

Tabla 24. Flujos de salida con respecto a la variación de flujo de HCl.

 Tabla 25. Parámetros restantes para la resolución de los balances de materia y energía del reactor

 630-R1.

 Tabla 26. Parámetros restantes para la resolución de los balances de materia y energía del reactor

 630-R2.

Tabla 27. Condiciones de contorno en z=0

 Tabla 28. Condiciones de contorno del reactor 630-R2

Tabla 29. Influencia de la temperatura de operación del reactor 630-R2 en los flujos molares y su selectividad

Tabla 30. Aumento de temperatura en el reactor con respecto al flujo alimentado de cloro

Tabla 31. Opciones para obtener una temperatura de 88,58°C del fluido a la salida del reactor

Lista de Figuras

Figura 1. Diagrama de bloques del proceso productivo realizado por Oxy Chile. (OXY, Manual Cloruro Férrico, 2020)

Figura 2. Etapa de reconcentración de licor de decapado

Figura 3. Etapa de cloración final

Figura 4. Reactor tubular de flujo tapón (Fogler, 2008).

Figura 5. Representación de malla de trabajo para un problema de propagación unidimensional en estado transitorio (Santamaría Sandoval & Ramirez Martinez, 2015).

Figura 6. Esquema general simplificado del sistema de concentración de cloruro ferroso.

Figura 7. Esquema de los estanques de almacenamiento 630-S1/S2

Figura 8. Esquema del Reactor Clorador Primario 630-R1A/B

Figura 9. Esquema reactor disolverdor de hierro 630-R2

Figura 10. Diagrama de actividad para Fe (III) vs pH (Otwinowski, 1994).

Figura 11. Gráfico de -In(-r) con respecto a -In[©] para el experimento 1.

Figura 12. Curva para la obtención de la constante de velocidad de reacción del experimento 1

Figura 13. Curva para la obtención de las constantes de la ecuación de Arrhenius de los experimentos 1 y 3.

Figura 14. Representación del procedimiento para la simulación del reactor 630-R1

Figura 15. Representación del procedimiento para la simulación del reactor 630-R2

Figura 16. Diagrama de flujo de la simulación del proceso de producción de cloruro férrico en Aspen Plus v11

Figura 17. Diagrama de flujo de dos ciclos del primer sistema de producción de cloruro férrico.

Figura 18. Contenido de cloruro ferroso y férrico del estanque de almacenamiento por cada ciclo de producción.

Figura 19. Diagrama de flujo del sistema de producción con reubicación de flujo de HCl.

Figura 20. Efecto del flujo de ácido alimentado en el flujo de cloruro férrico

Figura 21. Efecto del flujo de ácido alimentado en la solución resultante al finalizar un ciclo de producción.

Figura 22. Resultados de los balances de energía y materia del reactor 630-R1

Figura 23. Perfil de concentraciones con respecto al tiempo al final del reactor

Figura 24. Perfil de temperatura con respecto al tiempo al final del reactor

Figura 25. Efecto de la temperatura sobre la velocidad de reacción del cloruro férrico con hierro

Figura 26. Influencia de la temperatura de entrada sobre la temperatura de salida

Figura 27. Influencia del flujo de Cl₂ alimentado al reactor en la temperatura de salida del fluido.

Figura 28. Influencia del flujo de Cl₂ alimentado al reactor en las concentraciones de salida del fluido.

Tabla 1. Propiedades físicas del cloruro férrico anhídrido.

Tabla 2. Requerimientos mínimos de solución de FeCl3 establecidos según el estándar AWWA B407-98. (AWWA, 1998)

Tabla 3. Composición cloruro férrico producido por Oxy Chile

Tabla 4. Característica de los estanques de almacenamiento 630-S1 y 630-S2

Tabla 5. Características del reactor de cloración primaria 630-R1

 Tabla 6. Valores típicos del coeficiente de transferencia de calor por convección (Incropera, 1999)

Tabla 7. Propiedades de la pared del reactor clorador primario (Çengel, 2007)

Tabla 8. Características del reactor disolvedor de hierro.

 Tabla 9. Propiedades de la pared del reactor clorador primario (Çengel, 2007)

Tabla 10. Promedio Anual del flujo de agua y de salida de los estanques de almacenamiento

Tabla 11. Valores de los flujos de entrada y salida del reactor 630-R1

Tabla 12. Promedios de carga al reactor disolvedor de hierro

Tabla 13. Promedio Anual Flujo de Ácido Clorhídrico

Tabla 14. Valores de parámetros para la constante de velocidad y entalpía de reacción (1).

Tabla 15. Valores de parámetros para la constante de velocidad y entalpía de reacción (3).

Tabla 16. Valores de parámetros para la constante de velocidad y entalpía de reacción (6).

Tabla 17. Valores de parámetros para la constante de velocidad y entalpía de reacción (2).

 Tabla 18. Promedio de densidad, contenido de cloruro férrico y ferroso de los estanques de almacenamiento durante noviembre y diciembre del año 2017

 Tabla 19. Promedio de densidad, concentración de cloruro ferroso y férrico durante dos semanas del

 mes de enero del 2023

Tabla 20. Compuestos presentes en el primer sistema de producción de FeCl₃

Tabla 21. Especificaciones de las corrientes de alimentación al primer sistema de producción

Tabla 22. Especificaciones de la solución resultante luego de 8 vueltas al sistema de producción

Tabla 23. Especificaciones de la solución resultante al finalizar un ciclo de producción

Tabla 24. Flujos de salida con respecto a la variación de flujo de HCl.

 Tabla 25. Parámetros restantes para la resolución de los balances de materia y energía del reactor

 630-R1.

 Tabla 26. Parámetros restantes para la resolución de los balances de materia y energía del reactor

 630-R2.

Tabla 27. Condiciones de contorno en z=0

Tabla 28. Condiciones de contorno del reactor 630-R2

Tabla 29. Influencia de la temperatura de operación del reactor 630-R2 en los flujos molares y su selectividad

Tabla 30. Aumento de temperatura en el reactor con respecto al flujo alimentado de cloro

Tabla 31. Opciones para obtener una temperatura de 88,58°C del fluido a la salida del reactor

Resumen

El cloruro de hierro o tricloruro de hierro (tradicionalmente llamado cloruro férrico) es un compuesto químico utilizado por muchos años a escala industrial como un acondicionador de lodos, etapa previa a procesos de filtración. Se utiliza ampliamente como agente lixiviante, para la obtención y purificación de molibdeno, para el abatimiento de metales pesados como arsénico, para el grabado y tratamiento de superficies metálicas, entre otras aplicaciones. La empresa "Occidental Chemical Chile", en adelante, Oxy Chile, produce y comercializa el compuesto como solución al 42%^m/m. Debido a sus características, la demanda de cloruro férrico ha aumentado, por lo que la empresa requiere elevar su producción.

Por esta razón, en este trabajo, se propone e implementa un modelo de optimización para la planta de cloruro férrico de Oxy Chile. Se evaluaron los reactores del primer sistema de producción a partir de sus balances másicos y energéticos y se determinaron sus variables de optimización. También se modeló el sistema reactivo de producción utilizando los programas Aspen Plus v11 y Matlab. Finalmente, se analizaron y determinaron condiciones óptimas de operación.

Las variables analizadas son: la temperatura de operación del reactor, la temperatura de entrada del fluido reaccionante y la concentración de los reactivos. Se evaluó el efecto de la variación de estas variables sobre la producción de los reactores y sobre el producto final del sistema. Por último, se sugirieron propuestas de mejora al primer sistema de producción que no tienen relación con las variables de optimización.

Se concluye que, al aumentar la temperatura de operación de los reactores se aumentó la producción del reactor disolvedor de hierro, sin embargo, no ocurrió lo mismo para el reactor clorador primario. Al aumentar la temperatura de entrada del fluido, no aumentó la producción final para el reactor clorador primario, pero aumento la producción del reactor disolvedor de hierro. Por último, se estableció que para optimizar el sistema se debe buscar una relación entre el flujo de alimentación del cloro y la temperatura de entrada del fluido al reactor clorador primario para llegar a condiciones óptimas de operación.

Summary

Iron chloride or iron trichloride (traditionally called ferric chloride) is a chemical compound used for many years on an industrial scale as a sludge conditioner, stage prior to filtration processes. It is widely used as a leaching agent, for obtaining and purifying molybdenum, for the abatement of heavy metals such as arsenic, for the etching and treatment of metal surfaces, among other applications. The company "Occidental Chemical Chile", hereinafter, Oxy Chile, produces and markets the compound as a 42%m/m solution. Due to its characteristics, the demand for ferric chloride has increased, so the company needs to increase its production.

For this reason, in this paper, an optimization model for the ferric chloride plant of Oxy Chile is proposed and implemented. The reactors of the first production system were evaluated based on their mass and energy balances and their optimization variables were determined. The reactive production system was also modeled using the Aspen Plus v11 and Matlab programs. Finally, optimal operating conditions were analyzed and determined.

The variables analyzed are: the operating temperature of the reactor, the inlet temperature of the reacting fluid and the concentration of the reactants. The effect of the variation of these variables on the production of the reactors and on the final product of the system was evaluated. Finally, proposals for improvement to the first production system that are not related to the optimization variables were suggested.

It is concluded that, by increasing the operating temperature of the reactors, the production of the iron dissolving reactor increased, however, the same did not happen for the primary chlorinator reactor. By increasing the inlet temperature of the fluid, the final production for the primary chlorinator reactor did not increase, but the production of the iron dissolving reactor increased. Finally, it was established that in order to optimize the system, a relationship between the chlorine feed flow and the inlet temperature of the fluid to the primary chlorinator reactor must be sought to reach optimal operating conditions.

1. Introducción

El cloruro férrico es un producto químico altamente versátil con propiedades únicas. Posee un alto poder de formación de flóculos, característica que es utilizada para diversas aplicaciones. Entre estas características, se puede destacar que es un eficiente coagulante en el tratamiento de aguas residuales, aguas industriales y agua potable. Además, el cloruro férrico ha sido utilizado por muchos años como un acondicionador de lodos, etapa previa a la filtración. También es ampliamente utilizado como agente lixiviante, para la obtención y purificación de molibdeno, para el abatimiento de metales pesados como arsénico, para el grabado y tratamiento de superficies metálicas, etc.

La utilización de cloruro férrico se va extendiendo al presentar ventajas técnicas y económicas con relación a otros productos utilizados en la coagulación de muchas aguas, especialmente en aquellas que poseen un elevado pH de floculación.

La empresa "Oxy Chile" produce y comercializa el compuesto como solución al 42%^m/_m. Debido a sus características, la demanda de cloruro férrico ha aumentado, por lo que la empresa requiere aumentar su producción. A partir de lo anterior, se propone un modelo de optimización para la planta de producción de cloruro férrico. Éste busca analizar y determinar las condiciones óptimas de operación para maximizar su producción, evaluando los reactores del sistema para luego determinar sus variables de optimización. Para lo anterior, se realiza una simulación del sistema de producción actual en el programa Aspen Plus v11 y una simulación en el programa Matlab para apreciar perfiles de concentración y temperatura.

2. Descripción general del proceso productivo actual

2.1 Antecedentes

La planta de cloruro férrico tiene una capacidad de 12.000 ton/año (32,9 ton/día), con un proceso de producción semi continua. (OXY, Manual de Operaciones Planta Cloruro Férrico, 2021) El proceso se puede distinguir en las siguientes etapas:

- 1. Absorción de Cloro.
- 2. Reconcentración del Licor de Decapado.
- 3. Cloración Final.
- 4. Almacenamiento.

La generación de la solución ferrosa y la etapa de cloración se realizan en operación semi batch.

La solución Ferrosa se obtiene según las siguientes alternativas:

- Licor de decapado proveniente de procesos de tratamiento del acero más chatarra de hierro.
- 2. Licor de decapado, agua y chatarra de hierro.
- 3. Sólo con agua y chatarra de hierro.

Estas tres alternativas se combinan para obtener la cantidad de solución ferrosa (reactivo) para la producción de cloruro férrico requerida. La Figura 1 expone un diagrama de bloques del proceso productivo realizado por Oxy Chile.

El objetivo del proceso es obtener cloruro férrico entre 39% a 45% en masa procesando licor de decapado en dos etapas. En la primera, se reconcentra el Licor, desde un 9% hasta 15,8-17,5% de fierro total, usando agua, fierro, cloro y ácido clorhídrico. En la segunda etapa se oxida la solución ferrosa utilizando cloro para obtener el producto final.

Cabe mencionar, que la dirección del flujo se encuentra controlado por válvulas. De esta forma, una vez cumplidas las especificaciones la solución es traspasada al segundo sistema.

2.2 Etapas de producción

2.2.1 Reconcentración de Licor de Decapado

En esta etapa se concentra la solución de Cloruro Ferroso diluido (9% FeCl₂). Luego, se recircula hasta obtener la concentración requerida de 15,8% a 17,5% en masa de Fierro total (FeCl₃ + FeCl₂) y acidez menor a 0,5% lo cual se observa en la Figura 2.

Figura 2. Etapa de reconcentración de licor de decapado

Una vez conseguidos los requerimientos, es traspasada a los estanques del segundo sistema 630-S3/S4.

2.2.1.1 Licor de decapado

El licor de decapado corresponde a una solución diluida de cloruro ferroso (9% Fe⁺²), proveniente de los procesos de decapado para el tratamiento del acero. La solución es almacenada en el estanque de almacenamiento 630-S5 para luego ser transferida a los estanques 630-S1/S2 por la bomba 630-P1. A partir de los estanques se alimenta el reactor de Cloración Primaria (630-R1) por medio de la bomba 630-P3, la cual mantiene un flujo de recirculación permanente de 20-26 m³/h para el primer sistema (reconcentración de licor de decapado).

2.2.1.2 Clorador Primario (630-R1)

En el reactor 630-R1 (clorador primario), reacciona la solución de cloruro ferroso diluido proveniente de los estanques 630-S1/S2 con Cloro, el cual es inyectado por medio de una lanza al fondo del reactor. El Cloro, oxida la Solución de Cloruro Ferroso diluido, que tiene iones Fe^{+2} , obteniendo como producto una Solución de Cloruro Férrico Diluido a 80°C, que tiene iones Fe^{+3} representado por la reacción (1). El producto es enviado al reactor de Reducción de Fierro, 630-R2.

$$FeCl_2 + \frac{1}{2}Cl_2 \rightarrow FeCl_3$$
 (1)

2.2.1.3 Reactor de reducción de fierro metálico (630-R2)

En el Reactor 630-R2, la solución de Cloruro Férrico proveniente del reactor de Cloración Primaria reacciona con los trozos de fierro cargados a la tolva del reactor 630-R2, reduciéndose el Cloruro Férrico a Cloruro Ferroso mediante la reacción (2).

$$2FeCl_3 + Fe \rightarrow 3FeCl_2 \quad (2)$$

Además, se adiciona ácido clorhídrico para que reaccione con el fierro metálico y los óxidos presentes según las siguientes reacciones.

$$Fe + 2HCl \rightarrow FeCl_2 + H_2$$
 (3)

$$FeO + 2HCl \rightarrow FeCl_2 + H_2O \tag{4}$$

$$Fe_2O_3 + Fe + 6HCl \rightarrow 3FeCl_2 + 3H_2O \quad (5)$$

$$Fe_3O_4 + Fe + 8HCl \rightarrow 4FeCl_2 + 4H_2O \quad (6)$$

La solución resultante se encuentra normalmente a una temperatura en el rango 85 - 95°C. Esta solución es luego, enviada al decantador 630-D1 seguido de los filtros de paño para eliminar sólidos en suspensión y a los intercambiadores de calor 630-E1/E3 con el objetivo de reducir la temperatura del producto a valores inferiores a 50°C.

2.2.2 Cloración Final

Por medio de la bomba 630-P5 se extrae la solución de los estanques de almacenamiento 630-S3/S4 con un flujo de 5-15 m³/h, la cual se mezcla con la corriente de recirculación proveniente del intercambiador de calor 630-E2, de 50 m³/h. Dicha solución se alimenta al Clorador Secundario (630-R3) para oxidar la solución proveniente de la etapa de disolución de Fierro con 15,8% a 17,5% de Fierro total, hasta alcanzar una cloración en que el Cloruro Férrico final tenga un contenido de Fe⁺² < 2,5% del Fierro total, que corresponde a un producto entre 39% a 45% en concentración de Cloruro Férrico y una acidez entre 0,3- 0,5 %.

La solución obtenida por el reactor es almacenada en el estanque 630-S8. Luego, por medio de la bomba 630-P6 se impulsa la solución con un flujo de 55-60 m³/h al intercambiador de calor 630-E2, para enfriarla entre 50°C y 80°C. Una gran parte de la corriente se recicla al reactor para favorecer la agitación. La fracción que se retira se almacena en los estanques de almacenamiento de Cloruro Férrico concentrado 630-S12/S13, para su venta a terceros. Lo anterior se ve reflejado en la Figura 3.

Figura 3. Etapa de cloración final

De esta manera, controlando el reciclo, se puede operar en forma continua el reactor y, por tanto, pasar de una operación batch a continua, obteniéndose las siguientes ventajas:

- 1. Una mayor facilidad de manejo evitando una excesiva manipulación del producto.
- 2. Contribuye a mantener la especificación del producto en forma más estable.

Como medida de seguridad, los estanques de almacenamiento cuentan con un venteo conectado a la red de absorción de Cloro, para evitar que éste sea liberado al ambiente.

2.2.3 Absorción de Cloro

El Cloro gas proveniente del proceso de producción de Cloruro Férrico, es absorbido por el Cloruro Ferroso que es recirculado continuamente por la bomba 630-P2 desde el estanque 630-S5 a los reductores 630-SCR1/SCR2 y al absorbedor 630-SCR3.

El contacto entre la solución ferrosa y el cloro gas, permite la absorción del Cloro, minimizando la concentración de Cloro descargada al ambiente.

3. Cloruro Férrico (FeCl₃)

3.1 Propiedades Físicas y Químicas

El cloruro férrico es un compuesto cristalino de color verde oscuro a negro en su estado anhídrido, higroscópico y que en contacto con el agua forma una solución naranja a café oscuro con una alta acidez. Se comercializa en sus formatos anhídrido, hidratado y en solución acuosa con un porcentaje en peso aproximado del 40%. Sus propiedades físicas de su forma anhídrida se resumen en la Tabla 1.

Punto de ebullición	319°C
Punto de fusión	282°C
Densidad a 25°C	2,9 g cm ⁻³
Descomposición	Emite vapores tóxicos de HCl al calentarse
Peso molecular	162,2 g mol ⁻¹

Tabla 1. Propiedades físicas del cloruro férrico anhídrido.

Por otra parte, las soluciones de cloruro férrico comerciales tienen diversas características dependiendo de su porcentaje de disolución. Una forma normalizada de los requerimientos

de estas soluciones corresponde al estándar AWWA B407, el cual establece las propiedades mínimas especificadas en la Tabla 2.

Tabla 2. Requerimientos mínimos de solución de FeCl3 establecidos según el estándar AWWA B4		
98. (AWWA, 1998)		

Color	Naranjo a café
Gravedad específica	1,3 a 1,5
Porcentaje en peso de FeCl3	28 a 47%
Porcentaje de Fe2+ en peso de hierro total	$\leq 2,5\%$
Acidez libre	≤ 1%
Porcentaje de materia insoluble en peso	$\leq 0,5\%$

El cloruro férrico producido en Oxy Chile cumple con los requerimientos expuestos anteriormente. De hecho, la empresa expone sus características la composición en el manual de su producto. Lo anterior se expone en las Tablas 3. Por otra parte, las características fisicoquímicas del producto se encuentran en el Anexo N.

Tabla 3. Composición cloruro férrico producido por Oxy Chile

Comp	Unidades	
FeCl ₃	39-45	% ^{masa} / _{masa}
Fe ²⁺	<2,5	% ^{masa} / _{masa}
HCl	<0,5	% ^{masa} / _{masa}
Sólidos en suspensión	<0,1	% ^{masa} / _{masa}
As	<2,0	ppm
Cd	<0,1	ppm
Pb	<0,1	ppm
Hg	<0,05	ppm
Cr ⁴⁺	trazas	
Color líquido	Café oscuro	

Comparando la Tablas 3 con los requerimientos mínimos de solución de FeCl₃ establecidos según el estándar AWWA B407-98 de la Tabla 2, se puede apreciar que éstos se encuentran dentro de los parámetros establecidos.

El ion férrico es un agente oxidante ampliamente utilizado en la industria química, ya que puede reducirse según la semirreacción (8):

$$Fe^{+3} + e^- \rightarrow Fe^{+2}$$
 (8)

Este tipo de procesos ocurren fácilmente desde soluciones de sales férricas mediante agentes reductores usuales, como el hidrógeno y el dióxido de azufre. Además, estas soluciones se ven reducidas por otras especies como lo son el cobre, zinc, yoduro de potasio, dicloruro de estaño y sufre foto reducción por parte de compuestos orgánicos, como los alcoholes.

3.2 Procesos Productivos

Existen diferentes métodos de preparación de cloruro férrico, tanto en su forma anhídrida como en solución, los que se exponen a continuación.

3.2.1 Desde óxido de hierro (III):

Se produce una solución de cloruro férrico a partir de una reacción exotérmica entre óxido de hierro (hematita) y ácido clorhídrico. Lo anterior se encuentra descrito por la reacción (9), la cual ocurre a 80-120°C y presión atmosférica. (Almeida V. O., 2020) (European Commission, 2005)

$$Fe_2O_{3(s)} + 6HCl_{(ac)} \rightarrow 3H_2O_{(l)} + 2FeCl_{3(ac)}$$
 (9)

3.2.2 Desde hierro elemental con ácido clorhídrico:

El proceso consta de dos reacciones sucesivas, primero la oxidación de hierro elemental con ácido clorhídrico (3) y luego la reacción (1), donde ocurre la oxidación de ion ferroso a ion férrico utilizando cloro como oxidante. (European Commission, 2005)

$$Fe_{(s)} + 2HCl_{(ac)} \rightarrow H_{2_{(g)}} + FeCl_{2_{(ac)}}$$
(3)

$$FeCl_{2(ac)} + \frac{1}{2}Cl_2 \rightarrow FeCl_{3(ac)}$$
 (1)

3.2.3 Desde hierro elemental con reciclo

El proceso comienza con la incorporación de chatarra al reactor que reacciona con una solución de cloruro férrico convirtiéndolo en cloruro ferroso, la cual se encuentra representada con la reacción (2).

$$Fe_{(s)} + 2FeCl_{3(ac)} \rightarrow 3FeCl_{2(ac)}$$
 (2)

Luego, la solución de cloruro ferroso se oxida en una torre de cloración utilizando cloro gaseoso para la producción de cloruro férrico mediante la reacción (1).

$$FeCl_{2(ac)} + \frac{1}{2}Cl_{2(g)} \rightarrow FeCl_{3(ac)}$$
 (1)

Cerca de 2/3 de lo producido es reciclado a la primera etapa, donde actúa como oxidante. El tercio restante se retira como producto final. (European Commission, 2005)

3.2.4 Desde licor de cloruro ferroso

Soluciones de cloruro ferroso y ácido clorhídrico pueden recolectarse de distintas industrias que realizan el proceso de decapado. El licor recuperado se agrega a un reactor con hierro para neutralizar el HCl libre, según la reacción (3). Luego, la solución resultante se oxida con cloro gaseoso según la reacción (1). (European Commission, 2005)

3.2.5 Desde óxidos de hierro mixto

La reacción (10) ocurre a partir de una disolución de óxidos de hierro utilizando ácido clorhídrico a una temperatura superior a 80°C para obtener una mezcla de cloruro férrico y ferroso. Posteriormente ocurre la oxidación con cloro gaseoso según la reacción (1). (European Commission, 2005)

$$Fe_3O_4(Fe_2O_3 + FeO)_{(s)} + 8HCl \rightarrow FeCl_{2(ac)} + 2FeCl_{3(ac)} + 4H_2O_{(l)}$$
 (10)

$$FeCl_{2(ac)} + \frac{1}{2}Cl_{2(g)} \rightarrow FeCl_{3(ac)}$$
 (1)

Alternativamente, pueden utilizarse otros oxidantes diferentes a cloro gaseoso, los que se muestran según las reacciones (11) y (12):

$$FeCl_{2(ac)} + HCl_{(ac)} + \frac{1}{2}H_2O_2 \rightarrow FeCl_{3(ac)} + H_2O_{(l)}$$
 (11)

$$FeCl_{2(ac)} + \frac{1}{2}NaOCl_{3(ac)} \rightarrow FeCl_{3(ac)} + \frac{1}{2}NaOCl$$
 (12)

3.2.6 Cloración directa

La producción de cloruro férrico de forma anhídrida se realiza por exposición de hierro elemental a cloro gaseoso seco en exceso (10% a 30%) a una temperatura entre 500°C y 700°C. Luego, el vapor obtenido de la reacción (13) se condensa, dando paso a la formación de cloruro férrico anhíbrido en su estado sólido. (Prasad, 2016)

$$Fe_{(s)} + \frac{3}{2}Cl_{2(g)} \to FeCl_{3(g)} \quad (13)$$

3.3 Aplicaciones

Debido a las características químicas del cloruro férrico, mayoritariamente, el compuesto es utilizado en las siguientes áreas:

- 1. Tratamiento de aguas residuales.
- 2. Tratamiento de agua potable.
- 3. Minería.

A continuación, se exponen sus usos en las distintas áreas mencionadas anteriormente.

3.3.1 Tratamiento de aguas residuales

3.3.1.1 Remoción de fosfatos

Los fosfatos son nutrientes que aceleran la eutrofización del agua. El cloruro férrico reacciona con los fosfatos solubles transformándolos en fosfato férrico, como se muestra en la reacción (14). El producto precipita porque es insoluble en agua.

$$Fe^{+3} + H_3PO_4 + 30H^- \rightarrow FePO_4 + 3H_2O$$
 (14)

En el tratamiento de aguas residuales el producto puede ser agregado en el tratamiento primario y/o secundario. Luego, el precipitado es removido durante la sedimentación y filtración. (OXY, Manual Cloruro Férrico, 2020)

3.3.1.2 Coprecipitación de trazas de metales

El término de metal pesado se refiere a cualquier elemento químico metálico que tenga una alta densidad y sea tóxico o venenoso en concentraciones bajas. Un ejemplo de éstos son el

mercurio (Hg), cadmio (Cd), arsénico (As), cromo (Cr), plomo (Pb), entre otros. Por lo tanto, la presencia de metales pesados en aguas residuales es peligroso para el medio ambiente y la salud.

El cloruro férrico puede remover una significativa cantidad de estos metales por adsorción superficial y coprecipitación. Cabe destacar que el comportamiento de remoción de metales debe ser desarrollado para cada tipo de agua residual. (OXY, Manual Cloruro Férrico, 2020)

3.3.1.3 Remoción de arsénico

El arsénico es estable en sus estados de oxidación As^{+5} , As^{+3} , $As y As^{-3}$. Sin embargo, los estados de oxidación en que el arsénico se encuentra comúnmente en el agua son: $As^{+5} y As^{+3}$.

Cuando el ión predominante es el arsenato (As^{+5}), tiende a formar muchas sales, mientras que el arsenito (As^{+3}) puede formar muy pocas. Por lo tanto, desde el punto de vista de tratamiento de agua, el arsenato se puede remover más fácilmente que el arsenito por medio de la adición de una variedad de iones, tal como el hierro.

El FeCl₃, que forma compuestos insolubles con el arsénico, se añade al agua contaminada para coagular y luego precipitar el metal. Este método de remoción de arsénico se puede utilizar para tratar efluentes de la industria minera (donde las concentraciones de arsénico son bastantes altas) y también para el tratamiento de aguas cordilleranas con arrastre de alta concentración del metal. (OXY, Manual Cloruro Férrico, 2020)

3.3.1.4 Reducción de sólidos suspendidos

Muchas plantas de tratamiento de aguas residuales utilizan cloruro férrico para coagular los sólidos suspendidos. El cloruro férrico forma hidróxidos, los cuales son atrapados por los sedimentadores y filtros de la planta para ser separados del agua. (OXY, Manual Cloruro Férrico, 2020)

3.3.1.5 Acondicionamiento de lodos

Los fangos procedentes de la decantación del agua tras la coagulación-floculación se caracterizan por un elevado contenido en materia orgánica y en hidróxidos metálicos.

Los lodos tienen las mismas características que los coloides en suspensión, es decir, éstos pueden ser químicamente condicionados para eliminar su contenido de agua. El coagulante

desestabiliza la carga negativa de las partículas de lodo, de esta forma las partículas rompen su unión con el agua y se comienzan a aglomerar. En consecuencia, el cloruro férrico mejora la captura de sólidos en la operación de deshidratado. (OXY, Manual Cloruro Férrico, 2020)

3.3.2 Tratamiento de agua potable

3.3.2.1 Reducción de turbiedad y remoción de color

El cloruro férrico forma coágulos estables, al reducir la repulsión existente entre partículas. Además, remueve en forma efectiva el color asociado a la presencia de orgánicos (materia vegetal) encontrada principalmente en la superficie de las aguas. Su principal ventaja es que actúa en amplios rangos de pH y temperatura. (OXY, Manual Cloruro Férrico, 2020)

3.3.3 Minería

3.3.3.1 Agente lixiviante de los concentrados de cobre

Al ser separado por flotación, desde el concentrado de cobre, el concentrado de molibdeno o molibdenita (MoS₂) queda con una cierta cantidad de cobre en la forma de calcopirita (CuFeS₂), lo cual reduce su valor comercial. Para su mejor comercialización se requieren métodos que reduzcan tal contenido.

Éste consta fundamentalmente de una lixiviación y descobrización con cloruro férrico y una posterior regeneración del cloruro ferroso a férrico con cloro líquido. La lixiviación es representada por la reacción (15) y la descobrización por la reacción (16).

$$(MoS_2)CuFeS_2 + 4FeCl_3 \rightarrow CuCl_2 + 5FeCl_2 + 2S + MoS_2$$
(15)
$$5FeCl_2 + CuCl_2 + Fe \rightarrow Cu + 6FeCl_2$$
(16)

El proceso completo, además de entregar molibdenita purificada, entrega cobre metálico y produce un exceso de cloruro ferroso que puede ser utilizado en el tratamiento de los efluentes provenientes de la flotación. (OXY, Manual Cloruro Férrico, 2020)

4. Objetivos

4.1 Objetivo General

Proponer e implementar un modelo de optimización para la planta de cloruro férrico de Oxy Chile, planta Talcahuano.

4.2 Objetivos específicos

- 1. Evaluar los reactores de producción de cloruro férrico de Oxy Chile y determinar sus variables de optimización.
- 2. Modelar el sistema reactivo de producción de cloruro férrico utilizando herramientas disponibles para este propósito.
- 3. Analizar y determinar condiciones óptimas de operación.

5. Marco Teórico

5.1 Velocidad de reacción

La velocidad de una reacción nos indica con qué rapidez se consume cierta cantidad de moles de una especie química para formar otra especie química (Fogler, 2008).

Por otra parte, una reacción química ha ocurrido cuando un número detectable de moléculas o más especias han perdido su identidad y han asumido una nueva forma, por un cambio en el tipo o número de átomos en el compuesto, o por un cambio de estructura de dichos átomos. Sin embargo, al considerar las especies individuales que intervienen en una reacción en particular, hablamos de la velocidad de desaparición de masa de una especie dada.

De esta forma, la velocidad de desaparición de una especie, como por ejemplo para la especie A, es el número de moles de A que pierden su identidad química por unidad de tiempo, por unidad de volumen por la ruptura y subsecuente formación de enlaces químicos, durante el curso de la reacción. Es decir, la velocidad de reacción es el número de moles de A que reaccionan por unidad de tiempo por unidad de volumen (mol/m³*s) (Fogler, 2008).

5.1.1 Velocidad de reacción relativa

Las velocidades de reacción relativas de las diversas especies involucradas en una reacción pueden obtenerse por la relación de sus coeficientes estequiométricos (Fogler, 2008). Para la reacción (17) se tiene:

$$A + \frac{b}{a}B \to \frac{c}{a}C + \frac{d}{a}D \quad (17)$$

De la reacción (17) se aprecia que por cada mol de A que se consume, aparecen d/a moles de D. En otras palabras, se obtiene una relación representada por la ecuación (18)

Velocidad de Formación de
$$D = r_D = \frac{d}{a}(-r_A) = -\frac{d}{a}r_A$$
 (18)

La relación puede expresarse directamente por la estequiometría de la reacción (19)

$$aA + bB \rightarrow cC + dD$$
 (19)

Donde su relación se encuentra expresada por la ecuación (20)

$$-\frac{r_A}{a} = -\frac{r_B}{b} = \frac{r_C}{c} = \frac{r_D}{d} \quad (20)$$

5.1.2 El orden de reacción y la ley de velocidad

La velocidad de desaparición de A (- r_A), depende de la temperatura y la composición de los compuestos presentes en ella. Para muchas reacciones, puede escribirse como el producto de una constante de velocidad (k_A) y una función de las concentraciones de las diversas especies que participan en la reacción (Fogler, 2008).

La dependencia en las concentraciones de las especies presentes, casi sin excepción, es determinada de forma experimental. Una de las formas generales más comunes de esta dependencia es el modelo de ley de potencia. Aquí, la ley de velocidad es el producto de las concentraciones de las especies reaccionantes, cada una de ellas elevada a una potencia como se muestra en la ecuación (21).

$$-r_A = k_A C_A^{\alpha} C_B^{\beta} \quad (21)$$

Los exponentes de las concentraciones en la ecuación (21) conducen al concepto de orden de reacción. Éste se refiere a las potencias a las cuales se elevan las concentraciones, en la ley de velocidad cinética. En la ecuación (21), la reacción es de orden α , con respecto al reactivo A y de orden β , con respecto al reactivo B (Fogler, 2008). El orden global de la reacción se obtiene a partir de la ecuación (22)

$$n = \alpha + \beta \quad (22)$$

5.1.3 La constante de velocidad de reacción

La constante de velocidad de reacción k no es verdaderamente una constante, es sólo independiente de las concentraciones de las especies que interactúan en la reacción. Esta es denominada velocidad de reacción específica o constante de velocidad. Casi siempre depende

fuertemente de la temperatura y de que esté presente un catalizador o no, y en reacciones en fase gas puede estar en función de la presión total. Para efectos de este estudio, se asume que la constante de velocidad dependerá exclusivamente de la temperatura. Esta suposición es válida en la mayoría de las reacciones de laboratorio e industriales (Fogler, 2008).

Arrhenius observó que en la mayoría de las reacciones el aumento de la temperatura no es lineal. Descubrió que la mayoría de los datos de velocidades de reacción cumplían con una ecuación basada en tres factores:

- a) La fracción de las moléculas que tienen una energía igual a la de activación (E_a).
- b) El número de colisiones que ocurren por segundo.
- c) La fracción de colisiones que tienen la orientación adecuada.

Estos tres factores se incorporaron en la ecuación de Arrhenius:

$$k = A * \exp\left(-\frac{E_a}{RT}\right) \tag{23}$$

Donde, k es la constante de velocidad, E_a es la energía de activación (J/mol), R es la constante de los gases (J/mol*K) y T es la temperatura absoluta (K). El factor de frecuencia A es constante, o casi constante cuando la temperatura varía. Este factor está relacionado con la frecuencia de colisiones y la probabilidad de que las colisiones estén orientadas de manera favorable para la reacción (Froment, Bischoff, & De Wilde, 2011).

5.1.3.1 Determinación de la energía de activación y factor pre exponencial

La ecuación postulada por Arrhenius, ecuación (23), sigue siendo el paso más importante de cinética química y aún conserva su utilidad en la actualidad, casi un siglo más tarde. La energía de activación, E_a, se determina experimentalmente efectuando la reacción a diversas temperaturas (Fogler, 2008).

Luego, se aplica el logaritmo natural a la ecuación (23), obteniendo la ecuación (24)

$$In(k_A) = In(A) - \frac{E_a}{R} \left(\frac{1}{T}\right) \quad (24)$$

De la ecuación (24) se puede observar que la energía de activación puede obtenerse a partir de una gráfica de Ink_A en función de (1/T). De esta forma, su pendiente corresponde a ($-E_a/R$) y su intersección con el eje de las ordenadas corresponde a InA.

5.2 Reactor flujo pistón

Este tipo de reactor consta de un tubo cilíndrico y normalmente opera en estado estacionario. En el reactor tubular, los materiales que reaccionan se consumen de manera continua a medida que fluyen a lo largo del reactor. Al modelar el reactor tubular asumimos que la concentración varía continuamente en la dirección axial a todo lo largo de éste. Por consiguiente, la velocidad de reacción, que es una función de la concentración para todas las reacciones (excepto las de orden cero), también variará axialmente.

Para el material que aquí presentamos, consideramos sistemas en los cuales el campo de flujo pueda representarse por un modelo correspondiente a un perfil de flujo tapón (es decir, de velocidad uniforme como en el flujo turbulento), como se muestra en la Figura 4.

Figura 4. Reactor tubular de flujo tapón (Fogler, 2008).

La ecuación general de balance de moles está dada por la ecuación (25)

$$\begin{bmatrix} Velocidad \ de \\ flujo \ molar \\ de \ la \ especie \ j. \\ Entrada \ a \ V \end{bmatrix} - \begin{bmatrix} Velocidad \ de \\ flujo \ molar \\ de \ la \ especie \ j. \\ Salida \ a \ (V + \Delta V) \end{bmatrix} + \begin{bmatrix} Velocidad \\ molar \ de \\ generación \\ de \ la \ especie \ j \\ dentro \ de \ \Delta V \end{bmatrix} = \begin{bmatrix} Velocidad \\ molar \ de \\ acumulación \\ de \ la \ especie \ j \\ dentro \ de \ \Delta V \end{bmatrix}$$
(25)

$$\left[F_{j}\right]_{V} - \left[F_{j}\right]_{V+\Delta V} + r_{j}\Delta V = \frac{dN_{j}}{dt} \quad (25)$$

. . .

5.2.1 Espacio-Tiempo

El espacio-tiempo (τ), se obtiene dividiendo el volumen del reactor entre la velocidad de flujo volumétrico que entra al reactor, representado por la ecuación (26)

$$\tau(s) = \frac{V(m^3)}{v_0\left(\frac{m^3}{s}\right)}$$
(26)

Éste, es el tiempo necesario para procesar un volumen de reactor de líquido basado en las condiciones de entrada. El tiempo que este líquido tarda en entrar al reactor en su totalidad es el espacio-tiempo. También se llama tiempo de retención o tiempo medio de residencia (Fogler, 2008).

5.3 Ley de Hess

De manera general, para cualquier reacción química, la entalpía de reacción está representada por la ecuación (27)

$$\Delta H_{reacción} = \sum \Delta H_{f_{productos}} - \sum \Delta H_{f_{reactantes}}$$
(27)

Donde ΔH_f es la entalpía de formación del compuesto en su estado estándar.

De esta forma, para el cálculo de la entalpía de una reacción, se puede recurrir a tabla de datos, respetando la estequiometría de la reacción. Sin embargo, si la reacción de interés no se encuentra en estas tablas, se puede hacer uso de la ley de Hess, la cual establece que "cuando una reacción puede expresarse como la suma algebraica de otras, su calor de reacción es igual a la misma suma algebraica de los calores parciales de las reacciones parciales" (Valencia & Garín, 2007). Es decir, si la reacción se efectúa en una seria de pasos, la entalpía de la reacción será igual a la suma de los cambios de entalpía para los pasos individuales. El cambio de entalpía para el proceso será independiente del número de pasos y de la naturaleza específica del camino por el cual se lleva a cabo la reacción. Por lo tanto, se puede calcular la entalpía de la reacción para cualquier proceso, en tanto encontremos una ruta para la cual se conozca ΔH_f de cada paso.

5.4 Método de diferencias finitas

Para obtener la solución numérica de una ecuación diferencial parcial, utilizando el método de diferencias finitas, se deben sustituir las derivadas de la ecuación original, por diferencias finitas. De esta forma, una ecuación diferencial se transforma en un conjunto de ecuaciones algebraicas simultáneas. Para las ecuaciones diferenciales de primer orden se tienen 3 sustituciones, las cuales se observan en las ecuaciones (28), (29) y (30)

$$\frac{\partial u}{\partial x} = \frac{u_{i+1} - u_i}{\Delta x}$$
(28)
$$\frac{\partial u}{\partial x} = \frac{u_i - u_{i-1}}{\Delta x}$$
(29)
$$\frac{\partial u}{\partial x} = \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$
(30)

El método se basa en la expansión en series de Taylor aproximando la derivada parcial por cociente. En consecuencia, se realiza una discretización del dominio obteniendo una malla de trabajo. Las intersecciones que constituyen la malla son denominadas nodos y es donde se calcula la solución numérica de la ecuación diferencial parcial. Lo anterior se expone en la Figura 5.

Figura 5. Representación de malla de trabajo para un problema de propagación unidimensional en estado transitorio (Santamaría Sandoval & Ramirez Martinez, 2015).

Para discretizar el dominio del problema, expuesto en la Figura 5, se deben definir los tamaños de paso tanto temporal (t_i) como espacial (x_i). Estos tamaños son determinados por medio de las ecuaciones (31) y (32)

$$\Delta x = \frac{L}{m} \quad (31)$$
$$\Delta t = \frac{t_{final}}{n} \quad (32)$$

Donde m y n son números enteros positivos, L es la longitud del dominio espacial y t_{final} indica el tiempo final en que se estudia el problema en cuestión. El primer nodo (x_0 , t_0) y el último nodo (x_m , t_n) son especificadas por las condiciones de barrera. Al aplicar la ecuación discretizada en cada punto de la malla se obtiene un sistema de ecuaciones denominado sistema de ecuaciones de diferencias finitas. Luego, se resuelve el sistema de ecuaciones utilizando un método adecuado y se obtienen los valores de la función en los nodos de la malla. Por lo tanto, se obtiene una solución aproximada discreta a partir del método de diferencias finitas.

6. Metodología

6.1 Planteamiento de balances de Materia y Energía

El proceso de reconcentración de FeCl₂ del licor de decapado consiste en una operación semibatch. El fluido compuesto por FeCl₃, FeCl₂, HCl y H₂O, contenido en los estanques de almacenamiento (630-S1 y 630-S2), es recirculado dentro de un circuito de 2 reactores para aumentar el contenido de cloruro ferroso en la disolución. Además, con el fin de subir el nivel de los estanques se adiciona agua industrial continuamente. La Figura 6 expone un esquema simplificado del sistema.

Figura 6. Esquema general simplificado del sistema de concentración de cloruro ferroso.

Como se aprecia en la Figura 6, el líquido del estanque es impulsado al reactor de cloración primaria (630-R1), donde el cloruro ferroso se transforma en cloruro férrico gracias a la adición de cloro líquido (Cl₂).

Luego, la solución se dirige al reactor disolvedor de hierro (630-R2), el cual es cargado con chatarra de hierro por medio de una tolva 630-T1. De esta forma, el fluido disuelve la chatarra

produciendo cloruro ferroso, hidrógeno gaseoso y agua. Cabe mencionar que el reactor se encuentra agitado gracias a una corriente de aire inyectada desde el fondo del reactor.

Finalmente, a la salida de éste se inyecta ácido clorhídrico, con el propósito de mantener la acidez del sistema lo suficientemente baja para evitar el fenómeno de hidrólisis del cloruro férrico a hidróxido de hierro (III) el cual consiste en un precipitado café no deseado en la producción.

El resultado esperado es la elevación del nivel de líquido en los estanques de almacenamiento, con una concentración deseada de hierro total (15,8-17,5 $\%^{m}/m$) para pasar a la etapa de cloración final.

6.1.1 Reactor 630-R1

Para los balances de materia y energía del reactor de cloración primaria se realizaron las siguientes suposiciones:

- 1. Gradientes de concentración y temperatura ocurren sólo en la dirección axial.
- 2. El único mecanismo de transporte es el flujo mismo y se considera de tipo pistón.
- 3. Estado estacionario.

A partir de lo anterior, el balance de materia se representa en la ecuación (33)

$$A\Delta z \frac{dC_A}{dt} = [u_s C_A A]_z - [(u_s C_A A]_{z+\Delta z} - r_A A\Delta z \quad (33)$$

Luego, suponiendo estado estacionario y dividiendo por $A\Delta z$, la ecuación (33) se transforma en la ecuación (34)

$$0 = \frac{[u_s C_A A]_z - [(u_s C_A A]_{z+\Delta z}]_{z+\Delta z}}{\Delta z} - r_A \quad (34)$$

Finalmente, aplicando el límite cuando $\Delta z \rightarrow 0$, el balance es representado por la ecuación (35)

$$0 = -\frac{d(u_s C_A)}{dz} - r_A \qquad (35)$$

Donde, u_s corresponde a la velocidad superficial del fluido (m/s), A es el área transversal del reactor (m²), C_A es la concentración del compuesto A (mol/m³) y r_A es la velocidad de la reacción (1) con respecto al compuesto A que ocurre en el reactor.

Luego, a partir de la información recopilada, la reacción obedece una cinética de primer orden con respecto a ambos reactantes (Crabtree & Schaefer, 1966). De esta forma, el balance por componente queda representado por las ecuaciones (36) para el cloruro ferroso, (37) para el cloro y (38) para el cloruro férrico.

$$0 = -\frac{d(u_s C_{FeCl_2})}{dz} - kC_{FeCl_2}C_{Cl_2} \qquad (36)$$

$$0 = -\frac{d(u_s C_{Cl_2})}{dz} - \frac{1}{2}kC_{FeCl_2}C_{Cl_2} \qquad (37)$$

$$0 = -\frac{d(u_s C_{FeCl_3})}{dz} + k C_{FeCl_2} C_{Cl_2} \qquad (38)$$

Donde la constante de velocidad depende de la temperatura según la ecuación de Arrhenius (23).

Por otra parte, el balance de energía del reactor en estado estacionario es representado por la ecuación (39). Donde existe una pérdida de calor al medio ambiente.

$$0 = \left[\rho u_s A C_p T\right]_z - \left[\rho u_s A C_p T\right]_{z+\Delta z} + (-\Delta H)_r r_A A \Delta z - U P \Delta z (T - T_{amb})$$
(39)

Dividiendo por $A\Delta z$, la ecuación (39) se reduce a la ecuación (40)

$$0 = \frac{\left[\rho u_s C_p T\right]_z - \left[\rho u_s C_p T\right]_{z+\Delta z}}{\Delta z} + (-\Delta H)_r r_A - \frac{UP(T - T_{amb})}{A}$$
(40)

Finalmente, aplicando el límite cuando $\Delta z \rightarrow 0$, el balance es representado por la ecuación (41)

$$0 = \rho u_s C_p \frac{dT}{dz} + (-\Delta H)_r k C_{FeCl_2} C_{Cl_2} - \frac{U4(T - T_{amb})}{D}$$
(41)

Donde, ρ es la densidad del fluido, u_s su velocidad superficial, C_p es el calor específico del fluido, $(-\Delta H)_r$ es la entalpía de la reacción, U es el coeficiente global de transferencia de calor, D el diámetro del reactor y T_{amb} es la temperatura del ambiente.

6.1.2 Reactor 630-R2

El reactor disolvedor de hierro opera de manera semibatch, ya que la carga de hierro opera de forma batch, sin embargo, el fluido circula de manera continua por el reactor. Por lo anterior, se decidió realizar un balance en estado transitorio con respecto a los fluidos presentes en éste. De esta forma, se consideraron las siguientes suposiciones:

- 1. Gradientes de concentración y temperatura ocurren sólo en la dirección axial.
- 2. El único mecanismo de transporte es el flujo mismo y se considera de tipo pistón.

A partir de lo anterior, el balance de materia se representa en la ecuación (42)

$$A\Delta z \frac{dC_A}{dt} = [u_s C_A A]_z - [(u_s C_A A]_{z+\Delta z} - r_A A\Delta z \quad (42)$$

Luego, suponiendo estado estacionario y dividiendo por $A\Delta z$, la ecuación (42) se transforma en la ecuación (43)

$$\frac{dC_A}{dt} = \frac{[u_s C_A A]_z - [(u_s C_A A]_{z+\Delta z}]_z}{\Delta z} - r_A \quad (43)$$

Finalmente, aplicando el límite cuando $\Delta z \rightarrow 0$, el balance es representado por la ecuación (44)

$$\frac{dC_A}{dt} = -\frac{d(u_s C_A)}{dz} - r_A \qquad (44)$$

Donde, u_s corresponde a la velocidad superficial del fluido (m/s), A es el área transversal del reactor (m²), C_A es la concentración del compuesto A (mol/m³) y r_A es la velocidad de las reacciones (2), (3), (4), (5) y (6) con respecto al compuesto A.

Luego, a partir de la información recopilada, se determinó que la velocidad de reacción obedece a una cinética de primer orden con respecto a sus reactantes (Khadom, 2009) (Jatuphaksamphan, Phinichka, Prapakorn, & Supradist, 2010). De esta forma, el balance por

componente queda representado por las ecuaciones (45) para el cloruro ferroso, (46) para el ácido clorhídrico, (47) para el hidrógeno, (48) para el agua y (49) para el cloruro férrico.

$$\frac{dC_{FeCl_2}}{dt} = -\frac{d(u_s C_{FeCl_2})}{dz} + \frac{3}{2}k_2 C_{FeCl_3} + \frac{1}{2}k_3 C_{HCl} + \frac{1}{2}k_4 C_{HCl} + \frac{1}{2}k_5 C_{HCl} + \frac{1}{2}k_6 C_{HCl} \quad (45)$$

$$\frac{dC_{HCl}}{dt} = -\frac{d(u_s C_{HCl})}{dz} - k_3 C_{HCl} - k_4 C_{HCl} - k_5 C_{HCl} - k_6 C_{HCl}$$
(46)

$$\frac{dC_{H_2}}{dt} = -\frac{d(u_s C_{H_2})}{dz} + \frac{1}{2}k_3 C_{HCl} \quad (47)$$

$$\frac{dC_{H_2O}}{dt} = -\frac{d(u_s C_{H_2O})}{dz} + \frac{1}{2}k_4 C_{HCl} + \frac{1}{2}k_5 C_{HCl} + \frac{1}{2}k_6 C_{HCl} \quad (48)$$
$$\frac{dC_{FeCl_3}}{dt} = -\frac{d(u_s C_{FeCl_3})}{dz} - k_2 C_{FeCl_3} \quad (49)$$

Donde la constante de velocidad depende de la temperatura según la ecuación de Arrhenius (23).

Por otra parte, el balance de energía del reactor en estado estacionario es representado por la ecuación (50).

$$\rho C_p A \Delta z \frac{dT}{dt} = \left[\rho u_s A C_p T\right]_z - \left[\rho u_s A C_p T\right]_{z+\Delta z} + A \Delta z \sum_{1}^{5} (-\Delta H)_{ri} r_i$$
$$- U P \Delta z (T - T_{amb}) (50)$$

Dividiendo por $A\Delta z$, la ecuación (50) se reduce a la ecuación (51)

$$\rho C_p \frac{dT}{dt} = \frac{\left[\rho u_s C_p T\right]_z - \left[\rho u_s C_p T\right]_{z+\Delta z}}{\Delta z} + \sum_{1}^{5} (-\Delta H)_{ri} r_i - \frac{UP(T-T_{amb})}{A}$$
(51)

Finalmente, aplicando el límite cuando $\Delta z \rightarrow 0$, el balance es representado por la ecuación (52)

$$\rho C_p \frac{dT}{dt} = -\rho u_s C_p \frac{dT}{dz} + (-\Delta H)_{r2} k_2 C_{FeCl_3} + (-\Delta H)_{r3} k_3 C_{HCl} + (-\Delta H)_{r4} k_4 C_{HCl} + (-\Delta H)_{r5} k_5 C_{HCl} + (-\Delta H)_{r6} k_6 C_{HCl} - \frac{U4(T - T_{amb})}{D}$$
(52)

Donde, ρ es la densidad de el fluido, u_s su velocidad superficial, C_p es el calor específico del fluido, $(-\Delta H)_{ri}$ es la entalpía de la reacción i, U es el coeficiente global de transferencia de calor, D el diámetro del reactor y T_{amb} es la temperatura del ambiente.

6.2 Determinación de variables y condiciones críticas

Para desarrollar los balances de materia y energía del sistema es necesario conocer los parámetros constantes presentes en ellos, éstos se exponen a continuación.

6.2.1 Características de los equipos

Es necesario saber las características de los siguientes equipos del sistema:

- 1. Estanques de Almacenamiento (630-S1/S2).
- 2. Clorador primario (630-R1).
- 3. Disolvedor de hierro (630-R2).

Sus dimensiones fueron obtenidas a partir de manuales de operación, PI&D y hojas de especificación de los equipos, los cuales se encuentran adjuntos en los Anexos A y B. Con lo anterior, se calculó el área basal del equipo y el área transversal de la tubería utilizando la ecuación (54), mientras que su volumen fue calculado con la ecuación (53) suponiendo que todos los equipos tienen la forma de un cilindro.

$$Volumen = V = \frac{\pi D^2 h}{4}$$
(53)

$$\acute{A}rea \ basal = A = \frac{\pi D^2}{4}$$
(54)

Donde, D es el diámetro del reactor y h es la altura de este.

Luego, se calculó el tiempo de residencia del equipo con la ecuación (55).

$$\tau = \frac{V(m^3)}{q\left(\frac{m^3}{s}\right)} \tag{55}$$

Donde, q es el flujo volumétrico de entrada al equipo.

Finalmente, se calculó el coeficiente global de transferencia de calor del equipo (U) a partir de la ecuación (56), cuyos parámetros se encuentran en la literatura (Çengel, 2007).

$$\frac{1}{U} = \frac{1}{h_i} + \sum_{j=1}^{j} \frac{d_j}{\lambda_j} + \frac{1}{h_e} \quad (56)$$

Donde, h_i corresponde al coeficiente de transferencia de calor por convección al interior del reactor, d_j es el espesor de la pared del material j del reactor, λ_j es la conducción térmica del material j de la pared del reactor y h_e corresponde al coeficiente de transferencia de calor por convección al exterior del reactor.

6.2.2 Flujos de entrada y salida

A partir de la Figura 6 se puede observar que existen 4 flujos que entran al sistema de producción:

- 1. Agua industrial a estanques de almacenamiento 630-S1/S2.
- 2. Flujo de cloro al reactor clorador primario 630-R1.
- 3. Carga de chatarra de hierro al reactor disolvedor de hierro 630-R2.
- 4. Flujo de ácido clorhídrico previo al decantador 630-D1.

Para estimar sus valores, se utilizaron los controladores e indicadores instalados en la planta de cloruro férrico de Oxy Chile. Además, se usaron las planillas completadas diariamente por los operadores del área.

En las secciones, a continuación, se expone de forma detallada la metodología aplicada para estimar estos flujos, los cuales se utilizaron para las simulaciones en Aspen y Matlab.

Cabe mencionar que para el reactor clorador primario se supuso que no hay acumulación (estado estacionario), mientras que en los estanques y el reactor disolvedor de hierro si ocurre este fenómeno.

6.2.3 Cinética y entalpías de reacción de las reacciones

En el sistema de producción de cloruro férrico ocurren seis reacciones. Primero, en el reactor clorador primario ocurre la oxidación de cloruro ferroso a cloruro férrico utilizando cloro líquido, representada por la reacción (1).

$$FeCl_2 + \frac{1}{2}Cl_2 \rightarrow FeCl_3$$
 (1)

Luego, en el reactor disolvedor de hierro ocurren cinco reacciones simultáneas. Éstas son las responsables de la reconcentración de cloruro ferroso del licor de decapado y se encuentran representadas por las reacciones (2), (3), (4), (5) y (6).

$$2FeCl_3 + Fe \rightarrow 3FeCl_2 \quad (2)$$

$$Fe + 2HCl \rightarrow FeCl_2 + H_2$$
 (3)

$$FeO + 2HCl \rightarrow FeCl_2 + H_2O \tag{4}$$

$$Fe_2O_3 + Fe + 6HCl \rightarrow 3FeCl_2 + 3H_2O \quad (5)$$

$$Fe_3O_4 + Fe + 8HCl \rightarrow 4FeCl_2 + 4H_2O \quad (6)$$

Con el propósito de analizar el comportamiento de los reactores con respecto a la temperatura y de resolver los balances de masa y energía correspondientes, se utilizó la ecuación de Arrhenius representada por la ecuación (23).

Sus parámetros se determinaron a partir de valores obtenidos en referencias bibliográficas. Sin embargo, para la reacción (2) no se encontró información disponible, por lo que para determinar sus parámetros cinéticos se optó por realizar el experimento de pérdida de peso (McCafferty, 2010). Éste consiste lo siguiente:

- 1. Masar las muestras en una balanza antes del experimento.
- 2. Someter la muestra en la solución por un intervalo de tiempo (30 minutos).
- 3. Retirar la muestra de la solución.
- 4. Limpiar con agua destilada y secar la muestra.
- 5. Masar la muestra en la balanza.
- 6. Reincorporar la muestra a la solución.
- 7. Repetir el procedimiento hasta completar un tiempo total de 2 horas.
Se realizaron 12 experimentos, para 3 concentraciones de cloruro férrico, 2 concentraciones de ácido clorhídrico y 2 temperaturas distintas.

En un vaso precipitado se prepararon las disoluciones de cloruro férrico con las concentraciones deseadas $(10,3\%^{m}/m, 20,7\%^{m}/m, y 41,5\%^{m}/m)$ a partir de la solución contenida en el estanque de almacenamiento de cloruro férrico (630-S12/S13). Luego, del depósito de recortes de acero, se extrajeron 8 muestras de similar área y masa. Estas muestras fueron limpiadas con ácido clorhídrico para eliminar los óxidos presentes en ellas y luego fueron lavadas con agua destilada y secadas en un horno de secado por 10 minutos. La temperatura se reguló manualmente, mediante el uso de una placa calefactora.

Los datos a obtener son: el orden de la reacción y los parámetros cinéticos de la constante de velocidad en función de la temperatura. Para ello, se estima la variación de la concentración utilizando la razón estequiométrica según la ecuación (57).

$$\Delta mol_{Fe^{\circ}} = \frac{1}{2} \Delta mol_{FeCl_3}$$
 (57)

Dividiendo por el volumen de la disolución y reordenando, se obtiene la ecuación (58)

$$\frac{2 * \Delta masa_{Fe^{\circ}}}{PM_{Fe^{\circ}} * V_{disolución}} = \Delta C_{FeCl_3}$$
(58)

Primero, para verificar el orden de la reacción, se graficó $-In(-r_{FeCl_3})vs - In(C_{FeCl_3})$ (Fogler, 2008). Donde, la pendiente del gráfico entregará el orden de la reacción y de su intersección con el eje de las ordenadas, la constante de velocidad. Lo anterior se refleja en la ecuación (61). Para obtener $-r_{FeCl_3}$ se ocupa la ecuación (59)

$$-r_{FeCl_3} = \frac{\Delta C_{FeCl_3}}{\Delta t} \quad (59)$$
$$-r_{FeCl_3} = kC_{FeCl_3}^n \quad (60)$$

Aplicando logaritmo natural a la ecuación (60) se obtiene la ecuación (61)

$$In(-r_{FeCl_3}) = In(k) + n * In(C_{FeCl_3})$$
(61)

Por otra parte, los parámetros cinéticos se determinaron utilizando las constantes de velocidad de la reacción a dos temperaturas distintas, bajo las mismas concentraciones de reactivos. Luego, se graficó $-In(k)vs\frac{1}{T}$, donde la pendiente será $\frac{E_a}{R}$ y su intersección con el eje de las ordenadas corresponde a In(A). Lo anterior se ve reflejado por la ecuación (24)

$$In(k) = In(A) - \frac{E_a}{R} \left(\frac{1}{T}\right)$$
(24)

Finalmente, para resolver estos balances se requiere de las entalpías de reacción correspondientes. Estas se obtendrán aplicando la Ley de Hess con las entalpías de formación de los compuestos involucrados.

6.2.4 Concentraciones iniciales

Como se explicó en las secciones anteriores, normalmente el proceso comienza con la solución contenida en los estanques de almacenamiento 630-S1/S2. En consecuencia, para determinar las concentraciones iniciales del proceso, se utilizó una planilla del año 2017, facilitada por la empresa, la cual contiene la densidad de la solución, su contenido de cloruro ferroso y férrico. Además, con el propósito de actualizar y corroborar los datos, se solicitó a los operadores de la planta realizar un análisis de los mismos datos mencionados anteriormente, cada cuatro horas, en un periodo de dos semanas.

6.3 Simulación en el programa Aspen Plus v11

AspenTech es un líder mundial en software de gestión de activos, proporciona soluciones de gestión en el rendimiento de los activos empresariales, su supervisión y optimización de éstos, haciendo posible la transformación digital industrial (Aspen Technology Inc., 2023). Por lo tanto, el uso de Aspen Plus conduce a una forma más fácil de desarrollo, mantenimiento y actualización de modelos utilizando los bloques de modelo incorporados (Zapata, 2015).

Debido a sus características, se recreó el primer sistema del proceso productivo actual de producción de cloruro férrico en Aspen Plus v11, utilizando los parámetros especificados en las secciones anteriores. El procedimiento para realizarla fue el siguiente:

1. Crear una simulación en blanco (Blanck Simulation).

- Añadir los componentes presentes en el proceso de producción (reactivos y productos).
- 3. Seleccionar el método para la simulación utilizando "Method Assistant".
- 4. Correr la simulación para las propiedades del proceso.
- 5. Ingresar a la ventana de la simulación.
- Seleccionar los equipos del programa con respecto al proceso actual, especificando sus condiciones de operación.
- 7. Conectar los flujos de entrada y salida de los equipos respectivos.
- 8. Insertar las propiedades de los flujos de alimentación del sistema.
- 9. Correr la simulación del proceso.
- 10. Verificar los datos obtenidos por la simulación.

Cabe mencionar, que la intención de la simulación es recrear el proceso actual realizado por Oxy Chile. Luego, se seleccionarán las variables de optimización del proceso y se simularán en el programa variando sus valores. Finalmente, los resultados son utilizados para comparar con respecto al proceso original.

6.4 Simulación en el programa Matlab

Matlab es un programa que combina un entorno de escritorio ajustado para análisis iterativos y diseño de procesos con un lenguaje de programación que expresa directamente las matemáticas de matrices (MathWorks, 2023). Debido a su versatilidad, se resolvieron los balances de materia y energía expuestos en las secciones anteriores.

Para comenzar, el reactor 630-R1 se resolvió en el programa utilizando el código "ode15s", el cual se utiliza para resolver ecuaciones diferenciales ordinarias. Por otra parte, para el reactor 630-R2 se resolverá a partir del método de diferencias finitas ya que sus balances corresponden a ecuaciones diferenciales parciales.

La técnica de las diferencias finitas fue la primera que surgió para resolver problemas prácticos en ingeniería. Hoy en día es la más utilizada con respecto a soluciones de ecuaciones en derivadas parciales. El método para resolver toda clase de ecuaciones diferenciales parciales consiste en reemplazar las derivadas por cocientes de diferencias (Santamaría Sandoval & Ramirez Martinez, 2015). Su procedimiento fue el siguiente:

- 1. Discretización del dominio (eje z).
- 2. Reemplazar las derivadas continuas de la ecuación diferencial por las expresiones equivalentes en diferencias finitas.
- 3. Resolver los balances de energía y masa a partir del código "ode15s".

Luego, a partir de la resolución de los balances de materia y energía del proceso de producción actual, se obtuvieron los perfiles de concentración y temperatura con respecto a la altura del reactor y con respecto al tiempo (para el reactor 630-R2).

Finalmente, se seleccionaron las variables de optimización del proceso y se simuló en el programa variando sus valores con el objetivo de compararlos con el proceso actual.

6.5 Selección de variables de optimización

Para optimizar el proceso de producción actual de la empresa Oxy Chile, se analizó el proceso y sus variables respectivas, como por ejemplo la temperatura de operación de los equipos, flujos de alimentación al sistema, entre otras.

Para decidir las variables de decisión en la optimización, se realizó una reunión con el personal a cargo de la producción de cloruro férrico (Área 630). Finalmente, se decidió lo siguiente:

- Variar el flujo de alimentación de ácido clorhídrico. Además, analizar la influencia del punto de ingreso del fluido.
- 2. Variar la temperatura de operación del reactor clorador primario (630-R1).
- 3. Variar la temperatura de operación del reactor disolvedor de hierro (630-R2).

Además, se analizó el efecto de realizar un tratamiento químico (decapado) a la chatarra de hierro previo a su ingreso al reactor. De esta forma, será posible la producción de una de sus materias primas (licor de decapado) y se limpiará la chatarra, disminuyendo los residuos dentro del sistema productivo.

7. Resultados y Discusión

7.1 Características de los equipos

7.1.1 Estanque de almacenamiento 630-S1/S2

En la Tabla 4, se exponen las características de los estanques de almacenamiento 630-S1 y 630-S2, tal como su diámetro, largo, volumen, entre otras.

Equipo	630-S1
Diámetro (m)	4
Largo (m)	5,2
Diámetro tubería de entrada (m)	0,0762
Área basal Equipo (m ²)	12,566
Área basal Tubería (m ²)	0,00456
Volumen (m ³)	65,345
Nivel al inicio del Batch	10%
Nivel al final del Batch	95%

Tabla 4. Característica de los estanques de almacenamiento 630-S1 y 630-S2

Luego, con la finalidad de simplificar el modelo se supuso que los estanques se encuentran perfectamente agitados. Para confirmar lo anterior, se calculó la velocidad del flujo de entrada de solución al estanque mediante la ecuación (62).

$$u_s = \frac{4Q_{entrada}}{\pi D_{Tubería}^2} \quad (62)$$

Donde el flujo volumétrico de entrada ($Q_{entrada}$) se obtuvo a partir de la simulación realizada en el programa Aspen, obteniendo lo siguiente

$$u_s = \frac{4 * 0,01016 \frac{m^3}{s}}{\pi (0.0762 \ m)^2} = 2,23 \frac{m}{s}$$

Luego, se calculó el Reynolds con la ecuación (63)

$$Re = \frac{Du_s\rho}{\mu} \quad (63)$$

Donde la viscosidad (μ) y densidad del fluido se obtuvieron a partir de la simulación realizada en el programa Aspen, logrando los siguientes resultados

$$Re = \frac{(0,0762 m) \left(2,23 \frac{m}{s}\right) \left(1059,78 \frac{kg}{m^3}\right)}{1,44 * 10^{-3} Pa * s} = 125058,46$$

El resultado indica un caudal turbulento, por lo tanto, la solución tiene un alto grado de mezcla y confirma la suposición realizada anteriormente.

7.1.2 Reactor Clorador Primario 630-R1

En la Tabla 5, se muestran las características del reactor de cloración primaria, como por ejemplo su diámetro, altura, tiempo de residencia, entre otras.

Equipo	630-R1
Diámetro (m)	0,15
Largo (m)	1,55
Diámetro tubería de entrada (m)	0,2032
Área basal Equipo (m ²)	0,01767
Área basal Tubería (m ²)	0,03243
Volumen (m ³)	0,027
Tiempo de residencia (s)	3,011
Coeficiente global de Transferencia de Calor (W/m^2K)	24,2

Tabla 5. Características del reactor de cloración primaria 630-R1

Luego, se calculó el coeficiente global de transferencia de calor. Los coeficientes de transferencia de calor se estimaron a partir de la literatura (Incropera, 1999) (Çengel, 2007). Los valores de los coeficientes de transferencia de calor por convección se resumen en la Tabla 6.

Tabla 6. Valores típicos del coeficiente de transferencia de calor por convección (Incropera, 1999)

Proceso	h (W/m2K)
Convección Libre	-
Gases	2-25
Líquidos	50-1000

Por otra parte, la Tabla 7 expone propiedades de la pared del reactor, tal como su composición, su coeficiente de transferencia de calor por conducción y su espesor.

Composición	k (W/mK)	Espesor de la pared (m)
Titanio	21,9	0,00712

 Tabla 7. Propiedades de la pared del reactor clorador primario (Çengel, 2007)

Luego, reemplazando los valores obtenidos de las Tablas 7 y 8 en la ecuación (56) se tiene,

$$\frac{1}{U} = \frac{1}{25} + \frac{0,007112}{21,9} + \frac{1}{1000}$$

Despejando el coeficiente global de calor se obtuvo

$$U = 24, 2\frac{W}{m^2 K}$$

Cabe mencionar, que en el proceso se tienen dos reactores idénticos (630-R1/A y 630-R1/B) ubicados en serie. Esta distribución se realiza como medio de seguridad para evitar remanentes de cloro en el proceso.

7.1.3 Reactor Disolvedor de Hierro 630-R2

En la Tabla 8, se muestran las características del reactor disolvedor de hierro, como por ejemplo su diámetro, altura, tiempo de residencia, velocidad superficial del fluido de entrada, entre otras.

Equipo	630-R2
Diámetro (m)	1,232
Largo (m)	2,0193
Diámetro tubería de entrada (m)	0,1524
Área basal Equipo (m ²)	1,192
Área basal Tubería (m ²)	0,01824
Volumen (m ³)	2,407
Tiempo de residencia (s)	193,207
Carga de hierro por batch (kg)	5219,7

Coeficiente global de Transferencia de Calor (W/m ² K)	7,324
Temperatura de operación (°C)	88,58

La carga de hierro por batch expuesta en la Tabla 9, se calculó a partir de las planillas utilizadas por los operadores de la planta, donde se determinó un promedio de los meses de enero y febrero del año 2023. Para la temperatura de operación se usó el promedio anual del año 2022, a partir de los valores entregados por el indicador de temperatura TI_1933.

Además, para estimar el tiempo de residencia del reactor se descontó el volumen utilizado por la chatarra al volumen total del reactor, suponiendo un macizo de hierro. Luego, el volumen resultante se dividió por el flujo volumétrico. Lo anterior se expone en la ecuación (64).

$$\tau = \frac{3600 \left(V_{reactor} - \frac{m_{Fe}}{\rho_{Fe}} \right)}{Q_{entada}} \quad (64)$$
$$\tau = \frac{3600 \left(2,407m^3 - \frac{5219,7kg}{7874\frac{kg}{m^3}} \right)}{32,494\frac{m^3}{h}} = 171,573 \, s$$

El flujo volumétrico de entrada al reactor se obtuvo a partir de la simulación de Aspen.

Luego, se calculó el coeficiente global de transferencia de calor. Los coeficientes de transferencia de calor se estimaron a partir de la literatura. Para los coeficientes de transferencia de calor por convección, sus valores se resumen en la Tabla 7.

Por otra parte, la Tabla 9 expone propiedades de la pared del reactor, tal como su composición, su coeficiente de transferencia de calor por conducción y su espesor.

Composición	k (W/mK)	Espesor de la pared (m)
Titanio	21,9	0,00635
Ladrillo Antiácido	1	0,09525

Tabla 9. Propiedades de la pared del reactor clorador primario (Çengel, 2007)

Luego, reemplazando los valores obtenidos de las Tablas 7 y 10 en la ecuación (56) se tiene,

$$\frac{1}{U} = \frac{1}{25} + \frac{0,00635}{21,9} + \frac{0,09525}{1} + \frac{1}{1000}$$

Despejando el coeficiente global de calor se obtuvo

$$U = 7,324 \frac{W}{m^2 K}$$

7.2 Flujos de entrada y salida

7.2.1 Estanque de almacenamiento 630-S1/S2

En los estanques de almacenamiento ocurre una acumulación de solución. Esto es debido a que el flujo de salida es menor a la suma de los flujos de entrada expuestos en la Figura 7.

Figura 7. Esquema de los estanques de almacenamiento 630-S1/S2

La empresa cuenta con controladores de flujo para el agua (FI_1941) y el flujo de salida de los estanques (FIC_1949). Sus valores son almacenados en una base de datos por el programa PI VISION. Se usó un promedio anual del año 2022 de estos flujos, los cuales se pueden apreciar en la Tabla 10.

		Promedio
Descripción	TAG	Anual
Flujo de Agua a 630-S1/S2 (m ³ /h)	FI-1941	2,044
Flujo de Salida 630-S1/S2 (m ³ /h)	FIC-1949	23,716

Tabla 10. Promedio Anual del flujo de agua y de salida de los estanques de almacenamiento

Por otra parte, no existe registro del flujo de entrada a los estanques ya que no se cuenta con indicadores ni controladores de flujo posterior al reactor clorador primario. En consecuencia, se obtendrá este flujo a partir de la simulación en Aspen Plus.

7.2.2 Reactor Clorador Primario 630-R1

En la Figura 8 se puede observar que el reactor 630-R1 tiene dos flujos de entrada. El primero proviene de los estanques de almacenamiento, cuyo valor es el indicado por el controlador FIC_1949 expuesto en la sección anterior en la Tabla 10.

Figura 8. Esquema del Reactor Clorador Primario 630-R1A/B

Por otra parte, el flujo de cloro proviene de los estanques de almacenamiento 509-S8/S9/S10. Este se encuentra a -19°C y a una presión de 6,9 bar, valores extraídos de la base de datos facilitada por la empresa. Para calcular su flujo, se utilizó el balance de materia proporcionado por la empresa el cual se encuentra en el Anexo C. Luego, se realizó un ajuste del flujo utilizando los valores actuales de la solución de entrada. Su valor se encuentra adjunto en la Tabla 11.

Equipo	630-R1
Flujo de solución de entrada (kg/h)	33498,3
Flujo de Cloro de entrada (kg/h)	771,184
Flujo de Salida (kg/h)	34269,484

Tabla 11. Valores de los flujos de entrada y salida del reactor 630-R1

Para finalizar, como se comentó anteriormente, no existe acumulación en el reactor. Por lo tanto, el flujo de salida es la suma de ambos flujos de entrada. Su valor se encuentra en la Tabla 11.

7.2.3 Reactor Disolvedor de Hierro 630-R2

El reactor disolvedor de hierro tiene dos flujos de entrada y dos de salida, los cuales se ven representados en la Figura 9. El reactor tiene un comportamiento semi-batch, ya que la

solución de alimentación proveniente del reactor 630-R1 es continua y su valor se encuentra en la Tabla 11 de la sección anterior. Por otra parte, la chatarra de hierro se alimenta al reactor dos a tres lotes al día (uno por cada turno) por medio de la tolva 630-T1 como se muestra en la Figura 9.

Figura 9. Esquema reactor disolverdor de hierro 630-R2

Para estimar la masa de cada lote se recopiló la información desde las planillas del área 630 de los meses de enero y febrero del año 2023 que se encuentran en el Anexo E. Luego, se realizó un promedio de masa por lote y de masa diario de chatarra cargada al reactor 630-R2. Los resultados de expresan en la Tabla 12.

Tabla 12. Promedios de carga al reactor disolvedor de hierro

Mes	Enero	Febrero	Promedio
Promedio Carga por batch (kg/batch)	5454,909	4984,500	5219,705
Promedio carga Diaria (kg/día)	9678,065	10681,071	10179,568
Batch por dia	2	2	2

A continuación, se realizó un promedio del número de cargas de lotes al día se realizan al reactor disolvedor de hierro. De la Tabla 13 se puede apreciar que para ambos meses fue el mismo. Luego, los valores de los flujos de salida del reactor se obtendrán a partir de las simulaciones utilizando los programas de Aspen Plus v11 y Matlab.

Finalmente, entre la salida del reactor y la entrada al decantador 630-D1 se añade ácido clorhídrico a la solución con el propósito de controlar el pH de la solución y así evitar la hidrólisis del cloruro férrico representado por la reacción (65).

$$FeCl_3 + 3H_2O \leftrightarrow Fe(OH)_3 + 3HCl$$
 (65)

El flujo añadido se determinó a partir del indicador de flujo acumulado FIQ_1954, el cual digita su valor cada cuatro horas. Para comenzar, se recopilaron los datos del año 2022 a partir de la base de datos del programa PI VISION. Como se trata de un indicador de flujo acumulado, para determinar el flujo añadido al proceso se utilizó la ecuación (66)

$$q_{a\tilde{n}adido} = q_2 - q_1 \quad (66)$$

Luego, se realizó un promedio de los flujos añadidos al sistema y se dividió en cuatro para aproximar el valor a un flujo continuo (m^3/h). Sus valores se resumen en la Tabla 13.

Tabla 13. Promedio Anual Flujo de Ácido Clorhídrico

Promedio Anual Flujo HCl (m ³ /4h)	Promedio Anual Flujo HCl (m ³ /h)
0,3183	0,0796

7.3 Cinéticas y entalpías de reacción

Para realizar las simulaciones en Aspen Plus v11 y Matlab, es necesario determinar los parámetros cinéticos de la constante de velocidad de las reacciones involucradas en el proceso de producción según la ecuación de Arrhenius (23). Éstos son el parámetro preexponencial (A) y la energía de activación de la reacción (E_a). Además, para resolver el balance de energía de ambos reactores, es necesario la entalpía de la reacción, la cual fue calculada a partir de la ley de Hess.

7.3.1 Reactor Clorador Primario 630-R1

Como se mencionó en las secciones anteriores, en el reactor clorador primario ocurre la oxidación del cloruro ferroso en cloruro férrico utilizando cloro, representada por la reacción (1).

$$FeCl_2 + \frac{1}{2}Cl_2 \rightarrow FeCl_3$$
 (1)

Para determinar los coeficientes de la constante de velocidad presentes en la ecuación de Arrhenius, se buscó en la literatura información acerca de la reacción.

A partir de la información recopilada, la reacción obedece una cinética de primer orden con respecto a ambos reactantes (Crabtree & Schaefer, 1966). De esta forma, la velocidad de reacción es expresada por la ecuación (67)

$$-r_1 = k_1 C_{FeCl_2} C_{Cl_2} \quad (67)$$

Donde la constante de la velocidad de reacción depende de la temperatura según la ecuación ley de Arrhenius y sus parámetros se encuentran en la Tabla 15.

Luego, se calculó la entalpía de la reacción a partir de la ley de Hess utilizando las entalpías de formación de los compuestos involucrados representadas por las reacciones (68) y (69).

$$Fe + \frac{3}{2}Cl_2 \rightarrow FeCl_3 \quad ; \quad \Delta H_f = -127,9 \frac{kcal}{mol} \text{ (Borgogno, 2010)} \tag{68}$$
$$FeCl_2 \rightarrow Fe + Cl_2 \quad ; \quad \Delta H_f = 100 \frac{kcal}{mol} \text{ (Borgogno, 2010)} \tag{69}$$

De esta forma, se obtiene la reacción (1) y su entalpía de reacción correspondiente, la cual se encuentra en la Tabla 14.

Parámetro	Valor
A ₁	$1,3 * 10^7 \left(\frac{m^3}{mol \ s}\right)$
E _{a1}	$44696 \left(\frac{J}{mol \ K}\right)$
$(-\Delta H)_1$	116733,6 $\left(\frac{J}{mol}\right)$

Tabla 14. Valores de parámetros para la constante de velocidad y entalpía de reacción (1).

De lo expuesto en la Tabla 14, se puede apreciar que la oxidación del cloruro ferroso, utilizando cloro para producir cloruro férrico, es una reacción exotérmica. Además, se observa un elevado valor del factor pre exponencial para la ecuación de Arrhenius.

Finalmente, sus valores fueron utilizados para realizar las simulaciones en ambos programas cuyos resultados se exponen en las secciones a continuación.

7.3.2 Reactor Disolvedor de Hierro 630-R2

Según el manual de procedimiento de la planta, en el reactor disolvedor de hierro ocurren cinco reacciones simultáneas, las cuales se exponen por las reacciones (2), (3), (4), (70) y (65).

$$Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O \tag{70}$$

Sin embargo, a partir de la información recopilada, la reacción (70) fue replanteada en la reacción (5) expuesta en la sección 2.2.1.3. Por otra parte, la reacción (65) fue despreciada para las simulaciones, ya que el pH de la solución es controlado por la adición de ácido clorhídrico, desplazando el equilibrio hacia la izquierda. Además, el hidróxido de hierro tiene una actividad sobre un pH de 1, lo cual se ve reflejado en la Figura 10.

Figura 10. Diagrama de actividad para Fe (III) vs pH (Otwinowski, 1994).

En la Figura 10 se puede apreciar que el compuesto indeseado ($Fe(OH)_3$) no precipita cuando el pH de la solución se encuentra bajo la unidad. Por lo tanto, la empresa mantiene el pH de la solución bajo este valor, ya que la presencia del precipitado obstruye rápidamente los filtros del sistema.

En consecuencia, se recopiló información de las reacciones (2), (3), (4), (5) y (6), para encontrar los coeficientes de sus respectivas constantes de velocidad según la ecuación de Arrhenius.

$$2FeCl_3 + Fe \rightarrow 3FeCl_2 \quad (2)$$

$$Fe + 2HCl \rightarrow FeCl_2 + H_2$$
 (3)

$$FeO + 2HCl \to FeCl_2 + H_2O \tag{4}$$

$$Fe_2O_3 + Fe + 6HCl \rightarrow 3FeCl_2 + 3H_2O$$
 (5)

$$Fe_3O_4 + Fe + 8HCl \rightarrow 4FeCl_2 + 4H_2O$$
 (6)

Para comenzar, los parámetros de la constante de velocidad de la reacción (3) se encontraron a partir de un estudio del efecto de la concentración de ácido clorhídrico y temperatura en la velocidad de reacción (Khadom, 2009). Aproximando la reacción a una de primer orden dependiente de la concentración del ácido, lo cual es representado en la ecuación (71).

$$-r_2 = k_2 C_{HCl} \quad (71)$$

La energía de activación y el parámetro preexponencial de la constante de velocidad de la reacción correspondiente se encuentran en la Tabla 16.

Luego, se calculó la entalpía de la reacción a partir de la ley de Hess utilizando las entalpías de formación de los compuestos involucrados representadas por las reacciones (72) y (73).

$$2HCl \rightarrow H_2 + Cl_2$$
; $\Delta H_f = 80 \frac{kcal}{mol}$ (Borgogno, 2010) (72)
 $Fe + Cl_2 \rightarrow FeCl_2$; $\Delta H_f = -100 \frac{kcal}{mol}$ (Borgogno, 2010) (73)

De esta forma, se obtiene la reacción (3) y su entalpía de reacción correspondiente, la cual se encuentra en la Tabla 15.

Parámetro	Valor
A ₂	$59641000 \left(\frac{1}{s}\right)$
E _{a2}	$75538 \left(\frac{J}{mol \ K}\right)$
$(-\Delta H)_2$	83680 $\left(\frac{J}{mol}\right)$

Tabla 15. Valores de parámetros para la constante de velocidad y entalpía de reacción (3).

De lo expuesto en la Tabla 15, se puede apreciar que la reacción del ácido con el hierro es exotérmica. Además, se observa un elevado valor del factor pre exponencial para la ecuación de Arrhenius.

Para continuar, se recolectó información de las reacciones de los óxidos de hierro con ácido clorhídrico. Los parámetros de la constante de velocidad de reacción se determinaron a partir del estudio de la remoción de los óxidos de hierros utilizando ácido clorhídrico para procesos

de decapado. Luego, se realizó un análisis de la composición de la chatarra de hierro, aproximando las tres reacciones en una de primer orden que depende de la concentración de ácido clorhídrico (Jatuphaksamphan, Phinichka, Prapakorn, & Supradist, 2010). Lo anterior se encuentra representado por la ecuación (74)

$$-r_3 = k_3 C_{HCl} \quad (74)$$

La energía de activación y el parámetro preexponencial de la constante de velocidad de la reacción encontrados en el artículo se encuentran en la Tabla 17.

Luego, se calculó la entalpía de la reacción de la hematita (Fe₃O₄) con ácido clorhídrico a partir de la ley de Hess, utilizando las entalpías de formación de los compuestos involucrados representadas por las reacciones (75), (76), (77) y (78). Se utiliza este óxido de hierro para el cálculo, debido al análisis de composición que se realizó en el artículo (Jatuphaksamphan, Phinichka, Prapakorn, & Supradist, 2010).

$$Fe_{3}O_{4} \rightarrow 3Fe + 2O_{2}; \ \Delta H_{f} = 267,9 \frac{kcal}{mol} (Borgogno, 2010) (75)$$

$$8HCl \rightarrow 4H_{2} + 4Cl_{2}; \ \Delta H_{f} = 320 \frac{kcal}{mol} (Borgogno, 2010) (76)$$

$$4Fe + 4Cl_{2} \rightarrow 4FeCl_{2}; \ \Delta H_{f} = -400 \frac{kcal}{mol} (Borgogno, 2010) (77)$$

$$4H_{2} + 4O_{2} \rightarrow 4H_{2}O; \ \Delta H_{f} = -273,28 \frac{kcal}{mol} (Borgogno, 2010) (78)$$

De esta forma, se obtiene la reacción (6) y su entalpía de reacción correspondiente, la cual se encuentra en la Tabla 16.

Tabla 16. Valores de parámetros para la constante de velocidad y entalpía de reacción (6).

Parámetro	Valor
A_3	$163,4\left(\frac{1}{s}\right)$
E _{a3}	$41139,335 \left(\frac{J}{mol \ K}\right)$
$(-\Delta H)_3$	357229.,92 $\left(\frac{J}{mol}\right)$

De la Tabla 16, se puede apreciar que la reacción del ácido con el óxido de hierro es exotérmica. Además, se observa un valor del factor pre exponencial significativamente menor con respecto a las otras reacciones.

A diferencia de las otras reacciones, para la reacción de cloruro férrico con hierro no se encontró información disponible. Por lo tanto, se realizó un experimento de pérdida de peso para determinar el orden de la reacción, su energía de activación y el factor preexponencial.

Para verificar el orden de la reacción, se graficó $-In(-r_{FeCl_3})vs - In(C_{FeCl_3})$, ya que su pendiente corresponde al orden de reacción con respecto al cloruro férrico. La Figura 11 expone los datos obtenidos para el experimento 1, mientras que sus datos se encuentran en el Anexo G.

El experimento presenta las condiciones de reacción más lentas, ya que los reactivos se encuentran menos concentrados (10,3%^m/m de FeCl₃ y 0,23%^m/m de HCl) que los otros experimentos y se encuentra a una menor temperatura (50°C). Por lo tanto, los intervalos de tiempo ocupados afectan menos la calidad de la medición y el orden de reacción entregado por la Figura 11 es más representativo de los experimentos.

Figura 11. Gráfico de -In(-r) con respecto a -In[©] para el experimento 1.

Las reacciones heterogéneas que consisten en la disolución de un sólido en un líquido generalmente son de primer orden respecto a la sustancia que disuelve y de orden cero respecto al sólido (Fogler, 2008). De la Figura 11 se puede apreciar que la pendiente del gráfico es 1,0319 y corresponde al orden de la reacción. Por lo tanto, la reacción del cloruro férrico con hierro para producir cloruro ferroso es de primer orden con respecto a la concentración del cloruro férrico. Lo anterior se ve reflejado por la ecuación (79).

$$-r_4 = k_4 C_{FeCl_3} \quad (79)$$

Luego, para determinar las constantes de la ley de Arrhenius, se utilizaron las constantes de velocidad de la reacción de primer orden a dos temperaturas (50 y 85°C), bajo las mismas concentraciones de reactivos. Esto corresponde a los experimentos 1/3, 2/4, 5/7, 6/8, 9/11 y 10/12.

Las constantes de velocidad de reacción fueron determinadas a partir de un ajuste lineal del gráfico $In(C_{FeCl_3})$ vs t, cuya pendiente es el valor de esta constante. Lo anterior se encuentra representado por la ecuación (81), que se obtiene a partir de la ecuación (80)

$$-r_{FeCl_{3}} = kC_{FeCl_{3}} \quad (80)$$
$$-\frac{dC_{FeCl_{3}}}{dt} = kC_{FeCl_{3}}$$
$$In(C_{FeCl_{3}}) = In(C_{FeCl_{3}0}) - kt \quad (81)$$

La Figura 12 representa el gráfico del experimento 1 para la determinación de su constante de velocidad

De la Figura 12, se puede apreciar que la constante de velocidad para las condiciones del experimento 1 fue de 0,0079 min⁻¹. De esta forma, se ajustaron de igual manera los datos de los experimentos restantes, cuyas gráficas se encuentran en el Anexo H.

Para continuar, se obtienen las constantes de Arrhenius para la reacción en cuestión a partir del gráfico $-In(k)vs\left(\frac{1}{T}\right)$ y realizando el procedimiento que se explicó en la sección 7.2.3.

La Figura 13 expone los datos del experimento 1. Luego, se realizó el mismo procedimiento para los experimentos restantes, cuyos resultados se encuentran en el Anexo I.

Figura 13. Curva para la obtención de las constantes de la ecuación de Arrhenius de los experimentos 1 y 3.

Por lo tanto, para efectos del modelo desarrollado, se escogieron los valores de la Tabla 18. Finalmente, se calculó la entalpía de la reacción a partir de la ley de Hess utilizando las entalpías de formación de los compuestos involucrados representadas por las reacciones (82) y (83).

$$2FeCl_3 \rightarrow 2Fe + 3Cl_2; \ \Delta H_f = 255, 8 \frac{kcal}{mol} \text{ (Borgogno, 2010)} \tag{82}$$
$$3Fe + 3Cl_2 \rightarrow 3FeCl_2; \ \Delta H_f = -300 \frac{kcal}{mol} \text{ (Borgogno, 2010)} \tag{83}$$

De esta forma, se obtiene la reacción (2) y su entalpía de reacción correspondiente, la cual se encuentra en la Tabla 17.

Parámetro	Valor
A4	$0,0442\left(\frac{1}{s}\right)$
E _{a4}	7018,77 $\left(\frac{J}{mol \ K}\right)$

Tabla 17. Valores de parámetros para la constante de velocidad y entalpía de reacción (2).

$(-\Delta H)_4$	184932,8 $\left(\frac{J}{mol}\right)$

De lo expuesto en la Tabla 18, se puede apreciar que la reacción del cloruro férrico con el hierro es exotérmica. Además, se observa un valor del factor pre exponencial muy bajo en comparación al de las otras reacciones.

Los valores expuestos en las Tablas 15, 16 y 17 fueron utilizados para realizar las simulaciones en ambos programas cuyos resultados se exponen en las secciones a continuación.

7.4 Concentraciones iniciales

Para estimar las concentraciones iniciales del proceso, se utilizó una planilla del año 2017 facilitada por la empresa la cual contiene la densidad de la solución, su contenido de cloruro ferroso y férrico, la cual se encuentra en el Anexo J. Luego, se realizó un promedio del contenido de cloruro férrico y ferroso de los estanques de almacenamiento 630-S1/S2 al terminar el llenado del estanque, ya que en los últimos años el proceso de producción comienza con el 10% de la solución restante del batch anterior. Sus valores se encuentran en la Tabla 18.

Tabla 18. Promedio de densidad, contenido de cloruro férrico y ferroso de los estanques dealmacenamiento durante noviembre y diciembre del año 2017

Densidad gr/cm3	%m/m FeCl2	%m/m FeCl3	
1,412	10,106	5,473	

Las concentraciones de la Tabla 18 se utilizan para las simulaciones en ambos programas como condiciones de entrada de ambos compuestos al reactor clorador primario 630-R1.

Luego, con el propósito de actualizar y obtener una visión de la concentración de ambos compuestos durante el proceso de producción, se solicitó a los operadores de la planta realizar un análisis de los mismos datos mencionados por dos semanas, los cuales se encuentran en el Anexo K.

A partir de lo anterior, se obtuvo un promedio de las dos semanas, cuyos resultados representan el promedio de la concentración de cloruro ferroso y férrico en el estanque durante todo el proceso. Sus resultados se exponen en la Tabla 19.

Tabla 19. Promedio de densidad, concentración de cloruro ferroso y férrico durante dos semanas del mes de enero del 2023

Densidad gr/cm3	%m/m FeCl2	%m/m FeCl3	
1,39	9,52	5,48	

Comparando ambas tablas, se puede apreciar que el promedio de concentración de todo el proceso es similar a las concentraciones en que se encuentran los compuestos al finalizar el llenado del estanque (final del primer sistema de producción). Para el cloruro férrico hubo una diferencia de 0,586% en masa, mientras que para el cloruro férrico fue de 0,007%. Por lo tanto, los resultados demuestran que el proceso de producción tiende a mantener las concentraciones iniciales durante el llenado de los estanques de almacenamiento.

7.5 Simulación en Aspen Plus v11

Luego de estudiar el proceso de producción de cloruro férrico, se determinó que el primer sistema de producción es el cual limita la producción del producto, específicamente el reactor disolvedor de hierro 630-R2, ya que la reacción principal del reactor es la más lenta del sistema. Por lo tanto, se simulará en el programa el proceso realizado de este sistema, el cual se encuentra representado por la Figura 6 en la sección 7.1.

Después de crear la simulación en blanco (Blanck Simulation), se insertaron los compuestos presentes en el primer sistema de producción de cloruro férrico, los cuales se exponen en la Tabla 20.

Component ID	Туре	Component name	Alias
FeCl ₃	Conventional	FERRIC-CHLORIDE	FECL3
FeCl ₂	Conventional	FERROUS-CHLORIDE	FECL2
Cl ₂	Conventional	CHLORINE	CL2
H ₂	Conventional	HYDROGEN	H2
Fe	Conventional	IRON	FE
HCl	Conventional	HYDROGEN-CHLORIDE	HCL
H ₂ O	Conventional	WATER	H2O

Tabla 20. Compuestos presentes en el primer sistema de producción de FeCl₃

De la Tabla 20 se aprecia que no se encuentran los óxidos de hierro, ya que la empresa decidió no realizar un análisis de composición a la chatarra de hierro. Por lo tanto, sus reacciones no serán consideradas en las simulaciones del reactor disolvedor de hierro 630-R2 en esta sección. Al no considerarlas, la simulación desprecia la producción de cloruro ferroso a partir de las reacciones (4), (5) y (6), lo cual provoca que habrá una menor reconcentración de cloruro ferroso en la simulación que en el proceso real.

Luego, se seleccionó el método para la simulación a partir de la herramienta "Method Assistant", el cual realiza una serie de preguntas sobre los compuestos involucrados en el proceso o del proceso propiamente tal. Su procedimiento se explica en el Anexo Q.

Finalmente, el asistente sugirió los siguientes métodos:

- ELECNRTL: Modelo NRTL de electrolito con ecuación de estado Redlich-Kwong. Este método de propiedad es apropiado para aplicaciones acuosas y de disolventes mixtos.
- 2. ENRTL-RK: Es una mejora de ELECNRTL.
- 3. ENRTL-SR: Similar a ENRTL-RK, pero utiliza el estado de referencia simétrico.
- 4. PITZER: Modelo para sistemas de electrolitos acuosos.

Luego, antes de seleccionar uno de los métodos sugeridos por el programa, se recopiló información de simulaciones realizadas en Aspen Plus v11 que contengan similitudes con el proceso actual de la empresa. Un estudio del ciclo termoquímico de la separación de agua para la producción de hidrógeno (Safari & Ibrahim, 2020) presenta compuestos y reacciones similares al proceso de producción de cloruro férrico. Además, los sistemas H₂O-HCl y H₂O-HCl-FeCl₂ están disponibles en el método ELECNRTL y es el más versátil, ya que puede manejar concentraciones muy bajas y altas en sistemas de solventes acuosos y mixtos. Por lo tanto, se escogió este método (Safari & Ibrahim, 2020).

Por otro lado, igual se utilizó el método ENRTL-RK en modo de comparación y no hubo cambios significativos en los resultados del programa. En consecuencia, a partir de la información recopilada, se mantuvo el método original para la simulación.

Una vez seleccionado el método, se debe ingresar a la ventana de la simulación y seleccionar los equipos involucrados en el sistema, especificando sus condiciones de operación.

Para comenzar, es necesario mencionar que el programa no incluye sistemas donde existe acumulación, como por ejemplo, estanques de almacenamiento. Por ello, para simular este fenómeno, se sustituye el equipo por mezcladores y separadores.

Después, se selecciona el reactor "RPlug" para representar el reactor clorador primario. Este tipo de reactor se utiliza para reactores de flujo pistón que se rigen por las cinéticas presentes en éste, representando la velocidad de reacción con una ley de potencia, lo cual fue expuesto en las secciones anteriores. Según el manual de operaciones, el flujo de salida del reactor es de 80°C, por lo que se considera que el reactor opera a esta temperatura constantemente. Además, se insertaron las dimensiones del reactor (diámetro y largo), especificadas en la sección 8.1.2, y se indicó que el flujo de alimentación consiste en una mezcla líquido-vapor.

Seguido de esto, se especificó su presión de operación utilizando el indicador PI_1927 y su caída de presión especificada en el manual de operaciones de la planta.

Luego, se insertó la reacción que se lleva a cabo en el reactor con sus parámetros de velocidad de reacción representada como ley de potencia y su constante según la ley de Arrhenius. Sus parámetros fueron especificados en la sección 8.3.1. La Figura 14 resume los pasos que se realizaron para la simulación del reactor clorador primario.

			_			
Specifications 0	Configuration	Streams	ØR	Reactions	Pressure	
Reactor type Reactor w	ith specified to	emperature				
neocior type neuclor n	in specifica i	compensation of				
Operating condition						
Constant at inlet ten	nperature					
Constant at specifie	d reactor tempe	erature		80 C •	•	
Temperature profile						
Location	Temperature					
	C ~					
		2				
		1				
Specifications	Configuration	Streams	C	Reactions	Pressure	Holdup
			1.00			1
Multitube reactor	Number of	f tubes				
Diameter varies alo	ng the length o	f the reactor				
Reactor dimensions						
Length	1,55	meter				
Diameter	0.2032	meter				
	-,					
Elevation						
Reactor rise	0	meter				
O Reactor angle	0	deg -				
Valid phases						
Process stream	Vapor-Liquid			•		
Thereas I fluid stream	Manor-Liquid			-		

Figura 14. Representación del procedimiento para la simulación del reactor 630-R1

Cabe mencionar, que la reacción "R-1" expuesta en la Figura 14 corresponde a la reacción de cloruro ferroso con cloro para la producción de cloruro férrico.

A continuación, se seleccionó el reactor "RBatch" para representar el reactor disolvedor de hierro 630-R2. Este tipo de reactor se utiliza para modelos rigurosos de reactores batch o semibatch controlado por las velocidades de reacción presentes en él, aproximándola por la ley de potencia, expuesto en las secciones anteriores. La temperatura y presión de operación del reactor se suponen constantes. La temperatura se determinó a partir del promedio anual del 2022 del indicador de temperatura TI_1933 (88,58°C), y la presión se calcula a partir de la caída de presión del primer reactor. Además, se especifica que el fluido de trabajo corresponde a una mezcla líquido-vapor.

Luego, al ser un reactor semi-batch, se especificó el criterio de detención del equipo, donde se consideró un tiempo de 24 horas el cual se hizo coincidir con el tiempo de operación para analizar el comportamiento del reactor en un día.

Finalmente, se especificaron las reacciones que se llevan a cabo en el reactor con los parámetros solicitados por el programa. Estos fueron especificados en la sección 8.3.2.

La Figura 15 resume los pasos que se realizaron para la simulación del reactor disolvedor de hierro.

Figura 15. Representación del procedimiento para la simulación del reactor 630-R2

Cabe mencionar, que la reacción "R-2" expuesta en la Figura 15 corresponde a las reacciones (2) y (3) presentadas en la sección 2.2.1.3.

Para continuar con la simulación y especificación de los equipos, se seleccionó un separador "Flash2" para representar el decantador 630-D1, cuyas condiciones de operación (Presión y T°) coinciden con las del reactor 630-R2.

Luego, se eligió un intercambiador de calor normal para representar los intercambiadores 630-E1/E3, los cuales son responsables de enfriar la solución a la temperatura especificada por el indicador TI_1939 y TI_1976. Su valor fue calculado a partir de un promedio del año 2022 (50°C).

Una vez especificados todos los equipos, se conectaron los flujos de entrada y de salida de éstos junto a sus especificaciones, las cuales se encuentran en la sección 8.2. y 8.4.

Finalmente, se obtiene un diagrama de flujo representado por la Figura 16. Éste representa un ciclo del proceso. Es decir, una vuelta desde la salida del estanque de almacenamiento hasta la vuelta del fluido al equipo.

Figura 16. Diagrama de flujo de la simulación del proceso de producción de cloruro férrico en Aspen Plus v11

De la Figura 16 se puede apreciar que existen dos reactores cloradores primarios (630-R1/A y 630-R1/B), ya que el segundo (630-R1/B) se utiliza para asegurar la reacción total del cloro, así no hay remanentes del compuesto en el resto del sistema.

7.5.1 Proceso Actual

Para la simulación del proceso actual de la planta, se utilizaron los parámetros calculados en las secciones 8.1, 8.2, 8.3 y 8.4. Las especificaciones necesarias de las corrientes de alimentación del primer sistema de producción se encuentran especificadas en la Tabla 21.

TAG	Descripción	Flujo	Presión	Temperatura
		(kg/h)	(bar)	(°C)
S 1	Flujo proveniente de los estanques de almacenamiento	33498,3	1,53	50
CL2	Flujo de cloro alimentado al reactor 630-R1	771,184	6,9	-19
FE	Flujo de chatarra de hierro cargada al reactor 630-R2	500	1	20
HCL	Flujo de ácido alimentado al sistema antes del decantador 630-D1	0,3939	1	25
AGUA	Flujo de agua alimentado al estanque de almacenamiento	1996,66	1	20

Tabla 21. Especificaciones de las corrientes de alimentación al primer sistema de producción

De la Tabla 21, se puede apreciar que se trabajó con flujos másicos, aun cuando los indicadores que se utilizan en la empresa son de flujo volumétrico. Esto se realizó para facilitar el trabajo del flujo de cloro, el cual se calculó a partir de un balance másico. Además, la densidad de la solución en la simulación se encuentra alejada a la estudiada en la sección 8.4.

Como se mencionó en las secciones anteriores, el programa no simula sistemas con acumulación. Por lo tanto, se optó por reemplazar este fenómeno con mezcladores y separadores en la configuración especificada en la Figura 17, la cual corresponde a dos ciclos del primer sistema de producción.

Figura 17. Diagrama de flujo de dos ciclos del primer sistema de producción de cloruro férrico.

Los mezcladores (MIX-13 y MIX-23) y los separadores (SPLIT-1 y SPLIT-2), corresponden a la simulación de la acumulación del sistema, donde la solución proveniente del intercambiador de calor (630-E1) se mezcla con el flujo de agua industrial en los estanques de almacenamiento (AGUA-1). Luego, se separa el flujo que es impulsado hacia el reactor 630-R1 (S10) con el flujo que se queda acumulado en el estanque (TANK-1). El flujo que se reincorpora al sistema de producción pasa por los equipos del sistema y es mezclado con el agua de alimentación al estanque (AGUA-2) y a la vez con la solución que se encontraba acumulada del ciclo anterior (TANK-1). La mezcla resultante es separada nuevamente en dos y con los mismos criterios del separador anterior.

El proceso representado por la Figura 17, se repitió hasta lograr una masa final equivalente a la masa producida en un estanque de almacenamiento. El cálculo es representado por la ecuación (84)

Masa Total de ambos estanques =
$$\frac{\rho \pi D^2(0.95 * h)}{4}$$
 (84)

Masa Total de ambos estanques = 87683,954 kg

Luego, se realizó una comparación del contenido de cloruro ferroso y férrico en las corrientes que se encuentran posterior al agregado de agua de cada sistema. Estas corrientes corresponden al contenido de los compuestos en los estanques de almacenamiento al finalizar su ciclo respectivo. Sus valores se encuentran representados en la Figura 18.

Figura 18. Contenido de cloruro ferroso y férrico del estanque de almacenamiento por cada ciclo de producción.

De la Figura 18, se puede apreciar que la concentración de ambos compuestos se mantiene relativamente constante a lo largo del sistema de producción, lo cual coincide con lo expuesto en la sección 8.4. Esto ocurre, ya que el proceso de producción inicia con el 10% de la solución resultante del batch anterior, por lo que la intención del proceso es mantener las concentraciones lo más estables posible mientras se aumenta el nivel del estanque utilizando agua industrial. De esta forma, se logran los requerimientos para pasar al segundo sistema.

A continuación, en la Tabla 22 se exponen los resultados de la corriente resultante al finalizar ocho ciclos del primer sistema de producción.

	Units	S79
Description		
From		MIX-83
То		SPLIT-8
Temperature	°C	45,0602024
Pressure	bar	1
Mole Flows	kmol/hr	3981,82916
Mass Flows	kg/hr	85236,6986
Mass Fractions		
FeCl ₃		0,0674505
FeCl ₂		0,11476457
Cl ₂		0
HCl		9,27E-06
H ₂ O		0,81777564
H ₂		7,51E-09
Fe		0

Tabla 22. Especificaciones de la solución resultante luego de 8 vueltas al sistema de producción

De la Tabla 22, se puede apreciar que la densidad de la solución (1068,4 kg/m³) no coincide con la obtenida en la sección 8.4 (1412 kg/m³). Por lo tanto, para los flujos impulsados por la bomba se calculó el flujo másico correspondiente a lo indicado por el medidor a partir de

la densidad real. Así, se trabajaron todos los flujos involucrados de la misma forma para obtener resultados más significativos. Además, se puede apreciar que el flujo total se acercó bastante al contenido en un estanque de almacenamiento, obteniendo un error porcentual del 2,76%.

Sin embargo, a pesar de los buenos resultados de la simulación anterior, por razones prácticas se decidió analizar el comportamiento del sistema ante variaciones en los parámetros mencionados en la sección 7.5 (reubicación y variación del flujo de ácido alimentado, temperatura de operación de los reactores y temperatura de entrada del fluido) a partir de la simulación de un solo ciclo en el sistema de producción (Figura 16). Luego, la Tabla 23 expone las características de la solución obtenida al inicio (S1) y al finalizar un ciclo del sistema de producción actual (S9).

	Units	S 1	S 9	TANK	S10
Description					
From			MIX-3	SPLIT-1	SPLIT-1
То		MIX-1	SPLIT-1		
Stream Class		CONVEN	CONVEN	CONVEN	CONVEN
			Liquid	Liquid	Liquid
Phase		Liquid Phase	Phase	Phase	Phase
Temperature	C	50	48,0046974	48,0046974	48,0046974
Pressure	bar	1,53	1	1	1
Mole Flows	kmol/hr	1606,714	1725,653	152,974	1572,679
Mass Flows	kg/hr	33498,3	36756,666	3258,3661	33498,3
Mass Fractions					
FeCl ₃		0,05473	0,06883809	0,06883809	0,06883809
FeCl ₂		0,10106	0,10815935	0,10815935	0,10815935
Cl ₂		0	0	0	0
H ₂		0	4,81E-10	4,81E-10	4,81E-10
Fe		0	0	0	0

Tabla 23. Especificaciones de la solución resultante al finalizar un ciclo de producción

HCl	0,00112	0,00047226	0,00047226	0,00047226
H ₂ O	0,84309	0,82253029	0,82253029	0,82253029

De la Tabla 23, se puede apreciar que al finalizar un ciclo de producción se acumulan 3258,4 kg/h en el estanque de almacenamiento, donde el contenido de cloruro ferroso y férrico aumentaron 0,71% y 1,4108% respectivamente. Este fenómeno ocurre, ya que la reacción del reactor clorador primario posee valores altos para la constante de velocidad gracias a su elevado factor preexponencial. Por otra parte, la reacción predominante en el reactor disolvedor de hierro es la del cloruro férrico con el hierro para la producción de cloruro ferroso, cuyo factor preexponencial para la constante de la velocidad de la reacción es de un orden mucho menor.

En las secciones que siguen, se analizará el comportamiento de los flujos de entrada y salida de los equipos involucrados a partir de las variaciones propuestas en la sección 7.5.

7.5.2 Efecto de la variación del flujo de ácido clorhídrico y su punto de alimentación En la Figura 16 se observa el diagrama de flujo de la simulación de un ciclo del proceso actual, donde las corrientes a comparar en esta sección corresponden a la entrada y salida del reactor disolvedor de hierro (S4 y S5).

El nuevo punto de alimentación de ácido clorhídrico será previo al reactor en cuestión. Luego, se mantendrá el flujo inicial de ácido expuesto en las secciones anteriores (0,0769 m³/h) para ver el efecto de la reubicación de la alimentación. Después, se aumentó el flujo de ácido gradualmente para observar el efecto que tiene en la producción del reactor. De esta forma, se buscará controlar el pH de la solución y aumentar la producción de cloruro ferroso e hidrógeno. Su diagrama de flujo se encuentra representado en la Figura 19.

Figura 19. Diagrama de flujo del sistema de producción con reubicación de flujo de HCl.

Cabe mencionar, que en esta sección sólo se cambia el flujo de ácido y su punto de alimentación. Por lo tanto, las especificaciones de los equipos y corrientes mantienen los valores expuestos anteriormente. De esta forma, las corrientes para realizar el análisis son la S5 y S6 de la Figura 19. Además, se evaluó su efecto con la solución resultante después del ciclo (S9). A continuación, en la Tabla 24 se observan los resultados obtenidos al variar su punto de alimentación y al aumentar el flujo de ácido.

				Flujo de Sali	ida 630-R2				
Descripción	Units	S5	S 6	S 6	S 6	S 6	S 6	S 6	S6
Flujo de Ácido	m ³ /h	0,0769	0,0769	0,5769	0,6769	0,7769	0,8769	0,9769	1,0769
From		630-R2	630-R2	630-R2	630-R2	630-R2	630-R2	630-R2	630-R2
То		MIX-2	630-D1	630-D1	630-D1	630-D1	630-D1	630-D1	630-D1
Temperature	°C	88,580	88,580	88,580	88,580	88,580	88,580	88,580	88,580
Pressure	bar	1,254	1,254	1,254	1,254	1,254	1,254	1,254	1,254
Mole Flows	kmol/hr	1615,610	1615,627	1615,741	1615,763	1615,786	1615,809	1615,831	1615,854
Mass Flows	kg/hr	34770,082	34770,471	34773,044	34773,540	34774,060	34774,570	34775,080	34775,590
FeCl ₃	kg/hr	2530,250	2530,566	2532,353	2532,796	2533,167	2533,533	2533,910	2534,283
FeCl ₂	kg/hr	3975,600	3975,342	3973,973	3973,597	3973,317	3973,026	3972,727	3972,436
Cl ₂	kg/hr	0	0	0	0	0	0	0	0
H ₂	kg/hr	0,5465	0,5483	0,5599	0,5622	0,5646	0,5668	0,5691	0,5714
Fe	kg/hr	0	0	0	0	0	0	0	0
HC1	kg/hr	17,748	17,809	18,211	18,293	18,368	18,452	18,534	18,614
H ₂ O	kg/hr	28245,938	28246,206	28247,947	28248,300	28248,640	28248,990	28249,340	28249,690
Mole concentration									
FeCl ₃	mol/l	0,33159395	0,3313	0,3294	0,3291	0,3287	0,3283	0,3279	0,3276
FeCl ₂	mol/l	0,66673647	0,6660	0,6615	0,6606	0,6597	0,6588	0,6580	0,6571
Cl ₂	mol/l	0	0	0	0	0	0	0	0
H ₂	mol/l	0,00576	0,00578	0,00586	0,00588	0,00589	0,00591	0,00593	0,00594
Fe	mol/l	0	0	0	0	0	0	0	0
HCl	mol/l	0,01034732	0,0104	0,0105	0,0106	0,0106	0,0106	0,0107	0,0107
H ₂ O	mol/l	33,3290302	33,2962	33,0850	33,0434	32,9992	32,9594	32,9181	32,8764

Tabla 24. Flujos de salida con respecto a la variación de flujo de HCl.

De la Tabla 24, se puede observar que, al reubicar y aumentar el flujo de alimentación de ácido, disminuye la producción de cloruro ferroso del reactor. Por otra parte, aumenta la

producción de hidrógeno. Lo anterior ocurre, ya que al añadir más acido al reactor, la reacción de este con el hierro predomina sobre la reacción del cloruro férrico con el sólido debido al orden de magnitud de sus factores preexponenciales correspondientes, lo cual se ve reflejado en la Figura 20. Además, como se expone en la reacción (3), a partir de 2 moles de ácido se produce sólo 1 mol de cloruro ferroso, por lo que, para poder realizar un cambio significativo, es necesario una gran cantidad de ácido, lo que causaría que el producto se salga de las especificaciones planteadas en la sección 4.1.

Figura 20. Efecto del flujo de ácido alimentado en el flujo de cloruro férrico

De la Figura 20 se aprecia que, al aumentar el flujo de ácido alimentado, aumenta el flujo de salida de cloruro férrico. Este fenómeno respalda lo planteado anteriormente, donde el aumento de flujo de ácido provoca una disminución en la reacción de cloruro férrico con el hierro. Por lo tanto, el flujo obtenido de cloruro ferroso disminuye.

Sin embargo, como se mencionó anteriormente, al aumentar el flujo de ácido se obtiene un mayor flujo de hidrógeno sin alterar significativamente en las especificaciones de la solución resultante al cabo de un ciclo. La Figura 21 expone las fracciones másicas de cloruro ferroso y férrico al aumentar el flujo de ácido alimentado al sistema.

Figura 21. Efecto del flujo de ácido alimentado en la solución resultante al finalizar un ciclo de producción.

De esta forma, es posible aumentar la producción de hidrógeno sin afectar significativamente la producción final. Sin embargo, de la Tabla 25 se puede apreciar que la adición de ácido no incide significativamente en ninguno de los flujos másicos, ya que su variación es muy pequeña.

7.6 Simulación en Matlab

Como se mencionó en las secciones anteriores, para obtener los perfiles de concentración y temperatura de los reactores del primer sistema de producción, se resolvieron los balances de materia y energía expuestos en la sección 7.1. Estos se encuentran descritos por las ecuaciones (35) y (41), para el reactor clorador primario, y las ecuaciones (44) y (52), para el reactor disolvedor de hierro.

Es importante señalar que, la mayoría de los coeficientes fueron calculados en las secciones anteriores. Por otra parte, las restantes fueron obtenidas a partir de la simulación realizada en Aspen Plus v11, las cuales se encuentran representadas en la Tabla 25 para el reactor 630-R1.

Tabla 25. Parámetros restantes para la resolución de los balances de materia y energía del reactor 630-R1.

Parámetro	Valor
ρ	1046,61 (kg/m ³)
u _s	0,2805 (m/s)

C_p	3473,89 (J/kg*K)
-	

A partir de los datos obtenidos en la Tabla 26, se resolvieron los balances del reactor clorador primario, los cuales consisten en ecuaciones diferenciales ordinarias. Por lo tanto, se utilizó la función "ode15s" para obtener los resultados. Su código se encuentra en el Anexo L y sus resultados se expondrán en las secciones a continuación.

Luego, los parámetros necesarios para resolver los balances de materia y energía del reactor disolvedor de hierro se exponen en la Tabla 26.

Tabla 26. Parámetros restantes para la resolución de los balances de materia y energía del reactor 630-R2.

Parámetro	Valor
ρ	1054,66 (kg/m ³)
u _s	0,495 (m/s)
C_p	3274,05 (J/kg*K)

La resolución de estos balances fue más compleja, ya que consisten en ecuaciones diferenciales parciales. Por lo tanto, se aplicó el método de diferencias finitas para discretizar el dominio de la función (eje z) utilizando el paso hacia atrás, el cual se presentó en la sección 6.5. Luego, se resolvieron los balances de materia y energía utilizando la función "ode15s", ya que se convirtió la ecuación diferencial parcial en una ordinaria. Su código se encuentra en el Anexo M y sus resultados se expondrán en las secciones a continuación.

7.6.1 Proceso Actual

7.6.1.1 Reactor 630-R1

Para la resolución de los balances de materia y energía son necesarias sus condiciones de contorno. Estas se obtuvieron a partir de las simulaciones realizadas en Aspen utilizando la información recopilada en la sección 8.4 y se encuentran representadas en la Tabla 27.

Variable	Valor en (z=0)
C_{FeCl_3}	345,1913327 (mol/m ³)
C_{FeCl_2}	815,6841853 (mol/m ³)

C_{Cl_2}	330,5049374 (mol/m ³)
C_{H_2}	0
C_{Fe}	0
C _{HCl}	31,42625822 (mol/m ³)
C_{H_2O}	47884,1 (mol/m ³)
T ₀	54 (°C)

Luego, se obtuvieron los resultados de las ecuaciones ordinarias, los cuales corresponden a los perfiles de concentración y temperatura. Su representación se expone en la Figura 22.

Figura 22. Resultados de los balances de energía y materia del reactor 630-R1

De la Figura 22, se puede apreciar que el reactivo limitante de la reacción corresponde al cloro, cuya concentración de salida es nula. Estos resultados concuerdan con la realidad, ya que la empresa intenta que no haya remanentes de cloro en el resto del proceso por razones de seguridad de operación.

Además, se aprecia que la reacción ocurre en los primeros centímetros del reactor. Esto ocurre por el elevado valor del factor preexponencial de la constante de velocidad de reacción. Por lo tanto, se puede inferir que es prácticamente imposible, que existan

remanentes de cloro en el proceso, a excepción de una falla del equipo o si se alimenta un exceso de cloro, lo cual es poco probable.

Finalmente, se puede apreciar que hay un aumento significativo de la temperatura, cuyo valor final es de 75,22°C. Este es un valor cercano al mencionado en el manual de operaciones (80°C), por lo que la simulación es una buena aproximación a la realidad. Además, recordemos que la temperatura del proceso es controlada por la adición de cloro, por lo que este flujo varía según los requerimientos del reactor disolvedor de hierro.

6.6.1.2 Reactor 630-R2

Para la resolución de los balances de materia y energía son necesarias sus condiciones de contorno. Las concentraciones iniciales del reactor se obtuvieron a partir de los resultados de las simulaciones realizadas en Aspen. Sus valores se encuentran en la Tabla 28.

Parámetro	Condición de Contorno	Condición de Contorno
	(z=0; t=0)	(z=L)
C _{FeCl3}	1014,44 (mol/m ³)	$\frac{dC_{FeCl_3}}{dz} = \frac{dC_{FeCl_3}}{dt} = 0$
C_{FeCl_2}	155,35 (mol/m ³)	$\frac{dC_{FeCl_2}}{dz} = \frac{dC_{FeCl_2}}{dt} = 0$
<i>C</i> _{<i>H</i>₂}	0	$\frac{dC_{H_2}}{dz} = \frac{dC_{H_2}}{dt} = 0$
C _{HCl}	31,67 (mol/m ³)	$\frac{dC_{HCl}}{dz} = \frac{dC_{HCl}}{dt} = 0$
C _{H2} 0	48251,64 (mol/m ³)	$\frac{dC_{H_2O}}{dz} = \frac{dC_{H_2O}}{dt} = 0$
T ₀	80 (°C)	$\frac{dT}{dz} = \frac{dT}{dt} = 0$

Fabla 28. Condiciones de contorno del reactor 630-l	fabla 2	28. C	Condiciones	de	contorno	del	reactor	630	-R2
---	---------	-------	-------------	----	----------	-----	---------	-----	-----

De la Tabla 28 se puede apreciar que se utiliza la temperatura especificada en el manual de operaciones y no la obtenida en la simulación anterior, ya que el objetivo es representar el proceso según la información entregada por la empresa.
Luego, a partir del programa se obtuvieron las soluciones de los balances de materia y energía del reactor. La Figura 23 representa el perfil con respecto al tiempo de las concentraciones y la Figura 24 el de temperatura, ambos al final del reactor.

Figura 23. Perfil de concentraciones con respecto al tiempo al final del reactor

De la Figura 23 se observa un comportamiento lineal con respecto al tiempo, donde la pendiente del gráfico disminuye con respecto a la inicial. Esto ocurre, ya que la reacción de los óxidos con la solución es más rápida que la reacción de esta con el hierro. Este fenómeno también ocurrió en las investigaciones realizadas para la determinación de parámetros cinéticos de la sección 8.3, lo cual respalda lo observado en los gráficos (Jatuphaksamphan, Phinichka, Prapakorn, & Supradist, 2010) (Sidhu & Gilkes, 1981). Este comportamiento se repite a lo largo de todo el reactor.

Figura 24. Perfil de temperatura con respecto al tiempo al final del reactor

Luego, de la Figura 24 se puede apreciar que el comportamiento de la temperatura con respecto al tiempo es idéntico al de las concentraciones. Donde, existe una disminución de la pendiente provocada por la diferencia de velocidad de la solución con los óxidos de hierro y con el hierro estructural. Además, se observa un incremento de solo 0,9°C, lo cual respalda las acciones de la empresa al controlar la temperatura del reactor a partir del flujo alimentado al reactor clorador primario y las suposiciones realizadas para la simulación de Aspen. Sin embargo, esta temperatura (81°C) no coincide con el promedio del año 2022 (88,58°C). Esto ocurre, ya que el flujo de cloro no es constante y varía de acuerdo con los requerimientos de la planta.

7.6.2 Efecto de la variación de temperatura del reactor 630-R2

La temperatura de operación del reactor 630-R2 se controla a partir del flujo de cloro alimentado al reactor clorador primario. Según el manual de operaciones, esta varía normalmente entre los 85 y 97°C (OXY, Manual Cloruro Férrico, 2020), ya que sobre este intervalo, la solución comienza a ebullir provocando una operación insegura del reactor. Por lo tanto, en la sección se analizará el comportamiento del flujo de salida con respecto a este rango de temperatura.

Cabe mencionar, que el único cambio de operación con respecto a la actualidad es la temperatura de operación del reactor 630-R2. Por lo tanto, se analizaron las concentraciones obtenidas a la salida del reactor a partir de la simulación, las cuales se encuentran representadas por la Tabla 29.

Temperatura	Concentración de	Concentración de	Concentración de	Concentración de	Selectividad
(°C)	FeCl ₂ (mol/m ³)	FeCl ₃ (mol/m ³)	H ₂ (mol/m ³)	HCl (mol/m ³)	Total FeCl ₂ /H ₂
80	179,835	999,005	1,179	29,006	152,532
85	181,109	998,484	1,185	28,020	152,835
88,58	182,111	998,109	2,254	27,140	80,795
90	182,531	997,961	2,45	26,746	74,502
95	184,125	997,435	3,253	25,137	56,602
97	184,814	997,223	3,626	24,391	50,969

Tabla 29. Influencia de la temperatura de operación del reactor 630-R2 en los flujos molares y su selectividad

De la Tabla 29, se puede apreciar que, a mayor temperatura, mayor concentración de los productos de las reacciones que ocurren en el reactor. Por otra parte, para los reactantes el comportamiento es el contrario, ya que, a mayor temperatura, hay un mayor consumo de reactantes. En consecuencia, hay mayor producción cuando se aumenta la temperatura. Además, se observa que la selectividad de FeCl₂ con respecto al H₂ disminuye al aumentar la temperatura de operación del reactor. Esto ocurre, ya que la velocidad de generación de hidrógeno es mayor a la del cloruro férrico.

Lo mencionado anteriormente, concuerda con la información recopilada en la sección 8.3 (Almeida & Schneider, 2020). Además, este efecto también fue visto en el laboratorio realizado para la determinación de los parámetros cinéticos de la reacción (2) y se encuentra reflejado en la Figura 25.

Figura 25. Efecto de la temperatura sobre la velocidad de reacción del cloruro férrico con hierro

Por lo tanto, de la Figura 25, se puede inferir que el reactor disolvedor de hierro debe operar a la mayor temperatura posible. Sin embargo, recordemos que la temperatura de este reactor es controlada a partir del flujo de cloro alimentado al reactor clorador primario. Entonces, en las secciones a continuación se buscará el mayor flujo de cloro que permite el sistema.

8.6.3 Efecto de la variación de la temperatura del flujo de entrada del reactor clorador primario 630-R1

Como se mostró en la sección 8.1.1, el flujo es turbulento al ingreso de los estanques de almacenamiento, por lo que se considera que el fluido contenido en el estanque se encuentra perfectamente mezclado. Por lo tanto, la temperatura del fluido a la entrada del reactor se encuentra controlada por los intercambiadores de calor 630-E1/E3.

Por lo tanto, en esta sección se analizará el efecto de la temperatura de ingreso del fluido en los perfiles de concentración y temperatura del reactor con respecto a z. De esta forma, se realizará la simulación para distintos T_0 , manteniendo las otras condiciones constantes. La Figura 26 expone los resultados obtenidos.

Figura 26. Influencia de la temperatura de entrada sobre la temperatura de salida

En la Figura 26, se puede apreciar que el incremento de la temperatura de entrada afecta la temperatura del fluido a la salida del reactor. Sin embargo, se puede apreciar que la diferencia entre estas se mantiene constante.

Además, con respecto a los perfiles de concentración, no hubo cambios en las concentraciones finales de los compuestos involucrados. La única diferencia corresponde a la distancia recorrida para la reacción total del cloro, la cual fue disminuyendo a medida que se aumenta la temperatura de entrada de la solución.

Por lo tanto, se buscará un equilibrio entre la temperatura de ingreso del fluido y el flujo de alimentación de cloro al reactor para obtener la mayor temperatura de salida posible sin perjudicar el proceso.

Primero, se analiza la influencia del flujo de cloro alimentado en la temperatura de salida del fluido. Sus resultados están expuestos en la Figura 27.

Figura 27. Influencia del flujo de Cl₂ alimentado al reactor en la temperatura de salida del fluido.

De la Figura 27, se puede apreciar que, a medida que aumenta el flujo alimentado, mayor es la temperatura de salida del fluido, lo cual ratifica que el control de temperatura del sistema sea a partir de su flujo.

Luego, se analiza la influencia del flujo de cloro alimentado en las concentraciones finales del fluido del reactor clorador primario. Su comportamiento se expone en la Figura 28.

Figura 28. Influencia del flujo de Cl₂ alimentado al reactor en las concentraciones de salida del fluido.

De la Figura 28, se puede apreciar que, cuando al aumentar el flujo de cloro, aumenta el consumo de cloruro ferroso, ya que ambos son los reactivos de la del reactor. Por lo tanto, hay una mayor producción de cloruro férrico, ya que corresponde al producto de la reacción (1). Sin embargo, se debe recordar que la reacción del reactor 630-R2 es menos eficiente que la del reactor clorador primario, por lo tanto, no es conveniente utilizar todo el contenido de ferroso para la producción de cloruro férrico, ya que en la reacción del reactor 630-R2 no se logrará recuperar las concentraciones iniciales de cloruro ferroso.

Por lo tanto, es necesario encontrar un equilibrio entre la temperatura de entrada de la solución de alimentación y el flujo de cloro alimentado al reactor. De esta forma, se logra la temperatura requerida para el reactor disolvedor de hierro. La Tabla 30 expone el aumento de la temperatura del fluido en el reactor con respecto al flujo de cloro alimentado.

Flujo de Cloro (kg/h)	ΔT°
771,184	21,221
816,184	22,425
861,184	23,626
906,184	24,824
951,184	25,908

Tabla 30. Aumento de temperatura en el reactor con respecto al flujo alimentado de cloro

Luego, a partir de la Tabla 30 se pudo observar que el aumento de la temperatura de la solución de alimentación no afectó a las diferencias entre la temperatura inicial y final del

fluido. Esta se mantuvo constante. Por lo tanto, a partir de la Tabla 30 es posible estimar la temperatura de salida del fluido, conociendo su temperatura de entrada.

Por ejemplo, si se desea obtener una temperatura de salida de 88,58°C (T° de operación del reactor 630-R2 promedio de 2022), se tienen las opciones representadas por la Tabla 31.

T° Entrada	Flujo de Cloro (kg/h)	ΔT°	T° Salida
67,359	771,184	21,221	88,58
66,155	816,184	22,425	88,58
64,954	861,184	23,626	88,58

Tabla 31. Opciones para obtener una temperatura de 88,58°C del fluido a la salida del reactor

Cabe mencionar, que sólo se consideraron aquellos flujos de cloro para los cuales el cloro se consume completamente. Además, al aumentar la temperatura de entrada del fluido, el requerimiento de agua de los intercambiadores de calor disminuye. Esto es de suma importancia, ya que actualmente la torre de enfriamiento se encuentra funcionando sobre la capacidad máxima permitida.

7.7 Sugerencias adicionales

Las sugerencias realizadas en esta sección surgen de las observaciones realizadas durante el trabajo presencial en la planta. A pesar de no derivarse del trabajo expuesto en las secciones anteriores, contribuirán al mejoramiento del proceso y a un mejor acceso a la información cuantitativa necesaria para elevar la predictibilidad de los modelos. Estas son:

- Contabilizar el flujo de cloro alimentado, ya que sólo se cuenta con un controlador de presión del flujo, el cual se encuentra en estado líquido. Además, se sugiere instalar una línea independiente de cloro para evitar inconvenientes en los requerimientos de este.
- Realizar una nueva cotización de chatarra, como por ejemplo en empresas de despuntes de acero (ACMA, INCHALAM, entre otros).
- Realizar un análisis de la composición de la chatarra para obtener resultados más significativos en ambas simulaciones.
- 4. Realizar un tratamiento de decapado a la chatarra, el cual se encuentra explicado en los Anexos O y P. De esta forma, la empresa produce licor de decapado (materia

prima) y deberá realizar menos mantenciones de limpieza, ya que el material no deseado permanecerá en el decapado y no entrará al sistema de producción.

8. Conclusiones

El modelo planteado para la optimización de la planta de cloruro férrico de Oxy Chile se obtuvo a partir de la evaluación de los reactores presentes en la etapa de reconcentración de licor de decapado. Para su análisis, se recopiló información bibliográfica de las reacciones del proceso productivo y se plantearon los balances de materia y de energía, determinando que las variables a optimizar son la temperatura de operación del reactor, la temperatura de entrada de las soluciones y la concentración de entrada de los reactantes.

En cuanto a la simulación realizada en Aspen Plus v11, se simuló el proceso actual del proceso productivo, donde se representó correctamente la acumulación del estanque, obteniendo el flujo acumulado por ciclo. Además, se obtuvo el contenido de cloruro ferroso y cloruro férrico en los estanques donde las concentraciones se mantienen relativamente constantes. Asimismo, se obtuvo un error del 2,76% de la producción total de la simulación con respecto a la producción real. Se encontraron diferencias de las densidades de la solución de la simulación, con respecto a la densidad real de ésta. Se planteó la reubicación de la alimentación del flujo de ácido incorporado al sistema, lo que provocó una disminución de producción de cloruro ferroso y del consumo de cloruro férrico. Sin embargo, se logró un

aumento de producción de hidrógeno sin alterar significativamente las composiciones del producto final.

Se resolvieron los balances de materia y energía del proceso actual, utilizando el programa Matlab, donde se obtuvieron los perfiles de concentración y temperatura de ambos reactores, los que mostraron que la reacción del reactor clorador primario ocurre en los primeros centímetros de éste y es la responsable del aumento de temperatura del proceso, mientras que, en el reactor de disolución de hierro, hubo un incremento de tan solo 0,9°C con perfiles de concentración y temperatura lineales. Se analizó el efecto de la temperatura de operación del reactor que arrojó que, a mayor temperatura, mayor producción. El efecto de la temperatura de la solución al reactor clorador primario, no afectó la producción final ni el incremento de temperatura del reactor y lo único que provocó fue que la reacción completa ocurriera en menor distancia.

Por lo tanto, se buscó un equilibrio entre esta temperatura de entrada y el flujo de cloro alimentado, para alcanzar los requerimientos del reactor 630-R2, ya que, a mayor flujo de alimentación de cloro, mayor fue el incremento de temperatura de la solución, encontrando estos diferenciales de temperatura para cada flujo de cloro asociado. Se propusieron distintas relaciones de estas dos variables para llegar al requerimiento del reactor y de este modo, su operación será a la mayor temperatura posible, sin afectar la seguridad de operación de la planta.

Finalmente, se realizaron sugerencias hierroales para el sistema productivo, las cuales fueron: contabilizar el flujo de cloro, buscar otras fuentes de materias primas, realizar un análisis de composición a la chatarra para obtener resultados más significativos en las simulaciones y se sugiere realizar un tratamiento de decapado a la chatarra, de esta forma la empresa produce su materia prima (licor de decapado) y elimina las suciedades del proceso, reduciendo el número de mantenciones a realizar en la planta.

9. Bibliografía

- Almeida, V. O. (2020). Production of a ferric chloride coagulant by leaching an iron ore tailing. *Elsevier*, 5.
- Almeida, V., & Schneider, I. (2020). Production of a ferric chloride coagulant by leaching an iron ore tailing. *El Sevier*, 1-5.
- Aspen Technology Inc. (13 de Abril de 2023). *aspentech*. Obtenido de https://www.aspentech.com/en
- AWWA. (1998). AWWA STANDARD FOR FERRIC CHLORIDE. Colorado.
- Borgogno, F. G. (2010). Tabla de Entalpía de formación, Energía libre de Gibbs y Entropía de fromación de compuestos inorgánicos. Neuquén.
- Çengel, Y. A. (2007). Transferencia de Calor y Masa. Mexico: Mc Graw Hill.
- Crabtree, J., & Schaefer, W. (1966). The Oxidation of Iron (II) by Chlorine. *Gates and Crellin Laboratories of Chemistry*, 1-4.
- European Commission. (2005). Additional Information submitted during the information exchange on Large Volumen Inorganic Chemicals Solids and Others Industry. Sevilla.
- Fogler, H. S. (2008). *Elementos de ingeniería de las reacciones químicas*. Ciudad de México: Pearson Educación.
- Froment, G., Bischoff, K., & De Wilde, J. (2011). *Chemical Reactor Analysis and Design.* John Wiley & Sons, Inc.

Incropera, F. P. (1999). Fundamentos de Transferencia de Calor. Mexico: Prentice Hall.

- Jatuphaksamphan, Y., Phinichka, N., Prapakorn, K., & Supradist, M. (2010). Pickling Kinetics of Tertiary Oxide Scale. *Journal of Metals, Materials and Minerals, Vol 20*, 33-39.
- Khadom, A. (2009). The Effect of Temperature and Acid Concentration on Corrosion of Low Carbon Steel in Hydrochloric Acid Media. *American Journal of Applied Sciences 6*, 1-7.
- MathWorks. (14 de Abril de 2023). *Matlab*. Obtenido de https://www.mathworks.com/products/matlab.html

McCafferty, E. (2010). Introduction to Corrosion Science. Washington, DC: Springer.

- Otwinowski, M. (1994). *Quantitative Analysis of Chemical and Biological Kinetics for the Acid Mine Drainage Problem.* Calgary: Synergetic Technology.
- OXY. (2020). Manual Cloruro Férrico. 41.
- OXY. (2021). Manual de Operaciones Planta Cloruro Férrico. 169.
- Prasad, D. D. (2016). Stabilization of Marine Clay Using Ferric Chloride and Quarry Dust. International Journal of Engineering Research and Development, 9.
- Safari, F., & Ibrahim, D. (2020). A study on the Fe-Cl thermochemical water. *International Journal* of Hydrogen Energy, 1-9.
- Santamaría Sandoval, A. J., & Ramirez Martinez, J. J. (2015). *Diferencias Finitas Asistido con Matlab en la Solución de Ecuaciones Diferenciales Parciales Hiperbólicas*. Lambayeque: Universidad Nacional Pedro Ruiz Gallo.
- Sidhu, P., & Gilkes, R. (1981). DISSOLUTION OF IRON OXIDES AND OXYHYDROXIDES IN HYDROCHLORIC AND PERCHLORIC ACIDS . *Clays and Clay Mineral*, 1-8.
- Ulloa, L. F. (2012). Modelado del proceso de decapado de acero al carbón con ácido sulfúrico y de recuperación del baño gastado mediante electrodiálisis.
- Valencia, G., & Garín, M. (2007). *Termodinámica en modelos fisicoquímicos*. Espacio de fomración Multimodal.
- Zapata, Y. A. (2015). Use od Advanced Simulation Software Aspen Plus as a Teaching Tool in Chemical Reaction Engineering. *Educación en Ingenieria*, 59.

10. Anexos

LIGHTNIN SALES DATA BOOK	1	SEC.	0	.72			PV	NG I	E 6,	02	DAT	E 2-25-99	ĺ.
		102	8	sla	sla	R X	1	0	#	A SHORE NAL ARD INU. ARD INU. ARD INU. ARD INU. ARD	NI		
		CC IN	0 00		21	10	1	1 64	8	NUON TH NUON T	E	NFR	
TRUCK	1000	20	10 0	2	21	E X	1 10	1 00	2 61	Pruces N 860	5	NILL NILL	
Less I have	1000	Ces 10	-	-			1 22		10	N AND A NOTALIS NUTRICIS NUTRI		S AND MEMORY S 45 S 45 FLATE	
	20010.1	201	8		2		13	E	8	PL PERSON CONTRO PL P		MINER ALL ONAT	
	in a series of the series of t	Sans.	0	-	3	0 0	10	101	10	Convertion NAND CONVERTING CONVE		S S S S S S S S S S S S S S S S S S S	
	1	8	1 3.5	-		2 00	13.6	231 15.5	11 11	1 A A A A A A A A A A A A A A A A A A A			
		8	4	21	3	2	12	6	8			M	NULL IN
		o Ma	0,75	10	1	1	1.4	150	1.08			2 3 B	5
	4	- Sal	0.56	5	80	80		110	1.15				
	100	100	0.46	0.65	8	3.5	2.2	0.80	0.00				
<u>п</u>	10.000	NOV NO	٣	-	-	-	1	2	27				
	81	District of	882	3.60	8.00	5	140	12.75	15/00			10	÷,
a	1	8	3.13	5	80	81	t,	10	12,000			0	÷
		8	123	800	2	100	1 10	100	200	200			
8	\$ [Ťī,	12	2	2	8	8		8	CE Dava			
	No.	H	8	2	8	104	0		2	AUNT.			
	1996	Since	1	35.00	99.00	72.50	100		1413	002 X			
	DINH D		3	10.75	27.88	위위	10.00	12.00	72.50	64000 0960, A			
	NUMUN	NON .	100	20	9.00	00 4	0.20	10.00	000	Divine P			
	23	It	1	E	-	8	8	8 1	8	T COUP	ŝ.		
I meet Ti & Beerto	1	¥0	1	-	-	9	1	5	1.2	CLEVEN CLEVEN			
TE DE TRESSE	T	DUA	1	2	2	10	2	1	12	E AND I	5		
Barria Esterre		目	0.133	0.194	12.00	02.1	0.000	Sata A	0.305	Principal a			
ž.		NOWING N	100	130	3.50	4.50	669	69/9	1275	APPENDER 1 RETAINE 2 WHEN A 10 THE	INCO	1	
	3		-	-	-		-		12				/

Anexo B. Hoja de especificación del reactor clorador primario 630-R1

j)	Flujo de Felly	2 = 25 m ³ . 10 hr	100 1h x 1 hr	, Bal 3, 185 U.S.	
		= 110 Spm			
B)	Flujo de Clore	$5 = \frac{28}{142} \frac{1}{7} + \frac{7}{126} \frac{1}{50}$	0.9	Fe + Cl2 -> 70.9	Fe Cl, 126 75 28,42 Th
		= 15,897 hg dia			
		v 800 bg/hy			
C)	Volume Ch per	= 800.000 fr , 22 70,9	14 11 1 pie? 81-mail 28,3 It	, lhr 60 шіл	
		= 148,9 pic3/min	•••		

Anexo C. Extracto del balance de materia original para la determinación del flujo de cloro

Anexo D. Tabla del promedio de los datos obtenidos en PI VISION del año 2022

		Promedio Anual
Descripción	TAG	2022
Flujo de Agua a 630-S1/S2		
(m3/h)	FI-1941	2,044
Presión de descarga 630-P3		
(psi)	PI_1927	2,149
Flujo de Salida 630-S1/S2	FIC-	
(m3/h)	1949	23,716
T° 630-R2 (°C)	TI_1933	88,577
T° Descarga 630-E3 (°C)	TI_1976	57,308
T° Descarga 630-E1 (°C)	TI_1939	50,568

Anexo E. Promedios de los meses de enero y febrero de carga de chatarra al reactor 630-R2

Mes	Enero	Febrero	Promedio
Promedio Carga por batch (kg)	5454,909	4984,500	5219,705

Volumen de Carga por batch (m3)	0,694	0,634	0,664
Promedio carga Diaria (kg)	9678,065	10681,071	10179,568
Volumen de Carga Diaria (m3)	1,231	1,359	1,295

Anexo F. Tabla del flujo acumulado de HCl del año 2022

Time	Value (m3)
25/01/2022	
13:00	3002078
25/01/2022	
17:00	3022723
25/01/2022	
21:00	3022723
26/01/2022	
1:00	3022723
26/01/2022	
5:00	3022733
26/01/2022	
9:00	3022733
26/01/2022	
13:00	3022733
26/01/2022	
17:00	3022917
26/01/2022	
21:00	3022917
27/01/2022	
1:00	3023370
27/01/2022	
5:00	3023755
27/01/2022	
9:00	3023755

27/01/2022	
13:00	3023755
27/01/2022	
17:00	3024433
27/01/2022	
21:00	3024806
28/01/2022	
1:00	3024806
28/01/2022	
5:00	3024806
28/01/2022	
9:00	3025203
28/01/2022	
13:00	3025203
28/01/2022	
17:00	3025252
28/01/2022	
21:00	3025534
29/01/2022	
1:00	3025534
29/01/2022	
5:00	3025534
29/01/2022	
9:00	3025732
29/01/2022	
13:00	3026700
29/01/2022	
17:00	3026700
30/01/2022	
1:00	3026976

30/01/2022	
5:00	3027078
30/01/2022	
9:00	3027129
30/01/2022	
13:00	3027129
30/01/2022	
17:00	3027258
30/01/2022	
21:00	3027639
31/01/2022	
1:00	3027769
31/01/2022	
5:00	3027769
31/01/2022	
9:00	3027769
31/01/2022	
13:00	3027769
31/01/2022	
17:00	3028008
31/01/2022	
21:00	3028049
01/02/2022	
1:00	3028049
01/02/2022	
5:00	3028128
01/02/2022	
9:00	3028808
01/02/2022	
13:00	3029168

01/02/2022	
17:00	3029262
01/02/2022	
21:00	3029262
02/02/2022	
1:00	3029262
02/02/2022	
5:00	3029262
02/02/2022	
9:00	3030110
02/02/2022	
13:00	3030589
02/02/2022	
17:00	3030589
02/02/2022	
21:00	3030718
03/02/2022	
1:00	3031128
03/02/2022	
5:00	3031543
03/02/2022	
9:00	3031543
03/02/2022	
13:00	3031636
03/02/2022	
17:00	3032146
03/02/2022	
21:00	3032146
04/02/2022	
1:00	3032146

04/02/2022	
5:00	3032294
05/02/2022	
1:00	3032750,1
05/02/2022	
5:00	3032939,6
05/02/2022	
9:00	3033070
05/02/2022	
13:00	3033617
05/02/2022	
17:00	3033617
05/02/2022	
21:00	3033744
06/02/2022	
1:00	3033744
06/02/2022	
5:00	3033823
06/02/2022	
9:00	3033823
06/02/2022	
13:00	3033967
06/02/2022	
17:00	3033967
06/02/2022	
21:00	3034103
07/02/2022	
1:00	3034182
07/02/2022	
5:00	3034613

07/02/2022	
9:00	3034937
07/02/2022	
13:00	3034937
07/02/2022	
17:00	3034937
07/02/2022	
21:00	3035214
08/02/2022	
1:00	3035460
08/02/2022	
5:00	3035551
08/02/2022	
9:00	3035941
08/02/2022	
13:00	3035941
08/02/2022	
17:00	3035941
08/02/2022	
21:00	3036185
09/02/2022	
1:00	3036560
09/02/2022	
5:00	3036812
09/02/2022	
9:00	3037252
09/02/2022	
13:00	3037311
09/02/2022	
17:00	3037511

10/02/2022	
1:00	3037773
10/02/2022	
5:00	3038047
10/02/2022	
9:00	3038047
10/02/2022	
13:00	3038114
10/02/2022	
17:00	3038610
11/02/2022	
1:00	3039027
11/02/2022	
5:00	3039027
11/02/2022	
9:00	3039201
11/02/2022	
17:00	3039578
11/02/2022	
21:00	3039578
12/02/2022	
1:00	3039635
12/02/2022	
5:00	3039664
12/02/2022	
9:00	3039772
12/02/2022	
13:00	3039772
12/02/2022	
17:00	3039772

12/02/2022	
21:00	3039956
13/02/2022	
1:00	3040225
13/02/2022	
5:00	3040390
13/02/2022	
9:00	3040390
13/02/2022	
13:00	3040390
13/02/2022	
17:00	3040390
14/02/2022	
1:00	3041063
14/02/2022	
5:00	3041063
14/02/2022	
9:00	3041247
14/02/2022	
13:00	3041800
15/02/2022	
1:00	3042558
15/02/2022	
5:00	3042649
15/02/2022	
9:00	3042650
15/02/2022	
13:00	3042711
15/02/2022	
17:00	3043084

15/02/2022	
21:00	3043397
16/02/2022	
1:00	3043796
16/02/2022	
5:00	3043800
16/02/2022	
9:00	3044106
16/02/2022	
13:00	3044411
17/02/2022	
1:00	3044985
17/02/2022	
5:00	3055667
17/02/2022	
9:00	3055924
17/02/2022	
13:00	3056394
18/02/2022	
1:00	3046658
18/02/2022	
5:00	3046818
18/02/2022	
9:00	3047244
18/02/2022	
13:00	3047417
18/02/2022	
17:00	3047891
18/02/2022	
21:00	3048310

19/02/2022	
1:00	3048448
19/02/2022	
5:00	3048851
19/02/2022	
9:00	3049411
19/02/2022	
13:00	3049722
20/02/2022	
1:00	3051467
20/02/2022	
5:00	3051664
20/02/2022	
9:00	3051664
20/02/2022	
13:00	3051993
21/02/2022	
1:00	3052678
21/02/2022	
5:00	3052932
22/02/2022	
1:00	3053934
22/02/2022	
5:00	3054212
23/02/2022	
1:00	3055257
23/02/2022	
5:00	3055321
23/02/2022	
9:00	3055528

23/02/2022	
13:00	3055941
23/02/2022	
17:00	3055941
23/02/2022	
21:00	3055941
24/02/2022	
1:00	3056367
24/02/2022	
5:00	3056512
24/02/2022	
9:00	3057094
24/02/2022	
13:00	3057174
24/02/2022	
17:00	3057189
24/02/2022	
21:00	3057312
25/02/2022	
1:00	3057489
25/02/2022	
5:00	3057694
25/02/2022	
9:00	3058039
25/02/2022	
13:00	3058039
25/02/2022	
17:00	3058373
25/02/2022	
21:00	3058786

26/02/2022	
1:00	3059094
26/02/2022	
5:00	3059094
26/02/2022	
9:00	3059094
26/02/2022	
13:00	3059358
26/02/2022	
17:00	3059358
26/02/2022	
21:00	3059358
27/02/2022	
1:00	3059377
27/02/2022	
5:00	3059534
27/02/2022	
9:00	3059748
27/02/2022	
13:00	3059770
27/02/2022	
17:00	3059908
27/02/2022	
21:00	3060207
28/02/2022	
1:00	3060207
28/02/2022	
5:00	3060287
28/02/2022	
9:00	3061154

28/02/2022	
13:00	3061154
28/02/2022	
17:00	3061458
28/02/2022	
21:00	3061654
01/03/2022	
1:00	3062166
01/03/2022	
5:00	3062166
01/03/2022	
9:00	3062185
01/03/2022	
13:00	3062394
01/03/2022	
17:00	3062825
01/03/2022	
21:00	3063155
02/03/2022	
1:00	3063155
02/03/2022	
5:00	3063458
02/03/2022	
9:00	3064945
02/03/2022	
13:00	3064945
02/03/2022	
17:00	3064945
02/03/2022	
21:00	3064945

03/03/2022	
9:00	3066543
03/03/2022	
13:00	3066760
03/03/2022	
17:00	3066770
03/03/2022	
21:00	3066994
04/03/2022	
1:00	3067011
04/03/2022	
5:00	3067133
04/03/2022	
9:00	3067133
04/03/2022	
13:00	3067133
04/03/2022	
17:00	3067188
04/03/2022	
21:00	3067534
05/03/2022	
1:00	3068058
05/03/2022	
5:00	3068058
05/03/2022	
9:00	3068058
05/03/2022	
13:00	3068338
05/03/2022	
17:00	3068860

05/03/2022	
21:00	3068860
06/03/2022	
1:00	3068860
06/03/2022	
5:00	3069058
06/03/2022	
9:00	3069392
06/03/2022	
13:00	3069392
06/03/2022	
17:00	3069818
06/03/2022	
21:00	3070318
07/03/2022	
1:00	3070318
07/03/2022	
5:00	3070420
07/03/2022	
9:00	3070958
07/03/2022	
13:00	3071495
07/03/2022	
17:00	3071663
07/03/2022	
21:00	3071663
08/03/2022	
1:00	3071766
08/03/2022	
5:00	3072129

08/03/2022	
17:00	3072613
08/03/2022	
21:00	3072648
09/03/2022	
1:00	3073021
09/03/2022	
5:00	3073300
09/03/2022	
9:00	3073591
09/03/2022	
13:00	3073626
09/03/2022	
17:00	3073980
09/03/2022	
21:00	3075552
10/03/2022	
1:00	3075583
10/03/2022	
5:00	3075694
10/03/2022	
17:00	3076125
10/03/2022	
21:00	3076623
11/03/2022	
1:00	3076623
11/03/2022	
5:00	3076697
11/03/2022	
9:00	3077125

11/03/2022	
13:00	3077334
11/03/2022	
17:00	3077334
11/03/2022	
21:00	3077334
12/03/2022	
1:00	3077334
12/03/2022	
5:00	3077449
12/03/2022	
9:00	3077548
12/03/2022	
13:00	3077894
12/03/2022	
17:00	3077943
12/03/2022	
21:00	3078393
13/03/2022	
1:00	3080472
13/03/2022	
5:00	3080686
13/03/2022	
9:00	3080686
13/03/2022	
13:00	3080728
13/03/2022	
17:00	3081545
13/03/2022	
21:00	3082059

14/03/2022	
1:00	3082059
14/03/2022	
5:00	3082199
14/03/2022	
9:00	3082601
14/03/2022	
13:00	3082601
14/03/2022	
17:00	3082601
14/03/2022	
21:00	3082601
15/03/2022	
1:00	3082601
15/03/2022	
5:00	3082601
15/03/2022	
9:00	3082601
15/03/2022	
13:00	3082601
15/03/2022	
17:00	3082796
15/03/2022	
21:00	3083123
16/03/2022	
1:00	3083123
16/03/2022	
5:00	3083210
16/03/2022	
9:00	3083823

16/03/2022	
17:00	3084083
16/03/2022	
21:00	3084083
17/03/2022	
1:00	3084083
17/03/2022	
5:00	3084152
17/03/2022	
9:00	3084152
17/03/2022	
13:00	3084190
17/03/2022	
17:00	3084306
17/03/2022	
21:00	3084784
18/03/2022	
1:00	3085082
18/03/2022	
5:00	3085217
18/03/2022	
9:00	3085617
18/03/2022	
13:00	3085617
18/03/2022	
17:00	3085617
18/03/2022	
21:00	3085862
19/03/2022	
1:00	3086244

19/03/2022	
5:00	3086520
19/03/2022	
9:00	3086521
19/03/2022	
13:00	3086879
19/03/2022	
17:00	3088474
20/03/2022	
1:00	3088474
20/03/2022	
5:00	3088617
20/03/2022	
9:00	3089009
20/03/2022	
13:00	3089080
20/03/2022	
17:00	3089151
20/03/2022	
21:00	3089377
21/03/2022	
1:00	3089718
21/03/2022	
5:00	3089781
21/03/2022	
9:00	3090198
21/03/2022	
13:00	3090652
21/03/2022	
17:00	3090652

21/03/2022	
21:00	3090652
22/03/2022	
1:00	3090991
22/03/2022	
5:00	3091540
22/03/2022	
13:00	3092347
22/03/2022	
17:00	3092347
22/03/2022	
21:00	3092594
23/03/2022	
1:00	3092913
23/03/2022	
5:00	3093144
23/03/2022	
9:00	3093253
23/03/2022	
13:00	3093253
23/03/2022	
17:00	3093513
23/03/2022	
21:00	3093703
24/03/2022	
1:00	3095702
24/03/2022	
5:00	3095702
24/03/2022	
9:00	3095876
24/03/2022	
------------	---------
13:00	3096376
24/03/2022	
17:00	3096376
24/03/2022	
21:00	3096376
25/03/2022	
1:00	3096376
25/03/2022	
5:00	3096756
25/03/2022	
9:00	3096965
25/03/2022	
13:00	3097182
25/03/2022	
17:00	3097183
25/03/2022	
21:00	3097183
26/03/2022	
1:00	3097202
26/03/2022	
5:00	3097636
26/03/2022	
9:00	3097889
26/03/2022	
13:00	3097889
26/03/2022	
17:00	3099001
26/03/2022	
21:00	3099677

27/03/2022	
1:00	3099705
27/03/2022	
5:00	3099705
27/03/2022	
9:00	3099705
27/03/2022	
13:00	3099705
27/03/2022	
17:00	3099954
27/03/2022	
21:00	3100174
28/03/2022	
1:00	3100225
28/03/2022	
5:00	3100980
28/03/2022	
9:00	3100980
28/03/2022	
13:00	3101054
28/03/2022	
17:00	3101870
28/03/2022	
21:00	3101972
29/03/2022	
1:00	3102052
29/03/2022	
5:00	3102052
29/03/2022	
9:00	3102494

29/03/2022	
13:00	3102866
29/03/2022	
17:00	3103007
29/03/2022	
21:00	3103007
30/03/2022	
1:00	3103245
30/03/2022	
5:00	3103699
30/03/2022	
9:00	3103990
30/03/2022	
13:00	3104005
30/03/2022	
17:00	3104005
30/03/2022	
21:00	3104085
31/03/2022	
1:00	3104455
31/03/2022	
5:00	3104742
31/03/2022	
9:00	3105159
31/03/2022	
13:00	3105159
31/03/2022	
17:00	3105389
31/03/2022	
21:00	3105787

01/04/2022	
1:00	3106164
01/04/2022	
5:00	3106164
01/04/2022	
9:00	3106164
01/04/2022	
13:00	3106197
01/04/2022	
17:00	3106455
01/04/2022	
21:00	3106587
02/04/2022	
1:00	3107045
02/04/2022	
5:00	3107234
02/04/2022	
9:00	3107256
02/04/2022	
13:00	3109504
02/04/2022	
17:00	3109505
02/04/2022	
21:00	3109505
03/04/2022	
1:00	3109643
03/04/2022	
5:00	3109736
03/04/2022	
9:00	3110317

03/04/2022	
13:00	3110317
03/04/2022	
17:00	3110894
03/04/2022	
21:00	3111005
04/04/2022	
1:00	3111005
04/04/2022	
5:00	3111005
04/04/2022	
9:00	3111005
04/04/2022	
13:00	3111005
04/04/2022	
17:00	3113170
04/04/2022	
21:00	3113415
05/04/2022	
1:00	3113691
05/04/2022	
5:00	3113788
05/04/2022	
9:00	3116501
05/04/2022	
13:00	3116501
06/04/2022	
1:00	3116648
06/04/2022	
5:00	3117004

06/04/2022	
9:00	3117115
06/04/2022	
13:00	3117123
06/04/2022	
17:00	3117162
06/04/2022	
21:00	3117162
07/04/2022	
1:00	3117162
07/04/2022	
21:00	3117162
08/04/2022	
1:00	3117162
08/04/2022	
5:00	3117289
08/04/2022	
9:00	3117777
08/04/2022	
13:00	3118417
09/04/2022	
1:00	3118417
09/04/2022	
5:00	3118466
09/04/2022	
9:00	3119139
09/04/2022	
13:00	3119251
10/04/2022	
1:00	3120158

10/04/2022	
5:00	3120419
10/04/2022	
9:00	3120978
10/04/2022	
13:00	3121089
11/04/2022	
1:00	3121870
11/04/2022	
5:00	3123006
11/04/2022	
9:00	3123034
11/04/2022	
13:00	3123320
12/04/2022	
1:00	3123593
12/04/2022	
5:00	3124122
12/04/2022	
9:00	3124460
12/04/2022	
13:00	3124563
13/04/2022	
1:00	3124563
13/04/2022	
5:00	3126091
13/04/2022	
9:00	3126091
13/04/2022	
13:00	3126091

15/04/2022	
5:00	3126091
15/04/2022	
9:00	3126091
15/04/2022	
13:00	3126466
15/04/2022	
17:00	3126569
15/04/2022	
21:00	3126569
16/04/2022	
1:00	3126577
16/04/2022	
5:00	3126917
16/04/2022	
9:00	3127129
16/04/2022	
13:00	3127273
16/04/2022	
17:00	3127554
16/04/2022	
21:00	3127614
17/04/2022	
1:00	3128195
17/04/2022	
5:00	3128195
17/04/2022	
9:00	3128195
17/04/2022	
13:00	3130379

17/04/2022	
17:00	3131033
17/04/2022	
21:00	3131593
18/04/2022	
1:00	3131593
18/04/2022	
5:00	3132061
18/04/2022	
9:00	3132486
18/04/2022	
13:00	3132486
18/04/2022	
17:00	3132486
18/04/2022	
21:00	3132985
19/04/2022	
1:00	3133525
19/04/2022	
5:00	3133525
19/04/2022	
9:00	3133525
19/04/2022	
13:00	3135112
19/04/2022	
17:00	3135957
19/04/2022	
21:00	3135957
20/04/2022	
1:00	3135957

20/04/2022	
5:00	3135957
20/04/2022	
9:00	3135957
20/04/2022	
13:00	3137526
20/04/2022	
17:00	3138147
20/04/2022	
21:00	3138147
21/04/2022	
1:00	3138198
21/04/2022	
5:00	3138599
21/04/2022	
9:00	3138868
21/04/2022	
13:00	3138880
21/04/2022	
17:00	3140403
21/04/2022	
21:00	3140403
22/04/2022	
1:00	3140403
22/04/2022	
5:00	3140466
22/04/2022	
9:00	3140511
22/04/2022	
13:00	3140511

22/04/2022	
17:00	3140511
22/04/2022	
21:00	3140511
23/04/2022	
1:00	3140511
23/04/2022	
5:00	3140511
23/04/2022	
9:00	3140511
23/04/2022	
13:00	3140511
23/04/2022	
17:00	3140511
23/04/2022	
21:00	3140511
24/04/2022	
1:00	3140511
24/04/2022	
5:00	3140511
24/04/2022	
9:00	3140511
24/04/2022	
13:00	3140511
24/04/2022	
17:00	3140511
24/04/2022	
21:00	3140718
25/04/2022	
1:00	3140718

25/04/2022	
5:00	3140987
25/04/2022	
9:00	3141331
25/04/2022	
13:00	3141331
25/04/2022	
17:00	3142006
25/04/2022	
21:00	3142457
26/04/2022	
1:00	3143002
26/04/2022	
5:00	3143513
26/04/2022	
9:00	3143513
26/04/2022	
13:00	3143924
26/04/2022	
17:00	3144245
26/04/2022	
21:00	3144245
27/04/2022	
1:00	3144245
27/04/2022	
5:00	3144251
27/04/2022	
9:00	3144251
27/04/2022	
13:00	3144251

27/04/2022	
17:00	3144251
27/04/2022	
21:00	3144251
28/04/2022	
1:00	3145598
28/04/2022	
5:00	3146098
28/04/2022	
9:00	3146098
28/04/2022	
13:00	3146098
28/04/2022	
17:00	3146098
28/04/2022	
21:00	3146159
29/04/2022	
1:00	3148423
29/04/2022	
5:00	3148959
29/04/2022	
9:00	3148959
29/04/2022	
13:00	3148959
29/04/2022	
17:00	3148959
29/04/2022	
21:00	3149013
30/04/2022	
1:00	3149450

30/04/2022	
5:00	3149977
30/04/2022	
9:00	3150030
30/04/2022	
13:00	3150030
30/04/2022	
17:00	3150121
30/04/2022	
21:00	3150492
01/05/2022	
1:00	3151100
01/05/2022	
5:00	3151110
01/05/2022	
9:00	3151124
01/05/2022	
13:00	3151707
01/05/2022	
17:00	3151707
01/05/2022	
21:00	3159241
02/05/2022	
1:00	3159241
02/05/2022	
5:00	3159545
02/05/2022	
9:00	3159813
06/05/2022	
17:00	3161139

06/05/2022	
21:00	3161139
07/05/2022	
1:00	3161139
07/05/2022	
5:00	3161533
07/05/2022	
13:00	3161728
07/05/2022	
17:00	3163256
07/05/2022	
21:00	3163548
08/05/2022	
1:00	3163548
08/05/2022	
5:00	3163548
08/05/2022	
9:00	3163776
08/05/2022	
13:00	3163947
08/05/2022	
17:00	3165359
08/05/2022	
21:00	3165359
09/05/2022	
1:00	3166302
09/05/2022	
5:00	3166302
09/05/2022	
13:00	3166302

09/05/2022	
17:00	3166430
09/05/2022	
21:00	3166539
10/05/2022	
1:00	3167441
10/05/2022	
5:00	3167441
10/05/2022	
9:00	3168450
10/05/2022	
13:00	3168699
10/05/2022	
17:00	3168699
10/05/2022	
21:00	3168699
11/05/2022	
1:00	3169235
11/05/2022	
5:00	3169576
11/05/2022	
9:00	3169576
11/05/2022	
13:00	3169835
12/05/2022	
1:00	3169835
12/05/2022	
5:00	3170125
12/05/2022	
9:00	3170510

12/05/2022	
13:00	3170774
12/05/2022	
17:00	3170774
12/05/2022	
21:00	3171463
13/05/2022	
1:00	3171536
13/05/2022	
5:00	3171536
13/05/2022	
9:00	3171536
13/05/2022	
13:00	3171536
13/05/2022	
17:00	3171588
13/05/2022	
21:00	3172510
14/05/2022	
1:00	3172510
14/05/2022	
5:00	3172510
14/05/2022	
9:00	3173002
14/05/2022	
13:00	3173353
14/05/2022	
17:00	3173391
14/05/2022	
21:00	3173391

15/05/2022	
1:00	3173391
15/05/2022	
5:00	3173678
15/05/2022	
9:00	3174256
15/05/2022	
13:00	3174666
15/05/2022	
17:00	3174666
15/05/2022	
21:00	3175000
16/05/2022	
1:00	3175434
16/05/2022	
5:00	3175633
16/05/2022	
9:00	3175805
16/05/2022	
13:00	3175805
16/05/2022	
17:00	3176465
16/05/2022	
21:00	3176600
17/05/2022	
1:00	3176883
17/05/2022	
5:00	3176914
17/05/2022	
9:00	3177333

17/05/2022	
13:00	3177581
17/05/2022	
17:00	3177809
17/05/2022	
21:00	3178005
18/05/2022	
1:00	3178534
18/05/2022	
5:00	3178917
18/05/2022	
9:00	3178917
18/05/2022	
13:00	3178917
18/05/2022	
17:00	3179025
18/05/2022	
21:00	3179701
19/05/2022	
1:00	3179879
19/05/2022	
5:00	3179987
19/05/2022	
9:00	3180389
19/05/2022	
13:00	3180730
19/05/2022	
17:00	3180731
19/05/2022	
21:00	3180731

20/05/2022	
1:00	3180731
20/05/2022	
5:00	3180989
20/05/2022	
9:00	3180989
20/05/2022	
13:00	3181368
20/05/2022	
17:00	3181654
20/05/2022	
21:00	3181654
21/05/2022	
1:00	3181654
21/05/2022	
5:00	3181980
21/05/2022	
9:00	3183541
21/05/2022	
13:00	3183541
21/05/2022	
17:00	3183541
21/05/2022	
21:00	3183608
22/05/2022	
1:00	3183844
22/05/2022	
5:00	3184095
22/05/2022	
9:00	3184189

22/05/2022	
13:00	3184190
22/05/2022	
17:00	3184190
23/05/2022	
1:00	3184297
23/05/2022	
5:00	3184485
23/05/2022	
9:00	3184724
23/05/2022	
13:00	3185233
23/05/2022	
17:00	3185233
23/05/2022	
21:00	3185334
24/05/2022	
1:00	3185422
24/05/2022	
5:00	3185486
24/05/2022	
9:00	3185720
24/05/2022	
13:00	3185720
24/05/2022	
17:00	3185952
24/05/2022	
21:00	3186395
25/05/2022	
1:00	3186865

25/05/2022	
5:00	3187025
25/05/2022	
9:00	3187668
25/05/2022	
17:00	3188144
26/05/2022	
1:00	3188410
26/05/2022	
5:00	3188487
26/05/2022	
13:00	3188487
27/05/2022	
1:00	3189305
27/05/2022	
5:00	3189305
27/05/2022	
9:00	3189305
27/05/2022	
13:00	3189560
28/05/2022	
1:00	3191045
28/05/2022	
5:00	3191096
28/05/2022	
9:00	3191640
28/05/2022	
13:00	3192468
29/05/2022	
1:00	3193435

29/05/2022	
5:00	3193529
29/05/2022	
9:00	3193530
29/05/2022	
13:00	3193530
30/05/2022	
1:00	3194354
30/05/2022	
5:00	3194736
30/05/2022	
9:00	3195150
30/05/2022	
13:00	3196392
31/05/2022	
1:00	3196392
31/05/2022	
5:00	3196491
31/05/2022	
9:00	3196491
31/05/2022	
13:00	3197184
01/06/2022	
1:00	3197184
01/06/2022	
5:00	3197451
01/06/2022	
9:00	3197889
01/06/2022	
13:00	3198255

01/06/2022	
17:00	3198486
01/06/2022	
21:00	3198486
02/06/2022	
1:00	3198681
02/06/2022	
5:00	3199712
02/06/2022	
9:00	3199712
02/06/2022	
13:00	3199712
02/06/2022	
17:00	3199712
02/06/2022	
21:00	3199937
03/06/2022	
1:00	3200640
03/06/2022	
5:00	3201241
03/06/2022	
9:00	3201241
03/06/2022	
13:00	3201241
03/06/2022	
17:00	3201544
03/06/2022	
21:00	3201920
04/06/2022	
1:00	3202134

04/06/2022	
5:00	3202134
04/06/2022	
9:00	3203002
04/06/2022	
13:00	3203273
04/06/2022	
17:00	3203273
04/06/2022	
21:00	3203273
05/06/2022	
1:00	3203644
05/06/2022	
5:00	3203715
05/06/2022	
9:00	3204540
05/06/2022	
13:00	3204540
05/06/2022	
17:00	3204540
05/06/2022	
21:00	3204628
06/06/2022	
1:00	3204628
06/06/2022	
5:00	3204628
06/06/2022	
9:00	3204630
06/06/2022	
13:00	3204630

06/06/2022	
17:00	3205724
06/06/2022	
21:00	3205724
07/06/2022	
1:00	3205724
07/06/2022	
5:00	3205724
07/06/2022	
9:00	3207095
07/06/2022	
13:00	3207705
07/06/2022	
17:00	3207705
07/06/2022	
21:00	3207705
08/06/2022	
1:00	3207705
08/06/2022	
5:00	3207894
08/06/2022	
9:00	3209001
08/06/2022	
13:00	3209222
08/06/2022	
17:00	3209222
08/06/2022	
21:00	3209222
09/06/2022	
1:00	3209558

09/06/2022	
5:00	3209702
09/06/2022	
9:00	3210011
09/06/2022	
13:00	3210639
09/06/2022	
17:00	3210639
09/06/2022	
21:00	3210639
10/06/2022	
1:00	3210941
10/06/2022	
5:00	3211075
10/06/2022	
9:00	3211104
10/06/2022	
13:00	3211104
10/06/2022	
17:00	3211578
10/06/2022	
21:00	3212133
11/06/2022	
1:00	3212357
11/06/2022	
5:00	3212357
11/06/2022	
9:00	3212458
11/06/2022	
13:00	3212824

11/06/2022	
17:00	3212824
11/06/2022	
21:00	3212824
12/06/2022	
1:00	3212824
12/06/2022	
5:00	3212923
12/06/2022	
9:00	3213246
12/06/2022	
13:00	3213246
12/06/2022	
17:00	3213463
12/06/2022	
21:00	3213463
13/06/2022	
1:00	3213463
13/06/2022	
5:00	3213650
13/06/2022	
9:00	3215447
13/06/2022	
13:00	3215447
13/06/2022	
17:00	3215447
13/06/2022	
21:00	3215800
14/06/2022	
1:00	3216784

14/06/2022	
5:00	3217447
14/06/2022	
9:00	3217856
14/06/2022	
13:00	3217856
15/06/2022	
1:00	3217856
15/06/2022	
5:00	3217974
15/06/2022	
9:00	3218250
15/06/2022	
13:00	3218861
15/06/2022	
17:00	3218861
15/06/2022	
21:00	3218861
16/06/2022	
1:00	3219210
16/06/2022	
5:00	3219650
16/06/2022	
9:00	3220252
16/06/2022	
13:00	3220252
16/06/2022	
17:00	3220455
16/06/2022	
21:00	3220789

17/06/2022	
1:00	3220980
17/06/2022	
5:00	3221554
17/06/2022	
9:00	3221554
17/06/2022	
13:00	3222222
17/06/2022	
17:00	3222743
17/06/2022	
21:00	3222963
18/06/2022	
1:00	3222963
18/06/2022	
5:00	3223150
18/06/2022	
9:00	3223481
18/06/2022	
13:00	3224209
18/06/2022	
17:00	3224209
18/06/2022	
21:00	3224209
19/06/2022	
1:00	3225311
19/06/2022	
5:00	3225311
19/06/2022	
9:00	3225779

19/06/2022	
13:00	3226228
20/06/2022	
1:00	3226228
20/06/2022	
13:00	3226890
21/06/2022	
1:00	3227259
22/06/2022	
1:00	3227994
22/06/2022	
5:00	3228312
22/06/2022	
9:00	3228313
22/06/2022	
13:00	3228313
23/06/2022	
1:00	3229248
23/06/2022	
5:00	3229248
23/06/2022	
9:00	3229248
23/06/2022	
13:00	3229540
24/06/2022	
1:00	3231278
24/06/2022	
5:00	3231385
24/06/2022	
9:00	3231674

24/06/2022	
13:00	3232174
25/06/2022	
1:00	3232344
25/06/2022	
5:00	3232344
25/06/2022	
9:00	3232359
25/06/2022	
13:00	3232633
25/06/2022	
17:00	3233112
25/06/2022	
21:00	3233572
26/06/2022	
1:00	3233572
26/06/2022	
5:00	3233572
26/06/2022	
9:00	3234148
26/06/2022	
13:00	3234747
27/06/2022	
9:00	3234810
27/06/2022	
13:00	3234810
27/06/2022	
17:00	3234810
27/06/2022	
21:00	3234810

28/06/2022	
1:00	3235233
28/06/2022	
5:00	3235233
28/06/2022	
9:00	3235275
28/06/2022	
13:00	3235275
28/06/2022	
17:00	3236517
28/06/2022	
21:00	3236779
29/06/2022	
1:00	3237294
29/06/2022	
5:00	3237294
29/06/2022	
9:00	3238170
29/06/2022	
13:00	3238170
29/06/2022	
17:00	3238170
29/06/2022	
21:00	3238170
30/06/2022	
17:00	3238795
30/06/2022	
21:00	3238795
01/07/2022	
1:00	3239278

01/07/2022	
5:00	3239278
01/07/2022	
9:00	3239560
01/07/2022	
13:00	3240215
01/07/2022	
17:00	3240294
01/07/2022	
21:00	3240474
02/07/2022	
1:00	3240488
02/07/2022	
5:00	3240712
02/07/2022	
9:00	3240712
02/07/2022	
13:00	3240712
02/07/2022	
17:00	3240783
02/07/2022	
21:00	3241157
03/07/2022	
1:00	3242257
03/07/2022	
5:00	3242257
04/07/2022	
1:00	3242257
04/07/2022	
5:00	3242257

04/07/2022	
9:00	3242834
04/07/2022	
13:00	3243302
05/07/2022	
1:00	3243302
06/07/2022	
1:00	3243548
06/07/2022	
5:00	3243856
06/07/2022	
9:00	3244096
06/07/2022	
17:00	3244213
06/07/2022	
21:00	3244213
07/07/2022	
1:00	3244428
07/07/2022	
5:00	3245258
07/07/2022	
9:00	3245258
07/07/2022	
13:00	3245517
07/07/2022	
17:00	3246011
08/07/2022	
1:00	3246245
08/07/2022	
5:00	3246695

08/07/2022	
9:00	3247506
08/07/2022	
13:00	3247857
08/07/2022	
17:00	3247857
09/07/2022	
1:00	3247857
09/07/2022	
5:00	3247857
09/07/2022	
9:00	3247894
09/07/2022	
13:00	3248322
09/07/2022	
17:00	3248649
10/07/2022	
1:00	3248649
10/07/2022	
5:00	3248649
10/07/2022	
9:00	3248839
10/07/2022	
13:00	3249125
10/07/2022	
17:00	3250660
10/07/2022	
21:00	3250660
11/07/2022	
21:00	3250660
12/07/2022	
------------	---------
1:00	3250660
12/07/2022	
5:00	3250746
12/07/2022	
9:00	3251170
12/07/2022	
13:00	3251524
12/07/2022	
17:00	3251630
12/07/2022	
21:00	3251630
13/07/2022	
1:00	3252329
13/07/2022	
5:00	3252329
13/07/2022	
9:00	3252329
13/07/2022	
13:00	3252598
14/07/2022	
1:00	3253118
14/07/2022	
5:00	3253118
14/07/2022	
9:00	3253118
14/07/2022	
13:00	3253118
15/07/2022	
1:00	3255149

15/07/2022	
5:00	3255377
15/07/2022	
9:00	3255621
15/07/2022	
13:00	3255820
16/07/2022	
1:00	3256388
16/07/2022	
5:00	3256644
16/07/2022	
9:00	3256780
16/07/2022	
13:00	3257025
17/07/2022	
1:00	3257165
17/07/2022	
5:00	3257338
17/07/2022	
9:00	3257338
17/07/2022	
13:00	3257437
18/07/2022	
1:00	3258147
18/07/2022	
5:00	3258147
18/07/2022	
9:00	3258459
18/07/2022	
13:00	3258459

19/07/2022	
1:00	3258459
19/07/2022	
5:00	3258534
19/07/2022	
9:00	3258716
19/07/2022	
13:00	3259054
19/07/2022	
17:00	3260077
20/07/2022	
21:00	3260077
21/07/2022	
1:00	3260077
21/07/2022	
5:00	3260077
22/07/2022	
1:00	3260318
22/07/2022	
5:00	3260653
22/07/2022	
9:00	3260653
22/07/2022	
13:00	3260653
22/07/2022	
17:00	3260722
22/07/2022	
21:00	3261222
23/07/2022	
1:00	3261258

23/07/2022	
5:00	3261362
23/07/2022	
9:00	3261510
23/07/2022	
13:00	3261645
23/07/2022	
17:00	3261777
23/07/2022	
21:00	3262151
24/07/2022	
1:00	3262384
24/07/2022	
5:00	3262384
24/07/2022	
9:00	3262830
24/07/2022	
13:00	3263130
24/07/2022	
17:00	3263463
24/07/2022	
21:00	3263463
25/07/2022	
1:00	3263463
25/07/2022	
5:00	3263718
25/07/2022	
9:00	3264010
25/07/2022	
13:00	3264163

25/07/2022	
17:00	3264163
25/07/2022	
21:00	3265036
26/07/2022	
1:00	3265198
26/07/2022	
5:00	3265198
26/07/2022	
9:00	3265198
26/07/2022	
13:00	3265198
26/07/2022	
17:00	3265614
26/07/2022	
21:00	3266546
27/07/2022	
1:00	3266546
27/07/2022	
5:00	3266546
27/07/2022	
9:00	3266598
27/07/2022	
13:00	3266928
27/07/2022	
17:00	3267555
28/07/2022	
1:00	3267555
28/07/2022	
5:00	3267732

28/07/2022	
9:00	3268542
28/07/2022	
13:00	3268583
28/07/2022	
17:00	3268583
29/07/2022	
1:00	3268583
29/07/2022	
5:00	3268983
29/07/2022	
9:00	3269408
29/07/2022	
13:00	3269408
29/07/2022	
17:00	3269408
29/07/2022	
21:00	3269794
30/07/2022	
1:00	3270133
30/07/2022	
5:00	3270394
30/07/2022	
9:00	3270534
30/07/2022	
13:00	3270958
30/07/2022	
17:00	3273002
30/07/2022	
21:00	3273420

31/07/2022	
1:00	3273625
31/07/2022	
5:00	3273625
31/07/2022	
9:00	3273969
31/07/2022	
13:00	3274385
31/07/2022	
17:00	3274515
31/07/2022	
21:00	3274515
01/08/2022	
1:00	3275037
01/08/2022	
5:00	3275037
01/08/2022	
9:00	3275665
01/08/2022	
13:00	3275909
01/08/2022	
17:00	3276108
01/08/2022	
21:00	3276108
02/08/2022	
1:00	3276350
02/08/2022	
5:00	3278125
02/08/2022	
9:00	3278505

02/08/2022	
13:00	3278505
02/08/2022	
17:00	3278505
02/08/2022	
21:00	3278505
03/08/2022	
1:00	3278506
03/08/2022	
5:00	3278860
03/08/2022	
9:00	3278860
03/08/2022	
13:00	3280082
03/08/2022	
17:00	3280082
03/08/2022	
21:00	3280205
04/08/2022	
1:00	3280875
04/08/2022	
5:00	3281373
04/08/2022	
9:00	3281373
04/08/2022	
13:00	3281373
04/08/2022	
17:00	3281373
04/08/2022	
21:00	3281445

05/08/2022	
1:00	3281624
05/08/2022	
5:00	3281624
05/08/2022	
9:00	3282413
05/08/2022	
13:00	3282413
05/08/2022	
17:00	3282413
05/08/2022	
21:00	3282413
06/08/2022	
1:00	3282413
06/08/2022	
5:00	3282468
06/08/2022	
9:00	3282468
06/08/2022	
13:00	3282727
06/08/2022	
17:00	3283044
06/08/2022	
21:00	3283079
07/08/2022	
1:00	3283079
07/08/2022	
5:00	3283218
07/08/2022	
9:00	3283508

07/08/2022	
13:00	3283947
07/08/2022	
17:00	3284108
07/08/2022	
21:00	3284108
08/08/2022	
1:00	3284316
08/08/2022	
5:00	3284934
08/08/2022	
9:00	3285077
08/08/2022	
13:00	3285286
08/08/2022	
17:00	3285287
08/08/2022	
21:00	3285287
09/08/2022	
1:00	3285977
09/08/2022	
5:00	3286381
09/08/2022	
9:00	3286381
09/08/2022	
13:00	3286411
09/08/2022	
17:00	3287214
09/08/2022	
21:00	3287629

10/08/2022	
1:00	3287629
10/08/2022	
5:00	3287786
10/08/2022	
9:00	3287786
10/08/2022	
13:00	3288188
10/08/2022	
17:00	3288356
10/08/2022	
21:00	3289220
11/08/2022	
1:00	3289220
11/08/2022	
5:00	3289220
11/08/2022	
9:00	3289747
11/08/2022	
13:00	3290413
11/08/2022	
17:00	3290413
11/08/2022	
21:00	3290413
12/08/2022	
1:00	3290503
12/08/2022	
5:00	3291039
12/08/2022	
9:00	3291040

12/08/2022	
13:00	3291183
12/08/2022	
17:00	3291190
12/08/2022	
21:00	3291190
13/08/2022	
1:00	3291911
13/08/2022	
5:00	3291911
13/08/2022	
9:00	3291911
13/08/2022	
13:00	3291911
13/08/2022	
17:00	3292122
13/08/2022	
21:00	3292571
14/08/2022	
1:00	3292866
14/08/2022	
5:00	3292866
14/08/2022	
9:00	3292866
14/08/2022	
13:00	3293406
14/08/2022	
17:00	3294419
14/08/2022	
21:00	3294537

15/08/2022	
1:00	3294537
15/08/2022	
5:00	3294907
15/08/2022	
9:00	3295569
15/08/2022	
13:00	3296109
15/08/2022	
17:00	3296109
15/08/2022	
21:00	3296109
16/08/2022	
1:00	3296295
16/08/2022	
5:00	3296369
16/08/2022	
9:00	3297980
16/08/2022	
13:00	3297980
16/08/2022	
17:00	3298405
16/08/2022	
21:00	3298745
17/08/2022	
1:00	3298940
17/08/2022	
5:00	3298940
17/08/2022	
9:00	3299250

17/08/2022	
13:00	3299540
17/08/2022	
17:00	3300850
17/08/2022	
21:00	3300850
18/08/2022	
1:00	3300850
18/08/2022	
5:00	3300998
18/08/2022	
9:00	3300998
18/08/2022	
13:00	3301440
18/08/2022	
17:00	3301440
18/08/2022	
21:00	3301497
19/08/2022	
1:00	3301985
19/08/2022	
5:00	3302448
19/08/2022	
9:00	3302448
19/08/2022	
13:00	3302448
19/08/2022	
17:00	3302505
19/08/2022	
21:00	3302982

20/08/2022	
1:00	3302982
20/08/2022	
5:00	3303157
20/08/2022	
9:00	3303670
20/08/2022	
13:00	3303780
20/08/2022	
17:00	3303780
20/08/2022	
21:00	3303780
21/08/2022	
1:00	3304136
21/08/2022	
5:00	3304499
21/08/2022	
9:00	3304707
22/08/2022	
1:00	3304808
22/08/2022	
5:00	3304808
22/08/2022	
9:00	3305116
22/08/2022	
13:00	3305767
22/08/2022	
17:00	3305772
22/08/2022	
21:00	3305773

23/08/2022	
1:00	3305773
23/08/2022	
5:00	3306088
23/08/2022	
9:00	3306459
23/08/2022	
13:00	3306599
23/08/2022	
17:00	3306599
23/08/2022	
21:00	3306652
24/08/2022	
1:00	3306780
24/08/2022	
5:00	3306780
24/08/2022	
9:00	3307521
24/08/2022	
13:00	3307896
24/08/2022	
17:00	3308024
24/08/2022	
21:00	3308219
25/08/2022	
1:00	3309107
25/08/2022	
5:00	3309107
25/08/2022	
9:00	3309107

25/08/2022	
13:00	3309107
25/08/2022	
17:00	3309271
25/08/2022	
21:00	3309544
26/08/2022	
1:00	3310210
26/08/2022	
5:00	3310432
26/08/2022	
9:00	3310432
26/08/2022	
13:00	3310703
26/08/2022	
17:00	3310857
26/08/2022	
21:00	3311288
27/08/2022	
1:00	3311289
27/08/2022	
5:00	3311498
27/08/2022	
9:00	3312888
27/08/2022	
13:00	3312888
27/08/2022	
17:00	3313196
27/08/2022	
21:00	3313589

28/08/2022	
1:00	3313589
28/08/2022	
5:00	3313987
28/08/2022	
9:00	3313987
28/08/2022	
13:00	3314279
28/08/2022	
17:00	3314279
28/08/2022	
21:00	3314321
29/08/2022	
1:00	3314775
29/08/2022	
5:00	3315224
29/08/2022	
9:00	3315286
30/08/2022	
5:00	3315294
30/08/2022	
9:00	3315908
30/08/2022	
13:00	3316020
30/08/2022	
17:00	3316020
30/08/2022	
21:00	3316020
31/08/2022	
1:00	3316020

31/08/2022	
5:00	3316204
31/08/2022	
9:00	3316910
31/08/2022	
13:00	3317109
31/08/2022	
17:00	3317109
31/08/2022	
21:00	3317109
01/09/2022	
1:00	3317593
01/09/2022	
5:00	3317828
01/09/2022	
9:00	3317829
01/09/2022	
13:00	3318119
02/09/2022	
1:00	3319254
02/09/2022	
5:00	3319376
02/09/2022	
9:00	3319421
02/09/2022	
13:00	3319680
03/09/2022	
1:00	3321119
03/09/2022	
5:00	3321514

03/09/2022	
9:00	3321791
03/09/2022	
13:00	3322533
04/09/2022	
0:00	3322734
04/09/2022	
4:00	3322921
04/09/2022	
8:00	3322921
05/09/2022	
0:00	3323000
05/09/2022	
4:00	3323707
05/09/2022	
8:00	3324204
05/09/2022	
12:00	3324500
05/09/2022	
16:00	3324551
05/09/2022	
20:00	3324624
06/09/2022	
0:00	3325100
06/09/2022	
20:00	3325390
07/09/2022	
0:00	3325495
07/09/2022	
4:00	3325495

07/09/2022	
8:00	3326312
07/09/2022	
12:00	3326675
07/09/2022	
16:00	3326682
07/09/2022	
20:00	3326682
08/09/2022	
0:00	3327620
08/09/2022	
4:00	3327692
08/09/2022	
8:00	3327693
08/09/2022	
12:00	3327693
08/09/2022	
16:00	3327749
08/09/2022	
20:00	3328482
09/09/2022	
0:00	3328765
09/09/2022	
4:00	3328765
09/09/2022	
8:00	3328774
09/09/2022	
12:00	3328774
09/09/2022	
16:00	3328998

09/09/2022	
20:00	3328998
10/09/2022	
0:00	3329485
10/09/2022	
1:00	3330216
10/09/2022	
4:00	3330216
10/09/2022	
5:00	3330216
10/09/2022	
9:00	3330217
10/09/2022	
13:00	3330217
10/09/2022	
17:00	3331307
10/09/2022	
21:00	3331307
11/09/2022	
2:00	3331307
11/09/2022	
6:00	3331307
11/09/2022	
10:00	3331441
11/09/2022	
14:00	3331589
11/09/2022	
18:00	3331872
11/09/2022	
22:00	3331872

12/09/2022	
2:00	3331872
12/09/2022	
6:00	3332034
12/09/2022	
10:00	3332451
12/09/2022	
14:00	3332631
12/09/2022	
18:00	3332891
12/09/2022	
22:00	3332972
13/09/2022	
2:00	3333247
13/09/2022	
6:00	3333552
13/09/2022	
10:00	3333756
13/09/2022	
14:00	3334282
13/09/2022	
18:00	3334360
13/09/2022	
22:00	3334360
14/09/2022	
2:00	3334372
14/09/2022	
6:00	3334800
14/09/2022	
10:00	3334800

14/09/2022	
14:00	3335618
14/09/2022	
18:00	3335618
14/09/2022	
22:00	3335700
15/09/2022	
2:00	3336027
15/09/2022	
6:00	3336511
15/09/2022	
10:00	3336690
15/09/2022	
14:00	3336690
15/09/2022	
18:00	3336880
15/09/2022	
22:00	3337100
16/09/2022	
2:00	3337328
16/09/2022	
6:00	3337466
16/09/2022	
10:00	3337746
16/09/2022	
14:00	3338250
16/09/2022	
18:00	3338812
16/09/2022	
22:00	3338812

17/09/2022	
2:00	3338812
17/09/2022	
6:00	3339162
17/09/2022	
10:00	3340464
17/09/2022	
14:00	3340464
17/09/2022	
18:00	3340464
17/09/2022	
22:00	3340464
18/09/2022	
2:00	3340464
18/09/2022	
6:00	3341705
18/09/2022	
10:00	3341705
18/09/2022	
14:00	3341705
18/09/2022	
18:00	3341705
18/09/2022	
22:00	3341705
19/09/2022	
2:00	3341705
19/09/2022	
6:00	3341705
19/09/2022	
10:00	3341705

19/09/2022	
14:00	3341984
19/09/2022	
18:00	3342498
19/09/2022	
22:00	3342498
20/09/2022	
2:00	3342498
20/09/2022	
6:00	3342498
20/09/2022	
10:00	3342498
20/09/2022	
14:00	3342498
20/09/2022	
18:00	3342523
20/09/2022	
22:00	3343536
21/09/2022	
2:00	3343536
21/09/2022	
6:00	3343914
21/09/2022	
22:00	3343914
22/09/2022	
2:00	3344364
22/09/2022	
6:00	3346063
22/09/2022	
10:00	3346100

22/09/2022	
14:00	3346100
22/09/2022	
18:00	3346100
22/09/2022	
22:00	3346415
23/09/2022	
2:00	3346964
23/09/2022	
6:00	3346964
23/09/2022	
10:00	3347363
23/09/2022	
14:00	3347551
24/09/2022	
2:00	3348486
24/09/2022	
6:00	3348857
24/09/2022	
10:00	3348857
24/09/2022	
14:00	3348857
25/09/2022	
2:00	3349979
25/09/2022	
6:00	3350308
25/09/2022	
10:00	3350308
25/09/2022	
14:00	3350438

26/09/2022	
2:00	3351136
26/09/2022	
6:00	3351136
26/09/2022	
14:00	3351136
26/09/2022	
18:00	3351136
26/09/2022	
22:00	3352264
27/09/2022	
2:00	3352298
27/09/2022	
6:00	3352718
27/09/2022	
14:00	3353622
28/09/2022	
2:00	3353957
28/09/2022	
6:00	3354132
28/09/2022	
10:00	3354399
29/09/2022	
2:00	3354403
29/09/2022	
6:00	3354675
29/09/2022	
10:00	3354675
29/09/2022	
14:00	3354840

29/09/2022	
18:00	3354988
29/09/2022	
22:00	3355165
30/09/2022	
2:00	3355475
30/09/2022	
6:00	3355950
30/09/2022	
10:00	3355950
30/09/2022	
14:00	3355950
30/09/2022	
18:00	3356624
30/09/2022	
22:00	3356838
01/10/2022	
2:00	3356838
01/10/2022	
6:00	3357000
01/10/2022	
10:00	3357541
01/10/2022	
14:00	3357959
01/10/2022	
18:00	3357959
01/10/2022	
22:00	3357959
02/10/2022	
2:00	3358477

02/10/2022	
6:00	3358820
02/10/2022	
10:00	3358820
02/10/2022	
14:00	3358820
02/10/2022	
18:00	3358820
02/10/2022	
22:00	3358820
03/10/2022	
2:00	3359800
03/10/2022	
6:00	3359863
03/10/2022	
10:00	3359863
03/10/2022	
14:00	3359863
03/10/2022	
18:00	3359863
03/10/2022	
22:00	3359910
04/10/2022	
2:00	3360540
04/10/2022	
6:00	3360736
04/10/2022	
10:00	3360736
04/10/2022	
14:00	3360736

04/10/2022	
22:00	3360736
05/10/2022	
1:00	3361032
05/10/2022	
2:00	3361032
05/10/2022	
5:00	3361086
05/10/2022	
6:00	3361086
05/10/2022	
9:00	3361542
05/10/2022	
10:00	3361542
05/10/2022	
13:00	3361609
05/10/2022	
14:00	3361609
05/10/2022	
17:00	3361750
05/10/2022	
18:00	3362082
05/10/2022	
21:00	3362396
06/10/2022	
1:00	3362396
06/10/2022	
5:00	3362971
06/10/2022	
9:00	3363410

06/10/2022	
13:00	3363730
06/10/2022	
17:00	3363730
06/10/2022	
21:00	3363805
07/10/2022	
1:00	3364288
07/10/2022	
5:00	3364583
07/10/2022	
9:00	3364638
07/10/2022	
13:00	3365071
07/10/2022	
17:00	3365357
07/10/2022	
21:00	3366078
08/10/2022	
1:00	3366427
08/10/2022	
5:00	3366674
08/10/2022	
9:00	3367080
08/10/2022	
13:00	3367178
08/10/2022	
17:00	3367641
08/10/2022	
21:00	3368246

09/10/2022	
1:00	3368246
09/10/2022	
5:00	3368246
09/10/2022	
9:00	3368609
09/10/2022	
13:00	3369094
09/10/2022	
17:00	3369304
09/10/2022	
21:00	3369304
10/10/2022	
1:00	3369919
10/10/2022	
5:00	3370305
10/10/2022	
9:00	3370354
10/10/2022	
13:00	3370354
10/10/2022	
17:00	3370448
10/10/2022	
21:00	3370448
11/10/2022	
1:00	3371451
11/10/2022	
5:00	3371451
11/10/2022	
9:00	3371451

11/10/2022	
13:00	3371451
11/10/2022	
17:00	3372316
11/10/2022	
21:00	3372316
12/10/2022	
1:00	3372316
12/10/2022	
5:00	3372316
12/10/2022	
9:00	3373607
12/10/2022	
13:00	3373697
12/10/2022	
17:00	3373788
12/10/2022	
21:00	3373977
13/10/2022	
1:00	3374026
13/10/2022	
5:00	3374450
13/10/2022	
9:00	3375001
13/10/2022	
13:00	3375437
13/10/2022	
17:00	3375437
13/10/2022	
21:00	3375496

14/10/2022	
1:00	3375942
14/10/2022	
5:00	3375942
14/10/2022	
9:00	3376254
14/10/2022	
13:00	3376597
14/10/2022	
17:00	3376637
14/10/2022	
21:00	3376844
15/10/2022	
1:00	3377022
15/10/2022	
5:00	3377128
15/10/2022	
9:00	3377128
15/10/2022	
13:00	3377395
15/10/2022	
17:00	3377669
16/10/2022	
1:00	3377863
16/10/2022	
5:00	3377863
16/10/2022	
9:00	3378217
16/10/2022	
13:00	3378291

16/10/2022	
17:00	3378291
16/10/2022	
21:00	3378347
17/10/2022	
1:00	3378371
17/10/2022	
9:00	3378371
17/10/2022	
13:00	3378677
18/10/2022	
1:00	3379165
18/10/2022	
5:00	3379165
18/10/2022	
9:00	3379615
18/10/2022	
13:00	3380322
19/10/2022	
1:00	3381112
19/10/2022	
5:00	3381112
19/10/2022	
9:00	3381112
19/10/2022	
13:00	3381112
20/10/2022	
1:00	3381145
20/10/2022	
5:00	3381150
20/10/2022	
------------	---------
9:00	3381152
20/10/2022	
13:00	3381152
21/10/2022	
1:00	3382638
21/10/2022	
5:00	3382714
21/10/2022	
9:00	3383450
21/10/2022	
13:00	3383788
22/10/2022	
1:00	3383788
22/10/2022	
5:00	3383842
22/10/2022	
9:00	3384112
22/10/2022	
13:00	3385111
22/10/2022	
17:00	3385120
22/10/2022	
21:00	3385540
23/10/2022	
1:00	3385540
23/10/2022	
5:00	3385674
23/10/2022	
9:00	3386128

23/10/2022	
13:00	3386311
23/10/2022	
17:00	3386408
23/10/2022	
21:00	3386408
24/10/2022	
1:00	3386408
24/10/2022	
5:00	3387070
24/10/2022	
9:00	3387355
24/10/2022	
13:00	3387355
24/10/2022	
17:00	3387355
24/10/2022	
21:00	3387766
25/10/2022	
1:00	3387925
25/10/2022	
5:00	3388575
25/10/2022	
9:00	3388575
25/10/2022	
13:00	3388983
25/10/2022	
17:00	3389468
26/10/2022	
1:00	3389499

26/10/2022	
5:00	3389499
26/10/2022	
9:00	3389499
26/10/2022	
13:00	3389499
26/10/2022	
17:00	3389499
27/10/2022	
1:00	3392043
27/10/2022	
5:00	3392043
27/10/2022	
21:00	3392043
28/10/2022	
1:00	3392363
28/10/2022	
5:00	3392363
28/10/2022	
9:00	3393391
28/10/2022	
13:00	3393391
28/10/2022	
17:00	3393689
28/10/2022	
21:00	3394195
29/10/2022	
1:00	3394367
29/10/2022	
5:00	3396199

29/10/2022	
9:00	3396199
29/10/2022	
13:00	3396234
29/10/2022	
17:00	3396375
30/10/2022	
1:00	3396691
30/10/2022	
5:00	3397118
30/10/2022	
9:00	3397118
30/10/2022	
13:00	3397300
30/10/2022	
17:00	3398100
31/10/2022	
1:00	3398100
31/10/2022	
5:00	3398100
31/10/2022	
9:00	3398100
31/10/2022	
13:00	3398437
31/10/2022	
17:00	3399026
31/10/2022	
21:00	3399026
01/11/2022	
1:00	3399026

01/11/2022	
5:00	3399144
01/11/2022	
9:00	3399377
01/11/2022	
13:00	3399651
01/11/2022	
17:00	3399914
01/11/2022	
21:00	3399914
02/11/2022	
1:00	3399914
02/11/2022	
5:00	3399992
02/11/2022	
9:00	3400282
02/11/2022	
13:00	3400450
02/11/2022	
21:00	3400755
03/11/2022	
1:00	3400755
03/11/2022	
5:00	3401089
03/11/2022	
9:00	3401208
03/11/2022	
13:00	3401462
03/11/2022	
17:00	3401824

03/11/2022	
21:00	3421428
04/11/2022	
1:00	3421428
04/11/2022	
5:00	3421750
04/11/2022	
9:00	3422215
16/11/2022	
1:00	3422290
16/11/2022	
5:00	3422465
16/11/2022	
9:00	3422465
16/11/2022	
13:00	3422611
16/11/2022	
17:00	3422980
16/11/2022	
21:00	3423153
17/11/2022	
1:00	3423153
17/11/2022	
5:00	3423410
17/11/2022	
9:00	3423435
17/11/2022	
13:00	3423466
17/11/2022	
17:00	3423871

17/11/2022	
21:00	3424564
18/11/2022	
1:00	3424897
18/11/2022	
5:00	3425130
18/11/2022	
9:00	3425245
18/11/2022	
13:00	3425673
18/11/2022	
17:00	3425673
18/11/2022	
21:00	3425737
19/11/2022	
1:00	3426617
19/11/2022	
5:00	3426617
19/11/2022	
9:00	3426617
19/11/2022	
13:00	3426617
19/11/2022	
17:00	3426617
19/11/2022	
21:00	3426678
20/11/2022	
5:00	3426715
20/11/2022	
9:00	3426718

25/11/2022	
21:00	3426718
26/11/2022	
1:00	3426718
26/11/2022	
5:00	3426718
26/11/2022	
9:00	3427334
26/11/2022	
13:00	3427645
26/11/2022	
17:00	3427645
26/11/2022	
21:00	3428075
27/11/2022	
1:00	3428087
27/11/2022	
5:00	3428087
27/11/2022	
9:00	3428648
27/11/2022	
13:00	3428907
27/11/2022	
17:00	3429439
27/11/2022	
21:00	3429618
28/11/2022	
1:00	3429618
28/11/2022	
5:00	3429618

28/11/2022	
9:00	3429618
28/11/2022	
13:00	3430198
28/11/2022	
17:00	3430450
28/11/2022	
21:00	3430800
29/11/2022	
1:00	3431234
29/11/2022	
5:00	3431234
29/11/2022	
9:00	3431356
29/11/2022	
13:00	3431456
30/11/2022	
5:00	3476221
30/11/2022	
9:00	3476730
30/11/2022	
13:00	3476758
30/11/2022	
17:00	3476980
01/01/2023	
1:00	3477836
01/01/2023	
5:00	3477902
01/01/2023	
9:00	3478450

01/01/2023	
13:00	3478931
02/01/2023	
1:00	3479050
02/01/2023	
5:00	3479095
02/01/2023	
9:00	3479325
02/01/2023	
13:00	3479325
03/01/2023	
1:00	3479325
03/01/2023	
5:00	3479342
03/01/2023	
9:00	3479468
03/01/2023	
13:00	3479550
03/01/2023	
17:00	3479610
04/01/2023	
1:00	3479695
04/01/2023	
5:00	3479741
04/01/2023	
9:00	3479768
04/01/2023	
13:00	3479832
04/01/2023	
17:00	3480098

04/01/2023	
21:00	3480783
05/01/2023	
1:00	3481450
05/01/2023	
5:00	3482121
05/01/2023	
9:00	3482183
05/01/2023	
13:00	3482183
05/01/2023	
17:00	3482183
05/01/2023	
21:00	3482695
06/01/2023	
1:00	3483385
06/01/2023	
5:00	3483585
06/01/2023	
9:00	3484001
06/01/2023	
13:00	3484251
06/01/2023	
17:00	3484358
06/01/2023	
21:00	3484655
07/01/2023	
1:00	3484952
07/01/2023	
5:00	3485010

07/01/2023	
9:00	3486112
07/01/2023	
13:00	3486534
07/01/2023	
17:00	3486639
07/01/2023	
21:00	3486639
08/01/2023	
1:00	3487229
08/01/2023	
5:00	3487682
08/01/2023	
9:00	3487827
08/01/2023	
13:00	3487827
08/01/2023	
17:00	3488538
08/01/2023	
21:00	3488625
09/01/2023	
1:00	3489042
09/01/2023	
5:00	3489295
09/01/2023	
9:00	3489295
09/01/2023	
13:00	3489540
09/01/2023	
17:00	3490635

09/01/2023	
21:00	3490635
10/01/2023	
1:00	3491009
10/01/2023	
5:00	3491325
10/01/2023	
9:00	3491541
10/01/2023	
13:00	3491890
10/01/2023	
17:00	3492549
10/01/2023	
21:00	3493237
11/01/2023	
1:00	3493237
11/01/2023	
5:00	3493287
11/01/2023	
9:00	3493988
11/01/2023	
13:00	3494511
11/01/2023	
17:00	3494690
12/01/2023	
1:00	3494812
12/01/2023	
5:00	3494812
12/01/2023	
9:00	3494812

12/01/2023	
13:00	3495206
12/01/2023	
17:00	3495206
13/01/2023	
1:00	3495206
13/01/2023	
5:00	3496237
13/01/2023	
9:00	3496333
13/01/2023	
13:00	3496334
13/01/2023	
17:00	3496396
14/01/2023	
1:00	3496452
14/01/2023	
5:00	3496756
14/01/2023	
9:00	3496815
14/01/2023	
13:00	3497864
14/01/2023	
17:00	3497978
15/01/2023	
1:00	3499120
15/01/2023	
5:00	3499233
15/01/2023	
9:00	3499569

15/01/2023	
13:00	3499664
15/01/2023	
17:00	3499782
15/01/2023	
21:00	3499888
16/01/2023	
1:00	3500322
16/01/2023	
5:00	3501711
16/01/2023	
9:00	3501712
16/01/2023	
13:00	3502480
16/01/2023	
17:00	3502480
16/01/2023	
21:00	3502480
17/01/2023	
1:00	3502750
17/01/2023	
5:00	3503666
17/01/2023	
9:00	3504477
17/01/2023	
13:00	3504650
17/01/2023	
17:00	3504842
18/01/2023	
1:00	3506493

18/01/2023	
5:00	3506890
18/01/2023	
9:00	3507255
18/01/2023	
13:00	3507459
18/01/2023	
21:00	3507459
19/01/2023	
1:00	3507870
19/01/2023	
5:00	3509424
19/01/2023	
9:00	3509424
19/01/2023	
13:00	3509775
19/01/2023	
17:00	3509775
19/01/2023	
21:00	3509775
20/01/2023	
1:00	3510653
20/01/2023	
5:00	3510835
20/01/2023	
9:00	3510835
20/01/2023	
13:00	3511583
20/01/2023	
21:00	3511583

21/01/2023	
1:00	3511607
21/01/2023	
5:00	3511943
21/01/2023	
9:00	3511943
21/01/2023	
13:00	3511943
21/01/2023	
17:00	3511943
21/01/2023	
21:00	3512035
22/01/2023	
1:00	3512330
22/01/2023	
5:00	3513094
22/01/2023	
9:00	3513094
22/01/2023	
13:00	3513476
22/01/2023	
17:00	3513597
22/01/2023	
21:00	3513870
23/01/2023	
1:00	3516104
23/01/2023	
5:00	3516104
23/01/2023	
9:00	3516344

23/01/2023	
13:00	3516599
23/01/2023	
17:00	3516890
24/01/2023	
1:00	3517250
24/01/2023	
5:00	3518223
24/01/2023	
9:00	3518223
24/01/2023	
13:00	3518223

Anexo G. Tabla de resultados de los experimentos para la determinación de parámetros cinéticos de la reacción de cloruro férrico con hierro

	Experimento 1												
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC					
(min)	(g)	Fe	ΔMol Fe	FeCL3	FeCl3	FeC13	In©	FeCl3	r	In(-r)			
0	2,962700	0,000000	0,000000	0,000000	0,158750	0,635000	0,635000 -0,454130 0,000000 -		-				
30	2,014500	0,948200	0,016979	0,033958	0,124792	0,499167	-0,694815	0,135821	0,000075	-9,491960			
60	1,259000	0,755500	0,013529	0,027057	0,097735	0,390939	-0,939204	0,108218	0,000060	-9,719145			
										-			
90	0,708300	0,550700	0,009861	0,019722	0,078012	0,312049	-1,164595	0,078883	0,000044	10,035335			
										-			
120	0,240900	0,467400	0,008370	0,016739	0,061273	0,245092	-1,406121	0,066951	0,000037	10,199340			
	Experimento 2												
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC					
(min)	(g)	Fe	ΔMol Fe	FeCL3	FeCl3	FeC13	In©	FeCl3	r	In(-r)			
0	3,158400	0,000000	0,000000	0,000000	0,158750	0,635000	-0,454130	0,000000					
30	2,126800	1,031600	0,018471	0,036942	0,121808	0,487233	-0,719013	0,147767	0,000082	-9,407659			
60	1,409400	0,717400	0,012845	0,025690	0,096118	0,384472	-0,955885	0,102761	0,000057	-9,770892			
90	1.045200	0.364200	0.006521	0.013042	0.083076	0 332303	1 101707	0.052168	0.000029	-			
90	1,043200	0,304200	0,000321	0,013042	0,083070	0,332303	-1,101707	0,032108	0,000029	10,440022			
120	0,624200	0,421000	0,007538	0,015076	0,068000	0,271999	-1,301957	0,060304	0,000034	- 10,303892			
		I	I	I	Experi	mento 3	I	I	I				
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC					
(min)	(g)	Fe	ΔMol Fe	FeCL3	FeCl3	FeC13	In©	FeCl3	r	In(-r)			
0	3,172600	0,000000	0,000000	0,000000	0,158750	0,635000	-0,454130	0,000000					
30	1,810500	1,362100	0,024389	0,048777	0,109973	0,439892	-0,821227	0,195108	0,000108	-9,129742			
60	0,957800	0,852700	0,015268	0,030535	0,079438	0,317750	-1,146490	0,122141	0,000068	-9,598117			
										-			
90	0,440000	0,517800	0,009271	0,018543	0,060895	0,243580	-1,412309	0,074170	0,000041	10,096936			
										-			
105	0,213200	0,226800	0,004061	0,008122	0,052773	0,211093	-1,555456	0,032487	0,000018	10,922457			
										-			
120	0,014400	0,198800	0,003560	0,007119	0,045654	0,182617	-1,700365	0,028476	0,000016	11,054226			
					Experi	mento 4							

t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC		
(min)	(g)	Fe	$\Delta Mol \ Fe$	FeCL3	FeC13	FeCl3	In©	FeCl3	r	In(-r)
0	3,169800	0,000000	0,000000	0,000000	0,158750	0,635000	-0,454130	0,000000		
30	1,989100	1,180700	0,021141	0,042281	0,116469	0,465876	-0,763837	0,169124	0,000094	-9,272662
										-
60	1,703100	0,286000	0,005121	0,010242	0,106227	0,424909	-0,855881	0,040967	0,000023	10,690533
90	0,369000	1,334100	0,023887	0,047774	0,058453	0,233811	-1,453242	0,191098	0,000106	-9,150513
					Experin	mento 5			· · · · · · · · · · · · · · · · · · ·	
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC		
(min)	(g)	Fe	∆Mol Fe	FeCL3	FeCl3	FeC13	In©	FeCl3	r	In(-r)
0	4,110000	0,000000	0,000000	0,000000	0,319051	1,276202	0,243889	0,000000		
30	3,477400	0,632600	0,011327	0,022654	0,296397	1,185588	0,170239	0,090614	0,000050	-9,896687
60	2,042600	1,434800	0,025690	0,051380	0,245017	0,980066	-0,020135	0,205522	0,000114	-9,077744
90	0,924800	1,117800	0,020014	0,040029	0,204988	0,819952	-0,198510	0,160115	0,000089	-9,327407
										-
120	0,410700	0,514100	0,009205	0,018410	0,186578	0,746311	-0,292612	0,073640	0,000041	10,104107
					Experin	mento 6				
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC		
(min)	(g)	Fe	∆Mol Fe	FeCL3	FeCl3	FeCl3	In©	FeCl3	r	In(-r)
0	4,4277	0,0000	0,0000	0,0000	0,3191	1,2762	0,2439	0,0000		
30	3,3111	1,1166	0,0200	0,0400	0,2791	1,1163	0,1100	0,1599	0,000089	-9,328482
60	2,3099	1,0012	0,0179	0,0359	0,2432	0,9728	-0,0275	0,1434	0,000080	-9,437571
90	1,3559	0,9540	0,0171	0,0342	0,2090	0,8362	-0,1789	0,1367	0,000076	-9,485862
120	0,5657	0,7902	0,0141	0,0283	0,1808	0,7230	-0,3243	0,1132	0,000063	-9,674239
					Experin	mento 7				
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC		
(min)	(g)	Fe	ΔMol Fe	FeCL3	FeC13	FeCl3	In©	FeC13	r	In(-r)
0	4,2570	0,0000	0,0000	0,0000	0,3191	1,2762	0,2439	0,0000		
30	2,0198	2,2372	0,0401	0,0801	0,2389	0,9557	-0,0453	0,3205	0,000178	-8,633545

										-		
60	1,7784	0,2414	0,0043	0,0086	0,2303	0,9212	-0,0821	0,0346	0,000019	10,860070		
90	0,4752	1,3032	0,0233	0,0467	0,1836	0,7345	-0,3086	0,1867	0,000104	-9,173947		
										-		
120	0,0000	0,4752	0,0085	0,0170	0,1666	0,6664	-0,4058	0,0681	0,000038	10,182789		
Experimento 8												
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC				
(min)	(g)	Fe	$\Delta Mol \ Fe$	FeCL3	FeCl3	FeCl3	In©	FeCl3	r	In(-r)		
0	3,9512	0,0000	0,0000	0,0000	0,3191	1,2762	0,2439	0,0000				
30	2,5730	1,3782	0,0247	0,0494	0,2697	1,0788	0,0758	0,1974	0,000110	-9,117992		
60	1,2833	1,2897	0,0231	0,0462	0,2235	0,8941	-0,1120	0,1847	0,000103	-9,184360		
90	0,2145	1,0688	0,0191	0,0383	0,1852	0,7410	-0,2998	0,1531	0,000085	-9,372233		
										-		
105	0,0000	0,2145	0,0038	0,0077	0,1776	0,7102	-0,3422	0,0307	0,000017	10,978215		
					Experi	mento 9						
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC				
(min)	(g)	Fe	ΔMol Fe	FeCL3	FeCl3	FeCl3	In©	FeC13	r	In(-r)		
0	4,5575	0,0000	0,0000	0,0000	0,6396	2,5586	0,9394	0,0000				
30	3,7425	0,8150	0,0146	0,0292	0,6105	2,4418	0,8927	0,1167	0,000065	-9,643337		
60	2,6757	1,0668	0,0191	0,0382	0,5723	2,2890	0,8281	0,1528	0,000085	-9,374106		
90	1,1557	1,5200	0,0272	0,0544	0,5178	2,0713	0,7282	0,2177	0,000121	-9,020060		
120	0,5358	0,6199	0,0111	0,0222	0,4956	1,9825	0,6844	0,0888	0,000049	-9,916967		
					Experin	nento 10						
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC				
(min)	(g)	Fe	$\Delta Mol \ Fe$	FeCL3	FeCl3	FeCl3	In©	FeCl3	r	In(-r)		
0	4,3284	0,0000	0,0000	0,0000	0,6396	2,5586	0,9394	0,0000				
30	3,5813	0,7471	0,0134	0,0268	0,6129	2,4516	0,8967	0,1070	0,000059	-9,730326		
60	2,3438	1,2375	0,0222	0,0443	0,5686	2,2743	0,8217	0,1773	0,000098	-9,225677		
90	1,1790	1,1648	0,0209	0,0417	0,5269	2,1074	0,7455	0,1668	0,000093	-9,286221		
120	0,1995	0,9795	0,0175	0,0351	0,4918	1,9671	0,6766	0,1403	0,000078	-9,459483		
		1	L		1	1		1	1			

	Experimento 11											
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC				
(min)	(g)	Fe	ΔMol Fe	FeCL3	FeCl3	FeCl3	In©	FeCl3	r	In(-r)		
0	4,9140	0,0000	0,0000	0,0000	0,6396	2,5586	0,9394	0,0000				
30	3,5480	1,3660	0,0245	0,0489	0,5907	2,3629	0,8599	0,1957	0,000109	-9,126883		
60	1,6255	1,9225	0,0344	0,0688	0,5219	2,0875	0,7360	0,2754	0,000153	-8,785144		
90	0,3534	1,2721	0,0228	0,0456	0,4763	1,9053	0,6446	0,1822	0,000101	-9,198101		
										-		
120	0,0000	0,3534	0,0063	0,0127	0,4637	1,8547	0,6177	0,0506	0,000028	10,478925		
					Experir	nento 12			•			
t	Masa Fe	ΔMasa		ΔMol	Mol	Concentración		ΔC				
(min)	(g)	Fe	ΔMol Fe	FeCL3	FeC13	FeC13	In©	FeCl3	r	In(-r)		
0	4,7680	0,0000	0,0000	0,0000	0,6396	2,5586	0,9394	0,0000				
30	2,6740	2,0940	0,0375	0,0750	0,5647	2,2586	0,8148	0,2999	0,000167	-8,699694		
45	1,4505	1,2235	0,0219	0,0438	0,5208	2,0834	0,7340	0,1753	0,000097	-9,237054		
60	0,6988	0,7517	0,0135	0,0269	0,4939	1,9757	0,6809	0,1077	0,000060	-9,724188		
75	0,1192	0,5796	0,0104	0,0208	0,4732	1,8927	0,6380	0,0830	0,000046	-9,984187		
										-		
90	0,0000	0,1192	0,0021	0,0043	0,4689	1,8756	0,6289	0,0171	0,000009	11,565722		

Anexo H. Gráficos para la determinación de las constantes de velocidad de reacción del

laboratorio

Anexo I. Tabla de constantes de la constante de velocidad utilizando la ecuación de

Arrhenius

Experimento	T (K)	1/T (K-1)	k (min-1)	In(k)	Ea	A (min-1)	A (s-1)
1	323	0,00309598	0,0079	-4,84089252	7018,76748	0,10782592	0,0017971
3	358	0,0027933	0,0102	-4,58536756			
2	323	0,00309598	0,0065	-5,0359531	16145,3422	2,65452249	0,04424204
4	358	0,0027933	0,0117	-4,44816644			
5	323	0,00309598	0,0048	-5,33913936	2198,61556	0,00748065	0,00012468
7	358	0,0027933	0,0052	-5,25909665			
6	323	0,00309598	0,0048	-5,33913936	5198,10506	0,01370346	0,00022839
8	358	0,0027933	0,0058	-5,14989736			
9	323	0,00309598	0,0022	-6,11929792	7588,13624	0,01017387	0,00016956
11	358	0,0027933	0,0029	-5,84304454			
10	323	0,00309598	0,0023	-6,07484616	12306,3569	0,02756263	0,00045938
12	358	0,0027933	0,0036	-5,62682143			

Anexo J. Tabla de densidad, contenido de cloruro ferroso y férrico en los meses de noviembre y diciembre del año 2017

	NOMBRE		NIVEL		DENSID			
FECHA	DEL OPERAD	HORA	630	630	AD gr/cm3	Temperat ura	Fe2 %	Fe3 %
	OR		-S1	-S2	8-,			
14/11/20								
17	R. Herrera	23:00		90	1,380	58	9,71	4,85
15/11/20	Felipe							
17	Parra	0:30		95	1,420	54	10,7	4,9
15/11/20								
17	Rherrera	22.00		84	1,400	52	9,97	3,98
16/11/20								
17	J.Beltrán	10:00		70	1,390	48	9,13	4,89
16/11/20								
17	J.Beltrán	13:40		83	1,395	46	9,18	4,92
16/11/20							11,7	
17	Rherrera	17.00		95	1,420	52	9	3,93
17/11/20	Felipe							
17	Parra	7:10	89		1,390	54	11,2	4,82
17/11/20							10,0	
17	J.Beltrán	9:10	92		1,415	49	9	5,25
17/11/20							12,0	
17	RHerrera	21.40	85		1,390	47	5	4,01
17/11/20							10,2	
17	R Herrera	23.00	95		1,420	45	2	5,5
20/11/20	Felipe							
17	Parra	0:00	93		1,415	58	7,72	8,12
21/11/20							12,4	
17	Rherrera	11.00	85		1,390	45	5	2,41

21/11/20							12,9	
17	Rherrera	12.40	95		1,420	47	7	2,35
							11,8	
	J.Beltrán	3:10	92		1,390	46	2	2,87
22/11/20							11,1	
17	Rherrera	16.50	85		1,400	56	7	4,78
22/11/20	Nelson						10,7	
17	Silva	18:00	93	93 1,400		60	7	4,79
22/11/20	Nelson							
17	Silva	19:00	95		1,405	60	9,57	6,06
22/11/20	Nelson							
17	Silva	20:05	97		1,420	59	9,05	6,92
23/11/20								
17	Rherrera	09.00	84		1,360	53	6,15	8,21
23/11/20		11,30						
17	Rherrera	91			1,380	53	8,09	6,47
23/11/20								
17	Rherrera	13.00	95		1,410	48	9,11	6,3
24/11/20								
17	J.Beltrán	1:18	94		1,385	49	9,24	5,1
24/11/20								
17	J.Beltrán	2:30	95		1,395	48	9,34	5,2
24/11/20	Felipe							
17	Parra	20:50	89		1,400	56	8,77	6,38
24/11/20	Felipe							
17	Parra	21:35	91		1,420	57	8,65	7,47
25/11/20								
17	Rherrera	11:00	89		1,360	51	7,86	6,57
25/11/20								
17	Rherrera	13:00	91		1,370	47	8,15	6,57

25/11/20								
17	Rherrera	15:10	94		1,405	57	6,95	7,97
29/11/20	Felipe							
17	Parra	22:50	88		1,380	58	9,22	5,31
30/11/20							12,6	
17	Rherrera	01.00	92		1,410	50	7	3,16
30/11/20	Nelson							
17	Silva	12:15	89		1,395	54	9,61	5,61
30/11/20	Nelson							
17	Silva	13:15	90		1,405	64	9,54	5,8
30/11/20	Nelson							
17	Silva	14:05	93		1,420	68	9,83	6,06
01/12/20	Nelson							
17	Silva	14:15	87		1,400	48	8,78	6,38
01/12/20	Nelson							
17	Silva	15:15	90		1,410	49	9,9	5,55
01/12/20	Nelson							
17	Silva	15:35	93		1,420	47	9,83	6,14
02/12/20								
17	J.Beltrán	2:30		90	1,380	48	9,25	5,19
02/12/20								
17	J.Beltrán	3:10		92	1,390	47	9,31	5,31
02/12/20								
17	J.Beltrán	3:45		94	1,418	48	9,69	6,27
02/12/20	Felipe							
17	Parra	17:40		88	1,370	48	8,44	5,81
02/12/20	Felipe							
17	Parra	18:55		88	1,405	50	8,47	6,78
03/12/20	Felipe							
17	Parra	12:30		92	1,415	47	9,17	6,79

04/12/20	Nelson							
17	Silva	1:00		90	1,390	48	9,44	5,87
04/12/20	Nelson							
17	Silva	2:00		91	1,405	48	9,24	6,11
04/12/20	Nelson							
17	Silva	3:00		93	1,420	49	7,47	8,5
05/12/20	Felipe							
17	Parra	10:50		93	1,415	46	8,95	6,96
05/12/20	Nelson							
17	Silva	3:30		85	1,380	49	9,31	5,1
05/12/20	Nelson							
17	Silva	4:30		87	1,395	48	8,81	6,25
05/12/20	Nelson							
17	Silva	5:30		88	1,405	52	8,35	7,16
06/12/20							12,1	
17	Rherrera	23.30		86	1,38	41	4	2,42
07/12/20	Nelson						11,1	
17	Silva	1:00		90	1,405	42	3	3,98
07/12/20	Nelson							
17	Silva	2:10		93	1,42	47	9,83	6,06
07/12/20								
17	Rherrera	17.00		89	1,39	40	7,83	6,83
07/12/20								
17	Rherrera	18.00		94	1,41	41	8,71	6,33
08/12/20	Nelson							
17	Silva	6:00		84	1,41	41	10,3	5,07
08/12/20	Nelson							
17	Silva	7:30		93	1,415	40	9,67	6,16
08/12/20							12,0	
17	RHerrera	22.30		85	1,39	44	5	2,41

10/12/20						10,1	
17	J.Beltrán	8:40	92	1,4	47	2	4,91
10/12/20						13,0	
17	RHerrera	23.00	87	1,37	50	4	2,44
11/12/20						12,1	
17	Rherrera	17.00	91	1,38	51	4	2,42
14/12/20	Nelson					11,4	
17	Silva	19:00	87	1,37	44	1	3,26
14/12/20	Nelson					10,4	
17	Silva	20:00	90	1,39	44	5	4,82
14/12/20	Nelson						
17	Silva	21:15	93	1,42	46	9,44	6,37
14/12/20							
17	J.Beltrán	6:40	80	1,41	45	9,12	6,12
14/12/20							
17	J.Beltrán	7:30	85	1,413	46	9,16	6,13
15/12/20						10,1	
17	Rherrera	09.00	91	1,38	45	1	4,85
15/12/20						10,4	
17	Rherrera	10.00	93	1,39	48	4	4,82
15/12/20						11,4	
17	Rherrera	11	94	1,415	52	6	3,94
15/12/20	Nelson					10,4	
17	Silva	21:00	85	1,395	45	1	4,8
15/12/20	Nelson						
17	Silva	22:00	89	1,405	44	9,94	5,57
15/12/20	Nelson						
17	Silva	23:00	93	1,42	45	9,44	6,45
16/12/20						11,6	
17	Rherrera	11.00	87	1,39	51	5	3,21

16/12/20							11,9	
17	Rherrera	13.00		95	1,4	53	6	3,19
17/12/20	Nelson						11,3	
17	Silva	3:00	87		1,375	52	7	3,25
17/12/20	Nelson						10,1	
17	Silva	4:00	91		1,38	51	2	4,86
17/12/20	Nelson							
17	Silva	5:35	93		1,42	52	9,44	6,37
18/12/20							10,0	
17	Rherrera	19.00		85	1,39	44	4	4,17
18/12/20	Felipe							
17	Parra	21:15		95	1,415	43	9,67	6,15
19/12/20							11,0	
17	Rherrera	13.00		95	1,41	54	9	3,96
20/12/20	Felipe							
17	Parra	2:30	90		1,38	46	9,67	5,21
20/12/20	Felipe							
17	Parra	3:40	92		1,39	47	9,36	5,58
20/12/20	Felipe							
17	Parra	5:25	95		1,415	44	9,75	5,92
20/12/20	Nelson						10,4	
17	Silva	9:00	20		1,34	42	2	2,92
20/12/20	Nelson							
17	Silva	11:00	32		1,33	47	9,74	2,69
20/12/20	Nelson							
17	Silva	13:00	53		1,32	50	9,65	2,62
20/12/20	Nelson							
17	Silva	14:00	65		1,31	48	9,55	2,13
20/12/20	Nelson							
17	Silva	15:30	80		1,275	49	8,54	2,19

20/12/20	Nelson						
17	Silva	17:30	83	1,3	45	9,99	2,63
20/12/20	Nelson						
17	Silva	18:30	87	1,32	46	8,89	2,88
20/12/20	Nelson					10,1	
17	Silva	19:30	89	1,34	46	3	2,58
20/12/20	Felipe					10,2	
17	Parra	20:30	91	1,345	45	1	3,32
20/12/20	Felipe						
17	Parra	21:30	93	1,365	45	9,86	4,04
20/12/20	Felipe					10,6	
17	Parra	23:00	95	1,38	46	4	4,21
		1:00	95				
28/12/20	Felipe						
17	Parra	10:40	10		35		
28/12/20	Felipe						
17	Parra	11:40	30	1,295	50	9,09	3,29
28/12/20	Felipe						
17	Parra	12:40	46	1,23	46	7,94	1,62
28/12/20	Felipe						
17	Parra	13:40	52	1,23			
28/12/20	Felipe						
17	Parra	14:40	59	1,21	45	7,24	1,37
28/12/20	Felipe						
17	Parra	16:40	62	1,27	50	8,79	3,95
28/12/20	Felipe					9,71	
17	Parra	17:40	75	1,265	51	3	3,5
28/12/20	Felipe						
17	Parra	19:40	80	1,29	52	9,13	3,62
29/12/20	Nelson						
17	Silva	3:30	94	1,42	48	8,65	7,32

05/01/20	Nelson						13,2	
18	Silva	22:25	90		1,41	20	7	2,22
06/01/20	Nelson						11,5	
18	Silva	11:10	82		1,41	20	7	3,33
08/01/20							11,5	
18	RHerrera	14.50		93	1,4	54	6	3,98
08/01/20							11,4	
18	RHerrera	15:50		95	1,41	54	9	4,36
09/10/20							11,1	
18	J.Beltrán	5:30		93	1,405	40	8	4,51
13/10/20							12,8	
18	J.Beltrán	3:30		82	1,41	50	9	2,52
15/01/20	Nelson							
18	Silva	16:10		92	1,41	55	12	3,93
17/01/20	Nelson							
18	Silva	11:00		89	1,4	47	9,7	5,55
17/01/20	Nelson						11,0	
18	Silva	11:30		90	1,41	49	9	5,15

Anexo K.	. Tabla de densidad	, contenido	de cloruro	ferroso y	v férrico	en dos	semanas	del	mes
de enero	del año 2023								

FECHA	NOMBRE DEL OPERADO R	HOR A	DENSIDA D gr/cm3	Temperatur a	Fe2 %	Fe3 %	Fe total %
13/01/2023	R.Herrera	14:00	1,400	41	7,57	7,18	14,75
13/01/2023	R.Herrera	18:00	1,430	40	7,42	8,59	16,01
13/01/2023	R.Herrera	22:00	1,380	42	6,67	7,68	14,35
14/01/2023	R.Herrera	2:00	1,405	40	6,36	9,14	15,50
14/01/2023	R.Herrera	6:00	1,430	46	7,42	8,98	16,40

14/01/2023	Nelson Silva	10:00	1,420	56	6,69	9,20	15,89
14/01/2023	Nelson Silva	14:00	1,395	51	9,60	8,26	17,86
14/01/1900	Nelson Silva	18:00	1,390	53	8,84	8,04	16,88
14/01/2023	R.Herrera	22:00	1,385	45	9,27	6,04	15,31
15/01/2023	R.Herrera	2:00	1,410	42	8,71	6,33	15,04
15/01/2023	R.Herrera	6:00	1,390	44	8,83	5,62	14,45
					10,3		
15/01/2023	Nelson Silva	10:00	1,410	44	0	4,75	15,05
					11,4		
15/01/2023	Nelson Silva	14:00	1,405	38	9	5,15	16,64
	Julio Beltran						
15/01/2023	V	18:00	1,390	51	8,13	6,55	14,68
	Julio Beltran						
15/01/2023	V	22:00	1,400	48	9,15	5,74	14,89
					10,4		
16/01/2023	R.Herrera	2:00	1,395	45	0	5,60	16,00
16/01/2023	R.Herrera	6:00	1,395	42	9,20	6,40	15,60
	Julio Beltran						
16/01/2022	V	18:00	1,370	48	7,89	6,00	13,89
					11,6		
16/01/2023	R.Herrera	22:00	1,395	46	1	3,20	14,81
17/01/2023	R.Herrera	2:00	1,355	48	5,77	7,41	13,18
					11,4		
17/01/2023	R.Herrera	6:00	1,410	45	8	4,75	16,23
	Julio Beltran				10,2		
17/01/2023	V	10:00	1,400	47	5	5,90	16,15
	Julio Beltran				10,1		
17/01/2023	V	14:00	1,420	35	9	5,62	15,81
	Julio Beltran						
17/01/2023	V	18:00	1,375	48	8,13	8,83	13,96

					13,3		
18/01/2023	Nelson Silva	6:00	1,420	50	7	3,54	16,91
	Julio Beltran						
18/01/2023	v	10:00	1,380	47	7,89	6,79	14,68
	Julio Beltran						
18/01/2023	V	14:00	1,375	46	7,45	6,29	13,74
	Julio Beltran						
18/01/2023	V	18:00	1,385	47	8,46	5,77	14,23
					11,3		
18/01/2023	Nelson Silva	22:00	1,380	45	3	3,24	14,57
					12,1		
19/01/2023	Nelson Silva	2:00	1,380	45	4	2,83	14,97
					12,4		
19/01/2023	Nelson Silva	6:00	1,390	42	6	3,62	16,08
	Julio Beltran						
19/01/2023	V	10:00	1,390	46	9,29	4,94	14,23
	Julio Beltran						
19/01/2023	V	14:00	1,380	47	8,94	5,50	14,44
	Julio Beltran						
19/01/2023	V	18:00	1,370	45	8,12	6,07	14,19
					12,1		
19/01/2023	Nelson Silva	22:00	1,415	46	9	3,15	15,34
20/01/2023	Nelson Silva	2:00	1,420	45	9,83	6,06	15,89
					14,1		
20/01/2023	Nelson Silva	6:00	1,425	45	1	0,94	15,05
	Julio Beltran						
20/01/2023	V	10:00	1,370	46	8,12	5,82	13,94
	Julio Beltran						
20/01/2023	V	14:00	1,395	46	9,12	5,77	14,89
					11,0		
20/01/2023	Nelson Silva	22:00	1,420	48	1	4,96	15,97
					14,4		
------------	---------------	-------	-------	----	------	------	-------
21/01/2023	Nelson Silva	2:00	1,355	46	3	2,47	16,90
					14,8		
21/01/2023	Nelson Silva	6:00	1,400	45	4	2,47	17,31
21/01/2022	R.Herrera	10:00	1,390	46	8,83	6,42	15,25
21/01/2023	R.Herrera	14:00	1,395	45	6,40	8,80	15,20
					10,5		
21/01/2023	R.Herrera	18:00	1,370	41	9	3,26	13,85
					13,3		
21/01/2023	Nelson Silva	22:00	1,385	43	1	2,02	15,33
					14,8		
22/01/2023	Nelson Silva	2:00	1,370	43	8	2,45	17,33
					11,5		
22/01/2023	Nelson Silva	6:00	1,380	45	3	4,86	16,39
22/01/2023	R.Herrera	10:00	1,400	43	5,18	9,57	14,75
						10,5	
22/01/2023	R.Herrera	14:00	1,380	44	4,45	2	14,97
22/01/2023	R.Herrera	18:00	1,370	46	6,52	7,33	13,85
					11,1		
22/01/2023	Nelson Silva	22:00	1,420	43	3	4,30	15,43
					10,3		
23/01/2023	Nelson Silva	2:00	1,400	44	7	3,99	14,36
					11,3		
23/01/2023	Nelson Silva	6:00	1,400	43	7	5,59	16,96
	Julio Beltran						
23/01/2023	V	10:00	1,370	46	9,12	7,20	16,32
	Julio Beltran						
23/01/2023	V	14:00	1,370	47	9,14	7,19	16,33
	Julio Beltran						
23/01/2023	V	18:00	1,375	46	9,16	7,21	16,37

					10,4		
23/01/2023	R.Herrera	22:00	1,390	45	4	4,82	15,26
					10,0		
24/01/2023	R.Herrera	2:00	1,385	46	8	4,03	14,11
24/01/2023	R.Herrera	6:00	1,400	45	8,71	6,38	15,09
	Julio Beltran						
24/01/2023	V	10:00	1,380	46	9,13	5,12	14,25
	Julio Beltran						
24/01/2023	V	14:00	1,370	47	8,54	4,90	13,44
	Julio Beltran						
24/01/2023	V	18	1,370	45	8,56	4,91	13,47
					14,3		
24/01/2023	R.Herrera	22.00	1,400	46	6	1,59	15,95
25/01/2023	R.Herrera	02.00	1,370	45	6,93	6,52	13,45
25/01/2023	R.Herrera	06.00	1,390	47	4,82	9,64	14,46
	Julio Beltran						
25/01/2023	V	10:00	1,410	40	9,87	5,89	15,76
	Julio Beltran						
25/01/2023	V	14:00	1,37	41	8,89	4,90	13,79
	Julio Beltran						
25/01/2023	V	18:00	1,375	46	9,12	4,92	14,04
25/01/2023	R.Herrera	22.00	1,4	45	9,17	6,38	15,55
26/01/2023	R.Herrera	02.00	1,41	46	9,50	6,33	15,83
26/01/2023	R.Herrera	06.00	1,39	44	6,52	7,23	13,75
	Julio Beltran						
26/01/2023	V	10:00	1,38	45	8,90	4,90	13,8
	Julio Beltran						
26/01/2023	V	14:00	1,37	46	8,72	4,87	13,59
	Julio Beltran						
26/01/1900	V	18:00	1,38	49	9,09	5,11	14,2

					13,0		
26/01/2023	R.Herrera	22.00	1,41	46	7	2,37	15,44
27/01/2023	R.Herrera	02.00	1,37	45	6,52	7,33	13,85
27/01/2023	R.Herrera	06.00	1,38	44	8,90	5,66	14,56
	Julio Beltran						
27/01/2023	V	10:00	1,37	45	8,93	5,41	14,34
	Julio Beltran						
27/01/2023	V	14:00	1,38	50	9,19	4,98	14,17

Anexo L. Código para la simulación en matlab del reactor 630-R1

```
1
        function dydz = ModeloEE(z,y)
 2
       global u rhos Cp deltaHr U D Tamb
 3
       CA = y(1);
 4
       CB = y(2);
 5
       CC = y(3);
 6
       T = y(4);
 7
       k = 13000000*exp(-44696/(8.314*T));
 8
       dCAdz= k*CB*CC/u;
 9
       dCBdz= (-0.5*k*CB*CC)/u;
10
       dCCdz= -k*CB*CC/u;
       dTdz=(k*CB*CC*deltaHr-(4*U/D)*(T-Tamb))/(rhos*Cp*u);
11
       dydz=[dCAdz; dCBdz; dCCdz; dTdz];
12
```

```
1
          clc;clear;close all;
 2
З
          global u rhos Cp deltaHr U D Tamb
 4
          %Parametros Reactor Clorador Primario
 5
          % ge=0.00659; %Flujo de solución de Entrada (m3/s)
 6
          % rhoe=1191.67; %Densidad de flujo de entrada (kg/m3)
 7
 8
          % qcl2=0.0703; %Flujo de Cloro de entrada (m3/s)
          % qs=0.0769; %Flujo de Salida (m3/s)
9
          rhos=1046.61; %Densidad de flujo de salida (kg/m3)
10
          % Ab=0.0177; %Area basal Reactor 360-R1 (m2)
11
          Cp=3473.89; %Calor especifico del fluido (J/kg*K)
12
          u=0.2805; %Velocidad superficial de entrada del fluido (m/s)
13
14
          D=0.15; %Diametro del Reactor (m)
          % Dt=0.2032; %Diámetro Tuberia de entrada al reactor (m)
15
16
          % L=3.1; %Largo del reactor (m)
          R=8.314; %Constante universal de los gases (J/mol*K)
17
18
          deltaHr= 116733.6; %Entalpia de reacción (J/mol)
19
          Ea=44696; %Energia de activacion (J/mol)
20
          A=1.3*10^7; %Factor de fracuencia (m3/mol*s)
21
          Tamb=293.15; %Temperatura ambiente (K)
          % tau=2.686; %Tiempo de residencia (s)
22
23
          T0=327.15; %Temperatura de entrada del fluido (K)
          U=24.2; %Coeficiente global de transferencia de calor
24
25
          deltaHvap=20410; %Entalpia de vaporización Cl2 (J/mol)
          % MMcl2=70.91; %Masa molar Cl2 (g/mol)
26
          % rhocl2=1512.04; %Densidad Cl2 (kg/m3)
27
28
          % %Concentraciones de entrada (Cl2= 771.184 kg/h)
29
30
          CA0=345.191; %Concentración inicial de FeCl3 (mol/m3)
          CB0=330.505; %Concentración inicial de Cl2 (mol/m3)
31
32
          CC0=815.684; %Concentración inicial de FeCl2 (mol/m3)
33
          CD0=31.4263; %Concentración inicial de HCl (mol/m3)
34
          CE0=47884.1; %Concentración inicial de H2O (mol/m3)
35
36
          %Concentraciones de entrada (Cl2= 816.184 kg/h)
37
          % CA0=344.67; %Concentración inicial de FeCl3 (mol/m3)
38
          % CB0=349.26; %Concentración inicial de Cl2 (mol/m3)
          % CC0=814.45; %Concentración inicial de FeCl2 (mol/m3)
39
40
          % CD0=31.38; %Concentración inicial de HCl (mol/m3)
41
          % CE0=47811.834; %Concentración inicial de H2O (mol/m3)
42
          % %Concentraciones de entrada (Cl2= 861.184 kg/h)
43
```

44	% CA0=344.15; %Concentración inicial de FeCl3 (mol/m3)
45	% CB0=367.96; %Concentración inicial de Cl2 (mol/m3)
46	% CC0=813.22; %Concentración inicial de FeCl2 (mol/m3)
47	% CD0=31.33; %Concentración inicial de HCl (mol/m3)
48	% CE0=47740.23; %Concentración inicial de H2O (mol/m3)
49	
50	% %Concentraciones de entrada (Cl2= 906.184 kg/h)
51	% CA0=343.635; %Concentración inicial de FeCl3 (mol/m3)
52	% CB0=386.61; %Concentración inicial de Cl2 (mol/m3)
53	% CC0=812.008; %Concentración inicial de FeCl2 (mol/m3)
54	% CD0=31.285; %Concentración inicial de HCl (mol/m3)
55	% CE0=47669.4; %Concentración inicial de H2O (mol/m3)
56	
57	%Concentraciones de entrada (Cl2= 951.184 kg/h)
58	% CA0=343.13; %Concentración inicial de FeCl3 (mol/m3)
59	% CB0=405.2; %Concentración inicial de Cl2 (mol/m3)
60	% CC0=810.8; %Concentración inicial de FeCl2 (mol/m3)
61	% CD0=31.24; %Concentración inicial de HCl (mol/m3)
62	% CE0=47599.17; %Concentración inicial de H2O (mol/m3)
63	
64	%Condiciones de contorno
65	y0=[CA0 CB0 CC0 T0];
67	Vcalusián FDOs
67	ASOLUCION EDOS
60	[2,y]=0del55(Model0EE ,[0.05], y0);
70	plot(z, y(z, 1))
70	pio((2,y(:,1))
71	vlabal('Distance a')
72	xlabel('Concentración (mol(m2)')
73	ylabel(concentracion (mol/m3))
74	$n \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right]$
15	plot(2,y(:,2))
76	title(CI2)
77	xlabel('Distance z')
78	ylabel(concentracion (mol/m3))
79	
80	piot(2,y(:,3))
81	title(Fect2)
82	xlabel() Distance Z)
83	ylabel(concentracion (mol/m3))

plot(z,y(:,4))
title('T')
xlabel('Distance z')
ylabel('Temperatura (K)')

Anexo M. Código para la simulación en matlab del reactor 630-R2

1	clc;clear;close all;
2	%Parametros Reactor Disolvedor de Hierro
3	% qe=0.0769; %Flujo de solución de Entrada (m3/s)
4	% rhoe=1199.84; %Densidad de flujo de entrada (kg/m3)
5	% gFe=0.664; %Flujo de Chatarra de entrada (m3/batch)
6	% rhoFe=7860; %Densidad de Hierro (kg/m3)
7	% qs=0.0769; %Flujo de Salida (m3/s)
8	rhos=1045.36; %Densidad de flujo de salida (kg/m3)
9	CA0=1014.44; %Concentración inicial de FeCl3 (mol/m3)
10	CB0=0; %Concentración inicial de H2 (mol/m3)
11	CC0=155.35; %Concentración inicial de FeCl2 (mol/m3)
12	CD0=31.67; %Concentración inicial de HCl (mol/m3)
13	CE0=48251.64; %Concentración inicial de H2O (mol/m3)
14	% Ab=1.192; %Area basal Reactor 360-R1 (m2)
15	Cp=3274.05; %Calor especifico del fluido (J/kgK)
16	u=0.495; %Velocidad superficial de entrada del fluido (m/s)
17	D=1.232; %Diametro del Reactor (m)
18	% Dt=0.1524; %Diámetro Tuberia de entrada al reactor (m)
19	L=2.0193; %Largo del reactor (m)
20	R=8.314; %Constante universal de los gases (J/molK)
21	Tamb=293.15; %Temperatura ambiente (K)
22	% tau=305 800; %Tiempo de residencia (s)
22	T0=353 15: "Temperatura de entrada del fluido (K)
24	H=7, 324: %Coeficiente global de transferencia de calor (W/m2K)
25	deltaHr1= 184932.8: %Entalnia de reacción 1 (1/mol)
26	Fal=7018.77: %Energia de activación reacción 1 (1/mol)
27	A1=0.0442: %Factor de fracuencia reaccion 1(1/s)
28	deltaHr2= 357229.92: %Entalpia de reacción 2 (J/mol)
29	Ea2=41139.335: %Energia de activacion reaccion 2 (J/mol)
30	A2=163.4: %Factor de fracuencia reaccion 2(1/s)
31	deltaHr3= 83680; %Entalpia de reacción 3 (J/mol)
32	Ea3=70120; %Energia de activacion reaccion 3 (J/mol)
33	A3=528935185.2; %Factor de fracuencia reaccion 3(1/s)
34	
35	%Length
36	Nz=10;
37	<pre>z=linspace(0,L,Nz);</pre>

Nz=10; z=linspace(0,L,Nz); dz=(z(2)-z(1));

%tiempo

t=[0 302]; %Tiempo por batch (s)

43	%Condiciones iniciales t=0, z=0
44	% ICA=zeros(1,Nz);
45	% ICB=zeros(1,Nz);
46	% ICC=zeros(1,Nz);
47	% ICD=zeros(1,Nz);
48	% ICE=zeros(1,Nz);
49	% IT=T0.*ones(1,Nz);
50	<pre>ICA=CA0*ones(1,Nz);</pre>
51	<pre>ICB=CB0*ones(1,Nz);</pre>
52	<pre>ICC=CC0*ones(1,Nz);</pre>
53	<pre>ICD=CD0*ones(1,NZ);</pre>
54	<pre>ICE=CE0*ones(1,Nz);</pre>
55	IT=TO*ones(1,Nz);
56	
57	IC=[ICA ICB ICC ICD ICE IT];
58	
59	%solver ode
60	<pre>[t y]=ode15s(@f,t,IC,[],u,CA0,CB0,CC0,CD0,CE0,T0,A1,Ea1,A2,Ea2,A3,Ea3,R,Tamb,U,D,rhos,Cp,</pre>

62	%valores recalculados
63	CA=y(:,1:Nz);
64	CB=y(:,Nz+1:2*Nz);
65	CC=y(:,2*Nz+1:3*Nz);
66	CD=y(:,3*Nz+1:4*Nz);
67	CE=y(:,4*Nz+1:5*Nz);
68	T=y(:,5*Nz+1:6*Nz);
69	
70	%condiciones de contorno z=0
71	CA(:,1)=CA0;
72	CB(:,1)=CB0;
73	CC(:,1)=CC0;
74	CD(:,1)=CD0;
75	CE(:,1)=CE0;
76	T(:,1)=T0;
77	,
78	%condiciones de contorno z=L
79	CA(:,end)=(4*CA(:,end-1)-CA(:,end-2))./3;
80	CB(:,end)=(4*CB(:,end-1)-CB(:,end-2))./3;
81	CC(:,end)=(4*CC(:,end-1)-CC(:,end-2))./3;
82	CD(:,end)=(4*CD(:,end-1)-CD(:,end-2))./3;
83	CE(:,end)=(4*CE(:,end-1)-CE(:,end-2))./3;

84	T(:,end)=(4*T(:,end-1)-T(:,end-2))./3;
85	
86	%Gráficos
87	
88	plot(z,CA(58,:))
89	title('FeCl3')
90	<pre>xlabel('Tiempo t')</pre>
91	<pre>ylabel('Concentración (mol/m3)')</pre>
92	
93	plot(z,CB(58,:))
94	title('H2')
95	<pre>xlabel('Tiempo t')</pre>
96	<pre>ylabel('Concentración (mol/m3)')</pre>
97	
98	plot(z,CC(58,:))
99	title('FeCl2')
100	<pre>xlabel('Tiempo t')</pre>
101	<pre>ylabel('Concentración (mol/m3)')</pre>
102	
103	plot(z,CD(58,:))
104	<pre>title('HCl')</pre>
105	<pre>xlabel('Tiempo t')</pre>

106	<pre>ylabel('Concentración (mol/m3)')</pre>
107	
108	plot(z,CE(58,:))
109	title('H2O')
110	<pre>xlabel('Tiempo t')</pre>
111	<pre>ylabel('Concentración (mol/m3)')</pre>
112	
113	plot(z,T(58,:))
114	<pre>title('Temperatura')</pre>
115	<pre>xlabel('Tiempo t')</pre>
116	<pre>ylabel('Temperatura (K)')</pre>
117	
118	% plot(t,y(:,2))
119	
120	% surf(z,t,CA)
121	% title('CA(z,t)')
122	% xlabel('Distance z')
123	% vlabel('Time t')
124	%
125	% surf(z.t.CB)
126	% title('CB(z,t)')
127	% xlabel('Distance z')
100	0/]-L-1/17: 41)
128	% ylabel('Time t')
129	%
130	% surf(z,t,CC)
131	% title('cc(z,t)')
132	% xlabel('Distance z')
133	% vlabel('Time t')
134	%
135	% surf(z,t,CD)
136	% title('CD(z,t)')
137	% xlabel('Distance z')
138	% vlabel('Time t')
139	%
140	% surf(z.t.CE)
141	% title('(E(z,t)')
142	% xlabel('Distance 7')
143	% vlabel('Time t')
144	%
145	% surf(7 + T)
145	% title('T(7 t)')
147	% xlabel('Distance 7')
***/	a suber (bisedice 2)
148	% vlabel('Time +')
140	N graber(Time C)
150	%funcion
100	AT OTTO TOTT

151	<pre>function dvdt=f(t,v,u,CA0,CB0,CC0,CD0,CE0,T0,A1,</pre>	Ea1,A2,Ea2,A3,Ea3,R,Tamb,U,D,rhos,Cp,delta
152	dvdt=zeros(length(v).1):	
153	dCAdt=zeros(Nz,1)	
154	dCRdt=zonos(Nz, 1);	
154	dCDdt = 2er OS(NZ, 1),	
155	accat=zeros(NZ,1);	
156	dCDdt=zeros(Nz,1);	
157	dCEdt=zeros(Nz,1);	
158	dTdt=zeros(Nz,1);	
159		
160	%definir valores	
161	(A=v(1:N7):	
162	$(R=v(N_{7}+1+2*N_{7}))$	
163	CC = v(2*Nz+1+2*Nz)	
164	$CD = y(2^{*}Nz + 1 + 4^{*}Nz)$	
164	CD = y(3 NZ + 1.4 NZ);	
105	$CE=y(4^{N}Z+1;5^{N}Z);$	
166	I=y(5~NZ+1:6~NZ);	
167		
168	%condiciones de contorno z=0	
169	CA(1)=CA0;	
170	CB(1)=CB0;	
171	CC(1)=CC0;	
172	CD(1)=CD0;	
173	CE(1)=CE0;	
174	T(1)=T0;	
175		
176	%condiciones de contenne z-l	
170	solutiones de concorno z=L	
1//	CA(end)=(4*CA(end-1)-CA(end-2))./3;	
178	CB(end)=(4*CB(end-1)-CB(end-2))./3;	
179	CC(end)=(4*CC(end-1)-CC(end-2))./3;	
180	CD(end)=(4*CD(end-1)-CD(end-2))./3;	
181	CE(end)=(4*CE(end-1)-CE(end-2))./3;	
182	T(end) = (4*T(end-1) - T(end-2)) / 3:	
102	((chu) (+ ((chu 1) ((chu 2)))))))	
103		
184	water the state of	
185	%datos interiores de la matriz	
186	for i=2:Nz-1	
187	<pre>k1(i)=A1.*exp(-Ea1/(R.*T(i)));</pre>	
188	<pre>k2(i)=A2.*exp(-Ea2/(R.*T(i)));</pre>	
189	k3(i)=A3.*exp(-Ea3/(R.*T(i))):	
190		
191	%Dif. central	
192	% dCAdz(i)=(CA(i+1)-CA(i-1))./(2.*(dz);
102	% d(Rdz(i)=((P(i+1))(P(i+1)) //2 */	47).
193		12/3
194	% dccdz(1)=(CC(1+1)-CC(1-1))./(2.*(uz);
195	<pre>% dCDdz(i)=(CD(i+1)-CD(i-1))./(2.*</pre>	dz);
196	% dCEdz(i)=(CF(i+1)-CF(i-1))./(2.*(dz);
107	$% dTd_2(i) = (T(i, i), T(i, i)) /(2, 3d_2)$	
197	∧ u(u2(1)=(((1+1)-)((1-1)))/(2.*d2))	,
198		
199	%Dif hacia atras	
200	dCAdz(i) = (CA(i) - CA(i-1)) / (dz)	
200	dcnda(i) (cn(i) cn(i-1)) ((dz))	
201	dCBdZ(1)=(CB(1)-CB(1-1))./(dZ);	
202	dCCdz(i)=(CC(i)-CC(i-1))./(dz);	
203	dCDdz(i)=(CD(i)-CD(i-1))./(dz);	
204	dCEdz(i) = (CE(i) - CE(i-1)) / (dz);	
204	$d\tau d_{2}(1) = (t_{1}(1) - t_{2}(1-1)) \cdot (t_{2}(1))$	
205	$a_1a_2(1) = (1(1) - 1(1-1)) \cdot / (dZ);$	
206		
207	%Dif hacia delante	
200	9 dcAdz(i) - (CA(i)A) CA(i)) ((d-))	
206	\wedge $u(Auz(1)=((A(1+1)-(A(1))))(uz);$	
209	% dCBdz(1)=(CB(1+1)-CB(1))./(dz);	
210	<pre>% dCCdz(i)=(CC(i+1)-CC(i))./(dz);</pre>	
211	$% dCDdz(i) = (CD(i+1) - CD(i)) \cdot / (dz);$	
212	% d(Edz(i)=((E(i))) (CE(i)) ((dz))	
616		

213	% dTdz(i)=(T(i+1)-T(i))./(dz);
214	
215	dCAdt(i)=-u*dCAdz(i)-k1(i).*CA(i);
216	dCBdt(i)=-u*dCBdz(i)+0.5*k3(i).*CD(i);
217	dCcdt(i)=-u*dCcdz(i)+0.5*k3(i).*CD(i)+0.5.*k2(i).*CD(i)+(3/2)*k1(i).*CA(i);
218	dCDdt(i)=-u*dCDdz(i)-k2(i).*CD(i)-k3(i).*CD(i);
219	$dCEdt(i)=-u^*dCEdz(i)+0.5^*k2(i).^*CD(i);$
220	dTdt(i)=-u*dTdz(i)+(k1(i).*CA(i)*deltaHr1+k2(i).*CD(i)*deltaHr2+k3(i).*CD(i)*deltaHr3-(4*
221	end
222	<pre>dydt=[dcAdt;dcBdt;dcCdt;dcDdt;dcEdt;dTdt];</pre>
223	end
224	

Anexo N. Características fisicoquímicas del cloruro férrico producido en Oxy Chile Tabla N. Características fisicoquímicas del cloruro férrico producido en Oxy Chile

Características Fi	Unidades	
Fórmula química	FeCl ₃	
Concentración	39% a 42%	% ^m / _m
Color líquido	Café oscuro	
Peso molecular	162,2	g/mol
Densidad (20°C)	1,405-1,485	g/cc
рН	<1	
Presión de vapor (20°C)	40	mmHg
Punto de cristalización	-10	°C
Calor de dilución de 40 a 1%	38	kJ/mol
Viscosidad cinemática	8	mm ² /s

Anexo O. Decapado

Normalmente, las superficies metálicas se encuentran recubiertas con óxidos, grasa y suciedad. Estos aumentan con el uso, almacenamiento y transporte. La mayoría de los procesos de acabado metálico usados industrialmente, como por ejemplo el galvanizado, requieren de una superficie limpia y libre de grasas, herrumbe o incrustaciones. (Ulloa, 2012)

Para la remoción de los óxidos adheridos a la superficie del metal se utiliza un tratamiento denominado decapado o lavado químico, el cual consiste en sumergir la pieza metálica en soluciones acuosas de ácidos inorgánicos para disolver la película de óxido y eliminar restos de pintura, suciedad y grasa. Estos baños de decapado están compuestos principalmente por H_2SO_4 o HCl y normalmente las piezas a decapar son de hierro o acero, disolviéndose como hierro Fe (II), descrito por las reacciones (3) (4), (5) y (6).

Anexo P. Tipos de Decapado

1. Con H_2SO_4

Utilizado fundamentalmente para hierro y acero no inoxidable y en menor grado para el aluminio. Comúnmente se usa una solución de ácido sulfúrico de un 5% a 20%. La temperatura de trabajo se encuentra entre los 50°C y 80°C (Ulloa, 2012). A continuación, se expone la reacción del ácido con una base metálica de hierro forma sulfato ferroso e hidrógeno gas:

$$Fe + H_2SO_4 \to FeSO_4 + H_{2(g)} \tag{7}$$

2. Con HCl

Utilizado fundamentalmente para el decapado de hierro y acero inoxidable. Comúnmente se usa una solución de ácido de 12- 18% (Ulloa, 2012). La reacción (3), corresponde a la reacción del ácido clorhídrico con una base metálica de hierro formando cloruro ferroso e hidrógeno gas:

$$Fe + 2HCL \rightarrow FeCl_{2(ac)} + H_{2(g)}$$
 (3)

Anexo Q. Procedimiento del "Method Assistant" para la simulación de Aspen

- 1. Seleccionar una de las opciones:
 - a. Especificar el tipo de compuesto.
 - b. Especificar el tipo de proceso.

Para asegurar la selección, se optó por realizar ambos caminos propuestos por el asistente para la selección del método de la simulación. Como ambos procesos de selección concluyeron a las mismas recomendaciones, se expondrá el procedimiento tras especificar el tipo proceso. Al seleccionar la opción "b", el asistente pidió especificar el tipo de proceso entre las siguientes opciones:

- 1) Químico.
- 2) Electrólito.
- 3) Medioambiental.
- 4) Procesamiento de gas.
- 5) Mineral y metalúrgico.
- 6) Petróleo y gas.
- 7) Petroquímico.
- 8) Polímero.
- 9) Refinería.
- 10) Productos farmacéuticos.

A partir de lo expuesto en las secciones anteriores, el proceso de producción es un proceso químico, por lo que se eligió la opción 1.

Después, el asistente preguntó si la presión del sistema es mayor a 10 bar. Entonces, como en el sistema de producción no hay presiones mayores a ese valor se especificó que no es de alta presión.

De esta forma, el asistente recomendó utilizar un método de coeficiente de actividad, como por ejemplo NRTL, Wilson, UNIQUAC o UNIFAC. Sin embargo, el simulador sugiere considerar más factores y ofrece las siguientes opciones:

- 1. Separaciones azeotrópicas.
- 2. Ácidos carboxílicos.
- 3. Fluoruro de hidrógeno (HF).
- 4. Productos químicos inorgánicos, por ejemplo, cáusticos, ácidos.
- 5. Reacciones en fase líquida, por ejemplo, esterificación.
- 6. Planta de fenol.
- 7. Refrigeración.
- 8. Ayuda para métodos de ecuación de estado con reglas de mezcla avanzadas.
- 9. Ayuda para métodos de coeficiente de actividad líquida.

- 10. Ayuda para métodos de coeficiente de actividad líquida con diferentes ecuaciones de estado.
- 11. Ayuda para los métodos UNIFAC.

De la Tabla 21, se aprecia que los compuestos involucrados son compuestos inorgánicos. Por lo tanto, se seleccionó la opción "4".