

UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

CÁLCULO DE LA HUELLA DE CARBONO CORPORATIVA PARA EMPRESA SALMOFOOD DE ACUERDO CON EL PROGRAMA HUELLACHILE

POR

Nicolás Sebastián Gacitúa Gamín

Memoria de Título presentada a la Facultad de Ingeniería de la Universidad de Concepción para optar al título profesional de Ingeniero Civil Industrial

Profesora guía:

Magdalena Jensen

Profesional supervisor:

Jose Luis Trejos Hernández

Marzo 2023 Concepción (Chile)

2023 Nicolás Sebastián Gacitúa Gamin

Agradecimientos

En primer lugar, quiero agradecer a mis dos grandes pilares, mis padres: Haydeé y Ricardo, que me han apoyado día a día y han dado todo para ayudarme a lograr los objetivos que me propongo, sin duda este proceso y todo el camino hasta aquí ha sido gracias a ellos, soy quien soy por ustedes.

Gracias a mis tíos, Luis y Carmen, por acogerme en su hogar como uno más desde el primer día en que comencé este proceso universitario, por acompañarme, aconsejarme y ayudarme cada vez que lo necesité, estaré agradecido siempre.

A mis amigos, tanto los que conocí en la universidad como los que han estado conmigo desde antes, gracias por las palabras de apoyo, por las conversaciones, por las risas, por los momentos de distención, sirvieron bastante.

También agradecer a mi profesora guía Magdalena, por su constante apoyo, preocupación, además de su gran disposición para atender mis consultas durante todo este proceso de la elaboración de la memoria de título.

Finalmente agradecer a la empresa Salmofood, por permitirme realizar este trabajo con ellos, en especial a Jose Luis y Cristian, por su tiempo y disponibilidad para facilitarme toda la información necesaria y por hacer este periodo más llevadero.

Resumen

La huella de carbono es un indicador para la cuantificación de GEI de un proceso o producto y que permite valorar los impactos de la industria en el cambio, además concentra una mayor atención y aceptación de los impactos ambientales de un proceso. Esto sumado a que su utilización se ha convertido en una importante herramienta para la toma de decisiones y como factor de competitividad.

En esta línea el presente trabajo consiste en la cuantificación de la huella de carbono organizacional de la empresa productora de alimentos para peces Salmofood, la que tiene sus instalaciones operacionales en Castro, región de los Lagos. El cálculo de estas emisiones se lleva a cabo para los años 2020 y 2021 en función de los lineamentos del GHG Protocol y el programa HuellaChile.

Se determinan las actividades y fuentes de emisión de la compañía para posteriormente categorizarlas en los diferentes alcances: alcance 1 (emisiones directas), alcance 2 y 3 (emisiones indirectas), luego se realiza un inventario de los datos de las actividades como consumo de combustibles, cantidades de materia prima comprada y sus orígenes, cantidades de producto terminado enviado y sus destinos, viajes realizados por el personal, energía eléctrica utilizada entre otros, tal como señala la metodología GHG Protocol, para posteriormente estimar la huella de carbono utilizando los distintos factores de emisión proporcionados por HuellaChile y el IPCC 2006.

Los principales resultados obtenidos estiman una huella de carbono corporativa para el año 2020 de 31.590,6 tCO₂e y con respecto a la producción de dicho año, se registra un índice de 0,198 tCO₂e/t alimento, lo que quiere decir que por cada tonelada de alimento se producen 198 kg de CO₂e. Las emisiones de gases efecto invernadero para el 2021 alcanzaron las 31.742,6 tCO₂e, obteniendo un índice con respecto a lo producido de 210 kgCO₂e/t alimento. De estos valores es posible destacar que cerca del 78% corresponde al alcance 3 para ambos años en estudio, siendo la fuente con mayor contribución el transporte de la importación de materias primas.

Finalmente, se proponen ciertas medidas para la reducción de este indicador enfocadas principalmente a la búsqueda de proveedores más cercanos y una disminución del uso de combustibles fósiles en la caldera principal de la planta de procesos, además de una herramienta de cálculo de la huella de carbono en Salmofood para facilitar el ingreso de datos y evitar errores en las operaciones en el procesamiento de dichos datos.

Tabla de Contenidos

Cap	oítulo) I		1
1.	AN	TECI	EDENTES GENERALES	1
1.	.1	Intr	oducción	1
1.	.2	Obj	etivos	2
	1.2.	1	Objetivo General	2
	1.2.	2	Objetivos Específicos	2
1.	.3	Plan	iteamiento del Problema	3
Cap	ítulo	II		3
2.	MA	RCO	TEORICO	3
2.	.1	Desc	cripción de la empresa	3
	2.1.	1	Salmofood	3
	2.1.	2	Proceso Productivo (Anexo A)	4
2.	.2	Can	ıbio climático	8
2.	.3	Hue	lla de carbono	14
	2.3.	1	Método de cuantificación: Greenhouse Gas Protocol	14
2.	.4	Ben	eficios del cálculo de la Huella de Carbono	18
Cap	ítulo	III		21
3	ME	TOD	OLOGÍA	21
3.	.1	Lim	ites corporativos	21
	3.1.	1	Determinar año base	21
	3.1.	2	Identificar limites organizacionales	21
	3.1.	3	Determinar limites operacionales	21
3.	.2	Esti	mación de las emisiones de gases de efecto invernadero	22
	3.2.	1	Emisiones Alcance 1	23
	3.2.	2	Emisiones Alcance 2	26
	3.2.	3	Emisiones Alcance 3	27
3.	.3	Cálo	culo huella de carbono	36
	3.3.	1	Propuesta de herramienta de cálculo para Salmofood (Anexo K)	36
Cap	ítulo	IV		38
4	RES	SULT	ADOS	38
4.	.1	Año	2020	38
	4.1.	1	Emisiones Alcance 1	38
	4.1.	2	Emisiones Alcance 2	39

4.1.3	Emisiones Alcance 3	40
4.1.4	Huella de carbono corporativa	42
4.1.5	Aproximación de la huella de carbono por producto	42
4.2 Año	2021	42
4.2.1	Emisiones Alcance 1	42
4.2.2	Emisiones Alcance 2	43
4.2.3	Emisiones Alcance 3	44
4.2.4	Huella de carbono corporativa	45
4.2.5	Aproximación de la huella de carbono por producto	46
5 DISCUSI	IÓN	46
5.1 Com	nparación 2019	46
5.2 Alcance	1	47
5.3 Alcance	2	48
5.4 Alcance	3	49
6 CONCL	USIONES	52
Glosario		54
Referencias		55
Anexos		60
ANEXO A.	Diagrama general proceso productivo empresa Salmofood. (pág. 4)	60
	Base de datos factores de emisión, HuellaChile 2019. (pág. 22)	
ANEXO C.	Información alcance 1. (pág. 24)	63
ANEXO D.	Información alcance 2. (pág. 26)	65
ANEXO E.	Información viajes de negocios. (pág. 28)	66
ANEXO F.	Información transporte personal. (pág. 30)	68
ANEXO G.	Información importación. (pág. 30-31)	69
ANEXO H.	Información distribución. (pág. 32)	72
ANEXO I.	Información manejo de residuos. (pág. 33)	73
ANEXO J.	Información transporte sacos. (pág. 34)	75
ANEXO K.	Herramienta de cálculo Huella de Carbono Salmofood. (pág. 36)	77
ANEXO L.	Certificación producción electricidad en bases a fuentes renovables. (pág. 47)	84

Lista de tablas

Tabla 2.1: Principales gases efecto invernadero.	10
Tabla 2.2: Indicadores ambientales de sostenibilidad	11
Tabla 2.3: Emisiones de GEI total por gas (kt CO2e)	12
Tabla 2.4: Principios básicos del GHG Protocol.	15
Tabla 2.5: Alcances de GEI según GHG Protocol.	17
Tabla 3.1: Emisiones de CH4 y N2O por TJ para la combustión de biomasa	24
Tabla 3.2: Factores de emisión para cada tipo de combustible utilizado en fuentes fijas	25
Tabla 3.3: Factores de emisión para cada tipo de combustible utilizado en fuentes móviles	26
Tabla 3.4: Factores de emisión adquisición de electricidad	27
Tabla 3.5: Factores de emisión para cada tipo de fuente indirecta, alcance 3	28
Tabla 3.6: Detalle de distancias (km) en el movimiento de personal.	29
Tabla 3.7: Factores de emisión para transportes de personal.	30
Tabla 3.8: Cantidades despachadas y devueltas para los años 2020 y 2021, en toneladas	33
Tabla 3.9: Factores de emisión para los distintos tratamientos para los residuos.	34
Tabla 3.10: Peso unitario por tipo de saco en kg.	35
Tabla 4.1: Huella de carbono, producción y relación, 2020.	42
Tabla 4.2. Huella de carbono, producción y relación, 2021.	46
Tabla 5.1: Emisiones alcance 1 por tipo de combustible, años 2020 y 2021.	48
Tabla 5.2: Emisiones alcance 2 para años 2020 y 2021, y comparativo caso 2021*	49
Tabla 5.3: Emisiones alcance 3 categoría transporte de personal por fuente, años 2020 y 2021	50
Tabla 5.4: Emisiones alcance 3 categoría importación y distribución por transporte, años 2020 y 2	2021.
	50
Tabla 5.5: Emisiones alcance 3 categoría residuos por fuente, años 2020 y 2021	51
Tabla 5.6: Emisjones alcance 3 categoría transporte de sacos por transporte, años 2020 y 2021	51

Lista de figuras

Figura 2.1: Preparación de materias primas.	5
Figura 2.2. Proceso de pelletizado.	7
Figura 2.3. Participación en las emisiones GEI por sector.	12
Figura 2.4. Kg de CO ₂ liberados por animal al producir 40gr.	13
Figura 2.5. Tipos de emisiones en una empresa	16
Figura 2.6. Gráfico ¿Debe ser obligatoria una etiqueta que indique la huella de carbono de un	
producto?	19
Figura 3.1. Definición de alcances del sistema en estudio.	22
Figura 3.2. Flota camionetas administración Salmofood.	25
Figura 3.3. Buses de traslado de personal para empresa Salmofood	30
Figura 3.4. Diagrama de procesos herramienta de cálculo de huella de carbono Salmofood	37
Figura 4.1. Gráfico huella de carbono para ambos años, contribución por alcance	38
Figura 4.2. Contribución de emisiones por tipo de fuente y combustible para alcance 1, 2020	39
Figura 4.3. Contribución de emisiones (%) por tipo de fuente para alcance 1, 2020	39
Figura 4.4. Emisiones mensuales por adquisición de energía eléctrica Salmofood, 2020	40
Figura 4.5. Contribución de emisiones por categoría y tipo de fuente para alcance 3, 2020	40
Figura 4.6. Resultados generales Huella de carbono Salmofood, 2020.	42
Figura 4.7. Contribución de emisiones por tipo de fuente y combustible para alcance 1, 2021	43
Figura 4.8. Emisiones mensuales (tCO ₂ e) por adquisición de energía eléctrica Salmofood, 2021	44
Figura 4.9. Contribución de emisiones por categoría y tipo de fuente para alcance 3, 2021	44
Figura 4.10. Resultados generales Huella de carbono Salmofood, 2021.	45

Capítulo I

1. ANTECEDENTES GENERALES

1.1 Introducción

El salmón, y en particular el salmón del Atlántico de cultivo ha sido uno de los principales contribuyentes del comercio mundial de productos de pesca y acuicultura en las últimas décadas. El crecimiento de la demanda de salmón ha superado a otras categorías de pescado en casi todas las regiones, por ejemplo, el año 2021 el consumo per cápita de salmón Atlántico en Chile aumentó en más de 700 gramos con respecto al 2020, es decir, se incrementó 50,9%, cifra similar al alza de las cosechas del producto nacional (Gallardo, 2022), así la acuicultura del salmón del Atlántico se ha convertido en una de las industrias más rentables y tecnológicamente avanzadas. Chile es el cuarto mayor exportador de productos acuáticos, ha aprovechado sus ventajas geográficas para desarrollar una extensa industria acuícola, contando con la segunda producción de salmónidos más grande del mundo, sólo detrás de Noruega (FAO, 2022). Para el año 2021 la cosecha total de salmónidos alcanzada fue de 995.158 toneladas (SERNAPESCA, 2021).

Estudios señalan que la provisión de alimento para peces utiliza la mayoría de los materiales y energía en el ciclo productivo del salmón, excluyendo procesamiento y distribución (Aqua, 2022). Por lo tanto, comprender y mejorar el rendimiento medioambiental de los ingredientes y del proceso productivo del alimento para salmónidos es clave para seguir con la cadena y así, mejorar la sostenibilidad del cultivo de salmones, reduciendo los impactos ambientales. (Pelletier & Tyedmers, 2007).

El año 2007, el Panel Intergubernamental de Expertos sobre el Cambio Climático (IPCC por sus siglas en inglés) de las Naciones Unidas, comunicó que "La mayor parte del aumento observado del promedio mundial de temperatura desde mediados del siglo XX se debe muy probablemente al aumento observado de las concentraciones de Gases Efecto Invernadero (GEI) antropógenos, o sea como resultado de la actividad de los seres humanos o producto de esta" (IPCC, 2007), con estos gases nos referimos principalmente al dióxido de carbono (CO₂), metano (CH₄) y óxido nitroso (N₂O).

La huella de carbono (HdC) en forma muy general, representa la cantidad de gases efecto invernadero emitidos a la atmósfera derivados de las actividades de producción o consumo de bienes y servicios, siendo considerada una de las herramientas más importantes para cuantificar las emisiones de dichos gases (Espíndola & Valderrama, 2012). La HdC además de poder incluir varios de los principales gases efecto invernadero mediante su conversión a CO₂ equivalente (CO₂e), también usa los respectivos factores de emisión para cada fuente, para expresar las emisiones en kilogramos o toneladas de CO₂ equivalentes.

El uso de la HdC ha encontrado un importante campo de aplicación como herramienta para cuantificar la eficiencia energética y su impacto en los costos operacionales de la empresa, situación que puede mejorar el margen de beneficios de la empresa contribuyendo no sólo a la sustentabilidad ambiental sino también a la rentabilidad económica de la misma (Valderrama, Espíndola & Quezada 2011). Además, se perfila como un indicador capaz de sintetizar los impactos provocados por las actividades del hombre en el entorno, medido en términos de emisiones de GEI y se presenta como una poderosa herramienta de gestión y un estímulo para adoptar una estrategia proactiva en el logro de la sustentabilidad de las organizaciones (Wiedmann & Minx, 2007).

1.2 Objetivos

1.2.1 Objetivo General

Cuantificar y reportar la huella carbono corporativa de la empresa Salmofood para los años 2020 y 2021, de acuerdo con el programa HuellaChile.

1.2.2 Objetivos Específicos

- Identificar y definir limites operacionales.
- Levantar información del proceso para identificar actividades que involucren emisiones de GEI para los distintos alcances a evaluar.
- Estimar la huella de carbono corporativa para la compañía Salmofood.
- Elaborar propuesta de herramienta de cálculo base específica para la empresa.

1.3 Planteamiento del Problema

La empresa Salmofood, desde el año 2017 ya cuenta con certificaciones como la ISO 14001 en su versión 2015 que permite proporcionar la seguridad de que el riesgo ambiental se está gestionando y mejorando, implementando de manera efectiva los criterios para un sistema de gestión medioambiental, en este mismo sentido a partir de la incorporación de indicadores de desempeño ambiental es que se busca incorporar el cálculo de la huella de carbono para los años 2020 y 2021 para la compañía, con el fin de conseguir un mejor posicionamiento en los mercados con un lineamiento de sustentabilidad utilizando esta herramienta como un atributo diferenciador. Además, se desea presentar esta cuantificación al programa HuellaChile para la obtención de la certificación aumentando los valores ya señalados, sumándose a otros como la gestión de riesgo, la gestión de impacto en la cadena de valor y la comunicación de estos indicadores a los diferentes grupos de interés como por ejemplo mediante su reporte de sustentabilidad.

Capítulo II

2. MARCO TEORICO

2.1 Descripción de la empresa

2.1.1 Salmofood

Salmofood es una empresa productora de alimento de peces, que nace en 1995 con el propósito de entregar soluciones nutricionales de primera calidad a la industria salmonera, desde su planta emplazada a 15 kilómetros de Castro en la Isla Grande de Chiloé. En 2012, pasó a formar parte de Alicorp, empresa de origen peruano con un cuarto de siglo de experiencia en la industria acuícola (SALMOFOOD, 2022).

Su misión: "Creamos valor para nuestros clientes con soluciones nutricionales sustentables respaldadas en el conocimiento del mercado, innovación, acompañamiento técnico y altos estándares de calidad". Y su visión es ser referentes mundiales en soluciones nutricionales para acuicultura.

Actualmente la compañía cuenta con más de 300 colaboradores y proveedores de materias primas de diferentes países como Estados Unidos, Alemania, China, Argentina, Brasil, entre otros. Posee una de

las plantas productoras de alimento para peces más modernas del mundo, con una capacidad nominal de 240.000 toneladas de alimento al año en cuatro líneas de proceso.

Hace 25 años, la empresa comenzó a producir dietas de agua dulce para peces desde ova hasta 100 gramos, dietas de agua mar, destinada a peces desde 100 gramos a 5 kilos y dietas medicadas, que se distribuyen principalmente en Chile, pero también a otros países como Perú y Armenia. Hoy en día, la compañía ha desarrollado distintas estrategias de dieta, dentro de las de agua dulce, por ejemplo, se ubican ahora las de recirculación. En agua mar, en tanto, la gama es mucho más amplia, a las dietas multi especies se agregan dietas específicas para estas, las que a su vez se dividen en alta y mediana energía (SALMOFOOD, 2022).

2.1.2 Proceso Productivo (Anexo A)

Descarga y almacenamiento

La bodega de entrada es la encargada de controlar la recepción de Materias Primas (MP), alrededor de un 80% de éstas son despachadas por los proveedores, el resto se coordina mediante empresas externas de transporte. La planta cuenta con una bodega de MP para los Macro Ingredientes Secos (MIS), los Micro Ingredientes (MI) y los Materiales de Empaque e insumos menores. En el patio de descarga también existen silos para Macro Ingredientes Secos en formato granel y tanques para Macro Ingredientes Líquidos (MIL), además de un contenedor para almacenar los fármacos. Control de calidad tiene la labor de realizar una evaluación y un análisis de todos los insumos que se verán involucrados en la producción del alimento.

Carga de silos

Luego de la etapa de abastecimiento de materias primas, se programa la carga de silos de producción. Para la carga de estos silos con ingredientes secos se usan dos sistemas: carga granel y carga piso, para la carga granel se envían las materias primas desde los silos ubicados al exterior de la planta hacia el interior. Para la carga piso, la materia prima viene envasada en maxi sacos o bolsas, y según la solicitud, un operador de grúa horquilla busca la materia prima determinada, la traslada a una báscula para su control y la deja en la zona de carga, donde otros operadores elevan la bolsa, la abren y dejan caer su contenido por un cernidor para que luego, mediante un elevador, esta se traslade al silo de producción correspondiente (Figura 2.1).

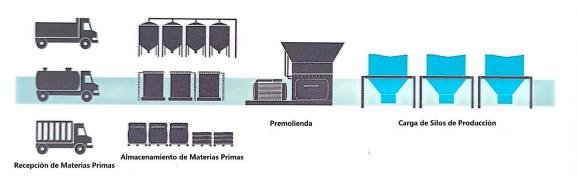


Figura 2.1: Preparación de materias primas. Fuente: Salmofood, 2022.

Programación de la producción

Mediante una reunión entre las áreas de manufactura y comercial cada viernes, se establecen prioridades y un programa de producción que se ordena según los requerimientos comerciales. Cada uno indica la dieta, el formato y la fecha de entrega, sobre la que hay que calcular también el tiempo de transporte, además se considera el calibre y el porcentaje de aceite. El programa tiene un alcance de una semana y se comunica a todas las áreas involucradas.

Mezcla de ingredientes secos

- -Formulación: Con las materias primas cargadas en los silos de producción y con el programa definido, se inicia la formulación según la composición de cada MP, se ajusta la receta de la dieta de acuerdo con las especificaciones del cliente, al calibre y a la proporción de proteínas y lípidos. La dosificación se ejecuta mediante el pesaje de las MP.
- -Molienda: Ya dosificadas las MP, son transportadas hacia un molino de martillos, pasando antes por un breve premezclado. En este proceso, las materias primas son homogenizadas y reducidas a partículas de 500 micrómetros.
- -Premezcla y mezcla: Posterior al molido, los ingredientes son transportados a los mezcladores, siendo antes interceptados por los equipos premix, donde son dosificados los microingredientes. Se les denomina microingredientes por la baja concentración que presentan en un lote completo.

Según la receta reflejada en una planilla con las especificaciones de cada lote, los operadores deben fraccionar los microinsumos y adicionarlos cuando el sistema les indique mediante una baliza. La dosificación automática cuenta con 8 microsilos que pesan y adicionan los microinsumos al resto de ingredientes.

Los macros y microingredientes dosificados son transportados a los equipos mezcladores. Existe un equipo por línea y cada uno tiene tres etapas, entregando una mezcla homogénea de todos los ingredientes secos.

Pelletizado (Figura 2.2)

-Acondicionado: "Los ingredientes secos son llevados a un proceso de acondicionamiento, que consiste en calentar la mezcla mediante vapor saturado y la adición de una poca cantidad de agua. Este proceso activa y gelatiniza los almidones que luego formarán la masa, alcanzando una temperatura cercana a los 100°C y una humedad entre el 19 y 20%".

-Extrusión: "El proceso de extrusión es el punto más determinante para asegurar la calidad del pellet. Según los detalles del lote de producción, el extrusorista debe configurar el equipo con los valores adecuados para obtener un pellet cuyas propiedades físicas cumplan con los parámetros requeridos" (SALMOFOOD, 2022).

Desde el acondicionador, los ingredientes ingresan al extrusor a unos 95°C, estos caen a un tornillo que se encuentra al interior del equipo, y en cuanto avanzan se les incorpora un poco de aceite, agua y vapor saturado, formando la masa que avanza hacia la matriz. Una vez que la masa atraviesa la matriz, una serie de cuchillos rotatorios la cortan del tamaño que corresponda, y el pellet sigue a su siguiente etapa.

Cuando la masa pasa a través de la matriz se encuentra con la presión atmosférica, lo que lo somete a una diferencia de presiones haciendo que el pellet se expanda. Esta expansión es la que determina la densidad del producto y, por tanto, su porosidad, capacidad de absorción de aceites, flotabilidad, dureza, durabilidad, uniformidad, etc.

Reproceso: El descarte de la mezcla de ingredientes que no haya logrado pasar la etapa de extrusión correctamente, se asigna a reproceso, pudiendo volver a ser incorporada al inicio de la producción. Esta es una de las tres etapas de toda la producción donde se reúne producto para ser reutilizado.

-Secado: Del extrusor, el pellet sale con una humedad entre un 20-30% hacia el secador, donde se obtiene una humedad entre el 7-8%. El tiempo de secado varía entre los 35 y 60 minutos dependiendo del equipo, del calibre y de la dieta del pellet.

Reproceso: luego de esta etapa, el producto pasa por una zaranda vibratoria que descarta los pellets que no cumplan con el tamaño mínimo y los restos que se producen en el traslado. Para ello existen distintas mallas con diferentes diámetros según sea el calibre del lote.

-Aceitado: "Para entregar la proporción de lípidos requerida en el alimento, se utilizan cámaras de vacío, que permiten que el pellet absorba el aceite y lo conserve hasta el momento de su digestión en el pez. El vacío permite que las microcavernas del pellet se expandan, de modo que cuando se restituye el aire en la cámara, el aceite es absorbido por el alimento. En este punto, personal de control de calidad toma muestras para analizarlas en el laboratorio de proceso."

-Enfriado y envasado: "El alimento que sale del aceitador pasa a los equipos enfriadores, que operan con aire a temperatura ambiente. El objetivo es dejar el alimento a 5°C sobre la temperatura del ambiente, de este modo se evita la condensación de agua dentro del medio de empaque." (SALMOFOOD, 2022).

Figura 2.2. Proceso de pelletizado. Fuente: Salmofood, 2022.

Tras el enfriado, el alimento es transportado a los silos de almacenamiento donde esperan su embolse. Las bolsas pueden ser de hasta 25 kg cada una, mientras que los maxi sacos oscilan entre los 1.000 y 1.250 kg. Control de calidad realiza un último análisis justo antes del envasado donde se realizan principalmente análisis físicos: se utilizan pie de metro, balanza, tamizador, termómetro, y un equipo que analiza la durabilidad del pellet.

-Alternativa alimento medicado: Cuando el requerimiento comercial es un alimento que debe contener un fármaco, se debe programar su producción en la línea 1. La producción se lleva a cabo tal como ha sido descrito el proceso hasta el aceitador, ya que después del secado, el producto es desviado hacia un área aislada que cuenta con sus propias salas de premix (una para antibióticos y una para antiparasitarios), su propio equipo aceitador, su propio enfriador, silo de almacenamiento, embolsador y bodega de almacenamiento, de este modo se evita la contaminación cruzada. Además, los laboratorios de control de calidad también poseen sus áreas y equipos para realizar análisis exclusivos al producto medicado.

El fármaco es incorporado al alimento junto con el aceite. Para ello, en la sala correspondiente se pesa el fármaco según la prescripción médico-veterinaria y se mezcla con el aceite mientras el alimento está siendo depositado en la cámara de vacío. Luego de esto el producto es enfriado y almacenado para su envasado.

Almacenamiento y despacho

Existen cuatro bodegas de salida para producto terminado en planta: tres para producto normal y una bodega aislada para alimento medicado.

Con el producto ya envasado, palletizado y envuelto en film en el caso de las bolsas, el área de producción entrega los maxi sacos y bolsas al área de bodega. Todo producto ingresado en bodega puede permanecer hasta seis meses almacenado y ningún producto puede ser cargado en un camión sin antes contar con la liberación desde control de calidad.

Bodega de salida trabaja directamente con el departamento de ventas del área comercial. Ventas emite una orden de proceso de despacho, que está relacionada con los productos almacenados en bodega, indicando a que cliente van dirigidos, con esta orden, desde bodega se gestiona solo la carga de los camiones. El volumen de producción es tan alto en la planta, que durante un día pueden salir hasta treinta camiones.

El despacho pertenece al área de ventas porque es la que está en contacto continuo con el cliente desde que se inicia la relación comercial. Ventas tiene la tarea de mantener una comunicación día a día con el cliente, de programar los despachos y velar por que el producto que se entregue se entregue a tiempo y sea el correcto, y sea el efectivo en relación con lo que se quiso vender, o sea a la nutrición que el área técnica o comercial prometieron que sería la más adecuada a la necesidad del cliente.

2.2 Cambio climático

La Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC o UNFCCC por sus siglas en inglés) es el tratado fundamental en materia de cambio climático que ofrece un contexto global para los esfuerzos internacionales para mitigar el cambio climático, su objetivo final es estabilizar las concentraciones de gases de efecto invernadero "a un nivel que impida interferencias antropogénicas peligrosas en el sistema climático". Establece que "ese nivel debería alcanzarse en un plazo suficiente para permitir que los ecosistemas se adapten naturalmente al cambio climático, asegurar que la producción de alimentos no se vea amenazada y permitir que el desarrollo económico

prosiga de manera sostenible" (Naciones Unidas, 1992). Además, esta convención define el cambio climático como un cambio en los parámetros del clima atribuido directa o indirectamente a la actividad humana, alterando la variabilidad natural del clima observada durante periodos de tiempo comparable.

El Protocolo de Kyoto, uno de los emblemas de la nueva política global ambiental para frenar el cambio climático, es un acuerdo intergubernamental elaborado por la CMNUCC para que ciertos sectores de la industria de países desarrollados reduzcan el total de sus emisiones. El acuerdo se estableció en 1997, y tiene por objetivo reducir las emisiones de seis principales gases efecto invernadero (Tabla 2.1): dióxido de carbono (CO₂), gas metano (CH₄) y óxido nitroso (N₂O), además de tres gases industriales fluorados: Hidrofluorocarbonos (HFC), Perfluorocarbonos (PFC) y Hexafluoruro de azufre (SF₆), en aproximadamente un 5%, dentro del periodo que va desde el año 2008 al 2012, en comparación a las emisiones al año 1990 (Naciones Unidas, 1998). Al vencer los plazos del protocolo en 2012, sus objetivos se alcanzaron en parte, ya que hubo deserciones de varios los países industrializados, como la de los Estados Unidos, que firmó el protocolo, pero no recibió la ratificación del senado o la de Canadá, que oficialmente se retiró en 2011, dichos países aumentaron notablemente sus emisiones y, de haberlos incluido en el protocolo, habrían resultado en su incumplimiento en términos globales. A esto debe sumarse el crecimiento económico de China e India, que no se consideraban potencias industriales al momento de la firma del protocolo, gracias a este hecho los países industrializados que firmaron acabaron por representar aproximadamente el 36% de las emisiones globales, por lo que una reducción de las emisiones de estos fue insuficiente al no contar con el apoyo de las grandes potencias contaminantes (Duarte, 2018). La secretaria ejecutiva de la CMNUCC, Christiana Figueres, ha subrayado que el Protocolo de Kyoto "no sólo asentó la realidad científica de que hay que reducir las emisiones, sino que, ayudó a poner en marcha nuevas iniciativas como las ayudas a los países en desarrollo para que reduzcan las emisiones procedentes de la deforestación y la degradación forestal" (ABC, 2015). Este protocolo se extendió en la COP18 de Doha en 2012 pero siguió sin contar con el apoyo de Canadá, Rusia, EE. UU. y Japón, que se retiraron.

Cada GEI permanece en la atmosfera durante un periodo de tiempo distinto y además afecta a la atmosfera en diferentes escalas. "La representación de la medida en la que un determinado gas puede absorber la radiación infrarroja y el tiempo que persiste en la atmosfera" se denomina Potencial de Calentamiento Global (PCG o GWP por sus siglas en inglés). Este índice define el efecto del

calentamiento integrado a lo largo del tiempo que produce hoy una liberación instantánea de 1kg de un gas de efecto invernadero, en comparación con el causado por el CO₂ (IPCC, 2007).

Tabla 2.1: Principales gases efecto invernadero.

Gas efecto invernadero	Fuentes de emisión	Potencial calentamiento global (periodo 100 años)	
<i>co</i> ₂	Quema de combustibles fósiles, cambios del uso de suelo, producción de cemento.	1	
CH ₄	Agricultura, ganadería, rellenos sanitarios.	28	
N ₂ O	Quema de biomasa, procesos industriales	265	
HFC	Refrigerantes líquidos	124-14800	
PFC	Fabricación de aluminio	7390-12200	
SF ₆	Aislantes eléctricos	22800	

Fuente: Elaboración propia a partir de IPPC 2013 y EPA, 2022.

El Panel Intergubernamental de Cambio Climático, es el órgano internacional encargado de evaluar los conocimientos científicos, técnicos, y socioeconómicos relativos al cambio climático, sus causas, posibles repercusiones y estrategias de respuesta. Este panel aseguró en su quinto informe con una certeza del 95% que el calentamiento global que ha existido en los últimos años es producto de actividades antropogénicas principalmente mediante la emisión de gases efecto invernadero. El aumento de la concentración de estos gases desde la era preindustrial se debe principalmente al uso de combustibles fósiles y al cambio de uso de suelo (IPCC, 2014).

Durante las últimas décadas se han observado importantes cambios en la temperatura del planeta debido al cambio climático, y a futuro se proyectan diferentes escenarios, donde la temperatura puede aumentar al 2100 en 0,3°C a 1,7°C en el caso de bajas emisiones de GEI y hasta los 4.8°C en el escenario de alta emisión (IPCC, 2014).

En la COP21 llevada a cabo el 2015 se instaura el Acuerdo de Paris, tratado internacional sobre el cambio climático jurídicamente vinculante, que fue adoptado por 197 partes y su objetivo es limitar el calentamiento mundial a muy por debajo de 2°C, preferiblemente a 1,5°C, en comparación con los niveles preindustriales (Naciones Unidas, 2016).

Tabla 2.2: Indicadores ambientales de sostenibilidad

	Detalle	Unidades de medida	Utilidad	Aplicación
Huella Ecológica	Transforma consumos de recursos y energía a hectáreas de terreno productivo biológicamente productivos	Superficie Ha/año	Se detalla el impacto preciso sobre el ambiente	Poblaciones, regiones, países, sector agrícola. (Actividades productivas)
Huella Hídrica	Volumen total de agua consumida para la producción de bienes y servicios de individuos o empresas	Tiempo, masa m3/kg m3/año	Información complementa la tradicionalmente generada por los indicadores de uso de los sectores productivos	Población, países, sector productivo
Huella de Carbono	Medida del impacto de todos los GEI producidos por nuestras actividades en el medio ambiente	Masa t CO₂e/año	Determinar la incidencia en el cambio climático por las actividades que se desarrollen en la organización	Poblaciones, países, sector productivo

Fuente: Elaboración propia partir de Schneider & Samaniego 2010.

Para analizar estos aspectos como: cambio climático, escasez de recursos, consumo energético, calidad de agua, calidad del aire, entre otros, se han desarrollado diversos indicadores como los que se muestran en la tabla 2.2. Los indicadores ambientales de sostenibilidad son herramientas útiles para la cuantificación y análisis del consumo de recursos y la aplicación de cada uno de estos indicadores dependerá de la organización y también de los objetivos específicos que se hayan propuesto (Calatrava-Requena, 2012).

Emisiones por sector

En 2018, las emisiones de GEI totales de Chile contabilizaron en 112.313.000 toneladas de CO₂ equivalente o bien 112.313 ktCO₂e, incrementándose en un 128% desde 1990 y un 2% desde 2016. Los principales causantes de esta tendencia son las emisiones de CO₂ generadas por la quema de combustibles fósiles para la generación eléctrica y el transporte terrestre, las emisiones de CH₄ provienen del ganado y las de N₂O por la aplicación de fertilizantes en los suelos agrícolas. Además, las emisiones de GEI totales estuvieron dominadas por el CO₂, representando un 78 %, seguido del CH₄ (13%), N₂O (6%) y de los gases fluorados (3%). Ver tabla 2.3.

Tabla 2.3: Emisiones de GEI total por gas (kt CO2e)

				1 0			
GEI	1990	2000	2010	2013	2016	2017	2018
CO ₂	32252,8	53317,9	67152,5	80260,6	86507,2	87003	87191,7
CH ₄	11527,6	13034	12948,5	13842,6	14214,8	14376,9	14758,9
N ₂ O	5412	6461,2	6497	6440	6368	6442,6	6419,9
Gases							
fluorados	17,2	188,2	1344,1	2135,2	3066	3393,1	3942
Total	49.209,6	73.001,3	87.942,1	102.678,4	110.156,0	111.215,6	112.312,5

Fuente: SNI 2020.

En cuanto al balance de GEI (considerando emisiones y absorciones), Chile en 2018 contabilizó 48.321.000 tCO₂e (48.321 ktCO₂e), incrementándose un 36% desde 2016. Las principales causantes de este balance son además de las emisiones de CO₂ generadas por la quema de combustibles fósiles, las absorciones de CO₂ de nuestros bosques bajo manejo antropogénico (Ministerio del Medio Ambiente, 2021).

Entre los sectores que aportan más emisiones de GEI, se encuentran el sector Energía representando un 77%, seguido del sector Agricultura con 11%, luego sector Residuos con 6% y finalmente el sector IPPU (Procesos industriales y uso de productos) igualmente con 6% (Figura 2.3).

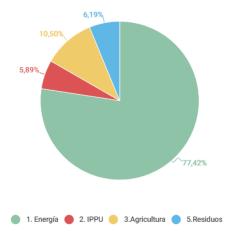


Figura 2.3. Participación en las emisiones GEI por sector. Fuente: MMA 2021.

Rubro acuícola

La demanda mundial por productos pesqueros ha crecido sostenidamente en las últimas décadas y el suministro de peces silvestres está estancado, por lo que prácticamente todo el aumento en el consumo humano mundial de pescado en el futuro deberá ser suministrado a partir de la acuicultura. Esto significa que la producción de la acuicultura a nivel mundial deberá avanzar desde unos 74 millones de toneladas métricas (TM) en 2014 a cerca de 140 millones de TM en 2050. Con ello, surgirán mayores preocupaciones sobre sus eventuales impactos medioambientales y sociales (Prospectus Consulting, 2016).

En cuanto al rubro acuícola chileno, empresas socias del Consejo del Salmón presentan su contribución en cuanto a emisiones en su Segundo Reporte de Impacto Sostenible, donde alcanzan las 261.169 toneladas de CO₂e para el 2020, y para el año 2021 disminuyó a 244.940 toneladas, ambas lecturas contabilizan las emisiones provenientes de fuentes que son propiedad de las empresas o controladas por ellas y las emisiones indirectas asociadas a la energía que consume la empresa (Consejo del Salmon, 2021).

Cambio en el sistema alimentario

Cuando se comparan los rubros alimenticios que producen proteínas de origen animal, se puede notar que en términos de eficiencia los peces son el animal más eficiente para producir, ya que, en promedio, los peces de cultivo necesitan 1,2 kg de alimento para ganar 1 kg de masa corporal, en comparación con 1,7 kg para las aves de corral y 6,6 kg para el ganado (Skretting, 2022). Por otro lado, una gran proporción de un salmón puede ser consumido, el 68% de un salmón se puede comer en comparación con el 41% de un vacuno. Esto posiciona al salmón en un lugar privilegiado en cuanto a la cantidad de carne efectiva que se puede obtener por kilo pagado.

Si nos centramos en la huella de carbono que genera la producción de las proteínas animales, se puede ver que el salmón también se alza como una solución amigable con el medioambiente. Según el Global Salmon Initiative (GSI, 2021), el salmón es el cultivo que libera menos CO₂ al medioambiente en su producción, con un índice de 0,60 kg por cada porción de 40 gr comestibles, lo que es muy dispar a los 5,92 kg de CO₂ por porción emanados por la industria del vacuno (Ver Figura 2.4).

Figura 2.4. Kg de CO2 liberados por animal al producir 40gr. Fuente: GSI, 2021.

La producción acuícola mundial creció de 1990 a 2018, en un 122% y se estima que la producción total de pescado aumentará en 204 millones de toneladas en 2030, un 15% más que en 2018 (Roberts & Cuevas, 2020). La acuicultura es una de las formas más ecoeficientes de producir proteínas, esto hace que el salmón se convierta en un producto cada vez más popular, tanto por su perfil nutricional, ya que es una de las fuentes más ricas en ácidos grasos omega-3 y por su baja huella ambiental en comparación con otras proteínas de origen animal (Johannessen, 2020).

2.3 Huella de carbono

En muchos países las empresas públicas y privadas han emprendido diversas iniciativas para hacer frente al cambio climático, siendo la huella de carbono aquella que concentra la mayor atención y aceptación para identificar, sintetizar y difundir de manera precisa los impactos ambientales de un proceso o producto desde el punto de vista de las empresas. Esto es principalmente debido a que su utilización se ha convertido en un importante factor de competitividad y promueve el acceso a los mercados, en especial, cuando este concepto toma mayor relevancia en las decisiones de la sociedad modificando sus patrones de consumo. En ciertos países los consumidores comienzan a pedir la declaración de la HdC en el etiquetado de productos y otros grupos de interés están exigiendo los inventarios de emisiones de CO₂ de empresas y organizaciones (Schneider & Samaniego, 2010). Es por esto que este indicador se escoge para el desarrollo del presente trabajo como una herramienta estratégica para la empresa en cuestión.

En la huella de carbono influyen parámetros que deben ser definidos claramente con el fin de realizar un correcto calculo. Específicamente son necesarios los datos de la actividad, los factores de emisión correspondientes y el potencial de calentamiento global para algunos casos.

Las emisiones que se encuentran relacionadas con el consumo de combustible se calculan usando factores de emisión publicados. Las emisiones referentes al consumo eléctrico se estiman mediante los factores de emisión proporcionados por la red eléctrica local y emisiones que dependen de datos de las actividades de la empresa como el transporte de personal se calculan a partir de factores de emisión publicados o de terceras partes.

2.3.1 Método de cuantificación: Greenhouse Gas Protocol

Para la cuantificación de emisiones de GEI y de la HdC existen varias normas y métodos tanto para organizaciones como para productos y servicios, dentro de las que encontramos la ISO 14.064 cuyo objetivo es dar credibilidad y veracidad a los reportes de emisión de GEI, así como a las declaraciones de reducción o remoción de GEI (Ihobe, 2013). También se encuentra la norma PAS 2060 que está enfocada al cálculo de emisiones de organismos públicos o privados, colectividades territoriales y particulares. Esta herramienta permite a las organizaciones asegurar que sus declaraciones sobre neutralización de las emisiones de CO₂ son correctas y aumentar así la confianza de los clientes, se aplica a las entidades que puedan demostrar que no producen un aumento neto en la emisión de GEI

como consecuencia llevar a cabo de ciertas actividades (AEC, 2019). Luego, una de las metodologías más utilizadas es el protocolo internacional Greenhouse Gas Protocol (GHG Protocol), que es una iniciativa de una alianza de ONG's, de empresas, y de gobiernos, desarrolladas por el World Resources Institute (WRI) y el World Business Council for Sustainable Development (WBCSD). Esta iniciativa fue lanzada en 1988, y es uno de los protocolos más utilizados a escala internacional para entender, cuantificar y gestionar las emisiones de GEI. De este modo, este protocolo es una guía paso a paso para medir de manera correcta la contribución de gases efecto invernadero de una empresa (GHG Protocol, 2001).

La contabilidad y el reporte de GEI deben basarse imprescindiblemente en principios definidos claramente por el GHG Protocol, los cuales se muestran en la siguiente tabla (Tabla 2.4).

Tabla 2.4: Principios básicos del GHG Protocol.

Table 2010 1 Thirdpion business and 3110 11000001				
Relevancia	Asegura que el inventario refleje de forma apropiada las emisiones de la organización y que, el cálculo, sea un elemento para la toma de decisiones.			
Integridad	Implica realizar la contabilidad de tal forma que se abarquen todas las fuentes de emisión de GEI y las actividades incluidas en los límites del cálculo.			
Consistencia	Mediante el uso de metodologías que permitan comparaciones significativas de las emisiones a lo largo del tiempo, siendo necesario documentar cualquier cambio en los datos, límites del inventario, métodos de cálculo o cualquier otro factor relevante.			
Transparencia	En todo el proceso en sí, pero con especial enfoque en las cuestiones especialmente significativas o relevantes mediante un seguimiento de auditoría transparente.			
Precisión	Asegura que la cuantificación no implique errores sistemáticos o desviaciones respecto a las emisiones reales, hasta donde pueda ser evaluado, reduciendo también la incertidumbre en la medida de lo posible.			

Fuente: Eurofins a partir de GHG Protocol, 2022.

Además de los principios en los que se basa la Huella de Carbono, es necesario definir los conceptos de Límite Organizacional y Límite Operacional. La determinación de estos límites es un requisito fundamental para el logro de una medición correcta y transparente, ya que al definir estas fronteras se establece la magnitud y profundidad de la información que va a ser recopilada. Para ello es necesario realizar la identificación de las áreas y actividades que se desarrollan en la empresa (Domenech, 2007).

Los limites organizacionales dependen de la estructura de la empresa para identificar las operaciones que son de propiedad absoluta o sobre las que ejerce un control, mientras que los limites operacionales implican las emisiones de GEI de dichas operaciones dividiéndolas en directas o indirectas (Figura 2.5).

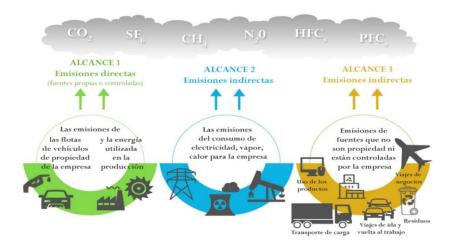


Figura 2.5. Tipos de emisiones en una empresa. Fuente: Global Climate Initiatives, 2022.

- A. Limites organizacionales: Para los inventarios corporativos, la contabilidad exacta de las emisiones de una fuente depende de si esa fuente es propiedad absoluta o persona jurídica sociedad conjunta, filial, u otra. El GHG Protocol ofrece dos métodos para la determinación de cómo debe llevarse a cabo dicha contabilidad (GHG Protocol, 2001).
 - Enfoque de participación accionaria: La empresa contabiliza las emisiones de GEI de acuerdo con la proporción que posee en la estructura accionaria. Este enfoque refleja un interés económico, lo cual establece el alcance de los derechos que la empresa tiene sobre los riesgos y beneficios que se derivan de una operación.
 - Enfoque de control: Una empresa contabiliza el 100% de emisiones de las operaciones sobre las que ejerce control. Dos criterios alternativos pueden utilizarse para definir el control:
 - a) Control financiero: Una empresa ejerce el control financiero de la fuente si tiene la capacidad de dirigir tanto las políticas financieras y operativas de dichas fuentes con el fin de obtener beneficios económicos.
 - b) Control operacional: Una empresa tiene el control operacional de una fuente si se tiene la completa autoridad para introducir y aplicar sus políticas y prácticas de operación de la fuente.

B. Limites operacionales: La determinación de los limites operacionales involucra identificar las emisiones directas e indirectas generadas y de esta manera determinar los alcances de cuantificación de GEI, los cuales se detallan en la siguiente tabla (Tabla 2.5).

Tabla 2.5: Alcances de GEI según GHG Protocol.

Alcance	Emisiones consideradas	Ejemplos
Alcance 1 Emisiones Directas	Emisiones de fuentes que son propiedad o son controladas por la empresa.	Emisiones provenientes de la combustión en calderas, hornos, vehículos, etc.
Alcance 2 Emisiones Indirectas	Emisiones de la generación de electricidad adquirida y consumida por la empresa.	Emisiones provenientes de máquinas electricas pero las emisiones ocurren físicamente en la planta generadora de electricidad.
Alcance 3 Otras Emisiones Indirectas	Emisiones que son consecuencia de las actividades de la empresa, pero que ocurren en fuentes que no son propiedad ni están controladas por la empresa.	Transporte de materiales adquiridos y personal, residuos, viajes de negocios, etc.

Fuente: Elaboración propia a partir de GHG Protocol, 2001.

Cabe señalar que las emisiones de GEI no cubiertas por el protocolo de Kyoto y las emisiones directas de dióxido de carbono provenientes de la combustión de biomasa no deben incluirse en el alcance 1, estas últimas debido a que en la combustión de la biomasa se considera que las emisiones tienen un balance neutro de CO₂, ya que las plantas captan ese CO₂ de la atmósfera mediante el proceso de fotosíntesis, liberando oxígeno y acumulando carbono en sus estructuras. De esta manera se cerraría el ciclo siempre que se mantenga suficiente masa forestal que permita la sustentabilidad del ciclo (Riaza, 2014).

Para reportar las emisiones de GEI, se debe elegir un año base y justificar las razones por las que se selecciona ese año en particular. El inventario del año base que se obtiene también puede ser utilizado para dar seguimiento al desempeño de la empresa hacia ciertos objetivos de emisiones.

Independientemente del enfoque que se quiera o deba implementar al momento de determinación de la huella de carbono, se encuentra la guía del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC 2006 GHG Workbook), esta es una completa guía para calcular GEI provenientes de diferentes fuentes, sectores y territorios, que incluye una detallada lista de factores de emisión.

Cabe destacar que, si no se dispone de factores de emisión específicos, el IPCC 2006 GHG Workbook proporciona factores de emisión genéricos que pueden servir para calcular la HdC de una organización (Oficina Española de Cambio Climático, 2016).

2.4 Beneficios del cálculo de la Huella de Carbono

Realizar el cálculo de la huella de carbono corporativa tiene una serie de ventajas y beneficios para la empresa u organización, además de representar una gran iniciativa medio ambiental, ya que es un primer paso para poner en marcha medidas para la reducción y compensación de las emisiones lo más posible.

Entre los beneficios de llevar a cabo su cálculo es que constituye una herramienta de la organización para la gestión y comunicación de la sostenibilidad ambiental utilizándola como un indicador dentro de sus políticas de sostenibilidad. Además, contribuye a una mejora ambiental y ahorro de costes, ya que permite detectar oportunidades de mejora de la eficiencia energética como por ejemplo reducir el consumo de energía para iluminación, climatización, calefacción y transporte, o de los procesos productivos que suponen ahorros económicos y una mayor concienciación medioambiental, lo cual ofrece una ventaja en el mercado frente a los demás proveedores del rubro y un aumento de la confianza por parte de los stakeholders (Oficina Española de Cambio Climático, 2015).

La determinación y reducción de la huella de carbono no tiene como único objetivo el cuidado del medio ambiente, también puede centrar sus esfuerzos en mejorar el posicionamiento de los productos de la empresa, logrando una ventaja especialmente frente a otros oferentes del rubro que no han avanzado al respecto (Wulf Betancourt, 2013).

Algunos países en desarrollo han anunciado las iniciativas de la aplicación de HdC en el sector privado con motivo de prepararse para futuros escenarios y mejorar la competitividad y diferenciación de las empresas, especialmente para las que cuentan con actividad exportadora a mercados de Europa, donde son especialmente sensibles respecto del impacto sobre el medio ambiente de los productos que consumen (Frohmann & Olmos, 2013).

Por ejemplo, en una encuesta realizada sobre 26.500 ciudadanos de la Unión Europea (Gallup Organisation, 2009), el 80% de ellos consideró el impacto ambiental de los productos como el tercer criterio a nivel de importancia en sus decisiones de compra, tras la calidad y el precio. Y un 72% de

la muestra, indicaba que una etiqueta que detalle la huella de carbono debería ser obligatoria en el futuro (Ver Figura 2.6).

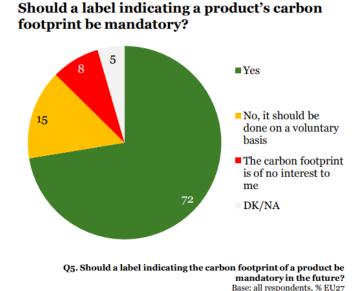


Figura 2.6. Gráfico ¿Debe ser obligatoria una etiqueta que indique la huella de carbono de un producto? Fuente: Gallup Organisation, 2009.

En cuanto a los compromisos de Chile para reducir sus emisiones de GEI, el Consejo de Ministros para la Sustentabilidad y de cambio climático acordó alinearse con los contenidos del acuerdo Climático de Paris del 2015, comprometiéndose a desarrollar e implementar políticas y acciones climáticas que permitan a nivel local la adaptación, la mitigación y el cumplimiento de los acuerdos mundiales planteados.

El Ministerio del Medio Ambiente, a través de la División de Cambio Climático, es responsable de "proponer políticas y formular los planes, programas y planes de acción en materia de cambio climático", y su misión es contribuir en el desarrollo sustentable y en una economía baja en carbono para el país, a través de la integración e impulso de más y mejores políticas públicas que permitan enfrentar el cambio climático e implementar acciones de mitigación (MMA, 2022).

Dentro de las acciones directas que se realizan en el contexto de mitigación en el país, desde 2014 se cuenta, dentro de la Ley N° 20.780 de Reforma Tributaria, con los denominados Impuestos Verdes, instrumento que consta de impuestos que gravan las emisiones de contaminantes locales de vehículos y fuentes fijas y un impuesto específico a las emisiones de CO₂ de fuentes térmicas. Este último entró en vigor en 2017 y se destaca como instrumento pionero de este tipo en Latinoamérica (MMA, 2017).

En esta misma línea en abril de 2015, se lanzó el programa HuellaChile, cuyo objetivo es apoyar e incentivar cuantificación y la gestión de GEI a nivel corporativa para su mitigación en organizaciones públicas y privadas. El programa entrega las herramientas adecuadas para el cálculo de la huella de carbono corporativa, formatos estandarizados para el reporte y canales de difusión de estos, ayuda en el diseño de planes de mitigación y seguimiento permanente, además de entregar reconocimiento a sus participantes por los distintos niveles de gestión de sus GEI (MMA, 2015).

En junio de 2021 se presentó un proyecto de ley (en tramitación a la fecha) para la creación de un Sistema Nacional de Certificación de la Huella de Carbono en bienes y servicios finales, estableciendo una anexión voluntaria a la certificación oficial de distintas etiquetas que miden las emisiones de CO₂ en el ciclo de vida de un bien o servicio, y las reducciones de estas. El objetivo del sistema es asegurar y certificar que los bienes y servicios destinados al consumo se han producido, fabricado, envasado y/o manejado, midiendo las emisiones de dióxido de carbono que estas actividades producen, y, que se hayan reducido dichas emisiones en un lapso determinado de tiempo, si es el caso (Mulet et al., 2021).

Cabe destacar, además, que el 13 de junio de 2022 fue publicada la ley Marco de Cambio Climático, aprobada en marzo del mismo año por unanimidad por la cámara alta, esta normativa impone la meta de carbono neutralidad y resiliencia al clima a más tardar al 2050 y establece acciones concretas a diferentes ministerios para enfrentar el cambio climático (Biblioteca del Congreso Nacional de Chile, 2022). También busca contribuir a la adaptación de los impactos que se generan, por ejemplo, marejadas anormales, aumentos de temperatura, aluviones, sequías, entre otros, y potenciar la seguridad alimentaria disminuyendo los riesgos de salud, aumentar la disponibilidad de agua y disminuir la contaminación. Antes de esto, Chile no contaba con un marco jurídico que permitiera asignar responsabilidades de reducción de emisiones o exigir implementación y reporte de medidas de mitigación de emisiones y adaptación a los impactos del cambio climático, es por esto por lo que esta ley permite establecer la lucha contra el cambio climático como una política de Estado (Gobierno de Chile, 2022).

Capítulo III

3 METODOLOGÍA

Para el desarrollo de la estimación de la huella de carbono corporativa de la empresa Salmofood, se siguieron los lineamientos generales reportados en la guía estándar corporativa de contabilidad y reporte del protocolo de gases de efecto invernadero, GHG Protocol mencionado anteriormente, además de la información del IPCC de 2006 para el desarrollo de los inventarios nacionales de gases de efecto invernadero.

3.1 Limites corporativos

3.1.1 Determinar año base

La elección de los años base para el caso de estudio se debe a la falta de este indicador para dichos años en la empresa Salmofood, tanto para tener conocimiento de la huella de carbono para poder aplicar gestión y también para presentarla a HuellaChile, con el fin de acceder a los beneficios que entrega dicho programa tales como, apoyo técnico, capacitaciones y certificaciones de reconocimiento. Los años que se consideraron fueron 2020 y 2021, teniendo gran representatividad de la información para estos. Cabe señalar que la metodología para ambos años es la misma.

3.1.2 Identificar limites organizacionales

Los limites organizacionales para la contabilidad de las emisiones para la compañía se basan bajo el enfoque de control operacional, es decir, se consideran todas las emisiones de GEI que provienen de fuentes y operaciones sobre las que la empresa ejerce control. Esto considera desde el transporte de materias primas e insumos a planta, la producción dentro de la misma, consumo de energía eléctrica, movilización de personal, gestión de residuos hasta el despacho de producto terminado.

3.1.3 Determinar limites operacionales

Para los limites operacionales de la empresa Salmofood, se consideró la cuantificación de GEI de los alcances 1, 2 y 3 según el GHG Protocol, definidos anteriormente. Es decir, emisiones directas provenientes de la operación de la compañía, emisiones indirectas a partir del consumo de electricidad

y otras emisiones indirectas como las emitidas por movilización de personas y transporte de materias primas y producto terminado. En la figura 3.1 se muestran dichos alcances de manera detallada.

FUENTES DIRECTAS	FUENTES INDIRECTAS		
Alcance 1	Alcance 2	Alcance 3	
Fuentes Móviles: Vehículos administración y grúas horquilla. Fuentes Fijas: Caldera y generador.	Consumo energía eléctrica.	Transporte personal. Transporte materias primas e insumos. Transporte producto terminado. Transporte residuos.	

Figura 3.1. Definición de alcances del sistema en estudio. Fuente: Elaboración propia.

Para el alcance 1 se consideran como vehículos de administración a una flota de camionetas disponibles para distintas tareas de movilización, las grúas horquillas son las encargadas del movimiento de carga dentro de la empresa. Dentro del alcance 3, para el traslado del personal se utilizan mini buses de 25 personas contratados por la empresa y vehículos particulares de los trabajadores, también se consideran viajes de negocios en avión. Dentro del transporte en camión de materias primas, durante los trayectos terrestres directos a planta se considera un camión articulado promedio de 11 toneladas, y para los trayectos terrestres entre el origen del proveedor hacia el puerto de origen, se considera un camión articulado mayor a 33 toneladas. Para los despachos se pueden considerar ambos tipos de camiones. Finalmente, para el transporte de residuos se utiliza un camión rígido de carga promedio de 3 toneladas y para el transporte de sacos se considera un vehículo de carga promedio. En cuanto al transporte por mar, las opciones a utilizar son buques graneleros y portacontenedores. Estas definiciones se utilizan a conveniencia de la guía propuesta por el IPCC 2006.

3.2 Estimación de las emisiones de gases de efecto invernadero

Luego de definidos los limites operacionales, para el inventario de las emisiones directas e indirectas de gases efecto invernadero se considerarán las emisiones gaseosas de dióxido de carbono (CO₂), metano (CH₄) y óxido nitroso (N₂O), debido a que se utilizó la base de datos de los factores de emisión que entrega el programa HuellaChile que considera dichos gases (Anexo B) y que tiene como fuentes principalmente a la guía del IPCC 2006, especificando valores para los tres diferentes alcances y para cada tipo de fuentes de emisión por alcance.

En una primera aproximación puede decirse que el cálculo de la huella de carbono consiste en aplicar la siguiente formula (MITECO, 2016):

Huella de Carbono = Dato Actividad x Factor de Emisión

Ecuación 1

Donde:

- El dato de actividad es el parámetro que define el grado o nivel de la actividad generadora de las emisiones de GEI. Por ejemplo, cantidad de gas natural utilizado en la calefacción (kWh de gas natural).
- El factor de emisión (FE) supone la cantidad de GEI emitidos por cada unidad del parámetro "dato de actividad". Estos factores varían en función de la actividad que se trate. Por ejemplo, consumo de gas natural, el factor de emisión para 2017 sería 0,202 kg CO₂e/kWh de gas natural. Las unidades en las que estén expresados los factores de emisión han de escogerse en función de los datos de la actividad de que se disponga.

Como resultado de esta fórmula obtendremos una cantidad (g, kg, t, etc.) determinada de dióxido de carbono equivalente (CO₂e).

El desarrollo de las operaciones se realiza mediante hojas de cálculo Excel, para un mejor ordenamiento tanto de los datos como los resultados y utilizar las herramientas de cálculo que ofrece el software.

3.2.1 Emisjones Alcance 1

Como se mencionó anteriormente, para el cálculo de las emisiones dentro de este alcance se definen como fuentes fijas las calderas que producen vapor para el funcionamiento de las maquinarias en planta, la caldera principal utiliza biomasa como combustible y las calderas de apoyo utilizan petróleo industrial o N°6, estas últimas se utilizan en menor proporción. Y también se consideró un generador de electricidad a base de diésel que se utiliza en casos de emergencias eléctricas. Los datos de consumo de las calderas se transmiten desde el jefe de bodega de materias primas en planta hacia el jefe de sistemas de gestión. Y el consumo de diésel del generador se contabiliza mediante la facturación a la empresa proveedora.

Los datos se almacenan en una hoja de cálculo (Anexo C), ordenados de manera mensual para cada combustible, la biomasa se registra en metros cúbicos (m3), el petróleo N°6 en kilogramos (kg) y el diésel en litros (l). Estos se llevaron a la unidad de medida relacionada con el factor de emisión, la biomasa se convierte a toneladas (t) usando una densidad promedio de 200 kg/m3 proporcionada por el jefe de mantención, el petróleo N°6 se convierte a metros cúbicos con una densidad de 945 kg/m3 (Ministerio de energía, 2022) y finalmente el diésel se llevó de litros a metros cúbicos.

Para el caso específico de la biomasa (chips, leña, pellets entre otros) como combustible, se considera neutra en emisiones de CO₂ al ser de origen biogénico, pero sí producirá emisiones de CH₄ y N₂O (MITECO, 2022). El factor de emisión de CO₂ equivalente se calculó considerando las emisiones de CH₄ y N₂O por unidad de energía para luego llevarlo a emisiones por unidad de masa mediante las ecuaciones a continuación.

Tabla 3.1: Emisiones de CH₄ y N₂O por TJ para la combustión de biomasa.

	Emisiones por unidad de energía		
Poder calorífico (TJ/t)	kgCH4/TJ	kgN2O/TJ	
0,014644	30	4	

Fuente: Elaboración propia a partir de guía IPPC 2006 y HuellaChile.

Primero se convierten las emisiones de cada gas por unidad de energía a unidad de masa, utilizando el poder calorífico de la leña, proporcionado directamente por HuellaChile (Tabla 3.1).

$$fe_i = PC_b * EUE_i$$
 Ecuación 2

Donde:

- fe_i: Factor de emisión del gas i por unidad de masa (kg gas i/ton).
- PC_h : Poder calorífico de la biomasa (TJ/t).
- EUE_i : Emisiones de gas por unidad de energía (kg gas i/TJ).

Luego se obtiene el factor de emisión de la biomasa en kilogramos de CO₂ equivalentes (contribución del metano y el óxido nitroso) por unidad de masa, sumando el producto entre el factor de emisión de ambos gases y potencial de calentamiento global de cada gas:

$$FE_{bio} = \sum_{i} fe_{i} * PCG_{i}$$
 Ecuación 3

Donde:

- FE_{bio} : Factor de emisión de CO₂ equivalente de biomasa por unidad de masa (kg CO₂e/t).
- *PCG_i*: Potencial de calentamiento global del gas i (kg CO₂/kg gas i).

Obteniendo el factor de emisión a utilizar para la biomasa, el cálculo de las emisiones de CO₂ para fuentes fijas pertenecientes al alcance 1 se llevó a cabo utilizando las cantidades de combustibles utilizados en las unidades de medida mencionadas anteriormente, como se muestra en la siguiente tabla (Tabla 3.2):

Tabla 3.2: Factores de emisión para cada tipo de combustible utilizado en fuentes fijas.

Fuente de emisión fija	Tipo de combustible	Unidad de medida	Factor de emisión (kg CO ₂ e/Unidad de medida)
Calderas	Biomasa Petróleo N°6	Toneladas Metros cúbicos	27,824 3.064,286
Generador	Diésel	Metros cúbicos	2.707,395

Fuente: Elaboración propia a partir de base de datos de factores de emisión HuellaChile, 2019.

Para el caso de las fuentes móviles de combustión dentro de la compañía, estas utilizan tres tipos de combustibles, la flota de camionetas usa tanto diésel como gasolina (Figura 3.2), mientras que las grúas horquilla funcionan a base de gas licuado del petróleo. El consumo de GLP también se obtiene desde el jefe de bodega de materias primas y el consumo de combustible de los diferentes vehículos está a cargo del encargado de predios, que lleva un registro mediante la facturación con la empresa proveedora.

Figura 3.2. Flota camionetas administración Salmofood. Fuente: Elaboración propia.

Los datos son registrados de manera mensual en litros, por lo que se llevan a metros cúbicos, que es la unidad que lleva el factor de emisión proporcionado (Tabla 3.3).

Tabla 3.3: Factores de emisión para cada tipo de combustible utilizado en fuentes móviles.

Fuente de emisión móvil	Tipo de combustible	Unidad de medida	Factor de emisión (kg CO2e/Unidad de medida)		
Vehículos	Diésel	Metros cúbicos	2.740,160		
Administración	Gasolina	Metros cúbicos	2.306,197		
Grúa Horquilla	GLP	Metros cúbicos	1.630,211		

Fuente: Elaboración propia a partir de base de datos de factores de emisión HuellaChile, 2019.

Finalmente, la <u>estimación</u> de emisiones de kg CO₂e para este alcance considera ambos tipos de fuentes, sumándolas para obtener el total para el alcance 1:

Emisiones alcance
$$1 = \sum_{f} CCF_{f} * FE_{f}$$
 Ecuación 4

Donde:

- *CCF_f*: Consumo de combustible *f* de las distintas fuentes de emisión (unidad de medida combustible).
- FE_f : Factor de emisión de CO₂ equivalente para el combustible f (kg CO₂e/ unidad medida combustible).

3.2.2 Emisiones Alcance 2

Para este alcance se consideró el consumo de energía eléctrica para ambos años (Anexo D), registrados mensualmente a partir de la facturación de la empresa proveedora en kilowatts-hora (kWh), pero se llevan a Megawatts-hora (MWh) en concordancia con los factores de emisión a utilizar, que se presentan en la tabla 3.4, a partir del Sistema Eléctrico Nacional.

Cabe señalar que el año 2021, específicamente desde junio, Salmofood firmó un acuerdo con su proveedor para que el 100% de la energía eléctrica que utilice en su planta provenga de fuentes renovables (Salmonexpert, 2021). Esto se sustenta en un certificado que emite la empresa proveedora especificando la planta de producción de electricidad. Hay que señalar que en la práctica es difícil asegurar que la demanda de la planta sea cubierta en todo horario por energía eléctrica en base a

energías renovables, por lo que para el desarrollo del presente trabajo se utilizó el factor de emisión proporcionado por el SEN (Tabla 3.4). En discusiones posteriores se compara con la utilización del factor de emisión con valor igual a cero, para evaluar el efecto de lograr una matriz completamente en base a energías renovables.

Tabla 3.4: Factores de emisión adquisición de electricidad.

Factores de emisión (t CO ₂ e/MWh)			
Año 2020	Año 2021		
0,3834	0,3907		

Fuente: Elaboración propia a partir de Sistema Eléctrico Nacional, 2022.

Luego, la estimación de las emisiones del alcance 2 sigue la siguiente ecuación:

Emisiones alcance
$$2 = CTE * FE_e$$
 Ecuación 5

Donde:

- *CTE*: Consumo total de electricidad en el año (MWh).
- FE_e: Factor de emisión de CO₂ equivalente por la adquisición de electricidad (t CO2e/ MWh).

3.2.3 Emisjones Alcance 3

En el alcance 3 se consideraron diferentes fuentes para los periodos en estudio, las metodologías de cálculo se detallan a continuación y los factores de emisión a utilizar para las respectivas fuentes se presentan en la tabla 3.5.

Tabla 3.5: Factores de emisión para cada tipo de fuente indirecta, alcance 3.

Fuente de emisión indirecta	Factor de emisión (kg CO ₂ e/Unidad de medida)	Unidad de medida	Detalle factor de emisión de la fuente
Violag do pagacias	0.2797	Vilometre nersene	Nacional
Viajes de negocios	0,2787 0,1790	Kilometro-persona Kilometro-persona	Internacional
	0,1790	Kiloineuo-persona	Internacional
Transporte	0,0274	Kilometro-persona	Bus local
personal	0,2097	Kilometro-persona	Auto particular
Importación y	0,0867	Tonelada-kilometro	Camión articulado promedio 11 toneladas
distribución transporte terrestre	0,0814	Tonelada-kilometro	Camión articulado mayor a 33 toneladas
Importación	0,0035	Tonelada-kilometro	Buque granelero
transporte marítimo	0,0160	Tonelada-kilometro	Buque portacontenedores
Transporte residuos	0,2092	Tonelada-kilometro	Camión rígido carga promedio 3 toneladas
Transporte sacos	0,2092	Tonelada-kilometro	Terrestre – Camión rígido carga promedio 3 toneladas
1	0,0160	Tonelada-kilometro	Marítimo – Buque portacontenedores
E 4 ELL 14		1 1 4 1 6 4 1	1 1/ TT 11 (CL 11 A040

Fuente: Elaboración propia a partir de base de datos de factores de emisión HuellaChile, 2019.

Viajes de negocios

Donde:

Para el cálculo de emisiones provenientes de viajes de negocios en avión, se recolectó la información a través de la empresa de viajes con la que se trabaja, pidiendo un historial de viajes anual, con orígenes, destinos y cantidad de pasajeros (Anexo E). Con esta información, utilizando una herramienta de cálculo de distancias entre diferentes aeropuertos a nivel nacional e internacional (ICAO, 2022), se especifican las distancias de cada tramo, el factor de emisión varía según si el viaje es nacional o internacional, según la base de datos proporcionada por HuellaChile (Tabla 3.5). Con estos datos, las emisiones de esta fuente se calculan mediante la siguiente ecuación (Ecuación 6).

Emisiones Viajes de negocios = $DT_N * N_N * FE_N + DT_I * N_I * FE_I$ Ecuación 6

- DT_N , DT_I : Distancia total recorrida anual tramos nacionales (N) e internacionales (I) en km.
- N_N , N_I : Número de pasajeros en viajes nacionales (N) e internacionales (I).
- *FE_N*, *FE_I*: Factor de emisión de CO₂ equivalente por viajes en avión nacionales (N) e internacionales (I) (kg CO₂e/km-persona).

Transporte personal

Otra fuente de emisiones indirecta ocurre por traslado de personal a la empresa, diariamente un gran número de trabajadores se traslada desde diferentes puntos al lugar de trabajo, para la estimación se consideraron cinco trayectos en bus y también la movilización en vehículos particulares. Es necesaria la distancia recorrida por los buses y vehículos particulares, además de la cantidad de personal que viaja en cada modalidad. El detalle de la distancia total recorrida anualmente se presenta a continuación (Tabla 3.6), donde se consideran la cantidad de buses para los distintos turnos, los días por semana que se utilizan, dependiendo del área y las semanas que se trabajan al año.

Tabla 3.6: Detalle de distancias (km) en el movimiento de personal.

Área	Destino	Distancia (km)	Número de buses	Veces al día	Días a la	Semanas por año	Total (km)
					semana		
Bus Proceso	Castro	15	2	3	6	52	56.160
	Alto						
Bus Proceso	Nercón	17	1	3	6	52	31.824
Bus Proceso	Dalcahue	15	1	3	6	52	28.080
Bus Proceso	Castro	14	1	3	6	52	8.736
	(Remate)						
Bus Administración	Castro	15	2	2	5	52	15.600
Vehículos	Promedio	14	-	2	5	52	7.280
particulares							

Fuente: Elaboración propia a partir de información entregada por Salmofood, 2022.

Cabe señalar que para este apartado la empresa utiliza buses locales para aproximadamente 25 personas (Figura 3.3) y se usa el supuesto de que todos los vehículos particulares son a gasolina, para estos tipos de transporte se cuenta con datos de factor de emisión por HuellaChile (Tabla 3.7), también se supuso que la distancia a los diferentes destinos se considera promedio utilizando la herramienta de Google Maps (Maps, 2022). Para los casos de los buses de proceso, exceptuando el de Remate, se multiplica por dos la distancia debido a que dichos buses llegan a la empresa con personal y se retiran con personal, en cambio el bus de Remate y administración realizan un viaje con y otro sin personal.

Figura 3.3. Buses de traslado de personal para empresa Salmofood. Fuente: Elaboración propia.

Tabla 3.7: Factores de emisión para transportes de personal.

Tipo de transporte	Factor de emisión (kg CO2e/km-persona)
Bus local aprox. 25 personas	0,0274
Auto particular a gasolina	0,2097

Fuente: Elaboración propia a partir de HuellaChile, 2019.

El detalle de la cantidad de trabajadores que utilizan los diferentes traslados se obtiene mediante listas de asistencias en los propios buses y para los vehículos particulares mediante el control en portería. El año 2020, los colaboradores que viajaron en bus fueron 160 y en vehículos particulares 60, por otro lado, para el año 2021, los que utilizaron los buses fueron 190 y 50 personas usaron su vehículo (Anexo F).

Finalmente, el cálculo de las emisiones del apartado de transporte de personal sigue la siguiente ecuación (Ecuación 7).

Emisiones Transporte Personal = $DT_b * N_b * FE_b + DT_a * N_a * FE_a$ Ecuación 7 Donde:

- DT_b , DT_a : Distancia total anual recorrida por buses (b) y por autos particulares (a) en km.
- N_b , N_a : Número de personas que viajan en bus (b) y en auto particular (a).
- FE_b , FE_a : Factor de emisión de CO_2 equivalente por viajes en bus local (b) y en auto particular (a) (kg CO_2 e/km-persona).

Importación transporte terrestre

Para el abastecimiento de la planta de procesos son necesarias gran cantidad de materias primas e insumos, en esta fuente se consideraron las emisiones que ocurren por el transporte de MP desde los distintos proveedores relativamente cercanos, que permiten realizar el traslado solo por tierra, desde nacionales hasta proveedores de países como Brasil, Argentina, Paraguay entre otros.

Los datos necesarios para el cálculo de las emisiones de esta fuente se obtienen directamente desde el jefe de sistemas de gestión (Anexo G), los que son el país y ciudad de origen del proveedor, con esta información y utilizando la herramienta Google Maps, se calculan las distancias (km) con destino la planta en Castro. Para este caso, se asume un camión articulado promedio carga 11t para la elección del factor de emisión. La cantidad transportada se obtiene de la base de datos de recepción de materiales, donde se registran los lotes por cada proveedor, se considera 1 lote = 25 toneladas, con esta información se estimaron las emisiones mediante la ecuación 8.

Emisiones Importación Transporte Terrestre = $\sum_i DP_i * CT_i * FE_{a11}$ Ecuación 8 Donde:

- DP_i : Distancia ciudad origen a planta en km del proveedor i. (i=proveedores)
- CT_i : Cantidad transportada por el proveedor i en toneladas.
- FE_{a11}: Factor de emisión de CO₂ equivalente para un camión articulado promedio 11t (kg CO₂e/tkm).

En este caso especial, se debe agregar a esta ecuación las emisiones del transporte terrestre intermedio de proveedores internacionales que ocurre al momento del traslado a puertos de origen antes del transporte marítimo y, además, el recorrido por tierra desde Talcahuano a la planta. Esto se menciona en el siguiente apartado.

Importación transporte marítimo

Cuando los proveedores son de países más lejanos, el transporte se debe hacer vía marítima mediante buques graneleros o portacontenedores según sea el caso, para que la carga llegue al puerto de origen es necesario trasladarla por tierra mediante camiones, para estos casos se asume como tipo de vehículo un camión articulado mayor a 33 t, el cual su factor de emisión se mencionó anteriormente. De la información facilitada consideramos el país y ciudad de origen del proveedor, además del puerto de origen, en caso de no contar con este dato específico, se utiliza el puerto más cercano a la ciudad de

origen. Como puerto de destino se usa Talcahuano para todas las cargas vía marítima y como destino final la planta.

Con la ciudad de origen y puerto de origen, estimamos la distancia en km entre estos con Google Maps, y también la distancia desde Talcahuano a la planta, se calculan las emisiones terrestres de estos tramos siguiendo la ecuación 8, luego estas se suman a las emisiones por importación mediante transporte terrestre.

Contando con el puerto de origen y de destino (Anexo G), se obtiene la distancia marítima recorrida utilizando una herramienta que muestra las rutas marítimas entre diferentes puertos (SeaRates, 2022). Con toda esta información se utilizó la siguiente ecuación (Ecuación 9) para calcular las emisiones con respecto al transporte marítimo de materias primas.

Emisiones Importación Transporte Marítimo = $\sum_i DPP_i * CT_i * FE_m$ Ecuación 9 Donde:

- *DPP_i*: Distancia puerto origen a puerto San Vicente (Talcahuano) en km del proveedor i. (i=proveedores)
- CT_i : Cantidad transportada por el proveedor i en toneladas.
- FE_m : Factor de emisión de CO_2 equivalente para tipo de buque (m= Portacontenedores, granelero) (kg CO_2 e/tkm).

Distribución transporte terrestre

Para el caso de los despachos, no se considera el producto que es retirado por el cliente desde la planta y se asume que solo el traslado vía terrestre es por parte de la empresa hasta su destino en tierra, que pueden ser pisciculturas, puntos de encuentro con clientes y puertos desde los cuales sale el producto hacia los diferentes centros en el mar o puertos extranjeros. No se consideró el traslado vía marítimo ya que luego de que el producto terminado llega a puerto, es difícil estimar la distancia que recorrerá la embarcación hasta llegar a su destino, esto varía por las diferentes cargas que pueden llevar, además de que el recorrido para llegar a destino puede sufrir cambios debido al clima.

En este apartado se obtienen los datos de los despachos desde el área comercial (Anexo H), donde se consideran los clientes y los destinos cada cliente, además de la cantidad facturada para cada caso. Cabe señalar que se desprecian los pedidos rechazados o devueltos por diferentes motivos, ya que, en

proporción, esta cantidad es mucho menor a la realmente enviada (Tabla 3.8) por esta razón se toma esta decisión, ya que no debería afectar en gran medida la estimación.

Tabla 3.8: Cantidades despachadas y devueltas para los años 2020 y 2021, en toneladas.

	Nacional		Interna	acional
Toneladas	2020	2021	2020	2021
Cantidad	144.087,5	158.416,3	8.691,0	2.181,0
Enviada				
Cantidad	479,21	482,8	701,4	52,0
Devuelta				
Proporción	0,3%	0,3%	8%	2%

Fuente: Elaboración propia a partir de información entregada por Salmofood, 2022.

A través de la oficina de logística se obtiene la información sobre el puerto de salida al que debe llegar el producto terminado para después salir a su destino final. Luego, conociendo las cantidades enviadas a cada cliente y el tipo de camión utilizado (se asume un camión articulado mayor a 33 t), se pueden calcular las emisiones para el apartado del transporte terrestre proveniente del despacho de producto terminado de la siguiente manera (Ecuación 10).

Emisiones Despacho Transporte Terrestre = $\sum_{j} DSP_{j} * CD_{j} * FE_{a33}$ Ecuación 10

Donde:

- DSP_i: Distancia Salmofood a destino j en km. (j=puertos, pisciculturas, entre otros)
- *CD_i*: Cantidad despachada al destino j en toneladas.
- FE_{a33} : Factor de emisión de CO_2 equivalente para camión articulado mayor a 33 t (kg CO_2 e/tkm).

Transporte residuos

Para el transporte de residuos se obtuvo la información a través del sistema nacional de declaración de residuos (SINADER), mediante el comprobante de recepción de información (Anexo I), donde se encuentra el detalle del tipo de residuo, la cantidad, tipo de tratamiento y el destino de dichos residuos para los años 2020 y 2021. Usando Google Maps se obtiene la distancia (km) desde Salmofood a los diferentes destinos (Anexo I), se asume un camión rígido de carga promedio 3t como vehículo de transporte. Luego, la metodología de cálculo de las emisiones por el transporte de residuos se muestra a continuación (Ecuación 11).

Donde:

- *DSR_r*: Distancia desde Salmofood a destino r de los residuos en km. (r=PTAS, planta reciclaje, relleno sanitario, entre otros)
- CR_k : Cantidad de residuos transportada al destino r en toneladas.
- FE_{r3} : Factor de emisión de CO_2 equivalente para un camión rígido promedio de carga promedio 3t (kg CO_2 e/tkm).

Descomposición y tratamiento de residuos

Se contabilizaron además las emisiones generadas por la descomposición y tratamiento de los residuos generados, mediante la misma declaración SINADER, se filtra por el tipo de tratamiento según los factores de emisión que se muestran en la Tabla 3.9, obteniendo la cantidad por cada tipo, se procede a calcular mediante la Ecuación 12.

Tabla 3.9: Factores de emisión para los distintos tratamientos para los residuos.

Tipo de tratamiento	Factor de emisión (kg CO ₂ e/t)
Residuos relleno sanitario o PTAS	620,0
Reciclaje papeles o plástico	21,0
Escombros	1,0

Fuente: Elaboración propia a partir de HuellaChile, 2019.

Emisiones Descomposición/Tratamiento Residuos = $\sum_t CRT_t * FE_t$ Ecuación 12

Donde:

- CRT_t : Cantidad de residuos para el tratamiento t en toneladas. (t=TAS, reciclaje, disposición final)
- FE_t : Factor de emisión de CO2 equivalente para el tratamiento t (kg CO₂e/t).

Transporte de sacos

Finalmente, luego de las materias primas, los sacos usados para empacar el producto terminado son los insumos más relevantes, por lo que se consideraron las emisiones del transporte de los diferentes tamaños de sacos desde sus proveedores, tanto de forma terrestre como marítima para proveedores

internacionales. La información para los años 2020 y 2021 es facilitada por el jefe de sistemas de gestión (Anexo J), donde se obtiene el proveedor, el origen, el tipo de saco y la cantidad comprada según el modo de compra, que puede ser en unidades o por peso (kg). Conociendo los proveedores a nivel nacional, se utilizó la ciudad de origen, Santiago, para obtener la distancia terrestre desde la planta, con las unidades compradas calculamos el peso transportado, ya que se cuenta con la información del peso unitario por tamaño de saco (Tabla 3.10). Se asume el tipo de transporte a utilizar como un camión rígido de carga promedio 3t para la elección del factor de emisión.

Tabla 3.10: Peso unitario por tipo de saco en kg.

Tipo	Peso (kg)
Saco 25kg	0,07
Saco 50kg	0,14
Saco 1000kg	2,62
Saco 1250kg	3,01

Fuente: Elaboración propia a partir de información entregada por Salmofood, 2022.

Luego, la estimación de las emisiones por el transporte terrestre de sacos sigue la misma línea que para la importación de materias primas (Ecuación 13).

Emisiones Transporte Sacos Terrestre = $\sum_{s} DPS_s * ST_s * FE_{r3}$ Ecuación 13 Donde:

- *DPS_s*: Distancia en km desde la ciudad del proveedor nacional s hasta la planta Salmofood. (s=proveedores nacionales)
- ST_s : Cantidad transportada vía terrestre por el proveedor s en toneladas.
- FE_{r3} : Factor de emisión de CO_2 equivalente para un camión rígido promedio de carga promedio 3t (kg CO_2 e/tkm).

Para el caso de los proveedores de sacos internacionales, estos provienen desde Italia, India, China y Tailandia. Se consideraron las ciudades de origen de cada uno para obtener la distancia terrestre hasta el puerto de origen de donde se envía la carga, además del recorrido que se debe hacer en suelo nacional desde el puerto de San Vicente en Talcahuano hasta la planta en Castro, para calcular las emisiones de estos trayectos terrestres se usa la misma Ecuación 14, y posteriormente se suman a las emisiones por transporte de sacos terrestre.

Conociendo el puerto de origen, se obtienen las distancias marítimas hasta el puerto de destino en Talcahuano usando la herramienta de SeaRates y el tipo de transporte que se utilizó fue un buque portacontenedores. Con estos datos se estiman las emisiones de este apartado con la siguiente ecuación (Ecuación 14).

Emisiones Transporte Sacos Marítimo = $\sum_h DMP_h * SM_h * FE_{cont}$ Ecuación 14

Donde:

- *DMP_h*: Distancia en km desde puerto origen del proveedor internacional h al puerto San Vicente (Talcahuano). (h=proveedores internacionales)
- SM_i : Cantidad transportada vía marítima por el proveedor h en toneladas.
- FE_{cont} : Factor de emisión de CO_2 equivalente para buque portacontenedores (kg CO_2e/tkm).

3.3 Cálculo huella de carbono

La estimación final de la huella de carbono corporativa de la empresa Salmofood para el presente informe considera los tres alcances mencionados, con las distintas fuentes de emisión que se detallaron anteriormente en el punto 3.2. Se deben sumar las emisiones obtenidas por cada apartado para los diferentes años y cada alcance, obteniendo así la huella de carbono corporativa en kg de CO₂ equivalente, la cual comúnmente se expresa de mejor manera en toneladas.

3.3.1 Propuesta de herramienta de cálculo para Salmofood (Anexo K)

A medida que se trabajó el cálculo de las emisiones para las distintas fuentes usando hojas de cálculo en Excel se logró crear y plantear una herramienta donde en una hoja por alcance se ingresen los datos que son variables, como cantidades y distancias, de tal forma que se traspasen desde la oficina de sistemas de gestión y los demás encargados de la manera más simple posible y con menor procesamiento de datos por parte del usuario, esto para facilitar el uso futuro por cualquier otra persona. Luego de ingresar los datos variables, usando una hoja estática con la base de datos de toda la información que no tiende a cambiar anualmente para Salmofood según sus operaciones como

distancias a ciudades y puertos tanto nacionales como internacionales, distancias terrestres y marítimas a proveedores, tipos de vehículos de trasporte a utilizar, distancias de tramos de viajes en avión, entre otros. Además, se utiliza otra hoja con información de los factores de emisión para los diferentes tipos de combustibles, de vehículos, de algunos tipos de residuos y el de la energía eléctrica para el alcance 2. Además de que la herramienta entrega las emisiones en kg de CO₂e para cada fuente en cada hoja, en una última hoja muestra un resumen general de las emisiones calculadas por fuente y por alance (Figura 3.4). Se espera que de esta manera exista menos probabilidad de error en cualquiera de las operaciones que se llevan a cabo para el cálculo de la huella de carbono corporativa de la empresa y agilice la entrega y muestra de los resultados. En caso de añadir proveedores o cambios en los destinos o tipos de vehículos utilizados, la base de datos se puede actualizar sin mayor problema para poder seguir utilizándola anualmente.

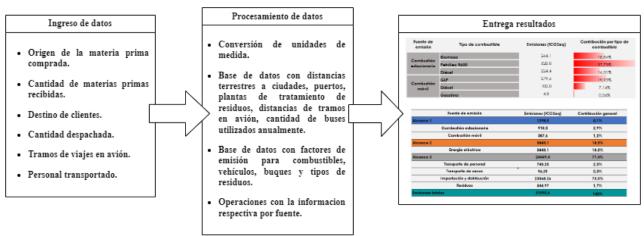


Figura 3.4. Diagrama de procesos herramienta de cálculo de huella de carbono Salmofood. Fuente: Elaboración propia.

Capítulo IV

4 RESULTADOS

Para los años en análisis se obtuvo la huella de carbono que se muestra en la Figura 4.1, filtrada por los distintos alcances evaluados. Durante el 2020 se emitieron aproximadamente 31.590,6 tCO₂e y para el 2021 alcanzaron las 31.742,6 tCO₂e. Se aprecia que en el alcance 3 se concentran la mayoría de las emisiones, en gran parte por el transporte de la importación, ya que las distancias a través del mar son muy largas y las cargas son mayores, además estos transportes emiten mayor contaminación debido a sus combustibles y gran envergadura.

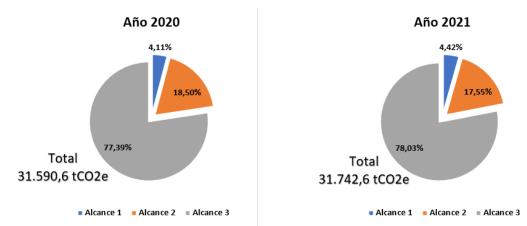


Figura 4.1. Gráfico huella de carbono para ambos años, contribución por alcance. Fuente: Elaboración propia.

4.1 Año 2020

4.1.1 Emisiones Alcance 1

Para las emisiones con respecto al alcance 1 para el año 2020, se obtuvo un total de 1.298 tCO₂e, lo que se traduce en aproximadamente un 4% de las emisiones totales anuales. Los valores más altos obtenidos se deben principalmente al consumo de combustibles por parte de las calderas en las fuentes fijas, las mayores contribuciones provienen del uso de petróleo N°6 y biomasa, por otro lado, el combustible que aporta más emisiones por fuentes móviles es el gas licuado del petróleo para el funcionamiento de grúas horquilla. El detalle de los valores obtenidos y su contribución por tipo de fuente se muestran en la Figura 4.2.

Figura 4.2. Contribución de emisiones por tipo de fuente y combustible para alcance 1, 2020. Fuente: Elaboración propia.

Específicamente para las fuentes de emisión fijas, el petróleo N°6 es el que aporta mayor cantidad de emisiones de GEI, alcanzando las 582,6 t, casi la mitad del total de emisiones del alcance 1. Para las fuentes de emisión móviles los combustibles fósiles son los que aportan en mayor proporción a este alcance, el GLP aporta con 303,6 t y el diésel utilizado para la flota de camionetas alcanza las 81 t aproximadamente.

Finalmente, las fuentes fijas emitieron 910,5 tCO₂e y las móviles 387,6 tCO₂e, o sea un 70 y un 30% del alcance 1 respectivamente (Figura 4.3).

Figura 4.3. Contribución de emisiones (%) por tipo de fuente para alcance 1, 2020. Fuente: Elaboración propia.

4.1.2 Emisiones Alcance 2

Las emisiones asociadas al alcance 2, consideran el consumo de energía eléctrica anual en MWh por parte de la empresa, o sea la cantidad adquirida a la empresa proveedora mediante el sistema eléctrico nacional. En la Figura 4.4 se muestran las emisiones de este alcance para los distintos meses del 2020, cabe señalar que las emisiones por consumo son poco variables, rondando las 500 toneladas mensuales, finalmente el total anual de emisiones en este apartado fue de aproximadamente 5.843 tCO₂e.

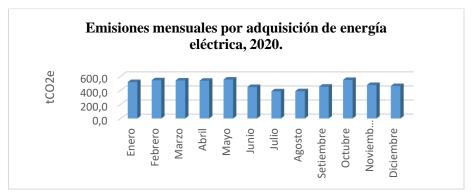


Figura 4.4. Emisiones mensuales por adquisición de energía eléctrica Salmofood, 2020. Fuente: Elaboración propia.

El uso de electricidad depende de varios puntos, por ejemplo, el uso de equipos eléctricos en todo el edificio de administración, las horas continuas de funcionamiento de la planta con sus componentes eléctricos, entre otros.

4.1.3 Emisiones Alcance 3

En este alcance se consideraron las actividades que ocurren producto de la operación de la empresa entre las que encontramos cuatro categorías, transporte de personal, importación y distribución, residuos y transporte de sacos. El desglose del aporte de cada categoría con sus respectivas fuentes de emisión se presenta en la Figura 4.5. El total de emisiones para esta categoría fue de 24.449,4 tCO₂e para el año 2020.

Categoria	Fuente de emisión	Emisiones (tCO2eq)	Contribución
Transporte de	Viajes en avión	33,09	0,14%
personal	Transporte diario	707,11	2,89%
	Importación Transporte terrestre	14411,23	58,94%
Importación y distribución	Importación Transporte marítimo	7375,19	30,17%
	Distribución transporte terrestre	1281,85	5,24%
	Transporte residuos generales	46,25	0,19%
Residuos	Descomposición y/o Tratamiento Residuos	498,72	2,04%
Transporte de	Transporte terrestre	64,26	0,26%
Sacos	Transporte marítimo	31,75	0,13%

Figura 4.5. Contribución de emisiones por categoría y tipo de fuente para alcance 3, 2020. Fuente: Elaboración propia.

En cuanto al transporte de personal, éste alcanzo las 740 tCO₂e, separándose en 707 toneladas asociadas al transporte diario de personal, tanto en buses como vehículos particulares, y 33 toneladas con respecto a viajes de negocios, en este punto se destaca que para los años en estudio hubo una gran disminución de estos viajes, desde el 2020 producto de la pandemia por el COVID-19, se limitaron bastante las salidas tanto nacionales como internacionales.

La importación y distribución es la categoría con la mayor contribución en este alcance, con 23.068,3 tCO₂e aproximadamente un 94,4%, estos altos valores se explican por distintas variables como la lejanía de proveedores extranjeros, por ejemplo, Alemania y Estados Unidos, sumado a la gran carga que trasladan, ya que las materias primas como trigo entero y harina de soya, son requeridas en grandes cantidades. En cuanto a la distribución, las emisiones son menores y en gran parte por considerar el despacho solo hasta el puerto de salida, si se considerara el despacho vía marítimo claramente estas emisiones serían mayores, pero para eso se debe tener la distancia estimada a los destinos con una mejor precisión.

Además, cabe señalar que, para los años en estudio, los puertos utilizados fueron tres, el de Castro para toda la distribución nacional con destino a centros de cultivo específicos, el de Puerto Montt como punto de encuentro para los clientes que llevan el producto por su cuenta a sus diferentes centros y el de Talcahuano para las exportaciones.

Para la categoría residuos se contabilizan tanto las emisiones generadas por el transporte de estos a las diferentes plantas de destino como las emisiones provocadas por la descomposición o tratamiento de estos según el tipo de residuo. El aporte total para esta categoría alcanza las 545 tCO₂e.

Como última categoría se consideró el transporte de los sacos para empacar el producto terminado, tanto de proveedores nacionales vía terrestre, como internacionales vía marítima. Generalmente en el extranjero solo se compran los sacos más grandes (y pesados) de 1.250kg, mientras que en nuestro país se compran de todos los tamaños. La contribución del transporte terrestre de sacos es el doble que la del transporte marítimo, esto puede explicarse dado que, en el 2020, se compraron 48.100 sacos de 1.250kg en territorio nacional, mientras que solo 26.400 del mismo tipo en el extranjero. Finalmente, las emisiones de esta categoría son 95,7 tCO₂e.

4.1.4 Huella de carbono corporativa

Finalmente, el valor de la huella de carbono corporativa para Salmofood el año 2020 fue de 31.590,6 tCO₂e como se mencionó anteriormente, este valor es el informado a HuellaChile para la certificación de dicho año, el desglose y detalle general de los resultados obtenidos se muestran en la Figura 4.6.

Fuente de emisión	Emisiones (tCO2eq)	Contribución general
Alcance 1	1298,0	4,1%
Combustión estacionaria	910,5	2,9%
Combustión móvil	387,6	1,2%
Alcance 2	5843,1	18,5%
Energía eléctrica	5843,1	18,5%
Alcance 3	24449,4	77,4 %
Transporte de personal	740,20	2,3%
Transporte de sacos	96,01	0,3%
Importación y distribución	23068,26	73,0%
Residuos	544,97	1,7%
Emisiones totales	31590,6	100%

Figura 4.6. Resultados generales Huella de carbono Salmofood, 2020. Fuente: Elaboración propia.

4.1.5 Aproximación de la huella de carbono por producto

Además, se obtuvo la relación con respecto a la producción total anual del año 2020 (Tabla 4.1), donde notamos que las emisiones por producción fueron de 198 kg CO₂e por cada tonelada producida de alimento, cabe destacar que el valor obtenido es una aproximación dado que no se aplica el enfoque por producto.

Tabla 4.1: Huella de carbono, producción y relación, 2020.

Huella de Carbono	31.590,6	tCO ₂ e
Producción	159.441,9	t alimento
Emisiones por tonelada	0,198	tCO₂e/t alimento

Fuente: Elaboración propia.

4.2Año 2021

4.2.1 Emisiones Alcance 1

Para las emisiones del alcance 1 para el año 2021, se obtuvo un total de 1.401,6 tCO₂e, lo que equivale a un 4,3% de las emisiones totales anuales. Los resultados más altos obtenidos dentro de este alcance se deben al consumo de combustibles para las calderas en las fuentes estacionarias, al igual que el año 2020, la mayor contribución proviene del uso de petróleo N°6, por otro lado, para las fuentes móviles sigue siendo el GLP el combustible con mayores emisiones de gases efecto invernadero. A continuación (Figura 4.7), se muestran los resultados para el alcance 1 de este período.

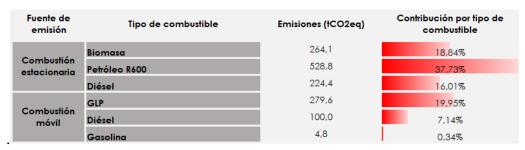


Figura 4.7. Contribución de emisiones por tipo de fuente y combustible para alcance 1, 2021. Fuente: Elaboración propia.

Se puede notar de los resultados obtenidos para el 2021 que, en las fuentes de emisión fijas, el petróleo N°6 es el que aporta mayor cantidad de emisiones, alcanzando las 528,8 t, contribuyendo un 37,7% del total de emisiones del alcance 1. Las emisiones producidas por el consumo de biomasa y diésel se mantienen cercanas a las 250 tCO₂e para cada combustible.

En el caso de las fuentes de emisión móviles el GLP contabilizó un total de 279,6 tCO₂e y el diésel utilizado para la flota de camionetas aumentó con respecto al 2020, hasta las 100 tCO₂e. Finalmente, las fuentes fijas produjeron 1.017,2 tCO₂e y las móviles 384,4 tCO₂e, o sea un 72,6% y un 27,4% del alcance 1 respectivamente, porcentajes parecidos a los obtenidos en el 2020.

4.2.2 Emisjones Alcance 2

Al igual que el año 2020, para este alcance se tienen los datos mensuales de las emisiones asociadas a la adquisición de energía eléctrica por parte de Salmofood para el año 2021 (Figura 4.8). Se puede notar que en la primera mitad del año los valores no alcanzan a llegar a las 400 tCO₂e por mes, desde julio fueron en aumento, alcanzando 673,2 tCO₂e emitidas en septiembre, para luego comenzar a bajar hasta fin de año, a unas 450 tCO₂e aproximadamente. Finalmente, la cantidad total de emisiones para el 2021 en este apartado fue de 5.572,4 tCO₂e.

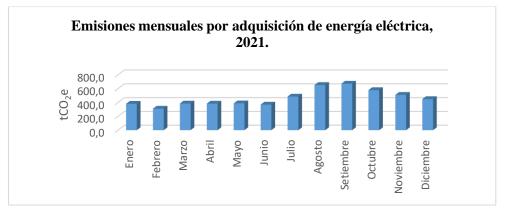


Figura 4.8. Emisiones mensuales (tCO₂e) por adquisición de energía eléctrica Salmofood, 2021. Fuente: Elaboración propia.

4.2.3 Emisjones Alcance 3

Este sigue la misma línea que en el año 2020, considerando las mismas cuatro categorías, transporte de personal, importación y distribución, residuos y transporte de sacos. La Figura 4.9 muestra el detalle de la contribución de cada categoría con sus respectivas fuentes de emisión. El total de emisiones para el año 2021 en este apartado fue de 24.768,7 tCO₂e.

Categoría	Fuente de emisión	Emisiones (tCO2eq)	Contribución
Transporte de	Viajes en avión	36,48	0,15%
personal	Transporte diario	807,25	3,26%
	Importación Transporte terrestre	15859,79	64,03%
Importación y distribución	Importación Transporte marítimo	6290,79	25,40%
	Distribución transporte terrestre	817,95	3,30%
Destations	Transporte residuos generales	72,94	0,29%
Residuos	Descomposición y/o Tratamiento Residuos	579,86	2,34%
Transporte de	Transporte terrestre	153,64	0,62%
Sacos	Transporte marítimo	149,95	0,61%

Figura 4.9. Contribución de emisiones por categoría y tipo de fuente para alcance 3, 2021. Fuente: Elaboración propia.

Las emisiones por transporte de personal alcanzaron las 843 tCO₂e, de las cuales 807 toneladas son por el transporte diario mediante buses y vehículos particulares, lo que equivale a un 3,37% del total de emisiones del alcance 3 para este año.

Nuevamente la importación y distribución es la categoría con mayor contribución, alcanzado las 22.968,6 tCO₂ para el año 2021, aproximadamente un 93% de este alcance. Las causas son las mismas que en el año 2020, explicándose por lejanía de los proveedores extranjeros y también hay que considerar que dentro de Chile se mueven grandes cargas de materias primas como harina y aceite de pescado. En el caso de la distribución, las emisiones son menores y en gran parte por considerar el despacho solo hasta el puerto de salida, como se mencionó anteriormente, y a que las cantidades exportadas, o sea trasladadas a Talcahuano, son menores que las enviadas a territorio nacional.

En cuanto al manejo de residuos, las emisiones generadas por el transporte de estos a las diferentes plantas alcanzaron las 72,9 tCO₂e mientras que las provocadas por la descomposición o tratamiento son mucho mayores alcanzando las 579,9 tCO₂e. Contribuyendo en total 652,8 tCO₂e al alcance 3.

Para la categoría de transporte de sacos, el 2021 presentó valores muy parecidos tanto para el transporte terrestre como marítimo. En el caso de los sacos transportados por tierra se alcanzaron las 152,2 tCO₂e y los transportados por mar contribuyeron con 150 tCO₂. Finalmente, las emisiones generadas en esta categoría alcanzaron las 302,2 tCO₂e.

4.2.4 Huella de carbono corporativa

Por último, en el año 2021 el valor de la huella de carbono corporativa para la empresa fue de 31.742,6 tCO₂e, este valor se envía a HuellaChile para la certificación correspondiente, el detalle de los resultados generales obtenidos se muestra en la Figura 4.10.

	Fuente de emisión	Emisiones (fCO2eq)	Contribución general
Alcance 1		1401,6	4,4%
	Combustión estacionaria	1017,2	3,2%
	Combustión móvil	384,4	1,2%
Alcance 2		5572,4	17,6%
	Energía eléctrica	5572,4	17,6%
Alcance 3		24768,7	78,0%
	Transporte de personal	843,73	2,7%
	Transporte de sacos	303,59	1,0%
	Importación y distribución	22968,54	72,4%
	Residuos	652,80	2,1%
Emisiones tot	ales	31742,6	100%

Figura 4.10. Resultados generales Huella de carbono Salmofood, 2021. Fuente: Elaboración propia.

4.2.5 Aproximación de la huella de carbono por producto

Conociendo la producción anual del año 2021, se estima el indicador considerando esta, que se presenta en la Tabla 4.2, con un total de 210 kg CO₂e por cada tonelada de producto producido, como se mencionó anteriormente, ya que no se aplica el enfoque por producto, el valor obtenido es una aproximación.

Tabla 4.2. Huella de carbono, producción y relación, 2021.

	J	,
Huella de Carbono	31.742,6	tCO ₂ e
Producción	150.813,28	t alimento
Emisiones por tonelada	0,210	tCO ₂ e/t alimento

Fuente: Elaboración propia.

5 DISCUSIÓN

5.1 Comparación 2019

La empresa previamente ya contaba con el valor de la huella de carbono estimado para el 2019, este fue calculado por otras personas y utilizando una metodología un poco diferente a la presentada, por

esta razón sólo se compara de manera general con los resultados obtenidos para los 2020 y 2021, para considerar las principales diferencias.

El año 2019, se tiene registro de un total de 45.483,5 tCO₂e, lo cual es bastante mayor a los resultados obtenidos para los años estudiados, principalmente estas diferencias se encuentran en variables que se sacaron de la contabilización como lo son el transporte de la distribución por mar, las perdidas por transmisión de electricidad y la producción de sacos debido a que se encontraban fuera de los límites establecidos, estas variables sumaban aproximadamente 2.000 t a la medición.

Donde también se observó una diferencia notable fue en el transporte de la importación vía terrestre, donde aproximadamente las 5.000 tCO₂e, se deben a que en los años 2020 y 2021 se optó por comprar menor cantidad de materia prima en China, donde se recorren largos trayectos para llegar a los puertos de destino, y derechamente por no importar desde Suiza e India, abriendo una nueva cartera de proveedores más cercanos, dentro de América del Sur.

Cabe señalar además el ítem especifico de los viajes de negocios en avión, el año 2019 estos viajes se realizaban con mayor frecuencia, a diferentes destinos, muchos países europeos y asiáticos y además en grupos de personas más grandes (de hasta 20 personas), lo que contabilizó cerca de 8900 tCO₂e. El 2020 y el comienzo de la pandemia cambió el transporte de pasajeros y viajes a nivel general, lo que en la compañía se tradujo en una drástica disminución de los viajes, donde principalmente se recorrió territorio nacional, Lima, Arequipa, Guayaquil y Miami, y además sólo una persona por viaje, por lo que las emisiones para el 2020 y 2021 rondaron sólo las 35 tCO₂e.

5.2 Alcance 1

Para ambos años en estudio el uso de combustibles fósiles de las fuentes fijas y móviles del alcance 1 fueron los mayores contribuyentes de emisiones de GEI. Si bien en las calderas se utiliza principalmente biomasa como combustible, rondando las 10.000 t en promedio por año, el uso de petróleo N°6 es el que provoca mayores emisiones, siendo que su uso bordea las 170 t en promedio para 2020 y 2021. Claramente esto se debe a los factores de emisión respectivos de estos combustibles, el del petróleo industrial es de 3.242,6 y de la biomasa sólo de 27,82 kg de CO₂ equivalente por tonelada. El alto consumo de biomasa se debe a la gran cantidad de vapor necesario para varios procesos, entre los que se encuentra calefaccionar los aceites para lograr su temperatura ideal para

transporte y operación, tanto en estanques como camiones, además para el funcionamiento de equipos dentro del proceso productivo como acondicionadores, extrusores, aceitadores e intercambiadores de calor de los secadores. Cabe señalar que el petróleo industrial solo se usa en casos cuando la caldera principal a biomasa se encuentra en mantenimiento o detenida por otros motivos.

Para mantener bajas las emisiones referentes a los combustibles de las calderas, se debe seguir priorizando el uso de biomasa, pero además asegurar la calidad de ésta, ya que si la humedad es muy alta pierde eficiencia, provocando a largo plazo un mayor gasto de este tipo de combustible.

Tabla 5.1: Emisiones alcance 1 por tipo de combustible, años 2020 y 2021.

Fuente de emisión	Tipo de combustible	Emisiones (tCO₂e)	
		2020	2021
Combustión	Biomasa	297,2	264,1
Estacionaria	Petróleo R600	582,6	528,8
	Diésel	30,7	224,4
	GLP	303,6	279,6
Combustión Móvil	Diésel	80,8	100
	Gasolina	3,2	4,8
Total		1.298	1.401,6

Fuente: Elaboración propia.

En la Tabla 5.1 se puede ver la comparativa para ambos años para este alcance, donde notamos muy poca variación en los valores obtenidos para casi todos los combustibles, exceptuando el diésel usado para combustión estacionaria, que se refiere al utilizado por el generador eléctrico, esto significa que en 2021 se hizo un mayor uso de este generador de emergencia en comparación al 2020. Luego, a modo general el 2021 la empresa tuvo un mayor consumo de combustibles para sus operaciones, traduciéndose en un aumento de un 8% con respecto al año 2020.

5.3 Alcance 2

En cuanto a las emisiones por adquisición de energía eléctrica, el año 2021 se produjeron 270 tCO₂e menos que el 2020 (Tabla 5.2), esta diferencia se basa en gran parte porque el 2020 se produjeron aproximadamente 9.000 t más que el año 2021 y también el año 2021 hubo un mayor uso del generador de electricidad, lo cual se contabiliza en el alcance 1. En este apartado recordamos que, desde junio de 2021, la empresa Salmofood firmó un acuerdo con su proveedor para que el 100% de la energía eléctrica que utilice en su planta provenga de fuentes renovables, la cual entregó un certificado

señalando a la hidroeléctrica Cipreses como planta productora y con factor de emisión de cero CO₂ por MWh generado (Anexo L). Como se mencionó anteriormente en la práctica es difícil asegurar que la demanda de la planta sea cubierta en todo horario solo por energía eléctrica producida por dicha planta, ya que la red eléctrica de Chile tiene aún un fuerte aporte de diésel y carbón.

Tabla 5.2: Emisiones alcance 2 para años 2020 y 2021, y comparativo caso 2021*.

Fuente de emisión	Emisiones (tCO2e)			
	2020 2021 2021*			
Energía eléctrica	5.843,1	5.572,4	1.849,9	

Fuente: Elaboración propia.

En la tabla 5.2, también se puede ver el resultado del alcance 2 para el escenario 2021*, que es el caso de utilizar como factor de emisión para la electricidad igual a 0 desde el mes de junio en adelante, se aprecia una gran diferencia con los otros escenarios, hasta casi 4.000 t con respecto al 2020. Si bien este cálculo es ilustrativo, en la realidad se espera que las empresas proveedoras puedan generar sus factores de emisión específicos como herramienta para estos casos y así lograr mejores estimaciones en el cálculo de la huella de carbono para este apartado. Cabe destacar según lo señalado por el programa HuellaChile, este si considera esta certificación de fuentes renovables, pero aplicando un ajuste al valor entregado por la empresa, que se rige por el factor de emisión entregado por el SEN.

5.4 Alcance 3

Dentro de este alcance, en la categoría correspondiente al transporte de personal, para los viajes en avión de ambos años se obtuvieron emisiones muy parecidas (Tabla 5.3), principalmente por el origen, destino y la cantidad de viajes, ya que se realizaron cerca de 100 cada año y generalmente dentro de Chile y América del Sur, con la única excepción, Miami. En cuanto al traslado diario de personal, el 2021 presenta un aumento de 100 t en comparación al 2020, lo cual se puede explicar por el comienzo de la pandemia por COVID-19 en ese año, lo que implicó menor cantidad de personas viajando en bus y personal que no se movilizaba a planta por motivos de teletrabajo.

Una manera de reducir las emisiones del transporte diario es disminuir la cantidad de buses que trasladan al personal o usarlos de manera más eficiente, ya que desde el 2020 por la pandemia los buses no se usan a su máxima capacidad, necesitando más para suplir la demanda. Pero esto se realiza por motivos de seguridad y protocolo, por lo que aún no se puede cambiar, para los años posteriores se espera que las emisiones de este apartado disminuyan al utilizar menos buses.

Tabla 5.3: Emisiones alcance 3 categoría transporte de personal por fuente, años 2020 y 2021.

Categoría	Fuente de emisión	Emisior	nes (tCO₂e)
		2020	2021
Transporte de	Viajes en avión	33,09	36,48
personal	Transporte diario	707,11	807,25

Fuente: Elaboración propia.

En cuanto a la categoría importación y distribución (Tabla 5.4), en el apartado de importación, las vías marítimas presentan menores emisiones en general que el transporte vía terrestre, pero esto se debe a que en las emisiones de transporte terrestre está contabilizado el recorrido por tierra que realizan las materias primas antes y después de viajar por mar, o sea desde su ciudad de origen al puerto de origen y, además, el recorrido en suelo nacional desde Talcahuano hasta la planta Salmofood en Castro.

La mayoría de las MP adquiridas en 2021 viajan a través de buques graneleros, los cuales tienen un factor de emisión bastante menor a los portacontenedores, esto explica que las emisiones del 2020 por importación vía marítima sean aproximadamente 1.000 t mayores que las del 2021, aunque la cantidad transportada y los países de origen no varíen demasiado en esos años.

Esta categoría al ser la que más contribuye a la huella de carbono de la empresa pasa a ser una de las más relevantes a la hora de gestionar las emisiones, por ejemplo, se pueden evaluar nuevos proveedores más cercanos que puedan suplir las demandas de la empresa, y así disminuir las distancias recorridas por los sistemas de transporte. El ideal sería trabajar con proveedores en su mayor parte chilenos o latinoamericanos, pero muchas de las MP que se necesitan para la operación no se encuentran en estos países o no en la cantidad demandada o a un precio mucho mayor.

Tabla 5.4: Emisiones alcance 3 categoría importación y distribución por transporte, años 2020 y 2021.

Categoría	Fuente de emisión	Emision	es (tCO₂e)
		2020	2021
Importación y	Importación T. Terrestre	14.354,15	15.799,13
Distribución	Importación T. Marítimo	7.375,19	6.290,79
	Distribución T. Terrestre	1.281,85	817,95

Fuente: Elaboración propia.

Por otro lado, las emisiones a partir de la distribución terrestre para el 2020 fueron aproximadamente un 50% mayor que emitidas en 2021, pese a que la cantidad total transportada por tierra para el 2020 fue de 126.485,5 toneladas y para el 2021 alcanzaron las 132.032,3 toneladas. La principal razón de esta variación se debe a la cantidad de producto exportado, ya que para el 2020 la carga que llegó a Talcahuano fue casi 4 veces la carga que se envió en 2021 al mismo lugar, esto tiene un gran impacto

debido a que el puerto de San Vicente en Talcahuano es el destino más lejano para la distribución terrestre con 826 km desde la planta.

El manejo de los residuos, tanto en el transporte y tratamiento, para el año 2021 generó mayores emisiones de CO₂e que en el 2020 de forma general (Tabla 5.5). Si comparamos solo el transporte de los residuos, el año 2021 se emitieron aproximadamente un 50% más toneladas de CO₂e que el año 2020, esto se debe principalmente a que se trasladaron 200 toneladas más de residuos. En cuanto a las emisiones generadas para los años en estudio asociadas al tratamiento según los tipos de residuos, rondan las 500 a 580 tCO₂e, donde el principal contribuyente son los residuos que terminan en rellenos sanitarios o plantas de tratamientos de aguas servidas, seguidos por las emisiones por reciclaje de papeles y plásticos. Una medida que se espera disminuya las emisiones a futuro en este apartado, es el proyecto en progreso de una planta de tratamiento de aguas servidas en inmediaciones de la planta Salmofood, lo que implica menos cantidad de residuos transportados a otras PTAS lejanas.

Tabla 5.5: Emisjones alcance 3 categoría residuos por fuente, años 2020 y 2021.

Categoría	Fuente de emisión	Emisione	es (tCO₂e)
		2020	2021
Residuos	Transporte de residuos	46,25	72,94
	Descomposición y/o Tratamiento Residuos	498,72	579,86

Fuente: Elaboración propia.

Finalmente, al comparar la categoría correspondiente al transporte de sacos, notamos que el año 2021 se obtuvieron valores para las emisiones de GEI mucho mayores que para el 2020, más del doble para el transporte terrestre y cinco veces más para la vía marítima (Tabla 5.6). Principalmente esto se basa en que en el año 2020 se compraron mayor cantidad de sacos de 25 kg, cuyo peso es mucho menor que el de los maxisacos. Y además el 2021 se compraron más cantidad de sacos de 1.250kg vía marítima que, en 2020, cerca de 139.000. Esto ocurre normalmente ya que la compra de sacos no se realiza necesariamente para solo un año, sino que si sobran se utilizan para el próximo, disminuyendo las emisiones en este apartado para dicho año.

Tabla 5.6: Emisiones alcance 3 categoría transporte de sacos por transporte, años 2020 y 2021.

Categoría	Fuente de emisión	Emisior	nes (tCO2e)
		2020	2021
Transporte de sacos	Transporte Terrestre	63,93	152,24
	Transporte Marítimo	31,75	149,95

Fuente: Elaboración propia.

6 CONCLUSIONES

La huella de carbono de la empresa Salmofood alcanzó las 31.590,6 tCO₂e para el año 2020 y considerando la producción de dicho año se registra un índice de 0,198 tCO₂e/t alimento, lo que quiere decir que por cada tonelada de alimento se producen 198 kg de CO₂e. Para el 2021 se emitieron 31.742,6 tCO₂e, obteniendo un índice con respecto a lo producido de 210 kgCO₂e/t alimento terminado. De estos valores es posible destacar que cerca del 78% corresponde al alcance 3 para ambos años en estudio, siendo la fuente con mayor contribución el transporte de la importación, tanto la marítima como la terrestre. Las emisiones asociadas a la adquisición de electricidad alcanzaron las 5.843 tCO₂e y 5.572 tCO₂e para los años 2020 y 2021 respectivamente, representando cerca del 18% de la huella de carbono corporativa anual. Con un menor aporte se registran las emisiones de fuentes directas de la empresa, para el año 2020 el alcance 1 contribuyó en un 4,1% al total de emisiones y un 4,4% el año 2021.

La cuantificación de la huella de carbono corporativa para la empresa se realizó bajo la metodología GHG Protocol con el objetivo de presentar los datos al programa HuellaChile, utilizando una herramienta de cálculo desarrollada con la información y datos de la empresa Salmofood, donde se consideraron los alcances 1,2 y 3. Cabe destacar que generalmente las empresas al regirse por la ISO 14.064, calculan su huella de carbono con los alcances 1 y 2 solamente, ya que la medición del alance 3 es voluntario, en nuestro caso no considerar este alcance cambiaria los resultados en gran medida debido al aporte que tiene el alcance 3 en la huella de carbono corporativa final.

Las principales causas de las emisiones del alance 3 se deben al transporte de materias primas e insumos para la operación, en relación con las medidas de reducción que se pueden adoptar es la consideración de proveedores más cercanos a la planta, esta posibilidad ha ido en aumento ya que desde el 2020 se cambiaron los proveedores de los materiales en base a aves y cerdos desde estadounidenses a brasileños, permitiendo disminuir las distancias tanto marítimas y terrestres que deben recorrer en Estados Unidos desde los productores hasta los puertos de embarque. En cuanto a la distribución, la consideración de un mayor número de clientes dentro de las regiones cercanas también aporta a la disminución de emisiones ya que el puerto de salida en Castro se encuentra mucho más cerca en kilómetros que el puerto de San Vicente en Talcahuano, por lo que el producto exportado siempre tendrá un mayor impacto por esta distancia terrestre al puerto.

Para el alcance 1, una de las posibilidades para mantener y en lo posible disminuir la huella de carbono es limitar el uso de petróleo N°6 por sus altas emisiones, este normalmente se usa para casos especiales y debido a que la calidad (humedad principalmente) de la biomasa no se puede asegurar al 100%, afectando la producción de vapor para el proceso en planta. Si el problema de la biomasa persiste se debería considerar el cambio a otro combustible como gas natural licuado, considerando las fluctuaciones de los valores de los demás combustibles y las inversiones de la nueva infraestructura y cambios en los equipos necesaria que se debe instalar para el correcto funcionamiento.

Para mejorar el cálculo y gestión de la huella de carbono es recomendable desarrollar las bases de datos de tal forma que el registro de los datos usando la herramienta propuesta se realice de manera mensual y se actualice la información fija anualmente en caso de ser necesario, esto con el objeto de tener conocimiento del comportamiento de este indicador mensualmente o en épocas específicas, así también, permite la comparación con meses de otros años y con esta información poder tomar decisiones según las metas propuestas antes de que se acabe el periodo en estudio.

Glosario

Acuicultura: Técnica de dirigir y fomentar la reproducción de peces, moluscos y algas en agua dulce o salada.

IPCC: Panel Intergubernamental de Expertos sobre el Cambio Climático.

Antropógeno: Efectos, procesos o materiales resultantes de las actividades humanas o producto de esta.

CO₂: Dióxido de carbono.

CH₄: Metano.

N₂O: Óxido nitroso.

CO₂e: Dióxido de carbono equivalente.

GEI: Gases efecto invernadero.

HdC: Huella de carbono.

Factor de emisión: Cantidad de GEI emitidos por cada unidad del parámetro a evaluar.

Ova: Huevo de pez.

Maxi sacos: Saco utilizado para cargas hasta de 2000 kg. Su facilidad de carga y transporte, lo han convertido en un producto ampliamente utilizado por distintos rubros en las empresas de Chile.

Combustibles fósiles: Combustible que procede de la descomposición natural de la materia orgánica a lo largo de millones de años, como el petróleo, el carbón mineral o el gas natural.

Biomasa: Conjunto de materia orgánica renovable de origen vegetal, animal o procedente de la transformación natural o artificial como chips, pellets.

SEN: Sistema eléctrico nacional.

Referencias

ABC. (2015). *El protocolo de Kioto ha logrado en diez años reducir un 22,6% las emisiones*. ABC.es. https://www.abc.es/sociedad/20150216/abci-protocolo-kyoto-aniversario-201502161505.html Recuperado Noviembre 2022.

AEC. (2021). *PAS* 2060. Asociación Española para la Calidad. https://www.aec.es/web/guest/centroconocimiento/norma-pas-2060 Recuperado Marzo 2023.

Aqua. (2022). Proveedores de alimento se refieren a la huella de carbono en la industria salmonera. https://www.aqua.cl/2022/03/10/proveedores-de-alimento-se-refieren-a-la-huella-de-carbono-en-la-industria-salmonera/ Recuperado Noviembre 2022

Biblioteca del Congreso Nacional de Chile. (2022). *LEY 21.455 MARCO DE CAMBIO CLIMÁTICO*. Ministerio del Medio Ambiente. https://www.bcn.cl/leychile/navegar?idNorma=1177286 Recuperado Noviembre 2022.

Calatrava-Requena, Javier. (2012). *Indicadores básicos de la Sustentabilidad: HUELLA ECOLÓGICA, HUELLA DE CARBONO Y HUELLA HÍDRICA*. https://www.researchgate.net/publication/274078603_Indicadores_basicos_de_la_Sustentabilidad_HUELLA_ECOLOGICA_HUELLA_DE_CARBONO_Y_HUELLA_HIDRICA/link/55153ab70cf2 d70ee26fd713/download Recuperado Noviembre 2022.

Consejo del Salmon. (2021). *Informe de Impacto Sostenible 2021*. Chile. https://www.consejodelsalmon.cl/wp-content/uploads/2022/10/Segundo-Reporte-Impacto-Sostenible-CDS.pdf Recuperado Noviembre 2022.

Domenech J.L. (2007). *Huella ecológica y desarrollo sostenible*. AEONOR. https://www.administracion.usmp.edu.pe/institutoconsumo/wp-content/uploads/2013/08/Huella-Ecológica-AENOR.pdf Recuperado Noviembre 2022.

Duarte, C. M. (2018). *El Protocolo de Kioto: ¿logro o fracaso?* El Español https://www.elespanol.com/ciencia/20180105/protocolo-kioto-logro-xfracaso/272842718_12.html Recuperado Noviembre 2022.

EPA. (2022). Agencia de Protección Ambiental de Estados Unidos. Emisiones de gases fluorados. https://espanol.epa.gov/la-energia-y-el-medioambiente/emisiones-de-gases-fluorados Recuperado Noviembre 2022.

Espíndola, C., & Valderrama, J.O. (2012). Huella del Carbono. Parte 1: Conceptos, Métodos de Estimación y Complejidades Metodológicas. Información tecnológica. https://dx.doi.org/10.4067/S0718-07642012000100017 Recuperado septiembre 2022.

Eurofins. (2022). ¿Conoces en qué consiste el GHG Protocol?. Envira Ingenieros Asesores. https://envira.es/es/ghg-protocol/ Recuperado Noviembre 2022.

FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en Recuperado eptiembre 2022.

Frohmann A., & Olmos X. (2013). *Huella de carbono, exportaciones y estrategias empresariales frente al cambio climático*. CEPAL. https://www.cepal.org/sites/default/files/publication/files/4101/S2013998rev1.pdf Recuperado Noviembre 2022.

Gallardo, A. (2022). Los factores que incrementaron 50% el consumo de salmón Atlántico en Chile. Salmonexpert. https://www.salmonexpert.cl/chile-consumidores-consumo/los-factores-que-incrementaron-50-el-consumo-de-salmn-atlntico-en-chile/1262271 Recuperado octubre 2022.

Gallup Organisation. (2009). Europeans' attitudes towards the issue of sustainable consumption and production.

Analytical
Report.
https://ec.europa.eu/environment/eussd/pdf/FL256_analytical%20report_final.pdf
Noviembre 2022.

GHG Protocol. (2001). *Estándar Corporativo de Contabilidad y Reporte*. Edición Revisada. https://ghgprotocol.org/sites/default/files/standards/protocolo_spanish.pdf Recuperado Octubre 2022.

Global Climate Initiatives. (2022). *Las emisiones directas e indirectas*. Mapeo de los alcances 1, 2 y 3 según el protocolo GHG. https://globalclimateinitiatives.com/es/informacion/las-emisiones-directas-e-indirectas/ Recuperado Noviembre 2022.

Gobierno de Chile. (2022). Un hito en la historia medioambiental de Chile: a partir de hoy contamos con nuestra primera Ley Marco de Cambio Climático. https://www.gob.cl/noticias/un-hito-en-la-historia-medioambiental-de-chile-partir-de-hoy-contamos-con-nuestra-primera-ley-marco-de-cambio-climático/ Recuperado Noviembre 2022.

GSI. (2021). *El rol del salmón de cultivo en los sistemas alimentarios sostenibles*. Informe de Sostenibilidad. https://globalsalmoninitiative.org/es/informe-de-sostenibilidad/el-rol-del-salmón-de-cultivo-en-los-sistemas-alimentarios-sostenibles/ Recuperado Noviembre 2022.

ICAO. (2022). *Carbon Emissions Calculator*. International Civil Aviation Organization. https://www.icao.int/environmental-protection/CarbonOffset/Pages/default.aspx

Ihobe. (2013). 7 metodologías para el cálculo de emisiones de gases de efecto invernadero. Departamento de Medio Ambiente y Política Territorial, Gobierno Vasco. https://www.euskadi.eus/contenidos/documentacion/7metodologias_gei/es_def/adjuntos/7METODO LOGIAS.pdf Recuperado Marzo 2023.

IPCC. (2007). Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio

Climático. IPCC, Ginebra, Suiza. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_sp.pdf Recuperado septiembre 2022.

IPCC. (2007). *Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing*. Climate Change 2007: The Physical Science Basis. https://archive.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf Recuperado Noviembre 2022.

IPCC. (2014). *Cambio Climático 2014: Informe de síntesis*. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf Recuperado Noviembre 2022.

Johannessen P. (2020). *El salmón de cultivo tiene un futuro brillante*. FishFirst. Organización de Ingredientes Marinos (IFFO). https://www.iffo.com/es/el-salmon-de-cultivo-tiene-un-futuro-brillante Recuperado Noviembre 2022.

Maps. (2022). Google Maps. https://www.google.cl/maps

Ministerio de energía. (2022). Informe balance nacional de energía 2020. División de Políticas y Estudios Energéticos y Ambientales. https://energia.gob.cl/sites/default/files/documentos/2022_informe_anual_bne_2020.pdf Recuperado Diciembre 2022.

Ministerio del Medio Ambiente. (2021). Sexto Reporte del Estado del Medio Ambiente. https://sinia.mma.gob.cl/wp-content/uploads/2022/06/REMA2021.pdf Recuperado Noviembre 2022.

MITECO. (2016). GUÍA PARA EL CÁLCULO DE LA HUELLA DE CARBONO Y PARA LA ELABORACIÓN DE UN PLAN DE MEJORA DE UNA ORGANIZACIÓN. Ministerio para la Transición Ecológica, España. https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/guia_huella_carbono_tcm30-479093.pdf Recuperado Noviembre 2022.

MITECO. (2022). Factores de emisión. Registro de huella de carbono, compensación y proyectos de absorción de dióxido de carbono. Oficina Española del Cambio Climático. https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/factoresemision_tcm30-479095.pdf Recuperado Noviembre 2022.

MMA. (2015). *Programa nacional de gestión del carbono HuellaChile*. Cambio Climático. https://mma.gob.cl/cambio-climatico/cc-02-5-programa-nacional-de-gestion-del-carbono-huellachile/ Recuperado Noviembre 2022.

MMA. (2017). *PLAN DE ACCIÓN NACIONAL DE CAMBIO CLIMÁTICO 2017-2022*. División de Cambio Climático del Ministerio del Medio Ambiente. https://mma.gob.cl/wp-content/uploads/2017/07/plan_nacional_climatico_2017_2.pdf Recuperado Noviembre 2022.

MMA. (2022). *Cambio Climático*. https://mma.gob.cl/cambio-climatico/ Recuperado Noviembre 2022.

Mulet, J., Celis, R., González, F., Labra, A., Mix, C., Pérez, C., Saavedra, G., Sepúlveda, A., Velásquez, E., & Verdessi, D. (2021). *Proyecto de ley que crea un Sistema Nacional de Certificación de la Huella de Carbono en bienes y servicios destinados al consumo*. Cámara de Diputados. https://www.camara.cl/verDoc.aspx?prmID=14647&prmTIPO=INICIATIVA Recuperado Noviembre 2022.

Naciones Unidas (1998). *Protocolo de Kyoto de la Convención Marco de las Naciones Unidas sobre el Cambio Climático*. https://unfccc.int/resource/docs/convkp/kpspan.pdf Recuperado Noviembre 2022.

Naciones Unidas. (1992). CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE EL CAMBIO CLIMÁTICO. Artículo 2. https://www.acnur.org/fileadmin/Documentos/BDL/2009/6907.pdf Recuperado Noviembre 2022.

Naciones Unidas. (2016). *Informe de la Conferencia de las Partes sobre su 21er período de sesiones, celebrado en París del 30 de noviembre al 13 de diciembre de 2015*. Adición. Segunda parte: Medidas adoptadas por la Conferencia de las Partes en su 21er período de sesiones. https://unfccc.int/es/node/9097 Recuperado Noviembre 2022.

Oficina Española de Cambio Climático. (2015). *Guía para el cálculo de la huella de carbono y para la elaboración de un plan de mejora de una organización*. Madrid. https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/guia_huella_carbono_tcm30-479093.pdf Recuperado Noviembre 2022.

Oficina Española de Cambio Climático. (2016). *Guía para el cálculo de la huella de carbono y para la elaboración de un plan de mejora de una organización*. Version 3. Madrid. http://repositori.uji.es/xmlui/bitstream/handle/10234/173602/guia_huella_carbono_tcm7-379901.pdf?sequence=1&isAllowed=y Recuperado Noviembre 2022.

Pelletier N., & Tyedmers P. (2007). Feeding farmed salmon: Is organic better?. School for Resource and Environmental Studies, Dalhousie University. https://www.sciencedirect.com/science/article/abs/pii/S0044848607005169 Recuperado septiembre 2022.

Prospectus Consulting. (2016). *La Salmonicultura en Chile: Situación Actual y Estrategia de Desarrollo al 2030*. Programa Estratégico Salmón Sustentable. https://corfo.cl/sites/Satellite?blobcol=urldata&blobkey=id&blobtable=MungoBlobs&blobwhere=1 475166708176&ssbinary=true Recuperado Noviembre 2022.

Riaza J. (2014). Captura de CO2 en centrales termoeléctricas mediante cocombustión de carbón y biomasa en condiciones de oxicombustión. Instituto Nacional del Carbón. https://dialnet.unirioja.es/servlet/tesis?codigo=88546 Recuperado Noviembre 2022.

Roberts R. & Cuevas C. (2020). *Proyecciones mundiales sobre la alimentación a 2030*. Biblioteca del Congreso Nacional de Chile. https://obtienearchivo.bcn.cl/obtienearchivo?id=repositorio/10221/29533/2/SUP_128903_Proyeccio nes_demanda_de_alimentos_a_2030_FINAL.pdf Recuperado Noviembre 2022.

SALMOFOOD. (2022). https://www.salmofood.cl

Salmonexpert. (2021). Salmofood da a conocer importante avance en su camino a la carbono neutralidad. https://www.salmonexpert.cl/carbono-co2-electricidad/salmofood-da-a-conocer-importante-avance-en-su-camino-a-la-carbono-neutralidad/1323469 Recuperado Diciembre 2022.

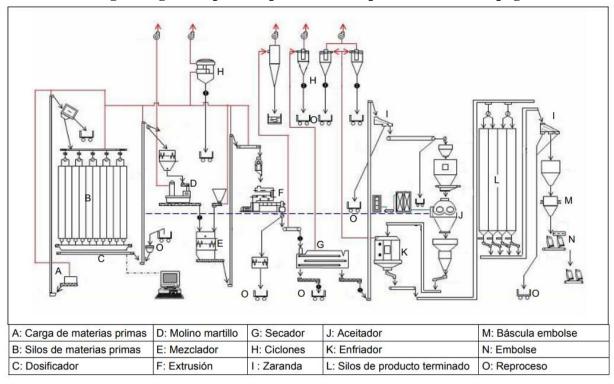
Schneider H. & Samaniego J. (2010). *La huella del carbono en la producción, distribución y consumo de bienes y servicios.* CEPAL. https://repositorio.cepal.org/bitstream/handle/11362/3753/S2009834_es.pdf Recuperado Noviembre 2022.

SeaRates. (2022). Herramienta distancia y tiempo de rutas marítimas. https://www.searates.com/es/services/distances-time/

SERNAPESCA. (2021). Anuario Estadístico de Pesca y Acuicultura 2021. Subsector Acuicultura. http://www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura Recuperado septiembre 2022.

Skretting. (2022). ¿Cuánto alimento se necesita para criar un pez de cultivo? https://www.skretting.com/es-cl/transparency-and-trust/faqs/how-much-feed-is-needed-to-grow-a-farmed-fish/

SNI Chile. (2020). *Inventario nacional de gases de efecto invernadero y otros contaminantes climáticos 1990-2018*. Sistema Nacional de Inventarios de Gases de Efecto Invernadero. Ministerio del medio ambiente. https://snichile.mma.gob.cl/wp-content/uploads/2022/06/Informe_del_Inventario_Nacional_de_GEI_serie_1990-2018.pdf Recuperado Noviembre 2020.


Valderrama, J.O., Espíndola, C., & Quezada, R. (2011). Huella de Carbono, un Concepto que no puede estar Ausente en Cursos de Ingeniería y Ciencias. Formación universitaria. https://dx.doi.org/10.4067/S0718-50062011000300002 Recuperado septiembre 2022.

Wiedmann T., & Minx J. (2007). A definition of "carbon footprint". Stockholm Environment Institute, University of York. https://books.google.cl/books?id=GCkU1p_6HNwC&lpg=PA1&ots=D1EZMP8hSo&dq=a%20definition%20of%20carbon%20footprint&lr&hl=es&pg=PA1#v=onepage&q=a%20definition%20of%20carbon%20footprint&f=false Recuperado septiembre 2022.

Wulf Betancourt, E. (2013). *Impacto De La Huella De Carbono En La Competitividad Exportadora Regional*. Revista Universitaria Ruta. https://revistas.userena.cl/index.php/ruta/article/view/215 Recuperado Noviembre 2022

Anexos

ANEXO A. Diagrama general proceso productivo empresa Salmofood. (pág. 4)

ANEXO B. Base de datos factores de emisión, HuellaChile 2019. (pág. 22)

CCH Nive		CCH Nivel 3				Valor del FE		· Origen del FE
Alcance 1	Fuentes fijas	Caldera	Petróleo 6	Dióxido de Carbono (CO2)	Petroleo 6		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Caldera	Petróleo 6	Metano (CH4)	Petroleo 6		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Caldera	Petróleo 5	Dióxido de Carbono (CO2)	Petroleo 5		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Caldera	Petróleo 5	Metano (CH4)	Petroleo 5		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Caldera	Petróleo 5	Óxido Nitroso (N2O)	Petroleo 5		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Carbón	Dióxido de Carbono (CO2)	Carbon bituminoso		kgCO2eq/kg	IPCC 2006 Guidelines for N
Alcance 1	Fuentes filas	Generador	Carbón	Metano (CH4)	Carbon bituminoso		kgCO2eq/kg	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Carbón	Óxido Nitroso (N2O)	Carbon bituminoso		kgCO2eq/kg	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Gasolina	Dióxido de Carbono (CO2)	Gasolina		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petróleo 5	Dióxido de Carbono (CO2)	Petroleo 5		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petróleo 5	Metano (CH4)	Petroleo 5		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petróleo 5	Óxido Nitroso (N2O)	Petroleo 5		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petróleo 6	Dióxido de Carbono (CO2)	Petroleo 6		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petróleo 6	Metano (CH4)	Petroleo 6		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petróleo 6	Óxido Nitroso (N2O)	Petroleo 6		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petcoke	Óxido Nitroso (N2O)	Petcoke			IPCC 2006 Guidelines for N
Alcance 1	Fuentes fijas	Generador	Petróleo 2 (Diésel)	Metano (CH4)	Petroleo 2 (Diesel)		kgCO2eq/kg	IPCC 2006 Guidelines for N
							kgCO2eq/m3	
Alcance 1	Fuentes fijas	Generador	Petróleo 2 (Diésel)	Óxido Nitroso (N2O)	Petroleo 2 (Diesel)		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 2	Adquisición de electricidad	Sistema Interconectado Central (SIC)	Sistema Interconectado Central (SIC)	Dióxido de Carbono (CO2)	N/A		kgCO2eq/MWh	Ministerio de Energía 2019
Alcance 2	Adquisición de electricidad	Sistema Interconectado del Norte Grand			N/A		kgCO2eq/MWh	Ministerio de Energía 2019
Alcance 3	Movilización de personas	Traslado diario de personal	Bus interurbano (aprox. 45 pers.)	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus interurbano (aprox. 45 pers.)	Metano (CH4)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus interurbano (aprox. 45 pers.)	Óxido Nitroso (N2O)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus local (aprox. 25 pers.)	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus local (aprox. 25 pers.)	Metano (CH4)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus local (aprox. 25 pers.)	Óxido Nitroso (N2O)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus transantiago	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus transantiago	Metano (CH4)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Traslado diario de personal	Bus transantiago	Óxido Nitroso (N2O)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Viajes de negocios	Terrestre - Metro	Dióxido de Carbono (CO2)	N/A	0,033	kgCO2eq/persona-km	METRO 2009 Reporte de si
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Taxi	Dióxido de Carbono (CO2)	N/A	0,2049	kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Viajes de negocios	Terrestre - Metro	Dióxido de Carbono (CO2)	N/A	0.033	kgCO2eq/persona-km	METRO 2009 Reporte de su
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Taxi	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Taxi	Metano (CH4)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Taxi	Óxido Nitroso (N2O)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Motocicleta	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Motocicleta	Metano (CH4)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Motocicleta	Óxido Nitroso (N2O)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Movilización de personas	Viajes de negocios	Terrestre - Metro	Metano (CH4)	N/A		kgCO2eq/persona-km	METRO 2009 Reporte de su
Alcance 3	Movilización de personas	Viajes de riegocios Viajes de negocios	Terrestre - Metro	Óxido Nitroso (N2O)	N/A		kgCO2eq/persona-km	METRO 2009 Reporte de su
Alcance 3	Movilización de personas	Viajes de riegocios Viajes de negocios	Terrestre - Tren	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmen
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Terrestre - Vehículo particular - Diesel		N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for N
Alcance 3	Transporte de carga	Productos - marítimo	Barco - a granel	Óxido Nitroso (N2O)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga		Aéreo - Avión trayecto doméstico (Chil		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Productos - aéreos	Aéreo - Avión trayecto domestico (Chil		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
								DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Productos - aéreos	Aéreo - Avión trayecto doméstico (Chil		N/A N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Productos - aéreos	Aéreo - Avión trayecto internacional (p				kgCO2eq/t-km	
Alcance 3	Transporte de carga	Productos - aéreos	Aéreo - Avión trayecto internacional (p		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Productos - aéreos	Aéreo - Avión trayecto internacional (p		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Residuos - municipales (disposición fina		Dióxido de Carbono (CO2)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Residuos - municipales (disposición fina		Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Residuos - municipales (disposición fina		Óxido Nitroso (N2O)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga	Residuos - municipales (disposición fina			N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 1	Fuentes móviles	Medio terrestre	Medio terrestre	Dióxido de Carbono (CO2)	Petroleo 2 (Diesel)		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes móviles	Medio terrestre	Medio terrestre	Metano (CH4)	Petroleo 2 (Diesel)		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes móviles	Medio terrestre	Medio terrestre	Óxido Nitroso (N2O)	Petroleo 2 (Diesel)		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes móviles	Medio terrestre	Medio terrestre	Dióxido de Carbono (CO2)	Gas licuado		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes móviles	Medio terrestre	Medio terrestre	Metano (CH4)	Gas licuado		kgCO2eq/m3	IPCC 2006 Guidelines for N
	Fuentes móviles	Medio terrestre	Medio terrestre	Óxido Nitroso (N2O)	Gas licuado		kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Et	Medio terrestre	Medio terrestre	Dióxido de Carbono (CO2)	Gas natural	1,9746	kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1	Fuentes móviles							
	Fuentes móviles	Medio terrestre	Medio terrestre	Metano (CH4)	Gas natural	0,0907	kgCO2eq/m3	IPCC 2006 Guidelines for N
Alcance 1				Metano (CH4) Óxido Nitroso (N2O)	Gas natural Gas natural		kgCO2eq/m3 kgCO2eq/m3	IPCC 2006 Guidelines for No IPCC 2006 Guidelines for No IPCC 2006 Guidelines for No

Alcance 1	Fuentes móviles Fuentes móviles Fuentes móviles Fuentes móviles	Medio terrestre	Medio terrestre Medio terrestre Medio terrestre Medio marítimo	Óxido Nitroso (N2O) Dióxido de Carbono (CO2) Óxido Nitroso (N2O) Dióxido de Carbono (CO2)	Gasolina Kerosene Kerosene Petroleo 2 (Diesel)	2571,2406 5,6861	kgCO2eq/m3 kgCO2eq/m3 kgCO2eq/m3 kgCO2eq/m3	IPCC 2006 Guidelines for Na IPCC 2006 Guidelines for Na IPCC 2006 Guidelines for Na
Alcance 1 Alcance 1 Alcance 1 Alcance 1	Fuentes móviles Fuentes móviles	Medio terrestre	Medio terrestre	Óxido Nitroso (N2O)	Kerosene	5,6861	kgCO2eq/m3	IPCC 2006 Guidelines for Na
Alcance 1 Alcance 1 Alcance 1	Fuentes móviles							
Alcance 1 Alcance 1		Medio maritimo	Medio marítimo	Dióvido de Carbono (CO2)	Detrolog 2 (Discol)	2608 5450	kaCO2na/m2	
Alcance 1	- 1.0				Petroleo Z (biesel)			IPCC 2006 Guidelines for Na
Alcance 1	Fuentes móviles	Medio maritimo	Medio marítimo	Metano (CH4)	Petroleo 2 (Diesel)		kgCO2eq/m3	IPCC 2006 Guidelines for Na
	Fuentes móviles	Medio maritimo	Medio marítimo	Óxido Nitroso (N2O)	Petroleo 2 (Diesel)		kgCO2eq/m3	IPCC 2006 Guidelines for Na
								IPCC 2006 Guidelines for Na
Alcance 1	Fuentes móviles		Medio marítimo	Dióxido de Carbono (CO2)	Gas licuado		kgCO2eq/m3	
Alcance 1	Fuentes móviles		Medio marítimo	Metano (CH4)	Gas licuado	43,5334	kgCO2eq/m3	IPCC 2006 Guidelines for Na
Alcance 1	Fuentes móviles	Medio maritimo	Medio marítimo	Óxido Nitroso (N2O)	Gas licuado	1,3291	kgCO2eq/m3	IPCC 2006 Guidelines for Na
Alcance 1	Fuentes móviles	Medio maritimo	Medio marítimo	Dióxido de Carbono (CO2)	Gas natural	1,9746	kgCO2eq/m3	IPCC 2006 Guidelines for Na
Alcance 1	Fuentes móviles	Medio maritimo	Medio marítimo	Metano (CH4)	Gas natural		kgCO2eq/m3	IPCC 2006 Guidelines for Na
Alcance 1	Fuentes móviles	Medio maritimo	Medio marítimo	Óxido Nitroso (N2O)	Gas natural		kgCO2eq/m3	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas		Vehículo particular - gasolina	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas	Traslado diario de personal	Vehículo particular - gasolina	Metano (CH4)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas	Traslado diario de personal	Vehículo particular - gasolina	Óxido Nitroso (N2O)	N/A	0,0045	kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas	Traslado diario de personal	Vehículo particular - diesel	Dióxido de Carbono (CO2)	N/A	0,2453	kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas	Traslado diario de personal	Vehículo particular - diesel	Metano (CH4)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas		Vehículo particular - diesel	Óxido Nitroso (N2O)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas	Traslado diario de personal	Taxi	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas		1 6010	Metano (CH4)	N/A			IPCC 2006 Guidelines for Na
							kgCO2eq/persona-km	
Alcance 3	Movilización de personas		Aéreo - Avión trayecto doméstico (Chil		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas		Aéreo - Avión trayecto doméstico (Chil		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas	Viajes de negocios	Aéreo - Avión trayecto doméstico (Chil	Óxido Nitroso (N2O)	N/A	0,0014	kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas		Aéreo - Avión trayecto internacional (p		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmen
Alcance 3	Movilización de personas	Viajes de negocios	Aéreo - Avión trayecto internacional (p		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas	Viajes de negocios	Aéreo - Avión trayecto internacional (p		N/A	0.0000	kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas	Viajes de negocios	Terrestre - Vehículo particular - Gasolir		N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for No
Alcance 3	Movilización de personas	Viajes de negocios	Terrestre - Vehículo particular - Gasolin		N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas	Viajes de negocios	Terrestre - Vehículo particular - Diesel	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas	Viajes de negocios	Terrestre - Vehículo particular - Diesel		N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas		Terrestre - Vehículo particular - Diesel		N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
Alcance 3	Movilización de personas		Terrestre - Taxi	Dióxido de Carbono (CO2)	N/A		kgCO2eq/persona-km	IPCC 2006 Guidelines for Na
curree o				2.2	-47	0,2049	-geology personal kill	JJ E000 Galdelines for IN
Alcance 3	Transporte de carga	Insumos - marítimo	Barco - a granel	Dióxido de Carbono (CO2)	N/A	0.0035	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Barco - a granel	Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Barco - a granel	Óxido Nitroso (N2O)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Aéreo - Avión trayecto doméstico (Chil		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Aéreo - Avión trayecto doméstico (Chil	Oxido Nitroso (N2O)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Insumos - aéreos	Aéreo - Avión trayecto internacional (p	Dióxido de Carbono (CO2)	N/A	1,4041	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Aéreo - Avión trayecto internacional (p		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga		Aéreo - Avión trayecto internacional (p		N/A	0.007	kgCO2eq/t-km	DEFRA 2016 4th Assessmen
			Vehículos medianos (van) - diesel					DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga			Dióxido de Carbono (CO2)	N/A		kgCO2eq/t-km	
Alcance 3	Transporte de carga			Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga			Óxido Nitroso (N2O)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Productos - terrestre	Camión rígido promedio carga promed	Dióxido de Carbono (CO2)	N/A	0,2074	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Productos - terrestre	Camión rígido promedio carga promed	Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga		Camión rígido promedio carga promed		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Camión articulado promedio carga 11		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmen
								DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Camión articulado promedio carga 11		N/A		kgCO2eq/t-km	
Alcance 3	Transporte de carga		Camión articulado promedio carga 11		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Productos - terrestre	Camión refrigerado promedio carga 7 t	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Productos - terrestre	Camión refrigerado promedio carga 7 t	Metano (CH4)	N/A	0,0001	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Productos - terrestre	Camión refrigerado promedio carga 7 t		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Tren	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
								DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga			Metano (CH4)	N/A	U	kgCO2eq/t-km	
Alcance 3	Transporte de carga		Tren	Óxido Nitroso (N2O)	N/A	0,0003	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Barco - contenedor	Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Productos - marítimo	Barco - contenedor	Óxido Nitroso (N2O)	N/A	0,0001	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Productos - marítimo	Barco - a granel	Dióxido de Carbono (CO2)	N/A	0,0035	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Residuos - municipales (disposición fina		Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Residuos - municipales (disposición final			N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3					N/A			DEFRA 2016 4th Assessmer
	Transporte de carga		Vehículos medianos (van) - diesel	Dióxido de Carbono (CO2)			kgCO2eq/t-km	
Alcance 3	Transporte de carga		Vehículos medianos (van) - diesel	Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Vehículos medianos (van) - diesel	Óxido Nitroso (N2O)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Residuos - reciclaje	Camión rígido promedio carga promed	Dióxido de Carbono (CO2)	N/A	0,2074	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Bienes y servicios adquiridos	Bienes adquiridos		Dióxido de Carbono (CO2)	N/A	22210	kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas		Aéreo - Avión trayecto doméstico (Chil		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Aéreo - Avión trayecto doméstico (Chil		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Aéreo - Avión trayecto doméstico (Chi		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Movilización de personas	Transporte de clientes y visitantes	Aéreo - Avión trayecto internacional (p		N/A		kgCO2eq/persona-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Residuos - reciclaje	Camión rígido promedio carga promed	Óxido Nitroso (N2O)	N/A	0,0017	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga		Vehículos medianos (van) - diesel	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga			Metano (CH4)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga			Óxido Nitroso (N2O)	N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
								DEFRA 2016 4th Assessmen
Alcance 3	Transporte de carga		Camión rígido promedio carga promed		N/A		kgCO2eq/t-km	
Alcance 3	Transporte de carga		Camión rígido promedio carga promed		N/A		kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Transporte de carga	Residuos - otros	Camión rígido promedio carga promed	Oxido Nitroso (N2O)	N/A	0,0017	kgCO2eq/t-km	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi			Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi		Plasticos: Promedio de plasticos	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi		Plasticos: HDPE	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
							kgCO2eq/t	
Alcance 3	Tratamiento y/o disposición de resi		Plasticos: LDPE y LLDPE	Dióxido de Carbono (CO2)	N/A			DEFRA 2016 4th Assessmen
Alcance 3	Tratamiento y/o disposición de resi			Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi			Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi		Plasticos: PS	Dióxido de Carbono (CO2)	N/A	21	kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi		Plasticos: PVC	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi		Neumaticos	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3					N/A		kgCO2eq/t	DEFRA 2016 4th Assessmen
	Tratamiento y/o disposición de resi			Dióxido de Carbono (CO2)				
Alcance 3	Tratamiento y/o disposición de resi			Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmen
Alcance 3	Tratamiento y/o disposición de resi		Baterias (post-consumo no automotriz		N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi		Construccion, Demolicion y Excavacion		N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi		Vidrio	Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
	Tratamiento y/o disposición de resi		Metal: latas de aluminio y papel de alu		N/A		kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3	Tratamiento y/o disposición de resi			Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	DEFRA 2016 4th Assessmen
Alcance 3								DEFRA 2016 4th Assessmer
Alcance 3			Aceite mineral					
Alcance 3 Alcance 3	Tratamiento y/o disposición de resi	Reciclaje		Dióxido de Carbono (CO2)	N/A		kgCO2eq/t	
Alcance 3 Alcance 3 Alcance 3	Tratamiento y/o disposición de resi Tratamiento y/o disposición de resi	Reciclaje Reciclaje	Papel y cartón	Dióxido de Carbono (CO2)	N/A	21	kgCO2eq/t	DEFRA 2016 4th Assessmer
Alcance 3 Alcance 3	Tratamiento y/o disposición de resi	Reciclaje Reciclaje Compostaje	Papel y cartón Residuos orgánicos			21 6		

ANEXO C. Información alcance 1. (pág. 24)

Datos recibidos de consumo combustibles, 2020 y 2021.

2020														
BIOMASA COMBUSTIBLE BNP	M3	0	0	0	0	0	0	0	0	0	0	0	0	
PIN CHIPS	M3	5.782	5.000	4.697	4.742	5.354	3.998	4.294	2.922	3.918	5.516	3.589	3.499	
VIRUTA/ASERRIN	M3	0	0	0	0	0	0	0	0	0	96	0	0	
PETROLEO DIESEL	L	400	0	0	3.102	0	0	0	201	2.000	3.500	133	2.000	
GAS GRANEL	L	14.988	17.352	17.214	14.367	16.808	14.222	10.951	15.698	12.822	19.231	15.740	16.855	186
PETROLEO 6	KG	17.300	0	20.016	22.594	6.100	10.000	25.540	26.490	23.200	5.920	0	22.500	
BIOMASA	M3	5.782	5.000	4.697	4.742	5.354	3.998	4.294	2.922	3.918	5.612	3.589	3.499	53.407
2021														
BIOMASA COMBUSTIBLE BNP	M3	2.864	450	2.862	3.199	3.297	3.658	5.945	7.012	6.515	5.173	3.725	2.759	
PIN CHIPS	M3													
VIRUTA/ASERRIN	M3													
PETROLEO DIESEL	L	0	0	367	134	0	20.716	55.250	4.900	0	1.500	0	0	
GAS GRANEL	L	12.305	11.399	14.156	11.330	12.921	11.797	17.631	19.250	18.727	16.100	12.730	13.151	
PETROLEO 6	KG	2.600	125.253	1.000	0	0	0	400	5.200	3.800	8.710	13.600	2.500	163
BIOMASA	M3	2.864	450	2.862	3.199	3.297	3.658	5.945	7.012	6.515	5.173	3.725	2.759	

Datos recibidos de consumo combustibles camionetas, 2020 y 2021.

⊿ B		D	F	G	Н	J	0
1 RAZON SOCIAL	-	PATENTE -	PRODUCTO	Periodo 🐨	FECHA ~	COMUNA E/S ~	VOL.LTRS. ~
1874 VITAPRO CHILE S.A.			PDGB	ene-21	28-12-2020	DALCAHUE	56,47
1875 VITAPRO CHILE S.A.			PDGB	ene-21	28-12-2020	LONCOCHE	48,03
1876 VITAPRO CHILE S.A.			PDGB	ene-21	28-12-2020	PUERTO MONTT	45,56
1877 VITAPRO CHILE S.A.			PDGB	ene-21	30-12-2020	PUERTO MONTT	42,24
1878 VITAPRO CHILE S.A.			PDGB	ene-21	30-12-2020	CASTRO	37,42
1879 VITAPRO CHILE S.A.			PDGB	ene-21	31-12-2020	PUERTO MONTT	49,54
1880 VITAPRO CHILE S.A.			PDGB	ene-21	02-01-2021	DALCAHUE	26,52
1881 VITAPRO CHILE S.A.			PDGB	ene-21	02-01-2021	DALCAHUE	54,53
1882 VITAPRO CHILE S.A.			PDGB	ene-21	03-01-2021	CASTRO	41,28
1883 VITAPRO CHILE S.A.			PDGB	ene-21	03-01-2021	CASTRO	19,35
1884 VITAPRO CHILE S.A.			PDGB	ene-21	04-01-2021	AISEN	40,38
1885 VITAPRO CHILE S.A.			PDGB	ene-21	04-01-2021	CHONCHI	41,01
1886 VITAPRO CHILE S.A.			PDGB	ene-21	04-01-2021	LONCOCHE	54,44
1887 VITAPRO CHILE S.A.			PDGB	ene-21	05-01-2021	CASTRO	57,38
1888 VITAPRO CHILE S.A.			PDGB	ene-21	05-01-2021	PUERTO MONTT	40,32
1889 VITAPRO CHILE S.A.			PDGB	ene-21	05-01-2021	PUERTO MONTT	50,26
1890 VITAPRO CHILE S.A.			PDGB	ene-21	06-01-2021	DALCAHUE	30,41
1891 VITAPRO CHILE S.A.			PDGB	ene-21	08-01-2021	FRUTILLAR	57,37
1892 VITAPRO CHILE S.A.			PDGB	ene-21	09-01-2021	DALCAHUE	37,35
1893 VITAPRO CHILE S.A.			PDGB	ene-21	11-01-2021	CASTRO	48,75
1894 VITAPRO CHILE S.A.			PDGB	ene-21	11-01-2021	DALCAHUE	57,75
1895 VITAPRO CHILE S.A.			PDGB	ene-21	11-01-2021	CASTRO	46,84
1896 VITAPRO CHILE S.A.			PDGB	ene-21	11-01-2021	LONCOCHE	44,84
1897 VITAPRO CHILE S.A.			PDGB	ene-21	12-01-2021	DALCAHUE	30,62
1898 VITAPRO CHILE S.A.			PDGB	ene-21	13-01-2021	PUERTO VARAS	49,69
1899 VITAPRO CHILE S.A.			PDGB	ene-21	13-01-2021	PUERTO MONTT	46,19
1900 VITAPRO CHILE S.A.			PDGB	ene-21	13-01-2021	PUERTO MONTT	44,6
1901 VITAPRO CHILE S.A.			PDGB	ene-21	14-01-2021	DALCAHUE	34,98
1902 VITAPRO CHILE S.A.			PDGB	ene-21	14-01-2021	TEMUCO	31,4
1903 VITAPRO CHILE S.A.			PDGB	ene-21	14-01-2021	LAUTARO	64,19
1904 VITAPRO CHILE S.A.			PDGB	ene-21	15-01-2021	DALCAHUE	59,09
1905 VITAPRO CHILE S.A.			PDGB	ene-21	15-01-2021	CASTRO	53,6
1906 VITAPRO CHILE S.A.			PDGB	ene-21	16-01-2021	CASTRO	50,7
1907 VITAPRO CHILE S.A.			PDGB	ene-21	17-01-2021	DALCAHUE	17,49
1908 VITAPRO CHILE S.A.			PDGB	ene-21	17-01-2021	CASTRO	44,29
1909 VITAPRO CHILE S.A.			PDGB	ene-21	17-01-2021	PUERTO MONTT	27,81
1910 VITAPRO CHILE S.A.			PDGB	ene-21	18-01-2021	OSORNO	33,02

Datos ordenados para el cálculo de emisiones por combustible 2020.

Combustión esta	icionaria														
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total	Densid
Biomasa	m3	5782	5000	4697	4742	5354	3998	4294	2922	3918	5612	3589	3499	53407	
biomasa	ton	1156	1000	939	948	1071	800	859	584	784	1122	718	700	10681	
Petróleo R600	kg	17300	0	20016	22594	6100	10000	25540	26490	23200	5920	0	22500	179660	
relioled Rado	m3	18,31	0.00	21,18	23,91	6,46	10,58	27.03	28.03	24,55	6.26	0.00	23,81	190	
Diésel	L	400	0	0	3102	0	0	0	201	2000	3500	133	2000	11336	
Diesei	m3	0.40	0.00	0.00	3,10	0.00	0.00	0.00	0.20	2,00	3,50	0.13	2.00	11	
C	-11														
Combustión mó															
ombustión mó	vil Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total	
ombustión mó	Unidades L	14988	17352	17214	14367	16808	14222	10951	15698	12822	19231	15740	16855	186248	
														186248 186,2	
GLP	Unidades L	14988	17352	17214	14367	16808	14222	10951	15698	12822	19231	15740	16855	186248	
Combustión mór GLP Diésel	Unidades L	14988 15,0	17352 17,4	17214 17,2	14367 14,4	16808 16,8	14222 14,2	10951 11,0	15698 15,7	12822 12,8	19231 19,2	15740 15,7	16855 16,9	186248 186,2	
GLP	Unidades L m3 L	14988 15,0 4194,8	17352 17,4 3874,3	17214 17,2 4097,8	14367 14,4 1875,0	16808 16,8 1656,8	14222 14,2 2569,5	10951 11,0 1750,4	15698 15,7 1961,9	12822 12,8 1738,9	19231 19,2 2099,9	15740 15,7 1666,1	16855 16,9 1987,1	186248 186,2 29472,4	

Emisiones por combustible 2020.

Combustión est	acionaria														
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total (kgCO2eq)	Total (tonCO2eq)
Biomasa	kgCO2eq	32175	27824	26137	26388	29794	22248	23895	16260	21803	31229	19972	19471	297195	297,2
Petróleo R600	kgCO2eq	56098	0	64904	73264	19780	32426	82817	85897	75229	19196	0	72959	582571	582,6
Diésel	kgCO2eq	1.083	0	0	8.398	0	0	0	544	5.415	9.476	360	5.415	30691	30,7
														910457	910
Combustión mó	vil														
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total (kgCO2eq)	Total (tonCO2eq)
GLP	kgCO2eq	24433,60	28287,42	28062,45	23421,24	27400,59	23184,86	17852,44	25591,05	20902,57	31350,59	25659,52	27477,21	303624	303,6
Diésel	kgCO2eq	11494,42	10616,18	11228,68	5137,83	4539,87	7040,81	4796,38	5375,92	4764,89	5753,95	4565,27	5444,84	80759	80,8
Gasolina	kgCO2eq	674,68	774,01	719,03	241,14	103,78	131,98	387,56	0,00	0,00	0,00	150,04	0,00	3182	3,2
														387565	387.6

Datos ordenados para el cálculo de emisiones por combustible 2021.

Combustión estac	ionaria														
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total	Densidad (kg/m3)
Biomasa	m3	2864	450	2862	3199	3297	3658	5945	7012	6515	5173	3725	2759	47459	200
Biomasa	ton	573	90	572	640	659	732	1189	1402	1303	1035	745	552	9492	200
Petróleo R600	kg	2600	125253	1000	0	0	0	400	5200	3800	8710	13600	2500	163063	945
Petroleo Rauu	m3	2,75	132,54	1,06	0,00	0.00	0.00	0.42	5,50	4.02	9,22	14,39	2,65	173	745
Diésel	L	0	0	367	134	0	20716	55250	4900	0	1500	0	0	82867	
Diesei	m3	0,00	0,00	0,37	0,13	0,00	20,72	55,25	4,90	0,00	1,50	0,00	0,00	83	
Combustión móvil	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total	
	L	12305	11399	14156	11330	12921	11797	17631	19250	18727	16100	12730	13151	171497	
GLP	m3	12,3	11,4	14,2	11,3	12,9	11,8	17,6	19,3	18,7	16,1	12,7	13,2	171,5	
-17 1	L	2531,9	1725,4	2665,1	2360,2	3106,9	2725,0	3080,4	2902,5	3885,3	3801,3	3906,5	3815,6	36506,0	
Diésel	m3	2,5	1,7	2,7	2,4	3,1	2,7	3,1	2,9	3,9	3,8	3,9	3,8	36,5	
Gasolina	L	64.2	139,1	66.0	259,8	60.2	200.8	162,3	59,3	208.2	252.7	297,6	294,5	2064,5	
Gasolina	m3	0,06	0,14	0,07	0,26	0,06	0,20	0,16	0,06	0,21	0,25	0,30	0,29	2,06	

Emisiones por combustible 2021

Combustión estad	cionaria	Combutión estacionaria													
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total (kgCO2eq)	Total (tonCO2eq)
Biomasa	kgCO2eq	15937	2504	15926	17802	18347	20356	33082	39020	36254	28786	20729	15353	264096	264,1
Petróleo R600	kgCO2eq	8431	406149	3243	0	0	0	1297	16862	12322	28243	44100	8107	528753	528,8
Diésel	kgCO2eq	0	0	994	363	0	56.086	149.584	13.266	0	4.061	0	0	224354	224,4
														1017203	1017,2
Combustión móvi	I .														
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total (kgCO2eq)	Total (tonCO2eq)
GLP	kgCO2eq	20059,75	18582,78	23077,27	18470,29	21063,96	19231,60	28742,25	31381,56	30528,96	26246,40	20752,59	21438,90	279576	279,6
Diésel	kgCO2eq	6937,78	4727,76	7302,75	6467,41	8513,51	7467,02	8440,68	7953,23	10646,26	10416,03	10704,44	10455,44	100032	100,0
Gasolina	kgCO2eq	148,03	320,75	152,14	599,03	138,83	463,04	374,32	136,76	480,22	582,68	686,26	679,06	4761	4,8
														384370	384,4

ANEXO D. Información alcance 2. (pág. 26)

Consumo electricidad Salmofood.

	Consumo de electricidad (kWh)												
	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	TOTAL
2019	194783	1060135	1051207	804303	1131080	1295896	1484935	1067074	1372027	1543367	1531240	1071292	13.607.339
2020	1349428	1415025	1407654	1398314	1440947	1164721	1006326	1010983	1178512	1427220	1239771	1201322	15.240.223
2021	976787	794858	987277	983619	992351	946165	1.244.113	1.673.449	1.723.000	1.482.354	1.307.558	1.151.015,40	14.262.546

Emisiones alcance 2, 2020.

DA	TOS													
Energía Eléctrica														
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total
Energía	kWh	1349428	1415025	1407654	1398314	1440947	1164721	1006326	1010983	1178512	1427220	1239771	1201322	15240223
Eléctrica	MWh	1349	1415	1408	1398	1441	1165	1006	1011	1179	1427	1240	1201	15240

EMISIONES Energía Eléctrica														
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total (tCO2eq)
Energía Eléctrica	tCO2eq	517,4	542,5	539,7	536,1	552,5	446,6	385,8	387,6	451,8	547,2	475,3	460,6	5843,1

Emisiones alcance 2, 2021.

DA	TOS													
Energía Eléctr	ca													
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total
Energía	kWh	976787	794858	987277	983619	992351	946165	1244113	1673449	1723000	1482354	1307558	1151015	14262546,4
Eléctrica	MWh	977	795	987	984	992	946	1244	1673	1723	1482	1308	1151	14263

E-confe	EMISI Energía Eléctric	IONES ca													
Energía 100000 2017 2017 2017 2017 2017 2017 20		Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total (tonCO2eq)
Eléctrica 1010-02eq 361,6 310,6 363,7 364,3 367,7 466,1 653,6 673,2 377,2 310,7 447,7 95	Energía Eléctrica	tonCO2eq	381,6	310,6	385,7	384,3	387,7	369,7	486,1	653,8	673,2	579,2	510,9	449,7	5572,4

ANEXO E. Información viajes de negocios. (pág. 28) Detalle datos viajes de negocios.

Tramo	Distancia (km) 🚽	Nacional o Internacional
BALMACEDA - PTO MONTT	509	N
PTO MONTT - BALMACEDA	509	N
PUNTA ARENAS - PTO MONTT	1296	N
PTO MONTT - PUNTA ARENAS	1296	N
SANTIAGO - PTO MONTT	917	N
PTO MONTT - SANTIAGO	917	N
SANTIAGO - CASTRO	1027	N
CASTRO - SANTIAGO	1027	N
SANTIAGO - LIMA	2459	I
LIMA - SANTIAGO	2459	I
SANTIAGO - GUAYAQUIL	3597	I
GUAYAQUIL - SANTIAGO	3597	I
AREQUIPA - LIMA	764	I
LIMA - AREQUIPA	764	
LIMA - MIAMI	4215	I
MIAMI - LIMA	4215	I
LIMA - PANAMA	2356	I
PANAMA - GUAYAQUIL	1247	
TRUJILLO - LIMA	488	N
LIMA - TRUJILLO	488	N .

Resultado viajes de negocios, 2020.

	Emisiones (kg CO2e)	Nacional (N) o Internacional (I)	N° Viajes	Tramo
Na	567,4	N	4	BALMACEDA - PTO MONTT
1	567,4	N	4	PTO MONTT - BALMACEDA
	1083,6	N	3	PUNTA ARENAS - PTO MONTT
	1083,6	N	3	PTO MONTT - PUNTA ARENAS
	4855,8	N	19	SANTIAGO - PTO MONTT
	3322,4	N	13	PTO MONTT - SANTIAGO
	572,4	N	2	SANTIAGO - CASTRO
	1717,3	N	6	CASTRO - SANTIAGO
	7482,7	I	17	SANTIAGO - LIMA
	7482,7	I	17	LIMA - SANTIAGO
	1287,7	I	2	SANTIAGO - GUAYAQUIL
	1287,7	I	2	GUAYAQUIL - SANTIAGO
	136,8	I	1	AREQUIPA - LIMA
	136,8	I	1	LIMA - AREQUIPA
	754,5	I	1	LIMA - MIAMI
	754,5	I	1	MIAMI - LIMA
	33093,4	Total		

Emisiones	(kg CO2e)
Nacionales	Internacionales
13770,0	19323,4

Resultado viajes de negocios, 2021.

Tramo	N° Viajes	Nacional (N) o Internacional (I)	Emisiones (kg CO2e)	Emisiones	s (kg CO2e)
PTO MONTT - BALMACEDA	11	Ν	1560,4	Nacionales	Internacionales
BALMACEDA - PTO MONTT	11	Ν	1560,4	18528,5	17950,5
PUNTA ARENAS - PTO MONTT	6	N	2167,2		
PTO MONTT - PUNTA ARENAS	6	Ν	2167,2		
SANTIAGO - PTO MONTT	18	N	4600,2		
PTO MONTT - SANTIAGO	12	N	3066,8		
SANTIAGO - CASTRO	4	Ν	1144,9		
CASTRO - SANTIAGO	6	N	1717,3		
SANTIAGO - LIMA	16	I	7042,6		
LIMA - SANTIAGO	16	1	7042,6		
SANTIAGO - GUAYAQUIL	2	1	1287,7		
GUAYAQUIL - SANTIAGO	2	I	1287,7		
LIMA - TRUJILLO	2	N	272,0		
TRUJILLO - LIMA	2	N	272,0		
LIMA - PANAMA	2	1	843,4		
PANAMA - GUAYAQUIL	2	I	446,4		
		Total	36479,0		

ANEXO F. Información transporte personal. (pág. 30)

Detalle datos transporte personal, 2020 y 2021.

	Destino	Distancia (km)	Numero de buses	Veces al dia	Dias a la semana	Semanaslaño	Total (km)	Unidad
Bus Proceso	Castro Alto	15	2	3	6	52	56160	km
Bus Proceso	Nercon	17	1	3	6	52	31824	km
Bus Proceso	Dalcahue	15	1	3	6	52	28080	km
Bus Proceso	Castro (Remate)	14	1	2	6	52	8736	km
Bus Administracion	Castro	15	2	2	5	52	15600	km
Auto	Promedio	14	-	2	5	52	7280	km

Resultados transporte personal, 2020.

	Dist. Recorrida Anual (km)	N° Personas	Resultado	Unidad		
Bus	140400	190	26676000	(km*persona)	Bus - kg CO2 eq	730922,4
Auto	7280	50	364000	(km*persona)	Auto - kg CO2 eq	76330,8
					Suma total	807253,2

Resultados transporte personal, 2021.

	Dist. Recorrida Anual (km)	N° Personas	Resultado	Unidad		
Bus	140400	160	22464000	(km*persona)	Bus - kg CO2 eq	615513,6
Auto	7280	60	436800	(km*persona)	Auto - kg CO2 eq	91597,0
					Suma total	707110,6

ANEXO G. Información importación. (pág. 30-31)

Detalle proveedores vía transporte terrestre.

	stes via transport				
Pais de origen	Ciudad de origen	Ciudad de destino	Distancia origen-destino (km)	Tipo de vehiculo	Factor de emision
CHILE	OSORNO	CASTRO	260	Camión articulado promedio carga 11 t	0,0867
CHILE	TEMUCO	CASTRO	506	Camión articulado promedio carga 11 t	0,0867
CHILE	TALCAHUANO	CASTRO	812	Camión articulado promedio carga 11 t	0,0867
CHILE	RANCAGUA	CASTRO	1101	Camión articulado promedio carga 11 t	0,0867
CHILE	SANTIAGO	CASTRO	1185	Camión articulado promedio carga 11 t	0,0867
CHILE	LOS ANGELES	CASTRO	681	Camión articulado promedio carga 11 t	0,0867
CHILE	CORONEL	CASTRO	765	Camión articulado promedio carga 11 t	0,0867
CHILE	GORBEA	CASTRO	463	Camión articulado promedio carga 11 t	0,0867
CHILE	PUERTO MONTT	CASTRO	159	Camión articulado promedio carga 11 t	0,0867
CHILE	TALCA	CASTRO	932	Camión articulado promedio carga 11 t	0,0867
CHILE	LOTA	CASTRO	773	Camión articulado promedio carga 11 t	0,0867
CHILE	IQUIQUE	CASTRO	2940	Camión articulado promedio carga 11 t	0,0867
ARGENTINA	BUENOS AIRES	CASTRO	2009	Camión articulado promedio carga 11 t	0,0867
BRASIL	ARAGUARI	CASTRO	4373	Camión articulado promedio carga 11 t	0,0867
BRASIL	SAO PAULO	CASTRO	4122	Camión articulado promedio carga 11 t	0,0867
BOLIVIA	SANTA CRUZ DE LA SIERRA	CASTRO	3676	Camión articulado promedio carga 11 t	0,0867
PARAGUAY	CANINDEYU	CASTRO	3425	Camión articulado promedio carga 11 t	0,0867

Detalle proveedores vía transporte marítimo.

Pais de origen	Ciudad de origen	Puerto de salida	Puerto de destino	Ciudad de destino	Distancia Terrestre (km)	Distancia Maritima (km) Tipo de camion	Factor de emision tierra (tkm)
USA	DALLAS	HOUSTON	TALCAHUANO	CASTRO	385	8040 Camión articulado mayor	0,08141
USA	DECATUR	CHARLESTON	TALCAHUANO	CASTRO	485	8114 Camión articulado mayor	0,08141
USA	BLAIR	HOUSTON	TALCAHUANO	CASTRO	1486	8040 Camión articulado mayor	0,08141
USA	LOUSIANA	NEW ORLEANS	TALCAHUANO	CASTRO	260	7826 Camión articulado mayor	0,08141
ALEMANIA	DIEPHOLZ	BREMERHAVEN	TALCAHUANO	CASTRO	105	14738 Camión articulado mayor	0,08141
SUIZA	BASILEA	GENOVA	TALCAHUANO	CASTRO	476	14932 Camión articulado mayor	0,08141
CHINA	ZHEJIANG	TAIZHOU	TALCAHUANO	CASTRO	490	18799 Camión articulado mayor	0,08141
INDIA	TELANGANA	VISAKHAPATMAN	TALCAHUANO	CASTRO	455	18547 Camión articulado mayor	0,08141
PERU	TRUJILLO	CALLAO	TALCAHUANO	CASTRO	553	2772 Camión articulado mayor	0,08141
MEXICO	GUAYMAS	GUAYMAS	TALCAHUANO	CASTRO	2,56	8209 Camión articulado mayor	0,08141

Detalle envíos proveedores.

⊿ A							
Numero de Lote	-	Proveedor	-	Pais Origen	-	Nombre Material	-71
5		Proveedor 1		ALEMANIA		CONCENTRADO PROTEICO AVIAR	
5		Proveedor 6		PERU		HARINA DE PESCADO	
7		Proveedor 2		USA		CONCENTRADO PROTEICO AVIAR	
8		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
.2		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
.3		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
.4		Proveedor 2		USA		CONCENTRADO PROTEICO AVIAR	
.7		Proveedor 1		BRASIL		CONCENTRADO PROTEICO DE SOYA	4
1		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
.2		Proveedor 1		ALEMANIA		CONCENTRADO PROTEICO AVIAR	
13		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
.4		Proveedor 1		ALEMANIA		CONCENTRADO PROTEICO AVIAR	
15		Proveedor 1		ALEMANIA		CONCENTRADO PROTEICO AVIAR	
27		Proveedor 3		CHILE		SUB PRODUCTO DE TRIGO	
18		Proveedor 3		CHILE		SUB PRODUCTO DE TRIGO	
19		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
30		Proveedor 1		ALEMANIA		HIDROLIZADO PROTEICO AVIAR	
31		Proveedor 1		ALEMANIA		CONCENTRADO PROTEICO AVIAR	
36		Proveedor 4		USA		TRIGO ENTERO	
8		Proveedor 1		BRASIL		CONCENTRADO PROTEICO DE SOYA	4
39		Proveedor 1		BRASIL		CONCENTRADO PROTEICO DE SOYA	4
12		Proveedor 3		CHILE		SUB PRODUCTO DE TRIGO	
13		Proveedor 5		CHILE		CONCENTRADO PROTEICO AVIAR	
14		Proveedor 1		ALEMANIA		CONCENTRADO PROTEICO AVIAR	
15		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
16		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
19		Proveedor 4		USA		TRIGO ENTERO	
60		Proveedor 4		USA		TRIGO ENTERO	
66		Proveedor 5		CHILE		CONCENTRADO PROTEICO AVIAR	
59		Proveedor 4		USA		TRIGO ENTERO	
53		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
55		Proveedor 1		ALEMANIA		HIDROLIZADO PROTEICO AVIAR	
58		Proveedor 3		CHILE		SUB PRODUCTO DE TRIGO	
59		Proveedor 2		USA		HIDROLIZADO PROTEICO AVIAR	
0		Proveedor 3		CHILE		SUB PRODUCTO DE TRIGO	
1		Proveedor 3		CHILE		SUB PRODUCTO DE TRIGO	
′2		Proveedor 1		ALEMANIA		HIDROLIZADO PROTEICO AVIAR	
73		Proveedor 5		CHILE		CONCENTRADO PROTEICO AVIAR	
14		Proveedor 4		USA		TRIGO ENTERO	
75		Proveedor 4		USA		TRIGO ENTERO	
76		Proveedor 1		BRASIL		CONCENTRADO PROTEICO DE SOYA	4
7		Proveedor 1		BRASIL		CONCENTRADO PROTEICO DE SOYA	
9		Proveedor 3		CHILE		SUB PRODUCTO DE TRIGO	_
31		Proveedor 1		ALEMANIA		CONCENTRADO PROTEICO AVIAR	

Resultados importación 2020.

TEMUCO OSORNO	iidad Transportada (ton)	Total emisiones (kg CO2e)	Ciudad de origen	Cantidad Transportada (ton)	Tipo de carguero	Total er transp. (kg (
OSORNO		161223	DECATUR			
			DECAIUR	0,0088	Granelero	
	11850	267123	BLAIR	9650,0	Portacontenedores	
IQUIQUE	1250	318623	DALLAS	2375,0	Granelero	
LOS ANGELES	25	1476	LOUSIANA	10500,0	Portacontenedores	
RANCAGUA	2225	212391	DIEPHOLZ	18550,0	Portacontenedores	
LOTA	25	1675	GUAYMAS	975,0	Portacontenedores	
SANTIAGO	750	77055			Suma total	
TALCAHUANO	4275	300962				
PUERTO MONTT	2650	36531				
BUENOS AIRES	1350	235143				
ARAGUARI	16050	6085183				
SAO PAULO	925	330574				
SANTA CRUZ DE LA SIEF	3375	1075644				
	Suma total	9103601,9				

Ciudad de origen	Cantidad Transportada (ton)	Tipo de carguero	Total emisiones transp. maritimo (kg CO2e)	Total emisiones transp. terrestre (kg CO2e)
DECATUR	8800,0	Granelero	249911,2	915028
BLAIR	9650,0	Portacontenedores	1241376	1777826
DALLAS	2375,0	Granelero	66832,5	227913
LOUSIANA	10500,0	Portacontenedores	1314768	902394
DIEPHOLZ	18550,0	Portacontenedores	4374238,4	1363720
GUAYMAS	975,0	Portacontenedores	128060,4	63671
		Suma total	7375186,5	5250551,4

Resultados importación 2021.

Importación Transporte Terrestre Directo			Importación Transpo	rte Marítimo y T	ransporte Terrestre in	termedio
Ciudad de origen	Cantidad Transportada (ton)	Total emisiones (kg CO2e)	Ciudad de origen	Cantidad Transportada (ton)	Tipo de carguero	Total em transp. m (kg Cd
TEMUCO	6850	300511	DECATUR	6775,0	Granelero	19
OSORNO	11200	252470	BLAIR	500,0	Granelero	
IQUIQUE	1125	286760	DALLAS	10050,0	Granelero	
GORBEA	550	22078	LOUSIANA	8275,0	Portacontenedores	1
RANCAGUA	2425	231482	DALLAS	2300,0	Granelero	
CORONEL	1800	119386	LOUSIANA	5950,0	Granelero	1
SANTIAGO	8575	880991	DIEPHOLZ	18775,0	Portacontenedores	4
TALCAHUANO	5850	411842	ZHEJIANG	225,0	Portacontenedores	
PUERTO MONTT	4375	60311	TRUJILLO	525,0	Portacontenedores	
TALCA	725	58583	GUAYMAS	675,0	Granelero	19
BUENOS AIRES	10200	1776639			Suma total	6
ARAGUARI	15050	5706043				
SAO PAULO	1300	464591				
SANTA CRUZ DE LA SIEF	1625	517902				
	Suma total	11089591,09				
Importación Transpor	te Terrestre Directo Imp	ortación Transporte Marítima				
	Total	Total				
kg CO2 eq	15799129,9 kg	CO2 eq 6290791,2				

Ciudad de origen	Cantidad Transportada (ton)	Tipo de carguero	Total emisiones transp. maritimo (kg CO2e)	Total emisiones transp. terrestre (kg CO2e)
DECATUR	6775,0	Granelero	192403,225	704468
BLAIR	500,0	Granelero	14070	92115
DALLAS	10050,0	Granelero	282807	964433
LOUSIANA	8275,0	Portacontenedores	1036162,4	711172
DALLAS	2300,0	Granelero	64722	220716
LOUSIANA	5950,0	Granelero	162976,45	511356
DIEPHOLZ	18775,0	Portacontenedores	4427295,2	1380261
ZHEJIANG	225,0	Portacontenedores	67676,4	23486
TRUJILLO	525,0	Portacontenedores	23284,8	57452
GUAYMAS	675,0	Granelero	19393,7625	44080
		Suma total	6290791,2	4709538,8

ANEXO H. Información distribución. (pág. 32)

Detalle datos distribución 2020 y 2021.

Origen	Pais Destino	Puerto de salida	Distancia (km)	Tipo de vehiculo	Factor de emision (tkm)
PLANTA CASTRO	CHILE	PUERTO CASTRO	15	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	CHILE	PUERTO CHONCHI	38	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	CHILE	PUERTO QUELLON	100	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	CHILE	PUERTO PTO MONTT	151	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	CHILE	PUERTO CALBUCO	154	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	CHINA	PUERTO TALCAHUANO	826	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	PERU	PUERTO TALCAHUANO	826	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	ARMENIA	PUERTO TALCAHUANO	826	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	COSTA RICA	PUERTO TALCAHUANO	826	Camión articulado mayor a 33 t	0,08017
PLANTA CASTRO	PANAMA	PUERTO TALCAHUANO	826	Camión articulado mayor a 33 t	0,08017

Resultados distribución 2020.

Destino	Cantidad Transportada (ton)	Total emisiones (kg CO2e)
PUERTO CASTRO	66004,65	79373,9
PUERTO PTO MONTT	51789,9	626951,4
PUERTO TALCAHUANO	8690,97	575519,7
		0,0
		0,0
	Suma total	1281845,0

Resultados distribución 2021

Destino	Cantidad Transportada (ton)	Total emisiones (kg CO2e)
PUERTO CASTRO	82399,45	99089,5
PUERTO PTO MONTT	47451,91	574437,2
PUERTO TALCAHUANO	2180,975	144425,1
		0,0
		0,0
		0,0
	Suma total	817951,7

ANEXO I. Información manejo de residuos. (pág. 33)

Detalle datos transporte de residuos.

Destino	Distancia (km)
PAP PTAS PTO MONTT	150
RELLENO SANITARIO LOS ANGELES	700
EL EMPALME MAULLIN	140
PLANTA DE TRATAMIENTO DE AGUAS	s 70
ECOFIBRAS SUCURSAL PTO MONTT	160
SOC DE INVERSIONES TRESOL LTDA	155
ECOPRIAL OSORNO	270
PLANTA RILESUR PAILLACO	320

Resultados transporte de residuos 2020.

D) estino	Cantidad (kg)	tkm
PAP PTAS PTO MON	TT	20250	3037,5
RELLENO SANITARIO	D LOS ANGELES	41250	28875,0
EL EMPALME MAUL	LIN	147600	20664,0
PLANTA DE TRATAM	IIENTO DE AGUAS SERVID.	156600	10962,0
ECOFIBRAS SUCURS	AL PTO MONTT	203713	32594,1
SOC DE INVERSIONE	ES TRESOL LTDA	54260	8410,3
ECOPRIAL OSORNO		431700	116559,0
PLANTA RILESUR PA	ILLACO		0,0
	Total	1055373	

Transporte Residuos		
	Total	
kg CO2 eq	46254,5	

Resultados transporte de residuos 2021.

	Destino	Cantidad (kg)	tkm
PAP PTAS PTO MONTT		0	0,0
RELLENO SANITARI	O LOS ANGELES	311173	217821,1
EL EMPALME MAUL	LIN	108300	15162,0
PLANTA DE TRATAN	MIENTO DE AGUAS SERVID.	362940	25405,8
ECOFIBRAS SUCURS	SAL PTO MONTT	282200	45152,0
SOC DE INVERSION	ES TRESOL LTDA	30300	4696,5
ECOPRIAL OSORNO		108100	29187,0
PLANTA RILESUR PAILLACO		35140	11244,8
	Total	1238153	

Transporte Residuos		
	Total	
kg CO2 eq 72941,6		

Resultados tratamiento o descomposición de residuos 2020.

	Cantidad (ton)	Emisiones (kg CO2 eq)
Residuos a relleno sanitario o PTAS	797,4	494388
Basislais wansles v nlásticas	,	
Reciclaje papeles y plásticos	203,713	4277,973
Escombros	52,26	52,26

Resultados tratamiento o descomposición de residuos 2021.

	Cantidad (ton)	Emisiones (kg CO2 eq)
Residuos a relleno sanitario o PTAS	925,653	573904,86
Reciclaje papeles y plásticos	282,2	5926,2
Escombros	30,3	30,3

ANEXO J. Información transporte sacos. (pág. 34)

Recepción datos transporte de sacos.

Nombre del proveedor	✓ Origen	▼ Fecha docu ▼ Nombre Material	Cantidad de pedido Unidad medida pedido
41 Proveedor Sacos Internacional 3	Italia	24-08-2021	3240,000 KG
42 Proveedor Sacos Internacional 3	Italia	24-08-2021	3240,000 KG
43 Proveedor Sacos Internacional 3	Italia	24-08-2021	2430,000 KG
25 Proveedor Sacos Nacional 2	Nacional	12-08-2021	500,00 UND
26 Proveedor Sacos Nacional 1	Nacional	12-08-2021	7500,00 UND
27 Proveedor Sacos Nacional 2	Nacional	12-08-2021	7500,00 UND
75 Proveedor Sacos Nacional 2	Nacional	22-06-2021	3000,00 UND
18 Proveedor Sacos Nacional 1	Nacional	17-06-2021	9000,00 UND
49 Proveedor Sacos Internacional 3	Italia	25-05-2021	8910,000 KG
74 Proveedor Sacos Nacional 1	Nacional	19-05-2021	1000,00 UND
Proveedor Sacos Nacional 1	Nacional	28-04-2021	7200,00 UND
Proveedor Sacos Internacional 1	Tailandia	20-04-2021	13200,00 UND
Proveedor Sacos Internacional 1	Tailandia	20-04-2021	13200,00 UND
Proveedor Sacos Nacional 1	Nacional	29-03-2021	1016,00 UND
Proveedor Sacos Nacional 1	Nacional	09-03-2021	500,00 UND
2 Proveedor Sacos Internacional 3	Italia	25-02-2021	8910,000 KG
3 Proveedor Sacos Nacional 1	Nacional	09-02-2021	6000,00 UND
4 Proveedor Sacos Nacional 1	Nacional	08-02-2021	500,00 UND
Proveedor Sacos Nacional 1	Nacional	08-02-2021	6000,00 UND
Proveedor Sacos Nacional 3	Nacional	08-02-2021	20000,00 UND
Proveedor Sacos Internacional 1	Tailandia	29-01-2021	13093,00 UND
Proveedor Sacos Internacional 1	Tailandia	29-01-2021	110,00 UND
Proveedor Sacos Nacional 1	Nacional	19-01-2021	210,00 UND
4 Proveedor Sacos Internacional 3	Italia	19-01-2021	17820,000 KG
Proveedor Sacos Internacional 1	Tailandia	18-01-2021	14520,00 UND
5 Proveedor Sacos Nacional 1	Nacional	11-01-2021	1000,00 UND
Proveedor Sacos Internacional 3	Italia	18-12-2020	9135,000 KG
Proveedor Sacos Nacional 3	Nacional	09-12-2020	20000,00 UND
3 Proveedor Sacos Nacional 1	Nacional	01-12-2020	11500 UND
Proveedor Sacos Nacional 1	Nacional	26-11-2020	10000 UND
Proveedor Sacos Internacional 3	Italia	05-11-2020	9191 KG
Proveedor Sacos Nacional 1	Nacional	22-10-2020	14400 UND
Proveedor Sacos Nacional 1	Nacional	19-10-2020	7200 UND
Proveedor Sacos Nacional 2	Nacional	16-10-2020	4000 UND
Proveedor Sacos Nacional 3	Nacional	16-10-2020	15000 UND
64 Proveedor Sacos Nacional 3	Nacional	07-10-2020	47550 UND
99 Proveedor Sacos Internacional 3	Italia	02-10-2020	60 KG
Proveedor Sacos Nacional 1	Nacional	29-09-2020	500 UND

Detalle datos transporte de sacos terrestre.

Empresa proveedora	Origen	Distancia (km)	Tipo de vehículo
Proveedor Sacos Nacional 1	SANTIAGO	1200	Camión rígido promedio carga promedio 3 t
Proveedor Sacos Nacional 2	SANTIAGO	1200	Camión rígido promedio carga promedio 3 t
Proveedor Sacos Nacional 3	SANTIAGO	1200	Camión rígido promedio carga promedio 3 t

Detalle datos transporte de sacos marítimo.

Empresa proveedora	Pais Origen	Ciudad Origen	Puerto Origen	Tipo de vehículo	Puerto Destino	Ciudad Destino	Distancia Terrestre Origen(km)	Distancia Maritima(km)
Proveedor Sacos Internacional 3	ITALIA	LUCCA	LIVORNO	Portacontenedores	TALCAHUANO	CASTRO	48,0	14969
Proveedor Sacos Internacional 4	INDIA	KOLKATA	KOLKATA	Portacontenedores	TALCAHUANO	CASTRO	17,:	1 19284
Proveedor Sacos Internacional 2	CHINA	ZHENJIANG	SHANGHAI	Portacontenedores	TALCAHUANO	CASTRO	250	18832
Proveedor Sacos Internacional 1	TAILANDIA	BANGKOK	BANGKOK	Portacontenedores	TALCAHUANO	CASTRO	38,	20257

Resultados transporte de sacos 2020.

	Modo de Compra			
	Unidades Peso (kg			
25kg	50kg	1000kg	1250kg	reso (kg)
			44100	
			4000	
476239				
		Unic 25kg 50kg	Unidades 25kg 50kg 1000kg	Unidades 25kg 50kg 1000kg 1250kg 44100 4000

Emisiones Transporte Terrestre (kg CO2e)							
25kg	50kg	Peso					
0	0	0	33323,3	0			
0	0	0	3022,5	0			
8368,9	0	0	0	0			
0	0	0	0	0			
0	0	0	0	0			

	Modo de Compra			
Unidades				Peso (kg)
25kg	50kg	1000kg	1250kg	reso (kg)
				30199
			26400	
	25kg	Unic 25kg 50kg	Unidades 25kg 50kg 1000kg	Unidades 25kg 50kg 1000kg 1250kg

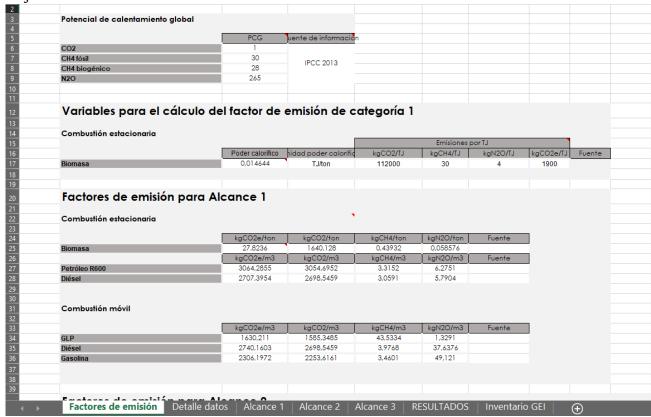
Emisiones Transporte Maritimo (kg CO2e)							
25kg	50kg	1000kg	1250kg	Peso			
0	0	0	0	7232,7			
0	0	0	24518,1	C			
0	0	0	0	C			
0	0	0	0	C			
0	0	0	0	C			

Emisiones Transporte Terrestre (kg CO2e)								
25kg	50kg	1000kg	1250kg	Peso				
(0	0	0	5525,4				
	0	0	14015,6	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				

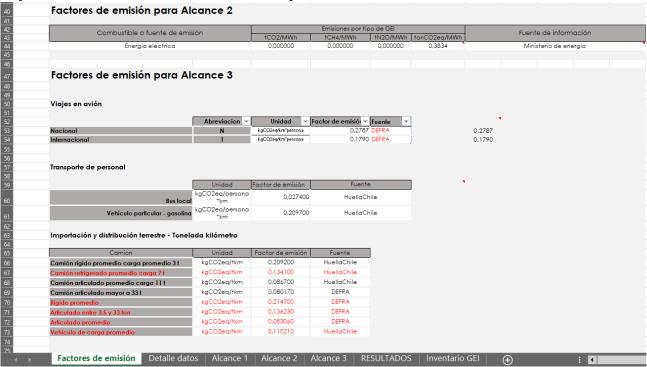
Resultados transporte de sacos 2021.

Transporte Sacos Nacional					
		Modo de Compra			
		Unidades			
Empresa	25kg	50kg	1000kg	1250kg	Peso (kg)
Proveedor Sacos Nacional 1			1516	66910	
Proveedor Sacos Nacional 2				18200	
Proveedor Sacos Nacional 3	39275				

Emisiones Transporte Terrestre (kg CO2e)									
25kg	50kg	1000kg	1250kg	Peso					
0	0	997	50559	0					
0	0	0	13752	0					
690	0	0	0	0					
0	0	0	0	0					
0	0	0	0	0					


Transporte Sacos Internacional									
			Modo de	Compra					
		Ur	nidades		Peso (kg)				
Empresa	25kg	50kg	1000kg	1250kg	Peso (kg)				
Proveedor Sacos Internacional 3					62370				
Proveedor Sacos Internacional 2				5100					
Proveedor Sacos Internacional 1				133653					

Emisio	Emisiones Transporte Maritimo (kg CO2e)									
25kg	50kg	1000kg	1250kg	Peso						
0	0	0	0	14938						
0	0	0	4625	0						
0	0	0	130389	0						
0	0	0	0	0						
0	0	0	0	0						

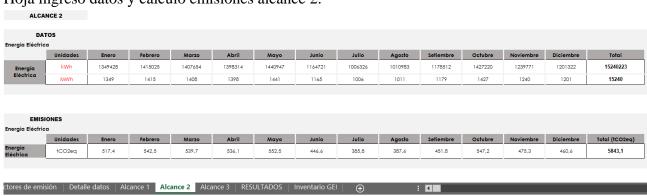

Emisiones Transporte Terrestre (kg CO2e)									
25kg	50kg	1000kg	1250kg	Peso					
0	0	0	0	11412					
0	0	0	3475	0					
0	0	0	72757	0					
0	0	0	0	0					
0	0	0	0	0					

ANEXO K. Herramienta de cálculo Huella de Carbono Salmofood. (pág. 36)

Hoja datos de factores de emisión: alcance 1.

Hoja datos de factores de emisión: alcance 2 y 3.

Hoja datos de factores de emisión: alcance 3.

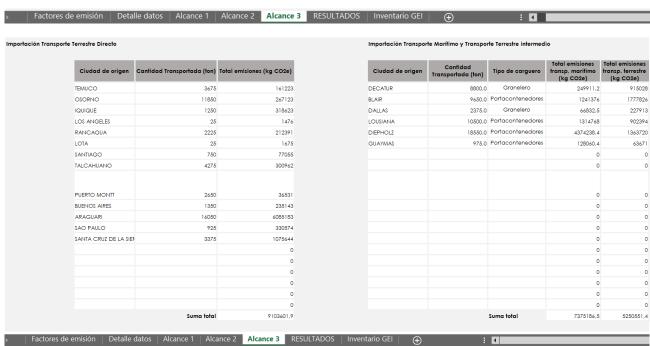


Origen	Pais Destir	10	Destino	Distancia terre	stre (km)	Tip	o de vehiculo	Factor de emision (tkm)
PLANTA CASTRO	CHILE	PUERTO	CASTRO	15		Camión articulad	lo mayor a 33 t	0,0801
PLANTA CASTRO	CHILE	PUERTO	CHONCHI	38		Camión articulad	lo mavor a 33 t	0.0801
PLANTA CASTRO	CHILE	PUERTO	QUELLON	100		Camión articulad		0.0801
PLANTA CASTRO	CHILE		PTO MONTT	151		Camión articulad		0,0801
PLANTA CASTRO	CHILE		CALBUCO	154		Camión articulad		0,0801
PLANTA CASTRO	CHILE		TALCAHUANO	826		Camión articulad		0,0801
PLANTA CASTRO	CHINA		TALCAHUANO	826		Camión articulad		0,0801
PLANTA CASTRO	PERU		TALCAHUANO	826		Camión articulad		0,0801
PLANTA CASTRO	ARMENIA		TALCAHUANO	826		Camión articulad		0,0801
								0,0801
PLANTA CASTRO	COSTA RICA		TALCAHUANO	826		Camión articulad		
PLANTA CASTRO	PANAMA	PUERTO	TALCAHUANO	826		Camión articulad	lo mayor a 33 t	0,0801
res de emisión Detalle datos	Alcance 1 Alc	cance 2 Alcanc	e 3 RESULTA	ADOS Inventario GE	I ⊕	: 🚺		
Residuos								
Destino	Distancia (km) 🔻							
PAP PTAS PTO MONTT	150							
RELLENO SANITARIO LOS ANGELES	700							
EL EMPALME MAULLIN	140							
PLANTA DE TRATAMIENTO DE AGUA	A 70							
ECOFIBRAS SUCURSAL PTO MONTT	160							
SOC DE INVERSIONES TRESOL LTDA	155							
ECOPRIAL OSORNO	270							
PLANTA RILESUR PAILLACO	320							
e Sacos Nacional Empresa proveedora	Origen		Tipo de vehículo		Тіро	Peso (kg)		
e Sacos Nacional Empresa proveedora	Origen SANTIAGO	Distancia (km)				Peso (kg) 0.07		
e Sacos Nacional Empresa proveedora Proveedor Sacos Nacional 1	SANTIAGO	Distancia (km)	Camión rígido pr	romedio carga promedio 3	Saco 25kg	0,07		
Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2	SANTIAGO SANTIAGO	Distancia (km) 1200 1200	Camión rígido pr Camión rígido pr	romedio carga promedio 3 romedio carga promedio 3	Saco 25kg Saco 50kg	0,07 0,14		
e Sacos Nacional Empresa proveedora Proveedor Sacos Nacional 1	SANTIAGO	Distancia (km) 1200 1200	Camión rígido pr Camión rígido pr	romedio carga promedio 3	Saco 25kg Saco 50kg	0,07		
Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2	SANTIAGO SANTIAGO	Distancia (km) 1200 1200	Camión rígido pr Camión rígido pr	romedio carga promedio 3 romedio carga promedio 3	Saco 25kg Saco 50kg Saco 1000kg	0,07 0,14 2,62		
e Sacos Nacional Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2 Proveedor Sacos Nacional 3 e Sacos Internacional Empresa proveedora	SANTIAGO SANTIAGO SANTIAGO País Origen	Distancia (km) 1200 1200 1200 Ciudad Origen	O Camión rígido pr O Camión rígido pr O Camión rígido pr O Camión rígido pr Puerto Origen	romedio carga promedio 3 romedio carga promedio 3 romedio carga promedio 3 Tipo de vehículo	Saco 25kg Saco 50kg Saco 1000kg Saco 1250kg	0,07 0,14 2,62 3,01	Distancia Terrestre Origen(km)	Distancia Maritima(km
Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2 Proveedor Sacos Nacional 3 Especial Sacos Internacional Empresa proveedora Proveedor Sacos Internacional 3	SANTIAGO SANTIAGO SANTIAGO Pais Origen	Distancia (km) 1200 1200 1200 Ciudad Origen	Camión rígido pro Cami	romedio carga promedio 3 romedio carga promedio 3 romedio carga promedio 3 Tipo de vehículo Portacontenedores	Saco 25kg Saco 50kg Saco 1000kg Saco 1250kg Puerto Destino TALCAHUANO	0,07 0,14 2,62 3,01 Ciudad Destino	Origen(km) 48,6	14969
Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2 Proveedor Sacos Nacional 3 Proveedor Sacos Nacional 3 Empresa proveedora Proveedor Sacos Internacional 3 Proveedor Sacos Internacional 4	SANTIAGO SANTIAGO SANTIAGO SANTIAGO Pais Origen ITALIA INDIA	Distancia (km) 1200 1200 1200 Ciudad Origen LUCCA KOLKATA	Camión rígido pr O Camión rígido pr O Camión rígido pr O Camión rígido pr Puerto Origen LIVORNO KOLKATA	romedio carga promedio 3 romedio carga promedio 3 romedio carga promedio 3 Tipo de vehículo Portacontenedores Portacontenedores	Saco 25kg Saco 50kg Saco 1000kg Saco 1250kg Puerto Destino TALCAHUANO TALCAHUANO	0,07 0,14 2,62 3,01 Ciudad Destino CASTRO	Origen(km) 48,6 17,1	i 1496
Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2 Proveedor Sacos Nacional 3 Proveedor Sacos Nacional 3 Empresa proveedora Proveedor Sacos Internacional 4 Proveedor Sacos Internacional 2	SANTIAGO SANTIAGO SANTIAGO Pais Origen ITALIA INDIA CHINA	Distancia (km) 1200 1200 1200 Ciudad Origen LUCCA KOLKATA ZHENJIANG	Camión rígido pr O Camión rígido pr O Camión rígido pr O Camión rígido pr Puerto Origen LIVORNO KOLKATA SHANGHAI	romedio carga promedio 3 romedio carga promedio 3 romedio carga promedio 3 Tipo de vehículo Portacontenedores Portacontenedores Portacontenedores	Saco 25kg Saco 50kg Saco 1000kg Saco 1250kg Puerto Destino TALCAHUANO TALCAHUANO TALCAHUANO	0,07 0,14 2,62 3,01 Ciudad Destino CASTRO CASTRO CASTRO	Origen(km) 48,6 17,1 256	i 1496 1928 i 1883
Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2 Proveedor Sacos Nacional 3 Proveedor Sacos Nacional 3 Empresa proveedora Proveedor Sacos Internacional 3 Proveedor Sacos Internacional 4	SANTIAGO SANTIAGO SANTIAGO Pais Origen ITALIA INDIA CHINA	Distancia (km) 1200 1200 1200 Ciudad Origen LUCCA KOLKATA	Camión rígido pr O Camión rígido pr O Camión rígido pr O Camión rígido pr Puerto Origen LIVORNO KOLKATA	romedio carga promedio 3 romedio carga promedio 3 romedio carga promedio 3 Tipo de vehículo Portacontenedores Portacontenedores	Saco 25kg Saco 50kg Saco 1000kg Saco 1250kg Puerto Destino TALCAHUANO TALCAHUANO	0,07 0,14 2,62 3,01 Ciudad Destino CASTRO	Origen(km) 48,6 17,1	i 1496 1928 i 1883
Empresa proveedora Proveedor Sacos Nacional 1 Proveedor Sacos Nacional 2 Proveedor Sacos Nacional 3 Proveedor Sacos Nacional 3 Empresa proveedora Proveedor Sacos Internacional 4 Proveedor Sacos Internacional 2	SANTIAGO SANTIAGO SANTIAGO Pais Origen ITALIA INDIA CHINA	Distancia (km) 1200 1200 1200 Ciudad Origen LUCCA KOLKATA ZHENJIANG	Camión rígido pr O Camión rígido pr O Camión rígido pr O Camión rígido pr Puerto Origen LIVORNO KOLKATA SHANGHAI	romedio carga promedio 3 romedio carga promedio 3 romedio carga promedio 3 Tipo de vehículo Portacontenedores Portacontenedores Portacontenedores	Saco 25kg Saco 50kg Saco 1000kg Saco 1250kg Puerto Destino TALCAHUANO TALCAHUANO TALCAHUANO	0,07 0,14 2,62 3,01 Ciudad Destino CASTRO CASTRO CASTRO	Origen(km) 48,6 17,1 256	i 1496 1928 i 1883

Hoja ingreso datos y cálculo emisiones alcance 1.

	acionaria															
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Seliembre	Octubre	Noviembre	Diciembre	Total		Densidad (kg/
Biomasa	m3	5782	5000	4697	4742	5354	3998	4294	2922	3918	5612	3589	3499	53407		200
	ton	1156	1000	939	948	1071	800	859	584	784	1122	718	700	10681		
Petróleo R600	kg	17300	0	20016	22594	6100	10000	25540	26490	23200	5920	0	22500	179660		945
	m3	18,31	0,00	21,18	23,91	6,46	10,58	27,03	28,03	24,55	6,26	0,00	23,81	190		
Diésel	L	400	0	0	3102	0	0	0	201	2000	3500	133	2000	11336		
510301	m3	0,40	0,00	0,00	3,10	0,00	0,00	0,00	0,20	2,00	3,50	0,13	2,00	11		
Combustión mó	vil															
	Unidades	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Seliembre	Octubre	Noviembre	Diciembre	Total		
GLP	L	14988	17352	17214	14367	16808	14222	10951	15698	12822	19231	15740	16855	186248		
Oti	m3	15,0	17,4	17,2	14,4	16,8	14,2	11,0	15,7	12,8	19,2	15,7	16,9	186,2		
Diésel	L	4194,8	3874,3	4097,8	1875,0	1656,8	2569,5	1750,4	1961,9	1738,9	2099,9	1666,1	1987,1	29472,4	1	
Diesei	m3	4,2	3,9	4,1	1,9	1,7	2,6	1,8	2,0	1,7	2,1	1,7	2,0	29,5	ĺ	
					1011	45,0	57,2	168,1	0,0	0,0	0,0	65,1	0,0	1379,9	1	
	L	292,6	335,6	311,8	104,6	45,0	07,2									
Gasolina	L m3	292,6 0,29	335,6 0,34	0,31	0,10	0,05	0.06	0,17	0,00	0,00	0,00	0,07	0,00	1,38	j	
	m3														j	
EMISI	m3															
EMISI	m3	0.29	0.34	0,31	0,10	0,05	0,06	0,17	0,00	0,00	0,00	0.07	0,00	1,38	Tabal (fan CO2 ca)	
EMIS I Combustión este	m3 ONES acionaria Unidades	0.29 Enero	0,34	0,31 Marzo	0,10	0,05 Mayo	0,06	0,17 Julio	0,00	0.00	0,00	0.07	0,00	1,38 Total (kgCO2eq)	Total (tonCO2eq)	
EMISI Combustión esta Siomasa	m3 ONES acionaria Unidades kgCO2eq	0,29 Enero 32175	0,34 Febrero 27824	0,31 Marzo 26137	0,10 Abril 26388	0,05 Mayo 29794	0,06 Junio 22248	0,17 Julio 23895	0,00 Agosto 16260	0,00 Seliembre 21803	0,00 Octubre 31229	0.07 Noviembre 19972	0,00 Diciembre 19471	1,38 Total (kgCO2eq) 297195	297,2	
EMISI Combustión esta Biomasa Petróleo R600	m3 ONES acionaria Unidades kgCO2eq kgCO2eq	0,29 Enero 32175 56098	0,34 Febrero 27824	0,31 Marzo 26137 64904	0,10 Abril 26388 73264	0.05 Mayo 29794 19780	Junio 22248 32426	0,17 Julio 23895 82817	0,00 Agoslo 16260 85897	Setiembre 21803 75229	0,00 Octubre 31229 19196	Noviembre 19972	0,00 Diciembre 19471 72959	1,38 Total (kgCO2eq) 297195 582571	297,2 582,6	
	m3 ONES acionaria Unidades kgCO2eq	0,29 Enero 32175	0,34 Febrero 27824	0,31 Marzo 26137	0,10 Abril 26388	0,05 Mayo 29794	0,06 Junio 22248	0,17 Julio 23895	0,00 Agosto 16260	0,00 Seliembre 21803	0,00 Octubre 31229	0.07 Noviembre 19972	0,00 Diciembre 19471	Total (kgCO2eq) 297195 582571 30691	297,2 582,6 30,7	
EMISI Combustión esta Blomasa Petróleo R600 Diésel	m3 ONES accionaria Unidades kgCO2eq kgCO2eq	0,29 Enero 32175 56098	0,34 Febrero 27824	0,31 Marzo 26137 64904	0,10 Abril 26388 73264	0.05 Mayo 29794 19780	Junio 22248 32426	0,17 Julio 23895 82817	0,00 Agoslo 16260 85897	Setiembre 21803 75229	0,00 Octubre 31229 19196	Noviembre 19972	0,00 Diciembre 19471 72959	1,38 Total (kgCO2eq) 297195 582571	297,2 582,6	
EMISI Combustión esta Biomasa Petróleo R600	m3 IONES accionaria Unidades kgCO2eq kgCO2eq vii	0.29 Enero 32175 56098 1.083	0,34 Febrero 27824 0	0.31 Marzo 26137 64904 0	0.10 Abril 26388 73264 8.398	0.05 Mayo 29794 19780 0	0,06 Junio 22248 32426 0	0,17 Julio 23895 82817 0	0.00 Agosto 16260 85897 544	0.00 Seliembre 21803 75229 5.415	0.00 Octubre 31229 19196 9.476	0.07 Noviembre 19972 0 360	0.00 Diciembre 19471 72959 5.415	1,38 Total (kgCO2eq) 297195 582571 30691 910457	297,2 582,6 30,7 910	
EMISI Combustión esta Biomasa Petróleo R600 Diésel Combustión mó	m3 IONES acionaria Unidades kgC02eq kgC02eq kgC02eq vill Unidades	0.29 Enero 32175 56098 1.083	0,34 Febrero 27624 0 0	0.31 Marzo 26137 64904 0	0.10 Abril 26388 73264 8.398	0.05 Mayo 29794 19780 0	0.06 Junio 22248 32426 0	0,17 Julio 23895 82817 0	0,00 Agosto 16260 85897 544 Agosto	0.00 Seliembre 21803 75229 5.415 Seliembre	0.00 Octubre 31229 19196 9.476 Octubre	0.07 Noviembre 19972 0 360	0.00 Diciembre 19471 72959 5.415 Diciembre	1,38 Total (kgCO2eq) 297195 582571 30691 910457 Total (kgCO2eq)	297,2 582,6 30,7 910	
EMISI Combustión esta Biomasa Petróleo R600 Diésel Combustión mó	m3 IONES acionaria Unidades kgC02eq kgC02eq kgC02eq vill Unidades kgC02eq	0.29 Enero 32175 56098 1.083 Enero 24433,60	0.34 Febrero 27824 0 0 Febrero 28287.42	0.31 Marzo 26137 64904 0 Marzo 28062,45	0.10 Abril 26388 73264 8.398 Abril 23421,24	0.05 Mayo 29794 19780 0 Mayo 27400,59	Junio 22248 32426 0 Junio 23184,86	0,17 Julio 23895 82817 0 Julio 17852,44	Agosto 16260 85897 544 Agosto 25591,05	0.00 Seliembre 21803 75229 5.415 Seliembre 20902.57	Octubre 31229 19196 9.476 Octubre 31350,59	0.07 Noviembre 19972 0 360 Noviembre 25659,52	0.00 Diciembre 19471 72959 5.415 Diciembre 27477,21	1,38 Total (kgCO2eq) 287195 582571 30691 910457 Total (kgCO2eq) 303624	297,2 582,6 30,7 910 Total (tonCO2eq) 303,6	
EMISI Combustión esta Biomasa Petróleo R600 Diésel Combustión mó	m3 IONES acionaria Unidades kgC02eq kgC02eq kgC02eq vill Unidades	0.29 Enero 32175 56098 1.083	0,34 Febrero 27624 0 0	0.31 Marzo 26137 64904 0	0.10 Abril 26388 73264 8.398	0.05 Mayo 29794 19780 0	0.06 Junio 22248 32426 0	0,17 Julio 23895 82817 0	0,00 Agosto 16260 85897 544 Agosto	0.00 Seliembre 21803 75229 5.415 Seliembre	0.00 Octubre 31229 19196 9.476 Octubre	0.07 Noviembre 19972 0 360	0.00 Diciembre 19471 72959 5.415 Diciembre	1,38 Total (kgCO2eq) 297195 582571 30691 910457 Total (kgCO2eq)	297,2 582,6 30,7 910	

Hoja ingreso datos y cálculo emisiones alcance 2.



Hoja ingreso datos y cálculo emisiones alcance 3.

Viajes en avión Tramo BALMACEDA - PTO MONTT 567.4 PTO MONTT - BALMACEDA 567.4 PUNTA ARENAS - PTO MONTT 1083,6 Ν PTO MONTT - PUNTA ARENAS 1083,6 Ν SANTIAGO - PTO MONTT 4855,8 PTO MONTT - SANTIAGO 13 3322,4 SANTIAGO - CASTRO Ν 572.4 CASTRO - SANTIAGO 1717,3 SANTIAGO - LIMA 7482,7 17 LIMA - SANTIAGO 7482,7 SANTIAGO - GUAYAQUIL 1287,7 GUAYAQUIL - SANTIAGO 1287,7 AREQUIPA - LIMA LIMA - AREQUIPA 136,8 LIMA - MIAMI 754,5 MIAMI - LIMA 33093,4

Emisiones (kg CO2e)						
Nacionales	Internacionales					
13770,0	19323,4					

Distribución Transporte Te	errestre		
	Destino	Cantidad Transportada (ton)	Total emisiones (kg CO2e)
	PUERTO CASTRO	82399,45	99089,5
	PUERTO PTO MONTT	47451,91	574437,2
	PUERTO TALCAHUANO	2180,975	144425,1
			0,0
			0,0
			0,0
		Suma total	817951,7
actores de emisión	Detalle datos Alcan	ce 1 Alcance 2 Alcance 3	RESULTADOS Inventario

Transporte Residuos

	Destino	Cantidad (kg)	tkm
PAP PTAS PTO MON	ITT	20250	3037,5
RELLENO SANITARIO	O LOS ANGELES	41250	28875,0
EL EMPALME MAUL	LIN	147600	20664,0
PLANTA DE TRATAN	MIENTO DE AGUAS SERVID	156600	10962,0
ECOFIBRAS SUCURS	SAL PTO MONTT	203713	32594,1
SOC DE INVERSION	ES TRESOL LTDA	54260	8410,3
ECOPRIAL OSORNO		431700	116559,0
PLANTA RILESUR PA	AILLACO		0,0
	Total	1055373	

Descomposición y/o Tratamiento de Residuos

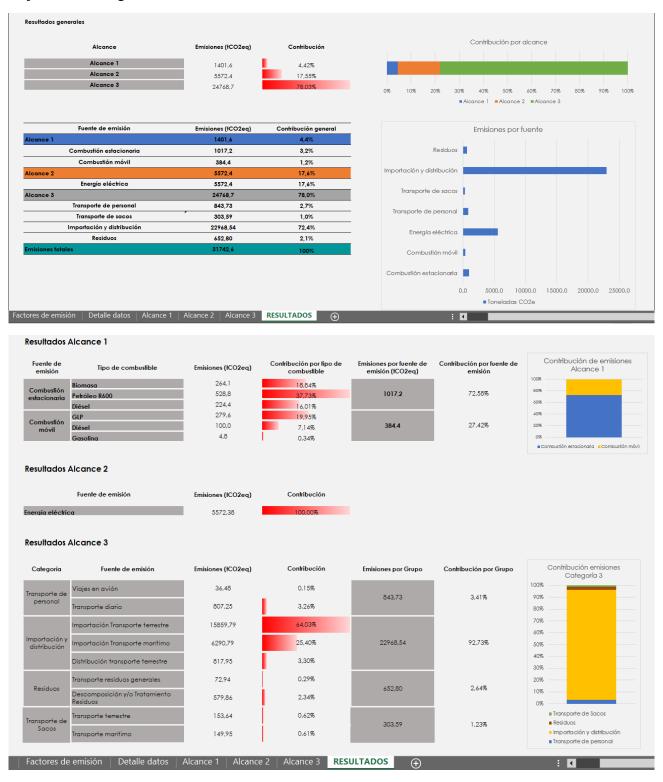
	Cantidad (ton)	Emisiones (kg CO2 eq)
Residuos a relleno sanitario o PTAS	797,4	494388
Reciclaje papeles y plásticos	203,713	4277,973
Escombros	52,26	52,26

| Factores de emisión | Detalle datos | Alcance 1 | Alcance 2 | Alcance 3 | RESULTADOS | Inventario GEI |

Transporte Sacos Nacional

		Modo de Compra				
		Ur	nidades		B (l)	
Empresa	25kg	50kg	1000kg	1250kg	Peso (kg)	
Proveedor Sacos Nacional 1			1516	66910		
Proveedor Sacos Nacional 2				18200		
Proveedor Sacos Nacional 3	39275					

Emisio	Emisiones Transporte Terrestre (kg CO2e)										
25kg	50kg	1000kg	1250kg	Peso							
0	0	997	50559	0							
0	0	0	13752	0							
690	0	0	0	0							
0	0	0	0	0							
0	0	0	0	0							


Transporte Sacos Internacional

	Modo de Compra					
	Unidades				D (l)	
Empresa	25kg	50kg	1000kg	1250kg	Peso (kg)	
Proveedor Sacos Internacional 3					62370	
Proveedor Sacos Internacional 2				5100		
Proveedor Sacos Internacional 1				133653		

Emisiones Transporte Maritimo (kg CO2e)							
25kg	50kg	1000kg	1250kg	Peso			
0	0	0	0	14938			
0	0	0	4625	0			
0	0	0	130389	0			
0	0	0	0	0			
0	0	0	0	0			

Emisiones Transporte Terrestre (kg CO2e)							
25kg	50kg	1000kg	1250kg	Peso			
0	0	0	0	11412			
0	0	0	3475	0			
0	0	0	72757	0			
0	0	0	0	0			
0	0	0	0	0			

Hoja Resultados generales.

ANEXO L. Certificación producción electricidad en bases a fuentes renovables. (pág. 47)

Esta declaración de redención ha sido preparada para

VITAPRO CHILE S.A. PLANTA CASTRO

por

ENEL GENERACION CHILE SA

confirmando la redención de

10 520.000000

Certificados I-REC, que representan 10 520.000000 MWh de electricidad generada a partir de fuentes renovables

Esta declaración se refiere a la electricidad consumida en

Castro Chile

en el período informado

2021-05-01 to 2021-12-31

Certificados Redimidos

Dispositivo de Producción						
Planta de Producción	Dominio de Origen	Fuente de Energía	Tecnología	Tipo de Apoyo	Fecha de Puesta en Marcha	Carbono (CO ₂ / MWh)
CIPRESES	Chile	Hydro- electric	Dam	No	1955-01-01	0.000

Certificados Redimidos

Número inicial de Identificación de Certificados	Número final de Identificación de Certificados	Número de Certificados	Atributos de compensación	Período de Producción Desde/Hasta	Emisor
0000-0001-8656-7021.000000	0000-0001-8657-7540.999999	10 520.000000	Inc	2021-01-01 - 2021-12-31	SCX Santiago Climate Exchange

UNIVERSIDAD DE CONCEPCION – FACULTAD DE INGENIERIA RESUMEN DE MEMORIA DE TITULO

Departamento : Departamento de Ingeniería Industrial

Carrera : Ingeniería Civil Industrial

Nombre del memorista : Nicolás Sebastián Gacitúa Gamín

Título de la memoria : "Cálculo de la huella de carbono corporativa para empresa

Fecha de la presentación oral : Salmofood de acuerdo con el programa HuellaChile"

27/03/2023

Profesor(es) Guía : Madgalena Jensen Profesor(es) Revisor(es) : Jorge Jiménez

Concepto : Calificación :

Resumen (máximo 200 palabras)

El trabajo consiste en la cuantificación de la huella de carbono corporativa de la empresa productora de alimentos para peces Salmofood, en sus instalaciones en Castro, región de los Lagos. El cálculo de estas emisiones se realiza para los años 2020 y 2021 en función de los lineamentos del GHG Protocol y el programa HuellaChile.

Se determinan las actividades y fuentes de emisión de la compañía para posteriormente categorizarlas en los diferentes alcances, 1,2 y 3, luego se realiza un inventario de los datos de las actividades como consumo de combustibles, cantidad de materia prima comprada y sus orígenes, cantidad de producto terminado enviado y sus destinos, viajes realizados por el personal, energía eléctrica utilizada, entre otros, para posteriormente estimar la huella de carbono utilizando los factores de emisión proporcionados por HuellaChile y el IPCC 2006.

Los principales resultados obtenidos estiman una huella de carbono para el año 2020 de 31.590,6 tCO2e. Y las emisiones de gases efecto invernadero para el 2021 alcanzaron las 31.742,6 tCO2e, de estos valores es posible destacar que cerca del 78% corresponde al alcance 3 para ambos años en estudio, siendo la fuente con mayor contribución el transporte de la importación de materias primas.