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Profesor Gúıa: Xavier Vidaux
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Facultad de Ciencias F́ısicas y Matemáticas
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Introducción

Luego que se lograra formalizar el concepto de algoritmo en los años treinta, se pudo
demostrar que la teoŕıa de primer orden del semi-anillo N de los números naturales es
indecidible: no existe un algoritmo que tome como entrada un enunciado de aritmética y
que responda, después de finitas etapas, si o no dicho enunciado es cierto en N. Por otra
parte, en 1931, Tarski [3] demostró que la teoŕıa del campo Qalg de todos los números
algebraicos, asi como la teoŕıa del campo Qalg ∩ R de los números algebraicos reales, es
decidible. El problema entonces es el siguiente: determinar cuales anillos entre N y Qalg

tienen teoŕıa decidible. Un paso importante fue dado por Julia Robinson en 1959: en
[4], demuestra que para cualquier campo de números K, N es definible en el anillo de
enteros OK de K, y OK es definible en K, obteniendo aśı una definición de N en K. En
particular esto demuestra que la teoŕıa de cualquier campo de números es indecidible,
reduciendo el problema al caso de anillos que tienen su campo de fracción de grado
infinito sobre Q.

Por un lado, en 1962 J. Robinson [2] demostró que N es definible en el anillo de enteros
OQtr del campo Qtr de todos los números algebraicos totalmente reales (cuyos conjugados
son todos números reales), mientras que en 1994 Fried, Haran y Völklein [8] demostraron
que la teoŕıa de Qtr es decidible. Se conjetura que todo anillo de enteros totalmente reales
tiene teoŕıa indecidible. Por otro lado, en ese mismo articulo [2] J. Robinson demostró
que N es definible en el anillo de enteros de K = Q(

√
p : p primo), mientras que en

2000 [9] C. Videla probó que OK era definible en K, y finalmente en 2020 C. Mart́ınez-
Ranero, J. Utreras y C. Videla demostraron que el compositum Q(2) = K(

√
−1) de todas

las extensiones cuadráticas de Q también tiene teoŕıa indecidible. Este último resultado
fue generalizado por C. Springer [10] en el 2020.
Para lograr obtener los resultados ya mencionados, y que también usaremos en este

trabajo, J. Robinson demuestra el siguiente teorema [2, Teorema 2]: Si una familia F
definible de subconjuntos de un anillo R de enteros algebraicos totalmente reales contiene
conjuntos finitos arbitrariamente grandes, entonces N es definible en R. Luego, para
t ∈ R+ ∪ {+∞}, considera el conjunto

Rt = {x ∈ R : 0 ≪ x ≪ t},

donde a ≪ b significa que b − a es totalmente positivo (todos sus conjugados son posi-
tivos), y el número, que llamamos número de Julia Robinson de R:

JR(R) = inf{t ∈ R+ ∪ {+∞} : Rt es infinito}.

De ah́ı, si JR(R) es infinito o es un mı́nimo — en cual caso diremos que R tiene la
propiedad de Julia Robinson — es facil encontrar una familia F que permita concluir
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gracias a su teorema — el punto es que ≪ es definible gracias al teorema de los cuatro
cuadrados de Siegel.
En este mismo trabajo J. Robinson pregunta si el número JR del anillo de enteros

de un campo totalmente real siempre es un mı́nimo — conocido hoy como el Problema
de Julia Robinson. Por otra parte, todos los ejemplos conocidos en ese entonces tenian
número JR igual a 4 o a ∞. Motivados por tratar de encontrar anillos que no cumplan
con una o la otra de estas dos propiedades del número JR, Vidaux y Videla [5] consideran
el siguiente anillo

O =
⋃
n≥0

Z[xn],

donde xn =
√
ν + xn−1, con x0 y ν números naturales cumpliendo ciertas condiciones.

Para infinitos valores de los parametros x0 y ν, pueden demostrar que el número JR
de O es un mı́nimo pero no es 4 ni ∞. Pero demuestran también que para infinitos
valores de estos parametros el número JR no es mı́nimo, pero satisface otra propiedad
topoloǵıca que llaman propiedad de aislación, la cual definiremos más adelante. En su
tesis doctoral [7] M. Castillo completó este trabajo para casi todos los valores de ν y x0
que faltaban por considerar en [5]. Sin embargo, estos resultados no resuelven a priori el
problema de J. Robinson porque no se sabe si alguno de estos O es el anillo de enteros de
su campo de fracciones. Cabe mencionar el trabajo de P. Gillibert y G. Ranieri [11] en
el cual construyen infinitos anillos, con número JR estrictamente entre 4 e infinito, que
son el anillo de enteros de su campo de fracciones. Sin embargo, el número JR de cada
uno de estos anillos es un mı́nimo, dejando también abierta la pregunta de J. Robinson.
El objetivo de esta tesis es, por un lado, obtener nuevos ejemplos de anillos totamente

reales indecidibles, y por otro lado contribuir a la pregunta 1.5 de [5] sobre el espectro
de los números de J Robinson: ¿cuáles números reales son el número de J. Robinson de
un anillo? Para ello consideraremos anillos construidos de manera similar a los de [5],
poniendo xn =

√
ν + λxn−1, donde λ ≥ 1 es un nuevo parametro. Denotemos por α el

ĺımite de (xn) cuando n va al infinito: α = λ+
√
λ2+4ν
2 .

En el caṕıtulo 1 se presentarán todos los preliminares de Teoŕıa de Números 1.1, Lógica
1.2, y una presentación más detallada sobre los números de Julia Robinson en 1.3.
En el caṕıtulo 2 comenzaremos con la sección 2.1 estudiando propiedades de la sucesión

(xn). En particular, mostraremos que esta sucesión siempre es monotona. En la sección
2.2 daremos condiciones necesarias y suficientes para que el anillo O sea totalmente real
(lo cual es necesario para poder aplicar las técnicas de Julia Robinson): O es totalmente
real si y solo si, o bien ν > x20−λx0 y ν ≥ 2λ2, o bien ν < x20−λx0 y λ3x0 < ν2−λ2ν. En
la sección 2.3 daremos condiciones suficientes para que la torre (Kn)n≥0, de los campos
de fracciones de On = Z[xn] sea una 2-torre, es decir, tal que [Kn+1 : Kn] = 2 para todo
n ≥ 0 (esto último resulta necesario para aplicar el argumento dado por Vidaux y Videla
en [5]). Mas precisamente, mostraremos que la torre crece cuando ν+λx0 es congruente
a 2 o 3 modulo 4, y λ es congruente a 1 o 3 modulo 4.

En el capitulo 3 estudiaremos el caso creciente, dando lugar a nuestro resultado prin-
cipal (en el teorema siguiente, el caso λ = 1 es un teorema de Vidaux y Videla):

Teorema 1. Asumamos ν > x20 − λx0 y ν ≥ 2λ2. Asumamos que para cada n ≥ 1

Carlos Muñoz S. 2022
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tenemos [Kn+1 : Kn] = 2. Si λ = 1 y ν ̸= 3, entonces O tiene número de JR igual a

⌈α⌉ + α y satisface la propiedad de Julia Robinson. Si λ ≥ 2, ν ≥ 2λ2 + 2 y x0 ≥ λ

4
,

entonces O tiene número de JR igual a ⌈α⌉+α y satisface la propiedad de Julia Robinson.

Este teorema nos da valores nuevos de números de J. Robinson, como por ejemplo
para los parametros λ = 3, ν = 20 y x0 = 2, que dan número de J. Robinson igual a
13.217 aproximadamente, pero con λ = 1 no se obtiene este número.
Finalmente, en el caṕıtulo 4 presentamos dos nuevos teoremas: el primero de ellos es

una directa adaptación de [5, Lemma 3.2, Proposition 3.4 and Proposition 3.5]:

Teorema 2. Asumamos ν < x20 − λx0 y λ3x0 < ν2 − λ2ν. Asumamos que para cada
n ≥ 1 tenemos [Kn+1 : Kn] = 2. Asumamos que

√
ν − λx1 ≥ 1 y x1 < ⌊α⌋ + 1. El

número de Julia Robinson de O es ⌊α⌋ + α + 1 y satisface la propiedad de aislación.
Además, existen infinitos anillos O que cumplen lo anterior.

El segundo teorema resuelve el problema para infinitos valores de los parametros
cuando λ = 3 logrando quitar la hipotesis de

√
ν − λx1 ≥ 1. La misma demostración

de este teorema puede ser facilmente adaptada a λ = 2, 4, 5 . . ., siempre y cuando λ
no sea demasiado grande, porque, a pesar que el número de casos a considerar parece
disminuir a medida que λ crezca, no pude encontrar un patron que me permita escribir
una demostración para λ arbitrario.

Teorema 3. Asumamos ν < x20 − λx0 y λ3x0 < ν2 − λ2ν. Si λ = 3, x1 < ⌊α⌋ + 1
y ν ̸= 19, entonces O también tiene número de JR igual a ⌊α⌋ + α + 1 y satisface la
propiedad de aislación. Además, existen infinitos anillos O que cumplen lo anterior.

Esta tesis es una contribución a dos proyectos lejanos: 1) ¿Cualquier 2-torre sobre Q
debeŕıa tener teoŕıa indecidible?; 2) Estudiar la topoloǵıa del conjunto de números de J.
Robinson en el intervalo cerrado [4,+∞) — por ejemplo, ¿es un conjunto denso?

Carlos Muñoz S. 2022



Introduction

After the algorithm concept was formalized in the 1930’s, it was possible to prove that
the first-order theory of the semi-ring N of the natural numbers is undecidable: There is
no algorithm that takes an arithmetic statement as input and gives an answer, after finite
stages, whether or not said statement is true in N. On the other hand, in 1931, Tarski
[3] proved that the field theory Qalg of all algebraic numbers, as well as the field theory
Qalg ∩ R of the real algebraic numbers, is decidable. The problem then is the following:
determine which rings between N and Qalg have decidable theory. An important step
was taken by Julia Robinson in 1959: In [4], she shows that for any field of numbers K,
N is definable in the ring of integers OK of K, and OK is definable in K, thus obtaining
a definition of N in K. In particular this shows that the theory of any field of numbers
is undecidable, reducing the problem to the case of rings that have their fraction field of
infinite degree over Q.

On one hand, in 1962 J. Robinson [2] proved that N is definable in the ring of integers
OQtr of the Qtr field of all totally real algebraic numbers (whose conjugates are all real
numbers), while in 1994 Fried, Haran, and Völklein [8] proved that the theory of Qtr is
decidable. It is conjectured that every ring of totally real integers has an undecidable
theory. On the other hand, in that same article [2] J. Robinson proved that N is definable
in the ring of integers K = Q(

√
p : p prime), whereas in 2000 [9] C. Videla proved that

OK was definable in K, and finally in 2020 C. Mart́ınez-Ranero, J. Utreras and C. Videla
proved that the compositum Q(2) = K(

√
−1) of all quadratic extensions of Q also has

undecidable theory. This last result was generalized by C. Springer [10] in 2020.
In order to obtain the results already mentioned, and which we will also use in this

work, J. Robinson proves the following theorem [2, Theorem 2]: If a definable family F
of subsets of a ring R of totally real algebraic integers contains arbitrarily large finite
sets, then N is definable in R. Then, for t ∈ R+ ∪ {+∞}, consider the set

Rt = {x ∈ R : 0 ≪ x ≪ t},

and the number, which we call the Julia Robinson number of R:

JR(R) = inf{t ∈ R+ ∪ {+∞} : Rt is infinite}.

Hence, if JR(R) is infinite or is a minimum — in which case we say that R has the Julia
Robinson property — it is easy to find a family F which allows us to conclude thanks to
his theorem — the point is that ≪ is definable thanks to Siegel’s four squares theorem.
In this same work, J. Robinson asks if the number JR of the ring of integers of a

totally real field is always a minimum. On the other hand, all known examples at that
time had JR numbers equal to 4 or ∞. Motivated by trying to find rings that do not
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satisfy one or the other of these two properties of the JR number, Vidaux and Videla
[5] consider the following ring

O =
⋃
n≥0

Z[xn],

where xn =
√
ν + xn−1, with x0 and ν natural numbers satisfying certain conditions. For

infinitely many values of the parameters x0 and ν, they can prove that the JR number of
O is a minimum but it is not 4 or ∞. But they also show that for infinitely many values
of these parameters the number JR is not minimum, but satisfies another topological
property called isolation property, which we will define later. In her doctoral thesis [7]
M. Castillo completed this work for almost all the values of ν and x0 that remained to
be considered in [5]. However, these results do not solve a priori J. Robinson’s problem
because it is not known whether any of these O is the ring of integers in his field of
fractions. It is worth mentioning the work of P. Gillibert and G. Ranieri [11] in which
they build infinite rings, with number JR strictly between 4 and infinity, which are the
ring of integers of their field of fractions. However, the JR number of each of these rings
is a minimum, also leaving J. Robinson’s question open.
The objective of this thesis is to obtain new examples of totally real undecidable

rings. For this we will consider rings constructed in a similar way to those of [5], putting
xn =

√
ν + λxn−1, where λ ≥1 is a new parameter.

All the preliminaries of Number Theory 1.1, Logic 1.2 will be presented in chapter 1,
and a more detailed presentation on numbers by Julia Robinson in ??.
In chapter 2 we will start with section 2.1 studying properties of the sequence (xn).

In particular, we will show that this sequence is always monotone. In section 2.2 we
will give necessary and sufficient conditions for the ring O to be totally real (which is
necessary to be able to apply Julia Robinson’s techniques): O is totally real if and only if
either ν > x20−λx0 and ν ≥ 2λ2 or ν < x20−λx0 and λ3x0 < ν2−λ2ν. In section 2.3 we
will give sufficient conditions for the tower (Kn)n≥0, of the fraction fields of On = Z[xn]
is a 2-tower, that is, such that [Kn+1 : Kn] = 2 for all n ≥ 0 (the latter is necessary to
apply the argument given by Vidaux and Videla in [5]). More precisely, we will show
that the tower grows when ν + λx0 is congruent to 2 or 3 modulo 4, and λ is congruent
to 1 or 3 modulo 4.
In chapter 3 we will study the increasing case, giving rise to our main result (in the

following theorem, the case λ = 1 is a Vidaux and Videla theorem):

Teorema 4. Let’s assume ν > x20−λx0 and ν ≥ 2λ2. Let’s assume that for every n ≥ 1
we have [Kn+1 : Kn] = 2. If λ = 1 and ν ̸= 3, then O has JR number equal to ⌈α⌉ + α

and satisfies the Julia Robinson property. If λ ≥ 2, ν ≥ 2λ2 + 2, and x0 ≥ λ

4
, then O

has JR number equals ⌈α⌉+ α and satisfies the Julia Robinson property.

Finally, in chapter 4 we will study the decreasing case. We will solve the problem for
infinitely many values of the parameters when λ = 2, assuming that the tower grows
with each step: unfortunately, for this value of λ we do not know if that is true for some
values of ν and x0. However, the same proof as the one presented here can be easily
adapted to λ = 3, 4, . . ., as long as λ is not too large, because, although the number

Carlos Muñoz S. 2022
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of cases to consider seems to decrease as λ grows, I couldn’t find a pattern that would
allow me to write a proof for arbitrary λ.

Teorema 5. Let’s assume ν < x20 − λx0 and λ3x0 < ν2 − λ2ν. Let’s assume that for
every n ≥ 1 we have [Kn+1 : Kn] = 2. If λ = 1 and ν > 3, then O has JR number equal
to ⌊α⌋ + α + 1 and satisfies the isolation property. If λ = 2, x1 < ⌊α⌋ + 1 and ν ̸= 9,
then O also has number of JR equal to ⌊α⌋+ α+ 1 and satisfies the isolation property.

Carlos Muñoz S. 2022



1 Preliminary

1.1 Algebraic Number Theory

Let A ⊆ B be an inclusion of rings. An element b ∈ B is called integral over A if there
is a monic polynomial f ∈ A[x] such that b is a root of f .
In particular, a complex number which is integral over the field Q of rational numbers

will be called an algebraic number, and if it is also integral over the ring Z of rational
integers, then it will be called an algebraic integer.
Any finite extension of Q will be called an algebraic number field.
For the rest of the section, K is an algebraic number field. We will denote by OK the

subset of K consisting of all the elements that are integral over Z.

Definition 1.1.1. Let a ∈ K be an algebraic number and f ∈ Q[x] be the minimal
polynomial of a over K. The roots of f are called the conjugates of a. We will say that
a is totally real if all the conjugates of a are real numbers. The field K is totally real
if all its elements are totally real. We will denote by Qtr the field of all the totally real
numbers.

Since every separable extension of finite degree is simple, we can write K = Q(a) for
some a ∈ K. So, K is totally real if its generator a is totally real.

Definition 1.1.2. Let K be an algebraic number field and a ∈ K. We will use the
notation |a| for the largest absolute value of conjugates of a over Q and we will denote
by ã an arbitrary conjugate of a.

Using a result by Kronecker, we have the following proposition about the distribution
of totally real algebraic integers.

Proposition 1.1.3 (See [6] for a proof). The set of totally real algebraic integers in the
interval [0, 4− ε] is finite for every ε > 0.

Let K be a totally real number field and x ∈ K. If a, b ∈ R ∪ {+∞}, we write
a ≪ x ≪ b if for each conjugate x̃ of x we have a < x̃ < b.
Using the previous notation, we have that for every ε > 0, there are finitely many

totally real algebraic integers that satisfy

0 ≪ x ≪ 4− ε.
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1.2 Logical background

A first order language is a set L of symbols, where each of its elements is exactly one of
the following

1. a constant symbol, or

2. an n-place relation symbol for some n ≥ 1, or

3. an n-place function symbol, for some n ≥ 1.

For this section, L will be a first order language.
A formula is made up of: the equality symbol, variables, logical connectives, quan-

tifiers, constants symbols, relation symbols and function symbols. In a formula, some
variables may not be quantified. Those that are not quantified will be called free vari-
ables. A formula is a sentence if all its variables appear under the scope of a quantifier.
An interpretation is an assignment of meaning to the symbols (constant, functions

and relations) of the language L with respect to a base set M (domain). Note that a
sentence can be true or false depending on the interpretation that is considered.

Definition 1.2.1. An subset A of a ring M is definable if there exists a formula F (x)
with exactly one free variable x such that for all element x ∈ M , x ∈ A if and only if
F (x) is true in M (using the interpretation).

The theory of a ring M is the set of all sentences that are true in M . We denote by
Th(M) the theory of M .

Definition 1.2.2. We say that the theory of a ring M is decidable if there exists an
algorithm which, given an arbitrary sentence, determines after a finite number of steps
whether the sentence belongs or not to Th(M).

Remark 1.2.3. It is known that N has an undecidable theory. Hence, any ring in which
N can be defined has an undecidable theory.

Given a number field K, in order to show that it has an undecidable theory, one may
divide the problem into two subproblems:

1. Define N in OK .

2. Define OK in K.

In this thesis, we will focus exclusively on the problem of defining N in OK , and only
for fields K that are totally real, because in this case there is a technique developed by
Julia Robinson as we will show in the next section.

Carlos Muñoz S. 2022
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1.3 Julia Robinson’s definability criterium

In this section, K is a field of totally real algebraic numbers and R is a subring of OK .
For t ∈ R+ ∪ {+∞}, we write:

Rt = {x ∈ R : 0 ≪ x ≪ t}

We define the Julia Robinson number of R, or JR number of R, to be

JR(R) = inf{t ∈ R+ ∪ {+∞} : Rt is infinite}.

Remark 1.3.1. The JR number of R is greater than or equal to 4 by Proposition 1.1.3.

J. Robinson proved in [2] that a sufficient condition for N to be definable in OK is
that JR(OK) is a minimum (if it is +∞ we also consider it as a minimum).
It is possible to generalize this result to any subring R of OK (see [7, Theorem 1.2.2]).
When it is a minimum, we will say that R satisfies Julia Robinson’s property
In [5] X. Vidaux and C. R. Videla defined the following property: the ring R has the

isolation property if

1. it does not have Julia Robinson’s property, and

2. there exists M > 0 such that for any ε > 0, if ε < M , then the set

RJR(R)+M \RJR(R)+ε

is finite.

It is possible (an easy) to adapt the argument given by Julia Robinson to prove that
if a ring R has the isolation property, then N is definable in R [5, Definition 1.2] and
therefore, R has undecidable theory.

Proposition 1.3.2. If R has the property of Julia Robinson or the isolation property,
then N is first-order definable in R.

Carlos Muñoz S. 2022



2 Basic properties of the tower

We define the sequence (xn) whose general term is xn =
√
ν + λxn−1 and

• ν and x0 are non-negative integers and not zero simultaneously,

• λ > 0 is a rational integer, and

• ν ̸= x20 − λx0 (in order to avoid x1 = x0).

We define the following rings and their field of fractions:

O0 = Z K0 = Q
On = On−1[xn] Kn = Kn−1[xn]

O =
⋃

n≥0On K =
⋃

n≥0Kn

Remark 2.0.1. From the construction of the sequence xn, we have On = Z[xn] and
Kn = Q[xn] for each n ≥ 0.

2.1 Monotony and Bounds

Several of the lemmas in this section are a straightforward adaptation of the analogous
results in [5]. We provide all the proofs for the sake of completeness.

Lemma 2.1.1. [5, Lemma 2.2] The sequence (xn) is

1. strictly increasing if and only if ν > x20 − λx0, and

2. strictly decreasing if and only if ν < x20 − λx0.

Proof. If the sequence (xn) is strictly increasing, then xn > xn−1 for each n ≥ 1. In
particular, ν + λx20 = x21 > x20. Let us assume ν > x20 − λx0. We will prove by induction
on n that (xn) is strictly increasing. It is clear for n = 1. Assume n ≥ 2. We have

(xn+1 + xn)(xn+1 − xn) = x2n+1 − x2n = λ(xn − xn−1) > 0

by the induction hypothesis. Therefore, we have xn+1 > xn for each n ≥ 1. The
decreasing case is done analogously.

Lemma 2.1.2. [5, Lemma 2.3] The sequence (xn) is convergent with limit

α =
λ+

√
λ2 + 4ν

2
.
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Proof. Suppose that the sequence (xn) is increasing and suppose that there is an integer
m ≥ 1 such that 2xm ≥ λ. For every n ≥ m+ 1, we have

xn < α ⇐⇒ 2
√

ν + λxn−1 < λ+
√
λ2 + 4ν

⇐⇒ 4(ν + λxn−1) < 2λ2 + 4ν + 2λ
√
λ2 + 4ν

⇐⇒ 2xn−1 − λ <
√

λ2 + 4ν

⇐⇒ x2n−1 < ν + λxn−1 = x2n.

If there is no such m, then we have 2xn < λ ≤ α for every n ≥ 1. In both cases, the
increasing sequence (xn) is bounded from above, hence it converges. Similarly, if (xn) is
decreasing, then it converges because (xn) is bounded from below by 0. As the limit is
unique, in both cases (increasing and decreasing) the sequence (xn) converges to α.

Lemma 2.1.3. [5, Lemma 2.5] There exists an integer n0 ≥ 0 such that for every n ≥ 0,
we have n ≤ n0 if and only if xn is a rational integer.

Proof. If xn /∈ Z for some n ≥ 0, then xn /∈ Q since xn is an algebraic integer. Hence,
λxn /∈ Q for every λ ≥ 1. So, xn+1 =

√
ν + λxn /∈ Z. Since (xn) is bounded, the

sequence takes finite integer values. We choose n0 to be the largest index n such that
xn is a rational integer.

Lemma 2.1.4. [5, Lemma 2.19 ] For any real number r, and for any n ≥ 2 and a, b ∈
On−1, if 0 ≪ a + bxn ≪ 2r, then 0 ≪ a ≪ 2r and |b| < r√

ν−λxn−1
. In particular, for

n = 1, b must be an integer such that |b| < r

x1
.

Proof. Let σ be an embedding of On−1 in R. We have (a + bxn)
σ = aσ ± bσxσn, hence

0 < aσ ± bσxσn < 2r for every σ. Combining both inequalities, we have 0 < aσ < 2r and
|bσxσn| < r. Since σ is arbitrary, we have 0 ≪ a ≪ 2r. For b, there are two cases:

• If n = 1, then by definition b ∈ Z, and hence |bxσ1 | = |bσxσ1 | < r. So |b| < r
x1
,

because |xσ1 | = x1 for every embedding σ.

• If n ≥ 2, then we have

|xσn| = |(
√

ν + λxn−1)
σ| ≥

√
ν − λxn−1.

Therefore, we have

|b| < r

|xσn|
≤ r√

ν − λxn−1

since σ is arbitrary.

Carlos Muñoz S. 2022
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2.2 The totally real condition

As we indicated in Section 1.3, Julia Robinson’s criterium is only applicable for rings
of totally real algebraic integers. In this section we will give sufficient and necessary
condition for the ring O to be totally real.

Lemma 2.2.1. We have ν ≥ 2λ2 if and only if ν ≥ λα.

Proof. Observe that ν ≥ λα if and only if

ν ≥ λ

(
λ+

√
λ2 + 4ν

2

)
≥ λ2

2
,

which implies 2ν ≥ λ2. Therefore, we have

ν ≥ 2λ2 ⇐⇒ 4ν2 ≥ 8λ2ν

⇐⇒ 4ν2 − 4λ2ν + λ4 ≥ λ4 + 4λ2ν

⇐⇒ (2ν − λ2)2 ≥ λ2(λ2 + 4ν)

⇐⇒ 2ν − λ2 ≥ λ
√
λ+ 4ν

⇐⇒ ν ≥ λα.

Lemma 2.2.2. If O is totally real and ν > x20 − λx0, then ν ≥ 2λ2.

Proof. Since O is totally real, xn+1 =
√
ν + λx̃n is a real number for every n ≥ 1. In

particular,
√
ν − λxn will be a real number, so ν ≥ λxn for every n ≥ 1. For the sake of

contradiction, we suppose ν < λα (so we can conclude by Lemma 2.2.1). There is some
ε > 0 such that ν < λα − λε. Since ν > x20 − λx0, the sequence (xn) is increasing and
converges to α by Lemma 2.1.1. Hence, there is an index m ∈ N such that xm > α− ε.
Therefore, we have

ν ≥ λxm > λα− λε.

Lemma 2.2.3. If O is totally real, then we have λ3xn0 < ν2 − λ2ν, where n0 comes
from Lemma 2.1.3.

Proof. We write n1 = n0 + 1. Since O is totally real, xn1+1 =
√
ν + λx̃n1 is a real

number. In particular,
√

ν − λxn1 will be a real number, which is not zero because λxn1

is an irrational number and ν is a rational integer. So we have ν > λxn1 = λ
√
ν + λxn0

if and only if λ3xn0 < ν2 − λ2ν.

The following theorem gives us a characterization of when our ring O is totally real
and therefore, will allow us to use Julia Robinson’ methods explained in Chapter 1.3.

Theorem 2.2.4. The ring O is totally real if and only if

Carlos Muñoz S. 2022
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1. either ν > x20 − λx0 and ν ≥ 2λ2, or

2. ν < x20 − λx0 and λ3xn0 < ν2 − λ2ν.

If O is totally real, then |xn| = xn for each n ≥ 0.

Proof. The implication from left to right is an immediate consequence of Lemma 2.2.2
and Lemma 2.2.3. We show the other implication by induction on n. Let n1 = n0+1. If
n ≤ n0, then On = Z which is totally real and hence |xn| = xn. For n1 we have xn1 /∈ Z
and hence its conjugates are of the form ±

√
ν + λxn0 . Therefore, On1 = Z[xn1 ] is totally

real and |xn1 | = xn1 . Suppose that for some n ≥ n1, On is totally real and |xn| = xn.
Note that the conjugates of xn+1 are of the form ±

√
ν + λx̃n. Since |xn| = xn, we have

|xn+1| = xn+1 and it will be enough to prove that ν ≥ λxn for each n ≥ n1. We can
separate the proof into cases where the sequence (xn) is increasing or decreasing:

• If ν > x20 − λx0 and ν ≥ 2λ2, then (xn) is strictly increasing by Lemma 2.1.1 and
hence λxn < λα ≤ ν by Lemma 2.2.1.

• If ν < x20 − λx0 and λ3xn0 < ν2 − λ2ν, then (xn) is strictly decreasing by Lemma
2.1.1 and λxn1 < ν. Hence, λxn ≤ λxn1 < ν for each n ≥ n1.

From now on we will assume that x1 is a non-rational integer and the ring O is totally
real.

Lemma 2.2.5. In the decreasing case, we have ν ≥ 3 and x0 ≥ 3.

Proof. This is an immediate consequence of the inequalities ν < x20 − λx0 and λ3x0 <
ν2 − λ2ν, and the fact that λ is at least 1.

Lemma 2.2.6. Assume that (xn) is increasing. If ν ≥ 2λ2 + 2, then xn ≥ 2 for each
n ≥ 1.

Proof. Since the sequence (xn) is increasing, we have

xn ≥ x1 =
√
ν + λx0 ≥

√
2λ2 + 2 ≥ 2.

for each n ≥ 1.

Lemma 2.2.7. We have α ≥ 2.

Proof. If (xn) is decreasing, then by Lemma 2.2.5 we have ν ≥ 3, and if (xn) is increasing,
then ν ≥ 2λ2 ≥ 2. In all cases, we have ν ≥ 2. Hence, we have

2α = λ+
√
λ2 + 4ν ≥ 4

because λ ≥ 1 and ν ≥ 2.

Carlos Muñoz S. 2022
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2.3 Conditions for the tower to increase at each step

For the induction arguments to work in the next chapters, we will need the tower (Kn)
to increase at each step. In this section, we will provide sufficient conditions for that.
Let f(t) = t2−ν

λ be a function of the real variable t. We define for each n ≥ 1

Pn = λ2n−1f◦n(t)− λ2n−1x0,

where f◦n stands for the composition of f with itself n times.

Lemma 2.3.1. The polynomial Pn is monic for each n ≥ 1.

Proof. We prove it by induction on n. If n = 1, then P1 = λf(t) − λx0 = t2 − ν − λx0
is monic. Suppose that for some n ≥ 2 the polynomial Pn is monic. We have

Pn+1(t) = λ2n+1−1f◦(n+1)(t)− λ2n+1−1x0

= λ2n+1−1

(
(f◦n(t))2 − ν

λ

)
− λ2n+1−1x0

= λ2n+1−2(f◦n(t))2 − λ2n+1−2ν − λ2n+1−1x0

=
(
λ2n−1f◦n(t)

)2 − λ2n+1−2ν − λ2n+1−1x0

=
(
Pn(t) + λ2n−1x0

)2 − λ2n+1−2ν − λ2n+1−1x0,

and since Pn is monic by hypothesis, Pn+1 is monic too.

Proposition 2.3.2. If ν + λx0 is congruent to 2 or 3 module 4 and λ is congruent to 1
or 3 module 4, then for each n ≥ 1, we have [Kn+1 : Kn] = 2.

Proof. From the definition of f we have f◦n(xn) = x0 for each n ≥ 1. Therefore, xn is a
root of Pn. Also note that, by Lemma 2.3.1, Pn is monic for each n ≥ 1. Given a, b ∈ Z,
we have

P1(t+ a) = (t+ a)2 − ν − λx0 = t2 + 2at+ a2 − (ν + λx0), (2.3.1)

and

P2(t+ b) = λ3f◦2(t+ b)− λ3x0 (2.3.2)

= t4 + 4bt3 + 2(3b2 − ν)t2 + 4(b3 − bν)t+ (b4 − 2b2ν + ν2 − λ2(ν + λx0)).
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Also, for each n ≥ 1, we have

Pn+2(t) = λ2n+2−1(f◦(n+2)(t)− x0)

= λ2n+2−1(f◦2(f◦n(t))− x0)

= λ2n+2−1

(
f◦2

(
Pn(t)

λ2n−1
+ x0

)
− x0

)

= λ2n+2−1

P2

(
Pn(t)
λ2n−1 + x0

)
λ3

+ x0

− x0


= λ4(2n−1)P2

(
Pn(t)

λ2n−1
+ x0

)
= P 4

n(t) + 4λ2n−1x0P
3
n(t) + 2λ2(2n−1)(3x20 − ν)P 2

n(t) + 4λ3(2n−1)(x30 − x0ν)Pn(t)

+ λ4(2n−1)
(
x40 − 2x20ν + ν2 − λ2(ν + λx0)

)
.

(2.3.3)

We prove by induction on n that the polynomial Pn is irreducible. If n = 1, then using
Equation (2.3.1) we choose a = 0 if ν + λx0 is congruent to 2 module 4, and a = 1 if
ν + λx0 is congruent to 3 module 4. In both cases P1(t+ a) is an Eisenstein polynomial
for 2. If n = 2, then using Equation (2.3.2), we have that P2(t + x0) is an Eisenstein
polynomial for 2, because x40− 2x20ν+ ν2−λ2(ν+λx0) is congruent to 2 module 4 when
ν +λx0 is congruent to 2 or 3 module 4 and λ is congruent to 1 or 3 module 4 (we leave
the verification to the reader). Note that λ2 is congruent to 1 module 4 by hypothesis.
Therefore, the constant term of Pn+2(t), seen as a polynomial in Pn(t), is congruent to
2 modulo 4. So, using Equation (2.3.3), if Pn(t+ c) is an Eisenstein polynomial for 2 for
some c ∈ Z, then Pn+2(t+ c) is an Eisenstein polynomial for 2 too. Thus, we can prove
the irreducibility of Pn by induction on n, separating into two cases:

• If n is odd, then Pn(t + a) is an Eisenstein polynomial for 2 (with the respective
choice of a).

• If n is even, then Pn(t+ x0) is an Eisenstein polynomial for 2.

From now on we will assume that for every n ≥ 1, we have [Kn+1 : Kn] = 2.
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3 Increasing Case

Assumption 3.0.1. For this section, let us assume

ν ≥ 2λ2 + 2 and x0 ≥
λ

4
.

Note that x0 is at least 1.

Definition 3.0.2. For each n ≥ 1, let kn be the only rational integer such that

⌈α⌉ − (kn + 1) < xn < ⌈α⌉ − kn.

Note that the sequence (kn) is (non strictly) decreasing, hence the kn take only finitely
many values, and since the sequence (xn) tends to α, eventually kn is 0.

We define the following sets:

X0 = {1, 2, . . . , 2⌈α⌉ − 1},
Xn = X0 ∪ {⌈α⌉ ± j ± xs : 0 ≤ j ≤ ks and 1 ≤ s ≤ n},

X =
⋃
n≥0

Xn.

Lemma 3.0.3. If λ ≥ 2, then x1 + x2 + ⌈x1⌉ > 2⌈α⌉.

Proof. It is enough to prove that we have x2 + 2x1 > 2(α+ 1). We have

2
√
ν + λx0 +

√
ν + λ

√
ν + λx0 ≥

√
4ν + λ2 +

√
2λ2 + 2 + λ

√
2λ2 + 2 +

λ2

4

≥
√
4ν + λ2 +

√
λ2 + 4λ+ 4

= 2(α+ 1),

where the first inequality is by Assumption 3.0.1.

Lemma 3.0.4. Let n ≥ 1. If 0 ≪ a± bxn ≪ 2⌈α⌉, with a, b ∈ On−1, then |b| < 2.

Proof. Since ν ≥ 2λ2 + 2 and ν ∈ N, we can write ν = 2λ2 + k, for some k ≥ 2. Since
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0 < a± bxn < 2⌈α⌉, combining both inequalities we obtain |b| < ⌈α⌉
xn

. So, we have

|b| < ⌈α⌉
xn

≤ α+ 1√
2λ2 + k + λxn−1

=
λ+

√
λ2 + 4(2λ2 + k) + 2

2
√

2λ2 + k + λxn−1

≤ λ+ 2 +
√
λ2 +

√
8λ2 + 4k√

8λ2 + 4k

≤ 1 +
2λ+ 2√
8λ2 + 4k

≤ 1 +
2λ+ 2√
8λ2 + 8

≤ 2,

where the last inequality is true because 2λ+ 2 ≤
√
8λ2 + 8 for every λ ≥ 1.

Lemma 3.0.5. We have ν − λα > 1.

Proof. Since ν ≥ 2λ2 + 2 and ν ∈ N, we can write ν = 2λ2 + k, for some k ≥ 2. Hence,
we have

(2λ2 + k)− λ

(
λ+

√
λ2 + 4(2λ2 + k)

2

)
≥ 1 ⇐⇒ 3λ2 + 2k − 2 ≥ λ

√
9λ2 + 4k

⇐⇒ 4k2+12kλ2−8k+9λ4−12λ2+4 ≥ 9λ4+4kλ2 ⇐⇒ 4k2+(8λ2−8)k+4−12λ2 ≥ 0,

and since k ≥ 0, the latter is true for

k ≥ 8− 8λ2 +
√
64λ4 + 64λ2

8
= 1− λ2 +

√
λ4 + λ2.

We consider the continuous function x 7→ 1 − x2 +
√
x4 + x2. The line y = 3

2 is an
horizontal asymptote for this function, hence we have

1− λ2 +
√
λ4 + λ2 <

3

2
,

for every λ ≥ 1.

Lemma 3.0.6. Let x = a+bx1 ∈ O1, with a, b ∈ Z. If 0 < a±bx1 < 2⌈α⌉, then x ∈ X1.

Proof. By Lemma 3.0.4, we have b = ±1 or b = 0.
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• If a ≤ ⌈α⌉ − (k1 + 1), then b = 0. Indeed, if |b| = 1, by choosing σ such that
xσ = a− |b|x1, we obtain:

a− |b|x1 ≤ ⌈α⌉ − (k1 + 1)− x1 ≤ 0,

by the definition of k1, contradicting our hypothesis.

• If a ≥ ⌈α⌉+(k1+1), then b = 0. If |b| = 1, by choosing σ such that xσ = a+ |b|x1,
we obtain:

a+ |b|x1 ≥ ⌈α⌉+ (k1 + 1) + x1 ≥ 2⌈α⌉,
again contradicting our hypothesis.

Therefore, we have either |a−⌈α⌉| ≥ k1+1 and b = 0, or |a−⌈α⌉| < k1+1 and |b| ≤ 1.
In both cases, we have x ∈ X1.

Lemma 3.0.7. Assume n > m ≥ 1 and λ ≥ 2.

1. We have ⌈α⌉ ± j + xm + xn ≥ 2⌈α⌉ for every 0 ≤ j ≤ km.

2. We have ⌈α⌉ ± j − xm − xn ≤ 0 for every 0 ≤ j ≤ km.

Proof.

1. Note that ⌈x1⌉ = ⌈α⌉ − k1. By Lemma 3.0.3, and using the fact that (xn) is
increasing, we have

xm + xn + ⌈α⌉ − k1 ≥ 2⌈α⌉,
for each n > m ≥ 1. Since k1 ≥ km for each m ≥ 1, we have

xm + xn + ⌈α⌉ ± j ≥ 2⌈α⌉,

for every 0 ≤ j ≤ km.

2. For every 0 ≤ j ≤ km, we have ⌈α⌉±j−xm−xn ≤ 0 if and only if xm+xn+⌈α⌉±j ≥
2⌈α⌉. So we can conclude by item 1.

Lemma 3.0.8. Assume λ ≥ 2. We have ⌈xn⌉ + xn ≥ ⌈α⌉ + 2 for each n ≥ 1. In
particular, we have xn ≥ kn + 2 for each n ≥ 1.

Proof. Since (xn) is increasing, it is enough to prove that we have x1 + ⌈x1⌉ > α+ 3. If
λ = 2, then we have (recalling that we have x0 ≥ 1 and ν ≥ 10 by Assumption 3.0.1)

x1 + ⌈x1⌉ ≥
√
ν + 2 + ⌈

√
ν + 2⌉ >

√
ν + 1 + ⌈

√
12⌉ = 3 + α.

For λ ≥ 3, we have

2x1 + 2⌈x1⌉ ≥
√
4ν + λ2 +

√
9λ2 + 8

>
√
4ν + λ2 + λ+ 6

= 2(α+ 3),
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where the first inequality is by Assumption 3.0.1, and the second inequality is because
λ ≥ 3. In particular, using ⌈xn⌉ = ⌈α⌉− kn for each n ≥ 1, we have ⌈xn⌉+xn > ⌈α⌉+2
if and only if xn > kn + 2.

Lemma 3.0.9. If 0 ≪ x ≪ 2⌈α⌉, then x ∈ X.

Proof. For λ = 1, this is [5, Lemma 4.9]. For λ ≥ 2, which we now assume, we start as in
[5, Lemma 4.9]. We prove by induction on n that if x ∈ On is such that 0 ≪ x ≪ 2⌈α⌉,
then x ∈ Xn. This is clear for n = 0. For n = 1, we have x ∈ X1 by Lemma 3.0.6.
Assume n ≥ 2. Let us fix x = a+ bxn ∈ On with a, b ∈ On−1. By Lemma 2.1.4, we have
0 ≪ a ≪ 2⌈α⌉, so a ∈ Xn−1 by induction hypothesis. Also, by Lemma 2.1.4, we have

|b| < ⌈α⌉√
ν − λxn−1

<
⌈α⌉√
ν − λα

≤ ⌈α⌉,

since
√
ν − λα ≥ 1 by Lemma 3.0.5. Hence, we have 0 ≪ ⌈α⌉ + b ≪ 2⌈α⌉, and by

induction hypothesis we have ⌈α⌉ + b ∈ Xn−1. From the definition of Xn−1, we have
either b ∈ Z, or |b| = |j ± xs| for some 1 ≤ s ≤ n − 1 and 0 ≤ j ≤ ks. In the first case,
we have either b = 0 or b = ±1 by Lemma 3.0.4. In the second case, we have, also by
Lemma 3.0.4, either |j + xs| < 2 or |xs − j| < 2. If |j + xs| < 2, then xs < 2− j ≤ 2 and
we have a contradiction by Lemma 3.0.8. If |xs− j| < 2, then xs < j+2 ≤ ks+2, which
is a contradiction, again by Lemma 3.0.8. Therefore, we have b ∈ {−1, 0, 1}. For b = 0,
there is nothing to prove, as we already know that x = a lies in Xn−1. Assume |b| = 1.
We can write x = a± xn, and since a ∈ Xn−1, we have either a ∈ {1, . . . , 2⌈α⌉ − 1}, or
a = ⌈α⌉ ± j ± xs for some 1 ≤ s ≤ n− 1 and 0 ≤ j ≤ ks.

• If a ∈ {1, . . . , ⌈α⌉ − (kn + 1)}, then we can choose an embedding σ such that:

xσ = a− xn ≤ ⌈α⌉ − (kn + 1)− xn < 0,

by definition of kn, which contradicts our hypothesis.

• If a ∈ {⌈α⌉+ (kn + 1), . . . , 2⌈α⌉ − 1}, then again we can choose σ such that

xσ = a+ xn ≥ ⌈α⌉+ (kn + 1) + xn > 2⌈α⌉,

which again contradicts our hypothesis on x.

• If a = ⌈α⌉ ± j + xs, with 0 ≤ j ≤ ks, then

a+ xn = ⌈α⌉ ± j + xs + xn ≥ 2⌈α⌉,

by Lemma 3.0.7, a contradiction.

• If a = ⌈α⌉ ± j − xs, with 0 ≤ j ≤ ks, then

a− xn = ⌈α⌉ ± j − xs − xn ≤ 0,

also by Lemma 3.0.7, again a contradiction.
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So, we have a ∈ {⌈α⌉ − kn, . . . , ⌈α⌉ + kn}. Therefore, if |b| = 1, then x is of the form
⌈α⌉ ± j ± xn where 0 ≤ j ≤ kn. In any case, we have x ∈ X.

Lemma 3.0.10. Assume x ∈ O. We have 0 ≪ x ≪ 2⌈α⌉ if and only if x ∈ X.

Proof. Thanks to Lemma 3.0.9, we need only to prove the lemma from right to left.
Assume x ∈ X. For x ∈ X0, there is nothing to prove. Assume x ∈ Xn for some n ≥ 1,
so that x = ⌈α⌉ ± j + xs for some s and j such that 1 ≤ s ≤ n and 0 ≤ j ≤ ks. By
definition of ks, we have xs + ks < ⌈α⌉. Hence, we have

⌈α⌉ ± j + xs ≤ ⌈α⌉+ ks + xs < 2⌈α⌉,

and
⌈α⌉ ± j − xs ≥ ⌈α⌉ − ks − xs > 0.

Therefore, we have 0 < xσ < 2⌈α⌉ for every embedding σ of Os.

Proposition 3.0.11. The JR number of O is ⌈α⌉+ α and it is a minimum.

Proof. We have xn + ⌈α⌉ < α+ ⌈α⌉ for infinitely many n, and by Lemma 3.0.10, there
are infinitely many x ∈ O such that 0 ≪ x ≪ ⌈α⌉ + α. Since the sequence (xn) is
increasing and converges to α, for each ε > 0, there are only finitely many n such that
xn + ⌈α⌉ < α + ⌈α⌉ − ε. Moreover, there are infinitely many n such that kn = 0.
Hence, there are only finitely many elements of the form xn + ⌈α⌉+ j where 0 ≤ j ≤ kn
and kn ≥ 1. In particular, only finitely of them satisfy 0 ≪ xn + ⌈α⌉ + j ≪ ⌈α⌉ + α.
Therefore, by Lemma 3.0.10, for each ε > 0, there are infinitely many x ∈ O such that
0 ≪ x ≪ ⌈α⌉+ α− ε.

Remark 3.0.12. Note that the hypothesis on x0, x0 ≥ λ
4 , is only used in the proofs

of Lemmas 3.0.8 and 3.0.3. We believe that it is possible to prove the general case
(increasing) without this hypothesis.
The following program (written in SageMath 9.2) indicates when one of the two lem-

mas is not satisfied:

def function(n):

list=[]

for x_0 in range(n+1): #x_0

for v in range(n+1): #\nu

for l in range(n+1): #\lambda

if (l % 4) in {1,3} and (v+l*x_0 % 4) in {2,3}:

if v>x_0**2-l*x_0 and v>=2*l**2+2:

x1=sqrt(v+l*x_0)

ceil_x1=int(float(x1))+1

x2=sqrt(v+l*x_1)

alpha=(l+sqrt(l**2+4*v))/2
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ceil_alpha=int(float(alpha))+1

if ceil_x1+x1<=alpha-1 or x1+x2+ceil_x1<=2*ceil_alpha:

append.list((v,x_0,l))

print(list)

With this program we have corroborated that for those ν, λ, x0 ∈ {0, . . . , 5000} that
satisfy the hypothesis of 2.3.2, 2.2.4 and ν ≥ 2λ2 + 2, the conclusions of Lemmas 3.0.8
and 3.0.3 remain true.
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We define the following sets:

X0 = {1, 2, . . . , 2⌊α⌋+ 1}
Xn = X0 ∪ {⌊α⌋+ 1± xk : 1 ≤ k ≤ n}

X =
⋃
n≥0

Xn.

The following lemma and theorem are exactly as [5, Lemma 3.2, Proposition 3.4 and
Proposition 3.5], changing their hypothesis

√
ν − x1 ≥ 1 by

√
ν − λx1 ≥ 1. For this

reason, we will omit the proof.

Lemma 4.0.1. [5, Lemma 3.2] Assume
√
ν − λx1 ≥ 1 and x1 < ⌊α⌋ + 1. For each

n ≥ 0, if x ∈ On and 0 ≪ x ≪ 2⌊α⌋+ 2, then x ∈ Xn.

Theorem 4.0.2. [5, Proposition 3.4 and 3.5] Assume
√
ν − λx1 ≥ 1 and x1 < ⌊α⌋+ 1.

The JR number of O is ⌊α⌋+ α+ 1 and satisfies the isolation property.

The following proposition proves that there are infinitely many rings O for which
Theorem 4.0.2 holds.

Proposition 4.0.3. For any λ congruent to 1 or 3 modulo 4, there are infinitely many
distinct values of α corresponding to pairs (ν, x0) of rational integers such that

1. ν < x20 − λx0,

2.
√
ν + λx0 is not a rational integer,

3. For every n ≥ 1, we have [Kn : Kn−1],

4. λ3x0 < ν2 − λ2ν,

5.
√
ν − λx1 ≥ 1,

6.
√
ν + λx0 < ⌊α⌋+ 1.

Proof. It is enough to show that for every λ there is an duple (ν, x0) satisfying each of
the six conditions. In fact, for any λ ≥ 1 which is congruent to 1 or 3 modulo 4, we
choose ν = 4λ4 and x0 = 2λ2 + λ. The first 5 conditions are immediate. We have

α =
λ+

√
λ2 + 4ν

2
=

λ+
√
16λ2 + λ2

2
=

λ+ 4λ2 + ε

2
=

λ− 1

2
+ 2λ2 +

1

2
+

ε

2
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for some 0 < ε < 1. Since λ is congruent to 1 or 3 modulo 4, we have ⌊α⌋ = 2λ2 + λ−1
2 .

Therefore, we have

(⌊α⌋+ 1)2 = 4λ4 + 2λ3 + 2λ2 +

(
λ+ 1

2

)2

> 4λ4 + 2λ3 + λ2 = ν + λx0,

so the last condition is satisfied.

For λ = 1, M. Castillo [7, Thm. 1] was able to remove the hypothesis
√
ν − x1 ≥ 1

and x1 < ⌊α⌋+ 1, and obtain the following theorem:

Theorem 4.0.4. Assuming λ = 1 and ν > 3, O has JR number ⌊α⌋ + α + 1 and it
satisfies the isolation property.

Now we will present some new results for λ = 3. The same proof can be easily adapted
to the case λ = 2, 4, 5 . . .. I could not find the general pattern that would let me write a
general proof since for each value of λ there are cases that must be studied independently.
We will prove the following theorem at the end of this section.

Theorem 4.0.5. If x1 < ⌊α⌋+ 1 and ν ̸= 19, then O has JR number ⌊α⌋+ α+ 1 and
it satisfies the isolation property.

Lemma 4.0.6. If x1 < ⌊α⌋+ 1 and ν ̸= 19, then ν − 3x2 ≥ 1.

Proof. Since x1 < ⌊α⌋+ 1, we have

ν − 3x2 > ν − 3(⌊α⌋+ 1) ≥ ν − 3α− 3.

Therefore, it suffices to prove ν − 3α − 3 ≥ 1. This is satisfied if and only if 2ν − 17 ≥
3
√
9 + 4ν, which is true for every ν ≥ 24. By Lemma 2.2.5, we have ν ≥ 3, so we

must analyze the cases when ν ∈ {3, . . . , 23}. A simple calculation shows that for
ν ∈ {3, . . . , 18}, there is no x0 that satisfies the inequalities given in Theorem 2.2.4.
Hence, ν ∈ {19, . . . , 23}, and again solving the inequalities given in 2.2.4, we obtain the
following cases:
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ν x0 x1 x2 ν − 3x1 ν − 3x2

19 7
√
40

√
19 + 3

√
40 0.03 0.51

20
7

√
41

√
20 + 3

√
41 0.79 1.21

8
√
44

√
20 + 3

√
44 0.10 1.05

21

7
√
42

√
21 + 3

√
42 1.56 1.92

8
√
45

√
21 + 3

√
45 0.88 1.76

9
√
48

√
21 + 3

√
48 0.22 1.61

22

7
√
43

√
22 + 3

√
43 2.33 2.63

8
√
46

√
22 + 3

√
46 1.65 2.48

9 7
√
22 + 3

√
49 1 2.33

10
√
52

√
22 + 3

√
52 0.37 2.18

23

7
√
44

√
23 + 3

√
44 3.10 3.35

8
√
47

√
23 + 3

√
47 2.43 3.20

9
√
50

√
23 + 3

√
50 1.79 3.05

10
√
53

√
23 + 3

√
53 1.16 2.91

11
√
56

√
23 + 3

√
56 0.55 2.78

Table 4.1: Approximate values of ν − 3x1 and ν − 3x2 for ν ∈ {19, . . . , 23}.

Lemma 4.0.7. Let x ∈ O1 be such that 0 ≪ x ≪ 2⌊α⌋+2. If (ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9)},
then x ∈ X1.

Proof. Let x = a+ bx1 ∈ O1, with a, b ∈ Z, be such that 0 ≪ x ≪ 2⌊α⌋+ 2. Note that
in all cases we have ⌊α⌋ + 1 = 7 and x1 ≥

√
41. Since 0 ≪ x ≪ 2⌊α⌋ + 2, by Lemma

2.1.4, we have a ∈ {1, . . . , 13} and

|b| < ⌊α⌋+ 1

x1
≤ 7√

41
,

so we have b ∈ {−1, 0, 1}. Finally, using a computer program (I used SageMath 9.2, see
below) we can analyze all the cases to see that x is indeed in X1.

def cases_X1(x_0, nu, l):

x_1=sqrt(nu+l*x_0)

floor_alpha=math.floor((l+sqrt(l**2+4*nu))/2)

for a in srange(1,2*floor_alpha+2,1):

for b in [-1,0,1]:

if 0<a+b*x_1<2*floor_alpha+2 and 0<a-b*x_1<2*floor_alpha+2:

print(a+b*x_1)

cases_X1(7,20,3)
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cases_X1(8,20,3)

cases_X1(8,21,3)

cases_X1(9,21,3)

Lemma 4.0.8. Let x ∈ O2 be such that 0 ≪ x ≪ 2⌊α⌋+2. If (ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9)},
then x ∈ X2.

Proof. Let x = a+ bx2 ∈ O2, with a, b ∈ O1. Note that in all cases we have x1 ≥
√
41,

x2 ≥
√
20 + 3

√
41 and ⌊α⌋ + 1 = 7. Since 0 ≪ a + bx2 ≪ 2⌊α⌋ + 2, by Lemma 2.1.4

we have 0 ≪ a ≪ 2⌊α⌋+ 2. Hence, a ∈ {1, . . . 13} ∪ {7± x1} by Lemma 4.0.7. We will
prove that we have |b| < 1.2. Assume, for the sake of contradiction, that this is not the
case. We will see that for whatever choice of a, there is an embedding σ such that xσ is
either negative or larger than 14, contradicting our hypothesis.

• Assume first a ∈ {1, 2, 3, 4, 5, 6}: We choose σ such that xσ = a− |b|x2, so that we
have

xσ = a− |b|x2 ≤ 6− x2 < 0.

• Assume a ∈ {8, 9, 10, 11, 12, 13}: We choose σ such that xσ = a+ |b|x2, so that we
have

(a+ bx2)
σ = a+ |b|x2 ≥ 8 + x2 > 14.

• Assume a = 7 + x1: We choose σ such that xσ = a+ |b|x2, so that we have

a+ |b|x2 ≥ 7 + x1 + x2 > 14.

• Assume a = 7− x1: We choose σ such that xσ = a− |b|x2, so that we have

a− |b|x2 ≤ 7− x1 − x2 < 0.

• Assume a = 7. We choose σ such that xσ = a− |b|x2, so that we have

a+ |b|x2 ≥ 7 + 1.2x2 ≥ 7 + 1.2

√
20 + 3

√
41 > 14.

We conclude that |b| < 1.2.
We write b = b1 + b2x1, with b1, b2 ∈ Z. We have

|b1 + b2x1| < 1.2, (4.0.1)

so that |b1| < 1.2 and |b2| < 1.2√
41
. Hence, the only choices for b1 and b2 are (b1, b2) ∈

{(−1, 0), (0, 0), (1, 0)}. Therefore, if a ∈ {1, . . . , 6} ∪ {8, . . . , 13} ∪ {7 ± x1}, then b = 0
by the first four cases. Otherwise, if a = 7, then we can have either x = 7 − x2, or
x = 7 + x2, or x = 7. In all the cases we obtain x ∈ X2.

Lemma 4.0.9. Assume x1 < ⌊α⌋ + 1 and ν ̸= 19. For each n ≥ 0, if x ∈ On and
0 ≪ x ≪ 2⌊α⌋+ 2, then x ∈ Xn.
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Proof. If ν − 3x1 ≥ 1, then we are done by Lemma 4.0.1. Assume ν − 3x1 < 1. By
Lemma 4.0.6, the only cases where ν − 3x1 < 1 are when

(ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9), (22, 10), (23, 11)}

(see Table 4.1). However, when (ν, x0) ∈ {(22, 10), (23, 11)}, a simple calculation shows
that x1 > ⌊α⌋ + 1, so we may assume (ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9)}. We will
prove by induction on n that if x ∈ On is such that 0 ≪ x ≪ 2⌈α⌉+2, then x ∈ Xn. It is
clear for n = 0. For n = 1 and n = 2 we are done by Lemma 4.0.7 and 4.0.8 respectively.
Assume n ≥ 3. By Lemmas 2.1.4 and 4.0.6 we have

|bσ| < ⌊α⌋+ 1√
ν − 3xn−1

≤ ⌊α⌋+ 1√
ν − 3x2

≤ ⌊α⌋+ 1

for every n ≥ 3. The rest of the proof goes exactly as the proof of [5, Lemma 3.2].

Lemma 4.0.10. Assume x1 < ⌊α⌋ + 1 and ν ̸= 19. Let x ∈ O. We have 0 ≪ x ≪
2⌊α⌋+ 2 if and only if x ∈ X.

Proof. By Lemma 4.0.9, we need only to prove the lemma from right to left. Let x ∈ X.
If x ∈ X0, then there is nothing to prove. Assume x ∈ Xn for some n ≥ 1, so that
x = ⌊α⌋+ 1± xk for some 1 ≤ k ≤ n. Since the sequence (xn) is decreasing, we have

⌊α⌋+ 1 + xk < 2⌈α⌉+ 2,

and
⌊α⌋+ 1− xk > 0

for every 1 ≤ k ≤ n. Therefore, we have 0 ≪ x ≪ 2⌊α⌋+ 2.

Proof Theorem 4.0.5. We will prove that ⌊α⌋+α+1 is the JR number of O and that it
satisfies the isolation property. Since (xn) is a decreasing sequence and converges to α,
for every ε > 0 there exist infinitely many n such that

xn + ⌊α⌋+ 1 < ⌊α⌋+ α+ 1 + ε.

So, by Lemma 4.0.10, for every ε > 0, there exist infinitely many x ∈ O such that
0 ≪ x ≪ ⌊α⌋ + α + 1 + ε. Also, for each n ≥ 1, we have ⌊α⌋ + 1 + xn > ⌊α⌋ + 1 + α.
Hence, if x ∈ O is such that 0 ≪ x ≪ ⌊α⌋ + α + 1, by Lemma 4.0.10, then we have
x ∈ {1, . . . , 2⌊α⌋ + 1}. Therefore, ⌊α⌋ + α + 1 is the JR number of O, and it is not a
minimum. We now show that it satisfies the isolation property. Let M = ⌊α⌋ + 1 − α
and x ∈ O be such that

0 ≪ x ≪ JR(O) +M = 2⌊α⌋+ 2.

Again by Lemma 4.0.10, x ∈ X and so, for every ε > 0, there are finitely many n such
that

xn + ⌊α⌋+ 1 > ⌊α⌋+ α+ 1 + ε.
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As an consequence of Proposition 4.0.3, we obtain:

Corollary 4.0.11. There are infinitely many distinct values of α corresponding to pairs
(ν, x0) of rational integers such that

1. ν < x20 − 3x0,

2.
√
ν + 3x0 is not a rational integer,

3. 27x0 < ν2 − 9ν,

4. For every n ≥ 1, [Kn : Kn−1] = 2,

5. x1 < ⌊α⌋+ 1.
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