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Chapter 1

Introduction

1.1 Introduction

The identification of infinite-dimensional symmetries at the boundary of spacetime
have served as an important tool to unfold the holographic properties of gravity
at a quantum level, through the asymptotic symmetry groups that happens to
be the global symmetries groups of a lower dimensional, dual field theory. For
example, one can determine that the isometry group of Schwarzschild in AdS4 is
R×SO(3) [1], however, in the asymptotic region, the asymptotic symmetry group
is identified as SO(3, 2) corresponding to the algebra of global symmetries found
in a conformal field theory in 3 dimensions. In this scenario, one can assert that
the conformal field theory (CFT) serves as the dual theory to the gravitational
theory in an Anti-de Sitter (AdS) configuration.

Considering all the information above, we encounter a fundamental concept
known as the holographic principle [2, 3]. This principle essentially establishes a
connection between a gravitational theory in D + 1 dimensions with a quantum
theory living in D dimensions.

The holographic principle has been a rich source of various dualities, with one of
the most famous being the AdS/CFT correspondence, proposed by Maldacena [4].
It basically states a way of “translating” phenomena from one theory to another
through a relation between correlation functions of the CFT, and the action of
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the gravitational theory (for more details see [5])

⟨O∆(x⃗1) . . . O∆(x⃗n)⟩CFT =
(−i)n

ZAdS[φ0 = 0]

δnZAdS[φ0]

δφ0(x⃗1) . . . δφ0(x⃗n)
|φ0=0 , (1.1.1)

where the left side of the equation are correlation functions that represent an
observable quantity, and φ0 acts as a conformal source of the primary operators
O∆(x⃗). On the right hand side, we have functional derivatives of a partition
function ZAdS, described completely by the gravitational action in the bulk on-
shell

ZAdS[φ0] =

∫
Φ[φ0]

DΦeiS[Φ]AdS . (1.1.2)

This relations serves as an example of how an AdS space in D dimensions, weakly
coupled, is connected to a CFT, strongly coupled, in D−1 dimensions, and is part
of a “dictionary” that researchers are filling up by working on more complicated
gravity theories, usually on asymptotically AdS spacetimes.

Following this information, a natural question arises: Can these holographic
ideas be extended to spacetimes with different asymptotic behaviors, such as
asymptotically flat spacetimes? By exploring this possibility, researchers hope to
gain a deeper understanding of potential solutions and expand the applicability of
holographic principles to a broader range of spacetime configurations. Through
continued research, it is hoped that a plausible solution and insights into this
matter will be obtained.

To start this work, first we are going to review some classical solutions to
gravitational theories and emphasizing on their asymptotic behaviors.

1.2 General Relativity

Einstein successfully described a gravitational theory as a geometrical entity that
defines how inertial observers navigate through curved spacetimes. The curvature
of spacetime may arise as an intrinsic property or due to the presence of massive
objects.

To accurately capture these features, a valid mathematical description should be
capable of reproducing the system’s dynamics, transform covariantly and remain
invariant under diffeomorphisms.
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Hilbert found an action principle in 1915 that described perfectly all of the above
considerations. The Einstein-Hilbert action is defined as

SEH =
1

16πG

∫
dDx

√
−g(R− 2Λ) , (1.2.1)

and the dynamics of this theory can be obtained from the least action principle,
defined above. By varying the action (δSEH) one gets the Einstein field equations1

Rµν −
1

2
gµν(R− 2Λ) = 0 , (1.2.2)

which is an equation of second order of the metric. This equation helps to compute
the components of the metric, and study the geometry of the spacetime. Usually,
the differential equations are hard to solve, but one can consider some ansatz that
simplify the calculations. The way of applying this is considering some symmetries.
For example, for a spherical symmetry that is also stationary, the ansatz is

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2 (1.2.3)

where Ω is just a d − 2 manifold of constant curvature. Then a solution that
solves the equation (1.2.2), with a vanishing cosmological constant Λ = 0 is
f(r) = 1 − 2GM

r
. This correspond to the Schwarzschild solution that describe

a static and spherically symmetric black hole2 which has only one conserved
quantity, the mass. An important characteristic of this solutions is that they are
asymptotically flat, meaning that taking the limit r → ∞, the line element goes
to the Minkowski space

lim
r→∞

ds2 = −dt2 + dr2 + r2dΩ2 (1.2.4)

Now, there is also a rotating solution, where naturally the metric functions now
can depend on the angular coordinates and a non diagonal component of the
metric is one that represent a “dragging effect” produced by the rotation of the
black hole, this solutions are known as the Kerr solutions. An ansatz for this

1There is also a boundary term, that for now we are going to set to zero, in order to simplify
the analysis.

2we can see that it is a black hole, because the presence of a event horizon at r = r0 = 2GM .
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black holes are

ds2 = −f(r, θ)dt2 + g(r, θ)dr2 + h(r, θ)dθ2 + T (r, θ)dϕ2 +R(r, θ)dtdϕ (1.2.5)

although is hard to solve the equations, one can find that, in Boyer-Lindquist
coordinates, the following solutions are obtained

f(r, θ) =1− r rs
Σ

g(r, θ) =
Σ

∆

h(r, θ) =Σ

T (r, θ) =(r2 + a2 +
r rs
Σ

a2sin2(θ))sin2(θ)

R(r, θ) =− 2
r rs asin

2(θ)

Σ
c

where Σ = r2 + a2cos2(θ), ∆2 = r2 − r rs + a2, a = J
Mc

and rs is called the
Schwarzschild radius.

As one can see, both solutions, the Schwarzschild and the Kerr solutions belong to
a family of asymptotically flat spacetimes, which are known for having an infinite
dimensional symmetry group called BMS [6].

1.2.1 Λ ̸= 0

As it is mentioned in the beginning of this section, there is a constant in the action
(1.2.2) that carries the information of the curvature of the spacetime without
sources. This constant is called the Cosmological constant, which can be positive
Λ > 0, zero Λ = 0 representing asymptotically flat solutions (explained before) or
negative Λ < 0.

The different geometries dragged by the value of this constant are peculiar, whether
shrinks the space (Λ < 0) or it dilates (Λ > 0) when one moves through the
spacetime. The general solution of the Einstein equations (1.2.2) are described by

ds2 = −
(
1− 2m

r
− Λ

3
r2
)
dt2 +

dr2(
1− 2m

r
− Λ

3
r2
) + r2dΩ2 , (1.2.6)

where the base manifold is a sphere and the parameter m indicates the mass of
the black hole, and Λ is a constant that defines whether is a solution in deSitter or
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Anti-deSitter spacetime. For Λ > 0, this solution has a similar characteristic with
the Kerr black hole, since it has two horizons, an event horizon and a cosmological
horizon. On the opposite, the Λ < 0 case, describe a black hole with only one
event horizon.

The asymptotic symmetry group will be discussed in the subsection (2.3.1) with
an example of a asymptotically AdS3 solution.

1.2.2 Scalar field in the action

In the previous analysis, it has only been examined a free gravitational theory,
meaning that no matter has been considered, but of course that one can, in
principle, add a matter field to the action and the Einstein equations remains the
same, but now with a energy-momentum tensor Tµν that is no longer zero3.

Rµν −
1

2
gµν(R− 2Λ) =

8πG

c4
Tµν (1.2.7)

where now the energy momentum tensor introduced an energetic scale proportional
to the amount of matter, and is defined now as

Tµν =
−2√
−g

δS

δgµν
(1.2.8)

and can change the form depending on the kind of matter field that one add to
the theory.

Although one can consider a big number of matter fields (dilatons, photons, etc..)
in this study, our primary focus will center on a scalar field. Where the Coupling
is minimal, which denotes that the action being considered is

S[gµν ,Φ] =

∫
d3x

√
−g

[
R− 1

2
∇µΦ∇µΦ− V (Φ)

]
. (1.2.9)

where now the action depends on two fields, the metric gµν and the scalar field Φ.

This type of theories has an energy-momentum tensor

Tµν = ∇µΦ∇νΦ− gµν

(
1

2
∇ρΦ∇ρΦ− V (Φ)

)
(1.2.10)

3From now on, we are going to use natural units, where c = 1 and G = 1
8π .
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Here the self interacting potential V (Φ) is arbitrary. The field equations are given
by

Eµ
ν := Gµ

ν −
1

2

[
∇µΦ∇νΦ− δµν

(
1

2
∇αΦ∇αΦ + V (Φ)

)]
. (1.2.11)

If we solve it for the 2 + 1 dimension, then the field equations that appears are
the same as the ones found by Man and Chan [7, 8]. Where the potential used
here is a self interacting potential that has an exponential profile

V [Φ] = −(2− α)

χ2
e−

√
2αΦ . (1.2.12)

The above type of potentials are of physical interest as they appear in string theory
compactifications [9, 10] and also they can be inspired by dimensional reductions
where the scalar field represents the size of the extra dimensions [11]. In the
present context, they allow us to study the asymptotic behavior of geometries
whose Riemann tensor approaches to zero in the region far away from localized
sources

Rαβ
γδ → 0 . (1.2.13)

Note that this condition does not necessarily imply that the metric resembles
Minkowski space in the asymptotic region (see [12] for an example where the
leading components of the metric diverge at the boundary). We will refer to
configurations satisfying (1.2.13) as asymptotically locally flat spaces. Black hole
solutions exhibiting this kind of asymptotics have been found in Einstein-scalar
theories in three dimensions with an exponential potential that is unbounded from
below in [7, 8, 13, 14].
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Chapter 2

Theoretical Basis

2.1 The Model

As it was mentioned before, the objective of this work is to correctly characterize
the asymptotic behaviour of asymptotically locally flat solutions that comes from
an action principle like (1.2.9). This is archived by potentials like (1.2.12). Then
considering static and spherically symmetric ansatz, one can solve the equations of
motion, defined in (1.2.11) and get that, considering α > 0 and χ a fixed constant
with length dimension.

The spherically symmetric solution reads

ds2 = −
(
r2

χ2
−Mrα

)
dt2 +

( r

L

)2α dr2

r2

χ2 −Mrα
+ r2dφ2 , Φ(r) =

√
2α log

( r

L

)
,

(2.1.1)
the solution have two integration constants, M and L. When M > 0 the metric
has an horizon located at r = r0 with

r0 = (χ2M)
1

2−α , (2.1.2)

Where the case α = 0 turn the spacetime into the BTZ black hole, while α = 1

is a type of black string found in [15]. The behavior of the metric in the region
nearby r0 is expressed using retarded Eddington-Finkelstein time u and radial
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coordinate ρ = r − r0,

ds2 = [−2κρ+O(ρ2)]du2 − 2 [1 +O(ρ)] dudρ+ [r20 +O(ρ)]dφ2 (2.1.3)

Here we can see that, as it was demonstrated in [16], the surface gravity κ and
the horizon area A are captured by the leading order of the metric components
guu and gφφ respectively

κ =
2− α

2χ2
r1−α
0 Lα, A = 2πr0 (2.1.4)

This means that the geometry describes an event horizon only for α < 2 (because
otherwise it would mean that gravity at the horizon doesn’t pull you in but out).
This geometry is an asymptotically locally flat spacetime as the Ricci tensor
behaves like Rµ

ν = O(r−2α) i.e., vanishes at the r → ∞ limit. Despite this feature
of an asymptotically locally flat space, the conformal boundary shares similarities
with AdS3 spaces. To make this statement much more explicit, let us define the
following coordinate transformation

r =
ρq+1

Lq
, t = (q + 1)−1τ , α =

q

q + 1
(2.1.5)

Which define the new metric

ds2 =
( ρ

L

)2q
[
−
(
ρ2

l2
− ν

ρq

)
dτ 2 +

dρ2

ρ2

l2
− ν

ρq

+ ρ2dφ2

]
,Φ(ρ) =

√
2q(q + 1) log(

ρ

L
)

(2.1.6)
where we have redefined l and ν by l = (q + 1)χ and ν = Lα+q

(q+1)2
M . This

transformation can be read then as a conformal factor, times a metric that looks
like AdS3, as long as q > 0. In fact, we can define a regular metric at infinity by
taking ρ = 1

Ω
. Then at Ω = 0, the boundary metric is defined by

lim
Ω→0

L2qΩ2(q+1)ds2 = −dτ 2

l2
+ dφ2 , (2.1.7)

this correspond to the boundary of the space time, as is defined by Brown and
Henneaux in [17], that is related to the cylinder (as it is usual in the anti-
deSitter spaces) which means that the entire Virasoro group generates conformal
transformations at the boundary.
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It is important to notice that the action of bringing the boundary of the spacetime
to a finite region is controlled by the constant q, that has beed initially defined as
one of the potential’s coupling constant, which means that the conformal factor
depends on how strong the scalar field is coupled to the theory. In this sense, this
is similar to the notion of conformal infinity constructed in [18] for cosmological
spacetimes, where q represents a deceleration parameter of the fluid’s equation of
state. For the sake of simplicity, in the rest of this work we will consider geometries
q = 1. In the final section, will be comments on generalizations with arbitrary
values of q.
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2.2 Covariant phase space

In many areas of physics there exist the notion of conservation law, a property
that consist on an integral of the dynamical variables whose time evolution is
balanced by a spatially driven flux. Mathematically, it is expressed as

∂tρ+ ∂iJ
i = 0 , (2.2.1)

where J is a density current, and ρ is a charge density. Integrating over a
codimension 1 surface, it then follows

d

dt

∫
dD−1x ρ = −

∫
dD−1x ∂iJ

i =

∫
dD−2xni J

i (2.2.2)

from where we can read that, in order for the charge1 Q =
∫
dD−1xρ to be

conserved there cannot be any flux of current outside the D − 2 surface. In other
words, this means that the normal component of the current niJ

i vanishes very
far from the localized sources.

In 1916, Emmy Noether made a groundbreaking contribution in the field of
theoretical physics, by introducing a theorem that establishes a correspondence
between each symmetry present in a given theory, defined through a Lagrangian,
and its corresponding conserved charge. However, as we delve into the details
of this section, we will discover that defining conserved charges becomes more
challenging when dealing with symmetries that change continuously through space
and time.

Let us first review the above construction for symmetries that are independent
of the coordinates, the so-called Noether’s first theorem. For a Lagrangian L the
conserved charges are defined by the zero component of a codimension 1-form J

that is determined by the relation

Jµ = Bµ
X −Mµ. (2.2.3)

Here X is the generator of the symmetry and Bµ
X is the boundary term that arises

from the variation of the action once the symmetry is applied. Moreover, Mµ is

1In the spirit of the electromagnetic theory for which the conserved quantity is the electric
charge
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the boundary term that comes from varying the action respect to the generator
X, once the equations of motion hold. The current Jµ satisfies an on-shell local
conservation law

∂µJ
µ ≈ 0. (2.2.4)

that is the covariant version of the continuity equation (2.2.1).

An important remark is that J does not have only one representation. Actually,
one can obtain an equivalent current by redefined it as

Jµ → J̃µ = Jµ + ∂νk
µν + tµ , (2.2.5)

where kµν is a antisymmetric tensor and tµ is a function of the equations of motion,
which is zero on-shell. Current J̃ and J will result in the same charge, since tensor
k and t do not spoil the conservation. In fact, the definition of (2.2.5) assures that
the conservation remain even if we consider an ambiguity associated to kµν and tµ

∂µJ
µ ≈ 0 → ∂µ(J

µ + ∂νk
µν + tµ) ≈ 0 . (2.2.6)

This construction is still a good way of defining conserved charges, but all of this
rumbles when dealing with pure gauge theories, as it is shown below.

2.2.1 First Noether’s theorem applied to gauge theories

Gauge theories have the characteristic that, they only have trivial Noether currents,
meaning that the only contributions (on-shell) are from the boundary term kµν

Jµ = ∂νk
µν + tµ , (2.2.7)

an important remark about the divergence of kµν is that it is related to gauge
transformations, that for most of the cases are transformations that goes to
zero at the boundary. Those kind of transformations are the ones that are called
“redundancies” of the theory, and the non-trivial are the ones that do not necessarily
vanishes at the boundary.

Then the charge is defined by a form of codimension two k, for example, the easier
gauge theory for which we can see this result is the electromagnetic action in
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four-dimensional flat space

S = −1

4

∫
d4xFµνF

µν . (2.2.8)

Under the gauge transformation δAµ = −∂µϵ(x) we have that the terms that
originate the Noether current (2.2.3) are

Mµ =0 , (2.2.9)

Bµ
ϵ =F µν∂νϵ(x) , (2.2.10)

with Mµ is trivial because the variation of the action respect to the symmetry
δAµ = −∂µϵ is identically zero. Then, the Noether current (2.2.7) results to be

Jµ = −∂ν(F
µνϵ(x)) + ϵ(x)∂νF

µν , (2.2.11)

which is just the form of (2.2.5). This may look fine at first sight, but as we
mentioned before, one can always add any antisymmetric tensor to the current and
it will still be conserved, so there is nothing stopping us to choose k so that we set
Jµ = 0. Now, because ϵ(x) is an arbitrary function, is not clear that the current
is conserved, but for a moment, let us think that the parameter is a constant and
compute the conserved charge

Q =

∫
(d2x)µνF

µν . (2.2.12)

This give us a glimpse on what we need to obtain when constructing a lower
degree conservation law. In what follows, we are going to review the formalism
covariant phase space formalism developed by Iyer and Wald to systematically
obtain surface integrals like (2.2.12).

2.2.2 A Classical Mechanics example

To see explicitly how to define all of the necessary elements for the formalism, let
us visit an example from classical mechanics, which will be helpful to understand
the construction of the covariant phase space in field theories. The description
made in this section has been based on [19] and also in [20]
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For a system defined by a Hamiltonian H whose canonical coordinates are zA

living in a finite dimensional phase space, the corresponding action is

S[z] =

∫ t2

t1

dt(θA(z)ż
A −H(z)) , (2.2.13)

where ż = dz
dt

and θA(z) are the components of the Liouville one form θ = θA(z)δz
A.

One can define a symplectic form ω by taking an exterior derivative

ω = δθ = (∂AθB − ∂BθA)δz
A ∧ δzB , (2.2.14)

this is called a symplectic form because ω is a closed form δω = 0 in the space of
fields zA2. There is a theorem postulated by Darboux that states that one can
always find a local basis where the symplectic form is diagonalizable, and come
back to the usual coordinates (qi, pj).

Now, in principle is difficult to identify the presymplectic potential θ from a
Hamiltonian action like (2.2.13), then, form a moment let us take the first variation
of the action, respect to the canonical coordinates

δS =

∫ t2

t1

dt

[
(ωABz

B − ∂AH)δzA +
d

dt
(θAδz

A)

]
(2.2.15)

which, as expected, correspond to the equations of motion plus a boundary term.
One of the most important observations of this section is that the presymplectic
potential appear as a boundary term once the equations of motion are enforces.
Indeed

δS = [θAδz
A]t2t1 , (2.2.16)

One can find an explicit expression for the charge associated to the variational
principle (2.2.13). In the spirit of the Noether theorem, let us consider a symmetry
X, which generate the transformations δXz

A = XA(z). This is a symmetry since
it has to preserves the Hamiltonian action

δX [θA(z)ż
A −H(z)] =

d

dt
BX(z). (2.2.17)

2It is assummed that ω is non-degenerated. In the cases where there exist zero mode
transformations, ξAωAB = 0, it is always assumed (unless explicitly stated) that the directions
ξA have been moded out from our phase space.
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Following Noether’s first theorem, a conserved charge must exist for the symmetry
spanned by X. Then, by expanding the equation (2.2.17), we end up with the
following xpression,

d

dt
(BX − θAX

A) = XA(ωAB ż
B − ∂AH), (2.2.18)

this result is clearly a conservation equation when the system is on-shell, which
means that the conserved charge associated to the symmetry X is

Hx(z) = BX − θAX
A +Q0 . (2.2.19)

This charge is defined up to a constant Q0 which holds information of the vacuum
energy of the system or in other words, where is the “zero” of the charge. Notice
that, considering that the flow of the symmetry X preserves the Hamiltonian,
LXH = XA∂AH = 0, then the equation of conservation (2.2.18) reads as d

dt
HX =

XAωAB ż
B, or in a covariant way

XAωABδz
B = δHX . (2.2.20)

The above equation corresponds to the definition of a variation of a conserved
charge, but not just any variation, an infinitesimal departure in the space of fields
consistent with the theory. A generalization of this equation can be written in
the language of differential forms as

iXω = δHX , (2.2.21)

where iXω is the interior product that transforms the two form ω into a one form.
The charge HX in these equations is defined as an integrable function, because
the one form δHX is exact, therefore HX is determined up to a real constant.

2.2.2.1 Charge algebra

In order to understand the way that symmetries are realized through charges, it
is important to define Poisson brackets within this formalism. More precisely, the
Poisson bracket {·, ·} for functions HX1 and HX2 canonically conjugated to the
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symmetries X1 and X2 is

{HX1 , HX2} = iX2iX1ω . (2.2.22)

Due to equation (2.2.22) we can express the latter definition as

{HX1 , HX2} = iX2δHX1 = δX2HX1 = X2[HX1 ] , (2.2.23)

where X2[HX1 ] represents the action of the vector X2 on the charge HX1 . The last
equality in (2.2.23) encodes, in particular, the energy conservation that arises in
Classical mechanics. Indeed, by using X2 = ∂t, then the equation (2.2.23) turns
into

∂

∂t
HX1 + {H, HX1} = 0 , (2.2.24)

where H represents the energy of the system, the conserved charge associated to
time translations. In the case where HX1 is explicitly independent of time, one sees
that all the generators commuting with the Hamiltonian are also conserved. This
highlights the importance of the algebra of the charges in order to characterize
the dynamics of the system.

Now, it is known that the Lie commutator of two symmetries is also a symmetry,
which implies that generators form an algebra. The same holds for the
corresponding generators of those symmetries when using Poisson brackets. To
prove that assertion, we can consider two different ways of expressing an equation.
The first relation is obtained after taking an exterior derivative of (2.2.23), yielding

δ ({HX1 , HX2}) = i[X1,X2]ω , (2.2.25)

where it is used that δX2X1 = −LX2X1. The second relation comes directly by
the definition (2.2.21) that can be expressed as

i[X1,X2]ω = δH[X1,X2] . (2.2.26)

Thus, taking into account equation (2.2.25) and (2.2.26), one can get as a result
that

{HX1 , HX2} = H[X1,X2] +KX1,X2 , (2.2.27)

where KX1,X2 is a constant in the space of fields that depends explicitly on the
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vector fields X1 and X2. The commutation relation (2.2.27) form what is called an
algebraic structure, where KX1,X2 takes the role of an element of the algebra that
is called central extension. Furthermore, it obeys some important rules. Firstly, it
is antisymmetric KX1,X2 = −KX2,X1 . Secondly, in order for (2.2.27) to close an
algebra, we must satisfy the Jacobi identity

{HX1 , {HX2 , HX3}}+ {HX3 , {HX1 , HX2}}+ {HX2 , {HX3 , HX1}} ≡ 0 , (2.2.28)

with X1, X2 and X3 three independent vector fields. A direct consequence of the
latter is that KX1,X2 has to obey a 2-cocycle condition

KX1,[X2,X3] + cyclic(1, 2, 3) = 0 . (2.2.29)

This ensures that the algebraic structure is a Lie algebra.

2.2.3 Surfaces charges in field theories

Now, in this section we are going to explore the previous constructed formalism
in the case of field theories. We shall see how, even considering a Lagragian
written in the second order formulation, the tools previously worked out can be
successfully extended to define conservation laws.

Let us begin with the following action principle

I(Φ) =

∫
dDxL(Φ, ∂Φ, . . . ) , (2.2.30)

where Φ denotes a set of fields defining the theory. The variation of the action is

δS =

∫
dDx(EΦδΦ +∇µΘ

µ(δΦ,Φ)) ,

with EΦ being the classical field equations and Θ gives rise to a boundary term
depending on the fields Φ and their first variations. In the language of differential
forms this can be written as

δS =

∫
(EΦδΦ + d (Θ(δΦ,Φ)) , (2.2.31)

which readily defines the presymplectic potential Θ(δΦ,Φ) after comparing with
the on-shell variation found in (2.2.16). In turn, this means that we can define a
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Lee-Wald symplectic form [21] as

ω(Φ; δΦ, δΦ) ≡
∫

dD−1x δΘ(Φ, δΦ) . (2.2.32)

Having defined the symplectic form, one can obtain the variation of the surface
charge adapting (2.2.21) to field theories. Before delving into those details, let us
define the contraction of ξ on the symplectic form in field space as

iξω ≡ ω(Φ; δξΦ, δΦ) =

∫
dD−1x (δξΘ(δΦ,Φ)− δΘ(δξΦ,Φ)) , (2.2.33)

where now the canonical transformation X are understood as local transformations
ξ that may represent gauge symmetries or diffeomorphisms. To find the explicit
expression for the charges, we first explain an important theorem that that arises
in field theory.

2.2.4 Fundamental theorem of the covariant phase space

The fundamental theorem of the covariant phase space formalism states that the
integrand of the symplectic form ω contracted with the vector field ξ is an exact
differential form dkξ(Φ, δΦ)3 satisfying the identity

δξΘ(δΦ,Φ)− δΘ(δξΦ,Φ) = dkξ(Φ, δΦ) , (2.2.34)

However, it is not guaranteed that kξ is an exact differential in the space of fields
Φ. In the cases where kξ is δ−integrable the conserved charge is represented by a
surface term integrated over the phase space

Qξ =

∫
P

∫
dD−2x δkξ (2.2.35)

where the surface charge has a functional integration over the phase space P.
Notably, Qξ is independent of the path P taken to perform the integral.

An important feature of the equation (2.2.34) is that kξ is conserved if and only
if ω(Φ; δξΦ, δΦ) is zero, which happens to be the case for exact symmetries, i.e.,
those vectors ξ̄ preserving the field configurations, δξ̄Φ = 0 . Therefore, for exact
symmetries ξ̄, we find a extension of the Noether theorem based on a lower degree

3This is a 1-form in fields space but a D − 2-form in coordinate space.



18 2.2. Covariant phase space

conservation law
dkξ̄ = 0 . (2.2.36)

In the forthcoming section, this condition will be relaxed, extending the concept
of symmetry to asymptotic configurations where the non-linear effects of the bulk
fields can be neglected.

2.2.5 Some applications

In this section, we work out in detail the expression for kµν
ξ in the cases of Maxwell

theory and Einstein gravity.

2.2.5.1 Maxwell theory

Now that a lower degree conservation law has already been explained, its time to
come back to the first example of Maxwell theory (2.2.1) and apply the formalism
previously explained.

From the first variation of the Maxwell action, the presymplectic form can be
defined by looking at the resulting boundary term

δS = −
∫

d4xF µν∂µδAν , (2.2.37)

and then rewrite it to see the elements of the current

δS =

∫
d4x∂µF

µνδAν −
∫
(d3x)µF

µνδAν , (2.2.38)

from where the first term vanish on-shell and the second term, correspond to the
presymplectic form Θµ(A, δA) = F µνδAν . Then , taking the exterior derivative
(in the phase space), we obtain the symplectic form

ω(A, δA, δA) ≡
∫

(d3x)µδΘ
µ(A, δA) = −

∫
(d3x)µδF

µνδAν , (2.2.39)

which is used to compute the surface charge. Then using the equation (2.2.33)
and the local symmetries of electromagnetism δϵAµ = ∂µϵ, we get

ω(A, δϵA, δA) = −
∫

(d3x)µ [δϵF
µνδAν − δF µνδϵAν ] , (2.2.40)
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where the first term is gauge invariant and thus, it vanishes. The only remaining
contribution comes from the second term∫

(d3x)µ [δF
µν∂νϵ] =

∫
(d3x)µ∂ν(ϵδF

µν) (2.2.41)

this defines a variation of a conserved surface charge

ω(A, δϵA, δA) =

∫
(d2x)µνϵδF

µν (2.2.42)

=δ

∫
(d2x)µνϵF

µν (2.2.43)

=δQϵ . (2.2.44)

Then, the surface charge has been defined as

Qϵ =

∫
(d2x)µνϵF

µν (2.2.45)

That is the conserved charge for the exact symmetries ϵ = const. as it was proposed
by the extension of Noether’s theorem proposed by the covariant phase space
formalism. Generalizations for ϵ(x) have been studied by [22] in the context of
soft theorems.

2.2.5.2 Einstein Gravity

Now that the covariant phase space has demonstrated its applicability to a pure
gauge theory, one can apply it directly to a more complicated theory of gravity,
where the gauge transformations are now diffeomorphism. The particular case that
is going to be studied here is the Einstein-Hilbert action without a cosmological
constant4

S =
1

16πG

∫
dDx

√
−gR , (2.2.46)

from which one need to compute the variation to find explicitly the boundary
term

δS =
1

16πG

∫
dDx

√
−g(Gµνδg

µν +∇µ(∇νhµ
ν −∇µh)) (2.2.47)

4This term does not add any contribution to the conserved charge, since it does not contain
derivatives.



20 2.2. Covariant phase space

Where we have used that δgµν = hµν . From this term we can identify the
presymplectic potential

Θµ(g, δg) = ∇νhµ
ν −∇µh , (2.2.48)

and construct the symplectic form (details of the computation can be found in
the appendix)

ω(g, δξg, δg) =
1

16πG

∫
(d2x)ν∇µk

µν
GR (2.2.49)

which is a boundary term, meaning that the conserved charge is indeed a surface
integral, and the surface charge is defined as

kµν
GR = 2

√
−g

[
ξ[µ∇αh

ν]α − ξ[µ∇ν]h− 1

2
h∇[µξν] − ξα∇[µhν]α − hα[µ∇αξ

ν]

]
(2.2.50)

2.2.5.3 Diffeomorphism invariant scalar matter

Since the interest of this work is to analyze the features of a gravitational theory
with a minimally coupled scalar field, it is also necessary to find an expression of
the surface charge for a pure scalar theory.

The action for a scalar field that interact with himself is described by

S[g,Φ] = −
∫

dDx
√
−g

(
1

2
∇µΦ∇µΦ + V [Φ]

)
, (2.2.51)

from which it can be seen that the potential does not play any important role in
the computation of the charge, because the charge get contributions only from
the boundary terms, and the self interacting potentials considered here does not
depends on derivatives of the scalar field ∂Φ.

We start by taking the on-shell variation of the action to identify the boundary
term

δS =

∫
dDx

√
−g∇µ(−∇µΦδΦ) , (2.2.52)

from where the symplectic potential read as the terms inside the derivative ∇µΘ
µ

Θµ(Φ, δΦ) = −∇µΦδΦ , (2.2.53)
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and using the formula (2.2.33) one can get the equation that defines the surface
charge kµν

ω(Φ, δξΦ, δΦ) =

∫
(dD−1x)µ∇ν(ξ

νΘµ − ξµΘν) (2.2.54)

where we can read off the surface charge

kΦ =

∫
(dD−2x)νµ

√
−g(ξνΘµ − ξµΘν) . (2.2.55)

Now that the gravitational (2.2.50) and the scalar matter (2.2.55) charges have
been identified, we can use the sum of both expression to find charges associated to
the global symmetries of on-shell solutions to Einstein gravity minimally coupled
to a scalar field, as it is defined in [23] (with ζD = 0). In D-dimensions, this read

δQξ =
1

16πG

∫
(kµν

GR + kµν
Φ )ϵµνx1...xD−2dx1 . . . dxD−2 . (2.2.56)

Up to this point, the charges have been partially described. We can apply this
formalism for the particular solution of the action (2.1.1). This is an static
spacetime and thus it has a Killing vector ξ = ∂t. The associated conserved
charges can be computed from the (2.2.56). By expressing, the gravitational and
scalar contribution to the mass, one finds

ktr
GR =− 2

r2−αα

χ2
Lα−1δL+ 2αMLα−1δL+ LαδM , (2.2.57)

ktr
Φ =2

r2−αα

χ2
Lα−1δL− 2αMLα−1δL . (2.2.58)

Here one can see that although both sectors have divergent contributions, the
total mass is enhanced by the scalar contribution to the energy and the final
result becomes finite. This feature has been previously described in configurations
with relaxed AdS boundary conditions due to slowly decaying scalar fields [24, 25].
These examples together with the extended asymptotic that will be presented in
this work, highlight the importance of the contribution of the matter fields to
render a finite charge. Now, the resulting finite charge gives

δQ(∂t) =

∫ 2π

0

dφ
LαδM

16πG
, (2.2.59)
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that as one can notice, it is not integrable in the space of solutions, meaning that
a integration condition must be found.

At this point, we must demand an integrability condition between L and M . Here
we will use that the scalar field at the horizon must vanish, Φ(r0) = 0. Let us see
whether this condition is allowed by the first law of thermodynamics. Using this,
the integration over the one-family parameter M yields

Q(∂t) = (2− α)
χ

2α
2−αM

2
2−α

16G
(2.2.60)

From the equations (2.1.4) one can read the entropy and its temperature

S =
2πr0
4G

, (2.2.61)

T =(2− α)
r0

4πχ2
, (2.2.62)

where we have used that r0 = L. From the above quantities the first law of
thermodynamics can be build up. This allows us to independently compute the
conserved charge of this family of solutions.

δQThermo(∂t) = TδS = (2− α)
r0

8Gχ2
δr0 , (2.2.63)

which can be easily integrated, giving

QThermo(∂t) = (2− α)
r20

16Gl2
, (2.2.64)

and because the horizon is related to the mass then

QThermo(∂t) = (2− α)
χ

2α
2−αM

2
2−α

16G
, (2.2.65)

since the both equations (2.2.60) and (2.2.65) are the same, then now we can
confidently say that the surface charge found in (2.2.56), is indeed the correct
form computed from the covariant charges in a gravitational theory with a scalar
field minimally coupled.

Now as it is going to be explained in the next section, the notion of conserved
charges can be generalized so that we can extend the set of symmetries and
conserved charges. This will provide a theory a much richer structure, resulting
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in new and interesting properties.

2.3 Asymptotic Symmetries

A gravitational theory is described by a action principle that should be invariant
under diffeomorphism. This is due to the fact that its main field, the metric gµν

transforms as a tensor under coordinate transformations xµ = xµ(x′)

gµ′ν′(x
′) = gµν(x

′)
∂xµ

∂xµ′

∂xν

∂xν′
, (2.3.1)

which infinitesimally corresponds to the Lie derivative Lξ acting on the metric

δgµν = Lξgµν = ξρ∂ρgµν + ∂µξ
ρgρν + ∂νξ

ρgµρ , (2.3.2)

where ξ is some vector field.

There are some special type of vectors, called Killing vectors, that represent
symmetries of the theory and are represented by the equation

Lξgµν = 0 . (2.3.3)

In gravitational theories coupled to matter fields Φi, the idea of isometries applies
to them in the same manner, LξΦ

i = 0.

The notion of symmetry in gravity (and generically in gauge theories) can be
modified in order to incorporate a group of configurations respecting certain
boundary conditions. In other words, we will relax the exact equation (2.3.3) over
the fields, so that we would consider an equation like

Lξgµν = O(r−σ) , (2.3.4)

A sufficient condition to ensure that this new equation is going to behave exactly
like (2.3.3) in the asymptotic region is σ > 0.

Now, as well as the Killing vectors generate conserved charges, the asymptotic
symmetries should also generate charges. In order for these symmetries to be
physical, they have to lead to charges that are finite in the asymptotic region.
Therefore, one has to carefully determine how fields approach to infinity.
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The way of constructing asymptotic symmetries can be summarized as

• define the fall-off conditions over the fields.

• find the corresponding asymptotic symmetries that preserve the fall-off.

• compute the contraction of the symplectic form with the asymptotic vector.

After going through these steps, one should end up with

ω(g; δξg, δg) = O(1/rσ) , (2.3.5)

where again it is assummed that σ > 0 . Thus, the conservation equation (2.2.36)
hold asymptotically, as

lim
r→∞

dkξ → 0 . (2.3.6)

In order to determine the exact value of σ, it is necessary to have a better
understanding of the asymptotic symmetries of a theory.

Let us first provide some relevant definition for different kinds of gauge symmetries.

Gauge theories are invariant under spacetime dependent symmetries that are
normally regarded as “redundancies of the theory”. In setup outlined in this
section, these are transformations that change the value of the fields in the bulk
but they quickly goes to zero at r → ∞. On the contrary, there is also a set
of transformations which do not vanish at infinity, so they actually have a non
trivial contribution to the conserved charges, as they have an effect that reaches
the boundary of the spacetime. This set of transformations are called large gauge
transformations or improper symmetries.

Previously, has been defined in [6, 26, 27, 28, 29, 1, 17, 22] that the asymptotic
symmetries in a theory can be found after removing the redundancies of the theory
from the allowed gauge transformations. Then, the asymptotic symmetries are
defined as

Asymptotic Symmetries =
Allowed gauge transformations

Trivial gauge transformations
. (2.3.7)

To get a better understanding of these statements, let us revisit the Brown and
Henneaux boundary conditions for AdS3 spaces. This construction will help us to
introduce new conserved charges using the covariant phase space.
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2.3.1 Brown-Henneaux boundary condition

Brown and Henneaux proposed the proper way of defining the asymptotic
behaviour of a locally anti de-Sitter solution [17]. By using the Hamiltonian
formalism, they found that the algebra at the boundary is not the typical algebra
of asymptotically AdS3 spaces, instead, they found a much bigger symmetry group,
a conformal group described by the Virasoro algebra.

Here, we show the steps that lead to an extension of the asymptotic symmetry
group, and the algebra with the central charge of the Virasoro algebra. Let us
start with presenting the metric of an AdS3 spacetime

ds2 = −
(
r2

l2
+ 1

)
dt2 +

(
r2

l2
+ 1

)−1

dr2 + r2dϕ2 , (2.3.8)

where l = 1√
−Λ

is the curvature radius. This spacetime is maximally symmetric,
meaning that, it has all the symmetries that a three dimensional spacetime can
have5. Now, in order to find the boundary conditions let us show a solution with
a less amount of symmetries.

A good way of choosing a fall-off is to consider that the new set of solutions
contains rotation. This is the case of the BTZ solution [30]

ds2 = −
(
(r2 − r2+)(r

2 − r2−)

l2r2

)
dt2 +

l2r2dr2

(r2 − r2+)(r
2 − r2−)

+ r2
(
dϕ− r+r−

lr2
dt
)2

From where Brown and Henneaux takes the idea for defining a suitable fall-off
condition over the metric, such that this new family of solutions contains the

5In this case are 6, since the number of symmetries for a n dimensional maximally symmetric
spacetime is given by n(n+1)

2
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rotating solution as well as the maximally symmetric one.

gtt =− r2

l2
+O(1),

gtr =O

(
1

r3

)
,

gtϕ =O(1),

grr =
l2

r2
+O

(
1

r4

)
,

grϕ =O

(
1

r3

)
,

gϕϕ =r2 +O(1). (2.3.9)

The tr and rϕ components were chosen to decay fast enough to obtain well-defined
charges. These boundary conditions turn out to be invariant under the following
asymptotic symmetries

ξt =l T (t, ϕ)− l4

2r2
∂tR(t, ϕ) +O(1/r4) (2.3.10)

ξr =− r∂ϕΦ(t, ϕ) +O(1/r) (2.3.11)

ξϕ =Φ(t, ϕ) +
l2

2r2
∂ϕR(t, ϕ) +O(1/r4) (2.3.12)

where the functions T , Φ and R are related by the following equations

∂ϕΦ = l ∂tT , l ∂tΦ = ∂ϕT , R = −∂ϕΦ = −l∂tT . (2.3.13)

The above equations and the fall-off conditions describe the asymptotic behavior
of a broad set of solutions. Furthermore one can compute the conserved charges
using the covariant phase space defined in (2.2.50). A straightforward computation
shows that they are indeed finite and integrable

Q(T,Φ) =
1

16πG

∫
dϕ

[
T

l3
(
frr + 2l2fϕϕ

)
+ 2ftϕΦ

]
(2.3.14)

where the functions fij depends on the boundary coordinates xi = (t, ϕ) and
represent the fall-off of the metric components defined in (2.3.9).
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Once one has already proven that the fall-offs chosen generated well-defined
asymptotic symmetries (producing finite charges), the only thing that it is left to
do is fully describe the charge algebra. Then, using the relation (2.2.23) we found
that

{Q(T1,Φ1), Q(T2,Φ2)} = δ2Q(T1,Φ1) (2.3.15)

one finds that it needs to know how the relevant components of the metric
transform under the asymptotic symmetry group. The way of achieving that is to
compare δgµν with Lξgµν , from where one obtains

δ2frr =2l frrṪ2 + Φ2f
′
rr + l T2ḟrr , (2.3.16)

δ2fϕϕ =2lftϕT
′
2 − l2Φ′′′

2 + 2fϕϕΦ
′
2 + Φ2f

′
ϕϕ + lT2f

′
tϕ , (2.3.17)

δ2ftϕ =2ftϕΦ
′
2 +

2

l
fϕϕT

′
2 −

l

2
T ′′′
2 + Φ2f

′
tϕ +

1

l
T2f

′
ϕϕ , (2.3.18)

where we have used the asymptotic field equations up to order O(1/r3) 6. Also,
one can notice from (2.3.16), that frr transforms into itself, meaning that no other
fij component will appear in the transformation. Without loss of generality one
can set frr to zero. Then, by applying (2.3.15) and transformations (2.3.17) and
(2.3.18), the algebra reads

{Q(T1,Φ1), Q(T2,Φ2)} = Q(T[1,2],Φ[1,2])+

∫
dϕ

[
l

8πG
(Φ′′′

1 T2 − Φ′′′
2 T1)

]
, (2.3.19)

where one can identify an important property, which is that the charge algebra
realize through the Lie bracket of the generators T and Φ. Now, the symmetries
are characterized by the vector η = T∂t + Φ∂ϕ which is a two-dimensional
representation of the conformal algebra. Then, computing the Lie bracket [η1, η2] =
Lη1η2 one can see that produces a new vector whose component now are T[1,2]∂t +

Φ[1,2]∂φ, and those components result to be

T[1,2] =T1Φ
′
2 − T2Φ

′
1 + Φ1T

′
2 − Φ2T

′
1 (2.3.20)

Φ[1,2] =Φ1Φ
′
2 − Φ′

1Φ2 + T1T
′
2 − T ′

1T2 . (2.3.21)

Now that the principal term of the algebra has been defined, it is time to analyze
the extra term appearing in the algebra. From where one can see that does not

6from the field equations one can obtain that ftt =
1
l2 fϕϕ , ḟtϕ = 1

l2 f
′
ϕϕ and ḟϕϕ = f ′

tϕ
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depends on any metric function fij and instead depends only on the generators T
and Φ, then can be read as a central extension. Hence the algebra (2.3.19) takes
the form of the previously defined in (2.2.27). Therefore, the central extension
corresponds to

KT1,Φ1,T2,Φ2 =
l

8πG

∫
dϕ(Φ′′′

1 T2 − Φ′′′
2 T1) (2.3.22)

which fullfils the 2-cocycle condition (2.2.29), providing a central extension of the
conformal algebra.

Now, we can show that (2.3.19) is in fact the Virasoro that one usually finds in
conformal field theory. The process to obtain a more explicit form of the algebra
is to consider some properties of the solutions that has been obtained.

From the periodicity condition T (t, ϕ+ 2π) = T (t, ϕ), Φ(t, ϕ+ 2π) = Φ(t, ϕ) and
the equations of the generators (2.3.13) , one can see that the following expansions
in terms of the basis

T±
n =

l

2
ein(

t
l
±ϕ), Φ±

n =
1

2
ein(

t
l
±ϕ) . (2.3.23)

Then, one can obtain that the resulting non-trivial commutators of (2.3.19) are

i{Q(T±
n ,Φ±

n ), Q(T±
m ,Φ±

m)} = (n−m)Q(T±
n+m,Φ

±
n+m) +

l

8G
n3δ(m+n),0 (2.3.24)

As it is showed in [31], the coefficients of the central charge are normalized as c
12

,
meaning that the central charge is

c =
3l

2G
, (2.3.25)

which is exactly the central charge of Brown and Henneaux.

This example closes the explanation on how the covariant phase space can be
generalized so that we can incorporate an extra set of transformations that preserve
asymptotic conditions. Now, in the next following sections, we are going to focus
on applying the concepts of asymptotic symmetries, charge algebra and lower
degree conservation laws for an Einstein-Scalar theory on three dimensions.
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Chapter 3

Asymptotic symmetries in

Einstein-Scalar theory on three

dimensions

3.1 Asymptotic Symmetries

We would like to study the asymptotic group of a broader set of solutions displaying
fall-off conditions incorporating (2.1.6). To make easier the analysis of the metric,
let us define,

ρ

L
= e

Φ
2 (3.1.1)

which is an useful definition to compare with others similar findings of standard
asymptotically flat spacetimes at null infinity [32, 33], from which a Weyl
transformation of a version of Bondi-Metzner-Sachs (BMS) gauge [6, 28] can be
found. This means that the family of spacetimes that are going to be considered
are

ds2 = eΦ
[
V(u, ρ, φ)du2 − 2dudρ+ 2U(u, ρ, φ)dudφ+ ρ2dφ2

]
, (3.1.2)

in this gauge choice u is a light-like coordinate, ρ is a radial direction and φ is
an angle orthogonal to the null rays u = cte, and to introduce more degrees of
freedom that can help at the asymptotic behaviour, we consider that the scalar
field can now depends on all coordinates Φ = Φ(u, ρ, φ). An important feature of
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this gauge is that it let us write the metric as a conformal factor that explicitly
depends on the scalar field Φ. Of course that this family of spacetimes has to still
be able to describe the asymptotically locally flat spaces that solves the equations
of motion of the theory, that’s why one has to find symmetries that preserves the
gauge conditions known as Bondi gauge fixing 1.

gρφ = gρρ = 0, gφφ = eΦρ2 (3.1.3)

Therefore, symmetries preserving these conditions must fulfill

Lξgρρ = Lξgρφ = 0, Lξgφφ = LξΦgφφ (3.1.4)

these equations lead to a definition of the components of the Killing vector

ξu =f(u, ρ, φ) (3.1.5)

ξρ =− ρ∂φY (u, ρ, φ) + ∂2
φf(u, ρ, φ)−

1

ρ
∂φf(u, ρ, φ)U(u, ρ, φ) (3.1.6)

ξφ =Y (u, ρ, φ)− 1

ρ
∂φf(u, ρ, φ) (3.1.7)

Notice that the Killing field includes an explicit dependence on the metric function
U , also for the gauge fixing (3.1.4) to be fulfill, the following functions cannot
depend on the radial coordinate.

∂ρf = ∂ρY = 0 (3.1.8)

Then f = f(u, φ) and Y = Y (u, φ).

Now we are ready to try to find the fall-off conditions 2, that as we can see are
physically relevant, because one of the metric functions is showed in the radial
component of the Killing ξρ, meaning that how the fall-off conditions are defined,
will affect on how the symmetries behaves.

With all this in mind, the symmetries that will be the focus of this work are the

1The Bondi gauge fixing is a common gauge fixing for asymptotically flat spaces
2sometimes you can find this as boundary conditions on the fields
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ones that preserve the following fall-off conditions

V = −ρ2

l2
+ V0 +O(ρ−1), U = U0 +O(ρ−1), Φ = 2 log

(ρ
l

)
− 2θ +O(ρ−1) ,

(3.1.9)
Where V0, U0 and θ are arbitrary functions of u and φ, while l represent a fixed
coupling constant with dimensions of length. Something that will be relevant in
the next chapters is that, one can think of l as a constant that represent the AdS

radius of the asymptotic region of the conformally related spacetime, whose line
element is e−Φds2.

Notice that the fall-off conditions proposed in (3.1.9) will not define conserved
charges, according to the definition (2.3.4) previously defined. The reason is that,
in this type of solutions, the charges are indeed not conserved, because of radiative
terms, coming from the scalar fields E = e−θ(u,φ), which will be a relevant term
interpolating between two asymptotic regions.

Now, by acting with (3.1.7) on the asymptotic expansion previously defined, one
can find that the vector components f and Y are restricted by each other as we
can see on the following equations.

∂uY =
1

l2
∂φf , ∂uf = ∂φY , (3.1.10)

this is exactly the equations of a conformal Killing vector that is defined in the
cylinder [34].

Considering values of the radius such that l ̸= 0, the functions of the Killing vector
comprise a representation of two copies of the Witt algebra. This can be proved
by using a modifed version of the Lie bracket [32]

[ξ(s1, g), ξ(s2, g)] = Lξ(s1,g)ξ(s2, g)− δξ(s1,g)ξ(s2, g) + δξ(s2,g)ξ(s1, g) . (3.1.11)

Where si = (fi, Yi) and the last two terms have been added due to the explicit
dependence of the Killing vectors (3.1.7) on the metric gµν . These terms correspond
to an infinitesimal change of ξ(s2, g) due to a diffeomorphism ξ1. Doing so one
gets,

[ξ(s1, g), ξ(s2, g)] = ξ([s1, s2], g) . (3.1.12)

Where the bracket [s1, s2] = (f[1,2], Y[1,2]) is defined as a two-dimensional
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representation of the conformal algebra with

f[1,2] =f1Y
′
2 − f ′

1Y2 + Y1f
′
2 − Y ′

1f2 (3.1.13)

Y[1,2] =Y1Y
′
2 − Y ′

1Y2 +
1

l2
(f1f

′
2 − f ′

1f2) . (3.1.14)

Some comments regarding the above findings are in order. Firstly, notice that
equations (3.1.10) and (3.1.14) are the same as the ones found on the Brown-
Henneaux example (2.3.13), (2.3.21), with Y = T and f = 1

l
Φ . Secondly, it

is worth mentioning that the coordinate system chosen in this section, admits
a smooth l → ∞ limit of the Killing vectors and asymptotic conditions. By
dropping l−2 terms in (3.1.10) and (3.1.14), the resulting algebra generates the
BMS3 group [35, 36].

3.2 Phase space and charges

3.2.1 Asymptotic solutions

We now analyze the space of solutions of the Einstein-scalar system (1.2.11) in
coordinates (3.1.2) subjected to the boundary conditions (3.1.9). One of the
important advantages of the conformal BMS gauge discussed before, is that one
can determine the radial dependence of the system without losing the functional
form of the self-interacting potential V (Φ), this property will help to find the
asymptotic radial expansion associated to the fields Φ, U and V . To start solving
the system, let us consider the equation Eu

ρ = 0 that gives the equation for the
scalar field

(∂ρΦ)
2 + 2 ∂2

ρΦ = 0 (3.2.1)

whose general solution can be written as

Φ = 2
(
log

[ρ
l
+ θ1(u, φ)

]
− θ(u, φ)

)
. (3.2.2)

And to see the metric functions we first see the fields equations Eu
u − Eρ

ρ = Eu
φ =

Eφ
ρ = 0 that determine the radial dependence of U which gives

ρ(ρ+ lθ1)∂
2
ρU − lθ1∂ρU − 2(U − U0) = 0 , U0 ≡ l(θ1∂φθ − ∂φθ1) . (3.2.3)
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The latter can be solved in a expansion series consistent with the asymptotic
behavior at infinity (3.1.9)

U = U0 +
U1

ρ

∑
n≥0

3

n+ 3

(
−lθ1
ρ

)n

. (3.2.4)

where U1 = U1(u, φ) is an arbitrary function of the angles. From Eρ
ρ − Eφ

φ = 0

and using the above solution we can find

ρ2(ρ+ lθ1)∂
2
ρV − lθ1ρ ∂ρV − 2ρ(V − V0) = 2(U − U0)θ

′

+ 2(U − U0)
′ + (ρθ′ + U0)∂ρU + (lθ1 + ρ)∂ρU ′ . (3.2.5)

with V0 = (∂φθ)
2 − ∂2

φθ + l(θ1∂uθ − ∂θ1). The solution to the latter equation can
be again expressed in terms of infinite series around ρ → ∞ as

V = −ρ2

l2
+ V0 +

1

ρ

∑
n≥0

1

ρn

(
3(−lθ1)

nV1

n+ 3
+ Fn

)
. (3.2.6)

Where V1 is an arbitrary function of u and φ, while Fn are functions completely
determined by U1, θ1 and θ. It is not necessary for the present discussion the
particular form of the function, in fact the only important conclusion is the fact
that Vn vanishes when U1 = θ1 = 0.

The only remaining equations are Eρ
u = Eρ

φ = 0 and they can be solved up to
O(ρ−4) obtaining an expression for θ1,

θ1 = keθ + l∂uθ , (3.2.7)

where k, is an integration constant. The sub-leading contributions in the large ρ

expansion imply differential equations involving Fn, U1 and θ. For the purpose of
providing the asymptotic solution considered here, it is only necessary to consider
the equations arising at ρ−4 order. They yield relations for V1 and U1

2V̇1 − 3V1θ̇ −
3

l2
(U ′

1 − U1θ
′) = −2(V0 − lθ̇1)□θ + 3θ′□θ′ + lθ1□θ̇ ,

3U̇1 − 3U1θ̇ − V ′
1 = lθ1 (2θ

′□θ −□θ′) .
(3.2.8)

Where □θ = −l2∂2
uθ + ∂2

φθ is the two-dimensional d’Alambertian.
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Finally, the diagonal components of the field equations Eu
u = Eρ

ρ = Eφ
φ determine

the self-interacting potential for which one can express a series expansion for large
values of the scalar field Φ that gives

V (Φ) = − 6

l2
e−Φ +

4k

l2
e−

3
2
Φ +O(e−

5
2
Φ) . (3.2.9)

What’s interesting about this result is that it seems like (2.2.48) for α = 1 with
subleading corrections and thus, we must regard k as a fixed coupling constant.
In the next section exact solutions as well as a potential will be provided.

3.2.2 Surface charges

Now that the asymptotic symmetries has been defined, it is time for the most
important part. If the choice of the fall-off on the fields has been correct, then the
Killing vectors (3.1.7) can be inserted into the equations (2.2.56) and evaluated
in the asymptotic region ρ → ∞ only to find that all source of divergences are
zero and the physically relevant terms (the finite part) survives.

It is worthwhile mentioning that the Barnich-Brant formalism [37] yields a different
expression for the gravitational contribution, however it coincides with the one
presented here when using the conformal Bondi gauge (3.1.2) (see [38] for more
details on this point).

For the asymptotic conditions studied here, one can verify that the surface charge
of the scalar and gravitational sectors arise linear, quadratic and cubic divergences
for a series expansion of ρ → ∞, but thanks to the form of (2.2.56) one can verify
that

ktr
GR =− 4e−θfδθ

l3
ρ3 +O(ρ2) +O(ρ) +QGR +O(1/ρ) (3.2.10)

ktr
Φ =

4e−θfδθ

l3
ρ3 +O(ρ2) +O(ρ) +QΦ +O(1/ρ) (3.2.11)

where QGR and QΦ are the finite contributions of the gravitational and scalar
sector. Then, the total conserved charge is the sum of both contributions

ktr
ξ = 2fδ(k)ρ2+

[
fδ

(
e−θ(V0 − θ1θ̇ + θ̇1 − θ′2 + θ′′)

)]
ρ (3.2.12)

+
[
Y δ

(
e−θ(U0 + θ′1 − θ1θ

′)
)]

ρ+ δQξ(χ) , (3.2.13)
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where now the quadratic divergence is proportional to a variation of a constant
δ(cons) = 0, and the linear divergences are just the equation of motion that has
been solved in the previous subsection (3.2.1).

A similar behaviour has been observer in relaxed AdS boundary conditions due
to a slowly decaying scalar field at infinity [24, 39, 25]. These examples together
with the extended asymptotic presented here, highlight the importance of the
contribution of the matter fields to render a finite charge.

The explicit form of (2.2.56) is generically non-integrable in the space of fields,
but it can be simplified by using a definition E ≡ e−θ. This leads to the expression

δQξ(χ) = δQ(s, χ) + Θs(χ, δχ) (3.2.14)

with s = (f, Y ) and

Q(s, χ) =
1

16πG

∮ [
(k − lĖ) (fV0 + 2Y U0) +

2

l
fEV1 +

3

l
Y EU1

]
, (3.2.15)

Θs(χ, δχ) =
1

16πlG

∮ (
4f ′U0δE + 2fU ′

0δE + l2fV0δĖ + fV1δE
)
. (3.2.16)

Where Q(s, χ) is the integrable piece, while Θs(χ, δχ) is the contribution that can
not be expressed as a local functional of the fields. This definition is not unique,
as we can always add an arbitrary functional Ns and define Q′

s = Qs +Ns with
Θ′ = Θ− δNs, such that (3.2.14) is invariant.

A canonical realization of the asymptotic symmetries needs a definition of an
integrable charge Qξ. One way of sorting out this issue is by restricting our phase
space to configurations satisfying δΘ(χ, δχ) = 0. An immediate consequence of
the latter shows that one can not provide a functional relation among the fields E ,
Ė and V1 without breaking the enhanced asymptotic symmetry. Hence, the only
option, in order to maintain the amount of symmetries of this configuration is to
understand the underlying properties of the integrable charge Q(s, χ).

3.3 Exact solutions

Even if an asymptotic behaviour has already been defined, one can still study a
particular solution that still realize the asymptotic behaviour, and that could be
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achieve by fixing the arbitrary functions to integration constants. In this section a
particular set of solutions will be studied such that the physical properties will be
probed by the integrable piece Q(s, χ). It will also being shown that δQ defines a
valid extension of the first law of thermodynamics for an asymptotically locally
flat black hole. Furthermore, a second set of solutions that describe radiating
spacetimes will be provided, in which Q(s, χ) samples the dynamical evolution of
the system to a very peculiar set of solutions.

3.3.1 Stationary black hole solution

Demanding axial symmetry we find an extension of Mann-Chan solution (2.1.1)
admitting rotation. The fields read

V = −ρ2

l2
+

V1

ρ
, U =

αlE−3

ρ
, Φ = 2 log

(ρ
l
E
)
. (3.3.1)

where V1 and E are integration constants, as U ̸= 0, this is a rotating solution.
An interesting fact about this solution is that the rotation cannot disappear with
a coordinate transformation. This, for instance, differs from a rotating BTZ black
hole, where the angular momentum can be obtained from a boost in the u− ϕ

plane [40].

On the other hand, α > 0 and l are fixed constant defining the self-interacting
potential

V (Φ) = − 6

l2
e−Φ +

3α2

2l4
e−4Φ . (3.3.2)

a plot of the potential is presented in (3.3.3). It is easy to see the scalar field
potential goes to zero exponentially fast for positive Φ. This yield a vanishing
cosmological constant, allowing for the asymptotically flat solution (3.3.1) to arise
at large values of the scalar field. The potential also has a global minimum at
Φc = 2

3
log

(
α
l

)
. At that point the potential becomes an effective cosmological

constant

V (Φc) = − 9
2l2

(
l
α

)2/3 ≡ − 2

L2
. (3.3.3)

Around this critical value the scalar field adquires a mass m2 = 8
L2 and the

geometry becomes a locally AdS3 spacetime. Using the standard Klein-Gordon
inner product, the scalar field is normalizable there. In the context of AdS/CFT
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this means that its sub leading term, the “VEV” is excited around this point. At
the end of this section we comment on how this AdS3 background emerges as a
near-horizon limit of (3.3.1) hence this critical points plays a role similar to that
of the effective potential of the attractor mechanism.

3.3.1.1 Charges and first law of thermodynamics

The line element described by (3.3.1) represent a rotating black hole, whose event
horizon is located at

ρ30 =
l2

2

(
V1 +

√
V2
1 − 4α2/E6

)
(3.3.4)

provided by V1 ̸= 2α/E3. This is a null surface generated by a Killing horizon
χ = −∂u + ωH∂φ. The value of the angular potential ωH and the surface gravity
κ follows from χµ∇µχ

ν = κχν when evaluated on ρ = ρ0,

κ =
3

2

(
ρ0
l2

− l2α2

E6ρ50

)
ωH =

lα

(Eρ0)3
. (3.3.5)

This solution has global symmetries that luckily has the same asymptotic behaviour
as the previous section, which is helpful because the equation (3.2.14) still holds
to this situation. This gives as a result that the global charges are; the mass,
associated to f = 1, and the angular momentum which is conjugated to Y = 1.
Their values reduce to

/δQ(∂u) =
1

8Gl
(2EδV1 + 3δEV1) , Q(∂φ) =

3

8G
αE−2 . (3.3.6)

It is worth emphasizing that the first law of thermodynamics still holds in this
type of solution regardless of the non-integrability of the mass. Indeed using
potentials (3.3.5) one finds that

/δQ(∂u) = THδS + ωHδQ(∂φ) . (3.3.7)

where TH = κ
2π

is the Hawking temperature and S corresponds to the black hole
entropy.
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3.3.2 Extremal solutions

Now, another interesting feature of the rotating black hole is what is called
“extremal solution”, and can be seeing from the equation of the event horizon
(3.3.4) that defines two different horizons, an inner horizon and an external horizon.
Normally these two horizons are separate it by some “distance” but at a certain
value of the constants the two horizon can became one. When this happen we say
that the solution is extremal.

For this solution, the extremal value comes when V1 = 2αE−3. The scalar field is
the same as in (3.3.1), but the line element becomes

ds2 =
ρ2

l2
E2

[
−
(
ρ

l
− lV1

2ρ2

)2

du2 − 2du dρ+ ρ2
(
dφ+

lV1

2ρ3
du

)2
]

(3.3.8)

This is interesting because the horizon is given by the value where the scalar
potential V (Φ) reaches its minimum, ρ3c = l2αE−3 meaning that the extremal
solution coincides with the configuration in which the system describe an
asymptotically AdS3 spacetime.

By zooming around this region we will find that the near-horizon description is
captured by the Coussaert-Henneaux self-dual solution [41]. To show this, let us
make a coordinate transformation that will help to visualize this zoom

ρ3 = ρ30 + ϵδ, u =
U

ϵ
, φ = ϕ− U

lϵ
. (3.3.9)

After taking the limit ϵ → 0 we find a one-parameter solution given by

ds2 =
1

ρ2c

(α
l2

)2/3
[
− ∆2

l2ρ2c
dU2 − 2

3
dU d∆+ ρ4c

(
dϕ− ∆

lρ3c
dU

)2
]
,Φ =

2

3
log

(α
l

)
,

(3.3.10)
which satisfies Rµ

ν = − 9
2l2

(
l
α

)
δµν consistent with the minimum of the scalar

potential. This is not a surprise, as it is known that the Coussaert-Henneaux
geometry arises as a near horizon limit of an extremal BTZ black hole[42].
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3.3.3 Dynamical domain-wall

Motivated by the behavior of the previous potential, a peculiar solution, that
accommodates the gauge (3.1.2) is

V (Φ) = − 6

l2
e−Φ +

4k

l2
e−

3
2
Φ . (3.3.11)

This new self-interacting potential has a minimum, where a AdS3 space emerge
and also describes asymptotically locally flat solutions. This can be seeing from
the plot

0 1 2 3 4 5 6
3

2

1

0

1

2

3

4

l2 V
[

] Asymptotically locally
 flat region

= c

AdS3
solution

Figure 3.3.1: A schematic representation of the potential l2V (Φ) for k = 10. At
the minimum Φc = 2 log(k) a locally AdS3 solution arises representing, for instance,
a BTZ black hole for the choice θ = µu. For large values of Φ, the curvature
vanishes signaling the emergence of an asymptotically locally flat geometry. Notice
that a very similar profile is also displayed by the scalar potential defined in (3.3.3).

Where now the idea is to show that this self-interacting potential comes from a
dynamical configuration that start like an asymptotically locally flat solution and
evolves to an AdS3 solution.

It has been already defined in (3.2.2) that the asymptotic solution of the scalar
field, implementing (3.2.7) is

Φ = 2log
(ρ
l
E − lĖ + k

)
, (3.3.12)
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Where now the function θ depends on the angles (u, φ) because it satisfies a free
boson equation

□θ = 0 . (3.3.13)

Another name for this equation which is more common is the wave equation, and
it is known that has a solution of a zero mode (on both coordinates) plus in-going
and out-going waves

θ(u, φ) = µu+ σφ+ θ+(x
+) + θ−(x

−) . (3.3.14)

where we have explicitly separated the zero mode contributions associated to
constants µ and σ from the rest of the oscillators θ± that are arbitrary functions
of x± = u/l ± φ. In terms of the free field θ, one completely solves the metric
functions where relations (3.2.6) and (3.2.4) reduce to

V = −ρ2

l2
+ l2θ̇2 + θ

′2 − 2θ′′ ,U = l2(θ̇θ′ − θ̇′) . (3.3.15)

This means that the phase space of this two-dimensional system is controlled by the
coadjoint representation of the Virasoro group [43] in terms of the representatives
(U0,V0). There is an additional restriction, namely that the scalar field Φ must be
single-valued on the circle, which in turn implies the condition

θ(u, φ+ 2π) = θ(u, φ) (3.3.16)

this equation implies that σ = 0 and that that θ± are periodically well-defined
functions. Furthermore, the momentum density U0 must have a vanishing zero
mode.

The linear dependence on u makes the scalar field becomes a constant at late
Bondi time Φ(u → ∞) = 2log(k)3, which is the value where the theory describes
a spacetime that is locally AdS3, this has been reported previously in [33]. This
produces an effective cosmological constant Λeff = − 1

k2l2
.

For simplicity, let us examine in more detail the zero mode solution θ = µu,
the solution already became dynamical as it was mentioned at the start of
this subsection, the point on which one can say that interpolates between an

3Without loss of generality, we have set µ > 0. Negative values of µ only revert the behavior of
the Φ along u.
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asymptotically locally flat solution and a locally AdS3 can be seeing from the
Ricci scalar

R = − 2

l2
(8e−Φ − 4e−

3
2
Φk − k2e−2Φ) , (3.3.17)

where we can see that for Φ → ∞ the spacetime becomes asymptotically flat.
Besides, it becomes constant R → 6Λeff when the scalar goes to 2 log(k). In
these coordinates, there this a curvature singularity when Φ → −∞ or ρsing =

−l2µ − kle−µu. Fortunately, this singularity is hidden behind the null surface
ρnull = l2µ for k > 0. Therefore, the zero mode geometry of this solution represents
a dynamical collapsing spacetime with time-dependent conformal factor that settles
down to a non-rotating BTZ black hole at u → +∞. This final state corresponds
to the minimum of the potential.

3.4 Charge algebra

Let us recall the expression for surfaces charges found in section (3.2.2)

/δQξ(X ) = δQ(s,X ) + Θs(X , δX ) , (3.4.1)

which for solutions (3.3.15) reduces to

Q(s,X ) =
1

16πG

∮
(k − lĖ) (fV0 + 2Y U0) ,

Θs(X , δX ) =
1

16πlG

∮ (
4f ′U0δE + 2fU ′

0δE + l2fV0δĖ
)
.

(3.4.2)

In the standard construction [44, 17, 37], the algebra of the charges is isomorphic
to the Lie bracket of the symmetries. This is possible only when δQξ is an exact
δ-form. In that case, the Dirac bracket of the charges is given by

{Qξ1 , Qξ2}∗ ≡ δξ2Qξ1 (3.4.3)

We would still like to have a canonical representation of the symmetries, however
we cannot use the standard Dirac bracket due to the presence of Θs(X , δX ) in
the charges. Fortunately, Barnich and Troessaert (BT) [45] have constructed a
bracket for the integrable charges Q(s,X ) that incorporates the non-integrable
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contribution. The mentioned algebraic structure is given by

{Q(s1,X ),Q(s2,X )}BT ≡ δs2Q(s1,X ) + Θs2(X , δs1X ) , (3.4.4)

At this point, we need the action of the asymptotic vectors s ≡ (f, Y ) on the
leading fields. The relevant field is just θ and its transformation law can be
obtained from the preservation of the fall-off at infinity (3.1.9). Doing so, we get

δsθ = f θ̇ + Y θ′ + Y ′ . (3.4.5)

The transformation laws of fields V0 and U0 can be obtained from the previous
relations. They yield

δsV0 = Y V ′
0 + 2Y ′V0 − 2Y ′′′ +

2

l2
(fU ′

0 + 2f ′U0) ,

δsU0 = Y U ′
0 + 2Y ′U0 +

1
2
fV ′

0 + f ′V0 − f ′′′ .
(3.4.6)

By using these relations we can show that after an straightforward, albeit
lengthy application of the BT bracket formula, gives a canonical representation
of the asymptotic symmetries. Indeed, by collecting all terms and removing the
dependence on X for simplicity, we find

{Q(s1),Q(s2)}BT = Q([s1, s2]) +K(s1, s2) (3.4.7)

where [s1, s2] is the modified Lie bracket of two Killing vectors (3.1.14) and
K(s1, s2) is field dependent central extension

K(s1, s2) =
1

8πG

∮ [
(k − lĖ)(Y ′′′

1 f2 − f1Y
′′′
2 ) +

1

l
E ′′′(f ′

1f2 − f1f
′
2)
]
. (3.4.8)

This term is a new element of the algebra generated by the BT bracket, provided

{K(s1, s2),Q(s3)}BT ≡ δs3K(s1, s2) , {K(s1, s2),K(s3, s4)}BT = 0 . (3.4.9)

It is important to stress that since Ks1,s2 transforms under the ASG, the Jacobi
identity is satisfied by (3.4.7), provided the field dependent central extension
satisfies a generalized cocycle condition

δs3K(s1, s2) +K([s1, s2], s3) + cyclic(1, 2, 3) = 0 , (3.4.10)
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which is indeed satisfied by (3.4.8) (details can be found in appendix A3). Notice
that this represents an extension of the cocycle condition defined in (2.2.29),
because now we consider that the central extension no longer commute with the
charges, as it is defined in (3.4.9).

The field dependent central extension K(s1, s2) has ambiguities associated to the
normalization of the integrable part of the charge[45]. In section 3.2.2, we mention
that Q(s) can be shifted by a normalization Ns, so that the total non-integrable
charge /δQξ remains invariant. At the level of the algebra, we obtained (3.4.7) for
the charges Q′(s) = Q(s) +Ns and K′(s1, s2) given by

K′(s1, s2) = K(s1, s2) + δs1Ns2 − δs1Ns2 +N[s1,s2] . (3.4.11)

An ambiguity of this sort is considered trivial as the generalized cocycle condition
is (3.4.10) immediately satisfied.

3.4.1 Mode expansion

It is enlightening to express the generators of the algebra (3.4.7) in terms of the
Fourier modes solutions to (3.1.10)

ℓ±n = 1
2
ein(

u
l
±φ)(l∂u ± ∂φ) , L ±

n = Q(ℓ±n ) . (3.4.12)

The algebra (3.4.7) can be explicitly written as

i{L ±
n ,L ±

m }BT = (n−m)L ±
m+n +K(ℓ±n , ℓ

±
m) , i{L +

n ,L −
m }BT = K(ℓ+n , ℓ

−
m) .

(3.4.13)

with

K(ℓ±n , ℓ
±
m) =

kl

8G
n3δm+n,0 −

l

16G
ei(m+n)

u
l

[
(n3 −m3)lĖm+n + i(n−m)(m+ n)3Em+n

]
K(ℓ+n , ℓ

−
m) =

l

16G
ei(m+n)

u
l

[
(n3 −m3)lĖn−m − i(n−m)4En−m

]
.

(3.4.14)

This is an explicitly time-dependent algebra with En(u) = 1
2π

∮
einφ E(u, φ).

However, it has an interesting late time behavior since the coefficient En are
exponentially decaying for large u. This can be seen by using the periodic
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properties of θ defined in (3.3.14), implying

En(u) = e−(µ−i
n
l )u

∞∑
k=−∞

E+
k E

−
n+ke

2i
ku
l , (3.4.15)

with E±
n being the Fourier mode of the functions e−θ± . The important conclusion

we get from the mode expansion of En(u) is that only the term proportional to k

in (3.4.13) survives in the limit u → +∞. Therefore, we have

K(ℓ±n , ℓ
±
m) →

c

12
m3δm+n,0 , K(ℓ+n , ℓ

−
m) → 0 , (3.4.16)

and the time-dependent algebra (3.4.14) becomes two commuting copies of the
Virasoro algebra with

c =
3kl

2G
, (3.4.17)

being the Brown-Henneaux central charge. This asymptotic symmetry algebra
emerges for configurations that slightly depart from the minimum of the potential
(3.3.11).
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Chapter 4

Conclusion

In this work we have analyzed the asymptotic structure of Einstein gravity coupled
to a self-interacting scalar field in 2+1 dimensions. We have focused on the sector
in which the self-interaction permits a scalar field with slow fall-off at infinity,
compatible with asymptotically locally flat geometries. Remarkably, in spite of
the slow fall-off of the scalar and the non-trivial asymptotic geometry, the charges
turn out to be finite due to a subtle cancellation of divergences coming from both
the gravity and the matter sectors. The potentials here considered are of the same
form as those emerging from Kaluza-Klein compactifications of GR coupled to
matter fields [11] and in gauged supergravity (see e.g. [46], [47] and [48]). We have
proved that for a family of self-interactions, even in the asymptotically locally flat
region, two copies of the Witt algebra emerge, since the behavior of the metric
at infinity is such that our geometries share the conformal asymptotic geometry
with AdS3. By working on a conformal Bondi gauge, we have shown that the field
dependent asymptotic symmetries span two copies of the Witt algebra, which
is canonically realized by means of the Barnich-Troessaert bracket [45]. Even
more, we were able to find a new infinity family of time dependent solutions.
These configurations are governed by a two-dimensional free-boson theory, which
dynamically interpolate between the asymptotically locally flat and the locally
AdS vacua of the theory, the latter being achieved for late times. The canonical
realization of the charges associated to these dynamical solutions is given by two
copies of the centrally extended Witt algebra, where the central extension matches
the Brown-Hennaux one for late times. This can be interpreted as a realization of
the Holographic c−theorem, since the spacetime reaches a locally AdS geometry
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for late times, and therefore the time plays the role of the holographic coordinate
leading to a flow of the central charge.

In vacuum, the dynamics of GR is purely given in terms of boundary gravitons,
while the inclusion of a scalar field introduces a local degree of freedom which, as
we have shown, suitably modify the rich asymptotic structure of GR in vacuum.
We have proposed a family of asymptotic behaviors for the metric and the scalar
field in the conformal Bondi gauge, which accommodates black holes that were
already known in the literature [7, 8] as well as new stationary and even dynamical
solutions. We have provided a consistent thermodynamics for the new stationary
black holes, which are characterized by two integration constants, and lead to
a mass that, in spite of being non-integrable, fulfills the first law of black hole
thermodynamics. It would be interesting to study the structure of phase transitions
that may emerge within these solutions and the thermal background, or even
between the solutions in the AdS sector of the theories we have considered, and
the BTZ solution that is achieved for a fixed value of the scalar field, sitting at a
negative minimum of the self-interacting potential.
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Appendix A

Appendix

A1 Surface Charge of the Scalar sector

Let us consider an action principle of a free scalar field1.

I[Φ] =

∫
d3x

√
−g

(
−1

2
∂µΦ∂

µΦ

)
, (A1.1)

although the action (1.2.9) does consider an “arbitrary” potential, it does not
contribute to the surface charge. As it was explained in (2.2.16), the only
contributions to the charge are the boundary terms.

Now, to find the symplectic potential Θ we take the first variation of (A1.1).

δI =

∫
d3xδΦ

[√
−g

(
−1

2
∂µΦ∂

µΦ

)]
+ δg

[√
−g

(
−1

2
∂µΦ∂

µΦ

)]
=

∫
d3x

[√
−g (−∂µΦ∂

µδΦ) + δg

[√
−g

(
−1

2
∂µΦ∂

µΦ

)]]
=

∫
d3x

[√
−g (∂µ(−∂µΦδΦ) +□ΦδΦ) + Tµνδg

µν
]
, (A1.2)

where the energy momentum tensor is defined as

Tµν =
√
−g

[
−1

2

(
∂µΦ∂νΦ− 1

2
gµν∂ρΦ∂

ρΦ

)]
. (A1.3)

Now if we analyse these terms on-shell and remember that ∂Φ = ∇Φ then

1because Φ is a scalar ∇Φ = ∂Φ
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δI =

∫
d3x

√
−g∇µ(−∇µΦδΦ) (A1.4)

=

∫
(d2x)µ

√
−g(−∇µΦδΦ) , (A1.5)

where the symplectic potential can be read as

Θµ(Φ, δΦ) = −(
√
−g∇µΦδΦ) . (A1.6)

Now that the symplectic potential has been found, we are ready to compute the
symplectic form that has been previously defined as

iξω = δξΘ(δΦ,Φ)− δΘ(δξΦ,Φ) , (A1.7)

this expression applied to (A1.6) gives∫
(d2x)µ

[
δξ(

√
−g(−∇µΦδΦ))− δ(

√
−g(−∇µΦδξΦ))

]
. (A1.8)

In order to compute this, we need to remember that a variation with respect of a
vector ξ is the same as taking the Lie derivative of the element, with this said,
the following is true

δξΦ = ξµ∇µΦ (A1.9)

δξ∇µΦ = ξν∇ν(∇µΦ)−∇νΦ∇νξ
µ (A1.10)

δξ
√
−g =

1

2

√
−ggµνδξgµν =

√
−g∇νξ

ν , (A1.11)

with this definitions, we can start to analyze each term of the symplectic form

δξ(
√
−g(−∇µΦδΦ)) =− δξ(

√
−g)∇µΦδΦ−

√
−gδξ(∇µΦ)δΦ−

√
−g∇µΦδξδΦ

=−
√
−g∇νξ

ν∇µΦδΦ−
√
−g(ξν∇ν(∇µΦ)−∇νΦ∇νξ

µ)δΦ

−
√
−g∇µΦξν∇νδΦ .

Using the definition (A1.6) and integrating by parts the terms that have derivatives



A1. Surface Charge of the Scalar sector 53

of ξ and we end up with,

= ∇ν(ξ
νΘµ − ξµΘν) +∇νΘ

νξµ −∇νΘ
µξν −

√
−gξν∇ν∇µΦδΦ−

√
−g∇µΦ∇νδΦξ

ν

= ∇ν(ξ
νΘµ − ξµΘν) +∇νΘ

νξµ −∇νΘ
µξν −∇ν(

√
−g∇µΦδΦ)ξν

= ∇ν(ξ
νΘµ − ξµΘν) +∇νΘ

νξµ −∇νΘ
µξν +∇νΘ

µξν

= ∇ν(ξ
νΘµ − ξµΘν) +∇νΘ

νξµ ,

we have a boundary term plus an extra term that we would like to cancel with
the other term.

δ(−
√
−g∇µΦξν∇νΦ) = −δ

(
ξν
√
−g

(
∇µΦ∇νΦ +

1

2
(∇Φ)2δµν − 1

2
(∇Φ)2δµν

))
= −δ

(
ξν

(
T µ

ν +
1

2

√
−g(∇Φ)2δµν

))
= −ξνδT µ

ν − ξνδ(−L)δµν ,

and we know that δL = ∇µΘ
µ on-shell, which imply that

δ(
√
−g∇µΦξν∇νΦ) = ξµ∇νΘ

ν .

Now we have all the ingredients to compute the surface charge

iξω =

∫
(dD−1x)µ [∇ν(ξ

νΘµ − ξµΘν) +∇νΘ
νξµ − ξµ∇νΘ

ν ]

=

∫
(dD−1x)µ∇ν(ξ

νΘµ − ξµΘν)

=

∫
(dD−2x)µν(ξ

νΘµ − ξµΘν) ,

here we see that the conserve charge is a surface integral of a term that we call
from now on the “surface charge"

kµν = −2ξ[µΘν] . (A1.12)
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A2 Surface charge of the Einstein Hilbert action

To obtain the surface charge of the gravitational sector, let us consider the
Einstein-Hilbert action

I =

∫
d3x

√
−gR , (A2.1)

as in this work we focus on theories that describe asymptotically locally flat
solutions, we had fixed Λ = 0.

We are already know at this point that the symplectic potential is the boundary
term, but when we take the first variation of (A2.1) we get

δgI =

∫
dDx[δg(

√
−g)R +

√
−gδgR]

=

∫
dDx[Gµν +

√
−ggµνδg(Rµν)] ,

it is not clear the explicit expression of Θµ, but we can be sure that the symplectic
potential is encoded in the last variation, and in order to see the expression of
δgRµν we first need to take δgR

ρ
σµν

δgR
ρ
σµν = ∂µδΓ

ρ
νσ − ∂νδΓ

ρ
µσ + δΓρ

µλΓ
λ
νσ + Γρ

µλδΓ
λ
νσ − δΓρ

νλΓ
λ
µσ − Γρ

νλδΓ
λ
µσ , (A2.2)

where something interesting happen when we study the covariant derivative of
the Christoffel symbol

∇µ(δΓ
ρ
νσ) = ∂µδΓ

ρ
νσ + Γρ

µλδΓ
λ
νσ − Γλ

µνδΓ
ρ
λσ − Γλ

µσδΓ
ρ
νλ , (A2.3)

as we can see, the variation of the Riemann (A2.2) it’s just the difference between
two of the terms define above (A2.3)

δgR
ρ
σµν = ∇µ(δΓ

ρ
νσ)−∇ν(δΓ

ρ
µσ) . (A2.4)

Now, to see the Ricci tensor we just contract two indices of the Riemman Tensor
δRµν = δRρ

µρν = ∇ρ(δΓ
ρ
µν)−∇ν(δΓ

ρ
µρ).

As we can see, there is still one step left to do. We need to express the Christoffel
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symbol in terms of the metric gµν

δΓρ
µν = gρλ

1

2
(∂µδgλν + ∂νδgλµ − ∂λδgµν) + δgρλ

1

2
(∂µgλν + ∂νgλµ − ∂λgµν)

= gρλ
1

2
(∂µδgλν + ∂νδgλµ − ∂λδgµν) + δρσδg

σλ1

2
(∂µgλν + ∂νgλµ − ∂λgµν)

= gρλ
1

2
(∂µδgλν + ∂νδgλµ − ∂λδgµν) + gραgασδg

σλ1

2
(∂µgλν + ∂νgλµ − ∂λgµν)

= gρλ
1

2
(∂µδgλν + ∂νδgλµ − ∂λδgµν)− gραgσλδgασ

1

2
(∂µgλν + ∂νgλµ − ∂λgµν)

= gρλ
1

2
(∂µδgλν + ∂νδgλµ − ∂λδgµν)− gρλδgσλΓ

σ
µν

= gρλ
1

2
(∂µδgλν + ∂νδgλµ − ∂λδgµν − 2δgσλΓ

σ
µν)

= gρλ
1

2
[∂µδgλν − δgσλΓ

σ
µν − δgσνΓ

σ
µλ + ∂νδgλµ − δgσλΓ

σ
µν − δgσµΓ

σ
λν

− (∂λδgµν − δgσµΓ
σ
νλ − δgσνΓ

σ
µλ)]

= gρλ
1

2
(∇µδgλν +∇νδgλµ −∇λδgµν)

Then finally the combination gµν(∇ρ(δΓ
ρ
µν)−∇ν(δΓ

ρ
µρ)) is

=∇ρ

[
gρλ

1

2
(∇νδgλν +∇µδgλµ −∇λ(g

µνδgµν))

]
−

∇ν

[
gρλ

1

2
(∇µ(g

µνδgλρ) +∇ρ(g
µνδgλµ −∇λ(g

µνδgµρ))

]
=∇ρ

[
gρλ

1

2
(2∇νδgλν −∇λ(g

µνδgµν))

]
−

∇ν

[
1

2
(∇µ(g

ρλgµνδgλρ) +∇ρ(gµνδgρµ)−∇ρ(gµνδgµρ))

]
∇ρ(g

µνδΓρ
µν)−∇ν(g

µνδΓρ
µρ) =∇ρ

[
∇ν(gρλδgλν)−∇ρ(gαβδgαβ)

]
,

where we have used in the last equation ρ ↔ ν conveniently. This defines the
symplectic potential Θ(g, δg) which expressing in term of hµν = δgµν is

Θν =
√
−g[∇µhν

µ −∇νh] (A2.5)

then the symplectic form (2.2.33) applied to the Θν defined above is

δξ[
√
−g[∇ν(gρλδgλν)−∇ρ(gαβδgαβ)]]− δ[

√
−g[∇ν(gρλδξgλν)−∇ρ(gαβδξgαβ)]] ,
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because of the extension of the equations, we are going to analyse each term
separately,

δξ[
√
−g[∇µhν

µ −∇νh]] =δξ(
√
−g)[∇µhν

µ −∇νh] +
√
−g[δξ(∇µh

µν)− δξ(∇νh)]

=∇αξ
αΘν +

√
−g[ξα∇α(∇µh

µν)−∇µh
µα∇αξ

ν−

(ξα∇α∇νh−∇αh∇αξ
ν)]

=∇α(ξ
αΘν)− ξα∇αΘ

ν +∇α(
√
−gξα∇µh

µν)−
√
−g∇αξ

α∇µh
µν−

∇α(
√
−g∇µh

µνξν) +
√
−g∇µ∇αh

µαξν −∇α(
√
−gξα∇νh)+

√
−g∇αξ

α∇νh+∇α(
√
−g∇αhξν)−

√
−g□hξν

=∇α(ξ
αΘν +

√
−gξα∇µh

µν −
√
−gξν∇µh

µα−
√
−gξα∇νh+

√
−gξν∇αh)− (ξα∇αΘ

ν +
√
−g∇αξ

α∇µh
µν−

√
−g∇αξ

α∇νh) +
√
−g∇α∇µh

µνξν −
√
−g□hξν

=∇α(2ξ
αΘν − ξνΘα)−∇α(ξ

αΘν) + ξν∇αΘ
α

=∇α(ξ
αΘν − ξνΘα) + ξν∇αΘ

α

=∇α(ξ
αΘν − ξνΘα) + ξν

[
δL−

√
−gGαβh

αβ
]
,

which is already an antisymmetric term, plus terms that has to cancel out with
the next term,

Θν(δξg) =
√
−g∇µ(gναδξgαµ)−

√
−g∇ν(gµαδξgµα)

=
√
−g∇µ[gνα(∇αξµ +∇µξα)]−

√
−g∇ν [gµα(∇µξα +∇αξµ)]

=
√
−g∇µ(∇νξµ +∇µξ

ν)−
√
−g∇ν(∇µξ

µ +∇µξ
µ)

=
√
−g∇µ∇νξµ +

√
−g∇µ∇µξ

ν −
√
−g∇ν∇µξ

µ −
√
−g∇ν∇µξ

µ

=
√
−g∇µ∇νξµ +

√
−g∇µ∇µξν − 2

√
−g∇ν∇µξ

µ

=
√
−g∇µ∇µξν −

√
−g∇µ∇νξµ +

√
−g∇µ∇νξµ +

√
−g∇µ∇νξµ − 2

√
−g∇ν∇µξ

µ

=2
√
−g∇µ∇[µξν] + 2

√
−g[∇µ,∇ν ]ξµ

=2
√
−g∇µ∇[µξν] + 2

√
−gRνµξµ

=2
√
−g∇µ∇[µξν] + 2

√
−gξµ

(
Gµν +

1

2
gµνR

)
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now, we have to take the variation ON-SHELL

δΘ(δξg) =δ(
√
−g(∇µ∇µξν −∇µ∇νξµ)) +

√
−gξνδL

=δ(∂µ(
√
−g(∇µξν −∇νξµ))) +

√
−gξνδL

=∂µ(δ(
√
−g(∇µξν −∇νξµ))) +

√
−gξνδL

=
√
−g∇µ

[
1

2
h∇µξν − hµα∇αξ

ν + gµρ
(
1

2
gνσ(∇ρhσλ +∇λhσρ −∇σhρλ)ξ

λ

)]
√
−g∇µ [−(µ ↔ ν)] +

√
−gξνδL

=
√
−g∇µ

[
1

2
h∇µξν − hµα∇αξ

ν +

(
1

2
(∇µhν

λ +∇λh
νµ −∇νhµ

λ)ξ
λ

)]
√
−g∇µ [−(µ ↔ ν)] +

√
−gξνδL

=
√
−g∇µ

[
1

2
h(∇µξν −∇νξµ)− (hµα∇αξ

ν − hνα∇αξ
µ) +

1

2
(∇µhν

λ +∇λh
νµ −∇νhµ

λ)

]
−

√
−g∇µ

[
∇νhµ

λ −∇λh
µν +∇µhν

λ)ξ
λ
]
+
√
−gξνδL

=
√
−g∇µ

[
1

2
h(∇µξν −∇νξµ)− (hµα∇αξ

ν − hνα∇αξ
µ) + (∇µhν

λ −∇νhµ
λ)ξ

λ

]
+
√
−gξνδL .

Now, we can finally compute the surface charge

iξω =

∫
(d2x)ν∇µ

[
ξµΘν − ξνΘµ + δL− δ(

√
−g∇µ∇[µξν]2)− δL

]
=(dx)νµ2

√
−g

[
ξ[µ∇αh

ν]α − ξ[µ∇ν]h− 1

2
h∇[µξν] − ξα∇[µhν]α + hα[µ∇αξ

ν]

]
where we can identify the surface charge as the terms next to (dx)µν

kµν = 2
√
−g

[
ξ[µ∇αh

ν]α − ξ[µ∇ν]h− 1

2
h∇[µξν] − ξα∇[µhν]α − hα[µ∇αξ

ν]

]
.

(A2.6)

This define the surface charge of the gravitational sector without cosmological
constant.
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A3 Generalized cocycle condition

Here we show that

δs3K(s1, s2) +K([s1, s2], s3) + cyc(1, 2, 3) = 0 (A3.1)

is satisfied for (3.4.13). To do so, we define K(s1, s2) ≡ A12 + B12 such that

A12 =
1

8πG

∮
(k − lĖ)(Y ′′′

1 f2 − f1Y
′′′
2 ) B12 =

1

8πGl

∮
E ′′′(f ′

1f2 − f1f
′
2) (A3.2)

Then

δ3A12+cyc(1, 2, 3) =
1

8πG

∮ [
1
l
(f ′′3E − f ′3E ′)− lY3Ė ′

]
(Y′′′

1 f2− f1Y
′′′
2 )+cyc(1, 2, 3)

(A3.3)
and

A[1,2]3 + cyc(1, 2, 3) =
1

8πG

∮
(−lĖ)(Y ′′′

[1,2]f3 − f[1,2]Y
′′′
3 ) + (1, 2, 3)

=
1

8πG

∮
(−lĖ)

[
Y3(Y

′′′
1 f2 − f1Y

′′′
2 ) +

2

l2
f3(f

′
1f

′′
2 − f ′′

1 f
′
2)
]′
+ cyc(1, 2, 3) ,

(A3.4)

thus,

δ3A12 +A[1,2]3 + cyc(1, 2, 3)

=
1

8πGl

∮ [
(f ′′

3 E − f ′
3E ′) (Y ′′′

1 f2 − f1Y
′′′
2 )− 2Ėf3(f ′

1f
′′′
2 − f ′′′

1 f ′
2)
]
+ (1, 2, 3) .

(A3.5)

Analogously, for B12 we have

δ3B12 + cyc(1, 2, 3) =
1

8πGl

∮ [
− 2f3Ė(f ′′′

1 f ′
2 − f ′

1f
′′′
2 )

− (Y ′
3E ′′ − Y ′′′

3 E + Y3E ′′′ − Y ′′
3 E ′)(f ′′

1 f2 − f1f
′′
2 )
]
+ cyc(1, 2, 3) (A3.6)

and

B[1,2]3 + cyc(1, 2, 3) =
1

8πGl

∮
E ′′′

[
f3(f

′
1Y

′
2 − Y ′

1f
′
2 + Y1f

′′
2 − Y2f

′′
1 )
]
+ cyc(1, 2, 3) .

(A3.7)
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that can be used to obtain

δ3B12+B[1,2]3+cyc(1, 2, 3) =
1

8πGl

∮ [
−2f3Ė(f ′′′

1 f ′
2−f ′

1f
′′′
2 )+Y ′′′

3 E(f ′′
1 f2−f1f

′′
2 )

+ E ′f3(f
′
1Y

′′′
2 − Y ′′′

1 f ′
2)
]
+ cyc(1, 2, 3) . (A3.8)

By summing up contributions (A3.5) and (A3.8) together with their cyclic
permutations, one gets the desired result (A3.1).
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