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COMPUTACIÓN
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Abstract

In order to train deep learning models, usually a large amount of correctly annotated data
is needed. Depending on the data domain, the task of correctly annotating data can prove
to be difficult, as in many cases the ground truth of the data is not obtainable. This is true
for numerous problems within the astronomy domain, one of these being the morphological
classification of galaxies. The aforementioned means that astronomers are forced to rely on
an estimate of the ground truth, often generated by human annotators. The problem with
this is that human generated labels have been shown to contain biases related to the quality
of the data being labeled, such as image resolution. This type of bias is a consequence of the
quality of the data, that is, it is independent of the annotators, meaning that even datasets
annotated by experts can be affected by this type of bias. In this work, we show that deep
learning models trained on biased data learn the bias contained in the data, transferring
the bias to its predictions. We also propose a framework to train deep learning models,
that allows us to obtain unbiased models even when training on biased data. We test our
framework by training a classification model on images of morphologically classified galaxies
from Galaxy Zoo 2 and show that we are able to diminish the bias in the data.
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1 Introduction

In the last two decades there have been considerable advances in the area of machine learning,
which together with the rapid improvement of technology have led to a considerable amount
of real-world problems being solved using these algorithms. In particular, the supervised
learning paradigm has proven to be highly effective, obtaining state of the art performance
in a large number of problems. Supervised learning refers to the task of learning a function
that maps an input to a target output, based on examples of input-output pairs. More
specifically, classification problems lie within the domain of supervised learning, where the
task is classifying objects, described by some input, into a specific class. More generally,
we consider a training set D = {(xi, yi)}Ni=1 where xi ∈ X corresponds to the inputs and
yi ∈ Y corresponds to the outputs or labels. D is used to learn a function f(x) : X → Y
that correctly maps the inputs xi to the labels yi.

When working in real-world problems, it can be very difficult to obtain the ground truth
labels yi needed to train a classification model. In a large number of problems, these ground
truth labels are not directly obtainable, but an estimate ŷi can be obtained by human
annotators (e.g., an annotator could review a set of images and manually assign a label to
each of them). The problem with the previously mentioned procedure is that these ŷi labels
may be biased due to poor quality of the observations being labeled by the annotators. An
example of this may be a set of low resolution images where the key classification features
are not clearly distinguishable. This can lead to some of these images being systematically
mislabeled, introducing a bias associated with the quality of the observations, independent
of the annotators.

The aforementioned problem is particularly relevant in the astronomy field, more specif-
ically in the morphological classification of galaxies. The seminal example of a galaxy mor-
phological classification scheme is the Hubble sequence [17], which distinguishes galaxies into
one of four classes: elliptical, lenticular, spiral or irregular. Over the time, new classification
schemes have been proposed, such as the De Vaucouleurs system [6], which introduces new
and more detailed classes. Being able to classify galaxies according to their morphology is
important, since galaxy morphology have been shown to be linked with intrinsic properties
such as gas content, brightness, color [10], and star formation [24, 36].

For some time, visual classification played the dominant role in galaxy morphological
studies, either done by expert astronomers [7, 8, 3, 11, 31, 27, 20] or through crowdsourcing
systems such as Galaxy Zoo [26, 1, 25, 37, 35, 38]. Recently, new datasets of morphologically
classified galaxies obtained using diverse machine learning methods have been published,
many of them using supervised learning [13, 18, 9, 19, 21, 40], which requires labeled datasets
for training. The problem is that human generated labels have been shown to be biased
in terms of observable parameters, resulting in low resolution galaxies being biased towards
smoother types because the fine structure of these galaxies can not be distinguished by human
annotators [4, 37](Fig. 1). Furthermore, deep learning models have shown to learn human
biases that are present in the training data, making this problem even more important,
given the growing popularity of these models in astronomical applications and that usually
the only available labels were generated by humans [22].
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Figure 1: Example of biased classification. (a) A galaxy image as shown to the annotators,
taken from the Earth’s surface. (b) The same galaxy image zoomed in. (c) The same
galaxy at a higher resolution taken from above the Earth’s atmosphere. It can be noticed
that the features present in (c) are not clearly distinguishable in (a) and (b), even when
zooming in. The majority of the annotators classified this galaxy as smooth with no signs
of a disk, even though the disk features are easily distinguishable when looking at the
high resolution image (c).

2 Background

2.1 Artificial neural networks

Artificial neural networks are models originally inspired by biological neural networks, these
models seek to mathematically model their functioning. The basic unit of a neural network
is the perceptron [29], defined as:

ŷ(x,w) = f(
n∑

i=1

wixi + b), (1)

where xi corresponds to the input, n to the number of inputs, wi to the parameters of the
perceptron and b is a bias factor that allows one to move the decision boundary away from
the origin. The function f is called the activation function and can be linear or nonlinear
depending on the problem. The parameters wi are adjusted during training. One of the
first neural networks designed is the feed-forward neural network, which consists of connect-
ing multiple perceptrons. These neural networks group the perceptrons into layers, through
which the data flows sequentially (Figure 2) until they reach the output layer. A neural
network with multiple hidden layers is called a deep neural network. To learn the wi pa-
rameters of a neural network, a loss function, which is defined according to the problem, is
progressively minimized in each iteration. This loss function measures the model error by
comparing the output delivered by the model with the target output. An example of a loss
function is the mean square error, defined as:

ECM =
1

n

n∑
i=1

(yi − ŷi)
2, (2)
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where yi is the target output for object i, ŷi is the output delivered by the model for object
i and n is the number of objects. To update the model parameters, the gradient backprop-
agation algorithm [30] is used. This algorithm computes the gradient of the loss function
with respect to each parameter wi of the model using the chain rule, starting from the last
layer toward the first and updates the parameters after each iteration. The later is done by
using optimization algorithms such as the stochastic gradient descent [28].

Figure 2: Feed-forward neural network. The perceptrons are grouped into layers called
hidden layers. The connections between each perceptron correspond to the wi parameters
of the network. Data is passed from the input layer sequentially to the output layer. The
number of hidden layers, perceptrons, and connections varies with the problem, as do
the activation functions. Source: John McGonagle. Feedforward Neural Networks.
https://brilliant.org/wiki/feedforward-neural-networks

2.1.1 Convolutional neural networks

A convolutional neural network (CNN) [12, 23] is a type of feed-forward neural network
with multiple layers. Originally designed to work on images, allows better feature extraction
than traditional neural networks. CNNs have three main components: convolutional layers,
pooling layers and fully connected layers. In the convolutional layers, convolution operations
are performed on the input (typically images); these consist of a filter that runs through the
input performing matrix multiplications between the filter and the data at each location.
The values of these filters are adjusted during training. The result of this is a feature map of
smaller dimension than the original input, this final dimension depending on both the size of
the input and the size of the convolution filter. In pooling layers the dimension of the data
is further reduced, this is done on the basis of windows that run through the input selecting
the largest value within this window (max pooling) or the average value (average pooling).
Convolutional layers and pooling layers are typically used in pairs, where a pooling layer
goes after each convolutional layer. After these pairs of layers, fully connected layers are
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Figure 3: Residual block of a residual neural network. Note the connection that skips
two layers of the network. Source: [16]

.

used that take as input the features extracted in the previous layers to perform the objective
task.

2.1.2 Residual neural networks

Residual neural networks [16] were designed as an extension of convolutional neural networks.
These types of networks solve two major problems presented by traditional convolutional net-
works: vanishing gradients and accuracy degradation. The vanishing gradients phenomenon
is usually a problem in networks with a large number of layers; it is a consequence of the
gradient backpropagation algorithm, which, by successively computing the gradients of each
parameter in the network, reaches a point where the values are so small that the network
stops learning (the parameters stop updating). This problem has been partially solved with
different strategies [23, 14]. On the other hand, accuracy degradation is a more complex
problem to solve. Theoretically, adding more layers to a convolutional network should im-
prove its performance by being able to obtain better feature maps, or at least should obtain
the same results, since, assuming that an optimal mapping is reached in fewer layers, the
layers that follow should do an identity mapping, i.e., simply copy the output of the previous
layers, functioning as if these extra layers did not exist. However, experiments have shown
that increasing the depth of the network degrades the accuracy of the network compared
to its shallower counterpart [16]. To solve this problem, [16] proposed to add an additional
connection that skips one or more layers of the network (Figure 3); thus, if x is the input of
these layers and F(x) is the output, by means of this new connection, we obtain as output
H(x) = F(x)+x. Reformulating the above, we obtain the residual function F(x) = H(x)−x.
The motivation for this is the accuracy degradation, as this suggests that the model is not
capable of identity mapping across multiple nonlinear layers, such as those of a traditional
CNN. Using this formulation, when the optimum for a set of layers is to perform an identity
mapping, the model can simply approximate the weights of the intermediate layers to zero,
which should be easier than approximating the identity mapping directly.

For this work, we use a ResNet50 model. ResNet50 is a particular implementation of
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Figure 4: Residual block for ResNet34 (left) and bottleneck residual block (right) as
implemented for deeper Residual Neural Networks including ResNet50, ResNet101 and
ResNet152. Source: [16]

.

a Residual Neural Network where the number on its name indicates the number of layers
considered by the architecture, that is, the ResNet50 is a 50 layers deep neural network.
The main difference between ResNet50 and its shallower counterparts (e.g. ResNet34) is
that the residual block (Figure 3) is modified to include 3 layers instead of 2. The purpose
of this is to mitigate the increase of the training time that comes with the addition of extra
layers. This new residual block follows a bottleneck design; the three layers consecutively
perform 1x1, 3x3 and 1x1 convolutions, where the first layer decreases the dimension of the
input that goes into the 3x3 layer and the last layer increases the dimension of the output
(Figure 4).

2.2 Grad-CAM

The Gradient weighted Class Activation Mapping (Grad-CAM) [32] is a technique designed
to understand the decision making process of convolutional neural networks. CNNs (and
most deep learning models) are usually seen as a black box, that is, the conclusions are
drawn from the input and the output of the networks, since the model behavior can not be
comprehended by looking at the structure and weights alone. Grad-CAM uses the gradients
of a given target class (e.g. dog in a classification problem) flowing to the last convolutional
layer to compute a localization map that highlights the most important sections of the input
for predicting the target class (Figure 5). The aforementioned helps to visualize, for this
example, that the model is using mostly the face of the animal to decide if it corresponds to
a dog or a cat. Extrapolating this to other problems can provide important information to
understand why a model is working the way it is.
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Figure 5: Example of Grad-CAM localization map from a ResNet model trained for
classification. (a) The original image. (b) The original image and the localization map
for the target class cat. (c) The original image and the localization map for the target
class dog. Red regions represent the important class-discriminative sections of the image
for the target class. Source: [32]

.

2.3 Astronomical concepts

2.3.1 Galaxy morphological classification

Galaxy morphological classification consists of grouping galaxies into different categories ac-
cording to their visual appearance. The morphological classifications are widely used by
astronomers, the most famous of them being the Hubble Sequence [17]. This classifica-
tion scheme divides galaxies into three classes: elliptical, lenticular, and spiral (Figure 6).
Galaxies that do not belong to any of these classes are called irregular galaxies. Later, De
Vaucouleurs proposed an extension to the Hubble Sequence, known as the De Vaucouleurs
System [6] where he introduced a more elaborate division within the category of spirals,
based on three characteristics: bars, rings and spiral arms (Figure 7).

2.3.2 Redshift

The Redshift is a measure of the increase in the wavelength of an electromagnetic wave caused
by the fact that the source that emits the radiation is moving away from the observer. The
fact that space is continuously expanding generates an effect comparable to two objects
constantly moving away from each other. This causes the spectrum of an astronomical
object to stretch and increase in wavelength. This increase in wavelength, and thus decrease
in frequency, causes the light to become redder. A larger shift means that the light source is
moving away at a greater speed due to the expansion of the universe. It can be demonstrated
that the farther an astronomical object is from the observer, the highest will be its redshift.
Thus, the redshift can be interpreted as a measure of how far an object is from the observer.

6



Figure 6: Diagram of the Hubble sequence. S0 type galaxies correspond to lenticular
galaxies. Source:
https://en.wikipedia.org/wiki/Galaxy morphological classification.

Figure 7: Diagram of the de Vaucouleurs system. It can be noticed that the classes of
the Hubble sequence are kept, but with a more elaborate classification system for each of
them. Source:
https://en.wikipedia.org/wiki/Galaxy morphological classification.
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2.3.3 Point spread function (PSF)

The point spread function (PSF) can be thought of as a function that characterizes the
quality of an imaging system, such as a telescope. The image of a point source, for example,
a very distant star, will never look exactly like a point in the images generated by an instru-
ment; it will usually look like a roughly circular object instead, in which diffraction patterns
can be distinguished. The point spread function characterizes how much the telescope optics
and the atmosphere (in the case of observations taken from the Earth) have redistributed
the light captured by the instrument. Thus, the width of the point spread function can
be interpreted as the resolution of the instrument and, in the context of this work, as the
resolution of a telescope. The greater the width of this function the lower the resolution,
and therefore the lower the quality of the images taken by it.

2.3.4 Galaxy properties

Galaxy properties are physical quantities that characterize the physical state of a galaxy at
a given time. Examples of them are the size, the brightness, the stellar mass, the chemical
composition, the star formation rate and the molecular or atomic gas mass. By using these
properties, astronomers are able to study the evolution of galaxies which is a key part to
understand how the universe is built and how it evolves. Galaxy properties, in the context
of this work, can be divided into intrinsic and observed.

2.3.4.1 Observed properties

An observed property is defined as a property that depends on the observation, i.e., it can
change as a function of the telescope with which it was observed as well as a function of the
galaxy’s inclination. In this work, the following observed properties are used:

• Petrosian angular radius: Also known as angular size, it is the apparent radius of the
galaxy as seen by an observer on the Earth. It is measured in arcseconds.

• Apparent magnitude: The apparent magnitude is a measure of the flux of a celestial
object observed from the Earth, it depends on both the distance of the object from the
Earth and the extinction of the light produced by stardust in the line of sight of the
observer, i.e., it is an observed property. In particular for galaxies, there exist multiple
ways of calculating the total flux, in our case we use the Petrosian flux. The Petrosian
flux Fp is defined as the flux within a certain number Np (Np = 2 for SDSS data) of
Petrosian radii rp; this is:

Fp =

∫ Nprp

0

2πr′dr′I(r′),

where I(r) is the surface brightness profile.

• Ellipticity: Corresponds to the ellipticity of the galaxy. It is defined as e = 1 − b/a,
where b is the semi-minor axis and a is the semi-major axis. In simple words, it is a
measure of how elliptical a galaxy’s shape is: values close to 0 correspond to circular-
shaped galaxies and values close to 1 would suggest a disk-shaped galaxy.
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2.3.4.2 Intrinsic Properties

An intrinsic property is defined as a property that is independent of observation. This means
that it is independent of both the quality of the telescope with which the observation is made
and the inclination of the galaxy. The intrinsic properties used in this work are:

• Physical radius: Corresponds to the Petrosian radius as described in [39]. It is defined
as the radius at which the Petrosian ratio Rp is equal to a given value, in this case
this value corresponds to 0.2 as defined by the Sloan Digital Sky Survey (SDSS). The
Petrosian ratio at a radius r from the center of an object is defined by [39] as the
ratio of the local surface brightness averaged over an annulus at r to the mean surface
brightness within r. This is:

Rp(r) =

∫ αhir

αlor
dr′2πr′I(r′)/[π(α2

hi − α2
lo)r

2]∫ r

0
dr′2πr′I(r′)/(πr2)

,

where r is the radius, I(r) is the azimuthally averaged surface brightness profile and
αlo, αhi define the annulus. In this case αlo = 0.8 and αhi = 1.25 as defined by the
SDSS. In simpler words, it is the distance from the center of the galaxy to the point
where the surface brightness reaches a given threshold. This distance is measured in
kiloparsecs.

• Absolute magnitude: The absolute magnitude is defined as the apparent magnitude
that a galaxy would have if it were observed at a distance of 10 parsecs and without
light extinction. This quantity allows one to compare the luminosity of different objects
directly.

• Effective radius: Also known as the half-light radius, it is defined as the radius in which
half of the galaxy light is contained.

2.3.5 Sérsic profile

The Sérsic profile [33] is a function that describes how the instensity of a galaxy varies as a
function of projected distance r from its center. It is defined as:

I(r) = Ie exp{−bn[(
r

re
)1/n − 1]}, (3)

where re is the effective radius, Ie is the intensity at the effective radius, n is the Sérsic
index, and bn is a constant that is defined as a function of n and re, used to ensure that
re corresponds to the radius containing half of the luminosity of the galaxy. Fitting this
function to a galaxy provides relevant information about it, in particular for this work the
Sérsic index is of special interest.

3 Related work

The type of bias we address in this work, specifically related to galaxy morphologies, has been
extensively studied by the Galaxy Zoo team, [1] quantified a luminosity, size and redshift
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dependent bias present in Galaxy Zoo (GZ1) [26] data. They also corrected the vote fractions
obtained from the crowdsourcing system by assuming that the morphological fraction does
not evolve with redshift within bins of fixed galaxy physical size and luminosity. Later, [37]
adapted this technique to Galaxy Zoo 2 (GZ2) data, taking in consideration that GZ2 uses
a decision tree rather than a single question (as GZ1 does), meaning that all tasks but the
first one depend on responses to tasks higher in the decision tree. After that, [15] presented
an improved method that addresses the questions on the GZ2 decision tree with multiple
responses (such as number of spiral arms), showing that the method from [37] does not
always adjust the vote fractions correctly for this type of tasks. Their method aims to make
the vote distributions consistent at different redshift rather than the mean vote fractions
values as in [1] and [37]. A new method to calibrate morphologies for galaxies of different
luminosities and at different redshifts applied to data from the Hubble Space Telescope was
introduced in [38]; they used artificially redshifted images as a baseline in order to correct
the galaxy morphologies.

Outside of Galaxy Zoo, [5] introduced a metric to estimate the observational bias in a
dataset also focused in galaxy morphologies. They assume that the fractions of objects of
each class in an unbiased dataset should not be significantly different for labels with different
resolutions within bins of intrinsic parameters. Closer to this work, [4] and [2] address this
problem through a machine learning approach, simultaneously learning a classification model,
estimating the intrinsic biases in the ground truth, and providing new de-biased labels.

4 Methodology

4.1 Labeling process

We consider a binary classification task where we classify galaxies according to the first level
of the Galaxy Zoo 2 classification tree (Figure 8). The first class corresponds to smooth
featureless galaxies with a rounded ellipsoidal shape, also known as ellipticals. The second
class corresponds to galaxies that posses a disk and present features such as spiral arms,
including both spiral and lenticular galaxies. For purposes of this work, these classes will
be addressed as smooth and disk respectively. We define our labels by using Galaxy Zoo
2 weighted vote fractions corresponding to the first task of the tree, labeling galaxies as
elliptical when the majority of the votes for the first task correspond to smooth, as disk
when the majority of the votes correspond to features or disk and we discarded galaxies
corresponding to star or artifact.

4.2 Galaxy morphology labeling bias definition

In order to model the labeling bias contained in the data, we follow [4] and model this bias
in terms of the biasing parameter α. This parameter α corresponds to the resolution of the
galaxy image measured as the angular Petrosian radius of the galaxy over the angular size
of the point spread function (PSF). As mentioned before, the bias we are addressing in this
work is a result of low resolution disk galaxies being mislabeled as smooth galaxies, since
the distinctive features of this galaxies are not distinguishable by the annotators. We follow
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Figure 8: Galaxy Zoo 2 decision tree used to classify galaxies according to their morphol-
ogy. We use the weighted vote fractions of the first task to generate our binary labels.
Task other than the first one are not used in our labeling process. Source: [37]

[4], and model this bias as

p(ỹ = smooth|y = disk, α) = e−α2/(2θ2), (4)

where θ is a parameter to be fitted. Notice that limα→0 p(ỹ = smooth|y = disk, α) = 1 and
limα→∞ p(ỹ = smooth|y = disk, α) = 0, that is, we expect low resolution disk galaxies to
always be mislabeled as smooth galaxies by the annotators and, at the same time, we assume
that high resolution disk galaxies are never mislabeled. On the other hand, we assume that
smooth galaxies are never mislabeled as disk galaxies, given that a smooth featureless galaxy
will still have the appearance of a smooth featureless galaxy at low resolution, thus we define

p(ỹ = disk|y = smooth, α) = 0. (5)

From equation (5) we can deduce that p(ỹ = smooth|y = smooth, α) = 1, that is, we do not
expect smooth galaxies to be mislabeled.

4.3 De-biasing method

Consider a human labeled dataset D = {(xi, ỹi)}Ni=1 composed of pairs (xi, ỹi) of features xi

and human generated labels ỹi. We assume each of these pairs to be sampled independently
from a data distribution pbias(x, ỹ) defined over X × Y . We also assume the existence of
an unknown ground truth label yi ∈ Y for each biased label ỹi. We consider a supervised
classification task, that is, we want to approximate a function fw : X → Y that maps
the input features to the latent ground truth labels, with parameters w to be fitted. For
this, we consider a biasing parameter α (e.g. the resolution of the labeled image). In
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this work we consider a maximum likelihood approach, consider a classification problem
where Y = 1, . . . , K, the likelihood of the data given the model parameters and the biasing
parameter is

p(D|w, {αi}Ni=1) =
N∏
i=1

p(ỹi|xi, w, αi), (6)

=
N∏
i=1

∑
yi

p(ỹi, yi|xi, w, αi), (7)

=
N∏
i=1

∑
yi

p(ỹi|yi, αi)p(yi|xi, w), (8)

where the sum in equation (8) runs over the possible values of yi, and we assumed that the
biased labels ỹi only depends on the true labels yi and the biasing parameters of each object
αi, while the true label is inferred from the features xi and the parameters of the model w.

Notice that p(ỹ|y, α) models the biasing process by assuming the biased labels ỹ do not
depend directly on the features x. At the same time, p(y|x,w) models the dependence of y
with x, making ỹ and x conditionally independent given y.

From equation (8) notice that p(ỹi|yi, αi) corresponds to the bias model discussed in
Section 4.2 and that p(yi|xi, w) represents a probabilistic classification model. Both the bias
model and the classification model can be changed depending on the problem. For this
work, we use a neural network with parameters w as the classification model and the model
introduced in Section 4.2 as the bias model.

4.4 Estimating θ

We define the class fraction of a given class as the number of objects of said class over the
total number of objects within an interval. For this work, we define the smooth class fraction
fs = Ns/N and the disk class fraction fd = Nd/N in a given interval, such that fs + fd = 1
and Ns + Nd = N . Where N corresponds to that total number of objects in the interval,
Ns to the total number of objects of the smooth class in the interval and Nd to the total
number of objects of the disk class in the interval. We also define f̃s and f̃d as their respective
estimated values, that is, the values of fs and fd we obtain from the biased data.

Following [4], we assume that an unbiased dataset should be uniformly distributed in
terms of its observable properties, i.e., fs and fd should not vary in terms of α. Considering
this, we group galaxies in bins of α and calculate the corresponding f̃s and f̃d for each bin.

4.4.1 Derivation

The ground truth class fraction can be expressed as

fs = p(y = smooth), (9)

fd = p(y = disk), (10)
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and the estimated class fractions as

f̃s = p(ỹ = smooth|α), (11)

f̃d = p(ỹ = disk|α). (12)

Expanding equation (11)

f̃s = p(ỹ = s|α), (13)

=
∑

y ∈ {s,d}

p(ỹ = s, y|α), (14)

=
∑

y ∈ {s,d}

p(ỹ = s|y, α)p(y|α), (15)

= p(ỹ = s|y = s, α)p(y = s|α)+ (16)

p(ỹ = s|y = d, α)p(y = d|α),

where s and d correspond to smooth and disk respectively. Considering that p(ỹ = s|y =
s, α) = 1 (smooth galaxies are always labeled as smooth) and that the ground truth label y
is independent of α, we obtain

f̃s = fs + fd · p(ỹ = smooth|y = disk, α). (17)

4.4.2 Estimation of θ

In order to estimate θ we minimize the square of the difference between fs and f̃s with
respect to θ, fs and fd. This is

min
θ,fs,fd

∑
i

(fs − f̃s)
2, (18)

where the sum iterates over the bins in α. We use equation (17) for f̃s. Given that we do
not have access to the ground truth class fractions, we initialize fs and fd using the values of
f̃s and f̃d from the least biased bin in terms of α. For the value of α corresponding to each
bin we use the midpoint of the bin. Notice that the number of bins is a hyperparameter; for
this work we grouped the galaxies in 1525 bins with the same number of galaxies in each of
them.

5 Experiments and results

5.1 Models implemented

We implemented two de-biasing models using the same bias model and a different classifi-
cation model. Following [4], we implemented the first model using a logistic regression as
the classifier and we used the Sérsic index [33], the ellipticity, and the half-light radius as
classification features. To train this model we follow [4] and maximize the log-likelihood
introduced in Section 4.3, we do this by using the Expectation-Maximization algorithm, this
allows us to estimate the parameters of the logistic regression as well as the parameter θ of
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Figure 9: Architecture of our deep learning de-biasing model. We used a ResNet50 with
an extra dense layer and JPEG images as input. We used the negative log-likelihood
described in Section 4.3 as our loss function.

the bias model (equation (4)). For the second model, we used a ResNet50 [16] as our deep
learning classification model with an extra dense layer (1024 neurons and ReLU activation)
after the convolutional and pooling layers (Fig. 9). As input we used JPEG images and we
trained our model by minimizing the negative of the log-likelihood (equation (8)), i.e., we
used it as our loss function. In order to estimate the bias model parameter θ we used the
method described in Section 4.4, i.e., this parameter is not included as a trainable parameter
in our neural network. For both models we used the bias model described in Section 4.2.

5.2 Data

For all our experiments we used galaxies contained in the GZ2 catalog [37]. With the
intention of using a balanced dataset, we randomly sampled 121,984 galaxies from which
62,225 corresponded to smooth and 59,759 corresponded to disk. To train the models, we
grouped these galaxies into a training set containing 97,600 galaxies, a validation set of
12,192 galaxies and a test set of 12,192 galaxies. We used the JPEG images labeled by
the annotators as input to our model. Following [9], we cropped the original images from
424 × 424 to 207 × 207 pixels. All galaxy parameters needed in our experiments were
obtained from the SDSS database and from [34].

5.3 Bias quantification method

In order to quantify the bias in a set of labels, we considered two metrics defined by [4] and
[5]; we will refer to them as CV14 and CV18 respectively. CV14 is based on the assumption
that the class fractions (same as defined in Section 4.4) in a non-biased dataset should not
differ in terms of the observable properties, such as image resolution. For this, they divide
the dataset in bins of these observables and calculate the deviation of the class fractions as
a function of them. As mentioned in Section 4.2, we use α as our observable property (i.e.,
biasing parameter). For the purposes of this work, that is, a binary classification problem
with only one observable property, the deviation of the class fraction for a specific class can
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be expressed as

σk =

√√√√ 1

NA

NA∑
l=1

(f̃l,k − fk)2, (19)

where NA is the number of bins in α, f̃l,k corresponds to the class fraction of class k ∈
{smooth, disk} within bin l, and fk to the class fraction of class k from the least biased
bin in terms of α. Then, the deviation of the class fractions over the entire dataset can be
quantified by

CV14 =

√
1

NK

∑
k

σ2
k, (20)

with NK being the number of classes. For a non-biased dataset, the class fractions should
be independent of α, i.e., we expect CV14 to be close to zero.

CV18 works under the same assumption as CV14; however, it also takes into account
the intrinsic properties of the data. CV18 considers that the class fractions in an unbiased
dataset should not differ in terms of the observables within bins of intrinsic properties. They
first divide the dataset in multi-dimensional bins as a function of the intrinsic properties
and then divide each of these intrinsic bins in bins of the observable properties. Then, they
calculate the deviation of these observable class fractions as CV14 does. By doing this,
they take into consideration a possible variation in the observable class fractions related to
the intrinsic properties. After considering both approaches, we decided to use CV18 as the
method of measuring the bias for all our experiments, as it is the more robust of the two.

5.4 Results

5.4.1 Bias measurement

We first measure the bias of the labels from GZ2, both the original crowdsourced labels
(GZ2B) and the de-biased labels from [15] (GZ2D). To obtain hard labels for GZ2D, we
performed the procedure described in Section 4.1. In order to determine whether the bias
from these sets of labels transfer to the predictions of new models, we trained two not de-
biasing ResNet50 models (i.e. using cross entropy as the loss function), one trained over
the labels from GZ2B and the other trained over GZ2D. We compared the bias of the
predictions of these models over the test set with the bias of the same test set for GZ2B
and GZ2D. Finally, we measured the bias of the predicted labels from our two de-biasing
models described in Section 5.1, the de-biasing model from [4] (DCV14) and our proposed
deep de-biasing model (DDB). The results of our experiments are reported in Table 1. We
also report classification metrics for the not de-biasing ResNet50 models.

The de-biasing models were trained directly over GZ2B data using the training method
previously mentioned. We used the galaxy resolution as measured by α = (r/PSF) as biasing
parameter, where r is the angular Petrosian radius of the galaxy and PSF is the angular
standard deviation of a Gaussian model PSF. The value of the bias model parameter for
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Table 1: Biases for different datasets and experiments. Classification metrics are included for the
not de-biasing ResNet50 models trained directly over GZ2B and GZ2D.

Dataset / Method Bias CV18 accuracy precision recall f1-score

a) GZ2B [37] 0.3696± 0.0095 - - - -
b) GZ2D [15] 0.3106± 0.0108 - - - -

c) ResNet50 over GZ2B 0.3781± 0.0091 0.921 0.921 0.921 0.921
d) ResNet50 over GZ2D 0.3258± 0.0107 0.896 0.866 0.879 0.872

e) DCV14 over GZ2B 0.2994± 0.0102 - - - -
f) DDB (ours) over GZ2B 0.2866± 0.0112 - - - -

GZ2B was estimated as θDCV14 = 9.18 for DCV14, following [4], and as θDDB = 11.25 for
DDB, using the method described in Section 4.4.

We first notice that, as expected, the set of labels from GZ2D is less biased than the
original crowdsourced labels from GZ2B. We also notice that the biases from the not de-
biasing ResNet50 models trained over GZ2B (Table 1c) and GZD (Table 1d) present a
similar level of bias compared to their respective training sets, meaning that the bias from
the training sets transfers to the predictions of the models trained on them. The difference
in the classification metrics between both not de-biasing models can be attributed mainly to
GZ2D being an unbalanced dataset, since it contains the same galaxies as GZ2B, however,
with different labels according to [15]. On the other hand, we notice that both DCV14 and
DDB manage to decrease the amount of bias of GZ2B, obtaining the best result when using
DDB. The aforementioned is even more relevant when considering that DCV14 relies on the
calculation of the Sérsic profiles [33], the ellipticity and the half-light radius, while DDB
is able to learn features that are useful to infer the de-biased labels directly from the low
resolution images.

5.4.2 Sérsic profiles analysis

To evaluate our de-biasing method in terms of astrophysical parameters, we compare the
cumulative frequency distribution of the Sérsic index for galaxies in our dataset (Fig. 10).
We start by comparing the smooth galaxies from GZ2B with the galaxies labeled as smooth
by DDB and GZ2D. A Sérsic index greater than approximately 3 is typically expected for
smooth galaxies. As shown in Figure 10a GZ2B contains approximately 40% of galaxies
labeled as smooth with Sérsic indexes lower than 3. GZ2D is able to diminish this frac-
tion to approximately 30%, while our de-biasing method is able to achieve less than 20% of
galaxies labeled as smooth with a Sérsic index lower than 3. Notice that the Sérsic param-
eters are never fed into our model; our de-biasing approach is able to automatically learn a
discriminative model that agrees with these estimated radial profiles.

Figure 10b shows the Sérsic index cumulative distributions of galaxies labeled as disks in
GZ2B and galaxies that changed their labels from smooth to disk by GZ2D and DDB. As
explained in Section 4.2, we do not expect disk galaxies in GZ2B to be mislabeled; hence,
this distribution works as a proxy for the real Sérsic index distribution of disk galaxies. Disk
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(a) Galaxies classified as
smooth

(b) Galaxies changed from smooth
to disk

(c) Galaxies classified as
disk

Figure 10: Relative cumulative frequency of galaxies as classified by each model. For (b) GZ2B
corresponds to the original disk galaxies, added for comparison with the other models.

galaxies as labeled by DDB follow the distribution of disk galaxies in GZ2B: for both of
these sets of labels less than a 30% of disk galaxies have a Sérsic index higher than 3. On
the other hand, the disk galaxies as labeled in GZ2D are associated with almost a 50% of
galaxies with a Sérsic index higher than 3. This affects directly the distribution of Sérsic
indexes of disk galaxies in the whole dataset as shown in Figure 10c. In other words, DDB
produces labels that match the expected relation between morphologies and radial profiles of
galaxies, demonstrating the effectiveness of our method in capturing astrophysical features
without relying on expert-derived parameters.

5.4.3 Visual inspection of high resolution images

In order to visually assess the performance of our approach, we searched the Mikulski Archive
for Space Telescopes (MAST)1 for high resolution Hubble Space Telescope (HST) images
of galaxies in the test set that changed their labels when using DDB. We found 11 HST
images of galaxies that changed from a ”smooth” biased label to a ”disk” de-biased label.
Figure 11 shows the SDSS and HST images of such galaxies. Figures 11a, 11b, 11c, 11e,
11g, 11h, 11i and 11j show evidence of spiral arms. Figures 11d, 11f and 11k show lenticular
features, although it is not completely clear that these are effectively disk galaxies. A further
astrophysical analysis is required to corroborate their type. These results show that our de-
biasing neural network is able to correctly label images even when the labels used for training
are biased.

5.4.4 GradCAM

Aiming to understand the difference between our de-biasing model and the not de-biasing
ResNet50 models, we used GradCAM. GradCAM [32] is a technique for producing visual
explanations of the decision making process of a CNN, generating a localization map that
accentuates the relevant regions of the image for predicting a specific class. We start by

1https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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Figure 11: Low and high resolution images of galaxies that changed their labels from ”smooth” to
”disk” when using our method. The first row of each block shows the images as labeled by the
annotators of Galaxy Zoo 2. The second row shows higher resolution images from the HST.
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(a) ResNet50 over
GZ2B

(b) ResNet50 over
GZ2D

(c) DDB over
GZ2B

Figure 12: Average GradCAM localization maps for the disk class. Highlighted in yellow are the
class-discriminative regions. Notice how (a) and (b) focus in the galaxy bulge while (c) considers
the entire galaxy.

analyzing the class-discriminative regions of the models when classifying galaxies as disks.
Figure 12 shows, for each model, the average GradCAM maps of all the galaxies in the test
set that the respective model predicted as a disk. Figures 12a and 12b show that both not
de-biased ResNet50 models exhibit a tendency to concentrate their attention on the center
of the image, where the bulge of the galaxy is located. On the other hand, Figure 12c shows
that DDB uses an extended area of the image, hence considering a wider fraction of the disks
when discriminating. These Figures suggest that DDB is able to detect weak disk features
in the image that are often missed to the non-expert human eye.

Figure 13 corresponds to the average GradCAM maps of all the galaxies classified as
smooth by each model. We notice that the ResNet50 trained over GZ2B considers al-
most exclusively the center of the image, which is associated with the bulge of the galaxy
(Fig. 13a). The ResNet50 trained over GZ2D focuses mainly in the regions around the bulge
(Fig. 13b). On the other hand, DDB concentrates its attention to a wider field within the
image (Fig. 13c), suggesting that its decision making process is based on not identifying
disk-like features in the image. This suggests that the ResNet50 trained over GZ2D can rec-
ognize the absence of disk features near the bulge, while DDB expands its field of attention
to a broader region in order to detect that no lower disk signals are present in the image
when inferring that a galaxy is smooth. DDB takes into consideration the broader diver-
sity of light profiles found among smooth galaxies, including this information in its decision
making process, while both not-debiased ResNet50 models are neglecting a portion of this
information by focusing mainly on the core and the regions around it.

To provide a clearer illustration of the aforementioned findings, Figure 14 shows the
average intensity as a function of the radial distance from the center of each of the GradCAM
localization maps of Figures 12 and 13. For the GradCAM maps corresponding to the disk
class (Fig. 14a) we notice that DDB maintains a higher average intensity when approaching
the edges, i.e., considers a broader region from the center as relevant in its decision making
process. In the case of the GradCAM maps corresponding to the smooth class (Fig. 14b)
we notice that for the not de-biased ResNet50 models the average intensity decreases as the
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(a) ResNet50 over
GZ2B

(b) ResNet50 over
GZ2D

(c) DDB over
GZ2B

Figure 13: Average GradCAM localization maps for the smooth class. Highlighted in yellow are the
class-discriminative regions. Notice how (a) focuses in the bulge of the galaxy, (b) in the regions
around the bulge and (c) in the the edges of the galaxy.

distance from the center increases, while for DDB the average intensity remains relatively
constant across the image, with its peak closer to the edges of the image.

6 Conclusions and future work

Data can exhibit biases in terms of observable parameters, such as resolution, which can
introduce bias during the human labeling process. This inherent bias, stemming from ob-
servable properties rather than annotators, leads to systematic labeling biases in the data.
In this study, we investigate the impact of training deep learning models using biased data in
the context of morphological classification of galaxies. We demonstrate that training these
models directly on biased data results in biased models. We introduce a method for training
deep learning models that takes into account this labeling bias, to obtain unbiased models
even when training with biased data. We evaluate our method by comparing the bias of the
predicted labels with the bias of the labels produced by other de-biasing methods, as well as
through visual inspection of high-resolution images. We also show that by using our method,
the resulting model is able to learn complex astrophysical relations directly from the biased
data, without relying on expert-derived parameters. Finally, we employ a visualization tech-
nique to comprehend the effect of our method on the deep learning model, comparing it with
models trained without utilizing our approach. We conclude that by using our method, we
can directly train a deep learning model on the biased data and obtain a model capable of
both de-biasing existing datasets and labeling new data.

As future work one interesting area of exploration is the reformulation of our custom loss
function (equation (8)). Currently, this loss function imposes independence assumptions, as
discussed in Section 4.3, which limits the selection of attributes available for use. Another
interesting direction for future research is the evaluation of different bias models, particularly
more complex models that incorporate expert-derived parameters. By using complex bias
models one could aim to better approximate the underlying bias of the data, potentially
leading to even less biased morphological classifications. Additionally, there is potential for
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(a) Disk (b) Smooth

Figure 14: Average intensity vs. radial distance from the center of the image. (a) Corresponds to
the average GradCAM maps for the disk class (Fig. 12) and (b) to the average GradCAM maps
for the smooth class (Fig. 13).

adapting our de-biasing framework to other data domains. This adaptation would require
to define a different domain-specific bias model and possibly to use a different classifica-
tion model. Other alternative is testing the performance of the framework on multiclass
classification problems and more complex classification schemes in general. Finally, another
interesting alternative could be conducting a detailed astrophysical analysis of the model
results which could lead to the creation of a catalog of morphologically classified galaxies.
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