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Resumen

La descripción de los agujeros negros (BH) según la Relatividad General

(GR), en particular a través de la solución de Kerr, se basa en suposiciones

simplificadas. En este contexto, investigamos el impacto de las desviaciones de

la solución de Kerr en las imágenes de agujeros negros supermasivos (SMBH).

Utilizamos simulaciones de Transporte de Radiación Relativista General,

centrándonos en la métrica de Kerr-Like, que presenta cuatro funciones no-

lineales de desviación, es estacionaria, axisimétrica y asintóticamente plana.

Además, exploramos dos métricas de gravedad modificada: la teoría de Chern-

Simons y la de α′-corrected, ambas derivadas como límites de baja energía de

la teoría de cuerdas.

Para obtener imágenes, empleamos el código RAPTOR I, un trazador de

rayos de código abierto que admite diversas geometrías espacio-temporales.

Cuantificamos las desviaciones al estudiar la asimetría, el diámetro y el

desplazamiento de la sombra del BH, y las comparamos con un BH de

Kerr. Nuestros resultados validan la efectividad del método desarrollado

para medir desviaciones y muestran que estas afectan la forma de la sombra,

siendo especialmente relevantes las desviaciones A1(r) y A2(r) de la métrica

Kerr-Like. No obstante, observamos que la distribución de la materia y las

emisividades alrededor del agujero negro también influyen. Por ende, la

geometría y los efectos de las desviaciones en la sombra no pueden predecirse

exclusivamente desde la forma del anillo de fotones.

Además, demostramos que las desviaciones originadas por teorías de gravedad

modificada, especialmente el límite efectivo de la gravedad de Chern-

Simons, son imperceptibles en las imágenes de agujeros negros. Asimismo,

presentamos la separabilidad de la solución de agujero negro rotante lento en

la teoría α′-corrected en las ecuaciones de Hamilton-Jacobi, lo cual promueve

futuros estudios de su sombra.

Keywords – acreción, discos de acreción, física de agujeros negros, transferencia

radiativa.
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Abstract

The description of black holes (BH) according to General Relativity (GR),

particularly through the Kerr solution, is based on simplified assumptions. In

this context, we investigate the impact of deviations from the Kerr solution on

images of supermassive black holes (SMBHs). We utilize simulations of General

Relativistic Radiative Transport, focusing on the Kerr-Like metric, which

features four non-linear functions of free deviation, is stationary, axisymmetric,

and asymptotically flat. Additionally, we explore two metrics of modified

gravity: the Chern-Simons theory and the α′-corrected theory, both derived as

low-energy limits of string theory.

To obtain images, we employ the RAPTOR I code, an open-source ray-tracing

tool that supports diverse spacetime geometries. We quantify deviations

by studying the asymmetry, diameter, and displacement of the BH shadow,

comparing them with a Kerr BH. Our results validate the effectiveness of the

developed method for measuring deviations and show that these affect the

shape of the shadow, with the deviations A1(r) and A2(r) of the Kerr-Like

metric being particularly relevant. However, we observe that the distribution

of matter and emissivities around the black hole also play a role. Thus, the

geometry and effects of deviations on the shadow cannot be solely predicted

from the shape of the photon ring.

Furthermore, we demonstrate that deviations arising from modified

gravity theories, especially the effective limit of Chern-Simons gravity, are

imperceptible in black hole images. Likewise, we present the separability of

the slowly-rotating black hole solution in the α′-corrected theory within the

Hamilton-Jacobi equations, which promotes future studies of its shadow.

Keywords – accretion, accretion disks, black hole physics, radiative transfer.
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Chapter 1

Introduction

The theory of General Relativity (GR) is widely accepted as the most well-

established explanation of gravity. Since its introduction by Albert Einstein

in 1915 (Einstein, 1915a), numerous physicists have conducted research and

predicted several effects and phenomena, such as gravitational waves (Einstein,

1916, 1918), the Shapiro effect (Shapiro, 1964), gravitational redshift (Einstein,

1989), and the existence of black holes(Chandrasekhar, 1935; Oppenheimer

and Volkoff, 1939), to name a few.

To verify its validity, numerous tests have been developed and today can be

divided into two categories: weak field tests and strong field tests.

The weak field tests are performed in regions where the gravitational field

is weak, and the effects of General Relativity (GR) can be described as small

modifications to Newtonian gravity. These tests include the deflection of light

by the Sun, the precession of Mercury’s orbit, and the gravitational redshift of

light.

In contrast, strong field tests are conducted in areas where the gravitational

field is strong, and the effects of GR cannot be approximated as simple

modifications to Newtonian gravity. Examples of these tests include the

detection of gravitational waves, the periapsis precession in binary pulsars,

and direct observations of black holes.

The precession of Mercury’s perihelion, first observed by Le Verrier (1859),

defied explanation within the framework of Newtonian gravity. However,
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Einstein’s General Relativity (GR) predicted this phenomenon, foreseeing

a precession value of approximately ∆ϕ ≈ 43′′ century−1 (Einstein, 1915b),

representing the variability of the orbital axis over time. Current measurements

closely align, at 42′′.98 ± 4 century−1 (Lo et al., 2013), with Einstein’s

predictions.

Einstein’s 1907 (Einstein, 1989) prediction of light deflection in a gravitational

field was experimentally verified during the 1919 solar eclipse by Frank Dyson

and Arthur Eddington (Dyson et al., 1920). Modern measurements, such

as Very Long Baseline Interferometry (VLBI) (Shapiro et al., 2004), have

further confirmed this phenomenon. Additionally, another GR prediction,

gravitational redshift, was initially confirmed by Adams (1925) for Sirius

B(16) and more recently by Biriukov et al. (2014) using the Russian satellite

RadiAstron. These tests validate GR, especially in the weak field regime.

Beyond this, Shapiro et al. (1968) work studied the Shapiro effect, while LIGO

(Abbott et al., 2016) detected gravitational waves in strong field conditions.

Meanwhile, the Event Horizon Telescope (Collaboration et al., 2019) captured

the first image of a black hole at the center of the M87 galaxy, putting Einstein’s

GR to the test in the strong field regime and further corroborating its validity.

Black holes are important for studying strong gravitational fields and are

a recognizable prediction of Einstein’s General Relativity. They provide

opportunities for testing the theory through strong field tests, including the

detection of gravitational waves and observations of black holes. The study

of black holes began with Schwarzschild’s spherically symmetrical solution

(Schwarzschild, 1916) of Einstein’s field equations, which was later refined by

Lorentz and Eddington to determine their properties.

In 1963, Roy Kerr discovered another spherically symmetric but rotating

solution (Kerr, 1963) that also supported the existence of gravitational

collapsing solutions which describe black holes. Later, Newmann extended

this solution to include electric charge. Building on these discoveries, the

scientists Werner, Carter, and David Robinson showed that black holes can be

fully characterized by three parameters: their angular momentum, mass, and

electric charge. This conclusion is now referred to as the No-Hair Theorem.

The observational search for astrophysical black hole candidates in the Universe
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began in the 1970s. Nowadays, we have observational evidence that at least

two types of these objects exist: stellar-mass black holes (M ≈ 3 − 100M⊙)

and supermassive black holes (M ≈ 105 − 1010M⊙). There is also a belief that

intermediate-mass black holes could exist, but there is no clear theoretical or

observational clarity regarding them. However, in recent years, there have

been potential detections and interest in these objects (Lin et al., 2020; Vitral

et al., 2023).

Stellar-mass black holes form from the complete collapse of massive stars.

When a star depletes its nuclear fuel through fusion, internal gas pressure can

no longer counteract gravity, leading to collapse. This process often expels

much material violently. This happens primarily to stars of 25M⊙ or greater,

creating a black hole. For lower masses, quantum pressure from electrons

or neutrons prevents strong gravitational collapse, resulting in white dwarfs

or neutron stars (Rhoades Jr and Ruffini, 1974; Farr et al., 2011). However,

stellar-mass black holes typically max out at around ≈ 100M⊙ (Belczynski

et al., 2010; Spera et al., 2015), a limit strongly tied to the star’s metallicity.

Stellar evolution forecasts a population of 108 − 1010 such black holes in the

Milky Way (van den Heuvel, 1992). Since Cygnus X-1’s 1970 discovery (Webster

and Murdin, 1972), finding stellar-mass black holes has centered on spotting

compact objects in X-ray binaries with masses surpassing neutron star limits.

Over 50 X-ray binaries are now considered candidates, and with LIGO’s recent

implementation, fresh detection methods are being explored (Abbott et al.,

2016).

Astronomical observations reveal that in a galaxy’s center, especially in large

and medium-sized ones, a substantial mass is concentrated within a small

volume (Kormendy and Richstone, 1995). The situation is less certain for

small galaxies, where some may possess central masses while others might

not (Ferrarese et al., 2006; Gallo et al., 2008). In the case of the Milky Way,

studying star orbits near its center indicates a mass of roughly M ≈ 4× 106M⊙

within a radius less than R < 0.01pc (Ghez et al., 2005; Boehle et al., 2016).

This substantial mass in such a confined space defies explanations involving

neutron star clusters or brown dwarfs, leading to the natural inference of a

supermassive black hole’s presence (Maoz, 1998). Similar findings arise in

other galaxies like NGC4258, supporting the idea that these massive black hole
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systems have masses ranging from M ≈ 105 to 1010M⊙. While we anticipate

stellar-mass black holes forming from massive star collapses, the formation

process of supermassive black holes remains unclear. Although one might

hypothesize that they grow through gravitational capture of objects like stars,

the presence of 1010M⊙ objects in distant galaxies when the universe was just

1Gyr old challenges this notion (Wu et al., 2015). They might have emerged

from the collapse of massive primordial clouds, mergers of multiple black

holes, or even super-Eddington accretion phases, as some models suggest

(Madau et al., 2014). Yet, the precise formation mechanism remains a mystery.

A natural question that arises when studying supermassive black holes is how

to measure their mass. As their origin is unknown, estimating their mass is

challenging. To accomplish this, the M − σ relation is currently employed.

This relation is an empirical correlation between the stellar velocity dispersion

of the galactic bulge and the mass M of the supermassive black hole at the

center of the galaxy. It was first introduced in 1999 by Merritt (1999) and is

sometimes referred to as the Faber-Jackson law for black holes. The relation is

given by

MBH

108M⊙
≈ A

(
σ

200km−1

)α

, (1.0.1)

where the scaling values are chosen to correspond to typical SMBH masses

and velocity dispersions in galaxies, with parameters having values of A ∼ 3

and α ∼ 4 − 6. The precise value of α depends on the sample of investigated

galaxies; different authors suggest diverse values such as α = 4.24 ± 0.41

(Gültekin et al., 2009), α = 4.8 ± 0.5 (Ferrarese and Merritt, 2000), and α = 5.64

(McConnell and Ma, 2013).

Over the las decades, significant efforts have been dedicated to the detection

of black holes. The Event Horizon Telescope (EHT) 1 recently achieved a major

breakthrough by capturing the first direct images of SMBH. The first image,

focused on visualizing the probable black hole at the center of the M87 galaxy

(Collaboration et al., 2019), revealed a persistent, bright ring with a diameter of

approximately 40 micro-arcseconds, in agreement with the predicted photon

orbit around the "shadow" of this black hole. Another image, obtained by the

1Here you can find the project: Event horizon project

https://eventhorizontelescope.org
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EHT, unveiled the supermassive black hole Sgr A* (Markoff et al., 2022) at the

heart of our galaxy. This image displayed a compact emission region with a

bright, thick ring in the center, which has a diameter of around 51.8 micro-

arcseconds and a slight brightness asymmetry. These remarkable achievements

not only confirm previous predictions but also serve as crucial tests of general

relativity, offering new opportunities to study these objects in the strong-field

regime. Studies of the strong field tests (Gair et al., 2013; Yunes and Siemens,

2013) suggest that astrophysical BHs are fully described by the Kerr solution.

However, BHs do not exist in a perfect vacuum and thereforer are not fully

axisymmetric, but are capable of evolving with time.

Although General Relativity (GR) appears to be a good theory for describing

gravity, there are experimental and theoretical reasons to suggest that an

extension beyond GR is needed. For instance, GR fails to predict the

accelerating expansion of the universe without incorporating dark energy.

In strong gravitational fields, GR predicts black hole (BH) solutions with

singularities - regions of infinite density and zero volume within the horizon,

where geometric quantities such as the Riemann tensor diverge. Hence, a more

comprehensive theory is required to fully describe these regions and resolve

the singularities.

To address these limitations of GR, there is a need for a more realistic solution,

such as the parametric forms of the Kerr metric or solutions to modified

gravity theories. This thesis focuses on exploring these possibilities by studying

the properties of black holes described by the Kerr-Like metric (Johannsen,

2013a), which is a general space-time that covers both possibilities and is

better described in a later section (2.5) and some black hole solutions beyond

Einstein’s gravity.

To study the properties of BHs in deviant Kerr spacetimes such as the Kerr-

Like spacetime, ray tracing can be employed to obtain realistically simulated

images of the accretion disk around the black hole, as well as its shadow. For

several years, scientists have been intrigued by the appearance of these objects,

particularly how light behaves around them. Luminet (1979) investigated

the appearance of a thin accretion disk around a Schwarzschild black hole

and introduced the concept of a "black hole shadow" for the first time. The

shape of this shadow depends, in principle, on the spin parameter, mass,
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and the observer’s line-of-sight inclination towards the black hole or its

specific geometry (a topic we’ll delve into later in this study). Studies of the

appearance of the black hole at the center of our galaxy have been conducted

by Falcke et al. (1999), including ray tracing algorithms to quantify observed

spectra with the intention of inferring parameters like its spin (Davis and

Hubeny, 2006; Li et al., 2005; Dauser et al., 2010). It is also possible to

use GRMHD simulations to complement ray tracing studies, simulations

thoroughly examined by authors such as De Villiers and Hawley (2003);

Gammie et al. (2003); Broderick (2006); Dexter and Agol (2009), where authors

like (Schnittman et al., 2006; Noble and Krolik, 2009; Dexter and Fragile,

2011; Noble et al., 2011; Kulkarni et al., 2011) include variability and radiative

efficiency properties. Leveraging advancements in this field, studies have also

been conducted to compare these simulations with observations of Sgr A*

(Noble et al., 2007; Dexter et al., 2009; Chan et al., 2015; Gold et al., 2017) and

M87 (Dexter et al., 2012; Mościbrodzka et al., 2016). These investigations have

focused on quantifying and understanding shadow properties, as well as the

photon ring around these objects, and comprehending the potential features

that can be expected in observations of SMBHs (Roelofs et al., 2019; Bronzwaer

et al., 2021; Bandyopadhyay et al., 2021, 2023). In recent years, numerous ray-

tracing software have been developed by authors such as Vincent et al. (2011);

Dexter (2016); Bronzwaer et al. (2018). In particular, for this study, the Raptor I

code 2 was used, which is capable of using arbitrary spacetimes and also to

characterize the properties of these images, the definitions of displacement,

diameter, and asymmetry by Johannsen (2013a). These definitions were used

to quantitatively describe the shadow of black holes and possible effects that

could be measured in an observation.

This thesis presents a wide range of radiative transport simulations in the

environment of a supermassive black hole (SMBH). We employ a HARM-

type plasma model with mass and distance parameters similar to those of

the SMBH in M87∗ and a spin parameter of a = 0.9375M. Additionally, we

apply the same spin value to the SMBH in SgrA∗, introducing changes in

input parameters to create a more realistic model, following the parameters

introduced by (Mościbrodzka et al., 2009). Furthermore, we conduct

2Which can be found at:RAPTOR

https://github.com/tbronzwaer/raptor
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simulations using a thin accretion disk model based on (Shakura and Sunyaev,

1973; Novikov and Thorne, 1973) for a black hole with a mass of 10M⊙ to

assess the properties of BHs in this scenario. We calculate properties related

to the photon ring following the methodology of Johannsen (2013a) for a

Kerr-like metric and explore how they vary with the free parameters of this

spacetime. Additionally, we consider the effects of the plasma around the black

hole as determined by the corresponding disk model. We test various ranges

of first-order metric parameters and derive specific values for the diameter,

asymmetry, and displacement of the photon ring in these simulations. These

results are subsequently compared with those obtained by Johannsen and with

radiative transport simulations for the Kerr metric. We also observe minor

effects caused by non-circular photon orbits around the black hole, as well as

their implications.

Moreover, we examine the effects of specific deviations introduced by solutions

from modified gravity theories, such as the slowly rotating Chern-Simons

solution. Additionally, we obtain a slowly rotating black hole solution for the

α′-corrected theory and demonstrate its separability under the Hamilton-Jacobi

equations as a preliminary step towards studying its shadow in future projects.

This thesis is presented as follows: an overview of black holes and their

geometry is given together with the presentation of the Kerr-Like metric in

Chapter 2. Chapter 3 presents the codes and model used to perform the

simulations, as the methods utilized to characterize the black hole shadow. In

Chapters 4 the results are given. The main conclusions and a discussion is

presented in Chapter 5.
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Chapter 2

About black holes

In this chapter, we will focus on the fundamental principles of black holes

and their properties. Starting with Einstein’s theory of General Relativity,

we will delve into the mathematical solutions for black holes developed by

Schwarzschild and Kerr. We will explore the concepts of the event horizon and

the characterization of black holes based on their mass, spin, and other key

parameters. By the end of this chapter, we will concentrate on the description

of the Kerr-Like metric, its construction, and how it can be studied through

the geodesic equation to better understand its properties.

2.1 Compact Objects

I would like to start with a simple and general description of compact objects.

Some examples of these objects are white dwarfs, neutron stars, and black

holes. They all share a common origin known as stars (at least on a stellar scale).

Basically, these objects are formed when a star exhausts its nuclear fuel, causing

the loss of its hydrostatic equilibrium. The internal thermonuclear pressure is

no longer strong enough to counteract the gravitational collapse. As a result,

the star sheds its outermost layer through an explosion known as a supernova

and collapses its innermost material into one of the three aforementioned

objects, depending on the star’s initial mass and the magnitude of the collapse.

Among the compact objects, white dwarfs are the least massive ones, formed

from the remnants of low to medium-mass stars. Their masses range from
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Table 2.1.1: Comparison of compact objects with a normal star (Sun) extracted
from Shapiro and Teukolsky (2008).

Object Mass Radius Density Surface potential
- (M⊙) (R⊙) (g/cm3) (GM/Rc2)

Sun 1.98 × 1030 kg ∼ M⊙ 109 m ∼ R⊙ 1 10−6

White dwarf ≤ M⊙ ∼ 10−2R⊙ ≤ 107 ∼ 10−4

Neutron star 1.5 − 3.0M⊙ ∼ 10−5R⊙ ≤ 1015 ∼ 10−1

Black hole few to billion M⊙ 2GM/c2 ∼ M/R3 ∼ 1

0.1 to 1.4 times that of the Sun. Neutron stars are more massive, resulting

from the collapse of massive stars. They have densities so high that electrons

and protons combine to form neutrons. Neutron stars typically have masses

of 1.4 to 3 times that of the Sun, packed into a radius of about 10 kilometers.

Black holes are the most massive objects, formed from extremely massive star

remnants. Their gravity is so strong that nothing, not even light, can escape.

Black holes can have a range of masses, from a few solar masses to billions. A

most clear comparison is shown in Table (2.1.1).

In contrast to ordinary stars, compact objects are a clear example of matter

under extreme conditions. When compared to stars of similar mass, compact

objects have much smaller radii, making them denser and possessing extremely

strong gravitational fields on their surfaces. Therefore, the study of these

objects requires advanced physical knowledge, such as General Relativity.

Even in the case of white dwarfs, where Newtonian gravity may appear

sufficient for their description, General Relativity is necessary to study their

stability.

2.2 General Relativity

The concept of gravity arose more than two thousand years ago with ancient

Greeks such as Aristotle, who believed that all objects in the universe fell

towards the earth because it was the center of the universe, or Archimedes, who

discovered the center of gravity of a triangle. Although these thoughts forged

the basis of the concept of gravitation, it was not until 1687, when Sir Isaac

Newton published his work "Principia Mathematica", that the mathematical

and physical foundations of the classical theory of gravity were established. In
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this work, Newton described that all bodies in the universe exert an attractive

force on all other bodies, called gravity. For many years, the Newtonian

concept of gravity was widely accepted by the scientific community of the

time. However, this understanding was fundamentally transformed in 1915

with the publication of Einstein’s theory of general relativity, changing our

perception of the nature of gravity.

Inspired by Faraday and Maxwell’s development of the electromagnetic field,

Einstein realized that gravity, previously thought of as an invisible force by

Newton, was not a force at all, but instead a manifestation of a field similar

to the electromagnetic field. This field was not an entity that existed in space

but rather was space itself. With this newfound understanding and building

upon his previous work on the theory of special relativity in 1905, Einstein

established several fundamental principles, such as the principle of relativity,

which states that the laws of physics are identical in all inertial frames of

reference. He also established the constancy of the speed of light for all

observers and introduced the concepts of time dilation and length contraction.

Time dilation states that time passes differently for two observers in relative

motion, with an observer in motion perceiving time to move more slowly than

an observer at rest, while length contraction posits that lengths appear shorter

for an object in motion relative to an observer at rest.

Motivated by these ideas and realizing that his theory of special relativity was

not in line with Newtonian physics’ perception of gravity, Einstein dedicated

himself to creating a new theory of gravity, founded on two fundamental

postulates:

The first postulate, known as the weak equivalence principle, states that all

objects, regardless of their composition and mass, will be affected by the same

acceleration under a gravitational field.

The second postulate, known as strong equivalence principle, states that locally,

the effects of gravity and acceleration are indistinguishable. This means that

in a small region of spacetime, an observer cannot tell whether a body in the

system is accelerating or is under the influence of an external gravitational

field.

These two principles are the most fundamental ingredients of Einstein’s theory,
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known as General Relativity (GR). There is a wide variety of experiments that

confirm these two principles, some of which are (v. Eötvös et al., 1922; Roll

et al., 1964; Schlamminger et al., 2008) for the weak equivalence principle and

(Archibald et al., 2018; Voisin et al., 2020) for strong equivalence principle.

Under these two postulates, the mathematical construction of the theory

can be carried out. Einstein based his theory on the idea of geometrizing

the gravitational interaction, meaning that spacetime was curved under

the effects of a gravitational field. Thus, inspired by the mathematics

and geometry developed by Bernhard Riemann, he described his theory

considering spacetime as a curved (pseudo-Riemannian) manifold with a

line element ds2 = gµνdxµdxν, where the metric gµν and the transformations

between the coordinates systems, are Lorentzian type.

As the geometry in this theory is Riemannian and does not exhibit torsion

(since Einstein did not construct it that way), both metric properties and affine

properties are completely determined by a single object, the metric.

The metric is the dynamical field of the theory, and it is useful to define some

mathematical objects associated with it to better understand the following

discussion about the solutions. The connection, which in this case is described

by the Christoffel symbols, is defined as

Γλ
µν =

1
2

gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν), (2.2.1)

where gµν is the covariant metric and gλρ is the contravariant metric.

As GR is a theory built on a curved manifold that seeks to be invariant

under arbitrary coordinate transformations, it must be invariant under

diffeomorphisms. Therefore, the derivative used to operate mathematically

must satisfy this condition. The usual partial derivative is not an option

since it is not invariant under diffeomorphisms. In response to this, Einstein

introduced the concept of the covariant derivative of a tensor in his theory.

This type of derivative is constructed in a way that preserves the tensor’s

covariance under coordinate transformations and is defined as follows

∇µξλ = ∂µξλ + Γλ
µνξν, (2.2.2)
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where ξλ is an arbitrary contravariant tensor and Γλ
µν is the connection of the

theory. Similarly, it is possible to define the covariant derivative acting on an

arbitrary covariant tensor.

On the other hand, if one studies the commutativity property of the second

covariant derivatives of an arbitrary tensor, it is concluded that these do not

commute, and the following property is obtained

[∇µ,∇ν]ξ
λ = ∇µ∇νξλ −∇ν∇µξλ = Rλ

ρµνξρ, (2.2.3)

where Rλ
ρµν is the Riemann curvature tensor defined as

Rλ
ρµν := ∂µΓλ

νρ − ∂νΓλ
µρ + Γλ

µσΓσ
νρ − Γλ

νσΓσ
µρ. (2.2.4)

It is also useful to define, from the curvature tensor, the Ricci tensor, given by

contracting two indices of the Riemann tensor

Rρν := Rµ
ρµν, (2.2.5)

and the Ricci scalar, given by contracting the Ricci tensor with the metric, that

is

R := Rρνgρν. (2.2.6)

With these mathematical ingredients capable of describing the geometry of

curved spacetime and the inclusion of the interaction between matter and

fields in this spacetime, Einstein constructed the equation

Gµν :=
8πG

c4 Tµν (2.2.7)

known as the field equation of the general theory of relativity, where the left-

hand side of the equation is given as Gµν = Rµν −
1
2

gµνR and purely describes

the geometry of spacetime. The right-hand side of the equation includes the

energy-momentum tensor Tµν, which describes the distribution and energy of

matter with which these fields interact.
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The field equations in general are a complex system of highly non-linear

differential equations. When solved, they result in a metric that can describe

the effects of a certain gravitational field under the matter that interacts with

it.

A useful equation to define in order to observe these effects, and for the

subsequent physical discussion in the following sections, is the geodesic

equation. It is a mathematical description of the weak equivalence principle

and can be expressed as follows

d2xµ

dλ2 + Γµ
ρσ

dxρ

dλ

dxσ

dλ
= 0, (2.2.8)

where Γµ
ρσ is the Christoffel connection and λ is the affine parameter. In the

next section, we will discuss the Schwarzschild solution and focus on how it

was a fundamental piece in developing the concept of black holes.

2.3 Schwarzschild solution

The first exact analytical solution of Einstein’s field equations was developed by

the German astronomer Karl Schwarzschild in 1916. Schwarzschild developed

his solution to describe the gravitational field surrounding a spherically

symmetric mass at rest i.e with spherical symmetry and independent of time.

The fact that it has spherical symmetry implies that in this spacetime there

are three spatial Killing vectors, which obey the algebra of the rotation group

SO(3).

Starting from the preservation of these symmetries and the fact that in a

4-dimensional Riemannian space-time it is possible to define coordinates as

xµ = (t, r, θ, ϕ), such that the line element can be written as

ds2 = −F(r, t)dt2 + G(r, t)dr2 + r2
[
dθ2 + sin2 θdϕ2

]
, (2.3.1)

where F(r, t) and G(r, t) are metric functions that depend on the radial and

temporal coordinates, and where the rest of the line element corresponds to

that of the 2-sphere.
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A convenient and possible ansatz for writing these two metric functions is the

following:

F(r, t) = e f (r,t), (2.3.2)

G(r, t) = eg(r,t), (2.3.3)

such that the line element becomes,

ds2 = −e f (r,t)dt2 + eg(r,t)dr2 + r2
[
dθ2 + sin2 θdϕ2

]
, (2.3.4)

where it is clear to note that the covariant metric tensor only has terms on its

diagonal and can be written as

gtt = −e f (r,t), (2.3.5)

grr = eg(r,t), (2.3.6)

gθθ = r2, (2.3.7)

gϕϕ = r2 sin2 θ. (2.3.8)

Similarly, the contravariant form of this tensor is

gtt = −e− f (r,t), (2.3.9)

grr = e−g(r,t), (2.3.10)

gθθ =
1
r2 , (2.3.11)

gϕϕ =
1

r2 sin2 θ
. (2.3.12)

Using this form of the metric tensor and introducing it into the field equations

(2.2.7) for a spherically symmetric object in vacuum, i.e., for

Rµν −
1
2

gµνR = 0 (2.3.13)

with Tµν = 0, the equations reduce to
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0 =
1
r2 − 1

r
∂g(r, t)

∂r
− eg(r,t)

r2 , (2.3.14)

0 =
∂g(r, t)

∂t
, (2.3.15)

0 =
1
r2 − 1

r
∂ f (r, t)

∂r
− eg(r,t)

r2 , (2.3.16)

0 = e−g(r,t)

[
∂2 f (r, t)

∂r2 +
1
2

(
∂ f (r, t)

∂r

)2

− 1
2

∂g(r, t)
∂r

∂ f (r, t)
∂r

+
1
r

(
∂ f (r, t)

∂r
− ∂g(r, t)

∂r

)]
− e− f (r,t)

[
∂2g(r, t)

∂t2

− 1
2

∂g(r, t)
∂t

∂ f (r, t)
∂t

+
1
2

(
∂g(r, t)

∂t

)2
]

. (2.3.17)

We note here that the last equation does not provide additional information.

From equation (2.3.15), it is possible to notice that g(r, t) is independent of

time, that is, g(r, t) = g(r). On the other hand, if we subtract equation (2.3.14)

from equation (2.3.16), we obtain

∂

∂r
[ f (r, t) + g(r, t)] = 0, (2.3.18)

such that

f (r, t) + g(r, t) = H(t) (2.3.19)

with H(t) a function dependent only on time. And as g(r, t) = g(r), we have

that

f (r, t) = H(t)− g(r). (2.3.20)

As a consequence of this, we can choose H(t) = 0, without losing generality

of the solution, so that f (r, t) = f (r) = −g(r).

Given this, we observe that the components of the proposed metric do not

depend on time. If we then replace this result in equation (2.3.14), we notice

that it becomes identical to equation (2.3.16). Therefore, using (2.3.14) and

returning to the original variables with e f (r) = F(r), we obtain the equation
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r
∂F(r)

∂r
+ F(r)− 1 = 0. (2.3.21)

And if we also make a change of variable of the form u(r) := F(r)− 1, the

equation is reduced to

r
∂u(r)

∂r
+ u(r) = 0 (2.3.22)

and when solved, we obtain

u(r) = −C1

r
, (2.3.23)

where C1 is a constant, which for future convenience we will choose as C1 = 2m,

where also m is a constant with dimensions of distance.

Therefore, the solution would be

F(r) = e f (r) = 1 − 2m
r

, (2.3.24)

G(r) = e− f (r) =
1

1 − 2m
r

. (2.3.25)

Then, the line element of the Schwarzschild solution can be written as

ds2 = −
(

1 − rs

r

)
c2dt2 +

dr2(
1 − rs

r

) + r2
[
dθ2 + sin2 θdϕ2

]
, (2.3.26)

where rs := 2m = 2GM/c2, in which m := GM/c2, with M the physical mass

of the central object, G the universal gravitational constant, and c the speed of

light. Usually, we put G = 1 and c = 1 to use the geometric units.

Here Birkhoff’s theorem comes into play, stating that any solution to the vacuum

field equations of Einstein’s theory with spherical symmetry must have a stationary

and asymptotically flat exterior. As a result, the spacetime outside a static, spherically

symmetric object can be described by the Schwarzschild metric.
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2.3.1 Schwarzschild radius

The Schwarzschild solution given by the line element (2.3.26) is physically

interpreted as the description of a gravitational field outside r > r0 for a

spherically symmetric star of radius r0. However, this solution presents a

problem for r = rs = 2m, where it seems to explode for this particular value of

the radius r, thus a "singularity in the metric" appears.

This particular point for r in the chosen coordinate system is known today

as the Schwarzschild radius and is denoted by rs = 2GM/c2. Each body

associated with a solution of this type has a characteristic distance given by

this radius. For example, if we approximate the Sun as a spherically symmetric

object and associate it with the Schwarzschild solution, we can obtain that this

radius is approximately

rs⊙ =
2GM⊙

c2 ≈ 3 km, (2.3.27)

a radius for which the matter distribution that forms the Sun surpasses it by far,

that is, the radius of the Sun is much larger than its associated Schwarzschild

radius, or r⊙ > rs⊙ . Therefore, for this type of object, there is no problem with

the singularity in the metric, since r > r0 and r0 > rs.

The problem with this "singularity" appears when we study compact objects

as described in (2.1), particularly for objects where their radius is r0 < rs.

The word "singularity" is used in quotation marks, since in this context we do

not yet know if it really corresponds to a singularity of the curvature, or if it

is only a singularity of the coordinate system, because one definition differs

from the other.

A coordinate system singularity is a particular point that explodes to infinity in

a given coordinate system, and which can be eliminated by the appropriate

change of coordinates. On the other hand, a curvature singularity is a given

point in the manifold that explodes to infinity and which is not removable by

an appropriate change of coordinates.

To mathematically differentiate an intrinsic singularity of the geometry (or

curvature) from an apparent singularity given by the coordinate system, it
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is necessary to use the calculation of invariant quantities in the theory, i.e.,

scalars, the simples case is the calculation of the Ricci scalar, given by equation

(2.2.6). However, this scalar is always R = 0 for any solution of the Einstein

field equations in vacuum. Hence, it becomes necessary to utilize other scalars

obtained by contracting the curvature tensor. If a scalar diverges at a particular

point, it indicates that this point is a singularity of the geometry.

In the case of the Schwarzschild metric, the Kretschmann scalar is employed,

and it is

RµνρσRµνρσ =
48m2

r6 . (2.3.28)

Therefore, if we substitute the value of the Schwarzschild radius r = 2m into

the equation, we note that it does not diverge, so this value is not a singularity

of the geometry. It can also be verified that none of the scalars present in the

theory diverge at the Schwarzschild radius. On the contrary, if we introduce

r = 0 into the equation, we can notice that this value is a singularity of the

geometry.

2.3.2 Event Horizon

While the sphere located at rs = 2m is not a singularity of the curvature, it

remains an interesting limit to study, commonly known as the event horizon or

simply the horizon. Knowing this, we still need to understand what happens at

this horizon. Although we are aware that it is not a singularity of the curvature,

it poses a problem in the coordinates used to describe the Schwarzschild metric,

which prevents us from fully understanding what occurs when r ≤ rs.

To understand the behavior of this spacetime near the horizon, it is best to

study what’s happening with the metric in its vicinity, that is, by evaluating

r = 2m + ε, (2.3.29)

where 0 < ε ≪ 2m. Then, the line element of the Schwarzschild metric is given

by

ds2 = − ε

2m
dt2 +

2m
ε

dε2 + (2m)2dΩ2, (2.3.30)
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where dΩ2 = dθ2 + sin2 θdϕ2 represents the line element of the S2 sphere with

a radius of 2m, and the remaining part of the line element corresponds to

Lorentzian geometry in d = 1 + 1 dimensions. If we focus our attention on the

first part of the line element (i.e., the Lorentzian part), it can be written as

ds2 = −
( ρ

4m

)2
dt2 + dρ2, (2.3.31)

where

ρ2 = 8mε.

This metric is known as the Rindler space, which can be transformed back into

Minkowski space through a simple transformation:

T = ρ sinh
(

t
4m

)
X = ρ cosh

(
t

4m

)
(2.3.32)

that converts the line element into

ds2 = −dT2 + dX2. (2.3.33)

The coordinates (2.3.32) are the coordinates experienced by an observer

undergoing constant acceleration.

Considering that ρ > 0 corresponds to the exterior of the horizon, with

−∞ < t < +∞, we have that in Minkowski space it corresponds to the region

X > |T|. We can also analyze the behavior of this metric at the horizon itself,

where ρ = 0, so in Minkowski space X = T = 0 maps to its origin. Thus, if

t → ∞ and ρ → 0 while keeping the combination ρe±t/4m fixed, the horizon

corresponds to the lines,

r = 2m ⇒ X = ±T. (2.3.34)

This implies that the event horizon of a black hole is not a timelike surface;

instead, it is a null surface.

From the metric (2.3.33), we notice that it makes perfect sense for all X, T ∈ R

and that there is nothing suspicious about the point X = ±T. However, in the
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latter case, it can be observed that the horizon presents interesting properties.

To study them, it is useful to have a global view of this type of coordinates for

a black hole.

The first step to do this is to introduce a new radial coordinate called r∗, such

that

dr2
∗ =

(
1 − 2m

r

)−2

dr2, (2.3.35)

where

r∗ = r + 2m log
(

r − 2m
2m

)
. (2.3.36)

Here it can be seen that the region outside the horizon, i.e., 2m < r < +∞, is

mapped to −∞ < r∗ < +∞ in the new radial coordinate. Also known as the

tortoise coordinate, due to its slow change in r as r∗ varies when approaching

the horizon.

This type of coordinate is useful for studying the path of light rays traveling in

the radial coordinate, so if we consider null radial geodesics, it satisfies that

ds2 = 0 ⇒ dr
dt

= ±
(

1 − 2m
r

)
⇒ dr∗

dt
= ±1. (2.3.37)

Therefore, the radial geodesics are given by

t ± r∗ = constant, (2.3.38)

where the plus sign corresponds to ingoing geodesics (as t increases, r∗ must

decrease) and the minus sign corresponds to outgoing geodesics.

If we introduce

ν = t + r∗, (2.3.39)

u = t − r∗ (2.3.40)
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as the null coordinates, we can construct the well-known ingoing and outgoing

Eddington-Finkelstein coordinates.

For our study interest, we will focus only on the ingoing coordinates as they

describe what we now know as black holes for the Schwarzschild metric. Using

the transformation (2.3.39), we can construct

dt = dν − dr∗ = dν −
(

1 − 2m
r

)−1

dr. (2.3.41)

Substituting this into the Schwarzschild metric (2.3.26), we obtain

ds2 = −
(

1 − 2m
r

)−1

dν2 + 2dνdr + r2(dθ2 + sin2 θdϕ2), (2.3.42)

the line element for the Schwarzschild metric in the ingoing Eddington-

Finkelstein coordinates. Here we can see that the term dr2 disappears, and

there are no longer singularities at r = 2m, although dν2 changes sign for

values of r < 2m. It might appear that the metric is still problematic at these

values, but simply calculating the determinant of it reveals that this is not the

case, as

det(g) = −r4 sin2 θ, (2.3.43)

where we note that the cross-term dνdr prevents the metric from becoming

degenerate at the horizon, and the signature remains Lorentzian for all values

of r.

On the other hand, the Schwarzschild metric written as in (2.3.26) is time-

independent since it has a timelike Killing vector K = ∂t. Similarly, in the

Eddington-Finkelstein coordinates, this Killing vector (K = ∂ν) also exists, but

it is no longer timelike (gνν < 0) throughout its domain, as it becomes spacelike

inside the horizon (i.e gνν > 0). This means that the complete geometry of the

black hole is not time-independent.

Now, if we analyze the behavior of the light rays that escape from the black

hole using the coordinate transformation (2.3.40):
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u = t − r∗ = constant (2.3.44)

using ν = t + r to eliminate t in the outgoing null geodesic, it is satisfied that

ν = 2r + constant. If r > 2m, using the tortoise coordinates, we obtain:

ν = 2r + 4m log
(

r − 2m
2m

)
+ constant. (2.3.45)

Here, it is clear that the logarithmic term behaves poorly for values of r < 2m.

However, this can be solved by taking the absolute value of the argument in

the definition of r∗, such that:

r∗ = r + 2m log
∣∣∣∣r − 2m

2m

∣∣∣∣. (2.3.46)

This means that r∗ has multiple valid values for both the exterior and interior

of the horizon, where r∗ takes values of r∗ ∈ (−∞,+∞) and r∗ ∈ (−∞, 0),

respectively. Moreover, r∗ = 0 represents the singularity. The outgoing

geodesics inside the horizon have the form:

ν = 2r + 4m log
(

2m − r
2m

)
+ constant. (2.3.47)

We also note that for r = 2m, the term dν2 disappears, hence this surface is

itself a null geodesic. Therefore, the horizon is a null surface.
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Figure 2.3.1: The Finkelstein diagram for ingoing Eddington-Finkelstein
coordinates.

Finally, this information can be better illustrated by using a Finkelstein diagram,

where it is easier to see the behavior inside and outside the horizon. In the

diagram shown in Fig. (2.3.1), light rays traveling on null geodesics for ingoing

Finkelstein coordinates are represented. The axes of the diagram are the time

t∗ and the radius r, related by the expression:

ν = t + r∗ = t∗ + r. (2.3.48)

In the diagram, the incoming null geodesics are represented by red lines, and

the outgoing null geodesics are represented by blue lines. Additionally, the

dashed line represents the horizon boundary at r = 2m. Inside the horizon, the

outgoing geodesics inevitably move towards the singularity at r = 0, whereas

outside the horizon, the outgoing geodesics move away from the horizon

and escape to infinity. In the case of incoming null geodesics, the diagram is

designed to represent them as constant lines traveling at a 45 angle.

Furthermore, light cones can be represented in the Finkelstein diagram with



24 2.3. Schwarzschild solution

the intention of understanding the behavior of massive particles near the

horizon. These can be constructed at the intersections of the outgoing and

incoming curves. We can observe that outside the horizon, the inclination of

the top part of the light cones becomes more vertical as they move away from

the event horizon. This means that a particle near the vicinity of the horizon

but outside of it can escape towards infinity. On the other hand, light cones

inside the horizon have an opposite inclination, always pointing towards the

singularity. This indicates that once the horizon limit is crossed, the trajectory

will inevitably fall towards the singularity.

This behavior of objects near the event horizon is what gives these objects the

name "black hole," as beyond the horizon, nothing, not even light, can escape

from it. Additionally, this diagram can give us an idea of what an observer

outside the black hole would see if they witnessed a companion entering it.

As the companion passes the horizon, they would not notice anything strange

and would continue on their path towards the singularity. However, the

external observer would not be able to see this because the light rays emitted

by the companion would gradually slow down as they approach the horizon.

The observer would perceive a static image of their companion, which, over

time, would gradually experience redshift given the infinite redshift surface

at r = 2m and that gtt → 0 as we approach the horizon, by gravitational time

dilation, which can also be expressed mathematically as

∆τ1

∆τ2
=

√
1 − 2m

r1√
1 − 2m

r2

, (2.3.49)

where r1 and r2 are the positions of the two "static" observers.

Similarly, the outgoing Eddington-Finkelstein coordinates can be analyzed, but

these would lead us to the concept of a white hole, which is not necessary to

explore for the understanding of this study.

2.3.3 Bound orbits in Schwarzschild metric

Finally, to fully understand the Schwarzschild solution, it is beneficial to

study the behavior of geodesics. Therefore, the first required ingredient is the
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non-zero components of the Christoffel symbols, which are given by

Γt
tr =

m
r(r − 2m)

, (2.3.50)

Γr
tt =

m(r − 2m)

r3 , (2.3.51)

Γr
rr =

−m
r(r − 2m)

, (2.3.52)

Γr
θθ = −(r − 2m), (2.3.53)

Γr
ϕϕ = −(r − 2m) sin2 θ, (2.3.54)

Γθ
rθ =

1
r

, (2.3.55)

Γθ
ϕϕ = − sin θ cos θ, (2.3.56)

Γϕ
rϕ =

1
r

, (2.3.57)

Γϕ
θϕ =

cos θ

sin θ
. (2.3.58)

If they are used in the geodesic equation, the following 4 equations can be

obtained, with the affine parameter λ;

d2t
dλ2 +

2m
r(r − 2m)

dr
dλ

dt
dλ

= 0, (2.3.59)

d2r
dλ2 +

m
r3 (r − 2m)

(
dt
dλ

)2

− m
r(r − 2m)

(
dr
dλ

)2

− (r − 2m)

[(
dθ

dλ

)2

+ sin2 θ

(
dϕ

dλ

)2
]
= 0, (2.3.60)

d2θ

dλ2 +
2
r

dθ

dλ

dr
dλ

− sin θ cos θ

(
dϕ

dλ

)2

= 0, (2.3.61)

d2ϕ

dλ2 +
2
r

dϕ

dλ

dr
dλ

+ 2
cos θ

sin θ

dθ

dλ

dϕ

dλ
= 0. (2.3.62)

These equations can be solved thanks to the numerous symmetries exhibited

by the Schwarzschild solution.

The metric has 4 constants of motion for a free particle, which is due to having

the same number of Killing vectors

Kµ
dxµ

dλ
= constant. (2.3.63)
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Three of them are spatial due to their spherical symmetry, and one is due

to temporal translations. Additionally, there is another constant that always

appears for geodesics, which is written as

c̃ = −gµν
dxµ

dλ

dxν

dλ
. (2.3.64)

For massive particles, when λ = τ (i.e., timelike curves), we have c̃ =

−gµνUµUν = +1. For massless particles, c̃ = 0, and for spacelike curves,

c̃ = −1.

Now, if we look at what the Killing vectors imply for the conserved quantities

in the Schwarzschild metric, we notice that the symmetries indicate invariance

under temporal translations and spatial rotations. Therefore, we can infer that

there will be at least two Killing vectors associated with these quantities.

The conservation of spatial rotations leads to conservation of angular

momentum (which has 3 Killing vectors, 2 for its directions and one for

magnitude). Therefore, we can choose to work in the equatorial plane to

simplify the calculations. If the particle is orbiting outside the plane, we can

rotate the coordinate system until it is in the plane. Then, the two Killing

vectors associated with the direction of angular momentum imply that

θ =
π

2
, (2.3.65)

such that the remaining two Killing vectors are K = ∂t representing energy

and L = ∂ϕ representing angular momentum magnitude, which lead us to the

equations (
1 − 2m

r

)
dt
dλ

= E, (2.3.66)

r2 dϕ

dλ
= L. (2.3.67)

Together, these conserved quantities applied to equation (2.3.64) lead us to the

equation

−E2 +

(
dr
dλ

)2

+

(
1 − 2m

r

)(
L2

r2 + c̃
)
= 0, (2.3.68)
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which can be rewritten as

1
2

(
dr
dλ

)2

+ V(r) =
1
2

E2 (2.3.69)

where

V(r) =
1
2

c̃ − c̃
m
r
+

L2

2r2 − mL2

r3 . (2.3.70)

This is the effective potential of the Schwarzschild metric for particles moving

along geodesics in a plane, where the first three terms have a Newtonian

character and the last term represents the contribution of general relativity to

the potential, which becomes significant for small values of r.

This potential serves to describe the types of possible orbits. There will be

different values of V(r) for different values of L. The general behavior of

a particle will be to move along the potential until it reaches the "inflection

point" where V(r) =
1
2

E2, at which point its motion will change direction. In

some cases, there is no inflection point, and the particle will remain in that

motion. The particle can also remain in circular orbits, where r is constant and

occurs when dV/dr = 0.

Therefore, by taking the derivative of the equation (2.3.70) with respect to r,

we can find the radius for the circular orbit rc via

c̃mr2
c − L2rc + 3mL2γ = 0. (2.3.71)

The circular orbit will be stable if the value of r corresponds to a minimum of

the potential and unstable if it corresponds to a maximum. In general relativity,

it is possible to find a circular orbit for massless particles at

rc = 3m, (2.3.72)

which is a maximum value for V(r). Therefore, a photon can orbit indefinitely

at this radius (known as the photon radius rph). However, any perturbation

will cause it to either collapse to r = 0 or escape to r = ∞.
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For massive particles, circular orbits are given by

rc =
L2 ±

√
L4 − 12m2L2

2m
(2.3.73)

and depend solely on the value of L. For large values of L, there are two

circular orbits, one stable and one unstable. As L → ∞, the stable orbit grows

and approaches the value of rc = L2/m, while the unstable orbit approaches

the value of circular orbits for massless particles, i.e., rc = 3m.

On the other hand, as L decreases, both orbits converge and coincide at the

value L =
√

12m, for which

rc = 6m. (2.3.74)

This value is the smallest possible for stable circular orbits in the Schwarzschild

metric and is known as the ISCO radius (Innermost Stable Circular Orbit).

It is important to note that these orbits are geodesics, and there is nothing

preventing an accelerated particle from going beyond r = 3m toward the event

horizon and returning, as long as it does not cross the horizon. With this

context, we can have a better understanding of the concepts that I will discuss

in the following chapters.

2.4 Kerr solution

Now, it happens that if we make an extremely massive object with spherical

symmetry rotate, it will necessarily have an axis of rotation, and thus the

invariance under rotations will be inevitably lost. Roy Kerr in 1963 proposed

this idea in his famous work (Kerr, 1963) was the first to write the analytical

solution for Einstein’s field equations in a spherically symmetric and rotating

geometry. This solution, written in Boyer-Lindquist coordinates, takes the

form
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gtt = −
(

1 − 2mr
Σ

)
, (2.4.1)

gtϕ = −2mar sin2 θ

Σ
, (2.4.2)

grr =
Σ
∆

, (2.4.3)

gθθ = Σ, (2.4.4)

gϕϕ =

(
r2 − a2 2ma2r sin2 θ

Σ

)
sin2 θ, (2.4.5)

where

∆ ≡ r2 − 2mr + a2, (2.4.6)

Σ ≡ r2 + a2 cos2 θ (2.4.7)

that written as a line element is given as

ds2 = −
(

1 − 2mr
Σ

)
dt2 − 4mar sin2 θ

Σ
dtdϕ +

Σ
∆

dr2 + Σdθ2

+

(
r2 − a2 2ma2r sin2 θ

Σ

)
sin2 θdϕ2. (2.4.8)

Important characteristics that can be observed from this line element are that

the Kerr solution is a stationary solution, it has axial symmetry (since the

metric coefficients do not depend on t or ϕ, so ∂t and ∂ϕ are Killing vectors).

Furthermore, just like the Schwarzschild solution, which is invariant under the

discrete symmetries t → −t and ϕ → −ϕ, the Kerr solution is only invariant

under (t, ϕ) → (−t,−ϕ).

2.4.1 Properties

After a quick inspection, it can be noted that the solution depends on two

parameters, m and a, where a has dimensions of length, and when a = 0,

the Schwarzschild solution is recovered. Additionally, in the asymptotic limit

(i.e., r >> m), the flat Minkowski geometry is recovered with the coordinates

(t, r, θ, ϕ).
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On the other hand, the isometries given by the Killing vectors

K =
∂

∂t
, (2.4.9)

L =
∂

∂ϕ
, (2.4.10)

lead us to the fact that if we calculate the integrals of Komar of each of these

we obtain that m defines the mass of the object and that the solution of L leads

us to the definition of angular momentum as

J = am. (2.4.11)

Therefore, a is defined as the rotation parameter of the metric, and its sign will

determine the direction of rotation.

These two isometries (2.4.9) and (2.4.10) allow us to obtain and define two

important constants of motion for the solution, which are the energy E and

the angular momentum L, which can also be expressed as follows

pt = −E, (2.4.12)

pϕ = L. (2.4.13)

In terms of the four-momentum, where pt = µut is the temporal component

of the four-momentum and pϕ = µuϕ is the azimuthal component of the

four-momentum, with µ being the rest mass of a particle for a geodesic orbit.

But in addition to these, there is a third constant of motion that allows the

solution to be completely integrable.

The third constant of motion can be found using the Hamilton-Jacobi method

by solving the equation 1:

−∂S
∂τ

=
1
2

gαβ ∂S
∂xα

∂S
∂xβ

(2.4.14)

as Carter did in (Carter, 1968) and where S is the Jacobi action, which has the

form of
1Method extracted from (Johannsen, 2013b)
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S =
1
2

µ2τ − Et + Lϕ + Sr(r) + Sθ(θ), (2.4.15)

where τ is the proper time. The Hamilton-Jacobi equation (2.4.14) is separable

for the four coordinates, which makes geodesic motion in the Kerr metric

integrable. From the separability of the equations and some algebra, it is

finally obtained that the Carter constant is defined by

Q = C − (L − aE)2 (2.4.16)

or

Q = (pθ)2 + cos2 θ

[
a2(µ2 − E2) +

(
L

sin θ

)2
]

. (2.4.17)

2.4.1.1 Event Horizon and Ergosphere

On the other hand, similar to the Schwarzschild metric, the Kerr metric exhibits

a singularity, such that the Kretschmann scalar associated with this metric is

RµναβRµναβ =
48m2(r2 − a2 cos2 θ)[Σ2 − 16r2a2 cos2 θ]

Σ6 . (2.4.18)

Here we can see that there is only one singularity when Σ = 0, which implies

that r2 + a2 cos2 θ = 0. Therefore, the singularity occurs if

r = 0, (2.4.19)

cos θ = 0. (2.4.20)

From this, it can be deduced that the singularity present in this metric is a ring

of radius a in the xy plane

x2 + y2 = a2, z = 0 (2.4.21)

with the change of coordinates given by
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dt̃ = dt +
2mr

∆
dr, (2.4.22)

x = r sin θ cos ϕ + a sin θ sin ϕ, (2.4.23)

y = r sin θ sin ϕ − a sin θ cos ϕ, (2.4.24)

z = r cos θ. (2.4.25)

Just like in the Schwarzschild solution, there is also an infinite redshift surface

in this Kerr solution, which can be found from the fact that on these surfaces

gtt = 0, resulting in the condition

r2 − 2mr + a2 cos2 θ = 0 (2.4.26)

from which the two surfaces appear as 2

rs±(θ) = m ±
√

m2 − a2 cos2 θ (2.4.27)

with S+ being a surface with a radius of 2m at the equator and a radius of

m +
√

m2 − a2 at the poles when a2 < m2, and S− being a surface contained

within S+. Here, rs+ from equation (2.4.27) coincides with the Schwarzschild

radius when a = 0, and rs− corresponds to the singularity.

Now, if we perform the same analysis to find the radius of the event horizon,

we need to examine where grr diverges, that is, when ∆ vanishes, implying

that

r2 − 2mr + a2 = 0, (2.4.28)

so the horizon is at

r± = m ±
√

m2 − a2. (2.4.29)

And they only exist if a2 ≤ m2. When a2 > m2, a "naked" singularity appears

in the gravitational field since there is no horizon. The hypothesis that this

2Surfaces also known as Killing horizons, since for all points on them it holds that εµεµ = 0,
with εµ being a Killing vector.
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cannot exist in reality is known as the Cosmic Censorship Conjecture proposed

by Penrose, which states that gravitational collapses have well-behaved initial

conditions and therefore cannot give rise to a naked singularity.

When analyzing the behavior of the aforementioned regions, three zones are

found where the Kerr solution is regular

I : r+ < r < ∞, (2.4.30)

I I : r− < r < r+, (2.4.31)

I I I : 0 < r < r−, (2.4.32)

where the area described between the infinite redshift surface S+ and the event

horizon r+ is known as Ergosphere.

2.4.1.2 ISCO radius

Now, if we consider a photon emitted in the direction of the coordinate ϕ in

the equatorial plane (i.e., θ = π/2) of a rotating black hole. Since at the instant

of emission, its momentum has no r or θ components, the condition for it to

be null is

ds2 = 0 = gttdt2 + gtϕ(dtdϕ + dϕdt) + gϕϕdϕ2, (2.4.33)

from which it is possible to obtain that

dϕ

dt
= −

gtϕ

gϕϕ
±

√(
gtϕ

gϕϕ

)2

− gtt

gϕϕ
. (2.4.34)

If evaluated at the Killing horizon (see footnote 2), this yields gtt = 0, and the

non-zero solution appears as

dϕ

dt
=

2a
(2m)2 + a2 (2.4.35)

and can be interpreted as the photon moving around the black hole following

the same direction as its rotation. When the solution is zero, the interpretation

is that the photon cannot move against the direction of the black hole’s rotation,

illustrating that for massive particles, they will necessarily be dragged in the
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direction of the black hole’s rotation within the Killing horizon. Thus, with

this, we can define the angular velocity at the event horizon itself as

ΩH =
dϕ

dt −
(r+) =

a
r2
+ + a2

. (2.4.36)

On the other hand, if we consider the geodesic equation (2.2.8),

d2xµ

dτ2 + Γµ
ρσ

dxρ

dτ

dxσ

dτ
= 0, (2.4.37)

where τ is the proper time and plays the role of λ as an affine parameter.

Considering also the normalization condition of the four-velocity given by

gµν ẋµ ẋν = δ, (2.4.38)

where δ is a parameter that defines whether the condition is for timelike

geodesics (δ = −1) or null geodesics (δ = 0).

Following the work done by Ryan (1995) and using the condition (2.4.38) in

equation (2.4.37) for a circular orbit in the equatorial plane, where thanks to the

axial and reflection symmetries dr/dτ = dθ/dτ = d2r/dτ2 = 0, the geodesic

motion in the radial direction is reduced to,

1
2

∂rgtt

(
dt
dτ

)2

+ ∂rgtϕ
dt
dτ

dϕ

dτ
+

1
2

∂rgϕϕ

(
dϕ

dτ

)2

= 0, (2.4.39)

where ∂r = ∂/∂r. From this equation, we can find the Keplerian frequency (or

angular velocity in this particular case) 3 in the equatorial plane as

Ωϕ =
dϕ/dτ

dt/dτ
=

pϕ

pt
=

−∂rgtϕ ±
√
(∂rgtϕ)2 − ∂rgtt∂rgϕϕ

∂rgϕϕ
(2.4.40)

=
m

(r3/2 + am1/2)2 , (2.4.41)

3It is important to highlight that this coincidence between the Keplerian frequency and the
angular velocity only occurs in specific circular orbits in the Kerr metric. For elliptical or other
orbital configurations, the relationship between the Keplerian frequency and the angular
velocity may be different.
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where the sign + refers to prograde orbits and − to retrograde orbits,

depending on the value of the spin parameter a, where (2.4.41) is the angular

velocity for this particular case in geometric units.

Using this definition and the fact that we are working with circular orbits, in

equation (2.4.38) we can obtain the expressions

E
µ
=

−gtt − gtϕΩϕ√
−gtt − 2gtϕΩ − gϕϕΩ2

, (2.4.42)

L
µ
= ±

gtϕ + gϕϕΩϕ√
−gtt − 2gtϕΩ − gϕϕΩ2

, (2.4.43)

which are the expressions for the energy per unit mass µ and the axial angular

momentum per unit mass.

On the other hand, evaluating in the equatorial plane, the equation

pα pα = −µ2 (2.4.44)

allows us to obtain the effective potential of the particles, given by

Ve f f (r) = µ2uαuα (2.4.45)

= −1
2
(gttE2 − 2gtϕEL + gϕϕL2µ2) (2.4.46)

=

(
−E2 + µ2) r3 − 2M µ2r2 +

((
−E2 + µ2) a2 + L2) r − 2M (Ea − L)2

4M r2 − 2a2r − 2r3 ,

(2.4.47)

from which we can obtain the innermost stable circular orbit, finding the

minima and maxima of this potential by solving

Ve f f (r) = 0, (2.4.48)

dVe f f (r)
dr

= 0, (2.4.49)

and we obtain

rISCO = Rg(3 + Z2 − [(3 − Z1)(3 + Z1 + 2Z2)]
1/2), (2.4.50)
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where Z1 = 1 + (1 − a2
∗)

1/3[(1 + a∗)1/3 + (1 − a∗)1/3], Z2 = (3a2
∗ + Z2

1)
1/2,

a∗ = a/M, and Rg := m = GM/c2 are known as gravitational radii, a concept

we will use later on.

2.5 Kerr-Like metric

The Kerr-like metric, described in Johannsen (2013b), is a spacetime constructed

with the idea of being regular in the exterior domain of its horizon and having

three constants of motion for its mathematical description to be fully integrable

and preserving the separability of the Hamilton-Jacobi equations.

This last sentence is the starting point to construct this metric, i.e, if we see the

Kerr solution in Boyer-Linquist coordinates as (2.4.1), we note that this solution

has a three constant of motion including the Carter constant (Carter, 1968),

which are found by Carter explicitly solving the Hamilton-Jacobi equations,

−∂S
∂τ

=
1
2

gαβ ∂S
∂xα

∂S
∂xβ

, (2.5.1)

where τ is the proper time.

Therefore, the path Johanssen took to search for a more general metric that

satisfied the separability of the equation (2.5.1) was to start with the expansion

of the Kerr metric in its contravariant form, meaning that from the equation,

gαβ ∂

∂xα

∂

∂xβ
= − 1

∆Σ

[
(r2 + a2)

∂

∂t
+ a

∂

∂ϕ

]2

+
1

Σ sin2 θ

[
∂

∂ϕ
+ a sin2 θ

∂

∂t

]2

+
∆
Σ

(
∂

∂r

)2

+
1
Σ

(
∂

∂θ

)2

, (2.5.2)

he rewrote it as
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gαβ ∂

∂xα

∂

∂xβ
= − 1

∆Σ̃

[
(r2 + a2)A1(r)

∂

∂t
+ aA2(r)

∂

∂ϕ

]2

+
1

Σ̃ sin2 θ

[
A3(θ)

∂

∂ϕ
+ a sin2 θA4(θ)

∂

∂t

]2

+
∆
Σ̃

A5(r)
(

∂

∂r

)2

+
1
Σ̃

A6(θ)

(
∂

∂θ

)2

(2.5.3)

with

Σ̃ ≡ Σ + f (r) + g(θ), (2.5.4)

where the free scalar functions f (r), f (θ), Ai(r), i = 1, 2, 5, and Aj(θ), j = 3, 4, 6

are introduced, so that the Hamilton-Jacobi equations remain separable.

As in the case of Kerr, the Hamilton-Jacobi function can be defined as:

S ≡ 1
2

µ2τ − Et + Lzϕ + Sr(r) + Sθ(θ), (2.5.5)

where µ is the rest mass of a test particle on a geodesic orbit, Lz is the axial

angular momentum and E is the energy, and

∂S
∂xα

= pα, (2.5.6)

∂S
∂τ

=
1
2

µ2. (2.5.7)

Here,

pα ≡ µ
dxα

dτ
(2.5.8)

is the particle’s 4−momentum. From the function (2.5.5) and the equation

(2.5.1) one can obtain the solutions for Sr(r) and Sθ(θ) which are,

Sr(r) = ±
∫

dr
1
∆

√
R(r)
A5(r)

, (2.5.9)

Sθ(θ) = ±
∫

dθ

√
Θ(θ)

A6(θ)
, (2.5.10)

(2.5.11)
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where

R(r) = P2 − ∆{µ2[r2 + f (r)] + (Lz − aE)2 + Q}, (2.5.12)

Θ(θ) = Q + (Lz − aE)2 − µ2[a2 cos2 θ + g(θ)]

− 1
sin2 θ

[A3(θ)Lz − aA4(θ)E sin2 θ]2, (2.5.13)

P ≡ (r2 + a2)A1(r)E − aA2(r)Lz, (2.5.14)

and also obtain the Carter-Like constant and the relation between the momenta

pα and the constant of motion:

E = −pt, (2.5.15)

Lz = pϕ, (2.5.16)

Q = A6(θ)p2
θ − (Lz − aE)2 + µ2[a2 cos2 θ + g(θ)]

+
1

sin2 θ
[A3(θ)Lz − aA4(θ)E sin2 θ]2. (2.5.17)

From this, the equations of motion for a particle with rest mass µ can finally

be found, as Johanssen did in Johannsen (2013b).

Thus, since there are equations of motion associated with particles moving

around this spacetime, it is valid to write the Kerr-Like metric which, in its

covariant form in Boyer-Lindquist coordinates, is given by

gtt = − Σ̃[∆A3(θ)
2 − a2A2(r)2 sin2(θ)]

[(r2 + a2)A1(r)A3(θ)− a2A2(r)A4(θ) sin2(θ)]2
, (2.5.18)

gtϕ = − a[(r2 + a2)A1(r)A2(r)− ∆A3(θ)A4(θ)]Σ̃ sin2(θ)

[(r2 + a2)A1(r)A3(θ)− a2A2(r)A4(θ) sin2(θ)]2
, (2.5.19)

grr =
Σ̃

∆A5(r)
, (2.5.20)

gθθ =
Σ̃

A6(θ)
, (2.5.21)

gϕϕ =
Σ̃ sin2(θ)[(r2 + a2)2A1(r)2 − a2∆A4(θ)

2 sin2(θ)]

[(r2 + a2)A1(r)A3(θ)− a2A2(r)A4(θ) sin2(θ)]2
. (2.5.22)

This metric also depends nonlinearly on six independent free deviation

functions which in order to obtain an explicit form of this metric, Johannsen
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(2013b), writes these functions as a power of series in M/r,

Ai(r) ≡
∞

∑
n=0

αin

(
M
r

)n
, i = 1, 2, 5, (2.5.23)

and furthermore

f (r) ≡ ∑
n=0

ϵn
Mn

rn−2 , (2.5.24)

g(θ) ≡ M2
∞

∑
k,l=0

γkl sink θ cosl θ. (2.5.25)

From the requirement that the metric be asymptotically flat, it can be obtained

that α10 = α20 = α50 = 1 and A3(θ) = A4(θ) = A6(θ) = 1. Additionally,

Johannsen sets α11 = α21 = α51 = 0, which defines the mass parameter M of

the central object and the spin parameter a of this metric without the need for

rescaling.

This metric can be further reduced by proposing constraints on its deviation

parameters using the Parametrized post-Newtonian Framework (PPN), where

the deviation parameters and function ϵ2 = α12 = g(θ) = 0 can be fixed. See

Johannsen (2013b) for more details.

Finally, summarizing these conditions, the Kerr-Like metric can be written as

follows:

gtt = − Σ̃[∆ − a2A2(r)2 sin2(θ)]

[(r2 + a2)A1(r)− a2A2(r) sin2(θ)]2
, (2.5.26)

gtϕ = − a[(r2 + a2)A1(r)A2(r)− ∆]Σ̃ sin2(θ)

[(r2 + a2)A1(r)− a2A2(r) sin2(θ)]2
, (2.5.27)

grr =
Σ̃

∆A5(r)
, (2.5.28)

gθθ = Σ̃, (2.5.29)

gϕϕ =
Σ̃ sin2(θ)[(r2 + a2)2A1(r)2 − a2∆ sin2(θ)]

[(r2 + a2)A1(r)− a2A2(r) sin2(θ)]2
, (2.5.30)

where
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A1(r) = 1 +
∞

∑
n=3

α1n

(
M
r

)n
, (2.5.31)

A2(r) = 1 +
∞

∑
n=2

α2n

(
M
r

)n
, (2.5.32)

A5(r) = 1 +
∞

∑
n=2

α5n

(
M
r

)n
, (2.5.33)

∆ ≡ r2 − 2Mr + a2, (2.5.34)

Σ̃ = r2 + a2 cos2 θ + f (r), (2.5.35)

f (r) =
∞

∑
n=3

ϵn
Mn

rn−2 (2.5.36)

are the free functions of the metric. The Kerr metric is recovered when all

the deviations parameters vanish, i.e., when A1(r) = A2(r) = A5(r) = 1 and

f (r) = 0.

This metric is asymptotically flat, is consistent with the current PPN constraints

and has a correct Newtonian limit. Furthermore, an additional advantage of

this metric is that, due to its free functions, it can describe black hole solutions

in alternative theories of gravity that differ from the Kerr solution.

2.5.1 Properties of Kerr-Like metric

One of the key regions to analyze in this metric is its exterior domain with

the intention of ruling out possible singularities or pathological regions that

could be introduced by the free deviation functions (2.5.31). Thus, to discard

potential violations of Lorentzian signature or the existence of closed timelike

curves, we can start by analyzing the determinant of the metric, given by

det(gαβ) = − Σ̃4 sin2 θ

A5(r)[A1(r)(r2 + a2)− a2A2(r) sin2 θ]2
, (2.5.37)

where this is not necessarily negative definite. Johannsen (2013b) then imposes

the condition

A1(r)(r2 + a2)− a2A2(r) sin2 θ ̸= 0, (2.5.38)
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to ensure that the determinant is negative definite. Additionally, from the

metric description in (2.5.26), we must have

Σ̃ > 0, (2.5.39)

A5(r) > 0, (2.5.40)

which must be fulfilled everywhere inside and outside the horizon.

These conditions can be written for the lowest order of the free deviation

functions, which imposes constraints on the free parameters themselves.

Therefore, we have that

α13 ̸= a2r(r2 + α22M2) sin2 θ − r3(r2 + a2)

M3(r2 + a2)
, (2.5.41)

α52 > − (M +
√

M2 − a2)2

M2 , (2.5.42)

ϵ3 > − (M +
√

M2 − a2)3

M3 . (2.5.43)

These limits were obtained by replacing r with r+ with the intention of

obtaining lower limits for the deviation parameters that are valid for all radii,

r ≥ r+.

Furthermore, to rule out the existence of closed timelike curves, Johanssen

imposes an additional requirement on the (ϕ, ϕ) component of the metric,

which is

A1(r)(r2 + a2)2 − a2∆ sin2 θ > 0, (2.5.44)

which implies, at the lowest order, that

α13 > − (M +
√

M2 − a2)3

M3 . (2.5.45)

This limit is also obtained for r = r+. If we combine this expression with the

condition (2.5.41), we obtain the limit

α22 > − (M +
√

M2 − a2)2

M2 . (2.5.46)
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Therefore, the equations (2.5.45), (2.5.46), (2.5.42), and 2.5.43 define the lower

limits for the deviation parameters up to the lowest order in the metric (2.5.26),

depending on the mass and spin parameter.

Johanssen in (Johannsen, 2013b) verified numerically that the metric does

not exhibit curvature singularities using these deviation parameters in the

Kretschmann scalar.

2.5.1.1 Event Horizon

The event horizon in the case of the Kerr-like metric is calculated following

the method in (Johannsen, 2013c). Since the event horizon is a null surface

generated by null geodesics, the normal to the surface can be defined as nµ,

satisfying nµnµ = 0. Taking this surface as a level surface of a scalar function

f (xα), we have

nµ = ∇µ f = ∂µ f . (2.5.47)

Thus, the event horizon is defined by the condition

gµν(∂µ f )(∂ν f ) = 0. (2.5.48)

For metrics described in spherical-like, stationary, and axisymmetric

coordinates, the equation becomes

grr(∂r f )2 + 2grθ(∂r f )(∂θ f ) + gθθ(∂θ f )2 = 0. (2.5.49)

For the case of the Kerr metric, the function f is given by

f = r − H, (2.5.50)

where the null surface is defined by f = 0, and the level surface in spherical-

like coordinates is

grr(H) = 0, (2.5.51)
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from which

H = r+ = M +
√

M2 − a2. (2.5.52)

In a more general case, it is assumed that

f = r − H(θ), (2.5.53)

where the fact that H(θ) depends on θ is general enough to describe any

horizon for which there exists a unique horizon radius at any angle θ.

Using this method (Johannsen, 2013b), it is determined that for the metric

(2.5.26), that

r+ = H(θ), (2.5.54)

which defines the ordinary differential equation,

grr + gθθ

(
dH
dθ

)2

= 0, (2.5.55)

where grr = 1/grr and gθθ = 1/gθθ. At the poles and in the equatorial plane,

the equation reduces to

grr = 0, (2.5.56)

where the conditions (2.5.39) hold for any radius r ≥ r+. Thus, grr = 0 reduces

to

∆ = r2 − 2Mr + a2 = 0. (2.5.57)

Hence, the horizon is given by

r+ = M +
√

M2 − a2, (2.5.58)

which coincides with the Kerr event horizon for any angle θ.
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2.5.1.2 Ergosphere

On the other hand, the Killing horizon can be found by solving the equation

g2
tϕ − gttgϕϕ =

∆Σ̃2 sin2 θ

[(r2 + a2)A1(r)− a2A2(r) sin2 θ]2
, (2.5.59)

which reduces to the equation

∆ = 0, (2.5.60)

for which the solution is r+, so the Killing horizon coincides with the event

horizon.

As we know, the ergosphere is the area between the Killing horizon and the

event horizon. It can be determined by solving the equation

gtt = 0, (2.5.61)

which reduces to the equation,

∆ − a2A2(r)2 sin2 θ = 0. (2.5.62)

Thus, the shape of the ergosphere will depend on the spin parameter and the

free function A2(r).

2.5.1.3 ISCO radius

By performing an analogous analysis to the one used in section 2.4.1.2, we can

determine the values for the angular momentum per unit mass, energy per

unit mass, Keplerian frequency, and the ISCO radius for the Kerr-Like metric.

Therefore, from the geodesic equation, we have the condition

∂rgtt ṫ2 + 2∂rgtϕ ṫϕ̇ + ∂rϕ̇2 = 0, (2.5.63)

where ∂r := ∂/∂r and the dot denotes d/dτ. Here, the Keplerian frequency is
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Ωϕ =
−∂rgtϕ ±

√
(∂rgtϕ)2 − ∂rgtt∂rgϕϕ

∂rgϕϕ
, (2.5.64)

where the signs + and − refer to prograde and retrograde orbits, respectively.

Here, it is noticeable that the Keplerian frequency is independent of the free

function A5(r) since it does not depend on grr.

In terms of the constants of motion,

Ωϕ =
pϕ

pt
= −

gtϕE + gttLz

gϕϕE + gtϕLz
, (2.5.65)

from which we can determine the energy and axial angular momentum as

E
µ
= −

gtt + gtϕΩϕ√
−gtt − 2gtϕΩϕ − gϕϕΩ2

ϕ

, (2.5.66)

Lz

µ
= ±

gtϕ + gϕϕΩϕ√
−gtt − 2gtϕΩϕ − gϕϕΩ2

ϕ

, (2.5.67)

where again the signs + and − refer to prograde and retrograde orbits,

respectively. These expressions are also independent of the deviation function

A5(r). 4

On the other hand, the effective potential for the Kerr-Like metric can also

be obtained analogously to what we obtained for the Kerr metric. From the

equation

pα pα = −µ2, (2.5.68)

where pα is the momentum of the particles in an orbit and µ is the rest mass.

Thus, the effective potential is given by the expression,

Ve f f (r) = −1
2
(gttE2 − 2gtϕEL + gϕϕL2µ2), (2.5.69)

4It should be noted that while these are independent of A5(r), this only occurs for circular
orbits in the equatorial plane; for other types of orbits, they may depend on A5(r).
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where circular orbits in the equatorial plane are governed by the equations,

Ve f f (r) = 0, (2.5.70)

dVe f f (r)
dr

= 0, (2.5.71)

and the radius of the innermost stable circular orbit (ISCO), in the particular

case of the Kerr-Like metric, is found by numerically solving the differential

equation

dE
dr

= 0 (2.5.72)

to find its minima and maxima. As we can see from the expression for the

energy, it depends on the free functions f (r), A1(r), and A2(r). For example,

in the case of first-order deviations, at a given radius, the energy and axial

angular momentum increase for decreasing values of the parameters ϵ3 and

α22, and for increasing values of α13.

2.5.2 Kerr-Schild-Like metric

In order to study the behavior of this metric in GRMHD-type simulations, it

is useful for us to define it in Kerr-Schild coordinates, as we eliminate the

coordinate singularity present at the horizon r+.

The derivation proposed by Johannsen (2013b) is similar to the one given

for the Kerr metric (Kerr, 1963; Debney et al., 1969). For null geodesics, the

following parameters are introduced

ξ ≡ Lz

E
, (2.5.73)

η ≡ Q
E2 . (2.5.74)

Using these parameters, in the functions (2.5.12) and (2.5.13), they can be



2.5. Kerr-Like metric 47

written as

R(r)
E2 = [(r2 + a2)A1(r)− aA2(r)ξ]2 − ∆[(ξ − a)2 + η], (2.5.75)

Θ(θ)

E2 = η + (ξ − a)2 − 1
sin2 θ

(ξ − a sin2 θ)2. (2.5.76)

From the solutions for Sθ and Sr, we obtain the condition,

η + (ξ − a)2 ≥ 0, (2.5.77)

where if and only if

θ = θ0 = const, (2.5.78)

ξ = a sin2 θ, (2.5.79)

the equality holds. Thus,

η = −a2 cos4 θ0. (2.5.80)

These expressions for the parameters η and ξ are identical for the case of the

Kerr metric.

Then, with these expressions, Johanssen obtained the equations of motion for

a photon, as follows

dt
dλ

= ltE =
(r2 + a2)A1(r)

∆
(r2 + a2)A1(r)− a2A2(r) sin2 θ

Σ̃
E, (2.5.81)

dr
dλ

= ±lrE = ±
√

A5(r)
(r2 + a2)A1(r)− a2A2(r) sin2 θ

Σ̃
E, (2.5.82)

dθ

dλ
= 0, (2.5.83)

dϕ

dλ
= lϕE =

aA2(r)
∆

(r2 + a2)A1(r)− a2A2(r) sin2 θ

Σ̃
E, (2.5.84)

where λ is an affine parameter.

If we set E = 1, the principal null directions are given by the vectors,

lα
± = (lt,±lr, 0, lϕ), (2.5.85)
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where using the incoming (−lr) and outgoing (+lr) principal null directions,

we can define the Kerr-Schild coordinates for the Kerr-Like metric as

dtKS = dtBL ∓ lt

lr drBL, (2.5.86)

drKS = ± 1
lr drBL, (2.5.87)

dθKS = dθBL, (2.5.88)

dϕKS = dϕBL ∓ lϕ

lr drBL. (2.5.89)

Setting E = 1, the principal null directions for this transformation are,

lα
± = (0,±1, 0, 0), (2.5.90)

However, this transformation, in practice, is quite cumbersome and may be very

difficult to carry out explicitly. Therefore, Johanssen proposes an alternative

transformation for the Kerr-Schild-Like coordinates, which eliminates the

transformation of the radial coordinate and also replaces the factor (r2 + a2)/∆

in the expression of lt with 2Mr/∆, following the work by McKinney and

Gammie (2004). As a result, the transformation (2.5.86) becomes,

dtKS = dtBL − 2MrA1(r)
∆
√

A5(r)
drBL, (2.5.91)

drKS = drBL, (2.5.92)

dθKS = dθBL, (2.5.93)

dϕKS = dϕBL − aA2(r)
∆
√

A5(r)
drBL. (2.5.94)

So finally, the Kerr-Like metric transformed to the Kerr-Schild coordinates
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becomes

gtt = − Σ̃[∆ − a2A2(r)2 sin2(θ)]

F
, (2.5.95)

gtr =
Σ̃√

A5(r)F
{A1(r)[2Mr + a2A2(r)2 sin2(θ)] (2.5.96)

− a2A2(r) sin2(θ)}, (2.5.97)

gtϕ = − a[(r2 + a2)A1(r)A2(r)− ∆]Σ̃ sin2(θ)

F
, (2.5.98)

grr =
Σ̃A1(r)
A5(r)F

{A1(r)[∆ + 4Mr + a2A2(r)2 sin2(θ)] (2.5.99)

− 2a2A2(r) sin2(θ)}, (2.5.100)

grϕ = − aΣ̃ sin2(θ)√
A5(r)F

[(r2 + a2)A1(r)2A2(r) (2.5.101)

+ 2MrA1(r)− a2A2(r) sin2(θ)], (2.5.102)

gθθ = Σ̃, (2.5.103)

gϕϕ =
Σ̃ sin2(θ)[(r2 + a2)2A1(r)2 − a2∆ sin2(θ)]

F
, (2.5.104)

where F = [(r2 + a2)A1(r)− a2A2(r) sin2(θ)]2.

This metric will be very useful for the inclusion of this metric in the GRMHD

simulations and will be discussed again in the next chapter.

2.6 Accretion Disks

Accretion disks are fundamental structures formed by matter, mainly gas in a

plasma state, orbiting rapidly around interstellar objects such as stars or black

holes. To understand these disks, it is necessary to start with the fundamental

laws of physics, such as the conservation of mass and the conservation of the

stress-energy tensor

∇µ(ρuµ) = 0, (2.6.1)

∇µTµν = 0, (2.6.2)

where ρ is the rest mass density, uµ is the fluid’s four-velocity, ∇ is the covariant

derivative, and Tµν is the stress-energy tensor that describes the properties of
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the fluid. In the case of an accretion disk around a black hole, the stress-energy

tensor can be written in a generic form, as follows

Tµ
ν = (Tµ

ν)F + (Tµ
ν)V + (Tµ

ν)M + (Tµ
ν)R. (2.6.3)

The reason for writing the lower index is that the symmetries of the metric

generate conserved currents. In the Kerr metric, for instance, the axial

symmetry and the stationary nature of the metric generate conserved currents

of angular momentum and energy. In general, for metrics with one coordinate

xµ suppressed, the source term on the right-hand side of the evolution equation

for Tt
µ vanishes. These source terms do not vanish when the equation is

written with both indices up.

2.6.1 The fluid

From the previous equation, it can be seen that (Tµ
ν)F is the stress-energy

tensor for the fluid, and it is expressed as:

(Tµ
ν)F = ρHuµuν + δµ

νP. (2.6.4)

Here, the density, enthalpy, and pressure of the fluid are related, along with

other parameters that follow the first law of thermodynamics

dU = TdS − PdV ↔ dϵ = Hdρ + nTdS, (2.6.5)

where U is the internal energy of the system, T is the temperature, S is the

entropy, and ϵ = ρc2 + Π is the total energy density, with Π being the internal

energy density.

In some cases, the equation of state associated with these quantities is assumed

to be that of an ideal gas, which is given by

P =
R
µ

ρT, (2.6.6)

where R is the gas constant and µ is the average molecular weight.
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Thus, as in other cases, we work with two temperatures in the fluid, where

Ti and µi are the temperature and molecular weight of the ions, and Te, µe are

those of the electrons, respectively. So,

P =
R
µi

ρTi +
R
µe

ρTe. (2.6.7)

Plasmas with two temperatures are important for advection-dominated flows.

These types of plasmas are also significant when considering radiation, as

ions are generally heated through dissipative processes in the disk, while

electrons are the ones that radiate. They exchange energy with the ions

through Coulomb collision interactions. The electrons in the inner parts of

accretion flows are usually much cooler because the energy exchange process is

highly inefficient. However, cutting-edge research in plasma physics suggests

that there may be more efficient processes that could couple the ions and

electrons of the fluid. Hence, it is difficult to determine precisely the amount

of energy exchange experienced by the electrons.

When in equation (2.6.3), the only surviving value of the stress-energy tensor

is that of the fluid (2.6.4), it is called the stress-energy tensor of a perfect fluid,

fulfilling the Bianchi identity given by the conservation law of this tensor. From

this, we can obtain the constants of motion

B = −Hut, J = Huϕ, (2.6.8)

where J is the angular momentum of the fluid, and B is known as the Bernoulli

function, representing the total energy of the fluid. Consequently, the specific

angular momentum can be obtained as

l =
J
B
= −

uϕ

ut
, (2.6.9)

which is a constant of motion for geodesic motion in the fluid.

2.6.2 Viscosity

The second term of the stress-energy tensor refers to the part that describes the

internal forces or pressures present in an accretion disk and is represented as
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(Tµ
ν)V = ν∗σµ

ν, (2.6.10)

where σµν is the strain tensor, defined as,

σµν =

[
1
2
(∇µuν +∇νuµ)− Θgµν

]
⊥

, (2.6.11)

where ⊥ denotes the projection into the instantaneous 3-space perpendicular

to uµ.

The vorticity is also a invariant term of the viscosity part, defined by

ωµν =
1
2
(∇µuν −∇νuµ)⊥ (2.6.12)

and the expansion,

Θ ≡ 1
3
(∇µuµ) (2.6.13)

The viscous stress tensor in the standard hydrodynamic approach is

proportional to the shear tensor, given by

Sµ
ν = ν∗ρσµ

ν, (2.6.14)

where the rate of heat generation by the viscous stress tensor in a certain

volume is given by

Q+ =
∫

Sµ
νσν

µdV, (2.6.15)

On the other hand, the rates of viscous energy and angular momentum across

a surface S are given by

JS =
∫

Sµ
νξkν∗NµdS, (2.6.16)

BS =
∫

Sµ
νηkν∗NµdS. (2.6.17)

In astrophysical accretion disks, molecular viscosity cannot explain observed

phenomena due to its weakness. Instead, the turbulence generated by the
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magneto-rotational instability (MRI) serves as the source of stresses in the

disk. Nevertheless, these stresses can be modeled as effective viscosity within

standard hydrodynamics, avoiding the complexity of magnetohydrodynamics

(MHD). The Shakura-Sunyaev "alpha viscosity" prescription is used to

parameterize these stresses. This approximation, based on dimensional

arguments, remains relevant today and can be described by the kinematic

viscosity coefficient,

ν∗ ≈ l0v0, (2.6.18)

where l0 is the correlation length of turbulence and v0 is the mean turbulence

speed. Assuming that the velocity of turbulent elements cannot exceed the

speed of sound (v0 < cs, where cs is the speed of sound) and that the size of

these turbulent elements cannot be larger than the disk thickness (l0 < H), we

have

ν0 = αHcs, (2.6.19)

where 0 < α < 1 is a dimensionless coefficient, assumed to be constant by

Shakura and Sunyaev.

In the particular case of a thin accretion disk, the viscous stress tensor has an

internal torque given by

τrϕ ≈ ρν∗r
∂Ω
∂r

. (2.6.20)

However, for this case r(∂Ω/∂r ≈ −Ω) and cs ≈ (P/ρ)1/2 ≈ ΩH, so the

torque is τrϕ = −αP.

2.6.3 Electromagnetic part

The magnetic field in accretion disks can play an important role, including

generating torque to extract angular momentum, transporting energy and

angular momentum out of the system, contributing to accretion disk jets, and

even harnessing the differential rotation of the disk to trigger instabilities
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leading to significant processes such as turbulence, energy dissipation, and

angular momentum transport, which are necessary for disk accretion.

In some accretion disks around black holes, an ideal MHD description

can be assumed, where infinite conductivity and zero magnetic diffusivity

are considered. In this case, magnetic field lines are frozen into the

fluid, theoretically satisfying the homogeneous Maxwell’s equation for these

accretion disks

∇µ(
∗Fµ

ν) = 0, (2.6.21)

where Fµ
ν is the dual. If the magnetic field four-vector is defined as bµ = uν Fµν,

then using the condition bµuµ = 0, we can obtain

∗Fµ
ν = bµuν − bνuµ. (2.6.22)

Using this equation, the homogeneous Maxwell’s equation leads us to the

induction equation, where its spatial and temporal parts lead us to

∂t(
√
−gBi) = −∂j(

√
−g(Bivj − Bjvi)), (2.6.23)

∂i(
√
−gBi) = 0, (2.6.24)

where Bi = utbi − uibt, and g is the determinant of the metric.

2.6.4 The radiation

Another crucial aspect in accretion disks is radiation, as it serves as a

mechanism for carrying excess energy away from the system. In the case of

geometrically thin and optically thick accretion disks, radiation is often highly

efficient and dissipates the locally generated thermal energy, thus maintaining

the disk in a relatively "cold" state. On the other hand, for disks dominated by

advection-dominated accretion flows (ADAFs), radiation is inefficient, causing

such disks to remain geometrically thick and optically thin.

In the context of optically thin disks, the radiation emissivity ϵ is composed of

emissivities: bremsstrahlung ϵbr, synchrotron ϵsynch, and their Comptonized

counterparts ϵbr,C and ϵsynch,C. In the case of the optically thick limit, the

diffusion approximation is commonly used with the total optical depth τ =
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τabs + τes, which accounts for both absorption and electron scattering. In both

cases, radiation emission is essential for the behavior and temperature of

accretion disks, resulting in the total emissivity being expressed as follows

ϵ =


ϵbr + ϵsynch + ϵbr,C + ϵsynch,C optically thin (τ << 1),
8σT4

e
3Hτ

optically thick (τ >> 1),

where σ is the Stefan-Boltzmann constant. For the intermediate case, solving

the transfer equation directly is necessary.

2.6.5 Thin Disk model

Most of the analytical accretion disk models assume steady and axially

symmetric states of the matter accreting around the black hole. In all these

types of models, physical quantities depend solely on the radial spatial

coordinate r and the coordinate z, which defines the height relative to the

rotation axis, in the case of cylindrical coordinates. Furthermore, it is assumed

that the disk’s thickness is small rather than large. These thin disks then satisfy

the condition z/r << 1 throughout the matter distribution.

In the case of the Kerr geometry, the equations that describe the physics of a

thin disk model are as follows:

• The equation of continuity or conservation of mass in this model is

Ṁ = −2πΣ∆1/2 V√
1 − V2

, (2.6.25)

where ∆ = r2 − 2Mr + a2, Σ is the surface density defined as

Σ(r) =
∫ +H(r)

−H(r)
ρ(r, z)dz, (2.6.26)

here z = ±H(r) is the height limit of the disk surface. Furthermore, V

is the radial velocity of the gas measured by an observer fixed at r and

co-rotating with the fluid.
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• The expression for the conservation of radial momentum is given by

V
1 − V2

dV
dr

=
A
r
− 1

Σ
dP
dr

, (2.6.27)

where

A = − MÃ
r3∆Ω+

k Ω−
k

(Ω − Ω+
k )(Ω − Ω−

k )

1 − Ω̃2R̃2
, (2.6.28)

with Ã = (r2 + a2)2 − a2∆ sin2 θ, Ω = uϕ/ut which defines the angular

velocity with respect to the stationary observer. Ω̃ = Ω−ω is the angular

velocity with respect to the inertial observer and

Ω±
k = ± M1/2

(r3/2 ± aM1/2)
, (2.6.29)

which are the co-rotating and counter-rotating Keplerian frequencies.

Moreover, R̃ = Ã/(r2∆1/2) which is the radius of gyration.

• Another conservation law of the model is the conservation of angular

momentum, given by the expression

Ṁ
2π

(L−Lin) =
Ã1/2∆1/2

r
γαΠ, (2.6.30)

where L = uϕ, which is the specific angular momentum, γ is the Lorentz

factor, Π = 2HP which is considered as the integrated vertical pressure,

and α is the standard alpha viscosity.

• The conservation law for energy is given by the equation

−αΠÃγ2

r3
dΩ
dr

− 32σT4

3κΣ
= − Ṁ

2πrρ

1
Γ3 − 1

(
dP
dr

− Γ1
P
ρ

dρ

dr

)
, (2.6.31)

where T is the temperature in the equatorial plane, κ is the average

opacity and

Γ1 = β∗ + (4 − 3β∗)(Γ3 − 1), (2.6.32)

Γ3 = 1 +
(4 − 3β∗)(γg − 1)

12(1 − β/βm)(γg − 1) + β
, (2.6.33)
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where also,

β =
Pgas

(Pgas + Prad + Pmag)
, (2.6.34)

βm =
Pgas

(Pgas + Pmag)
, (2.6.35)

β∗ = β
(4 − βm)

3βm
, (2.6.36)

and γg is the ratio of the specific heat of the gas.

• Additionally, along with these conservation laws, we also have the

expression for vertical equilibrium, given by

Π
ΣH2 =

L2 − a2(E2 − 1)
2r4 (2.6.37)

with E = −ut and represents the energy conserved due to time symmetry.

Shakura and Sunyaev (Shakura and Sunyaev, 1973) added a couple of extra

assumptions to the model in order to reduce these differential equations to

just a set of algebraic equations.

If the radial pressure and velocity gradients vanish and the rotation is

Keplerian, i.e., Ω = Ω+
k , then the radial momentum equation (2.6.27) becomes

the trivial identity 0 = 0. Furthermore, the angular momentum equation

(2.6.30) only requires us to specify Lin. Thus, if we assume that the torque

vanishes at the ISCO,

Lin = Lk(ISCO). (2.6.38)

In the energy conservation equation (2.6.31), it is assumed that the right-hand

side is equal to zero, meaning that advective cooling disappears.

Given that the model also assumes a Keplerian-type rotation Ω = Ω+
k and

furthermore, Ω = Ω(r), the equation for energy (2.6.31) has, as its first term on

the left-hand side, the viscous heating term which becomes a purely algebraic

term due to the assumptions. Similarly, the second term becomes algebraic

and represents radiative cooling.

Therefore, due to the algebraic nature of the equations (2.6.25)-(2.6.37), they
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can be analytically solved for this model, for the outer, inner, and middle parts

of the disk.

While this model is very useful for understanding the physics of accretion

disks, the relativistic correction calculated by (Novikov and Thorne, 1973) is

even more accurate and is the one we will use in this study. Thus, considering

the scaling factors m = M/M⊙ and ṁ = Ṁc2/Ledd where Ledd is the Eddington

luminosity.

For the outer region (P = Pgas, κ = κ f f [free-free opacity]), the solution of the

model’s equations is:

F = [7 × 1026erg cm−2s−1](m−1ṁ)r−3
∗ B−1C−1/2Q,

Σ = [4 × 105g cm−2](α−4/5m2/10ṁ7/10
0∗ )r−3/4

∗ A1/10B−4/5C1/2D−17/20E−1/20Q7/10,

H = [4 × 102cm](α−1/10m18/20ṁ3/20)r9/8
∗ A19/20B−11/10C1/2D−23/40E−19/40Q11/20

ρ0 = [4 × 102g cm−3](α−7/10m−7/10ṁ11/20)r−15/8
∗ A−17/20B3/10D−11/40E17/40Q11/20,

T = [2 × 108K](α−1/5m−1/5ṁ3/10)r−3/4
∗ A−1/10B−1/5D−3/20E1/20Q3/10,

β/(1 − β) = [3](α−1/10m−1/10ṁ−7/20)r3/8
∗ A−11/20B9/10D7/40E11/40Q−7/20,

τf f /τes = [2 × 10−3](ṁ−1/2)r3/4
∗ A−1/2B2/5D1/4E1/4Q−1/2,

where r∗ = rc2/GM.

On the other hand, for the middle region (P = Pgas, κ = κes [electron-scattering

opacity]), we have

F = [7 × 1026erg cm−2s−1](m−1ṁ)r−3
∗ B−1C−1/2Q,

Σ = [9 × 104g cm−2](α−4/5m1/5ṁ3/5)r−3/5
∗ B−4/5C1/2D−4/5Q3/5,

H = [1 × 103cm](α−1/10m9/10ṁ1/5)r21/20
∗ AB−6/5C1/2D−3/5E−1/2Q1/5,

ρ0 = [4 × 101g cm−3](α−7/10m−7/10ṁ2/5)r−33/20
∗ A−1B3/5D1/5E1/2Q2/5,

T = [7 × 108K](α−1/5m−1/5ṁ2/5)r−9/10
∗ B−2/5D−1/5Q2/5,

β/(1 − β) = [7 × 10−3](α−1/10m−1/10ṁ−4/5)r21/20
∗ A−1B9/5D2/5E1/2Q−4/5,

τf f /τes = [2 × 10−6](ṁ−1)r3/2
∗ A−1B2D1/2E1/2Q−1,
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and the inner region (P = Pgas, κ = κes) are considered

F = [7 × 1026erg cm−2s−1](m−1ṁ)r−3
∗ B−1C−1/2Q,

Σ = [5g cm−2](α−1ṁ−1)r3/2
∗ A−2B3C1/2EQ−1,

H = [1 × 105cm](ṁ)A2B−3C1/2D−1E−1Q,

ρ0 = [2 × 10−5g cm−3](α−1m−1ṁ−2)r3/2
∗ A−4B6DE2Q−2,

T = [5 × 107K](α−1/4m−1/4)r−3/8
∗ A−1/2B1/2E1/4,

β/(1 − β) = [4 × 10−6](α−1/4m−1/4ṁ−2)r21/8
∗ A−5/2B9/2DE5/4Q−2,

(τf f /τes)
1/2 = [1 × 10−4](α−17/16m−1/16ṁ−2)r93/32

∗ A−25/8B41/8C1/2D1/2E25/16Q−2.

Here, if we consider y = (r/M)1/2 and a∗ = a/M, we have that

A = 1 + a2
∗y−4 + 2a2

∗y−6, B = 1 + a∗y−3,

C = 1 − 3y−2 + 2a∗y−3, D = 1 − 2y−2 + a2
∗y−4,

E = 1 + 4a2
∗y−4 − 4a2

∗y−6 + 3a4
∗y−8 Q0 =

1 + a∗y−3

y(1 − 3y−2 + 2a∗y−3)1/2 ,

Q = Q0

[
y − y0 −

3
2

a∗ ln
(

y
y0

)
− 3(y1 − a∗)2

y1(y1 − y2)(y1 − y3)
ln
(

y − y1

y0 − y1

)]
−Q0

[
3(y2 − a∗)2

y2(y2 − y1)(y2 − y3)
ln
(

y − y2

y0 − y2

)
− 3(y3 − a∗)2

y3(y3 − y1)(y3 − y2)
ln
(

y − y3

y0 − y3

)]
,

where y0 = (rms/M)1/2, and y1, y2, and y3 are the three roots of y3 − 3y+ 2a∗ =

0; which is

y1 = 2 cos[(cos−1 a∗ − π)/3],

y2 = 2 cos[(cos−1 a∗ + π)/3],

y3 = −2 cos[(cos−1 a∗)/3].

The solutions of Shakura-Sunyaev and Novikov-Thorne are limited to being

local solutions. These solutions assume that the viscous torque becomes zero

at the ISCO, introducing a singularity in the model at that point. For very low
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accretion rates, this singularity does not affect the electromagnetic spectrum

or several other crucial astrophysical predictions of the model. However, in

astrophysical applications where the inner boundary condition is relevant, such

as global modes of disk oscillation, the Novikov-Thorne model is inadequate.

Furthermore, the numerical implementation used in this work will be described

in more detail in Section (3).

2.6.6 HARM simulations

All extreme astrophysical phenomena, such as those occurring in the active

nuclei of galaxies, quasars, gamma-ray bursts, and even supernova explosions,

are likely driven by some rotating compact object that involves strong

gravitational and magnetic fields. These kinds of objects are known as

relativistic magnetorotators. While the physics governing these objects is

well understood, their description involves highly nonlinear equations, which

hinder their study both observationally and evolutionarily in astrophysics.

Although the difficulty of studying these objects is evident, approximations

can always be made using other physical models that aim to get as close

as possible to the conditions in these extreme environments. A first step in

understanding these environments is to model them through non-radiative

magnetohydrodynamics (MHD), so that the plasma accreting onto these objects

is treated as a fluid. This reduces the degrees of freedom of the system and

radiation fields can also be ignored.

The code presented below, HARM (High Accuracy Relativistic

Magnetohydrodynamics) (Gammie et al., 2003), aims to be a method

for numerically integrating the equations of general relativistic

magnetohydrodynamic (GRMHD) fluid dynamics and primarily focuses

on evolving the ideal MHD equations for a Kerr spacetime. This involves

considering a gas torus in hydrostatic equilibrium that is threaded by a weak

magnetic field. Here, the magnetorotational instability (Balbus and Hawley,

1990) generates turbulence in the torus, and the resulting stresses transport

angular momentum outward, leading to accretion onto the central black hole.
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2.6.6.1 Theoretical scheme

Theoretically, the code solves the following fundamental equations: the

conservation equation for the particle number, the conservation of the energy-

momentum tensor that can be expressed in terms of four equations, and

the induction equation. Now, considering c = 1, the first equation is the

conservation of the particle number,

(nuµ);µ = 0, (2.6.39)

where n is the particle number density, uµ is the four-velocity, and ; denotes

the covariant derivative of the expression (i.e., f;µ = ∇µ f ).

For numerical purposes, n can be rewritten in the coordinate basis as the

"rest-mass density" ρ = mn, where m is the average rest mass per particle,

1√−g
∂µ(
√
−gρuµ) = 0, (2.6.40)

where g represents the metric determinant.

The equations representing the conservation of the energy-momentum tensor

for this model are,

Tµ
ν;µ = 0, (2.6.41)

where written in the coordinate basis,

∂t(
√
−gTt

ν) = −∂i(
√
−gTi

ν) +
√
−gTκ

λΓλ
µκ, (2.6.42)

where i is the spatial index and Γλ
µκ are the Christoffel symbols.

On the other hand, if we write the explicit composition of the energy-

momentum tensor for this model, it is given by the perfect fluid part,

(Tµν)F = (ρ + u + p)uµuν + pgµν, (2.6.43)

where u is the internal energy and p is the pressure. On the other hand, the

electromagnetic part is given by
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(Tµν)EM = FµαFν
α −

1
4

gµνFαβFαβ, (2.6.44)

here Fαβ is the electromagnetic field tensor or Faraday tensor (where also for

convenience the factor
√

4π is absorbed in the definition of Fαβ).

Furthermore, if we adopt the ideal MHD approximation, in which the electric

field disappears in the fluid’s rest reference frame due to the high conductivity

of the plasma (i.e., E + v × B = 0). Likewise, the Lorentz force for a charged

particle vanishes in the fluid’s reference frame.

uµFµν = 0. (2.6.45)

Additionally, defining the magnetic field four-vector as,

bµ =
1
2

ϵµνκλuνFλκ, (2.6.46)

where ϵµνκλ is the Levi-Civita tensor. Substituting this into the equation for

the electromagnetic field’s energy-momentum tensor and given the condition

bµuµ = 0,

(Tµν)EM = b2uµuν +
1
2

b2gµν − bµbν. (2.6.47)

Furthermore, if we sum (Tµν)F and (Tµν)EM, we obtain the energy-momentum

tensor of MHD as

(Tµν)MHD = (ρ + u + p + b2)uµuν +

(
1
2

b2 + p
)

gµν − bµbν, (2.6.48)

which is used for describing the matter in this accretion disk model.

Additionally, the evolution of the electromagnetic field is given by the source-

free part of Maxwell’s equations, 5

Fµν,λ + Fλµ,ν + Fνλ,µ = 0. (2.6.49)

5The rest of the equations define the charge Jµ = Fµ
;ν which are not needed for the evolution

of the field, as it happens in non-relativistic MHD.
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Taking the dual of this equation, Maxwell’s equations can be written in their

conservative form as

F∗µν
ν = 0, (2.6.50)

where F∗
µν =

1
2

ϵµνκFκλ is the dual of the electromagnetic field tensor. In ideal

MHD, it can be proven that

F∗µν = bµuν − bνuµ. (2.6.51)

Considering this definition, and since the components of bµ are not

independent, given the condition bµuµ = 0, the magnetic field vector Bi = F∗it

can be defined, where the spatial components and the temporal component of

the tensor bµ in terms of Bi are written as

bt = Biuµgiµ, (2.6.52)

bi = (Bi + btui)/ut, (2.6.53)

leading to the spatial and temporal components of the induction equation,

given by the expressions

∂t(
√
−gBi) = −∂j(

√
−g(bjui − biuj)), (2.6.54)

1√−g
∂i(
√
−gBi) = 0, (2.6.55)

respectively. This defines the condition for no monopoles. All these hyperbolic

equations define a GRMHD model and are written in their conservative form,

allowing their numerical resolution using well-known techniques.

2.6.6.2 Numerical scheme

Since HARM employs a complex theoretical scheme that is not analytically

solvable in principle, numerical solutions are necessary to compute the desired

physical quantities for the accretion disk model. Therefore, the authors

decide to use a conservative scheme to define their variables. While a full

understanding of the numerical scheme is not necessary for the purpose of

this study, a general explanation of it and how it’s implemented is provided
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(for more details, refer to (Gammie et al., 2003)).

Firstly, the authors define a vector of conserved variables for each time step in

the algorithm, given by

U ≡
√
−g(ρut, Tt

t, Tt
i, Bi), (2.6.56)

which is updated using the fluxes F. They also define a set of "primitive"

variables, which are interpolated to model the flow within zones,

P = (ρ, u, vi, Bi), (2.6.57)

where vi = ui/ut is the 3-velocity.6 To evaluate U(P) and F(P), one needs to

find ut and bµ, which can be mathematically obtained from the equations of

the theoretical scheme and the condition gµνuµuν = −1.

Since the value that gets updated is U instead of P, one must solve for P(U)

at each step. In HARM, this is done using the multidimensional Newton-

Raphson method. Given that finding P defines the core of the algorithm, this

calculation is done very meticulously, minimizing numerical errors as much as

possible.

To evaluate F, a MUSCL-type scheme with "HLL" fluxes is used, where the

fluxes are defined at the zone faces. This provides values for PR and PL, which

are the primitive variables on the right and left sides of each zone interface.

This allows the "HLL" flux F to be obtained.

However, the pure "HLL" scheme doesn’t preserve any numerical

representation of ∇ · B = 0. To address this, the authors use a flux-interpolated

constrained transport scheme (Tóth, 2000), which can preserve the numerical

representation of ∇ · B = 0 by smoothing the fluxes with a special operator.

The approximate HLL Riemann solver doesn’t require eigenvectors of the

characteristic matrix, unlike Roe-type schemes. Nonetheless, it requires the

maximum and minimum wave speeds (eigenvalues), which also determine the

time step through the Courant conditions. In HARM, to obtain the wave speed,

a wavevector kµ = (−ω, k1, 0, 0) is first found that satisfies the dispersion

6The functions U(P) and F(P) are analytic in principle, but their inverse operations are not,
and the expression F(U) is not simple.
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relation D(kµ) = 0 for the relevant mode. The wave speed is then obtained as

ω/k1. The authors address this directly in HARM by finding the approximate

dispersion relation and the quadrivelocity in the fluid.

2.7 Beyond Einstein Gravity

Although the theory of General Relativity has proven to be effective in

describing the universe, it still has some shortcomings and is unable to solve

some current physics problems, such as understanding the inflation of the

universe, dark matter, dark energy, and its lack of compatibility with quantum

theory. For these reasons and more, the study of modified theories of gravity

is fascinating and important. In this subsection, I will present two solutions

of the slowly-rotating black hole type for two actions of modified gravity that

have corrections of high-curvature terms to General Relativity (Gross and

Witten, 1986; Maeda et al., 2009). These types of corrections are significant as

they inevitably lead to quantum gravity approaches and are a solid prediction

of string theory. When considering the low-energy limit of the string theory,

higher-order contractions of the Riemann tensor appear naturally. These

contractions are present in the action of modified Chern-Simons gravity

(Alexander and Yunes, 2009) and α′-corrected gravity (Agurto-Sepúlveda et al.,

2023) presented here. We will study these two solutions, focusing on how they

behave near the horizon, and compare them with the Kerr solution to measure

how quantifiable their deviations are.

2.7.1 Slowly rotating Chern-Simons black hole solution

Following the work developed by (Yunes and Pretorius, 2009) in the theory

of modified General Relativity known as modified Chern-Simons gravity

(Alexander and Yunes, 2009), it can be observed that in this particular theory,

slowly rotating black holes can be found. This implies that they possess a spin

parameter, but it is conditioned by a << M. To obtain this type of solution,

one typically starts from the action principle of the theory, which in this case

is,

S = SEH + SSC + Sϑ + Smat, (2.7.1)
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where

SEH = κ
∫

ν
d4x
√
−gR, (2.7.2)

SSC =
α

4

∫
ν

d4x
√
−gϑ ∗RR, (2.7.3)

Sϑ = −β

2

∫
ν

d4x
√
−g[gab(∇aϑ)(∇bϑ) + 2V(ϑ)], (2.7.4)

Smat =
∫

ν
d4x
√
−gLmat. (2.7.5)

The first term on the right-hand side of the equation (2.7.1) is the standard

Einstein-Hilbert term, the second term is the CS correction, the third term is

the action for a scalar field, and the last one describes an additional matter

source with Lmat being some Lagrangian density of matter.

In these terms, the following conventions are used: κ = 1/(16πG), α and β

are dimensionless coupling constants, g is the determinant of the metric, and

R is the Ricci scalar. Additionally, the quantity ∗RR describes the Pontryagin

density, given by

∗RR = ∗Ra
b

cdRb
acd, (2.7.6)

where

∗Ra
b

cd =
1
2

ϵcde f Ra
be f , (2.7.7)

with ϵcde f being the Levi-Civita tensor in 4 dimensions.

The field equations of this theory are obtained by varying the action (2.7.1), so

they are given by

Rab +
α

κ
Cab =

1
2κ

(
Tab −

1
2

gabT
)

, (2.7.8)

β □ϑ = β
dV
dϑ

− α

4
∗RR, (2.7.9)

where Cab is the C-tensor, given by

Cab = νcϵcde(a∇eRb)
d + νcd

∗Rd(ab)c, (2.7.10)
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where νa = ∇aϑ, νab = ∇a∇bϑ, and Rab is the Ricci tensor, and □ = ∇a∇a is

the D’Alambert operator.

On the other hand, the energy-momentum tensor in the field equations is

defined as follows

Tab = Tmat
ab + Tϑ

ab, (2.7.11)

where Tmat
ab is the contribution of matter to the tensor and Tϑ

ab is the contribution

of the scalar field, with its expression given by

Tϑ
ab = β

[
(∇aϑ)(∇bϑ)− 1

2
(∇aϑ)(∇aϑ)− gabV(ϑ)

]
. (2.7.12)

We note that in the modification of Chern-Simons gravity of Einstein, the

strong equivalence principle is preserved (i.e. ∇aTab
mat = 0). This is because

when one takes the divergence of the field equations, the first term on the

left-hand side of the first equation vanishes due to the Bianchi identities, while

the second term is given by

∇aCab = −1
8

νb∗RR, (2.7.13)

where the equality of this contribution to the energy-momentum tensor leads

to the second equation shown in (4.2.1).

There are two different formulations in the theory, the non-dynamic and

dynamic formulations. The non-dynamic formulation is obtained by setting

β = 0 in equations (4.2.1), so that

Rab +
α

κ
Cab =

1
2κ

(
Tmat

ab − 1
2

gabTmat
)

, (2.7.14)

0 = ∗RR. (2.7.15)

On the other hand, for the dynamic scheme, β can be arbitrary.

Now, using a perturbative approach, of the form

gab = g(0)ab + ζg(1)ab (ϑ) + ζ2g(2)ab (ϑ) +O(ζ3), (2.7.16)
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where g(0)ab is some background metric satisfying the Einstein equations, g(1)ab (ϑ)

and g(2)ab (ϑ) are first and second-order perturbations of CS in the metric that

depend on ϑ. Additionally, the parameter ζ serves as book-keeping to label

the small coupling approximation of the theory.

Furthermore, an expansion is performed in terms of the rotation parameter of

each component of the metric as follows

g(0)ab = η
(0,0)
ab + ah(1,0)

ab + a2h(2,0)
ab , (2.7.17)

ζg(1)ab = ζh(0,1)
ab + ζah(1,1)

ab + ζa2h(2,1)
ab , (2.7.18)

ζ2g(2)ab = ζ2h(0,2)
ab + ζ2ah(1,2)

ab + ζ2a2h(2,2)
ab . (2.7.19)

From this expansion, it is possible to find a slow-rotating black hole solution,

with the ansatz given by the Hartle-Thorne approximation, where the line

element is parameterized by

ds2 = − f [1 + h(r, θ)]dt2 +
1
f
[1 + m(r, θ)]dr2 (2.7.20)

+ r2[1 + k(r, θ)]dθ2 + r2 sin2 θ[1 + p(r, θ)][dϕ − ω(r, θ)dt]2. (2.7.21)

Here, f = 1− 2M/r is the Schwarzschild factor, and the line element is written

in Boyer-Lindquist coordinates. From this and the perturbative expansion of

the metric, it is possible to find the following line element

ds2 = ds2
K +

5
4

ζCS
a
M

M5

r4

(
1 +

12M
7r

+
27M2

10r2

)
sin2 θdtdϕ, (2.7.22)

where ds2
K is the slow-rotation approximation of the Kerr metric, and

furthermore

ζCS =
α2

κβM4 , (2.7.23)

is the weak coupling parameter, limited by ζCS << 1 to be an effective gravity

theory (Alexander and Yunes, 2009). On the other hand, the scalar field ϑ is

ϑ =
5
8

α

β

a
Mr2

(
1 +

2M
r

+
18M2

5r2

)
cos θ, (2.7.24)
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which is the solution to the field equations of the theory to order O(aζ).

Some of the properties of this solution are its separability under the Hamilton-

Jacobi equations (Amarilla et al., 2010), and the positions of the event horizon

and the ergosphere are the same as in the case of Kerr (see Section 2.5.1.1

and 2.5.1.2). Due to the perturbation decaying as 1/r4, it indicates that this

solution is also asymptotically flat, and hence, the Arnowitt-Deser-Misner

(ADM) formalism’s mass and angular momentum remain unchanged. One

way to understand this is by calculating the energy for the scalar field outside

the horizon, which is given by

Eϑ =
1685πκ

36864
a2

M
ζCS. (2.7.25)

From this, we can observe that the term a2ζCS goes beyond the perturbative

approximation we are working with, hence the contribution of the scalar field

to the total energy is zero, leading to the unchanged ADM mass and the

horizon area; the same can be done for angular momentum.

On the other hand, since the scalar field ϑ for the perturbation at this order

depends on the mass M and the rotation parameter a, we cannot necessarily

claim that it constitutes a violation of the no-hair theorem.

An interesting case where there is a deviation in this solution is the location of

the ISCO radius, which in CS gravity is given by

RISCO = 6M ∓ 4
√

6a
3

− 7a2

18M
± 77

√
6aζCS

5184
, (2.7.26)

where the upper sign is for co-rotating geodesics, and the lower sign is for

counter-rotating geodesics.

2.7.2 Slowly rotating α′ theory black hole solution

With the intention of performing the study of Kerr deviations given by another

modified gravity theory in (Metsaev and Tseytlin, 1987; Cano et al., 2018, 2020)

and (Agurto-Sepúlveda et al., 2023) we studied the following principle of
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action related to string theory at low energy

S[gµ,ν, ϕ] =
∫

M
ddx
√
−ge−2ϕ[R + 4(∇ϕ)2 (2.7.27)

+ α(RµνλρRµνλρ)− 4RµνRµν + R2 − 16(∂µϕ∂µϕ)2 +O(α2)]. (2.7.28)

Considering the case where d = 4 the field equations are

Gµν + 4∂µϕ∂νϕ − 2gµν∂ρϕ∂ρϕ + 2Sµν − 2gµνSρ
ρ + αHµν = 0 , (2.7.29)

R + 4∂ρϕ∂ρϕ + 4Sµ
µ + αLGB −

32α

(
∇µ
(
∂ρϕ∂ρϕ

)
∂µϕ +

(
∂ρϕ∂ρϕ

)
Sµ

µ +
1
2
(
∂ρϕ∂ρϕ

)2
)
= 0 ,

(2.7.30)

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor, and where

Sρσ ≡ e2ϕ∇ρ

(
e−2ϕ∇σϕ

)
, LGB ≡ RµνρσRµνρσ − 4RµνRµν + R2 , (2.7.31)

and

Hµν = SµνR − 4Sσ
(µRν)σ + 2Sσ

σRµν + 2SσλRµσλν (2.7.32)

−8
(
∂ρϕ∂ρϕ

)
∂µϕ∂νϕ + gµν

(
2
(
∂ρϕ∂ρϕ

)2 − Sσ
σR + 2Sσ

λRλ
σ

)
.

Lagrangian LGB is the integrand of the 4-dimensional Chern-Gauss-Bonnet

topological invariant which, in the absence of the dilaton and in d = 4, yields

the Euler characteristic; this is the EGB quadratic gravity Lagrangian.

In this context it is possible to find a static and a slow rotating black hole

solution, both of which can be found in (Agurto-Sepúlveda et al., 2023). Slowly

rotating approximation can also be found following the similar perturbative

method as before. At first order in α and including the rotation parameter in

linear and quadratic terms as well as in terms of the form aα, the solutions
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reads

ds2 = −
(

1 − µ

r
+

µa2 cos2 θ

r3 + α f1 (r)
)

dt2 + 2a

(
−µ sin2 θ

r
+ α htφ (r, θ)

)
dtdφ +(

1
1 − µ

r + αg1 (r)
−
(
(µ − r) cos2 θ + 2r

)
a2

(r − µ)2 r

)
dr2 + (2.7.33)

(
r2 + a2 cos2 θ

)
dθ2 +

((
r2 + a2

)
sin2 θ +

a2µ sin4 θ

r

)
dφ2 ,

with

f1 (r) =
2µ2

r4 +
5µ

3r3 +
4
r2 − 8

µr
, (2.7.34)

g1 (r) = − 40
3r4 +

µ

r3 +
2
r2 , (2.7.35)

htφ (r) = sin2 θ

(
Ĉ
r
+

2µ2 + 3µr + 6r2

r4

)
, (2.7.36)

and with Ĉ being a new integration constant that, at this order, comes

to renormalize the angular momentum; see (2.7.40) below. The scalar

configuration is

ϕ (r) = ϕ0 − α

(
2µ

3r3 +
1
r2 +

2
µr

)
. (2.7.37)

One can verify that, expanding both in the Gauss-Bonnet coupling, α, and in

the rotation parameter, a, all the field equations are solved at the right order;

namely

Eµν = O
(

αa2, α2
)

. (2.7.38)

The angular momentum can be computed by using the Wald formalism, which

yields a form

J = −
∫

S2
∞

Q[∂φ], (2.7.39)

with Q[∂φ] representing the Hodge dual of the Noether pre-potential for the

Killing vector ∂φ. The angular momentum of the spacetime is given by

J =
aµ

2G

(
1 − αĈ

µ

)
. (2.7.40)

Solution (2.7.33)-(2.7.36) gives string theory modification to Kerr geometry.
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In particular, we see order O(aα) modifications to the off-diagonal term in

the Boyer-Lindquist coordinates. This will result in deviations from the GR

prediction of the Lense-Thirring precession. It will also induce modifications

to the spheroidal shape of the shadow of a rotating black hole.
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Chapter 3

Computational methods

To better understand our work, in this chapter, we address the numerical

and computational methods employed to obtain and analyze images of black

holes. We begin with a brief historical overview of black hole imaging and its

relationship with ray tracing in obtaining these images. We also describe the

ray tracing algorithm in use and the primary code utilized for obtaining the

images, offering insights into its internal structure and its application of fluid

physics and radiative transfer concepts in image generation. Furthermore, we

mention auxiliary methods applied in post-processing the images for analysis

and interpretation.

Black holes are fascinating objects that involve extreme physics near them.

Until the early 1970s, we only had some theoretical and mathematical ideas

about their behavior, especially near their event horizon and beyond. Ten

years after Roy Kerr’s publication (Kerr, 1963) on the geometry of a rotating

black hole, James Bardeen (Bardeen, 1973), based on the analytical work of

Brandon Carter, studied how photons followed null geodesics around a black

hole, providing an approximation to the shape of the black hole’s shadow as

seen from a distant observer. At the same time, Chris Cunningham, under

Bardeen’s supervision (Cunningham and Bardeen, 1973), studied the circular

orbit in the equatorial plane of a star around an extreme Kerr black hole, taking

into account the relativistic Doppler effect on the star’s luminosity.

In 1978, under the guidance of his doctoral advisor Brandon Carter, Luminet

studied the appearance of a luminous accretion disk around a Schwarzschild
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Figure 3.0.1: First simulated image of a thin accretion disk around a
Schwarzschild black hole (Luminet, 1979).

black hole (Luminet, 1979). These accretion disks are present in systems with

binary stars that have black holes of certain solar masses and in the centers of

many galaxies that have black holes with masses ranging from a few to millions

of solar masses. Luminet calculated the bolometric appearance (considering

all wavelengths) of a thin accretion disk around a stationary black hole, as

seen from a distant observer or a photographic plate. Initially, he conducted

a geometric calculation, noting that the gravitational lensing effect gave a

distinctive quality to the appearance, allowing the entire disk to be seen when

observing the black hole head-on from the equatorial plane due to the strong

gravity around it. He then performed a numerical calculation, taking into

account the thin disk model by (Shakura and Sunyaev, 1973) its relativistic

version by (Page and Thorne, 1974), obtaining a historic image of the black hole.

Additionally, he observed that the frequency shift caused by Einstein’s gravity

and the Doppler effect were significant in the image, showing a contrast on

both sides of the image depending on the direction of motion of the accreting

material.

Later, other authors performed similar analyses, adding colors and obtaining

similar figures. However, around 1990, experts in general relativity and

computational programming such as Berkeley and Jean-Alain Marck generated

the first simulated images of a Schwarzschild black hole (Marck, 1996),

expanding on Luminet’s work in 1979. These simulations represented a
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groundbreaking computational approach to the physics of black holes, and

although images were recorded, there were no published details about the

algorithms used.

Regarding Ray tracing algorithms, the first work that explicitly used this

method to visualize the appearance of Schwarzschild and Kerr black holes

was developed by (Fanton et al., 1997). This work marked the beginning of

extensive research on the appearance of black holes and accretion disks using

different plasma models and improvements in algorithms and computation

for Ray tracing simulations.

In our work, we used the publicly available Raptor I code to obtain images of

accretion disks around Kerr black holes, considering various deviations from

this geometry. We employed two accretion disk models: the numerical HARM

model (Gammie et al., 2003) and the analytical Thin Disk model developed

by Page and Thorne. We will describe how the Ray tracing algorithm works

in general and how it is applied in the Raptor I code (Bronzwaer et al., 2018).

Additionally, we will provide a detailed overview of the code’s functioning,

from its inputs and integration algorithms to the implementation of the disk

models and emission models. Finally, we will explain how the code solves

the radiative transfer equation to obtain the intensity in each pixel of the final

black hole image.

3.1 Ray-Tracing

Ray tracing is an image rendering technique based on simulating the path of

light rays and their intersection with objects in a three-dimensional scene to

produce images as realistic as possible. The first historical record was given by

(Appel, 1968), which was later improved by (Whitted, 1979) and first used in

the generation of images of black holes, as mentioned previously by (Fanton

et al., 1997).

The algorithm is responsible for generating these realistic images based on the

path of the light rays traced back to a screen, where the image is drawn at each

pixel and captured by a camera or observer. In Figure 3.1.1, the functioning of

the algorithm can be seen schematically.
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Scene Object

Shadow Ray
View Ray

Image

Camera

Figure 3.1.1: An esquematic diagram of the ray tracing algorithm (Henrik,
2023).

The process can be divided into several steps,

• First, primary rays are generated from the camera, passing through each

pixel on the screen.

• Then, the algorithm checks if these primary rays interact with any object

in the scene.

• If the ray intersects, the algorithm proceeds to calculate the position of

the intersection with the object in the scene.

• After obtaining this position, the algorithm considers how light from any

light source in the scene interacts with this particular point and what

properties the light has at that point.

• At the same point, the algorithm verifies if there are other objects in the

scene that may cause light attenuation, shadow, or other effects at this

position.

• If the material of the object in the scene has been given reflective or

refractive properties, these properties are also calculated at that point.

• Finally, all the properties of the light at that point are combined, and

the intensity, color, and other properties of the image projected onto the
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respective pixel on the screen are obtained, corresponding to the position

where the light ray interacted with the object.

• Thus, by repeating this process for each pixel on the screen, the algorithm

can obtain the final image viewed from the perspective of the observer

or the camera.

This description of the algorithm is general, but it gives us an idea to

understand the algorithm used in the Raptor I code, which is used in this

study and which I will describe next.

3.2 RAPTOR I

The Raptor I code designed by (Bronzwaer et al., 2018) is an open-source

code written in C programming language, was designed with two objectives:

minimizing physical assumptions in arbitrary space-times and enabling time-

dependent radiative transfer. It efficiently utilizes the GPU and CPU of the

system. By employing a ray-tracing algorithm, the code calculates the intensity

seen in each pixel of a virtual camera positioned in the observer’s frame.

The trajectory of photons around the black hole is determined by solving the

equation of the null geodesic. Once the photon trajectory values are obtained,

the radiative transfer equation is solved to determine the observer intensity

and the black hole image is then obtained.

One of the main advantages of RAPTOR I is that it is possible to integrate

radiative transfer problems in generic black hole spacetimes, as proposed in

alternative theories of gravity, as described in sections (2.5; 2.7). Therefore,

the calculation of the geodesic equations and the radiative transfer equation,

which will be presented in the following sections, is made independent of the

coordinate system or the geometry of the spacetime. Given this, it is important

that the coordinate system used in RAPTOR be accurate near the horizon and

also compatible with GRMHD simulations; thus, spherical-polar coordinates

are commonly used with the radial coordinate in logarithmic scale and a

denser polar coordinate mapping near the equatorial plane. These types of

coordinate systems are known as modified coordinate systems, see (Gammie

et al., 2003). In this work, two coordinate systems are used: the Modified

Kerr-Schild (MKS) coordinate system and the Modified Boyer-Lindquist (MBL)
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coordinate system, which can be found in Appendix A of (Bronzwaer et al.,

2018). Additionally, a change of coordinates from the Kerr-Like metric to the

Modified Kerr-Schild-Like (MKSL) coordinates was performed (A) for its use

in RAPTOR I.

3.2.1 Inputs and Outputs of the code

The advantage of using RAPTOR for work lies in its great versatility when

selecting code inputs. One of its main benefits is the ability to choose

the spacetime in which we want to work. This is done directly in the file

parameter.h, where it’s possible to manually change the spacetime. On the

other hand, if a spacetime that is not included in the code needs to be used, it

can be added manually in the metric.c file. In this file, the metric should be

added in both its covariant and contravariant forms. Additionally, the initial

wave vector function should be modified as necessary for the given spacetime.

The connection can be calculated or manually entered in the same file. The

code takes care of the rest by itself.

Furthermore, the direct inputs of the code during execution can be modified

in the model.in file, where they are specified. Furthermore, using the terminal

Inputs
MBH [g]
Munit [g]

Absorption [-]
Image grid (Nx, Ny)

Camera size (α, β) [Rg]
Frequency at observer [Hz]

Stepsize

Table 3.2.1: Inputs for RAPTOR code.

when executing RAPTOR, you can select the file model.in, the dump file to

work with, Munit (similarly to the model.in file), the inclination angle θ0, Rhigh,

Rlow, and the initial temporal photon wave vector value.

Moreover, the value of Tp/Te can be chosen in the raptor_harm_model.h file.

Regarding the code’s outputs, RAPTOR has three types of outputs. The first is

a file containing the image in .dat or .vtk format, which contains the intensity
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values in Jansky [Jy pixel−2]. The next output is a file that contains information

about the frequency at the observer and the energy spectrum. Lastly, it is

possible to enable, in the parameters.h file, the writing of an output file that

records the geodesic trajectory for each ray emitted from the camera towards

the object.

3.2.2 Virtual camera

Raptor I implements ray tracing by generating a virtual camera, where the

inclination of the observer is given by i, where i = 90o is looking at the black

hole along the equatorial plane and i = 0o, is looking at the black hole along

the direction of its rotation axis, further this camera is characterized by the

affine parameters α and β (celestial coordinates) defined by (Cunningham and

Bardeen, 1973) in the case of Kerr geometry. Where α is the distance from the

black hole rotation axis and β is the distance in the direction perpendicular

to α. The initial conditions for the wave vector kα in the Kerr geometry (BL-

coordinates) is then constructed following as

L = −αE
√

1 − cos2 i, (3.2.1)

Q = E2[β2 + cos2 i(α2 − 1)], (3.2.2)

kt = −E, (3.2.3)

kϕ = L, (3.2.4)

kθ = sign(β)
√
|Q − L2 cot2 θ + E2 cos2 θ|. (3.2.5)

Here, E is the energy of the wave vector, L is the angular momentum of the

wave parallel to the black hole’s rotation axis, and Q is the Carter constant

(Carter, 1968) from equation (2.4.17). The radial component of the wave vector,

kr, is fixed by the condition that it is a null vector, that is, kαkα = 0 (kr can

be positive or negative depending on whether the light rays are outgoing or

ingoing, respectively).

3.2.3 Numerical integration of the geodesic equation

In general relativity and in theories where motion is dominated by metric

equations, test particles tend to move along geodesic paths. These trajectories
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can be described by the geodesic equation shown in (2.2.8). Massive particles

tend to move on timelike geodesics and are governed by the interval 1

gµν
dxµ

dτ

dxν

dτ
= −1, (3.2.6)

where τ represents the proper time measured by an observer co-moving with

the particle. In the case of photons, which are massless particles traveling at

the speed of light, they follow null geodesics; hence, we have,

gµν
dxµ

dλ

dxν

dλ
= 0, (3.2.7)

where the geodesic equation is parameterized by the affine parameter λ, for

which there is no proper time elapsed.

The geodesic equation can be solved analytically or numerically depending

on the case. As an analytical example, we have the Schwarzschild and

Kerr metrics in specific scenarios. In Raptor I, this equation is solved

using numerical algorithms as it transforms into four coupled second-order

differential equations

dxα

dλ
= kα, (3.2.8)

dkα

dλ
= −Γα

µνkµkν. (3.2.9)

To solve these equations, we initially need appropriate initial conditions and a

good numerical integrator such as Runge-Kutta or Verlet, which are algorithms

used by Raptor and are described below.

3.2.3.1 Runge-Kutta

The Runge-Kutta algorithm is one of the most popular ones used in a wide

variety of fields for solving ordinary differential equations. It has several

versions, such as second-order, fourth-order, and even sixth-order Runge-Kutta,

each with different levels of precision. The most widely used version within the

community and implemented in Raptor is RK4 (fourth-order Runge-Kutta). In

the case of the geodesic equation, we must consider eight dependent variables

1The Lorentzian signature is (-, +, +, +), and we use geometric units (i.e., G = c = 1)
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defined by xα and kα, and we also need to evaluate 32 update coefficients for

the integration. Transcribing this into equations, it appears as follows:

C1,xα = ∆λkα, (3.2.10)

C2,xα = ∆λ

(
kα +

1
2

C1,xα

)
, (3.2.11)

C3,xα = ∆λ

(
kα +

1
2

C2,xα

)
, (3.2.12)

C4,xα = ∆λ (kα + C3,xα) , (3.2.13)

C1,kα = ∆λ f α(xi, ki), (3.2.14)

C2,kα = ∆λ f α

(
xi +

1
2

C1,xi , ki +
1
2

C1,kα

)
, (3.2.15)

C3,kα = ∆λ f α

(
xi +

1
2

C2,xi , ki +
1
2

C2,kα

)
, (3.2.16)

C4,kα = ∆λ f α
(

xi + C3,xi , ki + C3,kα

)
, (3.2.17)

(3.2.18)

where the function f α represents the right-hand side of the geodesic equation,

and the index i represents all components, mixing wave vectors with positions,

that is, f α(xi, ki) = f α(x1, x2, x3, x4, k1, k2, k3, k4).

Taking this into account, you can update the values of these components, such

as,

xα
new = xα +

1
6
(C1,xα + 2C2,xα + 2C3,xα + C4,xα) +O(∆λ5), (3.2.19)

kα
new = kα +

1
6
(C1,kα + 2C2,kα + 2C3,kα + C4,kα) +O(∆λ5). (3.2.20)

3.2.3.2 Vervlet

While the RK4 integrator described above is one of the most accurate, there are

others that can be even more precise. Calculating the connection coefficients is

one of the most computationally expensive tasks. Next, I will present another

integration algorithm called Verlet (Swope et al., 1982), used by Raptor I and

also employed by other authors such as (Younsi et al., 2016; Dolence et al.,

2009), proposing it as a faster alternative to RK4, as it evaluates the connection

coefficients fewer times, the algorithm is
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xα
n+1 = xα

n + kα
n∆λ +

1
2

(
dkα

dλ

)
n
(∆λ)2, (3.2.21)

kα
n+1,p = kα

n +

(
dkα

dλ

)
n

∆λ, (3.2.22)(
dkα

dλ

)
n+1

= −Γα
µν(xα

n+1)k
µ
n+1,pkν

n+1,p, (3.2.23)

kα
n+1 = kα

n +
1
2

[(
dkα

dλ

)
n
+

(
dkα

dλ

)
n+1

]
∆λ. (3.2.24)

This algorithm improves precision by using Eq. (3.2.24) to calculate the

derivative Eq. (3.2.23) with kµn + 1, p = kµn and reevaluating it in Eq. (3.2.24).

The complexity of studying spacetimes with geometries representing black

holes is that numerical integrations become difficult near the horizon due to

possible coordinate singularities. Given this, the authors (Noble et al., 2007)

and (Dolence et al., 2009) introduced an adaptive step-size routine ∆λ to

enhance the efficiency of integration algorithms in challenging regions, in this

case

dλ =
1

|dλx1 |−1 + |dλx2 |−1 + |dλx3 |−1 , (3.2.25)

where

dλx1 := ϵ/(|kr|+ δ), (3.2.26)

dλx2 := ϵ min(xθ, 1 − xθ)/(|kθ|+ δ), (3.2.27)

dλx3 := ϵ/(|kϕ|+ δ). (3.2.28)

Here, δ is a very small positive value that ensures there is no possible division

by zero, and ϵ is a positive scaling parameter, which influences the scaling of

all the steps.

3.2.4 Radiative transfer

With the null geodesics already calculated for the light rays traveling from

the observer to interact with the black hole, it is then necessary to compute

the radiative transfer equation along them. The radiative transfer equation in

RAPTOR is implemented without accounting for radiation refraction effects

due to plasma, which is a good approximation if the radiation frequency is
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higher than the plasma frequency (i.e., νp = 8980n1/2
e where ne is the electron

number density). Additionally, all forms of scattering and polarization can be

included in simulations with ray tracing, but in this case, they are not included.

RAPTOR calculates the radiative transfer equation, taking into account changes

in the plasma structure during the light transport, which are usually ignored.

The radiative transfer equation for the Lorentz invariant Iν/ν3, where Iν is the

specific intensity of radiation at frequency ν, is thus given by (Lindquist, 1966),

d
dλ

(
Iν

ν3

)
=

jν
ν2 − ναν

(
Iν

ν3

)
, (3.2.29)

where λ is the affine parameter, defined to increase as the ray travels from the

plasma to the observer, ν is the frequency of the photon, jν is the emission

coefficient of the plasma model, and αν is the absorption coefficient of the

plasma. All these quantities are calculated in the inertial reference frame that

is moving with the plasma (i.e., plasma frame). In the case of unpolarized

radiation, a change of reference frame is necessary to obtain the intensity in

the observer’s frame. Therefore, the frequency in the fluid’s reference frame is

given by,

ν = −kαuα, (3.2.30)

where kα is the contravariant wave vector and uα is the covariant tensor for the

four-velocity. Thus, the value of ν is used here to relate the absorption and

emission coefficients in the fluid’s reference frame to their Lorentz-invariant

counterparts, eliminating the need to explicitly construct the fluid’s reference

frame.

The integration of equation 3.2.29 from λ0 to λobs allows us to find the intensity

observed by an observer. By relating this intensity to the intensity in the

plasma’s reference frame, it is possible to derive the following relationship

Iν,obs =
Iν

ν3 ν3
obs. (3.2.31)

On the other hand, Equation 3.2.29 can be directly integrated. However, much

more accurate results can be achieved numerically by solving the radiative
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transfer equation reformulated in terms of the optical depth (see Dexter and

Agol (2009)) τν given by,

τν(λ) =
∫ λ

λ0

νανdλ′. (3.2.32)

Additionally, it can be noted that the optical depth in this case is a Lorentz

invariant. Therefore, the solution to the radiative transfer equation using

optical depth is given by the expression,

Iν

ν3 (τν) =
Iν

ν3 (τν,0) exp(−τν) +
∫ τν

τν,0

exp−(τν − τ′
ν)

jν
ν3αν

dτ′
ν, (3.2.33)

where τν,0 describes the starting point of integration along the null geodesic.

It is possible to solve the above equation iteratively for each step of integration,

assuming that jν remains constant throughout the integration. Thus, the

equation becomes

Iν

ν3 (τν) =
Iν

ν3 (τν,0) exp(−τν) +
jν

ν3αν
(1 − exp(−τν)). (3.2.34)

By integrating in the opposite direction along the null geodesic compared

to previous approaches, a numerically more efficient method is achieved

for calculating the intensity perceived by the observer. This implies that by

splitting Eq. (3.2.34) into two separate equations for intensity and optical depth,

from the observer’s position toward the plasma, a particularly advantageous

approach to the problem is obtained. In this specific direction, it is established

as a requirement that the intensity at the observer’s position increases

monotonically with respect to the affine parameter λ. This parameter is

the one describing the trajectory of rays in the opposite direction to λ, as

defined in the previous scheme.

In addition to these improvements, this method offers three additional

advantages. Firstly, it allows for the simultaneous integration of the null

geodesic and specific intensity. Moreover, it enables halting the integration of

the null geodesic when the optical depth between the current location and the

camera exceeds a threshold value. Secondly, it eliminates the need for a data

structure to store the null geodesic in memory before performing radiative
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transfer calculations. This is because we simply integrate the observation

alongside the geodesic itself. Thirdly, this method enables the calculation

of suitable integration step sizes for both the null geodesic and radiative

transfer integration, selecting the minimum value between the two. This choice

prevents situations where the null geodesic integration, treated separately as

if in a vacuum, rapidly advances through a plasma that is densely opaque

in a significant frequency range. This can lead to inaccurate calculations and

radiative transfer problems.

Then equation can be written as

d
dλ

(
Iν,obs

ν3
obs

)
=

jν
ν2 exp

(
−τν,obs(λ)

)
, (3.2.35)

where

τν,obs(λ) =
∫ λ

λobs

αν(λ
′)νdλ′. (3.2.36)

Thus, with these equations, the total invariant intensity in the observer’s

reference frame can be obtained, taking into account the redshift effect.

In RAPTOR, to solve the differential equation (3.2.35), the corresponding

emissivity coefficient is calculated, as well as the absorption-dependent optical

depth for each step of the ray’s path. This is numerically solved through a

simple integration, summing up all the intensities that contribute to each of

the pixels.

3.2.5 Emission model

3.2.5.1 Thin disk emission

Since for an analytical description of a thin accretion disk like that of

Novikov-Thorne, it is necessary to know all the analytical values of the model

in order to control the physical variables and ensure the accuracy of the

description. We choose the radiative description of this model to be defined by

thermal equilibrium blackbody emission due to its simplicity and effectiveness.

Therefore, the flux is related to the disk temperature according to the standard
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Stefan-Boltzmann law, as

F(r) = σT4
e f f (r), (3.2.37)

which has a local intensity given by

Iν =
1

f 4
col

· Bν(ν, Tcol), (3.2.38)

where

Bν(ν, Tcol) =
2hν3

c2
1

exp(hν/kBTcol)− 1
, (3.2.39)

where Tcol(r) = fcolTe f f (r), fcol is the spectral hardening factor, and Bν(ν, Tcol)

is the Planck function that describes the behavior of the blackbody spectrum.

Additionally, in this case, it serves as the emission and absorption coefficient,

as it relates to them as Bν = jν/αν.

Thus, in this case, the intensity as seen from the observer’s reference frame is

given by the expression,

Iν,obs =
ν3

obs
ν3 Iν =

ν3
obs
ν3

Bν(ν, Tcol)

f 4
col

. (3.2.40)

In RAPTOR, this is implemented in the simplest possible manner, within the

radiative transfer equation where direct calculations of these values are used

and integrated for each pixel of the image. That is, in each step that follows

the wave vector, this total intensity value is calculated.

3.2.5.2 Synchrotron emission

Since the dominant emission in many low-frequency models for black holes,

such as the one found in Sgr A∗, is synchrotron emission from a magnetized

and relativistically hot plasma, it is worthwhile to consider this type of emission

for more realistic descriptions of black holes and with much more complex

models of accretion disks. In our case, we employ this emission type to perform

image calculations using the HARM disk model with the aim of understanding

how radiation transport behaves under deviations from the Kerr metric.
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Therefore, in this model, we have that

Θe = kB
Te

mec2 ≥ 1, (3.2.41)

with kB as the Boltzmann constant, Te being the electron temperature, and me

its mass, the emission and absorption coefficients of the synchrotron model

depend on the electron’s distribution function. Assuming that the electron

follows a relativistic Maxwell-Jüttner distribution function, it is given by the

expression

nTH
e (γ) =

nTH
e γ

√
γ2 − 1 exp(−γ/Θe)

ΘeK2(1/Θe)
, (3.2.42)

where nTH
e is the electron number density acting as a normalization constant,

obtained by integrating the distribution function over all possible Lorentz

factors for the electron, i.e.,

nTH
e =

∫ ∞

1
nTH

e (γ)dγ. (3.2.43)

Moreover, γ is the Lorentz factor for the electron, and K2 is the modified

Bessel function of the second kind. The emission coefficient jν for synchrotron

emission is obtained by integrating this coefficient for a single electron over

all energies described by the aforementioned distribution function. Since this

function involves a Bessel function, direct integration is challenging. Therefore,

RAPTOR employs an approximate expression for the emission coefficient

provided by (Leung et al., 2011), so that the emission coefficient is

jTH
ν (ν, θ) =

√
2πe2nTH

e

3cK2(Θ−1
e )

(X1/2 + 211/12X1/6)2 exp
(
−X1/3

)
, (3.2.44)

where X := ν/νs, and νs defines the critical frequency for synchrotron emission,

given by

νs =
2
9

(
eB

2πmec

)
Θ2

e sin θ, (3.2.45)
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where B is the magnetic field in the inertial reference frame, θ is the angle

between the photon wave vector kµ and the magnetic field four-vector

bµ in the fluid’s reference frame, and e is the elementary electric charge.

Here, the emission coefficient is given in CGS units, thus having units of

[ergs−1Hz−1cm−3].

For the HARM model used, where frequencies ν ≈ 1011Hz, the emission

coefficient approximation is quite reliable.

On the other hand, the absorption coefficient for the thermal electron

distribution can be derived from Kirchhoff’s law, where

αTH
ν =

jTH
ν

Bν(ν, T)
, (3.2.46)

where Bν(ν, T) is the Planck function (3.2.39), and where the temperature is

given by the term solved from equation (3.2.41), which is

T =
mec2Θe

kB
. (3.2.47)

So the expression becomes,

Bν(ν, T) =
2hν

c2
1

exp(hν/(mec2Θe))− 1
. (3.2.48)

As the GRMHD simulations in the HARM case use geometrical units, the

plasma variables need to be rescaled using the scaling factors for the rest

mass density, ρ0 = M/L3, and the scaling factor for the magnetic field

B0 = c
√

4πρ0. Here, L = GM/c2 and T = GM/c3 are the scaling factors

for length and time, respectively. It’s important to note that these are only

functions of the black hole mass, where M is the mass scaling factor and is a

free parameter of the model.

On the other hand, the electron number density used in this model is given by

the expression,

ne = ρ
ρ0

(me + mp)
cm−3, (3.2.49)

where me and mp are the electron and proton mass, respectively.
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3.2.6 Fluid model

For the study of this thesis, two fluid models were utilized. The first one is

the analytical model of a thin accretion disk studied by (Shakura and Sunyaev,

1973) and its relativistic version by (Page and Thorne, 1974). This model is

implemented in RAPTOR in a semi-analytical manner, similar to (Dexter, 2016)

for GRTrans, among many other authors. This model will serve us to explore

the Kerr, Kerr-Like metrics, and even the metrics studied in section 2.7, given

its easy implementation and the ability to control all variables within this

model due to its simplicity. On the other hand, we also used a more complex

numerical plasma model called HARM, developed by (Gammie et al., 2003),

which is dedicated to conducting GRMHD simulations based on the Kerr

metric as a background. For this reason, the study conducted on Kerr-Like

metrics with this model is more focused on understanding how these types

of deviations affect radiative transport in the image of the black hole. In the

following two sections, I will present more details about these models and

how they are implemented in RAPTOR.

3.2.6.1 Novikov-Thorne Thin disk model

RAPTOR implements the analytical thin disk model by (Shakura and Sunyaev,

1973) and (Novikov and Thorne, 1973) for the accretion disk. In this model, the

accretion disk extends from the inner radius rin = rISCO, which is analytically

calculated for Kerr and Schwarzschild black holes in RAPTOR, and numerically

in our case, to an outer radius rout = 1000Rg. Consequently, the particles within

the disk move in nearly circular orbits at the equator, gradually being accreted

by the black hole. As explained in (2.6.5), this model assumes the absence of

torque at the inner edge of the disk.

The pixel intensities in the resulting image are obtained using the radiative

transfer equation (3.2.35), while the algorithm determines the plasma frequency

using the equation

ν = −kαuα, (3.2.50)

where kα represents the wave vectors originating from the camera, and uα is

the 4-velocity in the plasma’s frame within the accretion disk.
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Since the model assumes a geometrically thin and optically thick disk, it is

inferred that the plasma’s 4-velocity is Keplerian, as given by the expression

uα = {ut, ur, uθ, uϕ} = {A, 0, 0,AΩ}, (3.2.51)

where

A =

√
−1

gtt + 2Ωgtϕ + Ω2gϕϕ
. (3.2.52)

Here the components of the metric gµν are calculated for the corresponding

spacetime in Boyer-Lindquist coordinates.

Additionally, if necessary, RAPTOR numerically transforms the 4-velocity to

Kerr-Schild coordinates.

With these values already defined, the code calculates the energy flux from the

equation

F(r) =
Ṁ

4πM2 fdisk(r), (3.2.53)

where Ṁ is the mass accretion rate and

fdisk(r) = −dΩ
dr

M2
√−g(E − ΩLz)2

∫ r

rin

(E − ΩLz)
Lz

dr
dr, (3.2.54)

where g is the determinant of the metric.

This equation, when implemented in RAPTOR, is solved through two distinct

approaches: the first one analytically for the Kerr case (Page and Thorne,

1974), and the second one numerically, implemented by us using trapezoidal

integration for the Kerr-Like spacetime.

With the energy flux calculation already performed, utilizing the emission

model provided by (3.2.5.1) and the radiative transfer equation, it becomes

possible to obtain the intensity measured in each pixel of the observer’s camera.

Therefore, when the algorithm is applied correctly, it becomes feasible to

generate images as shown in Fig. (3.2.1).
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Figure 3.2.1: Thin-disk simulation for BH with a mass 10M⊙ and spin a =
0.99 M. With angle of view i = 30o, i = 60o and i = 90o.

The input values for test purposes were for the Kerr case:

Parameter Thin-disk test value
a 0.99M

MBH 10M⊙
dsource 0.05pc
νcam 2.41 × 1017Hz
rcam 104Rg

Resolution for [x, y] [300, 300]px
Range for [α, β] [−15, 15] Rg

Ṁ 1.399 × 1019g/s
rISCO 1.24Rg
rout 1000Rg

stepsize 0.001

Table 3.2.2: Settings extracted from the test using in Bronzwaer et al. (2020).
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3.2.6.2 HARM model

RAPTOR includes the possibility to read data from HARM simulations,

which contains all the information about the disk model. In this case,

as described in Section (2.6.6), the simulation for this type of study was

carried out using a hydrostatic equilibrium gas torus crossed by a weak

magnetic field. HARM evolves the ideal MHD equations in the Kerr spacetime,

where magnetorotational instabilities generate turbulence in the torus, and

the resulting stresses transport angular momentum outward, leading to the

accretion of plasma around the central black hole.

RAPTOR has the capability to read these GRMHD snapshots formulated by

HARM. It is also capable of using a single snapshot, where the temporal

coordinate of the geodesic can be ignored (slow-light approximation), or

alternatively using a series of snapshots where the temporal geodesic is relevant

(fast-light approximation).

In this study, in order to solely analyze how deviations affect the transport of

radiation in black hole images for GRMHD simulation cases, we only explore

the first option.

The fluid variables in these simulations are saved in modified Kerr-Schild

coordinates and geometric units, where G = c = M = 1.

In RAPTOR, the implementation of the dump files is done by generating rays

from the camera, initially using Boyer-Lindquist coordinates to generate wave

vectors, which are later transformed to modified Kerr-Schild coordinates to

work correctly with the snapshots extracted from HARM. The fluid data is

stored by RAPTOR in dynamic arrays and interpolated for each value of the

wave vectors. Then, this data is used for calculating the frequency in the

plasma frame ν = −kαuα, where uα is directly extracted from the dump file

and interpolated for the proper calculation of ν. The emission and absorption

coefficient values are also calculated for a synchrotron emission model, in

order to proceed with the calculation of the intensity measured in each pixel by

the observer using the radiative transfer equation implemented in RAPTOR.

On the other hand, for GRMHD models, heavy ions are usually simulated.

However, these ions are not sources of emission in radiative processes.
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Therefore, there is a need to couple the ions to the plasma electrons. RAPTOR

implements a single fluid approach, where ions and electrons are related

through the expression

Tp

Te
= Rlow

1
1 + β2

p
+ Rhigh

β2
p

1 + β2
p

, (3.2.55)

where βp = Pgas/Pmag, defining the ratio of gas pressure to magnetic field

pressure Pmag = B2/2, where additionally Rlow and Rhigh are free parameters.

In magnetically strong plasmas, βp << 1, thus Tp/Te → Rlow, whereas

conversely, in magnetically weak plasmas, βp >> 1, and Tp/Te → Rhigh.

For the cases we studied, we decided to set Rlow = Rhigh = 1, as well as

keeping Tp/Te fixed. In Fig. (3.2.2), we can observe a simulation for the Kerr

metric, with the sole intention of studying the effect of radiative transport.

Figure 3.2.2: GRMHD simulation for SMBH with a mass 6.2× 109M⊙ and spin
a = 0.9375 M. With angle of view i = 30o, i = 60o and i = 90o.

The parameters used for this simulation are given in Tab. 3.2.3.
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Table 3.2.3: Setup for the simulation of the SMBH with the distance and mass
of M87*.

Parameter Value
MBH 6.2 × 109 M⊙
Distance 16.9 Mpc
a 0.9375 M
rcam 104Rg
Range for [α, β] [−15, 15]Rg
Resolution [x, y] 500 px
Frequency 230 GHz
Inclination (°) 30, 60, 90
Tp/Te 1.0

3.3 Kerr-Like metric implementation

Since RAPTOR is capable of utilizing different geometries through the free

implementation of various metrics for use in the calculation of the geodesic

equations and ultimately obtaining the black hole image through ray tracing,

the implementation of the Kerr-Like metric was carried out in a straightforward

and efficient manner. However, this was not done without first analytically

and numerically verifying its correctness. In this section, I present the steps

that were followed for its implementation and the verification of its accuracy.

Firstly, due to the use of plasma models that were numerically calculated

(e.g., HARM) as one of the background fluid models, it was necessary to

implement this metric in Kerr-Schild-like coordinates (2.5.2). Additionally,

the coordinates needed further modification due to the nature of HARM

calculations near the event horizon. Therefore, a small transformation of these

coordinates to modified Kerr-Schild-like coordinates was required, where the

radial coordinate r is of exponential type and the azimuthal coordinate θ is

slightly modified by a parameter h. When h = 1, the original coordinate is

recovered, and as h → 0, the zones concentrate in the region near the midplane.

This type of transformation can be found in Appendix A1.

RAPTOR implements metrics using functions that store values in two-index

arrays, introducing the covariant and contravariant metric analytically to

accelerate internal code processes. Therefore, one of the initial steps, in

addition to the change of coordinates for the Kerr-Like metric, was to calculate
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its contravariant form. From Eq. (2.5.95), one obtains

gtt =

[(
−2Mr − a2 − r2) A1(r)

2 − a2 (cos2 (θ)
)
+ a2

]
F

[(a2 + r2) A1(r) + A2(r) a2 (cos(θ)− 1) (cos(θ) + 1)]2 Σ̃
, (3.3.1)

gtr =
2rMA1(r) F

√
A5(r)

[(cos2 (θ)) A2(r) a2 + (a2 + r2) A1(r)− A2(r) a2]
2 Σ̃

, (3.3.2)

gtϕ = − a (A1(r) A2(r)− 1) F

[(cos2 (θ)) A2(r) a2 + (a2 + r2) A1(r)− A2(r) a2]
2 Σ̃

, (3.3.3)

grr =
∆A5(r) F

[(cos2 (θ)) A2(r) a2 + (a2 + r2) A1(r)− A2(r) a2]
2 Σ̃

, (3.3.4)

grϕ =

√
A5(r) FA2(r) a

[(cos2 (θ)) A2(r) a2 + (a2 + r2) A1(r)− A2(r) a2]
2 Σ̃

, (3.3.5)

gθθ =
1
Σ̃

, (3.3.6)

gϕϕ =
F

[cos2 (θ) A2(r) a2 + (a2 + r2) A1(r)− A2(r) a2]
2 Σ̃ sin(θ)2 , (3.3.7)

where F = [(r2 + a2)A1(r)− a2A2(r) sin2(θ)]2.

This was calculated analytically using the symbolic computation software

MAPLE and the GRTENSOR III package. Verification of the correct

implementation of this metric was done using a Python script in which the

covariant and contravariant expressions of the metric were compared with

the expressions for the Kerr metric. To perform this comparison, we took the

Kerr-Like metric to the limit where it reduces to the usual Kerr metric, so that

A1(r) = A2(r) = A5(r) = 1 and f (r) = 0.

In Fig. (3.3.1), comparisons of the components can be seen. First, a comparison

was made with Kerr when the Kerr-Like metric reduces to it, and then tests

were conducted by activating the free deviation functions.
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Figure 3.3.1: Comparison between the covariant components gtt and gtϕ of the
Kerr and Kerr-Like metrics. In the left panel of the figures, the comparison can
be observed when the Kerr-Like metric has its free deviations set to zero (i.e.,
α13 = α22 = 0), thus reducing it to the Kerr metric. In the right panel of the
figure, the difference can be seen when turning on the free deviations to first
order in both functions A1(r) and A2(r), such that they have their maximum
deviation values (i.e., α13 = −1 and α22 = 1).

In this figure, we can also observe that the labels of the lines indicate the

name "MKS," where I am referring to the coordinates used for the comparison,

which were the modified Kerr-Schild coordinates. The expression of the

Kerr metric in these coordinates was also extracted from the GRMonty code

(Dolence et al., 2009), which is also used in RAPTOR for describing the Kerr

metric. Furthermore, it was decided to display the comparison of these metric

components since deviations in these components result in a noticeable change

in the figures. The same analysis was performed for the rest of the components
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to ensure a proper metric implementation.

Similarly, the comparison of the contravariant metric components is performed

in Fig. (3.3.2), where a similar analysis to the previous one is carried out.
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Figure 3.3.2: Comparison between the contravariant components gtt and gtϕ of
the Kerr and Kerr-Like metrics. In the left panel of the figures, the comparison
can be observed when the Kerr-Like metric has its free deviations set to zero
(i.e., α13 = α22 = 0), reducing it to the Kerr metric. In the right panel of the
figure, the difference is evident when the free deviations are activated to first
order in both functions A1(r) and A2(r), such that they have their maximum
deviation values (i.e., α13 = −1 and α22 = 1).

On the other hand, RAPTOR features an algorithm for performing the

calculation of the connection (i.e., Christoffel symbols in this case) numerically.

We initially used this algorithm to test the proper functioning of image

simulations with the implementation of the metric described earlier. While the
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numerical calculation of the connection yielded good results, it proved to be

inefficient, causing the simulation to consume excessive computational time

and preventing us from working with high resolutions. Therefore, considering

the favorable analytical behavior of the Kerr-Like metric, we calculated its

connection analytically for implementation in RAPTOR. This expression can

be found in Appendix A2. This significantly accelerated the code, enabling us

to conduct numerous tests with free deviation parameters, resulting in images

similar to those observed in Figure (3.3.3).

Figure 3.3.3: GRMHD simulation for a SMBH with a mass similar to M87∗ and
spin a = 0.9375 M. In the left part of the figure a simulation of the Kerr-Like
metric with deviation parameter α13 = −1 and to compare this in the right
part of the figure a simulation of a Kerr metric, with angle of view i = 90o (i.e
edge-on).

Tests that will be shown in Chapter (4), where a subsequent analysis of these

will be conducted through the study of their intensity profile, allowing us to

calculate quantifiable shadow characteristics such as its diameter, displacement,

and asymmetry. The methodology for performing these calculations will be

presented in the following two sections.

3.4 Intensity profile

In the current section, I will present the use of intensity profiles for analyzing

images of black holes. Given the nature of accretion disks, where intensity

varies significantly from outside the black hole to the event horizon and is

affected by effects such as gravitational redshift and disk velocity, quantification

of this variation becomes essential. Particularly because ray tracing simulations
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for black holes provide us with comprehensive intensity information around

the black hole in each pixel of the image.

Therefore, drawing inspiration from works conducted by (Gralla et al., 2019,

2020; Narayan et al., 2019; Bronzwaer et al., 2021; Bandyopadhyay et al.,

2021, 2023), we conducted a study of intensity profiles using a Python script

developed by Javier Lagunas and Javier Pedreros for utilization with the output

of GRTrans (Dexter, 2016), which was modified to work with the output of

the RAPTOR code. The algorithm operates as follows: it reads the intensity

output of the image in each pixel, extracts its values along a minimally sized

rectangle following a straight line across the two-dimensional image of the

black hole. The straight line representing the rectangle is set to a specific value

for the β axis in the image, along with all possible values of α. In this case,

for a given β = 0, an angle φ = 0 is assigned to the straight line defining the

angle of the rectangle with respect to the abscissa (see the plots in the below

part of the Fig. (3.4.1)).

To perform a thorough analysis of these intensity profiles, a study was

conducted across different angles φ in order to understand the behavior of

the total image intensity from different axes. This allows us to quantify the

location of the event horizon, identify its peak intensity value associated with

redshift, as well as examine the shadow’s diameter, its displacement from the

central image axis, and the image deformation by quantifying its asymmetry.
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Figure 3.4.1: An Example of four simulated images of a Kerr BH with the
mass of Sgr A* (Above images) with the normalized intensity color bar and
below each image the intensity profiles for three different angles of intensity
measurement values. The white dashed line represents the circular orbit of the
photon ring for a Kerr BH, included for the purpose of comparison with the
shadow.

In the following section, I will explain how values of asymmetry, displacement,

and shadow diameter are quantified using intensity profiles and the equations

found in the literature for these values.

3.4.1 Displacement, Diameter, and Asymmetry

In order to quantify the shadows of the black holes through the intensity

profiles and to observe how much this shadow changes while studying the

Kerr-Like spacetime with certain deviation parameters in comparison with

the Kerr spacetime, the definition of displacement in the x-axis, given by

Johannsen (2013a), is

D ≡ |xmax − xmin|
2

, (3.4.1)
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where xmax and xmin, are the locations of the two maximum peaks for the

normalized intensity in a horizontal intensity profile. Similarly, it is possible

to define an offset in the vertical direction. From here the average radius can

be defined as,

⟨R⟩ ≡ 1
2π

∫ 2π

0
Rdα, (3.4.2)

where

R ≡
√
(x′ − Dx)2 + (y′ − Dy)2. (3.4.3)

Therefore the average diameter is given by L ≡ 2⟨R⟩. Thus, the asymmetry of

the photon ring is

A ≡ 2

√∫ 2π
0

(
R − ⟨R⟩

)2 dα

2π
. (3.4.4)

Given the diameter, asymmetry, and displacement equations used by Johanssen,

we are aware that this theoretical description is exclusively constructed

and calculated under the assumption that the exterior of the black hole is

surrounded by infinite light sources. This is distinct from our framework,

where the luminous source is an accretion disk with its own dynamics around

the black hole. While this holds true, it is possible to employ these equations

in the images to obtain an approximate quantification of these values, thus

providing us with an insight into how well a simple theoretical framework

aligns with practical measurements in observations or simulations of a black

hole. This also offers an approximate understanding of more fundamental

values such as the black hole’s spin and mass.

These values were computed for the images obtained in RAPTOR by studying

intensity profiles across all angles of the image, ranging from [0, 360] degrees.

This approach allows us to calculate the approximate diameter of the image

by identifying the points of maximum and minimum intensity in the profile,

which define the inflection point where the black hole’s shadow and hence

event horizon initially appear. Averaging these values for each angle yields an

approximate image diameter.
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Furthermore, with the diameter value established, it becomes feasible to

calculate the image displacement and asymmetry for each angle φ, enabling

us to average these values and derive an overall approximate value for each of

them (see Fig. (3.4.2)).

Figure 3.4.2: (Blue line) is the fit calculated by Johanssen and the (Red dots) are
the values obtained by a post-processing data of the SMBH with the mass of
M87∗ and spin a = 0.9375M of the GRMHD simulated image.

In the following section, these values and intensity profiles will be analyzed

more comprehensively, associating them with specific cases in order to quantify

different metric deviations and compare them with the Kerr metric. This aims

to gauge the effectiveness of measuring these deviations in simulations and

potential observations.
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Chapter 4

Effects of the deviations from the

Kerr metric and GRMHD

simulations

With the intention of studying and quantifying deviations from the Kerr metric

in black hole images, this section presents a diverse range of simulations

to quantify how these deviations affect the shadow. The study begins by

examining the shape of the photon ring around the Kerr-Like black hole for

deviation parameters α13 = [−1, 1], α22 = [−1, 1], and α52 = [−1, 1]. Simulated

images using RAPTOR for these deviations are generated for both a HARM-

type disk model and an analytical thin disk model by Novikov-Thorne. The

intensity profiles, diameter, displacement, and asymmetry are quantified and

compared with the photon ring results calculated and adjusted by (Johannsen,

2013a). These are further compared with potential observations.

Additionally, a similar analysis is conducted for a slowly rotating solution of a

black hole in modified Chern-Simons gravity theory, considering different

values of the coupling parameter ζCS = [0, 1], noting that the theory is

effective only for ζCS << 1. Coupling values associated with observational

measurements of extreme objects like quasars and AGN (Active Galactic

Nuclei) are also considered. This section associates the analysis with the

Kerr-Like metric and presents thin disk simulations for different coupling

parameters of the theory.
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Lastly, a new perturbative result for a slowly rotating black hole is shown in

the context of α′−corrected gravity, which is a low-energy limit of string theory.

The metric is obtained in Boyer-Lindquist and Kerr-Schild coordinates, and

the possibility of separability for the Hamilton-Jacobi equations is introduced.

This sets the stage for future work involving the analytical integration of null

geodesics and conducting thin disk simulations to analyze different coupling

parameter values.

4.1 Kerr-Like metric simulations

To show you how deviations from the Kerr metric can affect the shadow of the

black hole, first, we analyze the effect of the Kerr Like metric at the first order

in the free deviation functions for a circular photon ring orbit. This shadow

can be obtained under the assumption that there are infinite light sources and

solving the equations

R(r) = 0 and
dR(r)

dr
= 0, (4.1.1)

where

R(r) = [(r2 + a2)A1(r)− aA2(r)ξ]2 − ∆[(ξ − a)2 + η], (4.1.2)

and where the axis for the image are [α, β] when r0 → ∞, such that

α = − ξ

sin i
, (4.1.3)

β = ±
√

Θ(i), (4.1.4)

here Θ(i) = η + a2 cos2 i − ξ2 cot2 i and η and ξ can be obtained by solving the

equations (4.1.1) with R(r) given for (4.1.2).

Considering the low minimum limit of the deviations like (Johannsen, 2013a) ,

i.e, when:
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α13 > − (M +
√

M2 − a2)3

M3 , (4.1.5)

α22 > − (M +
√

M2 − a2)2

M2 , (4.1.6)

α52 > − (M +
√

M2 − a2)2

M2 , (4.1.7)

ϵ3 > − (M +
√

M2 − a2)3

M3 . (4.1.8)

In the case of the spin value a = 0.9375, these values are ϵ3 = α13 > −2.45 and

α22 = α52 > −1.82.

The photon rings can be graphically represented for these deviations as shown

in Figs. (4.1.1-4.1.2).

Figure 4.1.1: Comparison between a Kerr photon ring for a circular orbit
(black line) for a BH with spin a = 0.9375 M and Kerr-Like with the deviation
parameters α13 = [−1, 1] (red and blue line), respectively and angle of view
i = [1o, 45o, 90o].
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Figure 4.1.2: Comparison between a Kerr photon ring for a circular orbit (black
line) for a BH with spin a = 0.9375 M and Kerr-Like with deviation parameters
α22 = [−1, 1] (red and blue line), respectively and angle of view i = [1o, 45o, 90o].

This case is for the limit deviations values α13 = [−1, 1] and α22 = [−1, 1]. We

consider just these two deviation parameters because the Keplerian orbits of

the circular photon rings around the BH (i.e Eq. (4.1.2)) is independent of the

deviation function A5(r) and also because all terms that are affected by the

parameter ϵ3 also contain the rest mass of the particle which are vanish for

photons geodesics.

4.1.1 HARM model simulations

To study and understand the impact of Kerr deviations on radiation transport

in GRMHD-type simulations, where snapshots of physical quantities from

the disk model are used based on the dump file extracted from HARM, it

is necessary to utilize the same input file. This is regardless of the fact that

deviations from Kerr geometry also alter the structure of the accretion disk

and the observable image.

Therefore, for the purpose of our study, we used the same dump file for both

the Kerr and Kerr-Like metrics.

We conducted multiple simulations of a supermassive black hole with the mass

of M87* in Kerr-Like spacetime, employing a synchrotron model for emissivity,

where the absorption coefficient follows the Kirchhoff’s law.
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The deviation functions for these simulations were truncated to the first order

in deviation, with the intention of comparing them to the work done by Tim

Johannsen (Johannsen, 2013a). The free deviation parameters used in the

test were α13 ∈ [−1, 1], α22 ∈ [−1, 1], and α52 ∈ [−1, 1]. The values of these

parameters are slightly larger than the lower limits for these parameters to first

order, as given by the expression Eqs. (4.1.5).

The simulations carried out to observe the effect of the deviations were

conducted for deviation values α ranging from −1 to 1, with steps of 0.1

between each of these values.

I will present below the results in two different ways, with the intention of

better illustrating the simulations, avoiding redundancy, and preventing overly

extensive outcomes. I will display the simulations of the images for two

different deviation values, namely, [−1, 1], considering that the lower value is

close to the previously calculated lower limit. On the other hand, to observe

the differences produced by the simulations, I will compare the values of

diameter, displacement, and asymmetry for four different deviation values,

which are [−1,−0.5, 0.5, 1].

The table (4.1.1) displayed below shows the input values used in RAPTOR to

perform the simulation of these images.

Table 4.1.1: Setup for the simulation of the SMBH with the distance and mass
of M87*

.

Parameter Value
MBH 6.2 × 109 M⊙
Distance 16.9 Mpc
a 0.9375 M
rcam 104Rg
Range for [α, β] [−15, 15]Rg
Resolution [x, y] 500 px
Frequency 230 GHz
Inclination (°) 0, 30, 60, 90
Tp/Te 1.0

4.1.1.1 Deviation parameter α13

Starting with the value of α13 = −1 and taking cues from the intuitive mental

visualization provided in (4.1.1). The simulations are displayed in Fig. (4.1.3).
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Figure 4.1.3: This figure displays a GRMHD simulation of a Kerr-Like black
hole, which has a mass similar to that of M87∗ (with a spin of a = 0.9375M
and a deviation parameter α13 = −1). In the upper panel, intensity maps are
presented from four different viewing angles (0, 30, 60, 90 degrees). These maps
show us how the shape of the black hole’s shadow and the intensity of the disk
change as we vary the viewing angle. The white line on each map represents
the contour of the photon ring in a Kerr SMBH, allowing us to compare it
with the shadow in this Kerr-Like metric.In the lower panel, intensity profiles
corresponding to the upper images are shown. Each image has three intensity
profiles taken from different angles. By observing how the height and location
of the peak points change along the x-axis in these profiles, we can perform
subsequent analysis of the diameter, displacement, and asymmetry of the black
hole’s shadow.

For a direct analysis of these images, it is useful to examine them based on

Figure (4.1.3), as it can be observed that the upper panel contains images of the

SMBH from 4 different viewing angles, ranging from face-on to edge-on. In

these images, a color map of intensities in each pixel of the black hole image, as

seen by the observer, is depicted. What is visible is the accretion disk around

this black hole, and the intensity is normalized with respect to its maximum

value. The white dashed line represents the circular orbit of the photon ring for

a Kerr BH, included for the purpose of comparison with the shadow in our
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simulation of the Kerr-like metric.

Additionally, the lower section displays normalized intensity profiles obtained

from data captured at three angles φ, namely, from a vertical line, a horizontal

line, and one at 45o, in each of the upper images. Vertical lines mark the

intensity peaks, allowing for the calculation of xmax and xmin.

Now, for the parameter α13 = 1.0, the simulations are displayed in Fig. (4.1.4).
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Figure 4.1.4: GRMHD simulation of a Kerr-Like black hole, which has a mass
similar to that of M87∗ (with a spin of a = 0.9375M and a deviation parameter
α13 = 1). In the upper panel, intensity maps are presented from four different
viewing angles (0, 30, 60, 90 degrees). These maps show us how the shape
of the black hole’s shadow and the intensity of the disk change as we vary
the viewing angle. The white line on each map represents the contour of the
photon ring in a Kerr SMBH, allowing us to compare it with the shadow in
this Kerr-Like metric.In the lower panel, intensity profiles corresponding to the
upper images are shown. Each image has three intensity profiles taken from
different angles. By observing how the height and location of the peak points
change along the x-axis in these profiles, we can perform subsequent analysis
of the diameter, displacement, and asymmetry of the black hole’s shadow.

The two previously shown figures display two different axes of the same

deviation parameter. If examined closely, one can discern the effect on the
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geometry of the black hole’s shadow. This effect is as expected when relating

it to the analysis of photon rings shown in Fig. (4.1.1 - 4.1.2).

We notice that, in comparison to the Kerr photon ring, the difference is slight

but nonetheless significant. To perceive the effect of these deviations more

clearly, we conduct a subsequent analysis of these images, calculations for

asymmetry, diameter, and displacement were performed based on intensity

profiles, as described in section (3.4.1), and then compared with the fittings

computed by Tim Johanssen (Johannsen, 2013a) for the Kerr-like metric. In

following figures (4.1.5), these values can be observed for each viewing angle

towards the black hole, spanning from [0o, 90o] with steps of 5o between each

value.

0 50
Inclination (°)

4

6

8

10

Di
am

et
er

 (M
)

0 50
Inclination (°)

0.0

1.5

Di
sp

la
ce

m
en

t (
M

)

0 50
Inclination (°)

0
1
2
3
4
5
6

As
ym

m
et

ry
 (M

)
KL 13 = -1.0 KL 13 = 1.0 Kerr

Figure 4.1.5: Comparison of diameter, displacement, and asymmetry values.
It includes the fit calculated by Johannsen (2013a) (Blue line) for a Kerr-Like
black hole with a deviation parameter α13 = −1 (Red dashed line), α13 = 1,
and a Kerr-Like simulation (Red dots and Blue stars) of a black hole with these
deviation parameters, respectively, alongside the simulation of a Kerr black
hole (Orange triangles). The graph illustrates how these values change as the
viewing angle varies from 0 to 90 degrees. It shows that the first two cases
exhibit similar trends, while the last one behaves differently. It is noteworthy
that there is a clear distinction in the values that consider deviations from the
standard Kerr metric.

Firstly, in Figure (4.1.5), we highlight that in the case of the diameter and

displacement of the shadow, the values are close to obtained by the fits from

(Johannsen, 2013a). However, this is not the case for asymmetry, where we
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notice that in the simulations its value increases significantly compared to the

fitting as we change the viewing angle.

Regarding the comparison with simulations performed for the Kerr metric,

a clear difference can be observed between the diameters and displacements

of the shadow. In the case of the diameter, these values are closer to each

other when viewing the black hole at an angle of approximately 45o, with

the greatest difference noticeable at 90o. On the other hand, concerning the

displacement of the shadow from the center of the image, we notice that the

values overlap more frequently than for the diameter. A greater displacement

is presented for α13 = −1 as we approach the view in the plane of the disk,

and for α13 = 1, a lesser displacement, in comparison to the corresponding

values for the Kerr metric, which lie right between these two deviations.

Furthermore, we observe that for the displacement, there are many values that

deviate from the naturally projected curve. This is likely due to the fact that as

we change the viewing angle from a face-on angle to an edge-on angle, the

structure of the disk starts to obstruct the sampling of intensity, consequently

affecting the geometry of the viewed shadow. Therefore, this aspect becomes

particularly important when quantifying these shadow values.

Interestingly, in this model, the viewing angle towards the black hole seems

not to influence the diameter values significantly and only slightly affects the

case of asymmetry.

Finally, we observe that the differences in asymmetry values for angles

near face-on are minimal. However, as we approach the edge-on angle,

these differences become more evident and significant. We also notice that

asymmetry tends to increase as we change the view of the black hole towards

the plane of the disk. It is deduced that in this view, we will encounter more

pronounced differences in the geometry of the shadow, thus indicating that

this is where the most significant variations in shadow characteristics will be

observed.
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Figure 4.1.6: Comparison of how the values of diameter, displacement, and
asymmetry change as the viewing angle varies from 0 to 90 degrees in
simulations of a Kerr-Like black hole with deviation parameters α13 = −1 (Blue
stars), α13 = −0.5 (Red dots), α13 = 0.5 (Orange diamonds), α13 = 1 (Dark cyan
plus sign), and in the simulation of a Kerr black hole (Black triangles). Noticeable
differences are observed between the deviated values and the background
value for the Kerr simulation, although all differences are slight compared to
Kerr.

In Figure (4.1.6), the values of diameter, displacement, and asymmetry are

compared for the four deviations α13 = [−1,−0.5, 0.5, 1]. It is clear that for

the diameter, the difference among the four deviations is evident, with the

shadow’s diameter increasing as the deviation grows. On the other hand,

in terms of displacement, the difference between each of the values is less

pronounced, although we can still notice a distinction between the values [-1,

1]. The value of −1 exhibits a more shifted shadow compared to the center

of the image, while the value of 1 displays a lesser degree of displacement.

Specifically, the initial angles ranging from 0 − 45o are the ones with less

displacement when compared to the data analyzed for angles greater than

these.

4.1.1.2 Deviation parameter α22

In order to continue with the simulations for the different deviation parameters

of the Kerr-Like metric, we proceed to conduct similar simulations to the

previous ones. However, this time, we focus on the deviation parameter
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α22. We use values of [−1, 1] to showcase the simulations and values of

[−1, 0.5,−0.5, 1] for a subsequent analysis of the diameter, displacement, and

asymmetry values of the shadow.

Therefore, for α22 = −1, the simulation would appear as displayed in Fig.

(4.1.7).

10 0 10
(GM/c2)

10

0

10

(G
M

/c
2 )

 0 = 0°

10 0 10
(GM/c2)

10

0

10
 0 =  30°

10 0 10
(GM/c2)

10

0

10
 0 =  60°

10 0 10
(GM/c2)

10

0

10
 0 = 90°

10 0 10
r(GM/c2)

0.0

0.5

1.0

I 0

10 0 10
r(GM/c2)

0.0

0.5

1.0

10 0 10
r(GM/c2)

0.0

0.5

1.0

10 0 10
r(GM/c2)

0.0

0.5

1.0
= 0° = 45° = 90°

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
In

te
ns

ity

Figure 4.1.7: GRMHD simulation of a Kerr-Like black hole, which has a mass
similar to that of M87∗ (with a spin of a = 0.9375M and a deviation parameter
α22 = −1). In the upper panel, intensity maps are presented from four different
viewing angles (0, 30, 60, 90 degrees). These maps show us how the shape of
the black hole’s shadow and the intensity of the disk change as we vary the
viewing angle. The white line on each map represents the contour of the
photon ring in a Kerr SMBH, allowing us to compare it with the shadow in
this Kerr-Like metric.In the lower panel, intensity profiles corresponding to the
upper images are shown. Each image has three intensity profiles taken from
different angles. By observing how the height and location of the peak points
change along the x-axis in these profiles, we can perform subsequent analysis
of the diameter, displacement, and asymmetry of the black hole’s shadow.

And also, for α22 = 1 value, we obtain the results as shown in Fig. (4.1.8).
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Figure 4.1.8: GRMHD simulation of a Kerr-Like black hole, which has a mass
similar to that of M87∗ (with a spin of a = 0.9375M and a deviation parameter
α22 = 1). In the upper panel, intensity maps are presented from four different
viewing angles (0, 30, 60, 90 degrees). These maps show us how the shape
of the black hole’s shadow and the intensity of the disk change as we vary
the viewing angle. The white line on each map represents the contour of the
photon ring in a Kerr SMBH, allowing us to compare it with the shadow in
this Kerr-Like metric.In the lower panel, intensity profiles corresponding to the
upper images are shown. Each image has three intensity profiles taken from
different angles. By observing how the height and location of the peak points
change along the x-axis in these profiles, we can perform subsequent analysis
of the diameter, displacement, and asymmetry of the black hole’s shadow.

Here we can observe a similar effect to the case of α13 for the BH shadow and

the deviation parameters α22 = [−1, 1].

However, by analyzing this through the values of diameter, displacement, and

asymmetry, we notice that the differences among them are smaller. The change

in the image’s diameter is almost imperceptible at low viewing angles under

60o. Similarly, the displacement is minor compared to the Kerr metric.
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Figure 4.1.9: Comparison of the diameter, displacement, and asymmetry values
for a Kerr-Like BH simulations with deviation parameters α22 = −1 (Blue stars),
α22 = −0.5 (Red dots), α22 = 0.5 (Orange diamonds), α22 = 1 (Dark cyan plus sign),
and in the simulation of a Kerr black hole (Black triangles) and how these values
change as the viewing angle varies from 0 to 90 degrees, showing noticeable
differences between the deviated values and the background value for the Kerr
simulation, although all differences are slight compared to Kerr.

We notice that while the displacements for α22 = −1 and α22 = 1 can be

distinguishable, with one having a smaller displacement than the other. In

comparison to Kerr, α22 = 1 behaves quite similarly at angles less than 50◦,

and α22 = −1 tends to behave similarly to Kerr for angles greater than 50◦.

On the other hand, the asymmetry values for either of the deviations closely

resemble the values found for the simulations of the Kerr metric.

4.1.1.3 Deviation parameter α52

As mentioned earlier, the deviations provided by the free function A5(r)

do not, at first glance, affect the shadow image for circular photon orbits.

Therefore, in practical terms, we have chosen to study it only for the value that

approaches the lower limit, in order to see if non-circular photon orbits exhibit

any significant changes in the image. Thus, for α52 = −1, the image appears

as shown in Fig. (4.1.10).
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Figure 4.1.10: GRMHD simulation of a Kerr-Like black hole, which has a
mass similar to that of M87∗ (with a spin of a = 0.9375M and a deviation
parameter α52 = −1). In the upper panel, intensity maps are presented from
four different viewing angles (0, 30, 60, 90 degrees). These maps show us how
the shape of the black hole’s shadow and the intensity of the disk change as we
vary the viewing angle. The white line on each map represents the contour of
the photon ring in a Kerr SMBH, allowing us to compare it with the shadow in
this Kerr-Like metric.In the lower panel, intensity profiles corresponding to the
upper images are shown. Each image has three intensity profiles taken from
different angles. By observing how the height and location of the peak points
change along the x-axis in these profiles, we can perform subsequent analysis
of the diameter, displacement, and asymmetry of the black hole’s shadow.

Upon conducting further analysis for the values of diameter, displacement, and

asymmetry, in cases where α52 = [−1,−0.5, 0.5, 1], it can be observed that non-

circular orbits do have an impact on these values (see Fig. 4.1.11). However,

these effects are not substantial enough to yield a significant difference

compared to the values obtained for the Kerr metric.
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Figure 4.1.11: Comparison of how the values of diameter, displacement,
and asymmetry change as the viewing angle varies from 0 to 90 degrees
in simulations of a Kerr-Like black hole with deviation parameters α52 = −1
(Blue stars), α52 = −0.5 (Red dots), α52 = 0.5 (Orange diamonds), α52 = 1 (Dark
cyan plus sign), and in the simulation of a Kerr black hole (Black triangles).
Noticeable differences are observed between the deviated values and the
background value for the Kerr simulation, although all differences are slight
compared to Kerr.

4.1.1.4 Sgr A* case

Now, with the intention of studying this model from a more realistic

perspective, the input parameters are reconfigured to attempt to model the

SMBH of Sgr A*. This aligns well with the GRMHD model we are using,

so the parameters are based on (Mościbrodzka et al., 2009) for the tests, as

they suggest that this modeling profile is more related to the sub-mm spectral

observations (α).

Therefore, we proceed to conduct the same previous analysis, this time using

the appropriate input parameters for the Sgr A* model as given in Tab. (4.1.2).



118 4.1. Kerr-Like metric simulations

Table 4.1.2: Setup for the simulation of the SMBH with the distance and mass
of Sgr A*

.

Parameter Value
MBH 4.5 × 106 M⊙
Distance 8.5 kpc
a 0.9375 M
rcam 104Rg
Range for [α, β] [−15, 15]Rg
Resolution [x, y] 500 px
Frequency 230 GHz
Inclination (°) 0, 30, 60, 90
Tp/Te 3.0

The essential differences between this case and the previous one are that the

mass and distance to the black hole are different, particularly in this scenario,

drawing from (Mościbrodzka et al., 2009) and using data from the Sgr A*

SMBH. Additionally, the parameter altered for the Harm model is the ratio of

proton temperature to electron temperature, which is set to Tp/Te = 3.0 which

makes the simulation be dominated by the disk.

With the previous results in mind, and noticing that the deviations in the Kerr

metric where the change in the shadow’s geometry becomes more pronounced

are α13 = [−1, 1] and α22 = [−1, 1], as α52 only slightly affects the shadow’s

geometry, we will focus on the lower limits of these deviations. Our intention

is to quantify and compare these lower limits with the results previously

obtained for M87*.

So, first for α13 = −1 and α13 = 1, we obtain the results given in Figs. (4.1.12-

4.1.13)
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Figure 4.1.12: GRMHD simulation of a Kerr-Like black hole, which has a mass
of SgrA∗ (with a spin of a = 0.9375M and a deviation parameter α13 = −1).
In the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 90 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr SMBH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.
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Figure 4.1.13: GRMHD simulation of a Kerr-Like black hole, which has a mass
of SgrA∗ (with a spin of a = 0.9375M and a deviation parameter α13 = 1). In
the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 90 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr SMBH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.
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And now for α22 = −1 and α22 = 1. These simulations are displayed in Figs.

(4.1.14 - 4.1.15).

In these four figures (4.1.12 - 4.1.15), in the upper panel, we can find color maps

of SMBH intensities from four different viewing angles, ranging from a frontal

view to an edge-on view. These maps reveal the accretion disk around the

black hole and its intensity normalized relative to its maximum value. It’s also

noticeable that, in contrast to the figures for the previous M87∗ model (4.1.3 -

4.1.8), the structure of the disk becomes more prominent, causing increased

obstruction in the view as we approach the edge-on viewing angle.

In the lower section of the image, as in the previous cases, normalized intensity

profiles from each of these color maps are shown, based on data captured

at three different angles φ. The most significant difference between the two

cases is the presence of the disk in this model, which also results in greater

brightness throughout. As for the presence of deviations in these images, they

remain noticeable to the naked eye; however, their presence is influenced by

the disk’s structure, and compared to the images for M87∗, the presence of

these deviations is affected by the disk as well.
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Figure 4.1.14: GRMHD simulation of a Kerr-Like black hole, which has a mass
of SgrA∗ (with a spin of a = 0.9375M and a deviation parameter α22 = −1).
In the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 90 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr SMBH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.
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Figure 4.1.15: GRMHD simulation of a Kerr-Like black hole, which has a mass
of SgrA∗ (with a spin of a = 0.9375M and a deviation parameter α22 = 1). In
the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 90 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr SMBH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.

Now, conducting the analysis of the diameter, displacement, and asymmetry

of these four figures (4.1.12 - 4.1.15), we obtain the Fig. (4.1.16).
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Figure 4.1.16: Comparison of the diameter, displacement, and asymmetry
values for a Kerr-Like BH simulations with the mass of SgrA∗ and with
deviation parametersα13 = −1 (Blue stars), α22 = −1 (Red dots), α13 = 1
(Orange diamonds), α22 = 1 (Dark cyan plus sign), and in the simulation of a
Kerr black hole (Black triangles). This comparison highlights how these values
change as the viewing angle varies from 0 to 90 degrees, revealing significant
differences between the deviated values and the background value for the Kerr
simulation. Furthermore, distinct differences are observed compared to the
previously shown deviations for the mass of M87∗, particularly notable are the
more abrupt and larger changes as the viewing angle increases, especially in
diameter and displacement, changes expected to be caused by the structure of
the disk.

We can observe that in this case, the values obtained for diameter, displacement,

and asymmetry are greatly influenced by the disk. Additionally, a clear

difference in the diameter values among the different deviations is noticeable.

Here, we can see that the deviation with the greatest influence on the diameter

value is given by the free function A1(r), while A2(r) barely changes its

diameter compared to Kerr, showing a more noticeable difference at angles of

view near edge-on.

On the other hand, we notice that in the case of displacement, the free function

A2(r) plays a more significant role, being more prominent than A1(r) in

comparison to simulations of the Kerr metric.

Finally, the asymmetry behaves similarly in all three cases: for A1(r), A2(r),

and the Kerr case. The most substantial differences between these values are
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found at angles close to 90o.

4.1.2 Thin-disk model simulations

As mentioned earlier, changes in the geometry of spacetime inevitably lead to

alterations in the structure of the accretion disk. To address this point similarly,

an analysis of ray-tracing simulations is carried out for a black hole in an

environment where the disk model is semi-analytic, using the Novikov-Thorne

model as a foundation and reference.

The purpose of this analysis is to observe the impact of Kerr deviations on the

structure of the disk itself and on radiation transport. Additionally, it aims to

confirm the accuracy of the effects observed in simulations with the HARM

model.

In this model, it is possible to control more parameters of both the disk and the

black hole itself, as for metrics derived from Kerr, factors such as RISCO, the

Keplerian plasma velocity Ω, etc., change in conjunction with the spacetime

geometry.

Consequently, simulations were conducted following the input parameters

below for the thin disk model according to Tab. (4.1.3)

Parameter Thin-disk test value
a 0.93M

MBH 10M⊙
dsource 0.05pc
νcam 2.41 × 1017Hz
rcam 104Rg

Resolution for [x, y] [300, 300]px
Range for [α, β] [−20, 20] Rg

Ṁ 1.399 × 1019g/s
rout 1000Rg

stepsize 0.001

Table 4.1.3: Setting inpired in the test values used in Bronzwaer et al. (2020)

We approach the analysis similarly to the previous cases, considering free

deviations in the range [−1.0, 1.0] for the images, and [−1.0,−0.5, 0.5, 1.0] for

quantifying the diameter, displacement, and asymmetry values. However, this
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time, we only focus on the deviation parameters α13 and α22, as previously

deduced that α52 loses relevance in affecting radiation transport and the black

hole’s geometry. In the conducted tests, the RISCO for this deviation tended to

coincide with the metric without deviations, and its effect on the structure and

geometry of the disk and shadow was also negligible.

4.1.2.1 Deviation parameter α13

Therefore, for α13 = −1 and α13 = 1, the simulations yield the following results

given in Figs. (4.1.17-4.1.18).
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Figure 4.1.17: Thin accretion disk simulation of a Kerr-Like black hole with a
mass of 10M⊙ (with a spin of a = 0.93M and a deviation parameter α13 = −1).
In the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 89 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr BH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.
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Figure 4.1.18: Thin accretion disk simulation of a Kerr-Like black hole with a
mass of 10M⊙ (with a spin of a = 0.93M and a deviation parameter α13 = 1).
In the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 89 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr BH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.



128 4.1. Kerr-Like metric simulations

0 50
Inclination (°)

4

6

8

10

12

Di
am

et
er

 (M
)

0 50
Inclination (°)

1.5

0.0

1.5

Di
sp

la
ce

m
en

t (
M

)

0 50
Inclination (°)

0
1
2
3
4
5
6
7

As
ym

m
et

ry
 (M

)

KL 13 = 1.0 KL 13 = -1.0 Kerr

Figure 4.1.19: Comparison of the diameter, displacement, and asymmetry
values for a 10M⊙ BH in a thin disk simulation between the fit calculated by
Johanssen (Blue line) for a Kerr-Like BH with a deviation parameter α13 = −1
(Red dashed line), α13 = 1 and a Kerr-Like simulation (Blue stars and Red dots)
of a BH with these deviation parameters, respectively, and with the Kerr BH
simulation (Orange triangles). This illustrates how these values change as the
viewing angle towards the BH changes, noticing a notable shift as we approach
edge-on angles. Here, the diameter consistently decreases in comparison to
the fits, and the displacement increases until decreasing abruptly near 90◦,
while the asymmetry always grows. These changes induced by the deviations
are quite pronounced in comparison to Kerr in this model.

Something that we can notice almost immediately in the simulations of thin

accretion disks, compared to the previous ones and in comparison with the

photon ring calculated for the Kerr metric (white dashed line in the figures), is the

change in the size of the shadow or its diameter depending on the deviations.

In Fig. (4.1.17), we observe that the black hole’s shadow is significantly smaller

in relation to its respective photon ring for the Kerr metric. One reason for

this occurrence is likely that in the simulations of thin accretion disks, unlike

the simulations conducted for radiative transport analysis based on HARM,

the location of RISCO is taken into account as the starting point of the disk’s

structure. Its value in the Kerr-Like metric differs from the Kerr metric, and

it is numerically calculated based on the minima of the effective potential, or
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rather in this case, based on the minimum energy

dE
dr

= 0. (4.1.9)

To verify the correctness of this simulation, it is possible to compare its image

with the one calculated by (Johannsen, 2014). They conducted a study of their

metric for thin disk simulations but did not compare it with the Kerr metric in

the same way as we did in this study.

Furthermore, upon comparison with the fits calculated by Johanssen

(Johannsen, 2013a), we observe how the shadow’s diameter significantly differs

from these calculations, decreasing as the angle approaches 90◦. On the other

hand, the displacement behaves in a contrary manner to our expectations; for

the α13 = −1 values, the displacement is smaller than expected compared to

the fit, and also when compared to the α13 = 1 deviation.

Lastly, we note that the asymmetry values are lower than those of the Kerr

metric, which might appear counterintuitive, as deviations are expected to

induce changes in the shadow’s geometry. However, the asymmetry value

is directly related to the diameter. Thus, establishing a relationship between

these two values is necessary to better understand how the shadow’s geometry

differs from Kerr’s.

4.1.2.2 Deviation parameter α22

Now, with the parameters α22 = −1 and α22 = 1. These simulations are

displayed in Figs. (4.1.20-4.1.21).
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Figure 4.1.20: Thin accretion disk simulation of a Kerr-Like black hole with a
mass of 10M⊙ (with a spin of a = 0.93M and a deviation parameter α22 = −1).
In the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 89 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr BH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.
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Figure 4.1.21: Thin accretion disk simulation of a Kerr-Like black hole with a
mass of 10M⊙ (with a spin of a = 0.93M and a deviation parameter α22 = 1).
In the upper panel, intensity maps are presented from four different viewing
angles (0, 30, 60, 89 degrees). These maps show us how the shape of the black
hole’s shadow and the intensity of the disk change as we vary the viewing
angle. The white line on each map represents the contour of the photon ring
in a Kerr BH, allowing us to compare it with the shadow in this Kerr-Like
metric.In the lower panel, intensity profiles corresponding to the upper images
are shown. Each image has three intensity profiles taken from different angles.
By observing how the height and location of the peak points change along the
x-axis in these profiles, we can perform subsequent analysis of the diameter,
displacement, and asymmetry of the black hole’s shadow.
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Figure 4.1.22: Comparison of the diameter, displacement, and asymmetry
values for a 10M⊙ BH in a thin disk simulation between the fit calculated by
Johanssen (Blue line) for a Kerr-Like BH with a deviation parameter α22 = −1
(Red dashed line), α22 = 1 and a Kerr-Like simulation (Blue stars and Red dots)
of a BH with these deviation parameters, respectively, and with the Kerr BH
simulation (Orange triangles). This illustrates how these values change as the
viewing angle towards the BH changes, noticing a notable shift as we approach
edge-on angles. Here, the diameter consistently decreases in comparison to
the fits, and the displacement increases until decreasing abruptly near 90◦,
while the asymmetry always grows. These changes induced by the deviations
are quite pronounced in comparison to Kerr in this model.

For the case of deviations α22, we once again notice a similarity in the shadow

deviations compared to α13, with the difference that upon analyzing the

diameter, displacement, and asymmetry parameters, we observe that for α22 =

−1, the shadow’s diameter closely resembles the Kerr case and significantly

deviates from the fits, decreasing as the angle grows. On the other hand, the

diameter for α22 = 1 is nearly two times smaller than for α22 = −1. This

stands in stark contrast to the results obtained from HARM simulations and

the expectations for photon rings, where the diameter for α22 should change

only by small amounts.

Regarding the displacement, its value differs from the fits and from Kerr, being

smaller and equal between the α22 = −1 and α22 = 1 parameters.

Finally, the asymmetry exhibits a similar behavior to the previous cases.
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And if we compare the simulations for these two deviation parameters, we

have in the Fig. (4.1.23) a comparison for the diameter, displacement and

asymetry.
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Figure 4.1.23: Comparison of how the values of diameter, displacement,
and asymmetry change as the viewing angle varies from 0 to 90 degrees
in simulations of thin accretion disk around a Kerr-Like BH with mass
of 10M⊙ and with deviation parametersα13 = −1 (Blue stars), α22 = −1
(Red dots), α13 = 1 (Orange diamonds), α22 = 1 (Dark cyan plus sign), and
in the simulation of a Kerr black hole (Black triangles). This comparison
reveals significant differences between the deviated and the Kerr simulation’s
background values.Furthermore, it shows a significant difference compared to
the simulations carried out with the HARM model. In this case, apart from
the disk’s effect on these values, a notable difference is observed due to the
geometry altering the position of RISCO.

Now, if we analyze the deviations α13 and α22 together, we notice that they

exhibit quite similar behaviors in terms of diameter for the values α13 = −1

and α22 = 1, as well as for α13 = 1 and α22 = −1. In the case of displacement,

we observe that the most differing value is α13 = −1, having a smaller

displacement than the other deviations and significantly smaller than for

the Kerr case, with all deviations being smaller than this.

Similarly, something occurs for the asymmetry, although the behavior of all

deviations is similar to each other.

Finally, it’s evident that for the thin disk model, the values in general differ
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from the fit calculated by Johannsen, in contrast to what we obtained for the

HARM case. When comparing with the Kerr metric, in the case of the thin

disk, the deviations seem to have a greater influence on the shadow, causing

more measurable changes compared to the HARM simulations. This might be

closely related to the shift in the position of the RISCO for the Kerr-Like metric

with different deviations.

Therefore, we notice that the geometry, nature, and structure of the disk

play a significant role in measuring the black hole shadow and quantifying

observable values. Deviations from Kerr are observable and have an impact

on the structure of the disk itself and on the radiation transport around this

spacetime. Johannsen’s fits, while serving as a reference to highlight differences

produced by the Kerr-Like metric in the shadow, could provide us with an

intuitive way of understanding how they affect reality, always with the disk

and its structure underlying this description.

4.1.2.3 Implications of the Kerr-Like simulations

Another fundamental feature presented by this metric is the possibility of

producing a similar image to a Kerr black hole for two completely different

spin parameters, which would tell us that in this case, the black hole cannot be

fully described by just its mass and rotation parameter. In the following Figure

(4.1.24), we can observe two thin disk simulations. The first one corresponds

to a black hole with a mass of 10M⊙ and a rotation parameter a = 0.71M

in the Kerr spacetime. The second simulation is performed in the Kerr-Like

spacetime with a deviation parameter α22 = −1, a mass of 10M⊙, and a spin

parameter of a = 0.93M.
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Figure 4.1.24: Comparison between two intensity maps of a thin accretion
disk simulations, one for a BH in a Kerr space-time with a spin parameter
a = 0.71M and mass M = 10M⊙ and the second one is for a BH in a Kerr-Like
space-time with a spin parameter a = 0.93M with the same mass M = 10M⊙
and the deviation parameter of α22 = −1, both for a four differents angles of
view, from face-on to edge-on, and the intesity values normalized and shown
in the side color bar.

If we analyze the shadow using measurements of diameter, displacement, and

asymmetry (see Fig. 4.1.25) for these two simulations, we observe that they

are practically identical. This contradicts the description given by the theorem,

as in this case, the black hole cannot be solely described by its mass and spin

parameter; it also depends on the deviation parameter.
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Figure 4.1.25: Comparison of diameter, displacement, and asymmetry values
between a Kerr BH simulation with a spin parameter of a = 0.71M (Black
triangles) and a Kerr-Like BH simulation with a deviation parameter α22 = −1
and a spin parameter of a = 0.93M (Red dots), both with a mass of 10M⊙. This
illustrates how these parameters change as the viewing angle varies from 0
to 90 degrees. It’s also worth noting that there are no apparent differences
between both simulations despite having different spin parameters.

4.2 Beyond Einstein gravity

While the Kerr-Like metric is a well-behaved spacetime that possesses three

constants of motion, it is not a specific solution of any particular theory of

gravity due to its high generality and freely adjustable deviation parameters.

Considering this, a particular focus of our study is also to understand how

deviations from metrics resembling the Kerr metric in modified gravity theories

can impact the images of supermassive black holes (SMBHs). In the following

section, we will investigate a specific solution within the framework of the

Chern-Simons modified gravity theory. We will demonstrate its derivation

in Kerr-Schild coordinates following the derivation shown by (Yunes and

Pretorius, 2009) in Boyer-Lindquist coordinates, as well as its effects on

the photon ring for circular orbits. These effects will be explored through

simulations of thin accretion disks, thereby highlighting its direct connection

to the Kerr-Like metric.

Furthermore, I will present a solution for a rotating black hole obtained within
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the context of the α′-corrected theory. I will discuss its separability in the

Hamilton-Jacobi equations, which may potentially allow for the analytical

integration of null geodesics. This has implications for the future possibility of

obtaining the shadow and simulating thin accretion disks for this solution.

4.2.1 Slowly rotating Chern-Simons black hole solution

Given that for numerical simulations of black holes involving ray tracing to

obtain images of them, it is more feasible to utilize the metric in Kerr-Schild

coordinates, as these remain regular at the event horizon. In this section,

following the derivation of the slowly rotating black hole solution conducted

by (Yunes and Pretorius, 2009), which we also presented in section (2.7), we

derive the same solution for Chern-Simons gravity but expressed in Kerr-Schild

coordinates. The metric in these coordinates was obtained by integrating the

field equations, as performing a direct coordinate transformation is not trivial.

To do this we will present the field equations again in an illustrative way

Rab +
α

κ
Cab =

1
2κ

(
Tab −

1
2

gabT
)

, (4.2.1)

β □ϑ = β
dV
dϑ

− α

4
∗RR, (4.2.2)

where Cab is the C-tensor, given by

Cab = νcϵcde(a∇eRb)
d + νcd

∗Rd(ab)c, (4.2.3)

where νa = ∇aϑ, νab = ∇a∇bϑ, and Rab is the Ricci tensor, and □ = ∇a∇a is

the D’Alambert operator.

4.2.1.1 Kerr-Schild form

To obtain the solution in Kerr-Schild form first using the perturtative approach,

of the form

gab = g(0)ab + ζg(1)ab (ϑ) + ζ2g(2)ab (ϑ), (4.2.4)

where
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g(0)ab = η
(0,0)
ab + ah(1,0)

ab + a2h(2,0)
ab , (4.2.5)

ζg(1)ab = ζh(0,1)
ab + ζah(1,1)

ab + ζa2h(2,1)
ab , (4.2.6)

ζ2g(2)ab = ζ2h(0,2)
ab + ζ2ah(1,2)

ab + ζ2a2h(2,2)
ab , (4.2.7)

defining the space-time based on the line element

ds2 = gµνdxµdxν , (4.2.8)

we start with the following ansatz to write the metric

ds2 =−
(

1 − 2M
r

)
(1 + h(r, θ)) dt2 + 2

(
2M

r

)
(1 + m(r, θ)) dtdr (4.2.9)

+ 2k(r, θ)dtdϕ +

(
2M

r
+ 1
)
(1 + l(r, θ)) dr2 (4.2.10)

+ 2
(

sin(θ)2n(r, θ)
)

drdϕ + r2 (1 + s(r, θ)) dθ2 (4.2.11)

+ r2 sin(θ)2 (1 + w(r, θ)) dϕ2, (4.2.12)

in terms of the free functions

h(r, θ) = ah(1,0) + aζh(1,1) + a2h(2,0), (4.2.13)

m(r, θ) = am(1,0) + aζm(1,1) + a2m(2,0), (4.2.14)

k(r, θ) = ak(1,0) + aζk(1,1) + a2k(2,0), (4.2.15)

l(r, θ) = al(1,0) + aζl(1,1) + a2l(2,0), (4.2.16)

n(r, θ) = an(1,0) + aζn(1,1) + a2n(2,0), (4.2.17)

s(r, θ) = as(1,0) + aζs(1,1) + a2s(2,0), (4.2.18)

w(r, θ) = aw(1,0) + aζw(1,1) + a2w(2,0), (4.2.19)

here
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h(1,0)(r, θ) = m(1,0)(r, θ) = l(1,0)(r, θ) = s(1,0)(r, θ) = w(1,0)(r, θ) = 0, (4.2.20)

k(2,0)(r, θ) = n(2,0)(r, θ) = 0, (4.2.21)

n(1,0)(r, θ) = − (2M + r) a
r

, (4.2.22)

k(1,0)(r, θ) = −
2M

(
sin2 (θ)

)
a

r
, (4.2.23)

h(2,0)(r, θ) = −
2
(
cos2 (θ)

)
M a2

r2 (2M − r)
, (4.2.24)

m(2,0)(r, θ) = −
(
cos2 (θ)

)
a2

r2 , (4.2.25)

s(2,0)(r, θ) =

(
cos2 (θ)

)
a2

r2 , (4.2.26)

l(2,0)(r, θ) = −
2
(
cos2 (θ)

)
M a2

r2 (2M + r)
(4.2.27)

w(2,0)(r, θ) = −
(
2
(
cos2 (θ)

)
M − 2M − r

)
a2

r3 . (4.2.28)

By introducing these values into the field equations, the following functions

are obtained as solutions

ψ(1,0)(r, θ) =
α
(
18M2 + 10Mr + 5r2)

8r4βM
cos θ, (4.2.29)

k(1,1)(r, θ) = C6 r2
(

sin2 (θ)
)
+

α2 (189M2 + 120Mr + 70r2) (sin2 (θ)
)

112Kβ r6ζ
,

(4.2.30)

n(1,1)(r, θ) = N1(r), (4.2.31)

m(1,1)(r, θ) =
G2(θ) r2 + 2G1(r) M − G1(r) r

2M − r
. (4.2.32)

(4.2.33)

Where, without loss of generality ψ(1,1)(r, θ) = ψ(2,0)(r, θ) = 0, h(1,1)(r, θ) =

B · m(1,1)(r, θ), w(1,1)(r, θ) = s(1,1)(r, θ) = 0 and l(1,1)(r, θ) = L1(r), also we can
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assume the following values for the free functions

G1(r) =
4M2A1(r)− A1(r) r2 + M1 r2

8M2 , (4.2.34)

A1(r) =
M̂1 r2

(2M − r) (2M + r)
, (4.2.35)

L1(r) =
C1 r2

(2M − r) (2M + r)
. (4.2.36)

(4.2.37)

Here we select C6 = B = M1 = M̂1 = C1 = 0, G2(θ) = 0 and

N1(r) =
α2 (189M2 + 120Mr + 70r2) (sin2 (θ)

)
112Kβ r6 . (4.2.38)

Then the slowly rotating Chern-Simons solution in Kerr-Schild coordinates is

gtt = −
(
−1 +

2M
r

− 2M cos2 θa2

r3

)
, (4.2.39)

gtr =
2M

r
− 2M cos2 θa2

r3 , (4.2.40)

gtϕ = −2M sin2 θa
r

+
aα2 (189M2 + 120Mr + 70r2) sin2 θ

112Kβ r6 , (4.2.41)

grr = 1 +
2M

r
− 2M cos2 θa2

r3 , (4.2.42)

grϕ = −a sin2 θ − 2M sin2 θa
r

+
aα2 (189M2 + 120Mr + 70r2) sin2 θ

112Kβ r6 , (4.2.43)

gθθ = r2 + a2 cos2 θ, (4.2.44)

gϕϕ =

(
−2a2 cos2 θ + (r + 2) a2 + r3) sin2 θ

r
. (4.2.45)

4.2.1.2 Relation with the Kerr-Like metric

On the other hand, in (Johannsen, 2013b), it is proposed that the solution of

a slowly rotating black hole in Chern-Simons gravity can be mapped to the

Kerr-Like metric using the following expressions:
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α24 =
5
8

ζCS, (4.2.46)

α25 =
15
14

ζCS, (4.2.47)

α26 =
27
16

ζCS. (4.2.48)

This is carried out for Boyer-Lindquist coordinates, where

gtϕ = gSLK
tϕ +

5
8

ζCS
a
M

M5

r4

(
1 +

12M
7r

+
27M2

10r2

)
sin2 θ, (4.2.49)

where ζCS =
α2

κβM4 and gSLK
tϕ is the (t, ϕ) component of the slowly rotating

Kerr metric.

It is straightforward to demonstrate that this mapping works equally well for

the metric in Kerr-Schild coordinates that we obtained. The new contribution

that arises in the metric due to the mapping is in the (r, ϕ) component, therefore

grϕ = gSLK
rϕ +

5
8

ζCS
a
M

M5

r4

(
1 +

12M
7r

+
27M2

10r2

)
sin2 θ, (4.2.50)

and all others deviation parameters vanish.

4.2.1.3 Thin-disk simulations and analysis

The fact that the obtained metric is of the slowly rotating type implies that

this metric is restricted to spin with a small parameter, as we work within a

perturbative framework where the rotation parameter is limited up to order

2, discarding terms of O(a3) and higher. On the other hand, it is not clear

what the upper limit is for this rotation parameter. (Ayzenberg et al., 2016)

studied the Kerr metric within this scheme and attempted to establish an

upper limit based on its behavior in electromagnetic observations of black

holes, concluding that it should be a < 0.6M. In this part of the section, we

attempt to find an upper limit for the spin parameter value from first principles,

i.e., through geometric scalars, considering the Kerr metric for this calculation.1

If we calculate the Kretschmann scalar for this metric, we find that
1This makes sense as we use it as a background metric when performing the perturbative
calculation of solutions in modified gravity theories.
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K = −
48M2 (a6 cos6 θ − 15 cos4 θa4r2 + 15 cos2 θa2r4 − r6)

(r2 + a2 cos2 θ)
6 , (4.2.51)

where, if we do a expansion around a, then

K ≈ 48M2(
M +

√
M2 − a2

)6 − 1008M2 cos2 θa2(
M +

√
M2 − a2

)8 +O(a3), (4.2.52)

here, if we require that the first term of the expansion be strictly smaller than

the second term, we obtain that

a < 0.416M, (4.2.53)

a value that allows us to establish the framework for analyzing the shadow in

this theory.

We will begin by studying the behavior of the photon ring, just as we did

for the Kerr-Like metric. Given that both metrics are compatible and it is

possible to map the Chern-Simons metric to the Kerr-Like metric, we can use

the expressions (4.1.1 - 4.1.3) previously used with the given mapping for the

function A2(r) given by the equations (4.2.46). Therefore, the photon rings in

this metric compared to the usual Kerr metric appear as follows:
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Figure 4.2.1: Comparison between photon rings for Kerr black hole (black
line) and for a Slowly rotating Chern-Simons black hole (cyan line) with a
spin parameter a = 0.4M (to works well in the slowly rotating limit) and
with a coupling values of ζCS = [0.4, 0.6, 0.8]. The upper panel of the figure
shows an angle of view face-on (i.e 1o) and the lower panel of the figure
shows an edge-on angle of view (i.e 90o). This shows that initially there is
no difference between the photon rings for these two viewing angles and the
different coupling parameters for the theory.

One thing that can be directly concluded from the images of the photon rings

is that it is not possible to observe a significant difference compared to the

Kerr metric. Even if we approach the coupling value close to its maximum, it

does not exhibit a substantial deviation of the shadow as the Kerr-Like metric

does. This is likely due to the fact that the deviation in the Kerr metric occurs

for terms that scale as r−4 or higher powers, which indicates that since the

deviation value is in the numerator and also small, the deviations will be

insignificant at that order.

However, while this applies to the photon rings, which are defined by solving

null geodesics for circular orbits, it is not immediately clear if the same happens

for non-circular orbits and for physical situations where the luminosity source

around the black hole is more realistic, as in an accretion disk, for example. At

this point, it is beneficial to use ray-tracing simulations to observe the black

hole shadow in a more realistic approach. Therefore, we proceed to employ
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thin accretion disk simulations based on the Novikov-Thorne model, as done

previously, for coupling values ζCS = [0., 0.4, 0.6, 0.8]. Subsequently, we will

analyze the diameter, displacement, and asymmetry values to quantify the

shadow and compare with simulations conducted for the Kerr metric. The

inputs used in RAPTOR are summarized in Table (4.2.1).

Parameter Thin-disk test value
a 0.4M

MBH 10M⊙
dsource 0.05pc
νcam 2.41 × 1017Hz
rcam 104Rg

Resolution for [x, y] [300, 300]px
Range for [α, β] [−20, 20] Rg

Ṁ 1.399 × 1019g/s
rout 1000Rg

stepsize 0.001

Table 4.2.1: Settings based on previously for a thin accretion disk but with a
spin parameter a = 0.4M to works well in the slowly rotating limit.

Then the thin accretion disk simulations for a slowly rotating Chern-Simons

black hole solution with differents values of the coupling parameter are

displayed in Fig. (4.2.2).
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Figure 4.2.2: Comparison of intensity maps in thin-disk simulations within
the slowly rotating Chern-Simons black hole solution. This is conducted for a
black hole with a mass of 10M⊙ and coupling values of ζCS = [0., 0.4, 0.6, 0.8],
a spin parameter of a = 0.4M, and viewing angles of θ0 = [0, 30, 60, 89]◦. The
normalized intensity is represented in the side color bar.

From these simulations, if we compare their diameter, displacement, and

asymmetry values, we obtain the figure (4.2.3).
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Figure 4.2.3: Comparison between diameter, displacement and asymmetry
taking for a different inclinations angles from the simulations of a Kerr black
hole and for a Chern-Simons Slowly rotating solution with a coupling values
of ζCS = [0.4, 0.6, 0.8]. Here it is shown how these parameters change as
the viewing angle varies from 0 to 90 degrees. This reveals that there is no
apparent change in these values for the different coupling values, namely 0.4
(Cyan stars), 0.6 (Red dots), and 0.8 (Yellow diamonds).

Here in the figure 4.2.3, we note that there is almost no observable difference

between the three simulations for the rotating black hole solution in the Chern-

Simons theory and the Kerr solution of General Relativity, except for a slight

difference in the displacement value at an observation angle of 50o where we

notice that the shadow displacement is slightly smaller for coupling values of

ζCS = 0.6 and ζCS = 0.8. However, this difference occurs only at this specific

angle, so we could deduce that it might be a measurement error from the

algorithm or a potential area to explore possible deviations, a task that will

require further investigation in the future.

Another thing to consider when conducting the analysis of the black hole

shadow for this particular metric is that the value of ζCS << 1 (Ayzenberg

and Yunes, 2018) for the Chern-Simons modified gravity theory to be effective..

However, when studying this limit and attempting to determine a value

through the use of observational data, it significantly deviates from the effective

theory limit. Thus, taking into account the upper limit defined by (Yunes and

Pretorius, 2009), for which
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ξ1/4 ≈ 104 km, (4.2.54)

where, by studying the variation of the orbital elements of a binary system

averaged over a period, (Yunes and Pretorius, 2009) derived the equation

ξ ≤ 64
25

Mr3
smδ, (4.2.55)

which was used with the data derived from observations of PSR J0737-3039

A/B (Burgay et al., 2003) to establish the upper limit as previously shown.

Where the mass used was M = 1.476M⊙, rms = 4.24105km.

If we calculate this bound in the dimensionless form of the coupling parameter,

we obtain

ζCS = 4.51 × 1014, (4.2.56)

for the same mass M = 1.476M⊙. This is completely beyond the upper limit

for the theory to be effective.

This leads us to the question of how far we can explore the value of this

parameter. To address this, an analysis was conducted on the values of

diameter, displacement, and asymmetry of the photon rings to understand

at what point the deviations become significant. Looking at Fig. (4.2.4), it’s

noticeable that when the spin is close to the maximum for this metric (i.e.

a = 0.4M), the deviation becomes substantial for values of ζcs ≥ 1. When we

visualize these as photon rings (4.2.5), we observe that significant differences

compared to Kerr exist for these values. This could motivate the exploration of

other theories that don’t have such restrictions or where the coupling can be

much more flexible. However, in the realistic scenario, the conclusion remains

that the differences are minimal compared to the results obtained from General

Relativity. At least in measurements of the environment around black holes,

these deviations are not visible, especially considering the current resolution

of the EHT.
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Figure 4.2.4: Comparison of diameter, displacement, and asymmetry calculated
by the photon rings for different values of the coupling term ζCS = [0, 10] with
a constant angle of view of 90o. In this scenario, it should be possible to observe
more significant changes compared to the Kerr metric, where these parameters
remain constant, along with a spin parameter of a = 0.4M. We notice that
as the coupling term exceeds 1, changes in the diameter, displacement, and
asymmetry parameters in the photon ring start to appear, in the hypothetical
case where ζCS > 1.
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Figure 4.2.5: Comparison of the photon rings for a differents values of ζCS ≥ 1
and the Kerr metric photon ring boths with a 90o angle of view and spin
parameter a = 0.4M. Here, a noticeable difference in the shape of the ring is
observed on the left side, where there is a flattening towards the center as the
coupling value ζCS increases.

4.2.2 Slowly rotating α′-corrected black hole solution

We are interest to study the shadow of a rotating black hole, then it is natural

to study desformations of the Kerr metric due to the higher curvature and the

scalar field. In this approach there are two perturbative parameters, namely

three relevant parameters, namely the mass of the black hole M the rotation

parameter a which must be compared with the perturbative parameter α of

the theory. The most general solution in this form is in the following form

gµν = gKerr
µν (M, a) + αg(1)µν (M, a) . (4.2.57)

However, it is not clear that such a solution can be integrated analytically. It

was obtained in (Agurto-Sepúlveda et al., 2023) a slowly rotating version of
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(4.2.57) where expasion of the metric is of the form

gµν = g[0,0]
µν + αg[1,0]

µν + ag[0,1]
µν + αag[1,1]

µν + a2g[0,2]
µν +O

(
a3, αa2, α2

)
,(4.2.58)

ϕ = ϕ0 + αϕ1 (r) +O
(

a3, αa2, α2
)

,

where terms of the form αa2 was neglacted, note that the system of equations

is consistent with cosidering corrections of the type αa not a2 in the scalar fied.

4.2.2.1 Kerr-Schild form

As mentioned earlier, black hole simulations are better suited to Kerr-Schild

coordinates. Therefore, we will adapt the solution found in (Agurto-Sepúlveda

et al., 2023) to obtain the metric in Kerr-Schild coordiante which are regular at

the black hole horizon. The components of the solution are given by 2

gtt = −1 +
2M

r
− α f1 (r)− a2 2 cos2 θM

r3 , (4.2.59)

gtr =
2M

r
+ αX (r)− a2 2M

r3 , (4.2.60)

gtφ = a
2M sin2 θ

r
+ αhtφ (r, θ) , (4.2.61)

grr = 1 +
2M

r
+ αg1 (r) + a2 2

(
M + r

2

)
cos2 θ − 4M − r

r3 , (4.2.62)

grφ =
2aM

r
sin2 θ , (4.2.63)

gθθ = r2 + a2 cos2 θ , (4.2.64)

gφφ = r2 sin2 θ − a2 sin2 θ
(
2M cos2 θ − 2M − r

)
r

,

the function X (r) is a "pure gauge function" and consequently arbitrary so we

can set this X(r) = 0, The functions at order α are given by where we turned

2We use the notation G = c = 1
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off each integration constant

f1 (r) =
4
r2 +

10M
3r3 +

8M2

r4 , (4.2.65)

g1 (r) = 2

(
24M4 + 22M3r + 33M2r2 + 15Mr3 + 6r4)

[3 (2M − r) Mr4]
, (4.2.66)

htφ (r, θ) = − sin2 θ

(
8M2

r4 +
6M
r3 − 6

r2

)
(4.2.67)

ϕ1 (r) = − 1
Mr

− 1
r2 − 4M

3r3 . (4.2.68)

Finally, the set of these equations (4.2.59 - 4.2.68) results in the Kerr-Schild

coordinates version of the slowly rotating black hole solution obtained in

(Agurto-Sepúlveda et al., 2023).

4.2.2.2 Separability of Hamilton-Jacobi equations and implications

A first step in obtaining the shape of a black hole’s shadow is to consider

the null geodesic problem, which can be solved by integrating the geodesic

equations for photons. However, solving the geodesic equations in modified

gravity theories is not straightforward, just as it is not for the solutions in

general . To tackle this problem, two approaches can be taken. One approach

entails using numerical methods to integrate the geodesic equations, thereby

obtaining the shape of the photon rings (representing the shadow’s shape in

theoretical terms) for the black hole. The other approach depends on whether

the spacetime possesses sufficient constants of motion to allow for an analytical

solution.

Here we tried this second way, by defining space-time as

ds2 = gµνdxµdxν , (4.2.69)
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where the components are

gtt = −2M cos2 θa2 + 2r2M − r3

r3 − 2
3Mr4

(
12M3 + 5M2r + 6r2M − 6r3

)
α ,

grr =
−a2 (2M − r) cos2 θ − 2r2M − a2r + r3

r (2M − r)2 +
40M2 − 6Mr − 6r2

3 (2M − r)2 r2
α ,

gθθ = r2 + a2 cos2 θ ,

gφφ =
sin2 θ

r

(
2a2M sin2 θ + a2r + r3

)
,

gtφ = −2aM sin2 θ

r
+

a sin2 θ

r4

(
8M2 + 6Mr + 6r2

)
α .

This is the α′−corrected slowly rotating Kerr up to O
(
αa2). This is written in

the notation and form of (Agurto-Sepúlveda et al., 2023).

As we mentioned earlier in (Agurto-Sepúlveda et al., 2023), we have derived

E and L for this solution, representing the energy and angular momentum,

respectively. However, having only two constants is insufficient to solve the

geodesic equations. Drawing inspiration from a reference (Amarilla et al., 2010),

we proceed to investigate the separability of the Hamilton-Jacobi equation in

order to obtain a tool to solve the null geodesics equations, namely

∂S
∂λ

=
1
2

gµν ∂S
∂xµ

∂S
∂xν

, (4.2.70)

where S is the Jacbi action. The components of gµν are calculated up to order

O(αa). Then if the problem is separable, the Jacobi action S can be written in

the form

S =
1
2

δλ − Et + Lφ + Sr + Sθ , (4.2.71)

where E is the energy, L is the angular momentum, Sr is a function only

depends on the r coordinate and Sθ is only a function of θ. We are interested

only in null geodesics, therefore we consider δ = 0. In that case the equations

reduced to

gttE2 − 2gtφEL + gφφL2 + grr
(

dSr

dr

)2

+ gθθ

(
dSθ

dθ

)2

= 0 . (4.2.72)

Replacing the contravariant for of the metric here, this equation can be written
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like

(
∆(0) + α∆(1)

) 1
E2

(
dSr

dr

)2

+
1

E2

(
dSθ

dθ

)2

+ a2

(
− cos2 θ +

L2 (2M − r) + 4rE2M2

E2r (2M − r)2

)

+
1
E

4LMa
r − 2M

− r3

r − 2M
+

1
E2

L2

sin2 θ
(4.2.73)

+α

[
2
(
12M3 + 5M2r + 6Mr2 − 6r3)

3M (r − 2M)2 − 1
E

4a
(
4M2 + 3Mr − 3r2) L

3 (2M − r)2 r2

]
= 0,

where

∆(0) ≡ r2 − 2Mr + a2 , (4.2.74)

∆(1) ≡ 2 +
2M

r
− 40M2

3r2 . (4.2.75)

Here we observe that the Hamilton-Jacobi equation separates and depends

solely on the r coordinate. Therefore, it is possible to reduce it to two equations

with the separation constant η. Then3

(
∆(0) + α∆(1)

) 1
E2

(
dSr

dr

)2

= −a2

(
ξ2 (2M − r) + 4rM2

r (2M − r)2

)
− 4ξMa

r − 2M
+

r3

r − 2M
− η − ξ2 (4.2.76)

−α

(
2
(
12M3 + 5M2r + 6Mr2 − 6r3)

3M (r − 2M)2 −
4a
(
4M2 + 3Mr − 3r2) ξ

3 (2M − r)2 r2

)
,

1
E2

(
dSθ

dθ

)2

= a2 cos2 θ − ξ2 cot2 θ + η , (4.2.77)

where ξ = L/E. Now we can separate

Sr = S(0)
r + αS(1)

r , Sθ = S(0)
θ + αS(1)

θ , (4.2.78)

replace this splitting into (4.2.76) and (4.2.77), collecting in α we will obtain the

α′−corretions of Sr and Sθ of Kerr.

3Note that we sum and substract ξ that gives that cot2 θ

1
E2

(
dSθ

dθ

)2
= a2 cos2 θ − ξ2

sin2 θ
+ η + ξ2 = a2 cos2 θ − ξ2 cos2 θ

sin2 θ
+ η
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Finally, this outcome suggests that the equations for null geodesics can be

solved using analytical methods. This potentially allows us to determine

the shape of the shadow for the slowly rotating solution of a black hole in

α′-corrected. It also opens up the opportunity to explore it through ray tracing

simulations, employing models already demonstrated, such as the thin disk

model. This objective is on the horizon and is being prepared for investigation

at the time of writing this thesis.
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Chapter 5

Summary and discussion

Throughout this research, we delved into deviations from the Kerr metric

with the aim of clarifying their theoretical functioning, from the analysis

of their photon rings to their potential observability or measurability in

supermassive black hole (SMBH) observations. We do this by exploring the

radiative transport and the structure of the accretion disk in the vicinity of

these objects, using simulations of General Relativistic Magnetohydrodynamics

(GRMHD) and ray-tracing algorithms, particularly using the RAPTOR code.

We focused on deviations from Kerr metrics, particularly the Kerr-Like and

slowly rotating Chern-Simons metrics, further a slowly-rotating solution for

the α′-corrected theory, establishing a foundation for future investigations. We

compared simulations of these metrics with simulations based on the Kerr

metric to quantify their differences.

We observed that some deviations can significantly alter the morphology of

photon rings and the black hole shadow. This is particularly evident in the

Kerr-Like metric, in the first-order deviation parameters α13 and α22, which

influence the intensity profiles, diameter, displacement, and asymmetry of the

shadow. These deviations are maximized when the spin parameter approaches

its highest value (a ≈ M), and the inclination angle of the black hole is closer

to edge-on (i ≈ 90o). This is where a significant difference in the shadow

geometry compared to that produced by a Kerr black hole without these

deviations has been observed, particularly in its diameter and asymmetry, at

least for the cases we have studied, especially for the Kerr-Like metric.
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On the other hand, the structure of the accretion disk plays a crucial role

in quantifying the black hole shadow. Depending on the fluid model in the

vicinity of the horizon, shadow measurements can be distorted by the structure

itself, especially when the viewing angle of the black hole is perpendicular to

its rotation axis (edge-on), assuming that the disk is distributed along this axis.

We also note that in simulations where the disk dominates, the theoretical

adjustments calculated by Johannsen (2013a) for the diameter, displacement,

and asymmetry of the photon ring do not accurately reflect reality. However,

they provide information about the deviations.

We conclude that, in terms of the effect of radiative transport around these

deviant Kerr-like metrics, differences from the Kerr metric can be noticeable,

especially when the disk’s structure is also affected. Quantification based

on diameter, displacement, and asymmetry, derived from intensity profiles,

appears effective for measuring these deviations.

We note that the Kerr-like metric can produce similar images of a Kerr black

hole with different spin parameter. Deviations from the Kerr metric such as

α22 = 1 with a certain rotation parameter can produce changes in the shadow

for thin-disk simulations such that it is indistinguishable from the shadow

for a Kerr black hole with a completely different rotation parameter. As well

as coupling values ζCS ≤ 1 in the slowly rotating black hole solution for the

Chern-Simons dynamic theory do not produce any significant effect on the

shadow of a black hole compared to the usual Kerr metric.

Our findings contribute to the literature on Kerr metric deviations and modified

gravity. They align with previous studies such as (Johannsen, 2013a,b, 2014)

for Kerr-Like and (Yunes and Pretorius, 2009; Ayzenberg and Yunes, 2018) for

the Chern-Simons solution. Our work expands the study of these theories and

explores new ones, like the α′-corrected theory.

This study opens the door to a deeper analysis of deviant Kerr metrics and

their impact on SMBH images. While our simulations focused on specific disk

models and theories, we aim to broaden our scope to include more complex

radiative transport models. We also emphasize the potential of this method

to distinguish deviations from the Kerr metric from the Kerr metric through

observations of black hole shadows.
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Our findings enrich theoretical understanding and could have observational

implications that could be measured by the Event Horizon Telescope (EHT).

We emphasize that ideal SMBHs for measuring these possible deviations in

observations are those with high spin values and inclination angles such

that we observe them through an axis perpendicular to their rotation axis.

Currently, the results obtained by the EHT (Akiyama et al., 2019, 2022), which

show images of SMBHs at the center of our galaxy and in the center of Messier

87, suggest that when contrasted with GRMHD simulations, both sources

seem to have high spin parameters (a > 0.5M), but low inclinations (i < 50o)

or rather near face-on inclinations. This indicates that these objects might be

where these deviations could be measurable, but only slightly. For stronger

tests, it would be useful to have sources that meet both characteristics. In

this context, additionally, the new ngEHT project (Next Generation Event

Horizon Telescope) will bring rapid advancements in improving the visibility

of these sources and new sources. By using advances in Very Long Baseline

Interferometry (VLBI) techniques, it will be able to create a virtual telescope

the size of the Earth, enhancing the resolution and sensitivity of observations.

This will allow capturing images and even videos of black holes, quantifying

photon rings, and improving the precision in measuring BH properties. It will

also enable advances in the study of magnetic fields in accretion disks and the

origin of jets. Ultimately, this will allow for a more accurate comparison of

Kerr-deviated images with the real image of a black hole.

Finally, these results inspire me to delve further into the intricacies of the

deviations from Kerr metrics and their effects on black hole images. My

comprehension of these enigmatic objects has deepened, and I am excited to

continue exploring and contributing to scientific advancement in this field.

https://www.ngeht.org
https://www.ngeht.org
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Mościbrodzka, M., Falcke, H., and Shiokawa, H. (2016). General relativistic
magnetohydrodynamical simulations of the jet in m 87. Astronomy &
Astrophysics, 586:A38.
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Appendix A

Supplementary calculations

A1 Modified coordinates

Here we present a non-trivial coordinates transformations used by RAPTOR

code. From Boyer-Lindquist coordinates to Modified Kerr-Schild coordinates,

A1.1 From Boyer-Lindquist to Kerr-Schild

The transformations between the coordinate vector is given by (see. (CITAR

FONT.)):

t̂ = t + M ln ∆ +
2M2

r+ − r−
ln
(

r − r+
r − r−

)
, (A1.1)

ϕ̂ = ϕ +
a

r+ − r−
ln
(

r − r+
r − r−

)
, (A1.2)

˙̂t = ṫ +
2Mr

∆
ṙ, (A1.3)

˙̂ϕ = ϕ̇ +
a
∆

ṙ, (A1.4)

where the overdot means the differentiation with respect to the affine parameter

λ, r± := M ±
√

M2 − a2 denotes the outer and inner event horizon radius,

∆ = r2 − 2Mr + a2 and M is the mass of the black hole.

On the other hand, four-vectors transform differently. In RAPTOR the inital

wave vector kµ
0 is always constructed in Boyer-Lindquist coordinates, so

must be transformed to Kerr-Schild coordinates. This is do it following the
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transformation of McKinney and Gammie (2004)

k̂α =


1 2r/∆ 0 0

0 1 0 0

0 0 1 0

0 a/∆ 0 1

 kα, (A1.5)

where kα denotes de wave vector in Boyer-Lindquist coordinates and k̂α denotes

the wave vector in Kerr-Schild coordinates. The reverse tansformation is

kα =


1 −2r/∆ 0 0

0 1 0 0

0 0 1 0

0 −a/∆ 0 1

 k̂α. (A1.6)

A1.2 From Kerr-Schild to Modified Kerr-Schild coordinates

The modified Kerr-Schild coordinates (MKS) Gammie et al. (2003), are denoted

by (t̂, x1, x2, ϕ̂), and are

x1 = ln r − r0 (A1.7)

ẋ1 =
ṙ

r − r0
(A1.8)

ẋ2 =
θ̇

π[1 −+(1 − h) cos(2πx2)]
, (A1.9)

where 0 ≤ h ≤ 1 is obtained by the GRMHD data and stretches the zenith

coordinate near the poles and the equatiorial plane. We do not put here the

transformation x2(θ) because this requires solving a transcendental equation,

so RAPTOR find this coordinate numerically. The inverse transformation is

r = r0 + exp x1, (A1.10)

θ = πx2 +
1
2
(1 − h) sin

(
2πx2

)
, (A1.11)

ṙ = ẋ1(r − r0), (A1.12)

θ̇ = πẋ2[1 + (1 − h) cos
(

2πx2
)
]. (A1.13)
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to find θ → x2. RAPTOR solves numerically the equation by a Newton-

Raphson algorithm (see Apendix of Bronzwaer et al. (2018)).

A2 Christoffel symbols of Kerr-Like metric

To determine the connection of the Kerr-Like metric in Kerr-Schild coordinates,

we utilized Maple software to perform analytical calculations of all components

of the Christoffel symbols, to provide a concise perspective and prevent the

document from extending beyond necessary limits, we will only present the

components (t, t, t), (r, r, r), (θ, θ, θ), and (ϕ, ϕ, ϕ). The remaining components

can be found in the footnote link as a Maple document, where they are also

translated into the C programming language. 1

Γt
tt =

A1(r)
[
(cos2(θ)a2 − a2)A2(r)2 + ∆(r)

]
F(r, θ) ∂

∂r Σ(r, θ)

4Σ(r, θ) [(cos2(θ)a2 − a2)A2(r) + A1(r)(a2 + r2)] F(r, θ)

×
[

cos2(θ)a2

2
− a2

2

]
A2(r) + A1(r)

[
Mr +

∆(r)
2

]2

Γr
rr =

1
8Σ(r, θ)

 8(a2A2(r) cos2(θ) + A1(r)a2 + A1(r)r2 − a2A2(r))F(r, θ)A5(r)(
a2∆(r)(cos(θ)−1)(cos(θ)+1)A2(r)2

8 + M2r2 + Mr∆(r)
2 + ∆(r)2

8

)
A1(r)2 + ...


Γθ

θθ =
∂
∂θ Σ(r, θ)

2Σ(r, θ)

Γϕ
ϕϕ = − a

√
A5(r) sin2(θ)A2(r)

4Σ(r, θ)

×
(

A1(r)
(

Mr +
∆(r)

2

)
− a2A2(r) sin2(θ)

2

)
× F(r, θ)

(
(−a2 − r2)A1(r) + a2A2(r) sin2(θ)

)
(A2.1)

In the denominator of the equation for Γr
rr, the "..." is used to represent the

omitted terms due to their excessive length.

1Link

https://www.dropbox.com/scl/fi/k0u7gqkfrf6atliesn0qx/Christofell-Kerr-Like.mw?rlkey=5x560s5qeuq22by6j6qd7p22a&dl=0
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