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Abstract

The common threads of my work in the Ph.D. was entanglement sources and the work
and the works that served as an experimental basis are [20, 47]. Here, prove partially
entangled state (PES) in quantum information protocols Bell inequality, Self-testing and
Randomness certification. It was that the state with more entanglement have better per-
formance in protocols and that nonlocality can be without additional measurements. This
knowledge was used to prepare the main work of this thesis.
An source of entanglement pointing to the growing in classical optics and telecommunica-
tions. In this regard, advances in multiplexing optical communications channels have also
been pursued for the generation of multi-dimensional quantum states (qudits), since their
use is advantageous for several quantum information tasks. One current path leading in
this direction is through the use of space-division multiplexing multi-core optical fibers,
which provides a new platform for efficiently controlling path-encoded qudit states. Here
we report on a parametric down-conversion source of entangled qudits that is fully based
on (and therefore compatible with) state-of-the-art multi-core fiber technology. The source
design uses modern multi-core fiber beam splitters to prepare the pump laser beam as well
as measure the generated entangled state, achieving high spectral brightness while provid-
ing a stable architecture. In addition, it can be readily used with any core geometry, which
is crucial since widespread standards for multi-core fibers in telecommunications have yet
to be established. Our source represents an important step towards the compatibility of
quantum communications with the next-generation optical networks.
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Chapter 1

Introduction

The study of the quantum physics was born at the beginning of 20th, century with ultravi-
olet catastrophe [1] and from there a series of efforts were unleashed to understand physics
at the particle level. Einstein, Podolsky and Rosen continued recognizing this feature of
new physics, that implies the global state of a composite system [2]. This phenomenon,
which was originally named spooky by Einstein or Verschränkung by Schrödinger, was later
called entanglement.
In 1964 J. Bell1, product of your work, accepted the EPR conclusion and formalized the
idea of deterministic world in terms of the local hidden variable (LHVM) [3]. He proved
if a the experiment employ a quantum state the Bell’s inequalities are violated, i.e. the
probabilities outcomes has statistical correlations and evolved a bipartite quantum state.
This, is a feature that make impossible explain quantum mechanic with classical formal-
ism. This, gave rise to experiments, but the first convincingly was Alain Aspect, showing
a violation test of Bell inequalities [5, 6]. This continued grow, generating maximal entan-
gled stated (MES) [95] and proving Bell inequality, partially entangled states (PES) [20] or
proving that the quantum state of high dimension are better option in some protocols that
the smaller ones [41]. This is one area that explode this work, the quantum entanglement
state in high dimension, the other arm is the communications.

The task of processing quantum information from quantum state has seen growth since
Richard Feynman2 mention the use of quantum computers to simulate physical system [8].
Using quantum states, like those mentioned in the previous paragraph, an improvement is
obtained over classical system. For example, for classical computer is easy multiply prime
numbers, but the inverse process is complicated and a quantum solution is Short algorithm
[4]. Another example, is the Grover’s algorithm [7], which can improve the search for an
item in quadratic form3, exploiting a property that has no analogy in the classical version,
such as phase amplification. The last example, pointed to communication, is use quantum
physics for security, where it’s taken advantage of the quantum state cannot be cloned

1John Stewart Bell, Northern Ireland physicist, 1928-1990.
2Richard Phillips Feynman, American physicist, 1918-1988.
3In classical computer the range for requirements is between N/2 to N , but a quantum computer is

roughly
√
N .
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[9]. This is the base for quantum protocol Quantum Key Distribution (QKD), which dis-
tributed random private keys between two parties [11]. The latter, is part of the are called
quantum communication.
When materializing communications, the continuous increase in demand for the transmis-
sion of information must be considered. Here, the optical fiber play a important role for
his high bandwidth support [99]. Some technologies ware implemented in order to improve
the capacities and transmission, as erbium doped fiber amplifier [97] or wavelength divi-
sion multiplexing (WDM) [98]. The last decade, the technology drive towards maintaining
the bandwidth growth is called space-division multiplexing (SDM), and consist in use the
transversal spatial properties of the light, multiplexing information and allowing keep the
growing in data capacity [32].

In this thesis, was used the quantum physics and spatial division multiplexing for
implemented a photonic quantum entanglement source. The quantum state is encoded in
path, that provide from a multicore fiber of four core, showing high compatibility with
SDM multicore technology. The use of this kind of fiber add to source the possibility
of identify independently each core and better behavior of relative phases. Furthermore,
the possibility of implemented a protocols in high dimension and based fully on SDM
technology. Knowing on the one hand, that quantum state in d-dimensional offer better
result and the compatibility can be used for next-generation SDM optical networks.
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Chapter 2

Theoretical framework

The theoretical chapter shows the fundamental pillars of this thesis. First is a review of
quantum mechanics where the key ideas, physical and mathematical, are stated. Second
is quantum information theory, with the mathematical and graphical representation of
quantum bits and quantum dits.

2.1 Quantum mechanics

2.1.1 Introduction to quantum mechanics

Quantum mechanics play a principal role in understand natural phenomena, but in atomic
or subatomic scale. This physics area came to explain properties of atoms [24], electron
diffraction [28], etc. that cannot explain with other physics theory. This new concepts
and ideas, in the beginning of the twentieth, marked a turning point or also called as
quantum revolution, challenging the classical physics in different points. Here, we show
the vocabulary and ideas for the futures chapters.

To start with the description, let’s take Broglie’s1 hypothesis [13] and gives rise to the
following formulation.

� The quantum state of a particle is characterize by a wave function ψ(r⃗, t), which
contain all the information it is possible to obtain about the particle.

� ψ(r⃗, t) is interpreted as a probability amplitude of the particle’s presence. Is the
possible position of a particle, the probability P(r⃗, t) of the particle at time t, in a
d3r = dxdydz volume. Then |ψ(r⃗, t)| is interpreted as probability density.

� The principle of spectral decomposition applies to the measurement of an arbitrary
physical quantity:

1Louis Victor Pierre Raymond, 7th Duc de Broglie. French physicist, 1892-1987.
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- The found result must belong to a set of outcomes {a}, called eigenvalues.

- Each eigenvalues is associated to an eigenstate, in this case, eigenfuction ψ(r⃗, t).

- For any ψ(r⃗, t) the probability P of finding the eigenvalue a for a measurement
at time to is found decomposing ψ(r⃗, t) in terms the ψa(r⃗)

ψ(r⃗, t0) =
∑
a

ψa(r⃗). (2.1)

Then

Pa =
|ca|2∑
a |ca|2

, (2.2)

with this the probabilities are equal to 1, i.e
∑

aPa = 1.

Finally, in this introduction, mentioned for a system for a particle, the total probability of
finding the particle anywhere in space is:

∫
dP(r⃗, t) = 1 (2.3)

and it is concluded that ∫
|ψ(r⃗, t)|2d3r = 1. (2.4)

2.1.2 The mathematical tools for quantum mechanics

Wave function space

In the previous chapter, the equation (2.4) shows the probabilistic interpretation of the
wave function. These functions are well-behaved2 and belong to infinite-dimensional space.
Then, we can consider the function ψ(r⃗) which is everywhere defined, in other words, is
a continue function, infinitely differentiable and living in a function space. We will call F
the space of wave functions composed of regular functions.

As a first step, we show if ψ(r⃗)1 and ψ(r⃗)2 ∈ F then:

Ψ(r⃗) = λ1ψ(r⃗)1 + λ2ψ(r⃗)2 ∈ F (2.5)

2Square-integrable function: This set is called L2, and is real or complex function in which the integral
of square of the absolute value is finite.
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where λ1 and λ2 are two complex numbers.
Now, we consider two element of F, ψ(r⃗) and φ(r⃗), result a complex number, denoted by
(φ, ψ). The definition is

(φ, ψ) =

∫
φ∗(r⃗)ψ(r⃗)d3r. (2.6)

This formula is called scalar product and is important the order of factors. Now taking the
equation (2.6) follow this definitions:

(φ, ψ) = (ψ, φ)∗ (2.7)

(φ, λ1ψ + λ2ψ) = λ1(φ, ψ1) + λ2(φ, ψ2) (2.8)

(λ1φ1 + λ2φ2, ψ) = λ∗1(φ1, ψ) + λ∗2(φ2, ψ) (2.9)

If the scalar product is zero, φ and ψ are orthogonal and is a positive real number if is
between the same wave function

(ψ, ψ) =

∫
|ψ(r⃗)|2d3r. (2.10)

So far, we have shown in the continuous case, but now we can consider a set orthonor-
mal3 of F with discrete elements, where the index i = 1, 2, 3, ..., n:

u1, u2, ..., ui ∈ F.

It constitutes a basis for ψ(r⃗) ∈ F and can be expanded in terms of ui(r⃗):

ψ(r⃗) =
∑
i

ciui(r⃗), (2.11)

based in the equation (2.11) we can define how obtain the specific element cj of ψ(r⃗)

(uj, ψ) =

(
uj,
∑
i

ciui

)
=
∑
i

ci(uj, ui)

(uj, ψ) =
∑
i

ciδij = cj. (2.12)

For the scalar product in terms of the components we can follow a similar process. Let
φ(r⃗) and ψ(r⃗) are two wave functions which can be expanded as follow:

φ(r⃗) =
∑
i

biui(r⃗)

ψ(r⃗) =
∑
j

cjuj(r⃗), (2.13)

3The set is orthonormal if (ui, uj) =
∫
u∗
i ujd

3r = δij
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and their scalar product can be calculate by element in equation (2.13):

(φ, ψ) =
∑
i

b∗i ci (2.14)

(ψ, ψ) =
∑
i

|ci|2. (2.15)

In (2.14) is scalar product between two different wave function and (2.15) is between the
same wave function and is the square modulus of coefficient.

Dirac notation

When we describe the function space and the probabilistic interpretation of ψ(r⃗), we said
that is part of the square-integrable function. For this reason we defined the F-space, where
the wave function can be represented in basis {ui} with different sets of components {ci}
(with i = 1, 2, ..., n).
How could one think the elements of basis like coordinates in three dimensional space, now
we can use similar approach. Then, we are going each quantum state of the particle will
be characterized by state vector, belonging to the Hilbert space4 H, called state space of
particle.

ψ(r⃗) ∈ F↔ |ψ⟩ ∈ H.

The Hilbert space is vectorial space of complex numbers (denoted by C), where exist the
sum and scalar product. The elements |·⟩ are called Kets and ⟨·| are called bras. To this
new notation approached is called Dirac notation5.
Let the following kets |a⟩, |b⟩, |c⟩ ∈ H and z, w ∈ C. These operation are satisfied

|a⟩+ |b⟩ = |b⟩+ |a⟩ , (2.16)

|a⟩+ |0⟩ = |a⟩ , (2.17)

|a⟩+ |−a⟩ = |0⟩ , (2.18)

z(|a⟩+ |b⟩) = z |a⟩+ z |b⟩ , (2.19)

(z + w) |a⟩ = z |a⟩+ w |a⟩ , (2.20)

(zw) |a⟩ = z(w |a⟩). (2.21)

The scalar product in Dirac notation between the element is defined as ⟨a|b⟩. This inner
product fulfills the following properties

⟨a|b⟩ = ⟨b|a⟩∗ , (2.22)

(|a⟩ , z |b⟩+ w |c⟩) = z ⟨a|b⟩+ w ⟨a|c⟩ . (2.23)

The ⟨a|a⟩ ≥ 0 always ∀ |a⟩, if ⟨a|a⟩ = 0 then |a⟩ = 0 and other property is that ⟨a|b⟩ = 0
the |a⟩ and |b⟩ are orthogonal vectors. The norm of the vector |a⟩ is defined by

|| |a⟩ || =
√
⟨a|a⟩. (2.24)

4Named after the German mathematician David Hilbert, 1862-1943.
5Named after the British mathematician and physicist Paul Dirac, 1902-1984.
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The details of vector representation of |a⟩ is the following. Let {|ui⟩} a basis, the ket |a⟩
is represented by the set of its components, namely, ci = ⟨ui|a⟩. this components form a
one column matrix.

|a⟩ =


⟨u1|a⟩
⟨u2|a⟩

...
⟨ui|a⟩

...

 (2.25)

Analogously the bras representation is

⟨a| = (⟨u1|a⟩ ⟨u2|a⟩ · · · ⟨ui|a⟩ · · · ) (2.26)

2.1.3 Postulates of Quantum Mechanics

Whit a short stroke of quantum physics and the necessary mathematical elements, now
we show the postulate in quantum mechanics. Are four postulates, where they join the
physical system, the evolution of him, the measurement and types of state that particle
can form [22].

State space

The first postulate make the link between the physical system and the state vector, namely,
formalize the mathematical form of a quantum state.

Postulate 1. Associated to any physical system is a complex vector space with the
inner product, in Hilbert space, known as the state space of the system. The System is
completely described by its state vector, which is a unit vector in the system’s state vector.

The state vector can be represent by |ψ⟩ and fulfill the norm requirement, ⟨ψ|ψ⟩ = 1,
and by the equation (2.5) the sum belong the same space, so we can define the simplest
quantum system with Dirac notation, the qubit6. Suppose |0⟩ and |1⟩ an orthonormal basis
and arbitrary superposition is given by

|ψ⟩ = α |0⟩+ β |1⟩ (2.27)

where the component α and β must satisfy that |α|2 + |β|2 = 1.

6The qubit or quantum bit is the analogy to the classical bit
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Other way of representation the physical system is using the density operator or density
matrix. The difference with the |ψ⟩ is that here we need a set of states, |ψi⟩ with the
probability pi. The density operator of the system is defined by:

ρ =
n∑

i=1

pi |ψi⟩ ⟨ψi| (2.28)

Mention that, the dimension between |ψ⟩ and ρ may be different. Other important char-
acterization, so that they are physically accepted is following the theorem

Theorem 1. An operator ρ is a density operator to some ensemble {pi |ψi⟩} is and if
only it satisfies the conditions:

� The trace of ρ = 1. That is Tr(ρ) = 1.

� ρ is positive semi-definite operator. That is ⟨ψ| ρ |ψ⟩ ≥ 0.

The density operator has two classification, if there exist a ρ such that ρ = |ψ⟩ ⟨ψ|,
with just one ket-bra (or projector) is called pure state. In the case that the state is a sum
of several projectors, the density operator is a mixed of states, called mixed state. The
explicit form of ρ with the spectral decomposition is

ρ =
n∑

i=0

pi |ϕn⟩ ⟨ϕn| , (2.29)

where the pi are the normalized eigenvalues (
∑
pi = 1) and satisfy 0 ≤ pi ≤ 1.

The purity of state is calculable, and should be evaluated the trace of square density
operator. The purity parameter is given by

γ = Tr(ρ2) =
n∑

i=1

p2i |ϕi⟩ ⟨ϕi| =
n∑

i=1

p2i (2.30)

the parameter γ ∈ [1/d, 1], where d is the dimension of Hilbert space of state. If the purity
is 1 is a pure state and 1/d is a completely mixed state.

Evolution

The first postulate related the physical system wit the vector state, now we see how this
state change in the time.

Postulate 2. The evolution of closed quantum system is described by a unitary trans-
formation. that is, the state |ψ⟩ of the system at time t1 is related to the state

∣∣ψ′〉
of the

system at time t2 by a unitary operator7 U which depends only on times t1 and t2.

|ψ(t2)⟩ = U(t1, t2) |ψ1⟩ . (2.31)

7A matrix is said to be unitary if UU† = I
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In terms of the density operator the state with the operator evolution is

ρ(t2) = U(t2, t1)ρU(t1, t2)
†. (2.32)

Emphasize on the concept closed system, this mean that the state that does not interact
with the environment.

Quantum measurement

After showing the state and their evolution, the next step is the measurement stage. The
third postulate introduce the means for describing the effect of measurement on quantum
system.

Postulate 3. Quantum measurement are described by a collection {Mm} of mea-
surement operator. These are the operator acting on the state space of the system being
measurement. The index m refers to the measurement outcomes that may occur in the
experiment. If the state is |ψ⟩ immediately before the measurement then the probability
that result m occurs is given by

p(m) = ⟨ψ|M †
mMm |ψ⟩ (2.33)

and the state of the system after the measurement is

|ψm⟩ =
Mm |ψ⟩√

⟨ψ|M †
mMm |ψ⟩

, (2.34)

where the measurement operator satify the completeness relation

n∑
m

M †
mMm = I. (2.35)

The completeteness equation expresses the fact that probabilities sum to one:

n∑
m

p(m) =
n∑
m

⟨ψ|M †
mMm |ψ⟩ = 1, (2.36)

the equation (2.36) is for all |ψ⟩. To see explicit the postulate, we can show a example
with the measurement of qubit in computational basis {|0⟩ , |1⟩}. This example has two
outcome defined by the two measurement operator M0 = |0⟩ ⟨0| and M1 = |1⟩ ⟨1|. Note
that the measurement operator is Hermitian, so M2

0 = M0, M
2
1 = M1. Also is satisfy the

completeness, I =M †
0M0 +M †

1M1 =M0 +M1. The target state is |ψ⟩ = α |0⟩+ β |1⟩.
For obtain the outcome8 0 and 1 is

p(0) = ⟨ψ|M †
0M0 |ψ⟩ = ⟨ψ|M0 |ψ⟩ = |α|2 (2.37)

p(1) = ⟨ψ|M †
1M1 |ψ⟩ = ⟨ψ|M1 |ψ⟩ = |β|2 (2.38)

8Represent the probability of obtain 0 or 1 after measurement.
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and the state after measurement is

|ψm=0⟩ =
M0 |ψ⟩
|a|

=
a |0⟩
|a|

(2.39)

|ψm=1⟩ =
M1 |ψ⟩
|b|

=
b |1⟩
|b|

. (2.40)

This analysis is for pure state, for the mixed state case the density operator after measure-
ment is

ρm =
MmρMm

Tr(Mmρ)
(2.41)

and the probability for m outcome is

p(m) = Tr(Mmρ) (2.42)

This postulate accounts for the core of the quantum physics. When realize a quantum
measurement the system is altered (Unlike the classical mechanics) and the possible out-
comes is a probability, although these have been prepared in the same way. So, in the
quantum mechanics we need several repetitions of experiment, one test is not enough.

Composite systems

Finally, the last postulate describe the systems of two or more particle.

Postulate 4. The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. If the subsystems are numbered from 1
to n, the state space is

H = H1 ⊗H2 ⊗ · · · ⊗ Hn. (2.43)

This compose Hilbert space is associate with the state |Ψ⟩, where each element is defined
by {|ψi⟩}

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩ (2.44)

if the estate |Ψ⟩ can be write like equation (2.44) is called separable state, otherwise is a
entangled state.
This kind of state are widely used en quantum teleportation [12], quantum cryptography
[14] and violations of Bell’s inequality [20] . A example is Bell state and are the maximally
entangled state. ∣∣ψ±〉 =

1√
2
(|01⟩ ± |10⟩) (2.45)∣∣ϕ±〉 =

1√
2
(|00⟩ ± |11⟩) . (2.46)
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For simplicity, from now on we will omit the tensor product, that is, |00⟩ = |0⟩ ⊗ |0⟩. For
the case of density operator there is HA and HB system respectively, and is represented by
ρAB.

ρAB =
n∑

i=1

piρ
A
i ⊗ ρBi (2.47)

2.1.4 Quantum fidelity

Sometimes it is important to know how different two states are, for example state discrim-
ination [10] or quantum tomography [23]. The quantum fidelity answer this question for
some situations and quantify the distance between two states. Let ρ and ϱ two density
operators and the fidelity of this two states is defined by

F (ρ, ϱ) = Tr

(√√
ρϱ
√
ρ

)2

, (2.48)

If ϱ is a pure state, the fidelity formula is reduced to

F (ρ, ϱ) = ⟨ψ| ρ |ψ⟩ . (2.49)

The parameter F (ρ, ϱ) ∈ [0, 1], where 1 is maximum fidelity and represent that the both
are the same state.

2.2 Quantum Information

In classical information theory can be use the classical bit, that represent the minimum
unit for encode, decode and transmit information. Is the base for create the analogy in
quantum information and formalize the minimum information, this is how it is built the
quantum bit o qbit. In this subchapter we explain quantum bits, widely used in this thesis.

2.2.1 Quantum bits

The quantum bit is a element in a Hilbert space of two dimension. Are used as basis
for describe protocols in quantum information like quantum cryptography [11], quantum
teleportation [12] or experiment of twin photons entangled [20]. The mean different between
the classical and quantum bits is that, meanwhile the classical bit have just two state (0
or 1), the quantum counterpart is a superposition between the state 0 and 1. The qubit
with the Dirac notation is represent by

|ψ⟩ = α |0⟩+ β |1⟩ (2.50)
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where α and β are the complex number and satisfy that |α|2 + |β|2 = 1. The kets |0⟩ and
|1⟩ former the computational basis and are orthogonal to each other (⟨i|j⟩ = δij). Other
way of represent the qubit is function of angles, and the formula is

|ψ⟩ = eiγ
[
cos

(
θ

2

)
|0⟩+ eiφsin

(
θ

2

)
|1⟩
]
, (2.51)

where γ, θ and φ are the real numbers. The term eiγ is despised because is not phys-
ical observable. Now, how the equation (2.51) has two angles is possible represent in a
tridimensional sphere, this is called Bloch sphere9

Figure 2.1: Is the graphical representation for the space of a qubit. In addition, the angle
between orthogonal states is π. Source: Made by the author.

The angle θ and φ represent the spherical coordinate, so we can define the r⃗ vector

r⃗ = (sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(θ)) (2.52)

where r⃗ is called Bloch vector, which has the components rx, ry and rz. We can take this
elements for represent a mixed state in function the identity matrix, Pauli matrices10 and
the aforementioned vector.

ρ =
1

2
(I+ r⃗ · σ⃗) (2.53)

9Named after the Swiss-American physicist Felix Bloch, 1905-1983.
10Named after the Austrian physicist Wolfgang Pauli, 1900-1958
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where the σ⃗ are the 2-dimensional Pauli matrices and are defined of the following form

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.54)

If we expand the formula (2.53) using the the Pauli matrices, the density operator is
explicity represented by

ρ =
1

2

(
1 0
0 1

)
+
rx
2

(
0 1
1 0

)
+
ry
2

(
0 −i
i 0

)
+
rz
2

(
1 0
0 −1

)
ρ =

1

2

(
1 + rx rx − iry
rx + iry 1− rz

)
(2.55)

The eigenvalues of the matrix (2.55) give the domain of r⃗.

det [ρ− λI] = 0 (2.56)

(1− 2λ)2 − |r⃗|2 = 0 (2.57)

By the equation (2.57) we have the eigenvalues λ± =
1

2
(1 ± |r⃗|). If replace in the purity

parameter (see in the subchapter 2.1.4) we can recognize two case

Tr(ρ2) = λ2− + λ2+ =
1

2
(1 + |r⃗|2) (2.58)

where if the term |r⃗| = 1 is a pure state (shell of sphere) and is a mixed state if |r⃗| ≤ 1
(inside of sphere).

Finally, for complete the qbits analysis we show the systems in high dimensions. If
increase the dimension to a d-dimensional space instead of being called qbits they are
quantum dits or qudits, and the can be represent for the following formula

|ψ⟩ =
d∑

i=0

ci |i⟩ (2.59)

where
∑d

i=0 c
2
i = 1 and the kets |i⟩ can be represent a canonical basis with more of two

elements. For dimensions larger than 2 the qudits don’t have graphical representation.

2.3 Spontaneous parametric down conversion

The previous section (2.1.3) showed how the entangled states are represented, in this
chapter will detail how to produce entangled states like equations (2.45) and (2.46). The
physical process to generate these types of states is framed within of no linear optics, this
is, the relation between polarization density and electric field is quadratic or higher [25].
The process is called spontaneous parametric down conversion (SPDC), where two fields
presented spatial and temporary correlations. The beginning of study started in 1969
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with Krindach and Klyshko showing the properties of light in this process and realized
experimentally for temporal correlation by Mandel group [15, 21] emerging here the name
twins photons. The last correlation indicate that the photons were created at the same
time.
SPDC star with a beam (pump) pumping a no linear crystal, so that the beam interacts
with the crystal and generate two photons called idler and signal. the output fields are
weakness and generally in infrared range. In all process there are the energy and momentum
conservation, for which the relation of frequencies and wave vectors is given by

Energy

Ep = Es + Ei −→ ℏωp = ℏωi + ℏωs

ωp = ωi + ωs −→ ∆ω = 0 (2.60)

Momentum

Pp = Ps + Ei −→ ℏkp = ℏki + ℏks
kp = ki + ks −→ ∆k = 0 (2.61)

The subscript p, i and s is for pump, idler and signal respectively. The equations (2.61)
and (2.60) show the ideal case for generate twins photons and are called phase matching
conditions. Sometimes, the output wave of SPDC depend of ∆k and can be reduced
the amplitude, so counter this effect the alternative is to use a medium with periodic
nonlinearity. Such periodicity which adds a opposite phase and allow realign the the
phases distributed. This called technique called quasi-phase matching (QPM) and new
relation between wave vectors is

ks + ki +G = kp −→ ∆k = G (2.62)

where G is a grid parameter and their relation with crystal is given by

G =
m2π

Λ
= mLc (2.63)

where Λ is one period in the crystal, Lc coherence length and m is the mth harmonic that
can be decompose using the Fourier transform.

2.3.1 Quantum state of SPDC

The quantum state of SPDC process describe the signal-idler situation and can arise from
classical description, followed of the electromagnetic field quantization. The first step is
consider a no linear medium up to second order and a electric field E(r⃗, t) propagating it.
The system’s Hamiltonian is given by

H(t) = H0 +HI (2.64)

where H0 is interact Hamiltonian of electric field and the first order linear component of
the electric polarization. The term HI contain the no linear interaction. the next is con-
sider some considerations for avoid difficulties in the quantization of the field, it is that
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between the environment and medium there are no electromagnetic boundaries. The bire-
fringence can be consider classically, after the field is quantized. Is also consider that after
the medium there are two interference filter, so the output spectrum of SPDC process is
narrow.
Now in quantization procedure, we expand E(r⃗, t) in term of the plane waves

E(r⃗, t) = E+(r⃗, t) + E−(r⃗, t). (2.65)

From here on it continues withe usual quantization of fields, the is, the amplitudes are
changed to quantum operator. Since now the Hamiltonian is operator, will be used for find
the state |ψ(t0)⟩, where t0 is time of interaction. The state at a t time is described by the
operator evolution and the state in time t0

|ψ(t)⟩ = Û(t) |ψ(0)⟩ , (2.66)

where Û is evolution operator

Û = exp

(
1

iℏ

∫ t

0

H′
(t

′
)dt

)
(2.67)

After considerations and quantization, the spontaneous parametric down conversion state
is presented

|ψ⟩ = |vac⟩+
∑
σsσi

∫
dωs

∫
dωi

∫
dqs

∫
dqiΦσsσi

(qs, qi, ωs, ωi) |qs, ωs, σs⟩ |qi, ωi, σi⟩ ,(2.68)

where |qj, ωj, σj⟩ is photon state (idler or signal) in a transverse component of the wave
vector, the frequency ωj and polarizations σj. The term Φ is function for describe the
photons distribution and depend of susceptibility and the spectral function of filter consider
in description. More details in appendix (A).

2.3.2 Type of SPDC

The SPDC state detailed in (2.68) has several advantages, the output photons show entan-
glement in transversal momentum, polarizations and frequency. These are same advantage
that allow realize entanglement experiment [16, 17, 19, 18]. In this section show practical
example with polarization as degree of freedom, and the classification for SPDC states.
This kind of generations depend of polarization state of input and outputs. If we consider
a particular case of the two output photons after the process with two polarization, called
ordinary (o) and extraordinary (e) [26, 27], three cases emerge.

Type-0: This case the photons twins has the same polarization (ordinary or extraor-
dinary) and matches with input polarizations

op −→ oi + os (2.69)
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Type-I: For this type, the photons input is orthogonal to the output photons and idler
and signal has the same polarizations

ep ←→ oi + os (2.70)

Type-II: The last types, the output photons are orthogonal polarizations and one pho-
tons matches with the photon input.

ep ←→ ei + os (2.71)

the nomenclature ordinary and extraordinary is just a label, idler or signal photon can be
labeled with any of the two.

Considering the ordinary and extraordinary as polarizations of photons, we can take
the types of generations for generate entanglement states. How the generations is classified,
we can classify the no linear crystal (Crystal type 0, I and II). If joint two crystals type-0
or type-I, one in front of the other and pumped with diagonal or antidiagonal polarization
the no linear crystal, can be generate a entanglement state in polarization. The details is
generate a qubit |D⟩ = 1/

√
2(|0⟩ + |1⟩) or |A⟩ = 1/

√
2(|0⟩ − |1⟩) and place one crystal in

90o with respect to the generation axis of the other crystal. Then, for example if the first
crystal generate with |H⟩ and the second crystal in |V ⟩. Then, two translated cones are
generated by momentum of signal and idler and and adding path compensation elements
(not rendered for simplicity), the indistinguishability is created in which crystal the pair
of photons was generated. Show in Figure (2.3.2).

After that the one photon interact with the no linear crystal SPDC create two cones
where one cone is only polarization |H⟩ and the other is only polarization |V ⟩. The state
is given by

|ψ⟩ 1√
2
(|H⟩s |H⟩i + |V ⟩s |V ⟩i) (2.72)

where s and i is subscript for idler and signal. The other case that we can generate a
entanglement state is with a crystal type-II. The pump beam can be polarization |H⟩ or
|V ⟩ and after the interaction the SPDC process generate two cones. Unlike the previous
case, the cones generate the indistinguishably in two spots. The photon can be from top
cone or lower cone. Details in Figure (2.3.2).
After the interaction, the output is a entangled state in polarization again of two photons
and is given by

|ψ⟩ = 1√
2
(|H⟩s |V ⟩i + |V ⟩s |H⟩i) (2.73)
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Figure 2.2: Generation of entangled state with two no linear crystals type I. The red light
represent the pump and the arrows the diagonal polarization (|D⟩ = α |H⟩ + β |V ⟩). The
next are two no linear crystals type I, the second rotate in 90o regarding the first where
create the photons pairs. After, the two overlapping cones of signal and idler respectively
(Yellow and purple). Source: Made by author.

Figure 2.3: Generation of entangled state with no linear crystal type II. The red light
represent the pump (Polarization is not plotted). The cube represents no linear crystal
type-II. After, the two displaced cones that each have a different polarization. Where, the
yellow and purple cone intersect generate the indistinguishably and create the entangled
state. Source: Made by author.
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It can be seen that the output state are equal to equations (2.45) and (2.46) and an
experimental implementation can be seen in [95]. This mean that the letter inside the ket
is just label and can represent other degree of freedom. In addition, like the bell state show
maximal entanglement, that is, has the maximum entanglement in a quantum state.

2.4 Fiber optics

A powerful tool to transmit light without lens is a wave guide, they can come in various
shapes and to confine the light have two refractive indices. This is the support to raise the
idea of the optical fibers, a cylindrical dielectric waveguide with a refractive index n1 in
the center, called core and a refractive index n2 on the edges, called cladding.

Figure 2.4: a) Front view of fiber where show the core and cladding with different refractive
index. b) Side view showing the total internal reflection (green line) inside core fiber.
Source: Made by the author.

The incident light travels through by the difference between n1 and n2
11, where n2 < n1.

The trajectory of beam generates multiple reflections whit angle θ and −θ in each edge,
accompanied by a phase shift of π in each reflection making ‘total internal reflection’. In
addition, the self-consistency is imposed, that is, if a wave plane travels after the reflec-
tions, it continue as wave plane [25].

There are two important classification for the fibers. the first type start with a fiber
with diameter d that admits a beam of wavelength λ and their modes are defined by
M = 2dλ, where if the M = 1 the fiber is called single mode fiber (SMF) and if M > 1 is
called multimode fiber (MMF). The second classification is how the refractive index change
inside the optical fiber. For the fibers with constant in core and a abrupt change when

11The difference between the refractive indices is 0.001 and 0.02
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passing to the cladding are called Step-Index fibers, and if the refractive index change
gradually is called graded-index fiber.

Figure 2.5: a.1) Step-index fiber with the radical change in the refractive index (black
line). a.2) graded-index fiber with with a graduated exchange in the refractive index. b.1)
Single mode fiber traveling in core’s fiber (Dark blue). b.2) Multi mode fiber with graded
refractive index. Source: Made by the author.

All these fibers is with one core, but the last case to analyze is when the fiber has more
cores in the same cladding, called multicore fiber (MCF). This kind of fiber are funda-
mental tool in the these and and gives the initial kick to study multicore technology in
the chapter (3), because allows multi channels of transmission in the same device. In this
thesis we work with multicore fibers with four cores (Details in Figure 2.6).

Figure 2.6: Front view of a multicore fiber with four cores in the same cladding. Source:
Made by the author.
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Chapter 3

Space-division multiplexing in
quantum information

The fact of being able to guide the light using optical fibers (see in subchapter 2.4) un-
doubtedly opened a door to improve communications. That is because when the bits of
information can be encoded on individual or entangled quantum states, an improvement is
obtained over the traditional systems. For example, in security play an important role in
QKD [11] protocols or quantum communication [31]. Then, the fiber optics and quantum
states get together for the constant challenge expanding bandwidth [32]. For that, tech-
nology points towards to space-division multiplexing (SDM), and it consist of encoding the
transversal spatial properties of light.
The union of these areas allows, on the one hand, to inquire about the degree of freedom in
photonic [30] and take that knowledge to implement it in different type of optical fibers or
optical components. Next we will show the details of types of fibers and other components
that make up this area of SDM.

3.1 SDM in quantum information

Here, we show the devices used in the experimental setup, so we focus in two devices. The
fibers and demultiplexers. An introduction for the fiber was mentioned in section (2.4),
but it is necessary to elaborate on how they are used for SDM.
The fibers implemented for this experiment was in telecommunication band (1200nm to
1600nm), this allow you to have low losses (< 0.2 dB or < 4.5% per Km) and think that
you can have good connectivity with other devices on de the same band. So, on the path
for using these fibers and challenging the transmission capacity, a technique appears to
using different wavelengths over single fiber, a technique is called wavelength division mul-
tiplexing (WDM) [34]. It is undoubtedly a good technique, but it is reaching its limits [32],
so methods must be found to continue increasing transmission capacity. It is here where
the aforementioned Space Division Multiplexing appears, which consists of exploring the
different transversal modes of light and thus increasing the capacity.
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Figure 3.1: Front view of fiber core with different cores radios. Red: Outlines the core of
a single mode fiber. Yellow: Outlines the core of a few mode fiber. Green: Outlines the
core of a multimode fiber. Blank space represent the cladding of fiber. Source: Made by
author

If the fiber support more than one mode, is suitable for SDM, but there are some
considerations. A problem that you have when using multicore fibers is that light passes
from one channel to another, damaging the encoded information, the so-called cross-talk.
This is solved by keeping the distance between cores, specifically if the distance is more
than 40µm, we can consider each core as independent channel.
Some types of fibers were built prioritizing the numbers of cores [33], so the cross-talk
problem returns but the solutions are the trenches or holes. Basically consist in change
drastically the refractive index around the core (See details in Figure 3.2).
Another technique for use the fiber in SDM is based in that the core size influence the modes
that it can admit. In the section 2.4 we mentioned that, if the fiber support one mode is
single mode fiber and if support more than two mode is multi-mode fiber. The difference
between admit one o more modes is directly related with core diameter (Figure 3.1), and we
have one more case, when the fiber support some modes and using de parabolic refractive
index (Figure 2.5-b.2), calls are created few-modes fibers [29]. With few mode reduce the
detection complexity and we can mixed with multi-core fibers and thus implement several
channel with few-mode fibers inside the same cladding (Figure 3.2).

The other device that we will review is the multiplexers and demultiplexers. Commonly
called fan-in and fan-out respectively, this name is due to the characteristics of combine
and split different channels of fiber. Each channel may be a SDM fiber.
The structures of these passive components1 contain N independent single-mode input/out-
put fibers, and are mapped onto a particular mode of an SDM fiber. From this type of
device, some case arise such as photonic lanterns [35], that consist in input of single mode
fibers and then are tapered together and finish in multi-mode fiber for other side. Other
case is, if we include channels with different cores size, a mode selective lantern can be
built [36]. For OAM-carrying optical modes, there are demultiplexers, called mode sorters
[37], here have been using active elements. Furthermore, these device are a sample of low

1Passive components which require no input power to function. For example: Optics connectors,
adapters, patch cords, etc.
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Figure 3.2: Cross-section schematics of SDM fiber. Source: Made by author. a) Relation
between refractive index profile ∆n and distance of core r. Light blue dotted lines represent
the trenches and solid gray line the core 1 and 2. b) Front view of multicore fiber and
dashed red line represent view of subplot a. Label C − 1 and C − 2 belong to cores 1 and
2 respectively. Source: Made by author.

losses with the technology used in this thesis, for example in demultiplexer with MCF with
loss less than 0.35 and cross-talk less than −64dB [38]. Then, the summary is that the
multiplexers and demultiplexer is the connection between independent channel and all in
one fiber (Figure B.1).

Figure 3.3: Schematic figure of Multiplexer/Demultiplexer. Left to right: Individual fibers
that can be single mode fiber, the next is where the fibers are stretched to join into a single
fiber. This passive device are bidirectional, the left fiber can be multi-mode or multi-core
fiber. Source: Made by author.
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3.2 Quantum states with SDM

I have already seen the basics of the devices that make up SDM, next I will show how
these can be used with quantum information. These concepts point to areas used in this
thesis, such as high dimenensional states, but also to the immediate future work, such as
the applications that could be made in quantum information.

The first step is show that d-dimensional quantum state, called qudits and mentioned
in section (2.2), are important and improve some task in quantum communications. For
example in Bell inequalities, where prove several quN its (definition used in the publication
and it is analogous to qudits) in a inequality and the results show that at higher dimension
the violation of local realism is better than for two qubits, in other words, the performance
improve with higher N [39]. Other important realization of d−dimensional quantum state
is ti encode information on the path, for example they used slit for generate maximally
entangled state of D−dimensional (notation of publication) using the transverse spatial
correlations. With a BBO crystal and manipulating the pump beam they achieve that the
twin photons pass by slit only in the situation that they are symmetrically opposite [40].
Then, a d−dimensional path-encoded qudit has the general form

|Ψ⟩ = 1√
C

d∑
d=0

eϕd |d⟩ (3.1)

where d represent the d−th path (can be slit, fiber, etc), ϕd is the relative phase in the
path and C is the normalization constant. The previous equation shows that a path can
be one dimension and is a direct advantage gained in quantum information when using
d−dimensional states, because increase the transmission rate in protocol like QKD [41].
Furthermore, the more dimensions there is the possibility of encoding more bits by equa-
tion log2(d).

On the challenge side, which is the issue of implementing spatial HD-QKD. The problem
with this is that it is difficult to preserve the phase at the wavefront of photons during
propagation in the fibers. This topic is addressed in this thesis, but we use it in an
uncontrolled way, showing the difficulty of manipulating the phases in the fibers.
Some experiments had been done, for example in [42] used hollow-core photonic crystal
fiber2 (HC-PCF) for distribution of quantum entanglement, but intermodal dispersion and
intermodal mixing produce decoherence of quantum superposition during propagation.
The appearance of the SDM fibers changes the paradigm, since this kind of fibers support
many modes at a less cost. A example of this is research is [43], is a experimental setup
of a 300 meters of multicore fiber and is used for implement a HD-QKD with deformable
mirrors as the phase modulators, the improved the results of the spatial light modulators
(SLM).

2Hollow core fiber is formed by silica glass membranes with shape of cells and in the center of fiber is
create a hollow removing some unit of cells.
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Chapter 4

Qubits entanglement source

Once the theoretical bases have been shown, the experimental part of this work is shown.
Contains this chapter and the next, the following being the main one of the thesis. However,
It’s important what the transit was, experimentally speaking, to reach a multi-dimensional
source.

The first subchapter is based on the work published in 2019 [20] and is a polarization
entanglement source, that generate partially entanglement states (PES). The performance
of these states with different degree of entanglement was tested in Self-testing and Ran-
domness generation in a device-independent scenario (DI).
The second work, which is based on the publication made in 2021 [47] and used the fact
that in the states with the lowest entanglement it was not possible to overcome the non-
local limit. An optimization is performed over the same statistics and see if new parameters
can overcome the result obtained in [20].

4.1 Experimental investigation of PES for D-I ran-

domness generation and self-testing

The first experimental setup, was a polarization entanglement source based on Sagnac
interferometer and nonlinar crystal, more details in Figure 4.1. The PPLN-II crystal is
pumped with a continuous wave laser at 405 nm in diagonal polarization. The beam
is split in Dual PBS, causing1 the crystal generate SPDC process through both paths
of the interferometer. The photons pairs generated recombine in Dual PBS, after Alice
and Bob will receive photons in both orthogonal polarizations. This served to create

1It should be mentioned that this is achieved because in the reflected path there is an HWPs set at
45o with respect to the horizontal axis.
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Figure 4.1: Experimental setup used for randomness certification and self-testing. Source:
reprinted with permission from [20].

indistinguishably in the degree of freedom of photon polarization and resulting a entangled
polarized state

|Ψ⟩ = α |H⟩i |V ⟩s + β |V ⟩i |H⟩s (4.1)

where |H⟩i |V ⟩s = |H⟩i ⊗ |V ⟩s, the index i and j are from idler and signal respectively. In
addition, the coefficients α and β are from linear superposition of the polarization of pump
β |H⟩ + α |V ⟩. This feature of the source, of being able to change the polarization allow
us to unbalance the power on the path of the interferometer and as a consequence change
the generation in the crystal, which ends up changing the degree of entanglement of state.
In the case of our experiment, five partially entangled states (PES) were generated and
were chosen to cover the entire range of concurrence (0.2, 0.4, 0.6, 0.8 and 1, where the 0
is separable state and 1 is maximally entangled state).

4.1.1 Self-testing and Randomness certification

All these states were tested in a real scenario to carry out two protocols, the randomness
generation and self-testing. To the certify the protocols, non-locality had to be verified,
so measurements were made to see if the system violated a Bell’s inequality, which was
specially chosen for study two entangled qubits. The first step was a quantum tomography
all state ρt reconstructed present degrees of purity Tr [ρ2t ] above 0.985. We also calculate
the degree of entanglement of ρt as measured by the concurrence. We then proceed to find
the closest pure PES, |Ψ(θ)⟩, by maximizing the fidelity

F (ρt, |Ψ(θ)⟩ ⟨Ψ(θ)|) = ⟨Ψ(θ)| ρt |Ψ(θ)⟩ (4.2)
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This allows to estimate the fidelity with the target PES and the corresponding angle θ.
Details in Figure 4.2.

Figure 4.2: Purity (Blue points) and the fidelity (orange points) with respect to the closest
PES obtained from quantum tomography. Source: reprinted with permission from [20].

Another point to highlight is that all the reconstructed states show a remarkably high
fidelities with pure PESs of the form of |Ψ(θ)⟩, all of the being larger than 0.99.
As a result of the tomography, we obtain the θ angle, the we allow choose the setting
an pure Bell experiment and set α = 2/

√
1 + 2tan2(2θ) parameter of the inequality. The

tilted inequality used was introduced in [44] to study properties of pure two-qubit entangled
states. Is given by

Bα = α⟨A0⟩+
1∑

j,k=0

(−1)jk⟨Aj ×Bk⟩ ≤ α + 2 (4.3)

The expectation values are a function of the conditional probabilities and 0 ≤ α ≤ 2.
Its maximal quantum violation is equal to Bmax

α =
√
8 + 2α2 and can be obtained by

performing appropriate measurements on the states

|Ψ(θ)⟩ = cos(θ) |00⟩+ sin(θ) |11⟩ (4.4)

The results obtained in inequality showed that the more entanglement the state was,
the grater the gap between the local bound and maximal violation of Bell’s inequality (See
figure 4.3).
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Figure 4.3: Observed violation of the tilted Bell inequality. The orange line corresponds
to the local bound, above which non-locality can be proven. The green line is the maximal
violation that can be achieved, while the blue dots are the experimental values obtained.
Source: reprinted with permission from [20].

For Randomness certification we need make statistics non-local, that is why it is re-
quired that the Bell’s inequality be violated. It also ensure that the outcomes can be
predicted [51]. This unpredictability can be estimated by assuming the worst-case scenario
where the two quantum particles in devices A and B are correlated with a third quantum
particle held by an eavesdropper Eve, the global tripartite being pure and denoted by |Ψ⟩.
Eve’s goal is to guess the output a for a particular measurement choice x∗ by performing a
measurement on her part of the state. Eve is assumed to know |Ψ⟩ and the measurements
implemented by boxes A and B. he randomness of a when x = x∗ can be estimated through
the guessing probability [45, 46]

Pguess = max
∑
⟨Ψ|

∏
a|x

⊗I⊗
∏
e=a

|Ψ⟩ (4.5)

This quantity gives the maximum probability that Eve’s outcome e matches the user’s
outcome a for measurement x∗ over all possible quantum realizations. The estimated ran-
domness can be expressed in bits by R = −log2(Pguess).
We compare the equation (4.5) with the concurrence computed through quantum tomog-
raphy. The performance of the five PES in the Randomness certification in the Figure
(4.4).

For second protocol, self-testing, used the fidelity between ρ state of A-B system and
and the state to be self tested (4.4). The fidelity formula is give by

max
ΛA, ΛB

F ((ΛA ⊗ ΛB)ρ, |ψ(θ)⟩ ⟨ψ(θ)|) ≥ sα ·Bα + µα, (4.6)
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Figure 4.4: Experimental randomness certification as a function of entanglement. Almost
all the cases can certify randomness. However, they are far from, in principle, the possible
value of 1 bit of randomness. Source: reprinted with permission from [20].

The previous equation was calculated only with expectation values involved in the violation
of the tilted Bell inequality. In our experiment, those probabilities were computed for those
settings chosen from the estimation of the angle θ. The optimal α parameter is α∗ and we
get after optimize equation (4.6) and the optimal θ∗ results. The behavior of all state in
the self-testing protocol can be seen in the Figure (4.5).

Figure 4.5: Fidelity bounds with respect to target PES. The solid orange line, added as a
reference, shows the fidelity of a partially entangled state and a fully separable ones. In
the horizontal axis the angle θ that is self-tested by the fidelity bound.

In conclusion, a marked trend can be seen in the Figures (4.2), (4.4) and (4.5), and
the more the entanglement of the PESs sates, the performance is better. Now, the states
decay quickly despite the low noise level. It can even be seen that the two states with low
degree of entanglement do not exceed the local limit in Bell inequality. Summary of all



CHAPTER 4. 4.2. OPTIMAL STRATEGY TO CERTIFY QUANTUM
NONLOCALITY 29

parameter in table (4.1).

Theoretical concurrence 0.2 0.4 0.6 0.8 1
Experimental concurrence 0.1926 0.3746 0.5825 0.8349 0.9858

Purity 0.9849 0.9887 0.9907 0.9846 0.9891
α 1.914 1.741 1.373 0.949 0.0017

Bα ± 0.01 3.88 3.72 3.41 3.11 2.81
Bα−L

Q− L
−32.84 −2.14 0.78 0.91 0.98

Angle θ 0.10539 0.19002 0.32140 0.45946 0.7847
Angle θ∗ NA 0.40059 0.35369 0.48907 0.78536

ϵ 0.0101 0.0143 0.0110 0.0111 0.0126

Table 4.1: Summary of experimental results.

4.2 Optimal strategy to certify quantum nonlocality

From Table 4.1, you can see how challenging it was to generate the states with concur-
rency 0.2 and 0.4. In specific, show that these two state failed by not exceeding the local
limit. Then, a strategy was sought to improve the result but without needing new mea-
surements. This was what was answered in [47] and it was the following work that was
carried out with the results obtained from the entanglement source. Then, the objective
was to show that with the same statistic that did previously failed, non-locality could now
be certified after an optimization. In specific, is increase the gap between local hidden vari-
able (LHV) and quantum results, achieved a better result in all PES states (see Figure 4.6).

Certification of quantum nonlocality becomes difficult in certain situations such as
weakly entanglement or when the source of error is high. Here, a technique is proposed to
find a Bell inequality with the largest possible gap between the quantum prediction and
the local hidden variable limit for a given set of measurement frequencies. In method used
certify the nonlocality from same statistics and does not require additional measurements.
As shown in [48], in bipartite scenario it is possible to achieve a large quantum over LHV
values ratios, equal to

√
n/log(n), for n settings and n outputs in n dimensional Hilbert

space. However, when testing quantum nonlocality, one is particularly interested in a state
and measurements that maximize the violation of a given Bell inequality. From the exper-
imental perspective, a larger theoretical violation increases the chance to certify quantum
nonlocality in the laboratory. Nonetheless, sometimes experiments are not conclusive to
certify nonlocality. When failing to test nonlocality in the laboratory, one can choose
another Bell inequality with a larger gap between the LHV and quantum values, thus in-
creasing the chances to success. However, the cost of this option is to implement a new
experiment, as the optimal settings of the new Bell inequality most likely differ from the
original one. This procedure consumes additional time and resources.
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Thus, a fundamental question arises: Can we certify quantum nonlocality from experimental
data that failed to violate a target Bell inequality? In this work, we find necessary and suf-
ficient conditions to provide a conclusive answer to this question, for any bipartite scenario.

The method consist in increasing the gap between quantum and LHV prediction, i.e
improve the chances that the same statistic can surpass the LHV and be non-local. This
stars with a Bell inequality for a bipartite scenario [49]:

m−1∑
x,y=0

d−1∑
a,b=0

sabxy p(a, b|x, y) ≤ C(s), (4.7)

where p(a, b|x, y) is the probability of obtaining outcomes a, b ∈ {0, . . . , d−1} when inputs
x, y ∈ {0, . . . ,m− 1} are chosen by two observers Alice and Bob, respectively. Besides, C
is the local values and if this bound is violated, a quantum system is present. Without loss
of generality, we can restrict out attention to parameters within the set −1 ≤ sabxy ≤ 1, for
every a, b = 0, . . . , d− 1 and x, y = 0, . . . ,m− 1.
Quantum joint probability distributions satisfy the no-signaling principle. In particular,
the outcome of one party cannot reveal information about the input of the other. That is,

d−1∑
b=0

p(a, b|x, y) =
d−1∑
b=0

p(a, b|x, y′) =: pA(a|x), (4.8)

and
d−1∑
a=0

p(a, b|x, y) =
d−1∑
a=0

p(a, b|x′, y) =: pB(b|y), (4.9)

for every x ̸= x′ and y ̸= y′, where pA(a|x) and pB(b|y) are the marginal probability
distributions associated to Alice and Bob, respectively.

Let us now consider a set of relative frequencies f(a, b|x, y) of occurrence for outcomes
a, b when x, y is measured by Alice and Bob, respectively, obtained from experimental data.
The no-signaling constraints (4.8) and (4.9) do not occur due to errors but they can be
recovered by minimizing the Kullback-Leible divergence [50]:

DKL(f⃗ ||P⃗ ) =
∑
a,b,x,y

f(x, y)f(a, b|x, y) log2
[
f(a, b|x, y)
P (a, b|x, y)

]
, (4.10)

where f(x, y) is the relative frequency of implementing a measurement x by Alice and y
by Bob, and p(a, b|x, y) the optimization variables, consisting of a joint probability distri-
bution within the framework of quantum mechanics. The minimization procedure (4.10)
is equivalent to maximize the likelihood of producing the observed frequency p(a, b|x, y),
see Appendix D1 in [50].

The experimental prediction of a Bell inequality (4.7) defined by coefficients sabxy is given
by

Q =
m−1∑
x,y=0

d−1∑
a,b=0

sabxy p(a, b|x, y), (4.11)
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having associated an error propagation ∆Q. An experimentally obtained probability dis-
tribution p(a, b|x, y), associated to errors ∆p(a, b|x, y), is certainty nonlocal if Q−C > ∆Q,
for a given Bell inequality. However, sometimes quantum nonlocality cannot be reveal due
to the amount of errors, especially when a weakly entangled quantum state produces the
maximal violation of the inequality. Under such situation, the method introduced provides
a new Bell inequality that increases the chances to prove quantum nonlocality for a given
set of probability distributions p(a, b|x, y), associated to experimental errors ∆p(a, b|x, y).
The method consists in solving the following nonlinear problem:

R = max
s

Q(s)−∆Q(s) + dm

C(s) + dm
, (4.12)

Figure 4.6: The standard deviation number (SDN) as a function of concurrence. For
each value of concurrence, the optimization procedure (4.12) provides a Bell inequality
that increases the number of standard deviations of the quantum-LHV value gap. SDN
is calculated for two cases: tilted Bell inequality [black circles] and inequality arising
from optimization (4.12) [red squares]. In both cases, we consider experimental data,
where quantum nonlocality can be certified in the light blue region. For concurrences
C = 0.375 and C = 0.193, there is no quantum violation of the tilted Bell inequality,
whereas inequalities arising from optimization (4.12) produce a violation in all the cases.

When nonlocality certification from a given set of experimental data fails our method
provides a “second chance” to do it, without requiring to perform any additional measure-
ment.
Here, we considerably increased some previously obtained gaps, fact that allowed us to
certify nonlocality for low values of concurrences, something that was not possible to do
with the tilted Bell inequality.
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Chapter 5

High dimensional state with optical
fibers

In the previous sections, the concepts of qudits (section 2.2.1) and spatial division multi-
plexing (section 3.1) were defined, but now we will put these concepts together and they
will be shown how they were brought to the experimental level, to then characterize the
source and quantify the entanglement.
In quantum information, there are several protocols that its performance is better when us-
ing the quantum states of d-dimensional (qudits). For instance, single qudits states can be
exploited for building quantum cryptographic schemes supporting solving component im-
perfections [52], for efficient strategies solving communication complexity problems [53, 54]
and for advanced phase-estimation algorithms [55, 56]. Specifically, some Bell inequalities
for qudits have the property that their genuine quantum violation can still be achieved
while working with lower (compared to qubits) overall detection efficiencies [57], which is
arguably the main technological challenge of loophole-free Bell experiments. Second, there
is a family of Bell inequalities specially tailored for entangled qudits [58, 59], whose quan-
tum violation can still be achieved in a regime where noisy setups would be regarded as
useless if based solely on the famous Clauser-Horne-Shimony-Holt Bell inequality [60, 61].

Traditionally, the transverse momentum of single photons has been used for encoding
qudit states for over almost two decades now [62, 63, 40]. The distribution of photonic
quantum states using optical fibers is a fundamental building block towards quantum net-
works, but due to effects such as decoherence-inducing mode coupling and limited amount
of modes supported, the transmission of such spatially encoded qudits over conventional
multi-mode and single-mode fibers has always been considered a formidable challenge. In-
teresting strategies in this direction have been presented recently [64, 65], but they are still
limited to the transmission in the range of a few meters for multi-mode fibers, and unable
to fully exploit the advantages provided by qudits in the case of single-mode fibers (SMF).
Alternatively, there is a new trend emerging for the fiber propagation of spatially encoded
qudits that is based on new types of optical fibers developed for space-division multiplex-
ing (SDM) in classical telecommunications [66]. Basically, SDM technology increases data
transmission in classical networks by adopting fibers capable of simultaneously supporting
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several transverse optical modes, where the information is then multiplexed [32]. Since
mode coupling in these fibers is minimal, high-fidelity coherent transmission of entangled
and single spatially encoded qudits has been already demonstrated up to a few kilometers
[67, 68, 70].

In this work we introduce a new source of entangled path-encoded qudit states, which
is fully based on SDM multi-core fiber (MCF) technology. Multi-core fibers have several
cores within the same cladding, and each core mode can be used to define the logical basis
in the path encoding strategy, as we explain below. Moreover, the relative phase between
two different cores of a MCF has been shown to be orders of magnitude more stable than
two single-mode fibers [70]. Consequently, these fibers have already been exploited for
multi-dimensional quantum cryptography [43, 71], quantum random number generation
[72], quantum computation [56], and Bell inequality violation [73, 74]. Path encoding
has the important appealing that d-dimensional arbitrary operations can be implemented
with conventional linear optical elements [75], and has now become the standard encoding
strategy in experiments with integrated photonic circuits [76, 77]. Therefore, our source
of path entanglement can be used as a resource for the implementation of entanglement-
based quantum information protocols in experiments based solely on new MCF technology
[72], or also to efficiently distribute multi-dimensional entanglement between integrated
circuits, which are proven to be compatible with MCFs [71]. Our source compares favorably
in terms of integrability and brightness with previous works for fiber-based generation of
multi-dimensional path entanglement [73, 74, 78], and represents an important step towards
the compatibility of quantum communications with the next-generation SDM optical net-
works.

5.1 Quantum information with MCF technology

Multi-core fiber is currently being pursued for its capability to increase communications
rates in telecommunications [32]. At the same time, several authors have investigated MCF
technologies in photonic quantum information platforms (Complete review in [66]). Here
we employ four-core fibers (4CFs henceforth). Figure (5.1) a) shows an image of the facet
of a 4CF taken with a standard fiber-inspection microscope and a camera. The cores are
∼ 8µm wide, corresponding to single-mode at 1550µm, arranged on the vertices of a square
with 50µm sides, which is large enough so that cross-core coupling is greatly reduced. This
allows us to treat the spatial modes of each core as independent. For the 4CF, we thus
define the path logical basis consisting of the core states |j⟩ (j = 0, ..., 0) as also shown in
Figure (5.1-a) .
In addition to patchcords of MCF, crucial MCF-compatible optical devices have been re-
cently developed that will allow widespread use of MCF technology in photonic quantum
information. First is the demultiplexer (DM) device, as exemplified in Figure (5.1-b), which
allows one to couple N single-mode fibers to an N-core fiber. With this, light can be sent
from a standard single-mode fiber into one core of a MCF or vice versa, providing com-
patibility with standard optical fiber components. For example, we can couple a photon
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in mode |j⟩ of an MCF via a DM to a fiber-ready single-photon detector.

Figure 5.1: a) Photo of a multi-core fiber with four cores (4CF) taken with a camera and a
fiber microscope (left), and diagram of the path-encoding strategy for defining the logical
states in dimension d = 4 (right). b) The demultiplexer device, coupling single-mode fibers
to a multi-core fiber (here 4CF). c) A 4× 4 beam splitter constructed within a 4CF.

Another important device is the MCF-based beam splitter (MCF-BS), shown in Figure
(5.1-c) or a 4CF. The beam splitter is produced by heating and stretching a section of
homogeneous MCF (without refractive index trenches), so that the the cores become closer
together, enabling evanescent coupling between the cores [79]. The 4CF-BS and a 7CF-BS
were characterized experimentally in Reference [72]. When the proximity region is small,
one can achieve an approximate 25% coupling between all four cores of a 4CF [72]. In the
experiment reported here, we use two types of 4CF-BS devices. The first has been designed
for use at 775nm, and the second at 1550nm. More technical details are given below. To
reasonable approximation, the 4CF-BS can be represented by the unitary matrix

UBS =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 (5.1)

The 4CF-BS thus takes a photon in path state |j⟩ to an equally-weighted superposition

state of the form |ψj⟩ =
1

2

∑
k ukj |k⟩, where ukj = ±1 are the entries of the matrix (5.1).

Likewise, the 4CF-BS can be used to map superposition states into logical basis states:
UBS |ψj⟩ = |j⟩.
These MCF devices can be connected with relatively low losses (about 2-5% at 1550 nm)
using standard FC/PC fiber connectors [72]. We note that the future development of one
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more MCF-based optical primitive, namely MCF-integrated phase shifters, will allow for
entire multi-path optical circuits to be created entirely within multi-core fibers. This will
allow for implementation of complex interferometers in a relatively stable MCF platform
[70], for use in both quantum and classical optics applications such as communications
and metrology. Moreover, multi-port beam splitter devices have recently been shown to
provide advantages in quantum logic operations [80, 81]. This motivates the development
of entangled-photon sources that are compatible with MCF technology.

5.2 Experiment

5.2.1 Setup

Figure 5.2: Experimental setup. The entangled qudits source generated by SPDC process
in the PPLN non-linear crystal and SDM devices. The source are split in three stages. a)
The preparation stage where we using laser, demultiplexer, Beam splitter multicore (4CF-
BS), optics system and multicore fibres (MCF). b) First measurement stage: Detection
system for Z measurement, in which each core of the source output MCF is coupled to a
SMF via demultiplexer DM. c) Second measurement stage: Detection system for Xj basis
and is the same structure that previous stage, but the 4CF-BS is added. Source: Made by
author.

Here the cornerstone of this work will be explained, a experimental setup of Sponta-
neous parametric down conversion source for generate correlated photon pairs [82, 83]. The
entanglement is based in indistinguishably of paths and use the SPDC process for built
a qudit quantum state, which used the ste-of-art MCF technology (See details in Figure
5.2.1). The experimental setup stars with a continuous wave diode laser at 773 nm and is
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used to pump the nonlinear crystal periodically poled lithium niobate (PPLN) type-0 of 1
cm, this create the down-converted photon pairs at a center wavelength of 1546 nm. One
goal was that the source should be scalable, to have high spectral brightness and stable
performance. The main idea is coherently illuminate the PPLN crystal in n − regions,
where the n is the cores numbers of MCF and our case was four (Same shape of the Fig-
ure 2.6). The multi-spot coherent illumination of non-linear crystals for the generation
of path-entangled photons was first presented in the 1990’s [84] and has been used fre-
quently since then [74, 77, 78]. However, this work points towards to the connectivity and
compactness with the next-generation optical fiber networks. To coherently illuminate our
PPLN crystal in a robust and efficient way, we take advantage of the developed MCF beam
splitters described above [72]. The pump laser was connected to a SMF of the DM, and
consequently coupled to a single core of the 4CF at its output side. Then, the pump beam
is sent through a custom made 4CF-BS, designed to operate at 775nm, that coherently
splits the pump beam among the four cores of the 4CF. The first and complete split ratios
characterization in appendix (B) and recorder for our experiment is 23.79%, 24.88, 27.19
and 24.14% at 773 nm. A fiber polarization controller (PC), placed before the DM, was
used to guarantee that the pump polarization could be aligned with the extraordinary axis
of the PPLN crystal, to maximize the photon pair generation rate.

The output face of the 4CF-BS was imaged using the 2f−2f ′ imaging configuration onto
a plane at the center of the PPLN crystal using lenses L1 (focal length f = 11mm) and L2

(f ′ = 50nm), arranged confocally, giving a ∼ 4.5× magnified image of the 4CF face. The
down-converted pairs are produced at each one of the illuminated regions corresponding
to the four fiber cores of the MCF (See the crystal inset of Figure 5.2.1). The generated
photon pairs are then sent through confocal lenses L3 (f = 50 mm) and L4 (f = 11 mm)
that perform the inverse operation: creating a de-magnified image of the down-converted
pairs at the face of the output 4CF, coupling them into the fiber. The details of how the
magnification factor was found in appendix (C.1) and (C.2). A bandpass and interference
filter centered at 1550 nm are used (between the lenses, not shown for sake of clarity) to
remove the remaining light from the pump beam.
Considering the split ratio recorded of the 4CF-BS, and that it is not possible in principle to
distinguish which region of the crystal produced the photon pair, the generated two-photon
state can be approximately written as a coherent superposition of the form

|Ψ⟩ = 1

2
(|00⟩+ |11⟩+ |22⟩+ |33⟩) (5.2)

Generated the photons, they couple to the output MCF after optical system and are
sent to one of two measurement scenario, Figure 5.2.1 b) and 5.2.1 c). In each of these,
photon pairs were detected by measuring coincidence counts Cjk (j, k = 0, 1, 2, 3), where
here j and k refer to the core modes of the down converted idler and signal photon, respec-
tively. To detect the photons in the path Z basis (Logical base), we used the measurement
system sketched in Figure 5.2.1 b). The output 4CF of the source is connected to a DM,
coupling each core to a SMF. To detect photons propagating over the SMFs a home-made
coincidence count system is used, which works as follows: a free-running trigger single
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photon detector (Idquantique ID220) is connected to one of the SMFs, let’s say the fiber 0
(associated to core 0) as shown in Figure 5.2.1 b), using a standard beam splitter (SMF-
BS). When it registers a photon, a sync electrical pulse is sent to the four externally gated
detectors (Idquantique ID210) for coincidence detections. These detectors are connected
to the SMFs using optical delay lines such that coincidence counts can be registered using
the sync signal. The ID210 detectors were configured with 25% detection efficiency, and
5 ns gate width, while the ID220 detector was configured with 15% detection efficiency
and 5µs of dead time. To observe all of the sixteen possible coincidence events Cjk, the
IDD220 was connected through a SMF-BS to each of the four SMFs, and counts of the
form Cj0, Cj1, Cj2, Cj3 were recorded for all values of j with an integration time of 5 s.
For measurements in bases complementary to the Z basis, we first connected the output
4CF of the source to a 4CF-BS, as shown in Figure 5.2.1 c). The MCF output of the
4CF-BS was then routed through a DM and each core coupled again to the SMFs. The
coincidence detection scheme was the same as in Figure 5.2.1 b). Including the relative
phases corresponding to propagation in each core, the 4CF-BS allows us to measure in
superposition bases of the form

|0⟩D =
1

2

(
eiϕ0 |0⟩+ eiϕ1 |1⟩+ eiϕ2 |2⟩+ eiϕ3 |3⟩

)
|1⟩D =

1

2

(
eiϕ0 |0⟩+ eiϕ1 |1⟩ − eiϕ2 |2⟩ − eiϕ3 |3⟩

)
|2⟩D =

1

2

(
eiϕ0 |0⟩ − eiϕ1 |1⟩+ eiϕ2 |2⟩ − eiϕ3 |3⟩

)
|3⟩D =

1

2

(
eiϕ0 |0⟩ − eiϕ1 |1⟩ − eiϕ2 |2⟩+ eiϕ3 |3⟩

)
(5.3)

where |j⟩D refers to the state at detector Dj after the 4CF-BS, and ϕj are the relative
phases acquired over core j. One can switch between four mutually unbiased bases Xj, by
choosing different values of the phases ϕj. In summary Table 5.2.1 are the specific phase
for complementary. Beside, the Xj bases are mutually unbiased to the Z basis and also to
each other.

Phase\ Base X0 X1 X2 X3

ϕ0 0 0 0 0
ϕ1 0 π π/2 π/2
ϕ2 0 π/2 π π/2
ϕ3 0 π/2 π/2 π

Table 5.1: Phases ϕj of complementary Xj bases defined to measure in scenario c) of the
Figure (5.2.1).

5.2.2 Source Characterization

Going into the purely experimental, the first thing to characterize was the nonlinear crys-
tal. A setup was implemented with single mode optical fibers , the laser at 773 nm and an
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optical system composed of the L1 and L2. The image of SMF was replicated in the center
of crystal and couple into a point-like detector, composed of another SMF for 1550 nm
connected directly to an ID210 detector. We scanned the crystal along the (transverse)
horizontal (x) and vertical (y) axis, recording the corresponding detector single counts. In
Figure (5.2.2) shown the spatial distribution of SPDC photons with crystal scanned in the
y-direction. Similar results were obtained for the x-direction. An area of width ∼ 380µm
with considerable single counts was identified. The generation zone found was contrasted
with the distance between the most distant cores (More details in appendix C.2), choosing
the magnification factor 4.5 such that the image size of the 4CF at the PPLN crystal was
∼ 350µm. In this way, the crystal generates photon pairs in the four different illuminated
regions defined by the image of the 4CF.

Figure 5.3: Normalized single-counts while scanning the vertical (y-axis) transverse di-
rection of the PPLN crystal recorded by a point-like single-photon detector. The shaded
regions correspond to the dimensions of the crystal and the image size of the 4CF.

The next parameter to characterize was the temperature for achieve the quasi-phase
matching conditions, we tested that the optimal temperature was the same for each of the
regions corresponding to the four cores. We adjusted the PPLN crystal temperature by
placing it in an electronically-controlled oven. Figure (5.2.2) shows coincidence counts in
each core, as a function of the temperature, recorded using the measurement scheme of
(5.2.1 b). We observe that at 112oC, a nearly optimized coincidence rate of SPDC in all
cores was reached, in correspondence with the pump and down-converted photon wave-
lengths and the crystal poling period (19.8µm).
velengths and the crystal poling period (19.8 µm). Brightness of the source is an im-
portant characteristic, if entanglement is to be distributed over long-distances through
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optical fibers. Our entanglement source operates with a pump laser power of 1mW per
core. Taking this into account, plus the insertion losses of the optical devices and detec-
tor efficiencies (∼ 4% in coincidence) , the observed spectral brightness of the source was
∼ 350000 photons pairs (s mW nm)−1,which is comparable to optimized sources for po-
larization entangled photons [18]. Considering the typical loss in multi-core optical fibers
of 0.4 dB per km for 1550 nm, it would be possible to distribute multi-dimensional en-
tanglement over at least ∼ 75 km of fiber. Thus, this source can be readily employed to
investigate the propagation of spatial entanglement over long multi-core fibers, which has
yet to be realized.

Figure 5.4: Coincidence rate in each core as a function of the crystal temperature. The
optimal temperature to satisfy the phase-matching conditions for all cores is 112oC.

Another remarkable feature of our source is the phase stability provided by coupling the
pump and down converted light directly in and out of 4CFs, which are inherently robust
against thermal fluctuations and mechanical stress since the cores lie within the same
cladding [70, 43]. The relative phase between two different cores of a MCF can be at least
two orders of magnitude more stable than two single-mode fibers over a 2km length [70].
When the Xj measurement bases are implemented, the last 4CF-BS combines together
the incoming down converted photons, forming an interferometer that is sensitive to phase
fluctuations. Thanks to the stability of the 4CF, without any fiber isolation system or
active phase stabilization, we observe that phase oscillations typically occur with a period
of several minutes. Figure 5.5 a) the coincident counts oscillator record and which are then
used to 5.5 b) to get the absolute value of the frequency spectrum . The peaks of these
distributions correspond to oscillations with period between 2 and 6.5 minutes. We can
see in 5.5 b) that there are essentially no frequencies components above 0.008 Hz. Our
goal here is to present the fundamental characteristics of the source but we note that, if
necessary, one can employ the technique of reference [72] to phase-lock the source.
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Figure 5.5: a) Example of coincidence counts oscillation of four of sixteen probabilities,
with C33 as reference and recording C3i (i = 1, 2, 3) coincidence counts. b) Spectrum of
frequency components of the coincidence counts between different detectors using detection
system 5.2.1 c), taken at different times. Fluctuations due to phase changes occur on a
time scale of several minutes.

5.2.3 Entanglement certification

We measured coincidence counts Cjk as was explained in section 5.2.1. Accidental coinci-
dence counts ajk arising from dark counts and ambient light were evaluated by recording the
average count rate with a large relative electronic delay between detectors. The corrected
coincidence counts, given by Cc

jk = Cjk − ajk, were used to estimate the joint probabil-
ity distributions: Pjk = Cc

jk/
∑

jk C
c
jk. Experimental error was calculated by assuming

Poissonian count statistics and Gaussian error propagation. The recorded probability dis-
tributions while measuring both photons in the Z basis is shown in 5.6 a), with photons
always found in the same core.
For measurements in the Xj bases, there are two photon coalescence effects on the 4CF-BS
that impose a convenient symmetry to the coincidence counts. By considering the state of
5.2 and the measurements of equations 5.3, we see that the coincidence count probabilities
at detectors j, k(j, k = 0, 1, 2, 3) are given by

P the
jk =

∣∣∣∣∣18
3∑

m=0

umjumke
i2ϕm

∣∣∣∣∣
2

(5.4)

where the symbols umj and umk are the elements of the 5.1 matrix. In this case, when the
relative phases are such that complete constructive/destructive interference occurs, only 4
of the 16 probabilities Pmn are non-zero. For example, when all of the phases are equal, the
four probabilities P00 = P11 = P22 = P33 = 1/4. Since these four probabilities sum to one,
all the rest are zero. This case corresponds to detection of both photons in theX0 basis. For
the phases corresponding to the X1 basis, only probabilities P01 = P10 = P23 = P31 = 1/4
are non-zero. Likewise, for the X2 basis we have P02 = P20 = P13 = P31 = 1/4 and all
others equal to zero, while for X3 we have P03 = P30 = P12 = P21 = 1/4 with the rest
equal to zero. In this fashion, observing a maximum in one coincidence count group while
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observing all of the others near zero allows us to identify the relative phase values.
The measurements in the Xi bases were identified using the coincidence count signatures
described above, while applying a controlled bending to the 4CF fiber at the output of the
source, causing mechanical stress that changes the relative phases between cores [85]. The
joint probability distributions obtained from the fourXimeasurements are shown in Figure
5.6 The similarity, CB, of the recorded and theoretical probability distributions can be
quantified using the Bhattacharyya coefficient [86]. In our case, it reaches CB = 0.91±0.02,
showing good agreement between theory and experiment.

Figure 5.6: Joint probability distributions obtained while measuring both photons in the
(a) Z basis, (b) X0 basis, (c) X1 basis, (d) X2 basis, and (e) X3 basis. Error bars are
obtained considering Gaussian error propagation and Poissonian photo-count statistics.
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1. Fidelity

To certify the multidimensional entanglement of the generated state ρ, we use its fidelity
F (ρ, |Ψ⟩) = ⟨Ψ| ρ |Ψ⟩ to the target state |Ψ⟩ in equation 5.2. Is give by

F (ρ, |Ψ⟩) =
3∑

j=0

⟨jj| ρ |jj⟩+ 2
3∑

j=0,k=j+1

Re [⟨jj| ρ |kk⟩] (5.5)

where the first term is the measurement in Z−basis and is Pjj = ⟨jj| ρ |jj⟩. The second
term is for coherence between state |jj⟩ and |kk⟩. These can be calculated by defining Pauli

operators for the j, k subspace as [87, 88]: σ
(jk)
x = |j⟩ ⟨k|+ |k⟩ ⟨j|, σ(jk)

y = i |j⟩ ⟨k|− i |k⟩ ⟨j|.
Then, Re [⟨jj| ρ |kk⟩] =

(
⟨σ(jk)

x ⊗ σ(jk)
x ⟩ − ⟨σ(jk)

y ⊗ σ(jk)
y ⟩

)
/4. These expectation values

can be evaluated directly from the Xi measurements, as we describe in detail in the Ap-
pendix D. Using the recorded data of the 5 mutually unbiased measurements, we obtain
F = 0.789 ± 0.007. Since any state with F (ρ, |Ψ⟩) > 3/4 is incompatible with a Schmidt
number ≤ 3 [87, 88], we can confirm the four-dimensional nature of the entanglement pro-
duced by the source.

1. High-Dimensional Steering

Figure 5.7: Experimental values for the EPR-steering criterion S for steering from A to B,
denoted (B|A) and from B to A, denoted (A|B). When S

(PQ)
JK < 0 e can confirm that the

state is entangled in the one-sided device independent scenario.
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Another interesting approach to certify multi-level entanglement generation is the one
based on quantum steering [89], which is a distinct correlation that lies between entan-
glement and Bell nonlocality, and has been related to one-sided device independent quan-
tum cryptography [90], as well as one-sided device independent randomness generation
[91, 92, 93, 19]. For two mutually unbiased bases corresponding to observables P̂ and Q̂,
quantum steering can be identified using the entropic criterion [94]

S
(PQ)
JK = H(PJ |PK) +H(QJ |QK)− log2(D) ≥ 0 (5.6)

where J ,K = A, B (J ̸= K) denote the subsystems. H (PJ |QK) is the conditional Shannon
entropy calculated over the joint probabilities associated to measurements in the P and Q
bases on subsystems J and K, espectively. Steering can be an asymmetrical correlation,
and violation of inequality (5.6) indicates steering from subsystem K to subsystem J when

S
(PQ)
JK < 0, which also indicates that the two systems are entangled. Identifying P = Z and
Q = Xj, we applied these inequalities to our experimentally obtained probabilities of Figure
(5.6). The conditional entropy was calculated usingH (PJ |QK)−H (QK), whereH (PJ |QK)
is the joint Shannon entropy and H (QK) is the marginal entropy corresponding to local
measurementQ on partK. The results are shown in (5.7). We obtain negative values for all
correlations tested, showing that the generated qudit state exhibits steering from A to B as
well as from B to A. We obtained mean values SAB = −1.01±0.06 and SBA = −1.04±0.08.
Identification of steering allows us to confirm that the generated state is entangled in
a one-sided device independent scenario [53], meaning that full knowledge of the inner
workings of one of the system’s devices is not necessary. Moreover, the dimensionality of
each subsystem can be observed through the Shannon entropies H(PJ) and H(QJ) of the
marginal distributions, which are all very close to the maximum value of log2D = 2 bits
for D)4 dimensional subsystem, with mean value 1.99± 0.02 bits which is double the limit
for D = 2 qubits systems.
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Chapter 6

Conclusions

In this thesis it is present a new source of multidimensional photonic entanglement that is
based on space-division multiplexing optical fibers, which makes it fully compatible with
current and next generation telecommunications fiber networks. Furthermore, for our ex-
periment used four multicore fibers, but this new design offers a scalability in numbers of
cores. Given the geometry of the fibers and system optic with the crystal, we can reconnect
other multicore and realignment an create other quantum state, this features provides a
scenario of development, and widespread standards have yet to be established. In details,
we prepare an entangled of two four-dimensional systems, encoded in the path degree of
freedom of the down converted photons, and certify the multi-dimensional entanglement
generation. Achieving the value of fidelity 0.789 ± 0.007, which make it incompatible
with a Schmidt number ≤ 3 and with the probabilities having an average in Steering of
SAB = −1.01 ± 0.06 and SBA = −1.04 ± 0.08 indicating entanglement in a one-sided
device-independent scenario, checking the correlations of source.
The source presents several technical advantages, including high spectral brightness - com-
parable with modern polarization-entangled-qubit sources, and relatively long phase stabil-
ity, thanks to the use of multi-core fibers. Consequently, our scheme has several potential
applications. For instance, one can exploit the verified multi-dimensional steering for im-
plementing one-side device independent quantum protocols such as quantum cryptography
or quantum randomness generation [90, 91, 92, 93, 19]. The spectral brightness achieved of
350000 photon pairs generated (s mW nm)−1, will allow for future investigations demon-
strating the viability of long-distance distribution of multi-dimensional entanglement over
multi-core fibers.
Finally, mention the actions or topics that cam be pointed with source. First, is imple-
mented a system for control the phase and one option is realized in our laboratory [72].
Second, is take advantage of the source architecture to conduct research in quantum metrol-
ogy exceed the standard quantum limit. In particular, the entangled state produced by
our source is nearly optimal for multi-parameter phase estimation [96].
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Appendix A

SPDC State

In the no linear material the electric polarization is given by

Pi(r, t) = ϵ0

∫ ∞

0

dt′χ
(1)
ij (t

′)Ej(r, t− t′) +
∫ ∞

0

dt′
∫ ∞

0

dt′′χ
(2)
ijk(t

′, t′′)Ej(r, t− t′)Ek(r, t− t′′),

(A.1)
Where Ej(r, t) are the components of the vector of the electric field. χ(1) y χ(2) are the
electrical susceptibilities of the first and second order respectively. As the field strenght
increases, the nonlinear terms increase in the equation (A.1). So, this analysis is focused
until the second term.
We will start with Hamiltonian of the electromagnetic field in a dielectric medium of a
volumen V.

H(t) = 1

2

∫
V

dr [D(r, t) · E(r, t) +B(r, t)H(r, t)] , (A.2)

where D is the displacement vector, B is the induction magnetic and H is the magnetic
field. Using the definition of D(r, t) = ϵ0E(r, t) + P (r, t) in the equation (A.2) we can
rewrite of the following form

H(t) = H0(t) +HI(t), (A.3)

HI is the no linear hamiltonian interaction, and the explicit formula is given by

HI(t) =
1

2

∫
V

dr

∫ ∞

0

dt′
∫ ∞

0

dt′′χ
(2)
ijk(t

′, t′′)Ej(r, t− t′)Ek(r, t− t′′). (A.4)

Now, we take the electric field and expand in functions of plane waves.

E(r, t) = E+(r, t) + E−(r, t), (A.5)

with

E+(r, t) =
1√
ν

∑
k,σ

ek,σεk,σαk,σG(ω) · exp [i(k · r − ωt)] , (A.6)
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where

εk,σ =

√
ℏω(k, σ)

2ϵ0n2(k, σ)
, (A.7)

ϵ0 is the permittivity in free space, G(ω) is the transfer function of the filters, ν is the
quantization volume, k is the wave vector, ek,σ is the 2-dimensional of the polarization,
ω is the frequency and αk,σ is the mode amplitude. The usual method of quantization of
electric field is chosen, where the amplitude mode αk,σ is changed for ak,σ, which is the
annihilation operator. The, the electric field is

E+(r, t) =
1√
ν

∑
k,σ

e⃗k,σεk,σak,σG(ω) · exp [i(k · r − ωt)] , (A.8)

substituting (A.8) in (A.4)

HI(t) =
1

2ν3/2

∑
ks,σs

∑
ki,σi

∑
kp,σp

g∗ks,σs
g∗ki,σi

gkp,σpa
†
ks,σs

a†ki,σi
akp,σpexp [i(ωs + ωi − ωp)]

×χijk(eks,σs)
∗
i (eki,σi

)∗j(ekp,σp)k

∫
ν

exp [−i(ks + ki − kp) · r] +H.C, (A.9)

where

gkj ,σj
= i

√
ℏω(kj, σj)

2ϵ0n2ω(kj, σj)
G [ω(kj, σj)] , (A.10)

H.C is the hermitian conjugate, nω(kj, σj) is the index of refraction of the crystal. In
addition, terms that do not conserve energy are eliminated.

χijk ≡ χ
(2)
ijk(ωp = ωs + ωi) + χ

(2)
ijk(ωi = ωs + ωp) + χ

(2)
ijk(ωs = ωp + ωi), (A.11)

with

χ
(2)
ijk(ω = ω′ + ω′′) =

∫ ∞

0

dt′
∫ ∞

0

dt′′χijk(t
′, t′′)exp [−(ω′t′ + ω′′t′′)] , (A.12)

we use the previous result of hamiltonian for calculate the state.

|ψ(t)⟩ = Û(t)|Ψ(0)⟩, (A.13)

Û(t) = exp

(
1

iℏ

∫ t

0

dt
′Ĥ(t′)

)
, (A.14)

expanding the evolution operator in serie

Û(t) = 1 + exp

(
1

iℏ

∫ t

0

dt
′Ĥ(t′)

)
+ ..., (A.15)

replacing (A.9) in the integral of the evolution operator, the integral is given by
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∫ t

0

dt
′Ĥ(t′) = 1

2ν3/2

∑
ks,σs

∑
ki,σi

∑
kp,σp

g∗ks,σs
g∗ki,σi

gkp,σpa
†
ks,σs

a†ki,σi
akp,σp

×χijkexp [i(ωs + ωi − ωp)t/2] (eks,σs)
∗
i (eki,σi

)∗j(ekp,σp)k

×t · sinc [(ωs + ωi − ωp)t/2]

∫
V

exp [(ωs + ωi − ωp) · r] dr +H.C., (A.16)

integrating in r

∫ t

0

dt
′Ĥ(t′) = V t

2ν3/2

∑
ks,σs

∑
ki,σi

∑
kp,σp

g∗ks,σs
g∗ki,σi

gkp,σpa
†
ks,σs

a†ki,σi
akp,σp

×χijk(eks,σs)
∗
i (eki,σi

)∗j(ekp,σp)k · sinc [(ωs + ωi − ωp)t/2]

×exp [i(ωs + ωi − ωp)t/2]
∏
m

sinc [(ks + ki − kp)mlm/2]

×exp [−i(ks + ki − kp)zlz/2] +H.C., (A.17)

where V = lx× ly × lz and lm is the dimension of the no lineal medium in the direction
m (m = x, y, z). Reemplacing (A.17) in (A.13) and considering the initial state as the
vacuum state.

|ψ(t)⟩ = |vac⟩+ V t

2iℏν3/2
∑
ks,σs

∑
ki,σi

∑
kp,σp

g∗ks,σs
g∗ki,σi

gkp,σpυp(kp, σp)χijk

×(eks,σs)
∗
i (eki,σi

)∗j(ekp,σp)k · sinc [(ωs + ωi − ωp)t/2]

×exp [(ωs + ωi − ωp)t/2]
∏
m

sinc [(ks + ki − kp)mlm/2]

×exp [−i(ks + ki − kp)zlz/2] |ks, σs⟩ |ki, σi⟩ , (A.18)

where |ks, σs⟩ |ks, σs⟩ are the Fock states in the modes kj and σj, υ(kp, σp) is the classic
amplitude corresponding to the component (kp, σp) of pump. Beside, to reach the final
state we should consider some approximations.

� The interaction time is long enough, so that the sinc(ωs+ωi = ωp) is significant only
when ωs + ωi = ωp.

� The dispersion of the center frequency is very small and this is justified by the
frecuency filters.

� The pump travel for the Z− axis and the crystal is long enough on the x and y axes
for contain all cross section .
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� The pump just contains extraordinary polarization.

With these considerations we can write the final state for the no linear process SPDC.

|Ψ⟩ =
∑
σs,σi

∫
dωs

∫
dωi

∫
dqs

∫
dqiΦσs,σi

(qs, qi, ωs, ωi)|qs, ωs, ωs⟩|qi, ωi, ωi⟩, (A.19)

the amplitude Φ is reduced to

Φ ≈ Cσsσi
Gs(ωs)Gi(ωi)ν(qs + qi, ωs + ωi)sinc [(Ksz +Kiz −Kpz)L/2] , (A.20)

where Cσsσi
is the coupling constant, which depends of the nonlinear susceptibility. Gs(ωs)

y Gi(ωi) are the functions defined for the interference filters used in front of detectors.
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Appendix B

SDM devices characterization

In this appendix we will deepen the characterization of beam splitter multicore and show
de split ratios. In the tables that will be shown below you will see the powers used and the
percentages obtained for each combination that can be done with with a four paths Beam
splitter multicore.
The measurements were made at four BS-MCF with a continuous laser of 775nm and the
challenge is find the best beam splitter because the fibers that was build the beam splitter
are for 1550nm.

B.1 Experimental setup

Figure B.1: Experimental setup of characterization of beam splitter multicore. a) Con-
tinuous laser of 775nm. b) Input demultiplexer where each color represent one core of
multicore fibre. c) Beam splitter multicore of four cores. d) Output multiplexer. e) Power
meter. Source: Made by author.

Experimental setup consist in five parts (See details in Figure B.1) and start with
a continuous laser tunable Lion TEC500 at 773nm, this laser is connected to the input
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demultiplexer, this is how we access a particular core. After, demux is connected to the BS-
MCF and this is connected to the output demultiplexer. Finally, the system is measured
by the power meter.
The technical characteristics of the multicore fibres is a diamond shaped with four core
of 8µm of diameter, 50µm of distance between the closest neighbors and 70.7µm for the
farthest. Furthermore, each color of fibres in demultiplexer represent each core, this adds
ease to illuminate each core.

B.2 Demultiplexer characterization

Prior to measuring the complete system, the first step was measure the split ratio of the de-
multiplexer (Built to 1550nm) with continuous laser 773nm. Specifically, each single core
fiber was connected to the laser, and together with that, the power meter was connected
to input demultiplexer from the multicore side. The following table show the transmis-
sion results for each core for demultiplexer letter a), this percent is analogous for output
demultiplexer.

Core Power input [mW ] Power output [mW ] Transmission (%)
1 17.3 14.36 86
2 17.5 14.63 84
3 17.5 14.52 83
4 17.45 15.95 91

Table B.1: Characterization of the 1550 nm demultiplexer with continuous laser to 773nm.

B.3 Beam splitters multicore characterization

The procedure to measure the BS-MCFs was make all combinations possible between input
demultiplexar and output demultiplexer. We generate sixteen split ratios for each beam
splitter and the best result we tried it in opposite direction.
The split ratio formula consider each power core and sum of all of them.

Srm =
Cm

C1 + C2 + C3 + C4

× 100 =
Cm∑4
i=1Ci

× 100 (B.1)

where Cm is the specific core, and split ratio show in table and m = 1, 2, 3, 4 for our case.
Below are the summary tables obtained from the measurement process. The BS-MCF are
labeled as BS −MCF − i, with i = 1, 2, 3, 4.

In summary, from the tables shown it was possible to choose the best A and its path
that has the best split ratios of each core. The beam splitter number four was one the best
numbers and we prove in the opposite directions and after connect to experimental setup.
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BS-MCF-1
Input core Power input [mW] Power output [mW] Power total [mW] Split ratio (%)

C1 1.96 29.56
C1 31 C2 1.47 6.63 22.17

C3 1.76 26.55
C4 1.44 21.72

C1 2.65 32.00
C2 31 C2 2.23 8.28 26.93

C3 2 24.15
C4 1.4 16.91

C1 1.62 21.37
C3 30.9 C2 2.41 7.58 31.79

C3 1.72 22.69
C4 1.83 24.14

C1 2.29 24.76
C4 31.3 C2 2.89 9.25 31.24

C3 1.83 19.78
C4 2.24 24.22

BS-MCF-2
Input core Power input [mW] Power output [mW] Power total [mW] Split ratio (%)

C1 0.75 24.12
C1 31 C2 0.61 3.11 19.61

C3 0.75 24.12
C4 1 32.15

C1 1.4 29.47
C2 31.1 C2 1.66 4.75 34.95

C3 0.7 14.74
C4 0.99 20.84

C1 2.51 20.57
C3 31.3 C2 2.57 12.2 21.07

C3 3.72 30.49
C4 3.4 27.87

C1 3.43 32.45
C4 31.2 C2 2.96 10.57 28.00

C3 2 18.92
C4 2.18 20.62

Table B.2: Summary table of experimental result for BS-MCF-1 and BS-MCF-2
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BS-MCF-3
Input core Power input [mW] Power output [mW] Power total [mW] Split ratio (%)

C1 1.53 20.08
C1 31 C2 2.26 7.62 29.66

C3 1.52 19.95
C4 2.31 30.31

C1 1.59 19.85
C2 31.1 C2 2.49 8.01 31.09

C3 1.62 20.22
C4 2.31 28.84

C1 2.7 23.79
C3 31 C2 2.71 11.35 23.88

C3 3.2 28.19
C4 2.74 24.14

C1 4.75 31.13
C4 31.4 C2 3.66 15.26 23.98

C3 3.6 23.59
C4 3.25 21.30

BS-MCF-4
Input core Power input [mW] Power output [mW] Power total [mW] Split ratio (%)

C1 0.64 14.61
C1 30.7 C2 1.17 4.38 26.71

C3 1.17 26.71
C4 1.4 31.96

C1 2.11 22.00
C2 30.6 C2 3.2 9.59 33.37

C3 1.98 20.65
C4 2.3 23.98

C1 2.6 22.75
C3 30.7 C2 2.64 11.43 23.10

C3 3.39 29.66
C4 2.8 24.50

C1 4.9 33.02
C4 30.8 C2 3.58 14.84 24.12

C3 3.45 23.25
C4 2.91 19.61

Table B.3: Summary table of experimental result for BS-MCF-3 and BS-MCF-4
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BS-MCF-4 inverted
Input core Power input [mW] Power output [mW] Power total [mW] Split ratio (%)

C1 0.5 9.38
C1 30.9 C2 1.7 5.33 31.89

C3 1.31 24.58
C4 1.82 34.15

C1 1.42 17.86
C2 30.3 C2 3 7.95 37.74

C3 1.43 17.99
C4 2.1 26.42

C1 2 22.47
C3 31.1 C2 2.1 8.9 23.60

C3 2.7 30.34
C4 2.1 23.60

C1 2 25.22
C4 30.8 C2 2.42 7.93 30.52

C3 1.51 19.04
C4 2 25.22

Table B.4: Summary table of experimental result for BS-MCF-4 inverted
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Appendix C

Programming scripts

Sometimes, in optic systems it is necessary quantify parameters like magnifications or
distances, to be compared with theoretical results, so below is how part of the image post-
processing was done. Here, are the scripts used for measure the size of Gaussian shape
generated for single mode fibers or distant between of two (or more) pixels, that is eu-
clidean distance. All codes were written in open source code Python.

C.1 Gaussian fit to pump from the camera image

First, is to save the image created by the optical system. The camera used was DCC1645C-
HQ from Thorlabs.

Figure C.1: Image of Gaussian beam of single mode fiber. Source: Made by author.

The next step is that find the pixel with maximum brihtness and in function this define
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cross profiles of x axis and y axis respectively. The bound of image can be defined by the
user.

Figure C.2: Cross section of both axis of Gaussian beam. The color range was normalized.
Source: Made by author.

Finally, based on data, perform the fit of a Gaussian function (equation C.1). Fur-
thermore, is calculated the mode field diameter (MFD)1 and the parameter r2 in both
axis

f(x, a, b, c, d) = exp

(
−2(x− b)2

c2

)
+ d, (C.1)

where a is a peak of profile, b where is centered, c is bandwidth, d is the displacement of
the origin in y axis and x is fit range. This scripts work with seed values, so the parameter

1In single mode fiber, the shape of beam is maintains and is near to Gaussian shape. The mode field
diameter describe the width of this intensity profile. Then, the intensity in profile decrease in e2 respect
to the peak, is the MFD.



CHAPTER C. C.1. GAUSSIAN FIT TO PUMP FROM THE CAMERA
IMAGE 56

a, b, c d must be write and scripts find the optimal values for the fit. The final result of fit
in Figure C.3. Furthermore, the script calculate the r2 from Sklearn package, that for this
example was 0.9903 for x axis and 0.9848 for y axis, showing the good implementation of
the fit.

Figure C.3: Experimental data an Gaussian fit to image. The blue points is experimental
data, the solid orange line is Gaussian fit and the red line marks the MFD, i.e the decrease
of the peak by a factor of e−2. Source: Made by author.

1 from scipy import ndimage

2 import imageio

3 import numpy as np

4 from matplotlib.pyplot import*

5 from scipy.optimize import leastsq

6 from scipy.optimize import curve_fit

7 from sklearn.metrics import r2_score

8 import statistics

9

10 image =imageio.imread(’Testimage.tif’)

11 Sizeplot =20

12 im0=image [:,:,1]

13 fig =figure(figsize =(Sizeplot ,Sizeplot))

14 subplot (221)

15 imshow(im0)

16 xlabel(’Pixels ’)

17 ylabel(’Pixels ’)

18 yticks(np.arange(0, im0.shape[0], 50),size =9)

19 xticks(np.arange(0, im0.shape[1], 50), rotation =45,size =9)

20 title(’Camera image ’)

21 grid(linestyle=’--’,alpha =0.5)

22 show()

23 x1 = int(input("Upper limit in Y axis (Pixel): ")) #Upper limit

24 x2 = int(input("Lower limit in Y axis (Pixel): ")) #Lower limit
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25 y1 = int(input("Upper limit in X axis (Pixel): ")) #Left limit

26 y2 = int(input("Upper limit in X axis (Pixel): ")) #Right limit

27 zoom = im0[x1:x2 ,y1:y2]

28 imshow(zoom)

29 yticks(np.arange(0, zoom.shape[0], 10),size =9)

30 xticks(np.arange(0, zoom.shape[1], 10), rotation =45,size =9)

31 show()

32 a=np.where(zoom == zoom.max())

33 option =2

34 if option ==1:

35 X=zoom[:,a[1][1]] # Array that contains a maximum

36 Perfilnormx=X/max(X) # Cross -section but is normalized

37 pixelesx=range(len(X))

38 Y= zoom[a[0][1] ,:]

39 Perfilnormy=Y/max(Y)

40 pixelesy=range(len(Y))

41 fig =figure(1,figsize =(13 ,13))

42 ############ CROSS SECTION IN X

43 subplot (221)

44 plot(pixelesy ,Perfilnormy ,label=’Pixel number ’+str(a[0][1]))

45 legend(loc =0)

46 xlabel(’Intensity normalized ’)

47 ylabel(’Color range’)

48 title(’X axis normalized ’)

49 grid(linestyle=’--’,alpha =0.4)

50 ############

51 subplot (222)

52 imshow(zoom)

53 yticks(np.arange(0, zoom.shape[0], 10),size =9)

54 xticks(np.arange(0, zoom.shape[1], 10), rotation =45,size =9)

55 ############ CROSS SECTION IN Y

56 subplot (223)

57 plot(pixelesx ,Perfilnormx ,label=’Pixel number ’+str(a[1][1]))

58 legend(loc =0)

59 xlabel(’Pixels ’)

60 ylabel(’Intensity normalized ’)

61 title(’Y axis normalized ’)

62 grid(linestyle=’--’,alpha =0.4)

63 show()

64 elif option ==2:

65 X=zoom[:,a[1][0]] # Array that contains a maximum

66 Perfilnormx=X/max(X) # Cross -section , but is normalized

67 pixelesx=range(len(X))

68 Y= zoom[a[0][0] ,:] # Array that contains a maximum

69 Perfilnormy=Y/max(Y) # Cross -section but is normalized

70 pixelesy=range(len(Y))

71 fig =figure(1,figsize =(13 ,13))

72 ############ CROSS SECTION IN X

73 subplot (221)

74 plot(pixelesy ,Perfilnormy ,label=’Pixel number ’+str(a[0][0]))

75 legend(loc =0)

76 xlabel(’Pixels ’)

77 ylabel(’Intensity normalized ’)

78 title(’Y axis normalized ’)
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79 grid(linestyle=’--’,alpha =0.4)

80 ############

81 subplot (222)

82 imshow(zoom)

83 yticks(np.arange(0, zoom.shape[0], 10),size =9)

84 xticks(np.arange(0, zoom.shape[1], 10), rotation =45,size =9)

85 ############ CROSS SECTION IN Y

86 subplot (223)

87 plot(pixelesx ,Perfilnormx ,label=’Pixel number ’+str(a[1][0]))

88 legend(loc =0)

89 xlabel(’Pixels ’)

90 ylabel(’Intensity normalized ’)

91 title(’X axis normalized ’)

92 grid(linestyle=’--’,alpha =0.4)

93 show()

94 ############ FIT X AXIS

95 bandx= 7#std(X,ddof =1)

96 x= np.linspace(0,len(X),len(X))

97 def eps1(p,x):

98 return func1(x,p[0],p[1],p[2],p[3])-X

99 parametros1 =[max(X),int(np.mean(a[0])),bandx ,min(X)]

100 (anchox ,bx,cx,dx),_=leastsq(eps1 ,parametros1 ,args=(x))

101 print(’ax opt.= ’+str(round(anchox ,2))+’| ax input:’+str(max(X)) )

102 print(’bx opt.= ’+str(round(bx ,2))+’| bx input:’+str(int(np.mean(a[1]))))

103 print(’cx opt.= ’+str(round(cx ,2))+’| cx input:’+str(round(bandx)) )

104 print(’dx opt.= ’+str(round(dx ,2))+’| dx input:’+str(min(Y)) )

105 ############ FIT Y AXIS

106 bandy= 7

107 y= np.linspace(0,len(Y),len(Y))

108 def eps0(p,x):

109 return func1(x,p[0],p[1],p[2],p[3])-Y

110 parametros0 =[max(Y),int(np.mean(a[1])),bandy ,min(Y)]

111 (anchoy ,by,cy,dy),_=leastsq(eps0 ,parametros0 ,args=(y))

112 print(’ay opt.= ’+str(round(anchoy ,2))+’| ay input:’+str(max(Y)) )

113 print(’by opt.= ’+str(round(by ,2))+’| by input:’+str(int(np.mean(a[0]))))

114 print(’cy opt.= ’+str(round(cy ,2))+’| cy input:’+str(round(bandy)) )

115 print(’dy opt.= ’+str(round(dy ,2))+’| dy input:’+str(min(Y)) )

116 ############## Functions

117 extension =5

118 xx1=np.linspace(0-extension ,len(X)+extension ,2000)

119 xx2=np.linspace(0-extension ,len(Y)+extension ,2000)

120 Gaussx=func1(xx1 ,anchox ,bx ,cx ,dx)

121 Gaussy= func1(xx2 ,anchoy ,by ,cy ,dy)

122 MFDx=round(max(Gaussx *(1/np.e**2)) ,2)

123 MFDy=round(max(Gaussy *(1/np.e**2)) ,2)

124 ############ PLOTFITS

125 fig =figure(1,figsize =(13 ,13))

126 subplot (221)

127 plot(x,X,’o-’,label=’Exp.’)

128 plot(xx1 ,Gaussx ,label=’Fit’)

129 grid()

130 xlabel(’Pixels ’)

131 ylabel(’Color range (0 -255)’)

132 title(’X AXIS’)
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133 text(1, MFDx+3, ’MFD’, fontdict=None)

134 axhline(y = MFDx , color = ’r’, linestyle = ’-’)

135 ylim (0 ,260)

136 legend(loc =0)

137

138 subplot (222)

139 plot(y,Y,’o-’,label=’Exp.’)

140 plot(xx2 ,Gaussy ,label=’Fit’)

141 grid()

142 xlabel(’Pixels ’)

143 ylabel(’Color range (0 -255)’)

144 text(1, MFDy+3, ’MFD’, fontdict=None)

145 axhline(y = MFDy , color = ’r’, linestyle = ’-’)

146 title(’Y AXIS’)

147 legend(loc =0)

148 ylim (0 ,260)

149 nameimg=input(’Write the name of image: ’)

150 savefig(’Image/’+str(nameimg)+’.png’)

151 show()

152 ############R-SQUARE X AXIS

153 xx= np.linspace(0,len(X),len(X))

154 rsquarex = r2_score(X,func1(xx,anchox ,bx,cx,dx))

155 print(’R-square in X axis is: ’+str(round(rsquarex ,4)))

156 ############R-SQUARE Y AXIS

157 yy= np.linspace(0,len(Y),len(Y))

158 rsquarey =r2_score(Y, func1(yy,anchoy ,by,cy,dy))

159 print(’R-square in Y axis: ’+str(round(rsquarey ,4)))

160 print("The MFD of x-axis is in y="+ str(MFDx))

161 print("The MFD of y-axis is in y="+ str(MFDy))

Listing C.1: Script for analyze the image and create a fit on experimental data.
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C.2 Euclidean distance between two pixels

An 1 : 1 optical system was set up and we illuminated the four core with demultiplexer
and MCF-BS for create the image. Furthermore, we used a DCC1645C-HQ camera for
capture the core image. 4-core image in C.4.

The Euclidean formula D =
√

(Px2 − Px1)
2 + (Py2 − Py1)

2 we used for calculate the

distance between cores, where Pxi
and Pyi (i = 1, 2) are the coordinates of the saved

pixels. The distance results is in pixels numbers, so we must multiply it by 3.6µm, that is
pixel size for this camera model.

Figure C.4: 4-Core image camera. Optical image of multicore fiber and used for analysis.
Source: Made by author.

1

2 from scipy import ndimage , misc

3 from numpy import*

4 from matplotlib.pyplot import*

5

6 import imageio

7 image = imageio.imread(’Testimage.tif’)

8 im0=image [:,:,0]

9 fig =figure(figsize =(12 ,12))

10 subplot (222)

11 imshow(im0)

12 xlabel(’Pixeles ’)

13 ylabel(’Pixeles ’)

14 yticks(arange(0, im0.shape[0], 50),size =9)

15 xticks(arange(0, im0.shape[1], 50), rotation =45,size =9)

16 title(’Camera plane ’)

17 grid(linestyle=’--’,alpha =0.4)

18

19 subplot (221)

20 imshow(image)

21 title(’Original image ’)



CHAPTER C. C.2. EUCLIDEAN DISTANCE BETWEEN TWO PIXELS61

22 xlabel(’Pixeles ’)

23 ylabel(’Pixeles ’)

24 show()

25 savefig(’Safeimage.png’)

26

27 x1 = int(input("Upper limit in y-axis (in pixels): "))

28 x2 = int(input("Low limit in y-axis (in pixels): "))

29 y1 = int(input("Left limit in x-axis (in pixels): "))

30 y2 = int(input("Right limit in x-axis (in pixels):"))

31 zoom = im0[x1:x2 ,y1:y2]

32 imshow(zoom)

33 """ Numbers of cliks """

34 def onclick(event):

35 global ix , iy

36 ix , iy = event.xdata , event.ydata

37 # assign global variable to access outside of function

38 global coords

39 coords.append ((ix , iy))

40

41 # Disconnect after 2 clicks

42 if len(coords) == 2: #number of click

43 fig.canvas.mpl_disconnect(cid)

44 close (10)

45 return

46 coords = []

47

48 fig =figure (10)

49 cid = fig.canvas.mpl_connect(’button_press_event ’, onclick)

50 imshow(zoom)

51 show()

52 f = array(coords , dtype = float64)

53 print(f)

54 distp = sqrt((f[1][0] -f[0][0]) **2 + (f[1][1] -f[0][1]) **2)

55 distm=distp *3.6

56 print(’Distance between pixels (micrometers):’+ str(distm))

57 input("Press Enter to continue")

Listing C.2: Script for distance of two pixels. The number of clicks (2) and size of pixel
camera (3.6µm) is tunable.
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Appendix D

Fidelity calculation from probability
distributions

The fidelity was calculated from the experimental data by defining the Pauli operators
for the j, k subspace as [87, 88]: σ

(jk)
x = |j⟩ ⟨k| + |k⟩ ⟨j|, σ(jk)

y = i |j⟩ ⟨k| − i |k⟩ ⟨j|. Then,

Re [⟨jj| ρ |kk⟩] =
(
⟨σ(jk)

x ⊗ σ(jk)
x ⟩ − ⟨σ(jk)

y ⊗ σ(jk)
y ⟩

)
/4. Let us denote the probabilities from

the Xj measurements as P (j) = {P (j)
xy }, with x, y = 0, ..., 3. We also define the correlation

functions

Cj (α, β, γ, δ) = P (j)
αα + P

(j)
αβ + P

(j)
βα + P

(j)
ββ + P (j)

γγ + P
(j)
γδ + P

(j)
δγ + P

(j)
δδ

− P (j)
αγ − P

(j)
αδ − P

(j)
αγ − P

(j)
αδ − P

(j)
γβ − P

(j)
γβ − P

(j)
δβ − P

(j)
δβ (D.1)

for α, β, γ, δ = 0, 1, 2, 3. Then, it is a straightforward but lengthy calculation to show
that we can use the Xj measurement probability distributions in the above correlation
function to determine the terms in the Fidelity. Explicitly, we have

2Re [⟨00| ρ |11⟩] + 2Re [⟨22| ρ |33⟩] =
1

4
[C0(0, 1, 2, 3) + C1(0, 1, 2, 3)

− C2(0, 1, 2, 3)− C3(0, 1, 2, 3)] (D.2)

2Re [⟨00| ρ |22⟩] + 2Re [⟨11| ρ |33⟩] =
1

4
[C0(0, 2, 1, 3) + C1(0, 2, 1, 3)

− C2(0, 2, 1, 3)− C3(0, 2, 1, 3)] (D.3)

2Re [⟨00| ρ |33⟩] + 2Re [⟨11| ρ |22⟩] =
1

4
[C0(0, 3, 1, 2) + C3(0, 3, 1, 2)

− C1(0, 3, 1, 2)− C2(0, 3, 1, 2)] (D.4)

These expressions can be used directly in equation (5.5) to calculate the fidelity.
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[51] A. Aćın and L. Masanes, Certified randomness in quantum physics, Nature, 540,
7632, Dec 2016.

[52] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of Quantum Key
Distribution Using d-Level Systems, Phys. Rev. Lett., 88, 127902, 2002.

[53] A. Tavakoli and M. Zukowski, Higher-dimensional communication complexity prob-
lems: Classical protocols versus quantum ones based on Bell’s theorem or prepare-
transmit-measure schemes, Phys. Rev. A, 95, 042305, 2017.

[54] D. Mart́ınez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, High-
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[93] A. Máttar, P. Skrzypczyk, G. H. Aguilar, R. V. Nery, P. H. S. Ribeiro, S. P. Walborn,
and D. Cavalcanti, Experimental multipartite entanglement and randomness certi-
fication of the W state in the quantum steering scenario, Quantum Sci. Technol., 2,
015011, 2017.



CHAPTER . REFERENCES 70

[94] J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. How-
ell, Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,
Phys. Rev. A, 87, 062103, 2018.

[95] Kwiat, Paul G. and Waks, Edo and White, Andrew G. and Appelbaum, Ian and
Eberhard, Philippe H., Ultrabright source of polarization-entangled photons, Phys.
Rev. A, 60, 2, 1999.

[96] M. A. Ciampini, N. Spagnolo, C. Vitelli, L. Pezzé, A. Smerzi, and F. Sciarrino,
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