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Abstract i

Abstract
Machine learning (ML) techniques have been proposed to automatically select the
best solver from a portfolio of solvers, based on predicted performance. These
techniques have been applied to various problems, such as Boolean Satisfiability,
Traveling Salesperson, Graph Coloring, and others. These methods, known as
meta-solvers, take an instance of a problem and a portfolio of solvers as input, then
predict the best-performing solver and execute it to deliver a solution. Typically,
the quality of the solution improves with a longer computational time. This has
led to the development of anytime selectors, which consider both the instance
and a user-prescribed computational time limit. Anytime meta-solvers predict the
best-performing solver within the specified time limit.

In this study, we focus on the task of designing anytime meta-solvers for the
NP-hard optimization problem of Pseudo-Boolean Optimization (PBO). The
effectiveness of our approach is demonstrated via extensive empirical study in
which our anytime meta-solver improves dramatically on the performance of
Mixed Integer Programming solver Gurobi, the best-performing single solver in
the portfolio.

Keywords – Meta-Algorithm, Pseudo-Boolean Optimization, Anytime Algorithm
Selection
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1 Introduction 1

1 Introduction
Per-instance Automatic Algorithm Selection (AAS), first proposed in [1], consists
of, for a given instance of a known problem and a portfolio of algorithms for
the problem, a prediction of an algorithm in the portfolio that best solves the
given instance. The prediction is done by Machine Learning models that are
trained on a set of problem instances. This is of particular interest for NP-hard
optimization problems since, for such problems, there is no single algorithm that
dominates the others on every instance in every possible scenario. The anytime
behavior of an algorithm, when a feasible solution is available, is its profile of
improvement in the objective function value at each successive time step. Anytime
Automatic Algorithm Selection aims to choose the algorithm which is expected to
find the best possible solution, within the given time limit, for a specific instance.
Previously, Anytime Automatic Algorithm Selection meta-solvers were proposed
for the Knapsack [2] and Traveling Salesperson [3] problems.

We devise here an Anytime Automatic Algorithm Selection for the NP-hard
Pseudo-Boolean Optimization problem (PBO) [4], which generalizes Satisfiability
and Maximum Satisfiability problems [5]. PBO is an optimization problem
with an objective function that is a Pseudo-Boolean function and subject to
constraints that are (in)equalities over Boolean variables. Many problems are
typically modeled as PBO, including hardware and software verification [6, 7],
software dependency [8], planning [9], scheduling problems [10], among others. As
such, improving the ability to deliver high-quality solutions for PBO can impact
the solvability of a broad range of problems. Indeed, a number of commercial
and publicly available algorithms (solvers) have been proposed for PBO and the
SAT community maintains the Pseudo-Boolean Competition [11] in which the
performance of state-of-the-art solvers is assessed.

This work describes a meta-solver that, for a given instance and time limit, i)
predicts, using a Machine Learning model, which solver, among a portfolio of
solvers, will deliver a best quality (smallest objective value) feasible solution and
ii) executes such a solver. For this, we propose different machine learning models
and assess their performance. Our experiments demonstrate that our meta-solver
outperforms all the individual solvers in the portfolio by a wide margin. In
particular, our meta-solver outperforms Gurobi – which is the dominant solver in
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the portfolio – in achieving better quality solutions, for a portion of the instances
and time limits where Gurobi finds feasible solutions. In 47% out of the cases
where Gurobi does not identify feasible solutions, our meta-solver does find feasible
solutions. A major contribution of our meta-solver is that identifies with great
precision when feasibility is not expected to be attained for the given instance,
within the specified time limit.

Beyond achieving improved results, our study provides insights into the most
important features that determine the choice of the best solver. We identify the
fraction of the number of terms that appear on the objective function, out of the
total number of terms in the objective and the constraints, as a major feature.
This feature has not appeared previously in algorithm selection studies on SAT
and MaxSAT. Another major feature is the prescribed time limit, which appears
to be more important than other characteristics of the instances in determining
the solver selection.

This thesis is organized as follows: Section 2 presents essential concepts and
terminology. In Section 3 we discuss related work. Section 4 describes the meta-
solver construction and Section 5 presents and analyzes experimental results.
Finally, Section 6 discusses future work and conclusions.

This project was done with the Meta-Algorithms Research Group of the University
of California, Berkeley.

1.1 Hypothesis
The use of Machine Learning techniques will allow to generate a meta-solver for
the Pseudo-Boolean Optimization Problem that will adequately select a solver
from a portfolio of solvers, given an instance and a user specified time limit. This
meta-solver will outperform the best-performing single solver, in regards to a
performance metric.
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1.2 Objectives

1.2.1 General Objective

To implement an Anytime Automatic Algorithm Selection meta-solver based on a
Machine Learning model that improves the state-of-the-art for the Pseudo-Boolean
Optimization Problem.

1.2.2 Specific Objectives

• To design an efficient experimentation environment for evaluating the
anytime behavior of the state-of-the-art solvers for the Pseudo-Boolean
Optimization problem.

• To collect Pseudo-Boolean Optimization algorithms and adapt them to
observe their anytime behavior.

• To identify patterns that characterize and differentiate instances of the
Pseudo-Boolean Optimization problem, for the purpose of finding an
indicator of the best way each instance can be solved. In order to be
useful, these characteristics must be easy to compute.

• To create a Machine Learning model that recommends a solver which will
give the best feasible solution for a specific instance of the Pseudo-Boolean
Optimization problem, given a time limit restriction.

• To evaluate the created meta-solver and compare its performance against the
best-performing single solver of the Pseudo-Boolean Optimization problem.

1.3 Limitations
• For the present work, only time will be considered as a computational

resource in order to make the selection of the best Pseudo-Boolean
Optimization solver. Space will not be considered.
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2 Preliminaries
In this Section, we provide formal definitions of the Pseudo-Boolean Optimization
problem, Machine Learning and the Automatic Algorithm Selection problem.
In addition, we give an overview of the Machine Learning models that we use,
and we also present a performance metric, called the m̂, that is used in addition
to accuracy and confusion matrix to assess the performance of the proposed
meta-solver.

To facilitate the reading of the paper we provide, in Table 2.1, a list of acronyms
used throughout.

Acronym Definition
AAS Automatic Algorithm Selection

AAAS Anytime Automatic Algorithm Selection
ASLib Algorithm Selection Library

ASP Answer Set Programming
BCS Boolean Constraint Satisfaction
BDD Binary Decision Diagram

CDCL Conflict Driven Clause Learning
GB Gradient Boosting

CNF Conjunctive Normal Form
CNN Convolutional Neural Network
KNN K-Nearest Neighbors

LP Linear Programming
LS Local Search

LSU Linear SAT-UNSAT algorithm
MaxSAT Maximum Boolean Satisfiability problem

ML Machine Learning
MIP Mixed Integer Programming

NaPS Nagoya Pseudo-Boolean Solver
PB Pseudo-Boolean

PBO Pseudo-Boolean Optimization
RF Random Forest

SAT Boolean Satisfiability problem
SBS Single Best Solver
TSP Traveling Salesperson problem
VBS Virtual Best Solver

WBO Weighted Boolean Maximization
WPM Weighted Partial MaxSAT

Table 2.1: Acronyms used in this paper

2.1 Pseudo-Boolean Optimization (PBO)
A Pseudo-Boolean function is a mapping f : {0, 1}n → R, where R is the set of
real numbers, [4]. A Pseudo-Boolean Optimization Problem (PBO) is formulated
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for an array of Boolean variables x as follows:

min f(x)

s.t. g1(x) ≥ a1
...

gn(x) ≥ an

x ∈ {0, 1}n.

Without loss of generality, the constraints are of the form gi(x) = b1t1 + b2t2 +

. . .+ bntm, where bi are integers, and tj , called a term, is a product of the variables
in a subset Sj ∈ {1, 2, . . . , n}, tj =

∏
k∈Sj

xk.

2.1.1 Pseudo-Boolean Competition

The Pseudo-Boolean Competition [11] is a special event, part of the International
Conference on Theory and Applications of Satisfiability Testing (SAT), organized
by the SAT Association. The goal of this evaluation is to assess the state of the
art in the field of Pseudo Boolean solvers. Several state-of-the-art solvers have
come up from that competition, such as solver NaPS [12], solver Open-WBO [13],
solver Minisat+ [14], among others.

2.2 Machine Learning
Machine Learning, as stated in [15], is a sub-field of Artificial Intelligence that
enables software to use raw data to extract patters (learn) and improve from
experience in order to acquire new knowledge, it aims for computer systems to
imitate the way humans learn.

Over the past decade, the field of Machine Learning (ML) has undergone significant
development, according to [16]. ML has become a powerful tool for processing
and analyzing large volumes of data, as algorithms developed for various ML
models aim to uncover hidden patterns within the data. These models learn from
a given set of data, called a training set, to create a function f that maps an input
instance to a corresponding scalar or vector output, referred to as labels.

The process by which f is learned determines the classification of the ML model:
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• Supervised models: their learning process relies on ground truth labels,
consisting of input instances and their corresponding output labels. Examples
of supervised models can be found in Burkart’s survey [17].

• Unsupervised models: if the model finds patterns independently without
access to ground truth labels, it is considered unsupervised, as seen in
Alloghani’s work [18].

• Semi-supervised models: these models combine ground truth labels with
pattern analysis of input data to learn, as described in [19].

Supervised and unsupervised machine learning can both perform automatic
algorithm selection/configuration, as demonstrated by the work of [20]. However,
the focus of this text is on supervised Machine Learning.

ML models can also be classified based on the nature of the output produced by
f :

• Classification model: its output consists of discrete values used to
categorize inputs into different classes.

• Regression model: its output corresponds to real values.

The supervised ML algorithms for classification used here are:

Random Forest: The Random Forest (RF) method, as described by
Breiman [21], is an ensemble technique [22] that constructs a specified
number of Decision Trees (controlled by a parameter nestimators).

A Decision Tree [23] is a supervised machine learning algorithm used for
classification and regression. The algorithm takes data and creates a tree
model which explicitly represents decision making. In this model, leaves
represent labels and branches represent conjunctions of features that lead to
those labels.

In RF, each tree is trained on a different subset of instances within the
training set and proposes a result to compute the output label. The final
output label is determined through a consensus scheme that differs depending
on whether the model is a regression or classification model. In the case
of regression, the consensus is reached by averaging the outputs of all
the Decision Trees. In contrast, for classification models, the output label
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corresponds to the most frequently repeated label (voted) among the Decision
Trees’ outputs. A representation of the above is presented in Figure 2.1.

Figure 2.1: Random Forest

k-Nearest Neighbors: The k-Nearest Neighbors (KNN) algorithm, introduced
by Fix and Hodges [24], is a Machine Learning (ML) method that determines
the output label based on the labels of the k closest training examples to
the input point being labeled. The distance between the feature vectors of
the input point and the training examples can be calculated using various
metrics, but the most commonly used is the Euclidean distance.

For classification tasks, KNN assigns the output label as the most frequently
occurring label among the k neighbors. In the case of regression tasks, the
output label corresponds to the average of the labels of the k neighbors.

Gradient Boosting: Gradient Boosting (GB) is an ML method, proposed in [25],
that builds upon the ideas behind Ada Boost [26]. GB allows for different
parameterized loss functions to be defined. The learning process involves
consecutively training a parameterized number (nestimators) of new “weak´´
models, with each new model being given as input to the next iteration. In
a manner similar to gradient descent, a negative gradient is computed based
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on the past model, which is weighted according to a parameterized scheme
(learning_rate). A move in the opposite direction is then taken to reduce
the loss. This process is repeated to improve the performance of the model.

2.2.1 Deep Learning

Deep Learning is a specific type of ML, which is in turn a type of AI. Figure 2.2
represents the relationship between the different AI disciplines.

Figure 2.2: Venn Diagram that shows the relationship between Artificial
Intelligence, Machine Learning and Deep Learning.

As described in [15], Deep Learning is a Representation Learning method that
allows computers learn from experience and represent the world through a hierarchy
of concepts, building complex concepts out of simpler ones. That is, DL has
multiple levels of representation, obtained from simple non-linear modules that
transform the representation from one level into a representation at a higher, more
abstract level, starting from the raw input on the first level.

The most typical example of a DL model is the feed-forward deep network or
multilayer perceptron, which is a mathematical function that maps an input value
to an output value. To go from one layer to the next one, a set of units compute
the weighted sum of the inputs received from the previous layer and then apply a
non-linear activation function.
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One particular type of feed-forward deep network that specializes in processing
data with a grid-like topology is the Convolutional Neural Network. Figure 2.3,
shows a basic Convolutional Neural Network and its main components:

• Convolutional Layer: Convolution is a mathematical operation that works
as a filter. In this layer, a convolution kernel filters the feature map (input
data) to obtain specific information.

• Pooling Layer: Pooling consists of taking input and reducing it to a single
value (subsampling).

• Fully Connected Layer: Layers in which all the inputs from the previous
layer are connected to every activation unit of the next layer.

• Output Layer: Last layer, which outputs the results.

Figure 2.3: Simple Convolutional Neural Network

2.2.2 Evaluation Metrics

There are several evaluation metrics for Machine Learning models. Some metrics
to evaluate specifically a classification model are:

• Accuracy: number of correct predictions divided by the total number of
predictions.

• Precision: ratio of true positives and total positives predicted.

• Recall: ratio of true positives to all the positives in ground truth.
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• Confusion Matrix: a tabular summary of the number of correct and
incorrect predictions made by a classifier. It is a N ×N table, being N the
number of classes. In each cell, the matrix compares the actual target values
with what the model predicted.

2.3 Algorithm Selection
The Algorithm Selection problem [1] consists on selecting an algorithm from a
portfolio of algorithms for a specific problem, based on its efficiency to solve a
given instance. The motivation of such problem is funded on the observation
that for practically any computational problem, different instances are best solved
using different algorithms. This is specially important for hard problems, for
which there is no single algorithm that defines the state-of-the-art, but a set of
them that work best in different scenarios.

A specific type of Algorithm Selection is per-instance Automatic Algorithm
Selection (AAS): given a problem P , with I a set of instances of P , A =

{A1, A2, ..., An} a set of algorithms for P and a general given metric pm that
measures the performance of any algorithm Aj ∈ A for I, AAS consists of a
selector S that maps any instance i ∈ I to an algorithm S(i) ∈ A such that the
overall performance of S on I is optimal according to metric pm.

This predicament has been applied for a variety of problems and studied for
several years. An important examination on the subject was made in [27], this
work provides an overview on the research in the area, explaining the basis for
the subject and successful applications of Algorithm Selection in discrete and
continuous optimization.

The state-of-the-art in Algorithm Selection has been boosted by the Algorithm
Selection Competitions [28], which has also standardized the way oracles are
measured, defining a metric m̂ to evaluate the performance of different Algorithm
Selectors.
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2.3.1 Performance metric for Anytime Automatic

Algorithm Selection

In order to measure the performance of a solver s ∈ A over time, we discretize the
time-space into timesteps. Let I be a set of instances, and T a set of timesteps.
For the instance-timestep pair (i, t) ∈ I × T , let os(i, t) be the objective value
of s on instance i, at timestep t. Since the value for os(i, t) can greatly vary
across instances and timesteps, in order for each data point to weigh equally in a
cumulative metric, a normalization function n(os(i, t), i, t) is used to map os(i, t)

values to a uniform range. For PBO, we use the normalization given in (5.2). The
cumulative metric ms we use, also considered in [29], is defined as:

ms =
∑

(i,t)∈I×T

n(os(i, t), i, t) (2.1)

and corresponds to the normalized cumulative performance of solver s across all
pairs (i, t) ∈ I × T . For a meta-solver ms that for each (i,t) instance-timestep
pair selects solver s′i,t its cumulative performance metric is defined as:

mms =
∑

(i,t)∈I×T

n(os′i,t(i, t), i, t) (2.2)

The evaluation of meta-solvers is usually done in comparison to the performance
of Single Best Solver and Virtual Best Solver, defined as:

• Single Best Solver (SBS): The single algorithm that performs best (on
average) on all instances.

• Virtual Best Solver (VBS): A solver that makes perfect decisions and
matches the best-performing algorithm for each problem instance, without
overhead.

For an algorithm selector meta-solver ms, the m̂ms metric was proposed for the
Algorithm Selection Competitions [28], using, for each solver s, the performance
metric ms =

∑
i∈I n(os(i), i). Here we generalize it for Anytime Algorithm Selector

meta-solvers as follows.
m̂ms =

mms −mV BS

mSBS −mV BS

(2.3)
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where mms is the normalized cumulative performance of meta-solver ms, mV BS is
the normalized cumulative performance of the VBS, and mSBS is the normalized
cumulative performance of the SBS.

We observe that:

• The closer m̂ms to 0, the more similar the meta-solver is to the VBS.

• If m̂ms > 1, then the meta-solver is worse than the SBS and, hence, is not
useful.
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3 Related Work
This section provides an overview of related work on Pseudo-Boolean Optimization
solvers and on Automatic Algorithm Selection for the SAT and MaxSAT problems,
which are special cases of PBO. This section also discusses recent work on Anytime
Automatic Algorithm Selection.

3.1 PBO solvers
Most PBO solvers are based on making calls to a program subroutine, based on
the Conflict-Driven Clause-Learning (CDCL) algorithm [30], that solves a decision
problem on whether the input formula is feasible or not. The optimization problem
is translated into a feasibility problem by adding to the constraints the objective
function constraint, which is an inequality specifying that the objective function is
less than or equal (for minimization) to a specified upper bound. This translates
the PBO problem into a Boolean Constraint Satisfaction (BCS) problem. Many
solvers (e.g. [14, 12, 31]) further encode the BCS problem as a CNF Satisfiable
(SAT) formula. Another family of solvers, e.g. [32, 33], implement a Branch
& Bound search strategy on a search tree that, at each node, solves the linear
relaxation of the problem. In addition to these, a third family of solvers uses local
search procedures [34].

Next, we list the PBO solvers considered for inclusion in the portfolio of the
meta-solver. These solvers were chosen due to their good performance in the PBO
competitions [11].

NaPS: The Nagoya Pseudo-Boolean Solver [12] won the 2016 Pseudo-Boolean
Competition in 4 categories. This solver is a MaxSAT solver, based in
Minisat+[14]. The main difference between NaPS and other PBO solvers
that translate the formula to MaxSAT, is that NaPS uses Binary Decision
Diagrams (BDD) to translate the PB constraint to a SAT formula.

OpenWBO: Open-WBO [13] is a weighted partial MaxSAT solver that won
second place in two categories in the 2016 PBO Competition. PBO instances
are easily translated into weighted partial MaxSAT instances where the
PBO’s constraints are translated into hard clauses (that must be satisfied),
and the objective function is translated into a set of weighted soft clauses.
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Open-WBO implements five different search algorithms, of which we only
consider two since the other three were dominated by other algorithms in
our portfolio. The two search algorithms are:

Linear-su: This algorithm translates the PBO instance to Weighted Partial
MaxSAT and uses the LSU search strategy as explained in [35]. We
will refer to this option as OpenWBO-lsu.

oll: This algorithm translates the PBO instance into Weighted Partial
MaxSAT and uses a search strategy similar to WPM1, as explained in
[36]. This option will be referred to as OpenWBO-oll.

Clasp: Clasp [37] is part of the PosTdam Answer Set Solving COllection,
POTASSCO. It is a CDCL solver for Answer Set Programming. Answer Set
Programming (ASP) is a form of declarative programming oriented towards
difficult (primarily NP-hard) search problems that is more expressive and
subsumes PBO. It uses different semantics than other CDCL solvers and, as
such, it has superior performance for certain subsets of instances.

LS-PBO: The local search LS-PBO solver achieved good performance in instances
from the PB competition. It features a transformation of the objective
function into objective constraints, a constraint weighting scheme for the
Pseudo-Boolean constraints, and a scoring function to guide the local search
[34].

Gurobi: Gurobi [33] is a Mixed Integer Programming (MIP) commercial solver
that is able to handle mixed linear, quadratic and second-order cone
constraints. When solving a PBO instance, Gurobi uses a Branch & Bound
search procedure powered by advanced preprocessing techniques, intelligent
generation of cutting planes, specialized heuristics, and parallel processing.
Here we used version 9.5.0.

RoundingSAT: The RoundingSAT solver, originally introduced in [38], is a
CDCL solver that includes faster propagation routines for PB constraints.
Unlike other solvers, it does not translate the PB constraints into a SAT
formula but executes conflict analysis directly on the PB constraints. It also
allows for incorporating a Linear Programming (LP) solver into its pipeline.
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3.2 Algorithm Selection for SAT and MaxSAT
A thorough review of Automatic Algorithm Selection (AAS) is provided in [27].
The performance of AAS meta-solvers has been improved over time due to the
influence of Algorithm Selection Competitions [28] and the maintenance and
updating of the Algorithm Selection Library (ASLib) [39].

In particular, for SAT and MaxSAT (which are closely related to PBO), many
successful meta-solving approaches were proposed in [40], [41], [42],[43], [44], [45],
[46]. For example, the SATzilla solver [40] has been quite influential in the SAT
community and won several categories in different versions of the SAT competition
and SAT evaluation. SATzilla is a Portfolio-Based Algorithm Selection system
that chooses the appropriate solver in the portfolio, based on the computation
of a number of features from the input instance and other features it collects
from probing procedures. For MaxSAT, an improved instance-specific algorithm
configuration, also based on different formula and probing features, was proposed
in [42]. This solver won the majority of the categories of the MaxSAT competition
in 2016.

SATzilla’s first version [47] proposed 84 features for characterizing SAT instances,
classified into 9 categories: problem size, variable-clause graph, variable graph,
clause graph, balance, proximity to Horn formulae, LP-based, CDCL probing and
local search probing features. Later on, to build the Satzilla Algorithm Selector [40]
48 of those proposed features were used, excluding the computationally expensive
ones. These features are listed below:

• Problem size features:

– Number of clauses: denoted c.

– Number of variables: denoted v.

– Ratio: c/v.

• Variable-clause graph features:

– Variable nodes degree statistics: mean, variation coefficient, minimum,
maximum and entropy.

– Clause nodes degree statistics: mean, variation coefficient, minimum,
maximum and entropy.
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• Variable graph features:

– Nodes degree statistics: mean, variation coefficient, minimum and
maximum.

• Balance features:

– Ratio of positive and negative literals in each clause: mean, variation
coefficient and entropy.

– Ratio of positive and negative occurrences of each variable: mean,
variation coefficient, minimum, maximum and entropy.

– Fraction of binary and ternary clauses.

• Proximity to Horn formula:

– Number of occurrences in a Horn clause for each variable: mean,
variation coefficient, minimum, maximum and entropy.

• CDCL probing features:

– Number of unit propagations: computed at depths 1, 4, 16, 64 and 256.

– Search space size estimate: mean depth to contradiction and estimate
of the log of number of nodes.

• Local search probing features:

– Fraction of improvement due to first local minimum: mean for local
search algorithms SAPS [48] and GSAT [49].

– Number of steps to the best local minimum in a run: mean, median,
10th and 90th percentiles for SAPS .

– Average improvement to best in a run: mean improvement per step to
best solution for SAPS.

– Coefficient of variation of the number of unsatisfied clauses in each
local minimum: mean over all runs for SAPS.

In MaxSAT by improved instance-specific algorithm configuration [42], 32 of the
standard SAT features were selected, such as the number of variables, number of
clauses, proportion of positive to negative literals, and average number of clauses
in which a variable appears, among others. In addition, for the specific MaxSAT
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problem, they also computed the percentage of clauses that are soft and the
statistics of the distribution of weights.

A new approach to AAS was proposed in [50], following the philosophy of deep
learning models that replace domain-specific features with generic raw data, from
which they learn the important features automatically. For this, the authors
propose to use as raw data the input text file of any combinatorial problem and
convert it to a fixed-size image, that will be used as input for a Convolutional
Neural Network (CNN). Specifically, they first create a vector from the input file,
replacing each character with its ASCII code, they then reshape the vector as a
matrix of

√
N ×

√
N, where N is the number of total characters in the input text

file. Finally, this new “image” of ASCII values is re-scaled to a predefined size,
to work with a set of images of the same size. With this input, the selector is a
trained CNN multi-label classification model that encodes the input instance and
outputs the most promising solver for the instance. This approach is tested with
SAT and Constraint Satisfaction (CSP) instances, obtaining a meta-solver that
is able to outperform the Single Best Solver, but underperforms in comparison
with methods based on domain-specific features. As a baseline for our work, we
will use a straightforward adaptation to this approach to anytime scenarios, since
no specific work on Anytime Automatic Algorithm Selection for PBO has been
proposed until now.

3.3 Anytime Automatic Algorithm Selection
Coping with hard-optimization problems, there is a choice between using efficient
heuristics, that work fast but do not necessarily provide high-quality solutions, and
exact methods, that may require prohibitive computational time but on average
tend to provide better quality solutions. As such, there is a trade-off between
running time and the quality of the solution. This trade-off was discussed in [29].

The Anytime Automatic Algorithm Selection (AAAS) framework maps a
computational time limit provided by the user to the solver that is predicted to
deliver the best-quality solution within this time limit. Meta-solvers based on
AAAS were proposed in the literature, for example, for the Knapsack [2] and
Traveling Salesperson (TSP) [3] problems.

In [2], the authors propose an AAAS-based meta-solver for the Knapsack problem.
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They show that, when taking the time into account, their meta-solver was able
to predict the best algorithm among a set of 9 solvers for most of the problem
instances. In [3], the authors present a new AAAS meta-heuristic for the TSP,
using a model that selects among 5 state-of-the-art TSP algorithms, obtaining
results with a precision of 79.8%.

For data collection in the previous two works, the authors utilized an instance
generator that emulates the existing public datasets on Knapsack and TSP. For the
PBO problem, however, a high-quality instance generator (that generates highly
realistic and diverse problem instances) does not currently exist, which prevents
us from synthetically augmenting the data used for training and evaluation.

Anytime approaches distinguish themselves from all the approaches in the AS
Competition in the sense that the model is trained taking into account the
anytime behavior, which is used not only for evaluation. The training includes
one data point for each pair < instance, time > which is associated with a label
corresponding to the best solver for the pair. Hence, since the setup is different,
AS Systems do not fit the anytime scenario.
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4 Designing the Machine Learning Oracle

for AAAS for PBO
In this section we describe the workflow we carried on for designing and
implementing AAAS Machine Learning oracles for PBO. In Subsection 4.1 we
elaborate on the characteristics of the instance benchmarks used for our work.
In Subsection 4.2 we give details on how we recorded the anytime behavior of
the solvers on the chosen portfolio. Subsection 4.3 presents the dataset we used
for the training and testing of our meta-solver, and Subsection 4.4 describes the
possibilities we considered for characterizing the instances to use as input to our
models. Further details on the ML models and algorithms tested can be found in
Subsection 4.5. Finally, Subsection 4.6 presents the evaluation of the implemented
ML models.

4.1 PBO instances
The dataset of PBO instances was obtained from the 2006, 2007, 2009, 2010, 2011,
2012, 2015, and 2016 Pseudo-Boolean Competitions [11]. These instances were
collected from different domain applications such as Bio-informatics, Timetabling,
and Hardware verification, among others. The instances with similar origins are
organized in benchmarks or “families”, and differ from one another in the type of
constraints (linear or nonlinear) and the magnitudes of the constraints’ coefficients
(normal integers or arbitrary precision integers). Our experimental study includes
118 benchmarks, for a total of 3128 feasible instances.

4.2 PBO solvers
The solvers used for the construction of the meta-solver, described in detail
in Section 3.1, are: NaPS, two variants of OpenWBO, LS-PBO, RoundingSAT,
Gurobi and Clasp. We only considered solvers that either have their codes available
so as to modify them to record their anytime behavior, or already provide this
capability by default.

In order to evaluate the anytime behavior of the solvers, we discretize a time
interval of one hour into 500 timesteps following a logarithmic scale, analogous to
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[3]. We keep track, whenever the value of the objective function improves, of the
corresponding timestep and the updated new solution.

Figure 4.1: Anytime behavior of the solvers for the instance “normalized-C499_b”
from Benchmark 106.

The anytime behavior of each solver is recorded as the updated best objective
value (incumbent) for each of the 500 timesteps. Figure 4.1 shows the anytime
behaviors of the solvers for the instance “normalized-C499_b”, which corresponds
to a logic-synthesis application. Note that the solver that outputs the solution
with the smallest value at a given timestep ts is considered the best option
for any specified time limit between the time corresponding to ts and the next
timestep ts+ 1. In Figure 4.1 we observe the change in the best solver across the
timeline. Initially, for small time limits, Clasp is the best solver. Then, after a
few milliseconds, LS-PBO becomes the best solver, but it is finally outperformed
by Gurobi.

A solver is said to win an instance-timestep pair if it computes the best-found
solution (i.e. a feasible solution with the best objective value) for that instance
in that timestep. Ties are broken in favor of the solver that achieved such best
incumbent first.

Figure 4.2 presents in a different way the same information from Figure 4.1,
indicating the ranking the solvers from 1st (winner) to 7th place across time. If
a solver does not get a solution, it is not shown. As mentioned before, for the
instance “normalized-C499_b” Clasp obtained first place for the first few seconds,
then being replaced as the best by LS-PBO and finally Gurobi remains the winner.
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Figure 4.2: Rank of solvers across time for instance “normalized-C499_b” from
Benchmark 106.

4.3 Training and testing dataset generation
The dataset we used for building our ML oracles was generated from running
all the solvers on the portfolio over all the instances we collected. Figure 4.3
summarizes the number of wins for each solver across the time horizon, for each
of the 3128 instances. For each solver, on the horizontal axis, there is a bar
consisting of 500 vertical lines, colored from light blue (for the small timesteps)
all the way to purple (for the large timesteps). We include a “no solution” entry
for instance-timestep pairs where no feasible solution was identified by any of the
solvers. Throughout various instances and time intervals, four dominant solvers
emerge: Gurobi, RoundingSAT, OpenWBO-oll and LS-PBO. RoundingSAT and
LS-PBO exhibit a greater share of wins for smaller timesteps, in comparison with
larger ones. Conversely, Gurobi’s success rate grows as the timesteps become
larger. Although OpenWBO-lsu, NaPS, and Clasp do not command a significant
portion of victories, they complement the behavior of the more dominant solvers
within the portfolio.

Figure 4.4 summarizes the information on the best solver for each instance and
for each timestep. In this figure, it is apparent that the best solver performance
depends on the benchmark as well as the timestep. The clear implication is that
there is no single best solver for all the instances and timesteps. Since instances
belonging to the same family are plotted together, we can also observe that the
behavior of the solvers in the portfolio seem to depend on the family of the
instances. Most of the instances for which no feasible solution is found by any
of the solvers across 500 timesteps belong to benchmarks “mps-v2-20-10” and
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Figure 4.3: Number of wins for each solver across the time horizon (see
explanation in text).

Figure 4.4: Best solver per instance for each timestep. The horizontal axis
represents the 3128 instances arranged in the 118 benchmarks. Each vertical bar
displays, for one instance, the change in the best solver over the timesteps.

“market-split” from the 2006 version of the PB Competition, benchmarks “opb-
trendy” and “opb-paranoid” from the PB Competition 2010 and PB Competition
2012. These benchmarks correspond to the competition’s category called BIGINT,
which means that the coefficients can be arbitrary precision (i.e. not bounded)
integer numbers.

To train and test the ML models, the instances were partitioned into training and
testing sets. This was done by partitioning the instances of the 118 benchmarks
into 70% for training and 30% for testing, resulting in 2054 instances for training
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and 1074 instances for testing. The partition was done by randomly picking the
instances from each benchmark, maintaining the same ratio.

4.4 Characterization and labeling

4.4.1 Loreggia’s representation

An adaptation of [50] is used as a baseline for our work. Loreggia’s representation
was further explained previously.

For this project, each one of the 3128 PBO instances was transformed into a
√

N ×
√

N matrix containing the corresponding ASCII values, where N is the
number of total characters in each original input text file. Then, this gray-scale
image was re-scaled into 256× 256 size. Figure 4.5 shows three different instances
transformed to images by implementing the previous procedure.

(a) Benchmark 1,
instance

“normalized-single-obj-
f4-DataDisplay”

(b) Benchmark 106,
instance

“normalized-C499_b”

(c) Benchmark 118,
instance

“normalized-30_30_4”

Figure 4.5: Instances represented as images.

4.4.2 Domain-specific features for PBO

Based on previous work on SAT [40] and MaxSAT [42], we defined a set of features
for our problem. For this selection, considering the anytime nature of our meta-
solver, we focus on informative fast-to-compute features. Since our problem has its
own characteristics, we also test some other features that are specific to non-linear
PBO instances. Therefore, here we use the following 8 sets of domain-specific
features :
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• Number of constraints: Number of constraints in the instance. An
equivalent feature for SAT and MaxSAT was used by [40] and [42].

• Number of variables: Number of Boolean variables present in the instance.
This feature was used by [40] and [42].

• Linearity: Identifies if the formula contains non-linear constraints. No
similar feature was proposed before.

• Distribution of the number of terms per constraint: We partition
the constraints into four classes according to the number of terms they
contain: 1, 2, 3, or 4 or more terms. The four percentages of the number
of constraints in each class out of the total are four features in this set. A
similar set of features was used by [40].

• Term degree: Percentage of unary, binary, ternary and quaternary-or-more
terms. This is the number of terms with 1, 2, 3, or 4 or more variables out of
the total number of terms in the instance. No similar feature was proposed
before.

• Objective function size: Percentage of terms that are present in the
objective function, out of the total number of terms. No similar feature was
proposed before.

• Positive terms (Constraints): Percentage of positive terms in the
constraints. An equivalent feature was used by [40] and [42].

• Positive terms (Objective): Percentage of positive terms in the objective
function. Inspired by the above, we extend the feature for the objective
function.

4.4.3 Ground truth labeling for the models

As mentioned in Subsection 4.2, 7 different solvers were used to create the meta-
solver. We then use the solvers as labels to identify which solver is the best for a
given instance-time pair. We include a “no solution” label to indicate the cases
where no solver obtains a feasible solution at a given timestep. This can be useful,
especially, for hard instances where solvers require a long time to compute the
first feasible solution. Also, in practice, a “no solution” label may indicate to the
user the need for allocating more computational resources for solving the instance.
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Nevertheless, this feature of our model was not used for the final evaluation of
the meta-solver, since this kind of prediction is not usually considered in the m̂

metric.

4.5 Machine Learning Models
A generic ML approach that uses Convolutional Neural Networks (CNN) to
design an automatic algorithm selector that is able to work without the need
of handcrafted domain-specific features is proposed in [50]. We test variants of
this method against variants of Random Forest, Gradient Boosting and k-Nearest
Neighbors based on the domain-specific characterization of Subsection 4.4.2.

Despite the potential misalignment between accuracy and m̂ metrics, we have
chosen to train multi-label classification models that prioritize accuracy. This
decision stems from the requirement of having simple and fast ML models for
anytime scenarios. By employing a multi-label classification model, our approach
offers the advantage of considering all solvers simultaneously and making a single
call to the oracle to make a decision. This stands in contrast to more complex
Algorithm Selection Systems that typically involve multiple ML oracles, such as
multiple binary classification models for each pair of alternatives or regression
models for individual solvers. The use of such complex systems would result
in prohibitively long prediction times, which are not suitable for our anytime
scenario.

4.5.1 CNN for Loreggia’s representation

As a baseline method, we characterize the instances as images, following the
proposal of [50] (described in Subsection 4.4.1). These images are given as input
to a Convolutional Neural Network (CNN), which outputs the best solver for every
timestep. Hence, we adapt the method to handle anytime scenarios by learning
a label for each of the possible 500 timesteps. That way, when a prediction for
a particular time is needed, we have to inspect the output of the network that
corresponds to the closest (smaller or equal) timestep output.

For the implementation of the CNN, three different architectures were tested:
VGG16 [51], AlexNet [52] and GoogLeNet [53]. These architectures are shown
in Figures 4.6, 4.7 and 4.8, respectively.
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Figure 4.6: VGG16 Architecture

Figure 4.7: AlexNet Architecture

Figure 4.8: GoogLeNet Architecture. Different colors denotes different layers:
Convolutional layers are colored blue, pooling layers are shown in red, Softmax
activation function is colored yellow and green corresponds to others.
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4.5.2 Models using domain-specific features

In our study, we conducted experiments using three ML algorithms, as outlined in
Subsection 2.2. These algorithms were implemented using the Scikit-learn library
[54]. We utilized various subsets of the 14 domain-specific features described
in Subsection 4.4.2. Additionally, hyperparameter tuning was performed to
determine the optimal architecture for each model, as well as weighting strategies
to compensate for the natural bias induced by the dominating classes of the
portfolio.

RF_basic: The Random Forest classifier uses only two features: the number of
constraints and the number of variables. The hyperparameters used were:
n_estimators = 100, max_features = "sqrt", criterion = "gini".

RF_nonlinear: The Random Forest classifier uses all the 8 sets of domain-
specific features. The hyperparameters used were: n_estimators = 100,
max_features = "sqrt", criterion="gini".

RF_linear: The Random Forest classifier uses features of the linearized version
of the PBO instance. Therefore, the features related to non-linearity and
term degree are redundant and removed. The hyperparameters used were:
n_estimators=100, max_features = "sqrt", criterion = "gini".

GB_basic: The Gradient Boosting classifier uses only two features: the
number of constraints and the number of variables. The hyperparameters
used were: n_estimators = 100, learning_rate = 0.5, max_depth = 3,
max_features="sqrt".

GB_nonlinear: The Gradient Boosting classifier uses all the 8 sets of domain-
specific features. The hyperparameters used were: n_estimators = 100,
learning_rate = 0.25, max_depth = 3, max_features = "sqrt".

GB_linear: The Gradient Boosting classifier uses features of the linearized
version of the PBO instance. Therefore, the features related to non-
linearity and term degree are redundant and removed. The hyperparameters
used were: n_estimators = 100, learning_rate = 0.1, max_depth = 3,
max_features = "sqrt".

KNN_basic: The k−Nearest Neighbors classifier uses only two features: the
number of constraints and the number of variables. The hyperparameter
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used was: n_neighbors = 13.

KNN_nonlinear: The k−Nearest Neighbors classifier uses all the 8 sets of
domain-specific features. The hyperparameter used was: n_neighbors =

21.

KNN_linear: The k−Nearest Neighbors classifier uses features of the linearized
version of the PBO instance. Therefore, the features related to non-linearity
and term degree are redundant and removed. The hyperparameter used was:
n_neighbors = 21.

For all the variants, the set of features is augmented with the feature of timestep,
which increments the number of the model’s input features in one. We note that
for the linear versions, we first need to linearize the input instance in order
to compute the purely linear features, which is not the case for the nonlinear

versions, for which we don’t incur in such overhead for the computing of the
non-linear features.

4.6 Evaluation

ML Oracle Accuracy Metric m̂

Loreggia’s w VGG 0.4712 1.00
Loreggia’s w AlexNet 0.5775 0.7157
Loreggia’s w GoogLeNet 0.4931 1.3565
RF_basic 0.6580 0.7108
RF_nonlinear 0.7106 0.5250
RF_linear 0.7159 0.5729
GB_basic 0.6379 0.8252
GB_nonlinear 0.7046 0.6198
GB_linear 0.7184 0.6501
KNN_basic 0.6225 0.8481
KNN_nonlinear 0.6407 0.8589
KNN_linear 0.6621 0.7971

Table 4.1: Accuracy and m̂ values for different Machine Learning Models and
subsets of characteristics.

Table 4.1 compares the accuracy and m̂ values (calculated as described in 5.1) of
the different combinations of ML models and subsets of features as explained in
the previous subsection. As can be seen, GB_linear provides the best performance
in accuracy and RF_nonlinear the best performance in the m̂ metric.
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The ML methods relying on domain-specific features, regardless of the subsets of
features considered, outperform in accuracy the deep-learning networks based on
the generic representation of [50], which we take as a baseline. The Deep Learning
Network that provides the best accuracy and m̂ values is the one based on the
AlexNet architecture.

Although not perfect, Table 4.1 demonstrates an inverse correlation relation
between the accuracy and m̂ metrics. This is with the noticeable exception of
the best-performing Deep Learning Network, AlexNet, which, in comparison with
GB_basic and all KNN models, with a worse accuracy value achieves a better m̂
score.

It is important to note that this table does not account for the overhead associated
with computing the features or the time required for the models to generate
predictions. These factors can significantly impact the practical performance of
using these models to build an anytime meta-solver. Therefore, we will further
analyze and present results considering the four best-performing combinations
of models and sets of features: RF_nonlinear, RF_linear, GB_nonlinear, and
GB_linear.

Figure 4.9 depicts the Confusion Matrix for our best models. It is evident that all
matrices demonstrate a similar pattern in the behavior of the models. Generally,
it can be inferred that the classes were learnable, except for the Clasp class, which
has a smaller representation in the dataset. It is natural for these models that the
higher the class representation in the dataset, the higher the accuracy for that
class. Similarly, a higher class representation increases the likelihood of the model
over-predicting that class. To mitigate this issue, we implemented methods to
address the bias introduced by the dominant classes. These methods involved
assigning, during the training of the models, bigger weights to miss-classifications
of less frequent classes, compared to the more dominant ones.

The output of Random Forest and Gradient Boosting includes the MDI (Mean
Decrease in Impurity) for each feature, which is a proxy for feature importance.
The higher the value of the MDI, the more important the feature is. Figure 4.10
shows the MDI values for the 10 features of the linearized instances for both
models. It is evident that the importance of features varies depending on the
model used. In particular, for the GB model, the timestep feature appears to
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(a) RF_nonlinear (b) RF_linear

(c) GB_nonlinear (d) GB_linear

Figure 4.9: Confusion matrices of PBO meta-solvers based on RF_nonlinear,
RF_linear, GB_nonlinear and GB_linear.

be less significant compared to other features related to the composition of the
PBO formula in making predictions. On the other hand, the RF model heavily
relies on the timestep feature to make recommendations. Both models consider
the percentage of terms that are present in the objective function, first proposed
here, as a very important feature.

Figure 4.11 provides a visual representation of how our two most accurate models,
RF_linear and GB_linear, behave. By examining this figure in conjunction
with Figures 4.9, 4.10 and Table 4.1, we can draw some conclusions. Although
GB_linear achieves higher accuracy, this is primarily due to the bias introduced
by the four most dominant classes, for which it exhibits superior performance
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(a) Feature importance for the RF_linear model.

(b) Feature importance for the GB_linear model.

Figure 4.10

compared to the RF model. Furthermore, it is evident that the GB model places
less emphasis on the anytime behavior of the solvers and tends to select the
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Figure 4.11: Comparison of ground truth labels with predicted labels of the
RF_linear and GB_linear for the test set.

same solver for a given instance, regardless of the timestep. In contrast, the RF
model demonstrates a more varied selection of solvers based on the timestep. This
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observation aligns with the analysis of feature importance in the GB and RF
models, providing support for this observation.
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5 Results

5.1 Meta-solver’s performance
In this Section, we present the results of the performance of our meta-solver
based on the four best models explained in the previous Section: RF_nonlinear,
RF_linear, GB_nonlinear and GB_linear ML oracles. As explained in
Subsection 2.3, the best way to measure the performance of a meta-solver is
through the m̂ms metric. For our particular case, m̂ms was calculated considering
Gurobi as the SBS, for all timesteps. For computing the cumulative score ms, for
each solver s, as defined in Equation 2.1, the normalization function n(os(i, t), i, t)

of os(i, t) (the objective value of s on instance i at timestep t), is defined so that its
co-domain is in the range [0, 1] ∪ {2}. For this, we compute omin(i), the minimum
feasible value (in many cases the optimal value) of the objective function for the
instance i and omax(i), the maximum feasible value of the objective function for
the instance i, both considering all the feasible solutions found by all the solvers.
The by-default normalization of a given value os(i, t) is computed as follows:

n′(os(i, t), i, t) =
os(i, t)− omin(i)

omax(i)− omin(i)
(5.1)

This by-default normalization is not always well defined and some special cases
have to be considered. Considering such cases, we formally define n(os(i, t), i, t)

as:



0 if os(i, t) = omin(i) = omax(i)

2 if os(i, t) is undefined

but omax(i) is defined

n′(os(i, t), i, t) otherwise

(5.2)

As m̂ms compares the meta-solver with SBS, and such solver is not able to use the
“no solution” label in its favor, for our meta-solver’s evaluation, we decide to only
consider instance-time pairs for which omax(i, t) is defined (i.e. we don’t consider
the instance-timesteps pairs that correspond to white points on Fig 4.11(a)).
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One issue to consider concerning the computational time limit is whether to
include the feature computation and prediction times needed by the ML oracle
in addition to running the solver. The prediction requires input preparation for
the instance (computing the features for the model, constructing the image for
CNN, and linearizing the instances for the models with only linear features) and
running the ML model. If we consider the prediction time, there is less time to
run the solver and, consequently, the value of our performance metric m̂ms goes
up. We report on the performance of RF_nonlinear, RF_linear, GB_nonlinear,
and GB_linear for both cases, when prediction time “overhead” is included or not,
for each timestep, in Table 5.1.

Model m̂ms (no) m̂ms (o)
RF_nonlinear 0.5250 0.5318
RF_linear 0.5729 0.6042
GB_nonlinear 0.6198 0.6270
GB_linear 0.6501 0.6712

Table 5.1: m̂ms calculated with no overhead time (no) and m̂ms calculated
considering the overhead time (o) for the PBO meta-solvers based on
RF_nonlinear, RF_linear, GB_nonlinear and GB_linear. Lower m̂ms values are
better.

It is evident that while the RF_linear model exhibits the better accuracy value,
it is the RF_nonlinear one that achieves the best m̂ value. The difference in
the m̂ scores between these two models grows even bigger when considering the
overhead. This is primarily due to the time impact of linearizing the instances
before computing the features in the RF_linear case. This also happens with the
GB models, although the m̂ values are less competitive than the ones achieved by
the RF models.

Figure 5.1 provides insight into how the m̂ value changes for each timestep for
the best-performing RF and GB models, taking into account the overhead. As
anticipated, we observe that the overhead has a negative impact on the m̂ value
during the initial timesteps. RF consistently demonstrates better m̂ values than
GB, suggesting that RF learns more effectively from the anytime data.
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Figure 5.1: Values of m̂ across timesteps for GB_nonlinear and RF_nonlinear.
Lower m̂ values are better.

5.2 Comparing the meta-solver with the Single

Best Solver
Recall that Gurobi is the single best solver (SBS). Here we elaborate on where
the gain from the meta-solver (MS) comes from. To do this, we consider all test
instance-timestep pairs for which a feasible solution is known, 502, 258 in total.
In Figure 5.2, we compare, over this set of instances, the number of instances for
which each of the solvers (SBS and the MS based on the RF_nonlinear model)
report the best-found incumbent solution (red), a feasible worse-than-the-best-
found incumbent solution (orange) or for which no incumbent solution has been
computed yet (light blue). It is apparent from this figure that the meta-solver
MS provides a significant improvement over the use of the SBS by, for many
instance-timestep pairs, selecting alternative solvers that are either able to find
better solutions than the SBS or that are able to compute an incumbent solution
when the SBS is not. This justifies the use of our meta-solver for the PBO problem
in practice.

Overall, from 502, 258 test instance-timestep pairs, Gurobi is able to find 296, 103

best-found solutions, 142, 824 non-best-found incumbent solutions, and is unable
to find feasible solutions for 63, 331 instance-timestep pairs. The meta-solver finds



5.2 Comparing the meta-solver with the Single Best Solver 37

Figure 5.2: Number of feasible instance-timestep pairs of the test set where the
SBS (Gurobi), and the meta-solvers based on RF_nonlinear and GB_nonlinear
find the optimal solution, feasible non-optimal solution or no feasible solution.

352, 462 best-found solutions, 116, 717 non-best-found solutions and is unable
to find feasible solutions for 33, 079 instance-timestep pairs. As we can see, the
meta-solver improves Gurobi’s performance by achieving the best-found solution
in around 19% more instance-timestep pairs and diminishing in up to 47.7% the
number of instance-timestep pairs for which a feasible solution is not yet found.



6 Conclusions and Future Work 38

6 Conclusions and Future Work
We propose here an Anytime meta-solver for the Pseudo-Boolean Optimization
problem. Our meta-solver is able to predict and execute a solver that, among
7 different solvers, performs best for a given problem instance and a specified
time limit. Our results show that our meta-solver (based on any of the two best
models) significantly outperforms all individual solvers, while it also identifies
when feasibility cannot be achieved for a given instance.

Based on the above, the objectives of our work were accomplished. Likewise, the
implementation of the ML based meta-solver and the results showing that the
meta-solvers based on RF_nonlinear, RF_linear, GB_nonlinear and GB_linear
outperform the SBS in regards to the m̂ metric, prove that the hypothesis stated
at the beginning of our work is supported.

Among all available features, our best ML models show that one of our proposed
features, the percentage of terms that are present in the objective function, is a
very important one to characterize the instances. Furthermore, the RF models
determined that the computational time limit is another important feature,
supporting the interest in anytime scenarios.

A logical next step is to propose ways of adapting Anytime Algorithm Selection
Problems to the scenarios of the Algorithm Selection Library [39], which, currently,
are not anytime. We will use this as an efficient way of sharing our data.

For future work, we plan to explore the application of Graph Neural Networks
as a potential ML oracle. This type of Neural Network has recently been shown
to perform well on data that can be represented as a graph, which is the case
for PBO. We also plan to explore a two-layer meta-solver approach, where the
first layer selects a solver from a portfolio while the second layer chooses the most
suitable set of parameters for the chosen solver.
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