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Abstract

The characterization and manipulation of complex microscopic systems for
applications in science and technology demands to have robust theoretical tools
that guide the extraction of relevant information or complement such processes.
In particular, condensed phase physics, which is in a blurry boundary between
chemistry and quantum physics, requires several approximations due the high
number of degrees of freedom present. Thereupon, achieving a satisfactory balance
between a model with just the right amount of features and, hopefully, requiring
low computational requirements represents a significant challenge. This is the
reason why having minimal models to understand the fundamental physics of
complex condensed phases, in organic or inorganic materials, particularly when
subject to confined electromagnetic fields, is a valuable contribution, specially
appreciated in chemical physics and quantum optics protocols.

In this thesis we show an intensive exploration of the capabilities of a nonlinear
mid-infrared semi empirical model for describing the coherent and incoherent
dynamics of anharmonic dipoles coupled to a single harmonic mode of a cavity
QED. We find that the intrinsic anharmonicity in the material spectrum is heralded
to the near electric field of a nanoresonator. Depending on the classical driving
intensity ratio with respect to losses, this mechanism allows for the control and
modulation of the complex phase of an incident finite pulse to the resonator with
respect to the scattered cavity field, which translates into a delay in the stationary
temporal domain, even after the pump pulse has ended.

This mechanism promises interesting applications in molecular infrared
nanophotonics, where the intrinsic anharmonicities of the vibrational modes
are well documented in the literature, and also because the light-matter system
requires to be in weak coupling regime, increasing the prospects for its experimental
realization using current nanophotonic technology.

Moreover, we show that our approach is applicable to other non organic devices
as intersubbands in multi-quantum wells (MQW’s), where the state–of–the–art
in both material and optical parameters engineering, as well as the capability
of having smaller N compared to molecular systems, promises stronger effects
on the nonlinear phase modulation, which can be modified and even increased
by adapted heterogeneities among the dipoles that introduce contributions from
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the dark manifold. We expect our model will help in the development of new
infrared nanophotonic hardware for applications ranging from quantum control of
materials to quantum information processing.
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Resumen

La caracterización y manipulación de sistemas microscópicos complejos para
aplicaciones en ciencia y tecnología exige contar con herramientas teóricas robustas
que orienten la extracción de información relevante sobre ellos, o bien que
complementen dicho proceso. En particular, la física de materia condensada,
que se encuentra en una frontera borrosa entre la química y la física cuántica,
requiere varias aproximaciones debido al alto número de grados de libertad
presentes. Luego, el tener un equilibrio satisfactorio entre un modelo con la
justa cantidad de características, y, con suerte, precisando bajos requisitos
computacionales, en un gran desafío. Ésta es la razón por la que contar con modelos
minimales para comprender la física fundamental de fases condensadas complejas,
en materiales orgánicos o inorgánicos, particularmente cuando están sujetos a
campos electromagnéticos confinados, es una contribución valiosa, especialmente
apreciada en protocolos de física química y óptica cuántica.

En esta tesis mostramos una exploración intensiva de las capacidades de un modelo
semiempírico en el infrarrojo medio y no lineal para describir la dinámica coherente
e incoherente de dipolos anarmónicos acoplados a un modo único armónico de
cavidad QED. Encontramos que la anarmonicidad intrínseca en el espectro material
se traspasada al campo eléctrico cercano de un nanoresonador. Dependiendo de
la relación de intensidad de bombeo clásico con respecto a las pérdidas, este
mecanismo permite el control y la modulación de la fase compleja de un pulso
finito incidente al resonador con respecto al campo dispersado, que se traduce en
un retraso en el dominio temporal estacionario, incluso después que el pulso de
bombeo ha terminado.

Este mecanismo promete interesantes aplicaciones en nanofotónica infrarroja
molecular, donde las anarmonicidades intrínsecas de los modos vibratorios están
bien documentadas en la literatura, y también porque el sistema luz–materia
necesita estar en el régimen de acoplamiento débil, lo que aumenta las perspectivas
de su realización experimental utilizando tecnologías de nanofotónica actual.

Además, mostramos que nuestro enfoque es aplicable a otros dispositivos no
orgánicos como intersubbandas en multi–pozos cuánticos (MQW), donde el estado
del arte en ingeniería de parámetros ópticos y de materiales, como así como la
capacidad de tener N más pequeños en comparación con sistemas moleculares,
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promete efectos más fuertes en la modulación de fase no lineal, que pueden ser
modificados e incluso aumentados por inhomogeneidad adaptadas entre los dipolos
que introducen contribuciones de la variedad oscura. Esperamos que nuestro
modelo ayude en el desarrollo de nuevo hardware nanofotónico infrarrojo para
aplicaciones que van desde el control cuántico de materiales al procesamiento de
información cuántica.
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Chapter 1. Introduction 1

Chapter 1

Introduction

The property of linear superposition of the Electromagnetic (EM) field in vacuum
is a fundamental principle, stated in both Classical and Quantum Electrodynamics
(QED). This implies that 1) photons, the quanta of light, do not interact to each
other and 2) polarizable matter is the fundamental source of Nonlinear Optical
phenomena [12]. Basically, it is a consequence of the anharmonic motion of charge
carriers induced by sufficiently intense optical fields when they are transmitted
trough the media [6].

About this last requirement, the birth of laser technology marked a milestone as it
leveraged the exploration of novel optical and material phenomena. In particular,
its application as a source of coherence in nanophotonics allowed us to observe
the exotic ways matter behaves when it is dressed with just one photon or the
electromagnetic vacuum [73, 27]. This regime is highly desired as the control of
the fast coherence times in which light-matter interactions occur is the basis of
modern Quantum Computing technologies [54].
The development of the field owes a significant amount to the use of semiconductor
materials, not only for the emergence of semiconductor lasers but also by the
sophisticated state of the art in growth and doping techniques and their tunability
and integrability in miniaturized optoelectronic circuits. Good examples are
engineered dipoles like quantum dots [5] and quantum wells [19] that present
themselves as semiconductor-based heterostructures with the ability to simulate
complex quantum systems while preserving their fundamental features in a
simplified fashion.
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In this context, the inquiry into how the degree of anharmonicity within the
spectrum of a material system impacts its optical response arises naturally.
For atoms modeled using the two-level approximation within a resonator,
nonlinearity is intricately linked to the anharmonicity of the coupled spectrum.
This anharmonicity becomes more intricate as the strength of the light-matter
interaction intensifies, directly correlating with regimes of strong or ultrastrong
coupling [39]. Conversely, in this Thesis we show that for molecular vibrations
within infrared cavities, anharmonicity constitutes an inherent characteristic that
can be coherently transferred, even within a weak coupling regime. This transfer
facilitates the modulation of the nonlinear phase within a transmitted wave
signal, an effect that scalates with the square of the effective photon flux rate but
diminishes inversely with the number of molecules. This inverse relationship poses
a challenge in realizing the higher shifts predicted by the model, primarily due
to the complexity of confining only a small number of molecules within modern
cavity QED.

This thesis presents a theoretical prediction that connects the anharmonicity
of intramolecular vibrations in molecules and also with the intersubbands of
a multiquantum well (MQW) embedded in a mid-infrared nanoantenna, with
intensity-dependent phase rotations due to incoming femtosecond pulses that
weakly excite the near field of the resonator from the coupled vacuum. In
particular, we use MQW empirical parameters because they allow the experimental
observation of higher nonlinearities due to the small number of coupled oscillators.
Specifically, we predict that the shifts are enhanced when non-identical anharmonic
dipoles are used due to the coherent and incoherent interaction with the dark
manifold in the dipole approximation. To estimate the phase shift values that
can be achieved in near-future experimental implementations, we use a mean-field
approach to gain phenomenological insight. Our methodology can be applied to
other types of systems and expanded to include additional quantum wells and
multiple laser fields.
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Chapter 2

Cavity Electrodynamics

2.1 Motivation

The process of quantization of the EM field relies in its decomposition into normal
modes, by Fourier analysis, promoting the canonical coordinates and momenta
associated with each oscillator to operators acting in a Hilbert space. In order to
make this decomposition, it is necessary to study how the electromagnetic waves
are constrained by the geometric properties of the propagation media, and in
particular, to its boundaries with respect to “free space” [36]. The purpose of this
chapter is to show how can we emerge a single quantized electromagnetic mode
of oscillation inside an idealized optical resonator. This theoretical example is a
simplification in the sense that realistic cavities generally manifests a multi-mode
spectrum. However, the idea of single out just one of them makes sense from
the superposition principle; the analysis of one is physically representative of the
general frequency dependence, but not all the frequencies will be of the same
importance, allowing us to have a selection criteria.

For our work, we are interested in infrared cavities, where the single mode cavity
QED approach is frequently used to describe the THz resonance of the empty
cavity and the way it couples with the material dipoles within the optical device,
which also exhibit resonances in the same frequency range. Then, the single
mode analysis is quite sufficient. To enforce this idea, we will end the chapter by
reviewing some milestones in the literature in nanophotonics, highlighting the use
of single cavity QED expected properties.
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2.2 Cavity mode quantization

2.2.1 Classical wave equation

According to classical Electrodynamics in free space, the electric and magnetic
fields behave as a unified wave-like phenomenon. Moreover, the speed of this
wave, surprisingly identified as light, is obtained from the vacuum constants as
c = 1/

√
ε0µ0. This is derived from the Maxwell equations

∇× E = − ∂

∂t
B, (2.2.1)

∇×H =
∂

∂t
D, (2.2.2)

∇ ·D = 0, (2.2.3)

∇ ·B = 0, (2.2.4)

where D = ε0E and B = µ0H are the constitutive relations between the electric
and displacement field, and the induction and magnetic field. From this coupled
equations, we know that the Cartesian components of both electric and magnetic
field obeys a wave equation as reads

∇2u− 1

v2

∂2

∂t2
u = 0. (2.2.5)

This result can be obtained by taking the curl of Eq. (2.2.1) and introducing Eq.
(2.2.2) with the correspondent use of the constitutive relations

∇×∇× E = −µ0
∂

∂t
(∇×H), (2.2.6)

= −µ0ε0
∂

∂t

(
∂

∂t
E

)
, (2.2.7)

and using the Gauss Law Eq. (2.2.3) and the following identity

∇×∇× E = ∇(∇ · E)−∇2E. (2.2.8)

to have a wave equation for the electric field E

∇2E− µ0ε0
∂2

∂t2
E = 0. (2.2.9)
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It can be found a similar route to find the wave equation for the field of magnetic
induction B.

Equation (2.2.5) has the typical plane wave solutions. An electric field composed
of just one of them its expressed like

E(r, t) = nE0e
ik·r−iωt + c.c., (2.2.10)

where we added the c.c. symbol for the complex conjugate, ensuring the reality of
the field observable. The requirement of zero charge distribution implicit in Eq.
(2.2.3) imposes the restriction

n · k = 0, (2.2.11)

stating the transversal nature of the electric field with respect to the propagation
of the wave indicated by k. This particular result is not exactly fulfilled in real
cavities, as the multi–mode field can have a component parallel to the propagation.
Besides, the transversal component of the electric field can always be decomposed
in two unit vector for the plane as

E(r, t) = (n1E1 + n2E2) eik·r−iωt + c.c., (2.2.12)

where E1 and E2 can be complex, allowing for different types of polarization 1 ,
due the phase difference between these two amplitudes.

2.2.2 Single mode in a cavity

We will consider an empty region of the space with volume V = SL confined by
ideal mirrors of transversal area S, separated by a length L. The wave axis is z,
and then the electric and magnetic field rely on the x− y plane. These mirrors are
assumed to be perfect conductors, and set the boundary conditions for the electric
field to be zero in the frontiers. We can select one of the possible stationary modes
inside the cavity, that reads

Ex(z, t) = Aq(t) sin(kz), (2.2.13)

1If both have the same phase, then the light is called linearly polarized. The opposite cases give
raise to the well known circular or elliptically polarized light typical in Optics setups.
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where k = ω/c 2, A is an amplitude with dimensions of electric field over length,
and q(t) is a dynamic variable with length dimensions, that can be treated as the
canonical coordinate, in analogy with mechanical harmonic oscillators [61].

This expression can be used to derive the magnetic field Hy(z, t) together with eq.
(2.2.2) to be

Hy(z, t) =
ε0A

k
q̇(t) cos(kz). (2.2.14)

Then, the Hamiltonian of the system is expressed as

H =
1

2

∫
V

{
ε0E

2
x + µ0H

2
y

}
dβ (2.2.15)

=
1

2
{p2 + ω2q2}, (2.2.16)

where p = q̇ is the conjugated momentum considering m = 1. Notice that
we arrived to the Hamiltonian for a single Harmonic Oscillator relying in the
relationship A =

√
2ω2/(ε0V ).

2.2.3 Correspondence rule

What we call correspondence rule is the promotion of the canonical variables in the
Hamiltonian for the classical harmonic oscillator to operators acting in a Hilbert
space

q → q̂, and p→ p̂, (2.2.17)

together with the commutation rule for this operators

[q̂, p̂] = i~1, (2.2.18)

where 1 is the identity operator, that in general is assumed to be hidden. The
Hamiltonian, Electric and Magnetic field now are also operators. These two last
fields play the role of canonical operators, like the position and momentum of a

2In principle, as the boundary conditions set k = nπ/L, there are infinite but countable number
of modes. To simplify the analysis, let’s consider just one of those modes as this will not modify
the subsequent argument.
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mechanical oscillator. Their explicit forms are

Ĥ =
1

2
{p̂2 + ω2q̂2}, (2.2.19)

Êx(z, t) =

√
2ω2

ε0V
q̂ sin(kz), (2.2.20)

B̂y(z, t) =
µ0ε0
k

√
2ω2

ε0V
p̂ cos(kz). (2.2.21)

This results are exact, however the regular way to use this formalism of a quantized
harmonic oscillator is by using a canonical transformation to the operators of
annihilation â = (1/

√
2~ω)(ωq̂ + ip̂) and its hermitian conjugate version, the

creation operator â† = (1/
√

2~ω)(ωq̂ − ip̂) 3. Under this transformation, the
observables of our interest look like

Ĥ = ~ω
{
â†â+

1

2

}
, (2.2.22)

Êx(z, t) =

√
~ω
ε0V

(â+ â†) sin(kz), (2.2.23)

B̂y(z, t) =
1

i

√
~ω
V/µ0

(â− â†) cos(kz). (2.2.24)

The amplitudes E0 =
√

~ω/ε0V and B0 =
√
~ω/(V/µ0) are the fields per photon

[21]. Finally, it will be useful to have at hand the reverse relationships connecting
the annihilation and creation operator with respect to the canonical coordinates
operators

q̂ =

√
~

2ω
(â+ â†), and p̂ =

√
~ω
2

(â− â†) (2.2.25)

implying that

〈q̂〉 =

√
2~
ω

Re[〈â〉], and 〈p̂〉 =
√

2~ωIm[〈â〉] (2.2.26)

3Remember that in linear systems, operators eigenvalues are real for hermitian operators obeying
Â† = Â, and then the hermicitity of the q̂ and p̂ is required. This also implies that â and â†
are non hermitian, a fact that can be seen from the eigenvalues α of â, that are c-numbers
encoding the information of a coherent state â|α〉 = α|α〉.
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2.2.4 Eigenstates of the single mode quantum Hamiltonian

An important property of the previous representations in terms of â and â† is
that they allow the direct diagonalization of the Hamiltonian by using the number
states |n〉; a special type of vector in an infinite dimensional Hilbert space called
Fock Space. They are eigenstates of the Hamiltonian, and the related eingenvalues
constitute the energy spectrum of the single mode harmonic oscillator:

Ĥ|n〉 = ~ω
(
â†â+

1

2

)
|n〉 = ~ω(n+ 1/2)|n〉. (2.2.27)

These energy values, En = ~ω(n + 1/2) are equidistant between them with
energetic transition ∆E = ~ω, and presents a minimal, ground energy, or vacuum
energy, that is nonzero and equal to E0 = ~ω/2. This last statement is presented
frequently to introduce the Casimir effect, due to the zero point fluctuations of
the EM field 4 . Also, it is a signature of a quantum harmonic oscillator in general,
not just for the quantization of the EM field: any other non harmonic potential
will produce, under quantization, a non equidistant energy spectrum.

It can probed that these states forms a complete set, obeying the following
decomposition

∞∑
n=0

|n〉〈n| = 1, (2.2.28)

The annihilation and creation operators act on the number states in the following
way 5

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (2.2.29)

and then they are not diagonal in the {|n〉}∞n=0 basis. It is my intention to show
explicitly these operators in the number state representation, as it is usual to take

4In any of the following chapter, we are going to hidden this vacuum energy, as our discussions
relying always in the physics derived from energy transitions.

5This is the reason why these operators are called ladder operators, as they allow to move
between the subsequent number states, up or downward.
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just a portion of these expansions for numerical (and finite) purposes:

Ĥ = ~ω
∞∑
n=0

(n+ 1/2)|n〉〈n|, (2.2.30)

â =
∞∑
n=1

√
n|n− 1〉〈n|, (2.2.31)

â† =
∞∑
n=0

√
n+ 1|n+ 1〉〈n|. (2.2.32)

2.2.5 Examples of field dynamics

Assumed the single mode QED to be a closed system, the system evolution
is unitary, and then we can derive the evolution of the system state as
|ψ(t)〉 = Û |ψ(0)〉, where the unitary operator can be written in the form Û(t) =

C(t) exp[a(t)â†â] [41] following the quantum harmonic oscillator Hamiltonian
Ĥ = ωâ†â, where ~ = 1. By applying the Schrödinger equation for the time-
evolution operator we obtain

i
d

dt
Û = ĤÛ , (2.2.33)

⇒ i

(
Ċ

C
+ ȧâ†â

)
Û = ωâ†âÛ , (2.2.34)

⇒ Û(t) = exp[−iωtâ†â]. (2.2.35)

This means, for example, that if the field initial state is some combination of
number states |ψ(0)〉 =

∑
n cn|n〉, the evolution at time t will be

|ψ(t)〉 =
∑
n

cne
−iωnt|n〉 (2.2.36)

If the field state under consideration is initially in a coherent state, this is, a
eigenstate of the annihilation operator â|α〉 = α|α〉, with

|ψ(0)〉 = |α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (2.2.37)
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then the dynamics will translate to rotations at frequency ω of the coherent
parameter

α(t) = 〈â(t)〉 = 〈α(t)|â|α(t)〉 = αe−iωt (2.2.38)

keeping the mean number of photons Tr[â†â|α〉〈α|] = |α|2. The system predicts
no transition to higher or lower energy steps.

Let’s visit a more interesting example.

2.2.5.1 Harmonic oscillator with a classical driving

The general form for a classically driven Harmonic quantum oscillator is expressed
as reads [42]

Ĥ = ωâ†â+ Fd(t)â+ F ∗d (t)â†. (2.2.39)

where Fd(t) represent the (classical) pumping field. We use the later argument to
write the evolution operator as follows

Û(t) = C(t)ea(t)â†âeb(t)â†ec(t)â, (2.2.40)

⇒ d

dt
Û =

(
Ċ

C
+ ȧâ†â+ ḃeaâ†ââ†e−aâ†â + ċeaâ†âebâ† âe−bâ†e−aâ†â

)
Û

=

(
Ċ

C
+ ȧâ†â+ ḃeaâ† + ċ(e−aâ− b)

)
Û (2.2.41)

In this derivation it was used the Baker–Campbell–Hausdorff formula to derive
the formulae eαâ†ââ†e−αâ†â = eαâ† or eβâ† âe−βâ† = â− β. By comparing with the
Heisenberg equation for the evolution operator, we have

i

(
Ċ

C
− bċ

)
+ iȧâ†â+ iċe−aâ+ iḃeaâ† = ωâ†â+ Fd(t)â+ F ∗d (t)â†. (2.2.42)

The system of equations implied, that we obtain by comparing the operator
coefficients in both sides of the equation above, is easy to solve; the solution for
arbitrary driving function considers a(t) = −iωt, b(t) = −c∗(t) and

c(t) = −i
∫ t

0

dτe−iωτFd(τ), (2.2.43)

C(t) = exp

[
−
∫ t

0

dτeiωτFd(τ)

∫ τ

0

dτ̃ e−iωτ̃F ∗d (τ̃)

]
. (2.2.44)

https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
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Let’s see what is the evolution of an interesting initial state as the vacuum by
applying |ψ(t)〉 = Û(t)|0〉 for driving functions obeying Im[Fd(t)e−iωt] = 0:

|ψ(t)〉 = C(t)
∞∑
n=0

(b(t)e−iωt)n√
n!

|n〉, (2.2.45)

= |b(t)e−iωt〉 (2.2.46)

where we use the definition of the displacement operator

D̂(α) = eαâ
†−α∗â = e−|α|

2/2eαâ
†
e−α

∗â, (2.2.47)

and its action on the vacuum

D̂(α)|0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (2.2.48)

I want to emphasize this result: what we obtain from an initial vacuum state is
always a coherent state. Its evolution is dictated by the shape of the driving pulse,
codified in b(t). The mean number of photons bouncing in the cavity, that is just
the square of the absolute value of α, corresponds to 〈â†â(t)〉 = |b(t)|2.

Finally, the “classical” energy that is transferred from the driving field to the
cavity can be calculated with the help of Equations (2.2.26):

Ecl(t) =
1

2

{
〈p̂(t)〉2 + ω2〈q̂(t)〉2

}
, (2.2.49)

= ω|〈â(t)〉|2 = ω|b(t)|2, (2.2.50)

In particular, if the driving function obeys Fd(t) = F0ϕ(t)eiωt with ϕ(t) a real
function, then we have that

Ecl(t) = ω|F0|2
(∫ t

0

ϕ(τ)dτ

)2

(2.2.51)

It is interesting, also, that the time-dependent probability P|0〉(t) to find the state
of the system in the vacuum state is expressed in terms of this classical energy:

P|0〉(t) = |〈0|b(t)e−iωt〉|2 = e−|b(t)|2 = e−Ecl(t)/ω. (2.2.52)
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Figure 2.2.1: Coherent state evolution (orange lines) for two different pulse shapes (blue
lines). The temporal widths have been chosen in order to have both functions with equal
normalization condition. Green dashed lines indicate the steady value for the cavity coherences
to be F0T1 ≈ 0.389, in both cases. (a) Coherence evolution for the cavity mode driven by a
squared pulse with center t0 = 0.6 (ps), width T1 =

√
2π × 0.155 (ps) and F0 = 1 (THz). (b)

Cavity driven by a Gaussian pulse with center t0 = 0.6 (ps), width T2 = 0.155 (ps) and F0 = 1
(THz).

The conclusion is direct: for high enough energy driven in the cavity, it is less
probable to find the cavity in the vacuum state.

2.2.5.2 Resonant driving pulse with an step envelope

We start the examples with a squared pulse (an “step” function) with frequency
carrier resonant to the cavity mode ωd = ω, like the one plotted in Figure (2.2.1-a).
Then,

Fd(t) = F0Π

(
t− t0
T

)
eiωt =

{
F0e

iωt , if t0 − T
2
< t < t0 + T

2

0 , elsewhere
(2.2.53)

where t0 is the center and T is the temporal width of the pulse, respectively. This
case can represent a continuous laser with an ultra-fast switching in the instants
t = t0 ± T/2. The state at time t is |b(t)e−iωt〉 with

b(t) = −iF0

∫ t

0

dτΠ

(
τ − t0
T

)
=


0 , t ≤ t0 − T/2

−iF0(t− t0 + T/2)) , t0 − T
2
< t < t0 + T

2

−iF0T , t ≥ t0 − T/2
(2.2.54)

The field coherence 〈â(t)〉 = b(t)e−iωt represent an amplitude growing from zero
in a ramp up to a stationary value, always with a constant phase of −90o, and
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rotating at angular frequency ω. The stationary classical energy transferred to
the cavity field is

Ecl,ss = ω(F0T )2. (2.2.55)

2.2.5.3 Resonant driving pulse with a Gaussian envelope

In this case we have that

Fd(t) = F0e
− (t−t0)2

2T2 e−iωt, (2.2.56)

where it is straightforward to derive the dynamical coherent parameter to be

b(t) = 〈â(t)〉eiωt = −iF0T

√
π

2

(
erf

[
t0√
2T

]
+ erf

[
t− t0√

2T

])
(2.2.57)

As you can see from Figure (2.2.1-b), the smooth Gaussian will generate a smooth
evolution of the cavity coherence up to its steady value ∼ −i

√
2πF0T . The

stationary classical energy transferred to the cavity field is

Ecl,ss = ω2π(F0T )2. (2.2.58)

2.3 Single cavity mode in the scientific literature

The use of a single cavity QED mode in Nanophotonics is widespread in the
scientific literature, even when it is just an approximation that works, apparently
pretty good. One might ask however, how much we trust in the validity of this
model. As any experimental realization, and any “cavity” or “resonator”, surely
will present a complex and well structured spectrum for a lot of possible reasons
¿How can we be calm about choosing only one mode, discarding everything else?6.

In the following section we will see how we include all of the infinite remaining
modes with the label of environment. This means that we treat the whole

6This concern is related, just in part, to the way we truncate a structured spectrum of a
nanocavity and how we single out just one of them from which we obtain the electric and
magnetic induction fields. From the covariant formulation of Electrodynamics we know that
there is some freedom in the way we choose the potentials {φ(t), ~A(t)}. This, added to the
quantization method applied, in some cases, would generate different values from observables
depending on the gauge choice. This ambiguity is obviously a non physical artefact that must
be analyzed carefully, at least in the relativistic regime. Although these aspects goes beyond
the scope of this work I strongly suggest to read a recent article tackling this problem [67].
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electromagnetic spectrum by parts, giving to each one a different level of “physical
influence”.

Here we will not address these aspects in deep detail. Instead, suffice it to say
that the current literature contains successful examples of the application of this
minimal model that we proceed to review in the next lines. In turn, there are
other approaches available, if the complexity of the problem under study requires
a higher level of detail. Some interesting examples are documented in [60, 29].

2.3.1 Seminal experiments

The publication "Cavity Quantum Electrodynamics" [27] is of paramount
importance as gives a detailed account on early quantum experiments aiming for
the strong coupling of matter excitations, using Rydberg atoms in microwave and
optical cavities.

These experiments demonstrates that spontaneous radiation from excited atoms
can be greatly suppressed or enhanced by placing the atoms between mirrors or
in cavities. Some experimental realizations mentioned are:

• About the inhibition of spontaneous emission from Rydberg states of cesium
atoms in a beam as they passed between two 20-cm-long aluminum mirrors
(the cavity) separated by approximately L = 0.2 mm, by monitoring their
atomic radiation at λ = 0.45 mm [34]7.

• The enhanced spontaneous (by a factor of ∼ 500) emission in the millimeter
wave regime for Rydberg atoms of sodium coupled to a Fabry-Perot cavity
[23], where the cavity was resonant to the dipole transition, at around 340

GHz8.

• Rabi oscillations induced by a small thermal field in the superconducting
microwave cavity at 21.6 GHz and 2.5 K [58]. This is one of the first
experiments showing clearly the collapse and revival predicted by the Jaynes-
Cummings model [37], which is again, a model of one atom modeled as a
two level system, and a single cavity mode.

7The gap between mirrors was built for optical frequencies. The idea is that by increasing the
ratio λ/(2d) > 1, the signal coming from excited atoms detected at the cavity exit increase,
confirming the inhibition of spontaneous emission rate.

8We are going to develop a theory for this phenomenon called Purcell effect [57] in Chapter 5.
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Figure 2.3.1: (a) Absorption and photoluminiscence simulation data for an organic
microcavity with N = 20 emitters from [31]. (b) Experimental LPL spectrum obtained by [33]
for the organic cavity simulated in (a) .

The rate of spontaneous emission of the atom, e.g. the probability Γ0 of photon
emission per unit time, depends on the coupling rate Ωeff of matter with respect
to the electromagnetic vacuum, which can be dramatically changed if the electric
field is confined to an small volume instead of free space9. This coupling of the
individual atom to the cavity field at frequency ω is calculated with the Rabi
frequency

Ωeff = deffE0/~ (2.3.1)

where E0 =
√

~ω/(ε0V ) is the electric field amplitude per photon in the
quantization volume V and deff is the matrix element of the electric dipole of the
two-level atom. As you can see, all these equations consider the case of an atom
and the field exchanging energy if there were only a single mode of the field. The
underlying theory showed great prediction power in relation to the experimental
results obtained and, historically, it greatly encouraged the development of this
area of research.

2.3.2 Simulations of molecular spectroscopy observables

Most of the experiments commented in the previous subsection consider microwave
Fabry-Perot cavities to couple, resonantly or not, to specific transitions in Rydberg
atoms. One associates, in general, atoms with applications in quantum computing,
to give an example. Alternatively, it is known that molecules in quantum cavities

9This coupling rate also affects the probability Pe(t) of finding the atom in its excited state
at time t, assuming it was prepared in this state at time 0, that in the single mode approach
shows the well now Rabi oscillations.
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promise applications in control of chemical reactions [35].

The prediction power of hybrid light-matter Hamiltonians containing just a single
cavity mode have an impressive example in the Holstein-Tavis-Cummings (HTC)
Hamiltonian [30], where the cavity mode, electronical potentials and vibrational
degrees of freedom are treated in the same footing. Roughly speaking, the HTC
model consists of one single cavity QED mode with frequency ωc, N intramolecular
vibrations with frequency ωv, modeled as quantum harmonic oscillators, and N
two-level systems modeling the electronic excitations with transitions ωe, where
the only missing coupling in the interaction term is between the cavity mode and
the vibrations.

We show in Figure (2.3.1-a) the simulations carried using this Hamiltonian10

to reproduce some experimental observables reported in [33], for cyanine dye
J aggregates in a low-Q microcavity, whose experimental photoluminiscence
spectrum is shown in Fig. (2.3.1-b).

The model predicts the emergence of several types of dark states, this is, hybrid
resonances poorly or completely invisible from absorption although they can
radiate. This is confirmed by the simulations plotted in Figure (2.3.1-a) where it
appears a weak peak lower, but close, to the vibrational frequency ω/ωv ≈ 0.4

(green dashed rounded rectangles) in the absorption curve (blue points), that
becomes much larger in the LPL curve11 (orange points), and is even larger than
the Lower Polariton (LP) and Upper Polariton (UP) side-bands, that are the
bright states we expect in a strong coupling regime, forming a frequency splitting
around the vibrational resonance ω/ωv = 1. This is just what we see from the
experimental LPL spectrum, where we enclose the dark resonance between a
less stronger LP peak and a vanished UP resonance, as it is shown from the
simulations.

2.4 Final comments

The examples shown previously does not demonstrate that it is enough to take
just one cavity mode, always. However, in most of the cases reported, the single

10Joined to a formal treatment of the dissipative dynamics that we will discuss in Chapter 2.
11This means Leak PhotoLuminiscence (LPL), or just the photoluminescence spectra through
the mirrors of the cavity.
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cavity QED approach captures the most fundamental features of the problems
under study, although there are some complexities not mentioned that are going
to be the central theme of the next sections.

Anyway, the intention was to give a flavour of the formalism and to show that we
can “do interesting physics” when we treat the electromagnetic field in its quantum
version.
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Chapter 3

Open Quantum Systems

3.1 Introduction

The usual way to interpret spectroscopic data is by recognizing frequency peaks
or dips 1; broad up to the point to be considered frequency bands, or isolated
resonances if they look narrow enough. We assume that a resonance dip in the
absorption of a certain sample evidences a driven energy transition of two internal
levels, physically expressed with the equation ∆E = Eν′ − Eν = ~ωdip, where the
frequency ωdip = ∆E/~ is taken from the center of the dip.

But, if the theory seems to talk about precise transitions between quantized energy
states, then, how we explain the peak and dip widths measured? Why there are
narrower or broader bands in a spectrum, instead of perfectly sharp resonances?

This is because in Nature, broadly speaking, nothing is “closed”, as we assume in
the previous chapter for our single mode cavity QED. Instead, there is always a
complex combination of coherent or incoherent random processes among several
degrees of freedom overlapped with the system of interest, causing broadening,
sharpening and/or frequency shifts, among others, that prevent us to observe
ideal sharp peaks 2.

The idea of this chapter is to introduce consistently a way to “open” our small
quantum harmonic system to treat, approximately but as correct as possible,
the lossy effect of the surrounding universe, that in the quantum jargon is

1Or energy peaks and dips depending on technical jargon.
2In a mathematical language, we do not see isolated Dirac Deltas in the spectrum.
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called “decoherence” and/or “dephasing”. In this formalism, the environment
(the reservoir or bath) is modeled as an infinite collection of harmonic oscillators
in internal thermal equilibrium, with a spectral density that encapsulates the
characteristic time of its internal fluctuations (the bath correlation time tR), which
we are going to assume it is much faster than the oscillator lifetime, and then
allows us to do perturbative assumptions. What we finally obtain is the influence
of the environment reduced to parameters in a Quantum Master Equation for the
reduced density operator of interest, in Lindblad form [47], that we can write as
(dρ̂S/dt) = Lρ̂S.

One of the main conclusions derived by this formalism and applied to the near field
of a cavity QED mode, is that the bandwidth of the resonances observed in cavity
reflection or transmission setups encodes the influence the free electromagnetic
field (the big reservoir) in thermal equilibrium onto the cavity density of modes.

3.2 System plus reservoir approach

In the previous chapter, the cavity quantum harmonic oscillator shown was
considered a closed system by default: there is no energy flux by its boundaries
because there is nothing more in space than the cavity and its mirrors with
infinite conductance. In reality, an optical cavity has non perfect mirrors, with
frequency and intensity dependent finite transmission, and then can interact with
the environment. We say that the cavity is an open system and then the evolution
of any of the parts have not necessarily an unitary evolution. These reasons,
together with the fact that the environment usually has much more degrees of
freedom an complexity than the main system, forces us to seek for Quantum
Master Equations that allow us to calculate the evolution of our subsystems of
interest in a systematic and simplified way 3.

We can model the interaction of a single cavity mode with an ensemble of harmonic

3“In general, for all but the most basic of Hamiltonians, an analytical description of the system
dynamics is not possible, and one must resort to numerical simulations of the equations of
motion. In absence of a quantum computer, these simulations must be carried out using classical
computing techniques, where the exponentially increasing dimensionality of the underlying Hilbert
space severely limits the size of system that can be efficiently simulated. However, in many
fields such as quantum optics, trapped ions, superconducting circuit devices, and most recently
nanomechanical systems, it is possible to design systems using a small number of effective
oscillator and spin components, excited by a limited number of quanta, that are amenable to
classical simulation in a truncated Hilbert space.” Quote from the QuTiP documentation.

https://qutip.org/docs/latest/index.html
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oscillators, that we are going to think as the thermal bath of free EM modes 4.
The Hamiltonian of such closed system is expressed as reads

Ĥ = Ĥ0 + Ĥint, (3.2.1)

Ĥ0 = Ĥ0,c + Ĥ0,R, (3.2.2)

= ~ωcâ
†â+

∑
{j}

~ωj ĉ†j ĉj, (3.2.3)

Ĥint =
∑
{j}

~κj(â†ĉj + ĉ†j â), (3.2.4)

= â†K̂ + K̂†â (3.2.5)

where the interaction Hamiltonian is written in a form that conserves the number
of excitations of the system 5. We have implicitly defined K̂ =

∑
{j} ~κj ĉj, where

the sum runs arbitrarily in discrete and probably infinite j−modes. If the single
cavity mode plus reservoir is a closed system, then the evolution of the full density
operator ρ̂Full obeys the Schrodinger equation. To solve this equation, it is usual
to use the interaction picture, where

H̃int(t) = eiĤ0t/~Ĥinte
−iĤ0t/~, (3.2.6)

=
∑
{j}

~κj(ei(ωc−ωj)tâ†ĉj + e−i(ωc−ωj)tĉ†j â), (3.2.7)

and ρ̃Full = e−iĤ0t/~ρ̂Fulle
iĤ0t/~. This representation is best suited for

approximations involving time scales comparisons, as we can see: we separate the
dynamics related with the free Hamiltonian from the interaction part, that we are
going to assume is slower than the former. It can be derived a convenient, but
exact, shape of the Schrodinger equation for the full density operator as reads

d

dt
ρ̃Full =

1

i~
[H̃int(t), ρ̃Full(0)]− 1

~2

∫ t

0

[H̃int(t), [H̃int(t
′), ρ̃Full(t

′)]]dt′ (3.2.8)

This equation shows, in the second term, that we have a second order contribution
of the interaction Hamiltonian to the dynamics of the coupled system. It seems

4As is stated in [10], the formalism treated has some arbitrariness, as the coupled ensemble of
harmonic oscillators can represent other dissipative mechanisms, as vibrations in a crystal, to
give an example.

5This is the typical Rotating Wave Approximation RWA assumed in certain light-matter system
approaches. It is also the simplest way to address coherent coupling between oscillators.



3.2. System plus reservoir approach 21

that we are in the right route for our first approximation. But before, we are
interested in finding an equation for the reduced density operator of the cavity
ρ̃ = trR[ρ̃Full]. After tracing over the reservoir space in Equation (3.2.8), and some
algebra, we have that

d

dt
ρ̃ = − 1

~2

∫ t

0

trR

{
[H̃int(t), [H̃int(t

′), ρ̃Full(t
′)]]
}

dt′ (3.2.9)

What happens with the non integral term in eq. (3.2.8)? This c−number term can
always be arranged in the Hamiltonian to vanish at this stage of the calculation.

In Equation (3.2.9), there are some issues that I want to highlight:

• The integral contains the full density operator evaluated in the primed time
0 ≤ t′ < t. We notice that the shape of this equation is self-referential as
both ρ̃(t) and ρ̃Full(t) are unknown.

• The interaction Hamiltonian appears twice in a product. Then, we will have
terms proportional to κjκj′ . If we make sure that, in general, ω2

c � κjκj′ ,
then the coupling with the bath is weak and we expect that the small cavity
system will not change the reservoir dynamics in an important manner.

3.2.1 Born approximation

Obviously, the cavity system will be affected by the reservoir in some manner and
then ρ̃Full(t) will not be separable always. Is there a well founded way to express
that the density operator is almost separable at all times, as the reservoir will
not change considerable from the initial state? Let’s think that the initial state
of the coupled system is separable and the reservoir is in thermal equilibrium at
temperature T 6:

ρ̂Full(0) = ρ̂(0)R̂, (3.2.10)

R̂ =
∏
j

exp(−~ωj ĉ†j ĉj/(kBT ))(1− exp(~ωj/(kBT ))). (3.2.11)

The formal way to express this idea is called Born approximation. It reads

ρ̃Full(t) = ρ̂(t)R̂+O(H̃int), (3.2.12)
6Taking closely a verbatim quote [10], the reservoir can represent the vacuum radiation field
into which an optical cavity mode decays through partially transmitting mirrors.
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where the O(H̃int) term is a perturbation of the order of the interaction, that
we are assuming weak. In practice, we take just ρ̃Full(t) = ρ̂(t)R̂ in Equation
(3.2.9) as every product containing the perturbation O(H̃int) will be a cubic power,
allowing us to neglect them and keep only the second order factors.

After tracing the reservoir operators with respect to R̂, the remaining nonzero
terms of the Master Equation read:

d

dt
ρ̃ = −

∫ t

0

{
[ââ†ρ̃(t− τ)− â†ρ̃(t− τ)â]e−iωcτ 〈K̃†(t)K̃(t− τ)〉R + h.c.

+[â†âρ̃(t− τ)− âρ̃(t− τ)â†]eiωcτ 〈K̃(t)K̃†(t− τ)〉R + h.c.
}

dt′, (3.2.13)

where τ = t− t′

〈K̃†(t)K̃(t− τ)〉R =

∫ ∞
0

dωeiωτg(ω)|κ(ω)|2〈ĉ†ω ĉω〉R, (3.2.14)

〈K̃(t)K̃†(t− τ)〉R =

∫ ∞
0

dωe−iωτg(ω)|κ(ω)|2(〈ĉ†ω ĉω〉R + 1), (3.2.15)

and 〈Ô〉R = trR[ÔR̂]. Notice also that we transformed the summation in the
j−oscillators in an integral in frequency. Explicitly

〈K̃†(t)K̃(t− τ)〉R =
∑
j

|κj|2eiωjτ trR[ĉ†j ĉjR̂]→
∫ ∞

0

dωeiωτg(ω)|κ(ω)|2〈ĉ†ω ĉω〉R.

(3.2.16)
Formally, g(ω) =

∑
j δ(ω − ωj) is the spectral density of the reservoir. Also,

〈ĉ†ω ĉω〉R =
e−~ω/(kBT )

1− e−~ω/(kBT )
(3.2.17)

is the mean photon number at frequency ω and temperature T . To understand the
meaning of this mean value, imagine that this reservoir is at room temperature.
Then kBT ≈ 0.0261234 eV. We summarize some important numbers in Table 3.2.1.
At room temperature, the reservoir has an average of one photon of frequency
4.38 THz, and is less probable to find thermal photons with higher frequencies.

3.2.2 Markov approximation

In Equation (3.2.13), we have the τ dependence on the reduced density operator
and then it is necessary to integrate it together with the other factors. However,
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Temp. (◦ C) Energy (meV) Freq. (THz) 〈ĉ†ω ĉω〉R
30 18.1074 4.38 1
30 26.1234 6.32 0.582
30 49.628 12 0.175926
30 165.427 40 0.00178

Table 3.2.1: Excitation mean number as a function of the temperature, energy
and frequency.

we know that the time scale t of the dynamics of this operator is restricted to
the decay time of the cavity coherence, that we can call as t > tc. As you can
see, the dynamics of the reservoir is encapsulated in the correlation functions. If
those correlations functions are limited by a time tR � tc, then we can neglect
the effects on the cavity density operator by doing ρ̃(t− τ) ≈ ρ̃(t). This is part of
the Markov approximation: by doing this replacement, it looks that the evolution
of the density operator in Equation (3.2.13) only depends on itself at actual
time t. In this sense, we say that this approach is only valid for Markovian (or
memory-less) systems. After the Markov approximation, we arrive to

d

dt
ρ̃ = (âρ̃â† − â†âρ̃)

∫ t

0

dτ

∫ ∞
0

dωe−(ω−ωc)τg(ω)|κ(ω)|2 + h.c. (3.2.18)

where we neglect the terms proportional to 〈ĉ†ω ĉω〉 as we know that, in the case of
interest for this thesis, ωc = 40 THz and then 〈ĉ†ωc

ĉωc〉 ∼ 10−3 (See Table 3.2.1).
We know that the integration in τ goes up to a time tc higher than the correlation
time of the reservoir tR = ~/(kBT ). It seems harmless then to extend the time
integration in (3.2.18) to infinity. This is useful as the complex exponential inside
becomes a Dirac Delta plus a principal value term like it reads∫ ∞

0

dτe−(ω−ωc)τ = πδ(ω − ωc) + i
P.V.

ω − ωc

. (3.2.19)

This Dirac Delta will collapse the frequency integration, and the principal value
will modify the resonance frequency in a manner that, in general, is neglected
for being a small correction 7. Then, keeping just the terms evaluated at ωc by
the Dirac Delta, we arrive to the following expression we are interested in, in the

7As it is mentioned in [10], this is a first contribution of the frequency Lamb shift that does not
consider relativistic effects.
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Schrodinger picture

d

dt
ρ̂ = −iωc[Ĥ0,c, ρ̂] +

κ̃

2
(2âρ̃â† − â†âρ̃− ρ̃â†â), (3.2.20)

where we have defined
κ̃ = 2πg(ωc)|κ(ωc)|2. (3.2.21)

3.3 Relaxation and dephasing processes

In order to “ground” the last result about the parameter κ̃ (just κ from here),
let’s think in our cavity, modeled as a quantum harmonic oscillator. In this
context, κ is called as the cavity decay rate, and it will appear in the derivation
of the equations of motion for the field observables, in particular for the mean
or expectation values in time, controlling their rate of damping, like any classical
oscillator theory.

This decay rate affects differently onto the diagonal or off-diagonal elements of
the reduced density operator:

• The populations (diagonal terms) decay with the full rate κ.

• The coherences instead (off-diagonal terms) decay with half this rate κ/2.

This is clear by checking the following equations of motion and their respective
solutions

d

dt
〈â〉 = −

(κ
2

+ iωc

)
〈â〉, d

dt
〈â†â〉 = −κ〈â†â〉, (3.3.1)

⇒ 〈â(t)〉 = −〈â(0)〉e−
κ
2
te−iωct, 〈â†â(t)〉 = 〈â†â(0)〉e−κt, (3.3.2)

where we derive d〈Ô〉/dt = trc[Ô(dρ̂/dt)] in the Schrodinger picture. The equation
of motion for 〈â〉 clearly represents a damped oscillation; its Fourier transform
has the shape of a Lorentzian with frequency center at ω = ωc and full width at
half maximum (FWHM) δω = κ.

3.3.1 Dephasing time

The modelling of resonances as Lorentzians curves is ubiquitous in Spectroscopy,
as it is directly connected with the lifetime of the excitations observed. In optical
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Figure 3.3.1: Simulations of two slow and fast decaying cavity coherences oscillating at
frequency ωc = 40 THz, where the initial condition is fixed as a coherent state with 〈â(0)〉 = −i.
(a) Slow decaying coherence at decay rate κ = 1.5 THz. (b) Fast decaying coherence at decay
rate κ = 15 THz.

.

protocols able to measure the electric field Ê ∝ (â+â†) with enough time resolution,
it is important to have a characteristic time of the amplitude loss. The dephasing
time is defined as T2,κ = 2/κ, where if it is not explicitly mentioned, we will always
assume that the numerical value of κ is written in absolute frequency units, instead
of angular frequency8. For example, for κ = 1 THz, the dephasing time is nothing
more than T2,κ = 2/κ = 2 ps. In case contrary, if the notation used is κ/2π = 1

THz, then the dephasing time must to be calculated as T2,κ = 2/κ = 0.318 ps.
Obviously, this is an important methodology issue as everything else, and it must
to be done with careful.

In Figure (3.3.1a-b) are shown two oscillating coherences with two different decay
rates, the first one lower in one order of magnitude than the second one (κ1 = 0.1

THz, κ2 = 1.5 THz). It is clear that if the experimental time resolution is able
to solve and fit the decay tale of this coherence, related with the near electric
field of the cavity, then it can be deduced the dephasing time with the rule
|〈â(t)〉|/|〈â(0)〉| = exp(−t/T2,κ).

8If the decay rate is obtained from the angular frequency width δω of a Lorentzian, it must to
be multiplied by 2π to compensate the units. This is the reason why one often encounters the
notation κ/2π in the scientific literature.
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Chapter 4

Anharmonic Oscillators

4.1 Anharmonic oscillators in Nanophotonics

Nanophotonic devices are a class of miniaturized optical devices that are engineered
to have dimensions on the order of nanometers. They are designed to manipulate
and control light in different regions of the EM and matter spectrum, in very
small confinement volumes V , as it is expressed in the electric and magnetic field
amplitudes per photon, E0 and B0 respectively, derived in section 1.

The concept of anharmonicity arises from the non-equidistant energy levels
structure present in those hybrid devices, allowing for nonlinear responses to
the incoming electromagnetic fields, but also in the isolated interaction with the
vacuum. For our particular interest, these intrinsic anharmonicities (for example,
in molecular vibrations) or engineered ones (heterostructures, meta-materials,
etc.) are important as they play a significant role in the nonlinear modulation of
the phase of the electric near field we report in [3].

Our interest in the anharmonicity of quantum oscillators is the connection we show
with nonlinear behaviour. This relationship has been reported in [2], where it is
shown that anharmonicity and nonlinearity can be seen as nonclassical resources.

Generally speaking, the interaction between the cavity field and the material
oscillators in a nonlinear media can lead to phenomena such as:

Self-Phase Modulation In cavity QED setups, where the cavity field intensity
is relatively high, the nonlinearity in the energy levels of the emitters can
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lead to interaction of a propagating wave with itself, in the form of self-phase
modulation (SPM) of the cavity field [62].

Cross-Kerr Nonlinearity If we use the nonlinear media as a waveguide, the
phase of a signal or pulse propagating in can be affected by other pulses
propagating at the same time. As they will mutually influence each other,
this phenomenon is called cross-phase modulation (XPM) [13]. This effect
can be utilized for quantum information processing, such as quantum gate
operations in quantum computing.

Nonlinear Dispersion The energy anharmonicity can also result in nonlinear
dispersion, where the phase velocity of the cavity field is dependent on its
intensity. This effect is relevant when considering the propagation of light
pulses through cavity QED systems [15].

4.2 Sources of the anharmonicity

As it is pointed out in [45], the development of the experimental nonlinear optics
field has an early referent in the works of John Kerr [38]. Surprisingly, one of
their discoveries was the measurement of the refractive index change of collimated
and spectrally filtered sunlight in response to a voltage applied to organic glass
plates made of amber resin. Of course, in that time there were no notion of such
thing as “discrete energy levels”, and then the connection between nonlinearity
and anharmonic spectra were not discovered yet. The development of Quantum
Theory together with the fabrication of the first lasers allowed the use of higher
optical intensities, required to address observable nonlinear effects, and obviously
opened the way to the exploration and characterization of the nonlinear behaviour
of matter when it is driven by electromagnetic fields, in particular connected to
the anharmonicity present.

4.2.1 Organic materials

As a curiosity fact, despite the discovery of John Kerr with organic compounds,
the use of organic matter to reach different regimes of light-matter coupling in
cavity QED, taking advantage of its non-linear properties, is relatively recent [46].
When the organic media is used as a semiconductor crystal, the spectral properties
of interest are related to charge carrier transitions of an specific molecular orbital
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[7]. In these devices, nonlinear effects arises from the conjugation of self-localized
exciton states, particularly when they are dressed with polarons, in conjugation
with the delocalized molecular orbital in the meta-molecular structure (if it is a
chain, for example, in dye J-aggregates [25]). Here, there is not a direct connection
between the anharmonicity of an non-hybrid and separable degree of freedom, and
nonlinear collective responses.

The scenario is different when we drive excitations related with intramolecular
vibrational motion. The fact that vibrational potentials are highly nonlinear can
be understood for two reasons:

• The bond strength between atoms in a molecule changes considerably in
every stage of the oscillation movement. The restorative and repulsive
“forces”, with respect to the common nuclear coordinate, deviates from
the harmonic behaviour, in the sense that are “weaker” for larger atomic
separations, and are “stronger” for shorter distances, respectively.

• Any vibrational potential must to account for dissociation, strongly
conditioning the energetic structure.

There are both experimental and theoretical works to characterize the complex
anharmonic behaviour of diverse types of molecules, or directly using these data
for semi-empirical works [20, 69, 24, 68, 3].

We have a prototypical example in the Morse potential for diatomic molecules
[52]. The analytically derived energy levels, that scales as

Eν = −De + a~

√
2De

µ
(ν + 1/2)− a2~2

2Deµ
(ν + 1/2)2,

where De is the dissociation energy, a is a calibration parameter of the Morse
potential, and µ is a dimensionless reduced mass of the diatomic molecule, show
decreasing steps in the energy climbing [29], correlating with the red-shifted
progression we expect in any spectroscopic observable.

4.2.2 Inorganic semiconductor dipoles

In tailored semiconductor devices as quantum wells (QW’s) or noninteracting
arrange of quantum wells or Multi-quantum wells (MQW’s), the confinement of
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charge carriers, or excitons generate a finite division in the valence and conduction
bands, called subbands (and inter-subbands in the case of MQW’s), that are
anharmonic in general, as it can be seen from the pedagogical example of an
infinite quantum well (the “particle in a box”) where

En =
n2π2~2

8mL2
, n = 1, 2, . . .

shows increased energy transitions in the ladder climbing and a blue-shifted
progression with respect to the fundamental transition ∆21 = 3π2~2/(2mL2). As
L is a “manufactured” parameter (the length of the well) and any real quantum
well will not be “infinite”, the specific shape of the subband structure can be
engineered, depending on these geometrical specifications, as well as the type and
proportions of semiconductors used in their design. The fine-tuning of all these
parameters allows, in principle, for decreasing, increasing, or a mixture of both
kind of energy steps, making them good candidates for anharmonic dipoles in
cavity QED applications.

At this respect, the state-of-the-art in the design of these structures has reached
an impressive degree of sophistication, as it is well exemplified in, for example,
[22]. It is noteworthy to mention, also, that quantum wells has been used as
nonlinear wave-guides and source of second or third harmonic generation due to
their large high order susceptibilities [32, 65, 26, 43, 19, 75].

4.3 Quantum Model for anharmonic dipoles

We are in turn to introduce the model Hamiltonian that will be the center of all
the theoretical predictions of this thesis.

The correspondence rule allows to connect the classical harmonic oscillator
Hamiltonian with its quantum version, as reads

Hharm =
1

2

(
p2

2m
+mω2

0x
2

)
−→ Ĥharm = ~ω0

(
b̂†b̂+

1

2

)
. (4.3.1)

where x = q − qe is the deviation with respect to the equilibrium coordinate qe.
In general, the quadratic potential V (q − qe) ∝ (q − qe)

2 is seen as the quadratic
truncation of a Taylor series for a more general potential, and the consideration
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of higher powers in the approximation is, for example, a regular approach in the
study of the vibrational dynamics of molecules [69]. For an individual oscillator,
it is generally expressed as

V (q − qe) =
∑
k

αk(q − qe)k. (4.3.2)

It is expected that the inclusion of higher powers in the approximation for
the Hamiltonian will break the harmonicity of the energy spectrum, as the
only perfectly equidistant (and infinite) energy ladder comes from the harmonic
potential. This fact expresses the intimate connection between anharmonicity and
nonlinear behaviour in classical and also in quantum mechanics.

To give an example, the Morse potential [52], a well known model for studying
diatomic molecules, expresses the idea that if the oscillation has enough energy,
called dissociation energy De, the molecule will break (or “dissociate”) into two
separated atoms. It can be expanded in a Taylor series around x = 0:

VMorse(x) = De

(
1− e−

√
ke/2Dex

)2

(4.3.3)

=
ke

2
x2 − k

3/2
e

2
√

2De

x3 +
7k2

e

48De

x4 − . . . , (4.3.4)

where ke the strength constant of the oscillator. Clearly, the quadratic truncation is
not enough to derive the point when the molecule breaks. However, if we decide to
explore small deviations from the harmonic regime, it is natural to characterization
of cubic or quartic-related Hamiltonians1. From this analysis we know that the
third power is only included if the nonlinear media is noncentrosymmetric, as they
are the only ones that breaks parity symmetry in the coordinates of the oscillator.

For the present analysis and forward, we will focus only on excitations in a
hypothetical centrosymmetric material although the model is able to include
higher order truncations, as is already documented in the literature [56].

1This is explained in a nice analysis connecting cubic or quartic perturbations of a quadratic
potential with second and third order susceptibilities in nonlinear media [6].



4.3. Quantum Model for anharmonic dipoles 31

4.3.1 Quartic Kerr Hamiltonian

We will review the implications of including a quantized nonlinear potential to
the harmonic Hamiltonian for a linear dipole of the form

V̂NL(x̂) = Ũ : x̂4 : =
~2Ũ

4m2ω2
0

: (b̂+ b̂†)4 : . (4.3.5)

We express the potential in normal ordering as it is documented in [16]. We do
not include the cubic contribution x̂3, that is included for materials that break
the parity symmetry of their potential 2.

Trespassing the normal ordering to each of the elements of the previous expression,
we have the following relationship

: (b̂+ b̂†)4 : −→ 6b̂†b̂†b̂b̂+ 4b̂†b̂b̂b̂+ 4b̂†b̂†b̂†b̂+ b̂b̂b̂b̂+ b̂†b̂†b̂†b̂†. (4.3.6)

In the rotating frame of the fundamental frequency ω0, the second and the
following terms give rise to rapid oscillations that can be neglected if the dynamics
is restricted to frequencies close to the fundamental one, as in the typical rotating
wave approximation for composite quantum systems. Discarding all the terms
except the first, the normally ordered anharmonic Hamiltonian can be expressed
now as reads

Ĥ = ~ω0b̂
†b̂+ ~Ub̂†b̂†b̂b̂, (4.3.7)

where U = 3~Ũ/(2m2ω2
0). This equation has an spectrum that is expressed as

follows (setting ~ = 1)

Eν = 〈ν|Ĥ|ν〉 = νω0 + ν(ν − 1)U, (4.3.8)

⇒ ∆ν,ν−1 = ω0 + 2(ν − 1)U, (4.3.9)

where ∆ν,ν−1 = Eν − Eν−1 and the |ν〉 are dipolar number states, which are
eigenstates of this Hamiltonian. There are two cases we want to differentiate:

• When Ũ is positive, the spectrum has increasing energy transition steps.
The fundamental frequency is ∆1,0 = ω0 and the ground state is well defined

2Which is a typical choice for centrosymmetric molecular ensambles, for example. Besides,
there are interesting effects related to this dependence, as for example the generation of second
harmonics [75].
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as E0 = 0.

• If Ũ is negative, we have decreasing energy transitions. In particular, we
noticed that this Hamiltonian is not bounded below, e.g. there is no ground
state as

lim
ν→∞

Eν → −∞. (4.3.10)

To sort out this issue, we rewrite the Hamiltonian in a truncated form

Ĥ ′ =
νmax∑
ν=0

Eν |ν〉〈ν|, νmax =

⌊
ω0 + |U |

2|U |

⌋
. (4.3.11)

where we use the floor function bxc to specify that ν can only take integer values.
We conclude that in order to describe quantum anharmonic oscillators with
decreasing energy transitions, the Hamiltonian in Kerr form just allows a finite
number of states νmax + 1 in a consistent way.

4.3.2 Collective representation for N anharmonic dipoles

The generalization for N anharmonic dipoles from equation (4.3.7) is
straightforward, assuming that they are not interacting between each other:

ĤN =
N∑
n=1

(
ωnb̂

†
nb̂n − Unb̂†nb̂†nb̂nb̂n

)
. (4.3.12)

Let’s assume that all oscillators have the same frequency transition ωn = ω0 and
anharmonicity parameter Un = U . By using the following basis representation

B̂α =
1√
N

N∑
n=1

e
i2π
N
αnb̂n, b̂m =

1√
N

N−1∑
β=0

e−
i2π
N
mβB̂β, (4.3.13)

the Hamiltonian in Eq. (4.3.12) can be rewritten in the following form:

ĤN = ω0

N−1∑
α=0

B̂†αB̂α −
U

N

N−1∑
α,β,η=0

B̂†αB̂
†
βB̂ηB̂ε(α,β,η). (4.3.14)
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where the index ε(α, β, η) = α + β − η(modN) of the last operator must to be
calculated using modular arithmetic 3, modulo N .

This representation using indexes 0 ≤ α ≤ N − 1 distinguish between degrees
of permutation invariance, from the most symmetric one (α = 0) to the less
symmetric (α = N − 1). The eigenstates of the α = 0 operator, that we are going
to call as the bright operator, are

|k0〉 =
1√
Nk

∑
ν1+...+νN=k

√
k!

ν1! · . . . · νN !
|ν1, . . . , νN〉, (4.3.15)

and then B̂†0B̂0|k0〉 = k|k0〉. In this notation, every |νn〉 is an eigenstate of the
n−number operator b̂†nb̂n. These states contains all the ways to put k excitations
in the N oscillators, including the cases of having more than one per site, arranged
in a permutation invariant form. From now on, Greek indexes will be used to
distinguish permutation indexes like α from site indexes like n.

There is a best suited form of the Hamiltonian Eq. (4.3.14) that reads

ĤN =

(
ω0 + U − U

N

N−1∑
β=0

B̂†βB̂β

)
N−1∑
α=0

B̂†αB̂α −
U

N

N−1∑
α,β 6=η=0

B̂†αB̂ε(α,βη)B̂
†
βB̂η.

(4.3.16)
It shows explicitly that there is a frequency shift generated by the way that the
bright and dark operators 4 are related to the population of the respective α−
collective modes. Moreover, this shift does not depend on α so it is equal for all
modes.

4.4 Equation of motion for a single anharmonic

dipole

We are going to use an open quantum system approach in the Born-Markov
approximation to study the dynamics of a single anharmonic dipole when the
interaction with the environment, as for example the vibrations of the media

3https://en.wikipedia.org/w/index.php?title=Modular_arithmetic&oldid=1175659453. This also
ensures that the result obeys 0 ≤ ε ≤ N − 1. To give examples, ε(0, 0, 1) = −1(modN) = N − 1
or ε(N − 1, 5, 4) = N(modN) = 0.

4Let’s call dark operators to those related with the remaining N − 1 B̂†
αB̂α number operators.

https://en.wikipedia.org/w/index.php?title=Modular _arithmetic&oldid=1175659453
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structure due to thermal fluctuations, is weak and memory-less. In general, we
expect that any effective dipole will dissipate energy in a similar way a cavity
with confined modes is coupled to the free EM field. The Master equation for an
anharmonic dipole (N = 1) in Kerr form is

d

dt
ρ̂ = −i[Ĥ, ρ̂] +

γ

2
(2b̂ρ̂b̂† − {b̂†b̂, ρ̂}). (4.4.1)

where Lγ[ρ̂] = (γ/2)(2b̂ρ̂b̂† − {b̂†b̂, ρ̂}) is the dissipator term in Lindblad form for
the dipole 5. The equation for the dipole coherence expectation value 〈b̂〉, using
the Hamiltonian in Equation (4.3.14), is

d

dt
〈b̂〉 = −

(γ
2

+ iω0

)
〈b̂〉+ i2U〈b̂†b̂b̂〉. (4.4.2)

where we use the identity d〈Ô〉/dt = tr[Ôdρ̂/dt]. In this equation, the cubic term
obtained present us two directions in order to solve the equation of motion:

• This equation will remain “linear” in the sense that we can calculate
d〈b̂†b̂b̂〉/dt for closing the system. However, as you can check, we are
going to find higher order correlations, and finally an infinite system of
equations. Then, this direction is non practical.

• The other way is to approximate higher order contributions like, for example,
by separating degrees of correlations. A simple statement of this approach
is, for example, to write 〈b̂†b̂b̂〉 = 〈b̂†〉〈b̂〉〈b̂〉+ correlations avoided in the
preceding product version.

We will see how to do this second option in the next subsection.

4.4.1 Truncation schemes

The Cumulant expansion give us a tool to handle this problem [66]. For up to
quartic products of operators, that is the limit for our interest, it consists on
using the following identities, (although it can be expanded to arbitrary number

5Remember that if this reservoir is in thermal equilibrium, in principle we expect not only
dissipation but also incoherent pumping, the last depending on the thermal mean number with
respect to the fundamental frequency of the system. However, at the frequencies of our interest,
the mean number of excitations at room temperature is negligible (See Table 3.2.1).
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of operators):

〈ÂB̂〉 = 〈Â〉〈B̂〉+ 〈ÂB̂〉c, (4.4.3)

〈ÂB̂Ĉ〉 = 〈Â〉〈B̂〉〈Ĉ〉+ 〈Â〉〈B̂Ĉ〉c + 〈B̂〉〈ÂĈ〉c,

+ 〈Ĉ〉〈ÂB̂〉c + 〈ÂB̂Ĉ〉c, (4.4.4)

〈ÂB̂ĈD̂〉 = 〈Â〉〈B̂〉〈Ĉ〉〈D̂〉+ 〈Â〉〈B̂〉〈ĈD̂〉c + 〈ÂB̂〉c〈Ĉ〉〈D̂〉+ 〈ÂB̂〉c〈ĈD̂〉c
+ 〈Â〉〈Ĉ〉〈B̂D̂〉c + 〈B̂〉〈D̂〉〈ÂĈ〉c + 〈B̂D̂〉c〈ÂĈ〉c + 〈Â〉〈D̂〉〈B̂Ĉ〉c
+ 〈B̂〉〈Ĉ〉〈ÂD̂〉c + 〈B̂Ĉ〉c〈ÂD̂〉c + 〈Â〉〈B̂ĈD̂〉c + 〈B̂〉〈ÂĈD̂〉c
〈Ĉ〉〈ÂB̂D̂〉c + 〈D̂〉〈ÂB̂Ĉ〉c. (4.4.5)

where the expectation values 〈Â . . .〉c are the cumulant terms, encoding the
correlations neglected in the approximations.

When all the quadratic or higher expectation values are truncated to first order,
this is, by setting 〈ÂB̂〉c ' 0 and 〈ÂB̂Ĉ〉c ' 0, we say that we are working with a
mean field model.

The main results of this thesis are obtained from this mean field perspective, aiming
to show that this first approximation captures the key features of the nonlinear
problem, as we only need that the anharmonic of matter could be transferred
coherently between oscillators. The second order approach goes beyond the scope
of this work, however we include the explicit expressions for the second order
equations in Appendix A1.

4.4.1.1 Mean Field approach

In this case, Equation (4.4.2) is approximated to

d

dt
〈b̂〉 = −

(γ
2

+ iω0

)
〈b̂〉+ i2U〈b̂〉∗〈b̂〉〈b̂〉, (4.4.6)

= −
(γ

2
+ iω0

)
〈b̂〉+ i2U |〈b̂〉|2〈b̂〉, (4.4.7)

This result is known as the Stuart-Landau equation [64, 55]. As this oscillator is
decoupled from the other ones, this equation is closed and it has analytical solution.
To derive it, we use the polar representation 〈b̂〉 = b(t)eiφ(t) with b(t) = |〈b̂(t)〉|.
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Figure 4.4.1: Mean field solutions for the real and imaginary parts of the complex anharmonic
coherence in the rotating frame of the dipole 〈b̂〉eiω0t and their respective phases in time for
two initial cases: (a) and (b) correspond to set 〈b̂(0)〉 = 1, (c) and (d) correspond to set
〈b̂(0)〉 = 2. The colors in the four plots represents the harmonic case (U/γ = 0, black lines) and
two anharmonic cases (high anharmonic ratio U/γ = 2, blue lines, and low anharmonic ratio
U/γ = 1/2, red lines). Dashed lines in plots (b) and (d) indicates the steady phases φss, in each
case.

We have that

d

dt
b(t) = −γ

2
b(t)⇒ b(t) = b0e

− γ
2
t, (4.4.8)

d

dt
φ(t) = −ω0 + 2U(b(t))2 = −ω0 + 2Ub2

0e
−γt. (4.4.9)

where b0 = b(t = 0) > 0. The exact solution is

〈b̂(t)〉 = b0 exp

{
−
(γ

2
+ iω0

)
t+ i

2Ub2
0

γ
(1− exp(−γt))

}
. (4.4.10)

The exponential times the imaginary number i =
√
−1 inside the expression above

is a nonlinear time-dependent phase term of the complex coherence, that we label
as reads

φNL(t) = φss(1− exp(−γt)), (4.4.11)

stating a steady value that we call φss = 2Ub2
0/γ that converges with twice

the decay rate of the coherence amplitude ∝ exp(−γt/2). Notice also that the
behaviour of this amplitude does not depend on U , only relying on its initial
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condition.

In Figure (4.4.1) we show the evolution of this coherence with respect to three
anharmonic cases (U = 0, U = 2γ and U = γ/2) and two initial conditions
considering, two different coherent states with α = 1 or α = 2.(and then b0 = 1 or
b0 = 2). We plot the linear case (U = 0) with black lines, showing that the linear
coherence does not change its initial complex phase, and then the dynamical phase
for U > 0 is an exclusive result of the anharmonicity and nonlinearity present.
Summarizing, the mean field approach contains the basic mechanism to generate
nonlinear phase modulation when the anharmonic dipole is initialized at some
quantum excited state, that increases with the amount of anharmonicity encoded
with the anharmonic ratio U/γ.
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Chapter 5

Results

5.1 Preliminary words

We already have the minimal theoretical background, presented in the previous
chapters, to introduce the main results of this thesis. These results are divided in
three parts:

• First, we derive an analytical theory of the Purcell effect [57] for a cavity
QED filled with material dipoles, modeled as identical harmonic oscillators,
in weak coupling regime. This linear quantum model proposal reproduces an
experimental demonstration of the former [50], by using parameters obtained
from independent experiments, which is already reported and validated in
[68].

• Second (and the core of our work), we show that our model predicts important
nonlinear effects when we consider the anharmonicity of the material infrared
dipoles inside the cavity/resonator, in terms of a Kerr contribution, only
in the material Hamiltonian [3]. Depending on the driving conditions,
this system manifests a crossover from linear response – when it is driven
by weakly enough sub-picosecond THz pulses– to an emerging nonlinear
response when the dipoles reach higher excitation levels that are detuned
from the fundamental transition.

• Finally, we show that the inclusion of dark states to the global dynamics,
generate, in general, an enhancement or diminution of the nonlinear phase
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modulation, compared with the analogous or reference homogeneous case.

These dark modes are completely decoupled under the mean field approach, if
all dipoles share the same set of parameters. Then, the way to make them part
of the dynamics is by introducing local inhomogeneities that break the perfect
permutation symmetry of the collective system.

Our semi-empirical model considers realistic values for all the frequencies (and
energies) involved, and the fundamental dissipation channels for both cavity and
material dipoles are inserted as parameters in a Master equation in Lindblad form,
that are extracted from the empty cavity and bulk spectroscopic measurements.
The material dipoles considered in the first stage of validation are specific vibrations
of a carbonyl bond present in an organic polymer of Poly(methyl methacrylate),
or PMMA for short [63, 44]. Those vibrations are treated as identical and non
interacting harmonic oscillators weakly coupled to a subwavelenght metallic,
mid-infrared resonator cavity mode, in complete resonance.

Regarding the second main results, the inclusion of an anharmonic spectrum just
for the material dipoles make our model nonlinear, in the sense that the coupled
light-matter system shares this property coherently and dynamically, producing a
time evolution in the electric field and polarization of the media that can be clearly
distinguished from a typical linear response, as we are going to show in the corpus
of this section. For this results we consider an inorganic cavity, instead of the
PMMA vibrations, made from a Multi-Quantum Well with input parameter values
similar to those used in [48]. The advantage of these inorganic semiconductor
structures is the possibility to confine a small number N of anharmonic dipoles,
counteracting the dilution effects present in organic cavities that screen their
anharmonic properties due to the size of the usual molecular ensembles used.

We notice that, independent of the fact that the cavity is modeled as a harmonic
oscillator, the coupled system presents a nonlinear response, captured from the
evanescent electric field of the nanostructure by using near-field probes or nanotips
[28] 1. This technology allows to achieve the sub-picosecond time resolution
necessary to distinguish the nonlinear and transient time delays imprinted in the
free induction decay of a signal, generated with highly enough incoming driving
pulses, when compared with the linear frequency-locked electric signal expected

1This is actually the technology used in the measurement of the Purcell effect in organic cavities
using PMMA, published in [68].
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in weak driving conditions for the same setup.

We coined the term of chirping effect, as we derive an analytical instantaneous
dipole frequency ω′0(t) depending on the mean number of the dipoles excitations
in time. This dependence generates a red-shift from the resonant fundamental
transition, shared by the cavity and the dipoles, that grows with the mean
population of the third energy level and is coherently transferred to the cavity
field.

5.2 Purcell effect with pulsed mid-IR organic

resonators

5.2.1 Light-matter linear model

As is usual in cavity QED, we model the empty cavity system as a single quantum
harmonic oscillator of fundamental frequency ωc.

The free Hamiltonian for the isolated single cavity mode then is (fixing ~ = 1)

Ĥc = ωcâ
†â. (5.2.1)

where â is the annihilation operator of the cavity field and we omitted the vacuum
energy as we are interested only in energy (or frequency) transitions 2.

For the dipolar oscillators, we model them as a collection of N bosonic quantum
oscillators that, in order to describe linear response experiments in a weak driving
condition |Fd|/κ, we approximate their confinement potential to a quadratic form
around an nuclear equilibrium position. The Hamiltonian for one vibrational
quantum oscillator reads

T̂n + V̂n(q) ≈ p̂2
n

2m
+

1

2
mω2

vq̂n = ~ωv(b̂†nb̂n + 1/2). (5.2.2)

Here, T̂n and V̂n(q) are the kinetic and potential energy curve for the n-th dipole,
the operator b̂n is the annihilation operator of the anharmonic dipole n and ωv is

2Although in general we expect a highly structured energy spectrum for a cavity, we can in
principle design a particular geometry of a cavity with an appropriate finesse to isolate just
one mode from the full spectrum and also to tune that mode to be in close or exact resonance
with the material oscillators inside the resonator.
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the fundamental frequency of the n-th oscillator.

The light-matter system Hamiltonian consists in a collection of N independent
harmonic dipoles coupled to a single mode of a cavity QED with a coupling
strength per site gn. The Hamiltonian considering the free and interaction terms
for the light-matter system, in the rotating wave approximation 3, is

ĤN = ωcâ
†â+

N∑
n=1

ωnb̂
†
nb̂n +

N∑
n=1

gn(â†b̂n + b̂†nâ). (5.2.3)

The role of relaxation and driving to the system is accounted in a Master Equation
in the Lindblad form for the reduced density operator of the hybrid system ρ̂S

which reads

d

dt
ρ̂S = −i[ĤN + Ĥd(t), ρ̂S] +

κ

2
L̂â[ρ̂S] +

N∑
n=1

γn
2
L̂b̂n [ρ̂S]. (5.2.4)

Here, the L̂ operators are expressed in the usual Lindblad form:

L̂â = 2âρ̂S â
† − â†âρ̂S − ρ̂S â†â, (5.2.5)

L̂b̂n = 2b̂nρ̂S b̂
†
n − b̂†nb̂nρ̂S − ρ̂S b̂†nb̂n. (5.2.6)

For the cavity, the effect of dissipation due to population and coherence losses is
accounted by the coupling with the infinite modes of the free electromagnetic field,
in a perturbative approach allowing to encode the environment influence with the
cavity decay rate parameter κ 4. For the dipoles instead, the main dissipation
channels are non-radiative, related with phonons generated in a disordered media
at thermal equilibrium, that in general are local and here we parameterize with
the decay rates γn.

Also, we introduced the time dependent driving Hamiltonian Ĥd(t), which is
simply a classical coherent driving field incoming to the resonator structure. Its

3Or RWA, for short. This approximation in general is broken for strong, ultra-strong coupling,
or other more complex regimes [51, 18].

Here, however, we are only interested in a weak coupling scenario, justifying our approach.
4This parameter is obtained from the spectroscopic signatures of the empty cavity in reflection
or transmission experiments by taking the Full Width and Half Maximum FWHM of the
corresponding resonance peak, which is generally fitted with a Lorentzian function.
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explicit form reads
Ĥd(t) = Fd(t)(âe

iωdt + â†e−iωdt), (5.2.7)

where Fd(t) = F0ϕ(t), ϕ(t) is the envelope of the driving pulse, F0 is related to the
incoming photon flux Φflux ∝ |F0|2, and ωd is the carrier frequency of the laser.

5.2.2 Homogeneous ansatz

In the ideal case of identical dipole oscillators, equally coupled to the cavity field,
the expression of the Hamiltonian is simplified:

ĤN = ωcâ
†â+ ω0

N∑
n=1

b̂†nb̂n + g
N∑
n=1

(â†b̂n + b̂†nâ). (5.2.8)

By changing to the collective dipolar basis, the Hamiltonian will look like

ĤN = ωcâ
†â+ ω0

N−1∑
α=0

B̂†αB̂α +
√
Ng(â†B̂0 + B̂†0â), (5.2.9)

∼= ωcâ
†â+ ω0B̂

†
0B̂0 +

√
Ng(â†B̂0 + B̂†0â), (5.2.10)

where the last congruence relationship is exactly valid when all the dark states
are not initialized 〈B̂α 6=0〉 = 0, as the EM field only couples with the bright state
〈B̂0〉.

Moreover, the Lindblad term related to dipole losses, when we fix γn = γ for all
the N dipoles, can be rewritten as reads

γ

2

N∑
n=1

L̂b̂n [ρ̂S] =
γ

2

N−1∑
α=0

(
2B̂αρ̂SB̂

†
α − B̂†αB̂αρ̂S − ρ̂SB̂†αB̂α

)
. (5.2.11)

From all these equations it is crystal clear that the dark modes α 6= 0 are completely
decoupled, as for the dipole approximation considered (gn = g for all dipoles), the
cavity field will couple only with the bright mode α = 0. Then, it is justified the
use of the following reduced version of the Hamiltonian:

ĤN = ωcâ
†â+ ω0B̂

†
0B̂0 +

√
Ng(â†B̂0 + B̂†0â). (5.2.12)
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Figure 5.2.1: Vibrational Purcell effect. (a) Field detection scheme for the PMMA-
coated nanowire with the nanoscale local probing at the wire terminal, using the following
parameters {ωv, κ/2π, γ/2π,

√
Ng} = {51.9, 15.6, 0.510, 1.24} THz. (b) Pulse-driven resonator

field Re[〈â(t)〉] measured in Ref. [50] for a resonant molecular vibration–antenna system
(ωv = ωc). The measured lifetime of the FID signal is T2,γ̃ = 345 ± 10 fs (boxed region,
inset). (c) Simulated collective molecular coherence Re[〈B̂0(t)〉] under equivalent conditions as
in experiments with dephasing time T2,γ̃ = 347 fs for

√
Ng = 1.24 THz, where the free space

dephasing time is T2,γ = 624 fs. We predict an enhanced vibrational decay rate of γ̃/2π = 0.917
THz.

and the following shape of the Master equation

d

dt
ρ̂S = −i[ĤN + Ĥd(t), ρ̂S] +

κ

2
L̂â[ρ̂S] +

γ

2
L̂B̂0

[ρ̂S], (5.2.13)

where L̂B̂0
[ρ̂S] = 2B̂0ρ̂SB̂

†
0 − B̂

†
0B̂0ρ̂S − ρ̂SB̂†0B̂0.

5.2.3 Purcell factors

We apply our formalism to reproduce the field detection done in a PMMA-coated
nanowire captured with a nanoprobe, as it is shown schematically in Figure (5.2.1-
a). The cavity was driven with a Gaussian pulse with carrier frequency ωd = 51.9

THz in resonance with the coupled cavity-vibrational system, and the temporal
center and duration where t0 = 600 fs and T = 155 fs, respectively. We neglected
the tip field influence into the cavity plus vibrations system, as typically these
nanodevices are broadband compared with the probed device and their effect can
be neglected depending on the lifetime relations between subsystems 5.

The system of equations for the homogeneous light-matter system coherences,

5A more detailed theoretical exploration of the inclusion of the tip dynamics is done in [68],
showing coherent tip-induced phase-space rotations depending on the horizontal position of the
tip, and a crossover from weak to strong coupling by the tuning of the vertical position of the
tip, with respect to the antenna layer.
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Figure 5.2.2: Purcell-enhanced dipole decay rate γ̃ with respect to
√
Ng and κ for fixed

free-space dipole decay γ = 0.6 THz. (a) Color plot showing a diagonal threshold between the
strong coupling hybridized light-matter decay rate (upper left) and the weak coupling dipole
decay rate (lower right). (b) Comparison between the exact value of γ̃ (thick lines) and the
adiabatically obtained dipole decay rate (dashed lines) for three different values of the collective
coupling

√
Ng. These three cases correspond to the three dashed white lines in plot (a). The

fixed decay rate γ is represented with a dot-dashed blue line.

consisting in the cavity single mode plus N vibrational excitations, is

d

dt
〈â〉 = −

(κ
2

+ iωc

)
〈â〉 − i

√
Ng〈B̂0〉 − iF̃d(t), (5.2.14)

d

dt
〈B̂0〉 = −

(γ
2

+ iω0

)
〈B̂0〉 − i

√
Ng〈â〉, (5.2.15)

where F̃d(t) = F0e
−iωdtϕ(t). This is exactly solved by applying the Fourier

Transform to the complex coherences of the system:

〈â(ω)〉 =
1√
2π

∫ ∞
−∞
〈â(t)〉eiωtdt, 〈B̂0(ω)〉 =

1√
2π

∫ ∞
−∞
〈B̂0(t)〉eiωtdt,

and formulating the corresponding algebraic system from Eqs. (5.2.14-5.2.15).
In the resonant condition ωc = ωd = ω0, fixing κ > γ for a bad cavity, and by
considering a weak coupling case stated by the relation

|κ− γ|/2 > 2
√
Ng, (5.2.16)

we find that the response of the oscillators present the modified decay rates as
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reads

κ̃ =
κ+ γ

2
+ Γg =

κ

2

(
1 +

γ + 2Γg
κ

)
, (5.2.17)

γ̃ =
κ+ γ

2
− Γg =

γ

2

(
1 +

κ− 2Γg
γ

)
, (5.2.18)

where we define Γg =
√(

κ−γ
2

)2 − 4Ng2.

Notice that the condition Eq. (5.2.16) delimits a threshold between weak coupling
–characterized by a decay renormalization for both oscillators– and strong coupling,
showing the hybridization into a common decay rate, equal to the mean value
(γ + κ)/2 6.

Complementary to these results, we find also a good approximation for the
renormalization of the material decay rate in the bad cavity regime where κ� γ.
Let’s define the slowly varying coherences, in exact resonance, as ã(t) = 〈â(t)〉eiω0t

and B̃0(t) = 〈B̂0(t)〉eiω0t. Now, the system of equation is rewritten as

d

dt
ã = −κ

2
ã− i

√
NgB̃0 − iF0ϕ(t), (5.2.19)

d

dt
B̃0 = −γ

2
B̃0 − i

√
Ngã, (5.2.20)

We make the adiabatic approximation for the free induction decay (ϕ(t) ≈ 0) by
imposing dã/dt = 0. We obtain a renormalized equation of motion for the dipole
coherence by replacing ãss = −i(2

√
Ng/κ)B̃0 in the equation for B̃0, that reads

d

dt
B̃0 ≈ −

γ

2

(
1 +

4Ng2

κγ

)
B̃0 = −γPdip

2
B̃0 (5.2.21)

In this manner we obtain an approximation for the Purcell factor Pdip = 1 +

4Ng2/(κγ) containing the cooperativity parameter 4Ng2/(κγ) [68]. As the decay
offset is high, in principle it is expected that the long lived dipole excitation
transfers coherently into the free induction decay of the cavity near field in the
form of beatings, from which the enhanced decay rate γ̃, and the corresponding
shorter dephasing time T2,γ̃ = 2/γ̃, can be fitted from the envelope of the electric
field amplitude. The comparison between the experimental fit and the reproduction

6Notice also that if the inequality does not hold, the factor Γg becomes an imaginary number.
It can be proven that this imaginary number contributes to the frequency splitting in the
spectrum of the coupled oscillator, that is the signature of the strong coupling regime.
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of this result by using our simulation is showed in Figures (5.2.1a-b), as it was
done successfully in [50, 68].

Furthermore, we show in Figure (5.2.2) a color plot of the Purcell-enhanced dipole
decay rate γ̃ > γ for the fixed free-space value γ/2π = 0.6 THz with respect to
different choices of the collective light-matter coupling

√
Ng and cavity decay

rate κ, and considering values in the range of few THz, for applications in the
mid-infrared. Also, in figure (b) we compare the renormalized dipole decay rate
Eq. (5.2.18) -plotted with solid lines– with respect to the adiabatic approximation
of the Purcell-enhanced decay rate Eq. (5.2.21) –with dashed lines– showing good
agreement for sufficiently high cavity decay rates κ & 15γ. The peaks present
in the right panel, and the subsequent straight lines for lower κ, correspond to
the cases where the combination of parameters goes beyond the weak coupling
regime, where we expect generation of polaritons. These polaritons are hybrid,
non-separable excitations, that presents a decay rate equal to the mean value of
the free-space decay rates from both cavity and material dipoles, as it can be seen
also from the left panel (a), in the upper left part of the diagonal crossover line.

5.3 Nonlinear dynamics for identical dipoles

The previous linear response theory relies in a weak driving condition parameterized
with |Fd|/κ� 1. This condition conjugates with the chosen time duration T ∼ 150

fs of the driving pulses, that is much shorter than the characteristic cavity decay
time 1/κ � T . For a detailed argument about the mean excitation numbers
obtained form the theory, please visit Appendix A2. Our case scenario κ/ωc ∼ 0.3

is representative of open nanoresonators in the THz as the reported in [50],
translating in photon lifetimes of the order of a few femtoseconds. Controlling all
these conditions ensures that the vibrational ladder climbing do not going beyond
the desired level over a pulse duration. Obviously, for the harmonic approximation,
this limit is the first excited state with ν = 1.

If it is also the case that the second or higher excited energy levels are detuned
with respect to the fundamental transition, accessing them necessarily will break
the harmonic approximation.

The intrinsic anharmonicity of vibrational dipoles typically varies in the range
of 0.3–1.2 THz for polyatomic molecules [20, 24], and they manifest as smaller
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Figure 5.3.1: Evolution of the real part of the system coherences for N = 2 anharmonic
vibrations (U = 0.6 THz) subject to a single 0.155 ps pulse centered at 0.6 ps with driving
strength parameters F0/κ = 0.6 (blue solid line) and F0/κ = 0.01 (orange dashed line). The
set of parameters chosen was similar to the used in Figure 5.2.1. The delay δτ between the
weak and strong field responses is highlighted. (a) Evolution of the cavity coherence Re[〈â〉].
The green dashed box is shown magnified in (b) to appreciate the FID signal after the pulse is
over. (b) Evolution of the dipole collective coherence Re[〈B̂0〉]. The green dashed box is shown
magnified in (d) to appreciate the FID signal after the pulse is over.

energy spacing between subsequent energy levels, compared with the fundamental
transition.

We will show that our model is able to treat organic cavities as the
PMMA/resonator mentioned in the previous chapter, and also inorganic
heterostructures as multi-quantum wells in cavities as anharmonic dipoles. These
devices are designed to obtain specific spectroscopic features and, where the
number and shape of the charge carrier subbands are built for the requirements
of the consumer. The advantages with respect to organic cavities is clear when
we notice that we can putt a small number N of quantum wells inside a single
MQW, and also because they can be manufactured with higher anharmonicities
(Un ∼ 3–9 THz) than the previously reported organic molecules [48].
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5.3.1 Antenna-Vibrations

The Born-Oppenheimer potential is frequently used to describe the potential
energy of chemical bonds fluctuating around an equilibrium bond length qe, that
reads

V (q − qe) =
∑
k

αk(q − qe)
k. (5.3.1)

Minimal models using up to quartic nonlinearities (kmax = 4) for parity symmetric
potentials (for which the k = 3 term is neglected) have been used to study
nonlinear vibrational spectroscopy [56, 69, 59], and in particular in the context of
vibration strong coupling in Fabry-Perot resonators [17].

An important feature we want to capture from these nonlinear models is the
reduction of the energy spacing between subsequent energy levels. This difference
is present in the energy gap ∆21 between ν = 1 and ν = 2 levels, compared with
the fundamental transition at frequency ωv > ∆21/~.

We use the harmonic oscillator operators to write the vibrational potential in Kerr
form

T̂n + V̂n ≈ ωvb̂
†
nb̂n − Ub̂†nb̂†nb̂nb̂n, (5.3.2)

where U = |∆21|/2.

The light-matter dynamics is simulated by solving the quantum master equation
in Eq. (5.2.13) together with the minimal anharmonic Hamiltonian in Eq. (5.3.2)
for N identical molecules. The mean field equations of motion for the cavity and
collective vibrational coherences read as

d

dt
〈â〉 = −

(κ
2

+ iωc

)
〈â〉 − i

√
Ng〈B̂0〉 − iF0ϕ(t)e−iωdt, (5.3.3)

d

dt
〈B̂0〉 = −

(γ
2

+ iω′v(t)
)
〈B̂0〉 − i

√
Ng〈â〉 (5.3.4)

where we have defined the instantaneous frequency

ω′v(t) = ωv −
2U

N
|〈B̂0(t)〉|2, (5.3.5)

and we have chosen the single-molecule Rabi frequency g, the local vibrational
relaxation rate γ, and the cavity decay rate κ to be the same as in the linear
response theory developed in the previous section.
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5.3.1.1 Anharmonic Time Delay Effect for Strong Pulsed Excitation

We can simulate the coupled light-matter dynamics of anharmonic vibrations
coupled to an infrared resonator, by solving the system of equations (5.3.3-5.3.4)
for a system of N molecules. The single-molecule Rabi frequency g, the local
vibrational relaxation rate γ, and the cavity decay rate κ, are set to be the same
as in Fig. (5.2.1), and then the system is also in weak coupling. For a driving
strength parameter F0/κ & 0.6, we numerically compute the evolution of the
collective coherence 〈B̂0(t)〉 by integrating the equations of motion in the mean
field approach.

In Fig. 5.3.1 we plot the evolution of Re〈â(t)〉 and Re〈B̂0(t)〉 for N = 2 and
F0/κ = 0.6, obtained as described above (solid line). We also show the response of
a coupled system driven by a pulse that has the same normalized temporal profile
(t0 = 600 fs, T = 155 fs), but is much weaker (F0/κ = 0.01, linear response).
Resonant coupling and driving is assumed (ωv = ωa = ωd) and the single molecule
nonlinearity parameter is U = 0.6 THz. The strongly driven signal develops a time
delay δτ of a fraction of a cycle relative to weak driving (boxed green rectangles
in (a) and (c), magnified in (b) and (d)). This delay builds up gradually while the
pulse is on and remains relatively stable after the pulse is over. The vibrational
decay time (T2,γ) does not depend on the pulse strength7.

We plot in Figure 5.3.2 how anharmonic time delays are generated in the FID
signal when we compare them with their analogous linear response cases, when
the coupled system is driven by a finite Gaussian pulse as the one shown in dotted
grey lines, highlighting the part of the pulse profile with higher intensity, around
t0 − T < t < t0 + T . We overlap the time delays calculated numerically for the
material coherence (δτ (B0)(t)/T0, dashed lines) and cavity coherence (δτ (a)(t)/T0,
overlapped circles). What our numerical results show is that, even when the initial
evolution of these delays are not equal for both oscillators, they coincide for long
times after the pulse is over8.

7It is noteworthy to mention that in a linear FID in weak coupling, due to the decay offset present
(κ/γ ≈ 30.6) we expect beatings in the cavity coherence due to the coherent signal transfer
from the material dipoles, as we can see from Fig. 5.3.1-(a) for the weak driving condition
F0/κ = 0.01. However, this behaviour is not present in the nonlinear case (F0/κ = 0.60).

8This will be of main importance as will allow us to develop the adiabatic elimination procedure,
in order to obtain analytical equations for this time delays, and correlated phase shifts that we
are going to develop further.
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Figure 5.3.2: Adimensional time delays over the fundamental period T0 = 2π/ωv, with
respect to different set of parameters, but fixing {ωv, κ/2π} = {51.9, 15.6} THz. (a) Time delay
ratio calculated as the time difference between peaks and dips of the material collective coherence
(δτ (B0)(t)/T0, dashed lines) and cavity coherence (δτ (a)(t)/T0, empty circles) for different decay
ratios κ/γ, keeping κ/2π = 15.6 THz fixed. The grey dotted bell curves correspond to the
Gaussian pulse envelope ϕ(t) with temporal width T ,when the center of the pulse t0 = 0.6 ps
and pulse width T = 0.155 ps are marked with vertical dashed lines. The time delays derived
from the cavity coherence are plotted from t = 1.1 ps as they just stabilize after the appearance
of beatings around ≈ 0.85 (ps). (b) Time delay ratio calculated as the time difference between
peaks and dips of the material collective coherence (dashed lines) and cavity coherence (empty
circles) for different coupling ratio

√
Ng/ωv, keeping

√
Ng/2π = 1.24 THz fixed.

Figure 5.3.2-(a) shows the evolution of δτ for four scenarios, fixing the value of
κ/2π = 15.6 THz. For long dipole lifetimes compared with the cavity (κ = 40γ),
i.e., narrow–band vibrational dipole response, the time delay of the FID signal
remains stable after the driving pulse is over, becoming more and more higher
for sharper dipole bandwidths. On the contrary, when (κ = 7.5γ) the time delay
lowers from a maximum value after the pulse ends. The system thus requires long
dipole dephasing times to imprint a stationary time delay in the near field once
the driving pulse is turned off.

We also include the case for variations in the collective light-matter coupling
√
Ng.

Figure 5.3.2-(b) have for four scenarios. For high light matter coupling respect to
the fundamental frequency (

√
Ng/ωv = 53), the time delay of the FID signal has

a similar behaviour than the lower decay ratio, this is, after reaching a maximum,
it stabilizes in a lower value. On the contrary, when (

√
Ng/ωv = 20), the time

delay shown stabilizes monotonically to a maximum steady value. All these results
suggest that in order to achieve higher time delays efficiently, it is necessary to be
immersed in weak coupling as deep as it could be.

This consideration can be correlated with the results of the Purcell enhancement
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Figure 5.3.3: Stationary time delay, calculated at t = 2.5 (ps), with respect to N , and
considering the set of semi-empirical parameters {ωv, κ/2π, γ/2π,

√
2g} = {51.9, 15.6, 0.510, 1.24}

THz. As is clearly noticed, the dilution effect for larger N makes any nonlinear effect, as this
time delay, negligible.

in Figure 5.2.2. The effective vibrational decay rate decreases for lower coupling
strengths g and higher cavity decay rate κ. This ratifies that it is required long
dipole dephasing times, in this case the enhanced dephasing time, to imprint a
stationary time delay in the near field after the pulse is off.

Although we predict appreciable time delays, for feasible optical and material
bandwidths, and single coupling strength, the values chosen for N are just a “proof
of principle”: realistic values for PMMA are reported to be close to N ∼ 103 [50].
In Figure 5.3.3 we capture this dilution effect in the stationary value of δτss/T0

for increasing number of dipoles N in the ensemble. For N ∼ 102, this effect is
almost negligible for the set the parameters chosen.

More realistic candidates for the set of parameters used are MQW’s [74], as these
structures can accommodate a smaller number of effective dipoles (N = 26 in [48])
and also presents higher anharmonicities, that can be also engineered depending
on the experimental requirements, allowing for much more flexibility than organic
infrared cavities like the referenced here.

In Figure 5.3.4 we show an schematic picture of a MQW in an open infrared
nanocavity, with incoming and outcoming fields interacting directly just with the
antenna, on the top layer of the nanodevice. In this way, the driven pulses do
not interact with the dipoles inside, but they drive the near field between the
top antenna layer and the bottom surface. As the wavelengths we are interested,
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Figure 5.3.4: Schematic picture of a MQW in a driven open infrared nanocavity formed by
two quantum wells with fundamental frequency ω0 = ∆10. The 0→ 1 and 1→ 2 transitions are
coupled to the near-field of an open nanocavity with frequency ωc by an incoming laser pulse
Ein. The photons that leak out the nanocavity on sub-picosecond time scales at rate κ generate
the free-induction decay (FID) signal encoded in the outcoming field Eout. .

in the order of ∼ 1.2 µm are broader than the dimensions of the quantum wells
widths (around ∼ 15 nm [48]), the dipolar approximation is well justified, allowing
for a symmetrical collective coupling with the EM near field.

5.3.2 Antenna-MQW’s

As we mentioned before, MQW’s in resonator or cavity setups allows for more
flexibility in the choose of optical and material parameters, as well as sufficient
small N effective dipoles to counteract the dilution effect present in organic cavity
QED.

In Figure 5.3.5 we show the effect on different anharmonicity and driving conditions
for a open mid-infrared nanoresonator (the “cavity”) containing a hypothetical
MQW with two identical quantum wells inside (N = 2), which is much more
feasible on modern nanophotonics implementations [49].

As we mentioned before, the Kerr nonlinearity of our anharmonic model generates
an effective dipole chirping effect, with instantaneous frequency ω′0(t).

This is red shifted from the fundamental resonance by an amount proportional
to the bright mode occupation |〈B̂0(t)〉|2, in our mean field approach. The
nonlinearity is proportional to the anharmonicity parameter U and is small for
large N [68]. The transient red shift occurs while the system is driven by the
laser pulse, which populates B̂0(t), and is thus proportional to the photon flux
parameter F0.

As we can see from the figures, the time delay δτ (t) generated grows in a nontrivial
way with the anharmonicity, parameterized with U/γ, and the driving condition
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Figure 5.3.5: Adimensional time delay δτ/T0 considering N = 2, for four different
driving conditions F0/κ = (0.3, 0.6, 1.2, 2.4) and four anharmonicity conditions U/γ =
(0.25, 0.50, 1.0, 2.0), considering the set of semi-empirical parameters {ωv, κ/2π, γ/2π,

√
Ng} =

{40.0, 12.0, 0.6, 1.00} THz, intimate relationships with those used in [48]. (a) Curves considering
F0/κ = 0.3 (b) Curves considering F0/κ = 0.6 (c) Curves considering F0/κ = 1.2 (d) Curves
considering F0/κ = 2.4.

F0/κ. What is clear is that for our choice of parameters, this time delay reaches a
stationary value δτss.

The nontrivial behaviour of our system is evident for higher driving ratios (Figures
5.3.5 (c)–(b)), as a higher anharmonic condition not necessarily will bring a higher
stationary time delay. Also, the simulations show a saturation effect, where no
matter how much we increase the driving intensity, the time delays obtained will
not increase. Instead, they will show a fluctuating behaviour before reaching a
possible lower stationary value than the highest peak of the curve.

In Figure 5.3.6 we increase the number of anharmonic dipoles to N = 16, using
the same set of parameters from Figure 5.3.5, in order to catch the dilution effect
onto the anharmonicity (U/N) as well as on the collective light-matter coupling
Ω =

√
Ng. As the chirping effect falls with 1/N , it is not strange that higher

driving intensities will be required to reach higher time delays (δτ/T0 ∼ 0.4 for
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Figure 5.3.6: Simulations for a Multi-quantum well, containingN = 16 quantum wells, of the
adimensional time delay δτ/T0, for four different driving conditions F0/κ = (0.3, 0.6, 1.2, 2.4) and
four anharmonicity conditions U/γ = (0.25, 0.50, 1.0, 2.0), considering the set of semi-empirical
parameters {ωv, κ/2π, γ/2π,

√
Ng} = {40.0, 12.0, 0.6, 1.00} THz. (a) Curves considering F0/κ =

0.3 (b) Curves considering F0/κ = 0.6 (c) Curves considering F0/κ = 1.2 (d) Curves considering
F0/κ = 2.4.

F0/κ ≥ 2.4). However, the stationary time delays expected are almost zero, even
when its evolution reached transiently a high value close to the width of the driving
pulse t0−T < t < t0 +T . This can be explained, as we did with the case of organic
vibrations in a cavity QED, by the effective bandwidth relationships between
cavity and dipoles in weak coupling due to the Purcell effect. The effective dipole
decay rate is augmented drastically by the increasing of the collective light-matter
coupling Ω with higher N , keeping the cavity decay rate κ fixed, as you can
check from Equation (5.2.18) and Fig. 5.2.2. This increase of the effective dipole
decay rate diminish the offset ratio with respect to the cavity, destroying the
stationary time delay obtained for lower N . Then, in order to have a lower dipolar
decay rate, and in consequence a sharper material spectrum with respect to the
cavity bandwidth for higher number of dipoles, we can decrease the individual
light-matter coupling g to compensate the unavoidable collective dilution effect.

In Figure 5.3.7 we show the simulations for a MQW of N = 16 anharmonic dipoles
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Figure 5.3.7: Simulations for a Multi-quantum well, containing N = 16 quantum wells but
with half the coupling strength than in Figure 5.3.6, of the dimensionless time delay δτ/T0, for four
different driving conditions F0/κ = (0.3, 0.6, 1.2, 2.4) and four anharmonicity conditions U/γ =
(0.25, 0.50, 1.0, 2.0), considering the set of semi-empirical parameters {ωv, κ/2π, γ/2π,

√
Ng} =

{40.0, 12.0, 0.6, 0.50} THz. (a) Curves considering F0/κ = 0.3 (b) Curves considering F0/κ = 0.6
(c) Curves considering F0/κ = 1.2 (d) Curves considering F0/κ = 2.4.

but now considering half the light-matter g that in the previous simulation. As
we expect, a lower enough light matter coupling will make reappear the stationary
time delays that vanished for the dilution mechanism. We see that the stationary
values for the delay emerge again although they never go higher than δτss/T0 ≈ 0.5

even for ultra high driving conditions (F0/κ = 2.4).

5.3.3 Time delay and nonlinear phase theory

To have a deeper physical intuition about these results, we solve Eqs. (5.3.3) and
(5.3.4) analytically, complementing with numerical simulations where it is needed.

In the general case, by solving these system of equations in the harmonic case
(U/γ ∼ 0) we analytically obtain that the linear phases for both oscillators, in
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temporal domain, are fixed constants:

〈â(t)〉L = −i|〈â(t)〉L|e−iωt = |〈â(t)〉L|e−i(ωt+π/2), (5.3.6)

〈B̂0(t)〉L = −|〈B̂0(t)〉L|e−iωt = |〈B̂0(t)〉L|e−i(ωt+π). (5.3.7)

and then φ(a)
L = −π/2 and φ(B0)

L = −π.

The time delay is a result of a nonlinear modulation of this fixed phase, in the
sense that we expect the coherences change non trivially in a way that can be
written as reads:

〈â(t)〉NL = |〈â(t)〉NL|e−iωt+φa,NL(t), (5.3.8)

〈B̂0(t)〉NL = |〈B̂0(t)〉NL|e−iωt+φB0,NL(t). (5.3.9)

What we calculate as the dimensionless time delay δτ(t)/T0 with respect to the
linear response coherence, is nothing more than the temporal phase difference
between the nonlinear and linear oscillator waves, as follows

1

T0

δτ(t) = (φNL(t)− φL)/π = ∆φNL(t)/π, (5.3.10)

where the precise form of the time delay depends on each oscillator dynamics.
To this respect, we lack of a full analytical result for the temporal phase shifts
∆φNL(t) for arbitrary driving pulse profiles. However, the numerical results show
that in the steady state, both time delays from the cavity and material coherence
coincides, as it is shown in Figure 5.3.2.

Moreover, Eqs. (5.3.3–5.3.4) are solvable in the continuous wave regime (CW,
by setting ϕ(t) = 1, for t ≥ 0), when we call to the steady–state conditions
{d〈â〉/dt, d〈B̂0〉/dt} → 0. The solutions for both cavity 〈ãss〉 and material
coherences 〈B̃ss

0 〉, expanded in their real and imaginary parts, are

Re[〈ãss〉] = − 2U

NF0

|〈B̃ss
0 〉|4, (5.3.11)

Im[〈ãss〉] =
γ̃

2F0

|〈B̃ss
0 〉|2 −

2F0

κ
, (5.3.12)

Re[〈B̃ss
0 〉] = − 1

R0

|〈B̃ss
0 〉|2, (5.3.13)

Im[〈B̃ss
0 〉] = − 4U

Nγ̃R0

|〈B̃ss
0 〉|4, (5.3.14)
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where |〈B̃ss
0 〉|2 is obtained from the cubic equation

|〈B̃ss
0 〉|6 +

(
Nγ̃

4U

)2

|〈B̃ss
0 〉|2 −

(
Nγ̃R0

4U

)2

= 0, (5.3.15)

and we use the definitions R0 = 4
√
NgF0/(κγ̃) and γ̃ = γPdip. These two

coherences give raise to two different steady–state nonlinear phase shifts, which
read as follows

∆φ
(a)
NL,CW = arctan

 4U |〈B̃ss
0 〉|4

N
(
γ̃|〈B̃ss

0 〉|2 − 4F 2
0 /κ

)
 , (5.3.16)

∆φ
(B0)
NL,CW = arctan

(
4U

Nγ̃
|〈B̃ss

0 〉|2
)
. (5.3.17)

The details about the derivation of these equations can be found in A3.

In Figure 5.3.8 we show the comparison between the nonlinear phase shifts ∆φNL(t)

obtained from Gaussian pulses centered at t0 = 0.6 ps and width T = 0.6 ps
with respect to the analytical phase shifts in the CW regime from Eqs. (5.3.16–
5.3.17), using the same values for F0/κ and U/γ and similar material and optical
parameters of the previous calculations. We found numerically that for the range
of parameters of our interest, the nonlinear phase shift ∆φNL(t) generated with
finite pulses relies in the region delimited by the two curves in Fig. 5.3.8-(d),
which correspond to the statement |∆φ(a)

NL,CW| ≤ ∆φNL,ss ≤ ∆φ
(B0)
NL,CW. We mention

that the curves obey the following exponential scaling obtained from a numerical
fitting

F0

κ
= A

(
U

γ

)ε
, (5.3.18)

where, for the parameters chosen, we found that ε ≈ −0.5, Aa ≈ 0.16339 and
AB0 ≈ 0.350919. Again, the phase shifts derived from the cavity coherences, in
both continous or pulsed regimes, present discontinuities due to beatings emerging
in the time lapse when the driving pulse is active, and then they are plotted only
since t ≥ 1 ps.

Although these shifts obtained in the CW regime are just referential, they provide
an analytical tool of interesting physical insight. From Figure 5.3.8–(d) it can
be noticed that for higher anharmonicity of the system, the range of validity of
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Figure 5.3.8: Comparison of the nonlinear phase shifts ∆φNL(t), for fixed anharmonicity
U/γ = 0.2, obtained from the CW regime (solid lines) and the shifts obtained with finite
Gaussian pulses, considering N = 2 and the fixed parameters {ωv, κ/2π, γ/2π,

√
Ng} =

{40.0, 12.0, 0.6, 1.0} THz. (a) CW cavity ∆φ
(a)
NL (blue line) and dipolar ∆φ

(B0)
NL (orange line)

phase shifts, compared with the cavity (orange circles) and dipolar (blue circles) phase shifts
generated by finite Gaussian pulses with {t0, T} = {0.6, 0.155} ps, respectively. (b) The same as
previously, fixing F0/κ = 0.5. (c) The same as previously, fixing F0/κ = 0.786. (d) Log–log plot
of the matching conditions between the pulsed–generated phase shifts (equal for both cavity and
dipolar coherences) and the cavity (orange lines with circles) and dipolar CW phase shifts (blue
lines with circles). The 3 previous figures correspond to the marked region in a green dashed box,
specifically, the orange dot (F0/κ = 0.365) correlates with figure (a), the blue dot (F0/κ = 0.786)
correspond to figure (c) and figure (b) relies in the intermediate zone (F0/κ = 0.5).

the equations implies lower driving ratios. Beyond this region (upper side of the
blue line with circles in 5.3.8–(d)), the dillute regime of low excitations of the
anharmonic dipoles break down, and we cannot ensure about the validity of the
mean field approach we use in this work. However, by taking the linear value of

|〈B̃ss
0 〉L|2 =

16F 2
0Ng

2

4Ng2 + (κγ)2
∼ O(F 2

0 /κ
2) (5.3.19)

we expect that for the set of parameters we are interested, the scaling of the
nonlinear phases with finite pulses goes approximately with the square of the
driving ratio F 2

0 /κ
2, which in turn is related with the photon flux κ〈â†â〉. A more

detailed derivation can be found in A3.
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5.3.4 Quadratic ansatz for the nonlinear stationary phase

shift

We can also derive an semi-analytical form for the nonlinear phase shift in the
case we drive the cavity with finite pulses.

If we assume that the bandwidth of the dipole resonance is much smaller than
the antenna bandwidth, i.e., κ� γ (which is our case as we fixed κ/γ ≈ 20 for
our numerical simulations), we can adiabaticaly eliminate the antenna field from
the dynamics. Then, the evolution of the bright mode after the pulse is over is
given by

〈B̂0(t)〉 = Boffe
− γ̃

2
(t−toff)eiφ(t) (5.3.20)

where toff is the pulse turn-off time. The phase evolves as

φ(t) = φoff +
2UB2

off

Nγ̃

{
1− e−γ̃(t−toff)

}
, (5.3.21)

where γ̃ = γ(1 + 4Ng2/κγ) is the Purcell-enhanced dipole decay rate, as we found
in the linear response sceneario Eq. (5.2.21), Boff = |〈B̂0(toff)〉| and φoff is the
residual nonlinear phase from the time evolution where the pulse is actively driving
the cavity. Defining τ = t − toff , in the long time regime, τ γ̃ � 1, Eq. (5.3.21)
gives the stationary relative phase

∆φ
(ss)
NL =

2UB2
off

Nγ̃
+ φoff − π ≈ αfit

2U

Nγ̃

(
F0

κ

)2

, (5.3.22)

which depends quadratically on the laser strength for low enough driving pulses
(see Fig. 5.3.8), through the implicit linear dependence of Boff on F0, that
we postulate as an ansatz using a fitting parameter αfit in order to match the
postulated proportionality, in the same “spirit” of our previous analysis using the
CW formalism and the referential analytical equations. The derivation of Eq.
(5.3.21) can be found in Appendix A4. In the limiting cases of harmonic oscillators
(U = 0), thermodynamic limit (N → ∞), or linear response (F0/κ � 1), the
relative phase is negligible (∆φ

(ss)
NL ≈ 0).

In Figure 5.3.9 we contrast the numerical results for the stationary phase shifts
as a function of the driving ratio F0/κ (with dashed lines), in a log–log plot,
with the quadratic scaling with fit parameters αfit (empty circles) to visualize
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Figure 5.3.9: Log–log plot of the stationary nonlinear phase shifts for two coupling
regimes, compared with a quadratic fit (circles), as it is proposed with our ansatz. The
fixed parameters chosen are {ω0, κ/2π, γ/2π} = {40, 12, 0.6} THz, with N = 2. (a) Steady–
state nonlinear phase shift as a function of the driving ratio F0/κ for

√
Ng = 1.0 THz,

considering 4 different anharmonicity conditions, obtained numerically (dashed lines). The
circles mark the best quadratic fittings, up to F0/κ = 0.2. The numerical fit parameters are
αfit = {2.35612, 2.35093, 2.34238, 2.33057}, from the bottom curve to the upper one, respectively.
(b) Steady–state nonlinear phase shift as a function of the driving ratio F0/κ for

√
Ng = 1.5 THz.

The circles mark the best quadratic that fits, up to F0/κ = 0.2. The numerical fit parameters are
αfit = {2.68058, 2.66574, 2.6407, 2.60717}, from the bottom curve to the upper one, respectively.

easily this power scaling ansatz. It is interesting to notice that, even when the fit
approximates succesfully for lower intentities, for F0/κ ∼ 0.5 the approximation
breaks, which it is not strange as in general the nonlinear dynamics of these models
allow for this kind of complexity. We include the fit parameters αfit obtained
numerically, in the caption of the figure.

We notice that those parameters are quite close between different choices of
anharmonicities, however they change strongly with the coupling strenght choice,
as it can be seen in the comparison between figures (a) and (b).

Let’s remember that molecular ensembles have low anharmonicities, and have
been shown to require higher pulse strengths to produce finite relative phases [68]
than the ones discussed here. Besides, intersubbands in MQW’s allow for higher
anharmonicities and lower number of dipoles than molecules, and then present
themselves as more optimal nanoplatforms to perform phase modulation [3].
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Figure 5.4.1: Numerical nonlinear phase shifts considering as a function of the driving ratio
F0/κ, for different levels of inhomogeinity between the N = 2 anharmonic dipoles considered,
with anharmonicity ratio U/γ = 0.5. The fixed parameters chosen are {ω1, κ/2π, γ1/2π,

√
Ng} =

{40, 12, 0.6, 1.0} THz (a) Relative nonlinear phase considering changes in the local decay rate
γ2 of the second anharmonic dipole. The homogeneous case is marked with a solid black line
(∆γ = (γ2 − γ1)/2 = 0). The explicit values chosen were γ2/2π = {0.03, 0.3, 0.6, 0.9, 1.17}
THz, from the blue dashed line to the brown one, respectively. (b) Relative nonlinear phase
considering changes in the local fundamental frequency ω2 of the second anharmonic dipole. The
homogeneous case is marked with a solid black line (∆ω = (ω2−ω1)/2 = 0). The explicit values
chosen were ω2 = {39.2, 39.6, 40., 40.4, 40.8} THz, from the blue dashed line to the brown one,
respectively. Empty circles marks the phase shifts obtained from the simulated dipole collective
coherence 〈B̂0〉, as this was the only case when this differs minimally from the phases obtained
directly from 〈â〉.

5.4 Dark states contribution to the nonlinear

dynamics

Before starting, let’s mention that even when mathematically one can modify
all the local parameters individually (fundamental frequencies and decay rates
ωn, γn, coupling strengths gn and anharmonicity parameters Un, respectively),
we are interested exclusively in the center and bandwidth associated with the
fundamental frequency resonance of the oscillators. We show that this is enough
to break the permutation symmetry of the collective system, and for our purposes
this gives us a lot of insight about how the nonlinear effects are modified with
respect to the case of identical dipoles.
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5.4.1 Variations in the local bandwidths and fundamental

frequencies

The equation of motion for the n–th local dipole coherence is

d

dt
〈b̂n〉 = −

(γn
2

+ iωn

)
〈b̂n〉 − ig〈â〉+ i2U |〈b̂n〉|2〈b̂n〉. (5.4.1)

In the collective basis we have that

d

dt
〈B̂α〉 =

1√
N

N∑
n=1

e
i2π
N
αn

(
d

dt
〈b̂n〉

)
.

With this at hand, we can express a more general form of the α-th dipole coherence
as follows

d

dt
〈B̂α〉 = −

( γ̄
2

+ iω̄′(t)
)
〈B̂α〉 − iδα,0

√
Ng〈â〉 −

∑
β 6=α

Γ′α,β(t)〈B̂β〉, (5.4.2)

where we defined implicitly the mean dipole decay rate γ̄ =
∑

n γn/N , the
instantaneous or chirping frequency with mean fundamental frequency ω̄ =∑

n ωn/N

ω̄′(t) = ω̄ − 2U

N

N−1∑
β=1

|〈B̂β(t)〉|2, (5.4.3)

and

Γ′α,ε(t) = Γα,ε − i
2U

N

N−1∑
β=0

〈B̂β(t)〉∗〈B̂α+β−ε(modN)(t)〉, (5.4.4)

Γα,β =
1

N

N∑
n=1

(γn
2

+ iωn

)
e
i2π
N

(α−β)n. (5.4.5)

In the particular case of N = 2, these equations implies that the bright and dark
states, B̂0 and B̂1, respectively, couple to each other symmetrically, although the
only mode directly connected with the cavity field remains to be only the bright
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mode B̂0. Explicitly, we obtain that

d

dt
〈â〉 = −

(κ
2

+ iω0

)
〈â〉 − i

√
Ng〈B̂0〉 − iF̃d(t), (5.4.6)

d

dt
〈B̂0〉 = −

( γ̄
2

+ iω̄′(t)
)
〈B̂0〉 −

(
∆γ

2
+ i∆ω(t)

)
〈B̂1〉 − i

√
Ng〈â〉, (5.4.7)

d

dt
〈B̂1〉 = −

( γ̄
2

+ iω̄′(t)
)
〈B̂1〉 −

(
∆γ

2
+ i∆ω(t)

)
〈B̂0〉, (5.4.8)

with

ω̄′(t) = ω̄ − U
(
|〈B̂0(t)〉|2 + |〈B̂1(t)〉|2

)
and

∆ω(t) = ∆ω − 2URe[〈B̂0(t)〉∗〈B̂1(t)〉],

where ∆γ = (γ2 − γ1)/2 and ∆ω = (ω2 − ω1)/2, in th resonant condition ωd =

ωc = ω1

The numerical results from the inhomogeneous system in Eqs. (5.4.6–5.4.8) are
plotted in Figure 5.4.1, for a N = 2 MQW, fixing the local dipole b̂1 and changing
the second local dipole decay rate γ2 (figure (a)) or the local fundamental frequency
ω2 (figure (b)).

In Figure 5.4.1–(a), the second decay rate is changed, generating important changes
with respect to the homogeneous case (solid black line). In particular, it is shown
that when γ2/2π = 0.03 THz, low compared with γ1, the nonlinear phase shift is
enhanced for an specific range of driving parameters 0.4 . F0/κ . 0.6. For all the
others parameter choices, when γ2 > γ1 (green and brown dashed curves) or even
when the second decay rate is just half the first one (γ2 = 0.5γ1, orange dashed
curve), the inhomogeneous simulations go substantially below the symmetric one.

In the second simulations, plotted in Figure 5.4.1–(b), what is changed is the
second fundamental frequency, and again this generates interesting changes with
respect to the homogeneous case (solid black line). In particular, when the
second fundamental frequency is subtly above ω1 (green dashed line), we obtain a
minimally high nonlinear phase shift.

Moreover, this is the only numerical set of calculations where the phase shifts
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obtained from the cavity coherence (dashed lines) and the shifts from the bright
state (empty circles), are different, although the changes are quite minimal.

In the opposite case, when ω2 < ω1 (orange and blue dashed lines), the red–
detuning destroys the relative nonlinear phase. Besides, the orange curve (ω2 =

39.6 THz < ω1) is almost overlapped with respect to the black one.

Summarizing, we obtained that for very specific physical situations, encoded with
the set of parameters chosen, it can be obtaind even higher nonlinear phase shifts
that the obtained in homogeneous conditions, e.g., with identical QW dipoles
inside the MQW structure. Of course, as these calculations were done with an
specific choice of material conditions to match with reported experimental values,
results may differ substantially. In [3], parameters are similar but lower, and this
is enough to get pretty different relative phases.

Finally, all the simulations were carried in the temporal domain. For interesting
annalysis in Fourier domain, let’s visit references [68, 3]. Frequency observables, as
the analyzed in [68], are carried just using the FID signal of the cavity coherence
(e.g., when the pulse is almost vanished and the dynamics is free of the source),
and then those will not necessarily do a perfect match with our time–dependent
nonlinear phase modulations.



Chapter 6. Conclusion 65

Chapter 6

Conclusion

In this thesis, we described a novel dynamical anharmonic mechanism in THz
cavity QED that can be used for imprinting power-dependent phase shifts on the
electromagnetic response of a coupled cavity-dipole system. We develop analytical
quantum mechanical theory to model free-induction decay signals of a pulse-driven
cavity system, using parameters that are relevant for quantum well intersubband
transitions in mid-infrared resonators [48], as well as for molecular vibrations in
the mid-infrared regime. For N quantum wells within the near field of the driven
resonator, the theory shows that using only a moderately strong pulse that drives
a small fraction of the intersubband level population to the second excitation
manifold, a stationary phase shift proportional to the spectral anharmonicity
parameter U/Nγ and the photon flux of the pulse, can be imprinted on the
FID response of the near field, which can then be retrieved using time-domain
spectroscopic techniques [72]. For experimentally relevant system parameters,
nonlinear phase shifts of order of 1 radian are predicted for a small number of
dipoles like two molecular vibrations or two quantum wells embedded in a MQW,
using single sub-picosecond pulses of few µW power.

The predicted phase nonlinearity can be physically understood as a result of
laser-induced dipole effect that dynamically detunes the cavity field with respect
to the 1 → 2 dipolar transition, caused by population driven between the first
and second excited levels of the anharmonic material spectrum.

Our work demonstrates the feasibility of implementing nonlinear phase operations
at THz frequencies using current available nanocavities [48, 50, 72] and contributes
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to the development of quantum optics in the high-THz regime [22, 4], which can
enable fundamental studies of cavity quantum electrodynamics [14, 71], material
and molecular spectroscopy [40, 72, 8], and controlled chemistry in confined
electromagnetic environments [53, 1]. Extensions of this work to the analysis
of THz and infrared pulses with non-classical field statistics [70, 76] could open
further possibilities for developing ultra-fast quantum information processing at
room temperature.
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Appendix A

–

A1 Second order cumulant approach

The second order approximation is done by setting

〈b̂†nb̂nb̂n〉 = |〈b̂n〉|2〈b̂n〉+ 〈b̂n〉∗〈b̂nb̂n〉c + 〈b̂n〉〈b̂†nb̂n〉c + 〈b̂n〉〈b̂†nb̂n〉c + 〈b̂†nb̂nb̂n〉c,

≈
(
|〈b̂n〉|2 + 2〈b̂†nb̂n〉c

)
〈b̂n〉+ 〈b̂nb̂n〉c〈b̂n〉∗, (A1.1)

where we approximate 〈b̂†nb̂nb̂n〉c ≈ 0. The equations of motion for the quadratic
terms are

d

dt
〈b̂†nb̂n〉 = −γn〈b̂†nb̂n〉 ⇒ 〈b̂†nb̂n(t)〉c = 〈b̂†nb̂n(0)〉ce−γnt (A1.2)

d

dt
〈b̂nb̂n〉 = −(γn + i2ωn)〈b̂nb̂n〉+ i2Un(〈b̂†nb̂nb̂nb̂n〉+ 〈b̂nb̂†nb̂nb̂n〉), (A1.3)

= −(γn + i2(ωn − Un))〈b̂nb̂n〉+ i4Un〈b̂†nb̂nb̂nb̂n〉, (A1.4)

where we use the identity 〈b̂nb̂†nb̂nb̂n〉 = 〈b̂†nb̂nb̂nb̂n〉 + 〈b̂nb̂n〉. For the quartic
operator in the second equation, we expand it and also neglect quartic and cubic
cumulants (〈ÂB̂ĈD̂〉c ' 0 and 〈ÂB̂Ĉ〉c ' 0) to give

〈b̂†nb̂nb̂nb̂n〉 ≈ |〈b̂n〉|2〈b̂n〉2 + 3
(
|〈b̂n〉|2〈b̂nb̂n〉c + 〈b̂†nb̂n〉c〈b̂n〉2 + 〈b̂†nb̂n〉c〈b̂nb̂n〉c

)
.

(A1.5)



74 A2. Continuous wave analysis

The closed system of equations obtained is

d

dt
〈b̂n〉 = −

(γn
2

+ iωn

)
〈b̂n〉

+ i2Un

({
|〈b̂n〉|2 + 2〈b̂†nb̂n〉c

}
〈b̂n〉+ 〈b̂nb̂n〉c〈b̂n〉∗

)
, (A1.6)

d

dt
〈b̂nb̂n〉c = −(γn + i2(ωn − Un))〈b̂nb̂n〉c

+ i4Un

(
|〈b̂n〉|2〈b̂n〉2 + 3

{
|〈b̂n〉|2〈b̂nb̂n〉c + 〈b̂†nb̂n〉c〈b̂n〉2 + 〈b̂†nb̂n〉c〈b̂nb̂n〉c

})
.

(A1.7)

A2 Continuous wave analysis

We want to understand the photon/energy flux incoming to the cavity, in order to
calibrate the mean number of excitations present in the empty and filled cavity,
both in the linear and nonlinear regime.

A2.1 Mean Photon flux theory

In a work about the detection of squeezed light [9], it is derived a relationship for
the mean photon flux output collected over the transverse area A of an specific
cavity geometry, although the method is quite general [11].

The setup consist on a ring cavity with two nonzero transmission mirrors. The
mean photon flux reads

2ε0cA

~ωc

〈Ê(−)
c (z, t)Ê(+)

c (z, t)〉 = 2γ1〈â†(t− z/c)â(t− z/c)〉 = Φ(t− z/c), (A2.1)

where ωc is the cavity mode and γ1 is the photon loss rate through the mirror 1
whose reservoir modes carry the detected field. It is derived from the following
master equation

d

dt
ρ̂ =

1

i~
[Ĥ, ρ̂] + γ1(2âρ̂â† − {â†â, ρ̂}) + L2ρ̂+ L′ρ̂. (A2.2)

L2 and L′ are Lindblad terms associated with mirror 2 and intra-cavity losses.
After the shape comparison, we link our cavity loss ratio parameter with the
reference as κ = 2γ1. This equation is useful as allows the calculation of the
detected electric field intensity at the detector arrival time t by using the mean
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Figure A2.1: Empty cavity mean photon number comparison between a continuous driving
(CW, blue lines) and two finite pulses with Gaussian (orange dashed) and an a step function
envelope (green dotted) with decay rate κ = 15.6 THz, F0 = 0.5κ and complete resonance
between the cavity mode and the carrier frequency ωd = ωc. The four images represent 4
different time widths Ti of the Gaussian pulses centered at t0 = 2.0 ps: (a) T = 0.039 fs, (b)
T = 0.155 fs, (c) T = 0.310 fs and (d) T = 0.620 fs. The time duration of the step function
is fixed as Tstep =

√
2πT in order to have the same normalization of the Gaussian pulse with

duration T .

photon number at the time when light passed through mirror 1 as reads

〈Ê(−)
c (z, t)Ê(+)

c (z, t)〉 =
~ωcκ

2ε0cA
〈â†(t− z/c)â(t− z/c)〉. (A2.3)

A2.2 Steady Photon flux and Power in terms of our model

parameters

We want to connect our parameters choice with a photon flux Φ = κ〈â†â〉 and
a value for the power associated with the transmission of the MQW. The exact
system of equations for the cavity mean number of excitations and coherence,
taking dissipation ruled by the cavity decay rate κ, and a arbitrary but positive
driving function ϕ(t) with driving rate F0 and carrier frequency equal to the cavity
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single mode, are

d

dt
〈â†â〉 − κ〈â†â〉 − 2F0ϕ(t)Im[〈â(t)〉eiωct] (A2.4)

d

dt
〈â〉 = −

(κ
2

+ iωc

)
〈â(t)〉 − iF0ϕ(t)e−iωct. (A2.5)

In this linear case, it can be proved that the cavity, apart from the rotating factor
e−iωct coherence is completely imaginary. Moreover, the equation for the photon
mean number and for coherence defined as ã(t) = Im[〈â(t)〉eiωct] are the same
equation, and then 〈â†â(t)〉 = (a(t))2 1.

For a resonant continuous wave regime (CW, equal to the condition ϕ(t) = 1 for
t > 0) in our empty cavity model, the equation of motion to solve (setting ~ = 1)

d

dt
ã = −κ

2
ã− F0, (A2.6)

The mean photon number changes in time by the following expression derived
from this system

〈â†â(t)〉 = ã(t)2 =
4F 2

0

κ2

(
1− e−κt/2

)2
, (A2.7)

and expresses an steady and maximum value for this mean number that reads

〈â†â〉ss =
4F 2

0

κ2
. (A2.8)

In Figure A2.1 we show a comparison between the CW regime with F0/κ = 0.5

(〈â†â〉ss = 1) with calculations done using four different values of the time width
of a Gaussian pulse (dashed orange lines) and Step or “square” pulses, centered at
t0 = 2 ps, when this widths were chosen to match the same normalization condition
for these two pulse envelope shapes. In this thesis we center our attention in
infrared light pulses with T ∼= 0.155 ps, to match with the experimental results
obtained in [48]. As it is clear from Figure A2.1-(b), the pulse never reach a mean
photon number higher than 1.

Taking this value as reference for the photon leaking trough the open cavity
framework, the photon flux associated is

Φss = κ〈â†â〉ss =
4F 2

0

κ
. (A2.9)

1Check the equation of motion for ã2(t) to convince yourself.



A2. Continuous wave analysis 77

Figure A2.2: Comparison of the mean photon number in the continuous wave regime
between the empty cavity (solid blue line) and the cavity filled with harmonic (orange dot–
dashed lines) and anharmonic dipoles (dashed green and brown lines), for F0 = 0.5κ, and
{κ, γ} = {15.6, 0.6} THz. The horizontal dashed grid–lines indicate the steady values for all
curves. (a) Cavity mean photon number for

√
Ng = γ and (b)

√
Ng = 2γ.

For our simulations we are mainly interested in the regime with the ratio F0/κ ∼
0.5. Then

Φss =
4(0.5κ)2

κ
= κ, (A2.10)

which matches with our choice of the cavity bandwidth.

A2.3 CW mean photon number comparison in a filled

cavity

In Figure A2.2 we compare the steady–state mean photon number when the
cavity is filled with harmonic (U/γ = 0) or anharmonic (U/γ > 0) dipoles,
taking as a reference the empty cavity analytical result, for which we have
〈â†â〉ss = 4F 2

0 /κ
2 = 1. In both coupling conditions (

√
Ng = γ and

√
Ng = 2γ), it

is evident that filling the cavity inevitably will low the mean number of excitations,
since these will be distributed between both cavity and material oscillators. We
show numerically that by increasing the anharmonic parameter, with respect to the
dipole decay rate, we also increase the mean photon number 〈â†â〉NL, remaining
among the linear limits that we state as

4F 2
0 γ

2

(4Ng2 + κγ)2
< 〈â†â〉NL <

4F 2
0

κ2
, (A2.11)
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where the lower limit is the analytical steady–state value for a driven cavity
linearly coupled with a resonant harmonic oscillator with decay rate γ.

A3 Nonlinear phase in the CW regime

The equation of motion for a anharmonic dipolar coherence in the CW driving
regime and the rotating frame of the cavity frequency ωc = ω0, after removing
adiabatically the cavity equation, and defyning 〈B̃ad

0 (t)〉 = 〈B̂ad
0 (t)〉eiω0t, is

d

dt
〈B̃ad

0 (t)〉 = − γ̃
2
〈B̃ad

0 (t)〉 − 2
√
Ng

κ
F0 + i

2U

N
|〈B̃ad

0 (t)〉|2〈B̃ad
0 (t)〉, (A3.1)

where γ̃ = γ(1 + 4N2g/(κγ)). Defining R0 = 4
√
NgF0/(κγ̃) (a real and positive

parameter), and going to the steady state condition d〈B̃ad
0 (t)〉/dt → 0, we can

express the steady form of the coherence 〈B̃ss
0 〉 as reads

〈B̃ss
0 〉+R0 − i

4U

Nγ̃
|〈B̃ss

0 〉|2〈B̃ss
0 〉 = 0, (A3.2)

⇒ |〈B̃ss
0 〉|6 +

(
Nγ̃

4U

)2

|〈B̃ss
0 〉|2 −

(
Nγ̃R0

4U

)2

= 0. (A3.3)

The last line correspond to a cubic equation in terms of |〈B̃ad
0 〉|2 with a single real

and positive root, which is exactly the squared norm of the nonzero steady state
of the dipolar coherence in the complex plane. Their real part, imaginary part
and phase, defined implicitly in terms of the norm, are

Re[〈B̃ss
0 〉] = − 1

R0

|〈B̃ss
0 〉|2, (A3.4)

Im[〈B̃ss
0 〉] = − 4U

Nγ̃R0

|〈B̃ss
0 〉|4, (A3.5)

and
φ

(B0)
ss,NL = arctan

(
4U

Nγ̃
|〈B̃ss

0 〉|2
)
− π. (A3.6)

The −π in the last line states that this complex value relies in the third quadrant
of the phase space.

The derivation of the correspondent nonlinear phase for the cavity φ
(a)
ss,NL is
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straightforward by setting the steady–state equality that reads

−κ
2
〈ãss〉 − i

√
Ng〈B̃ss

0 〉 − iF0 = 0.

Figure A3.1: Nonlinear phase shift in the continuous wave regime. Analytical calculations
for N = 2 quantum wells in resonance with the driving field and the cavity mode, in the adiabatic
approximation. The set of parameters used are {ω0,

√
2g, κ, γ} = {40, 1.0, 12, 0.6} THz.

In Figure A3.1 it is shown the nonlinear phase shifts obtained numerically in the
CW regime ∆Φ

(cw)
NL , for different driving and anharmonicity conditions, evidencing

a scaling crossover when F0/κ ∼ 0.5.

A4 Adiabatic elimination of the antenna

dynamics

Equation A3.1 is obtained in the bad cavity limit, where we adiabatically eliminate
the dynamics of the single field mode (d〈â(t)〉/dt→ 0) since κ� γ and (κ−γ)/4 >
√
Ng, to reduce the equations of motion to a single equation for bright collective

matter coherence B̂0 which contains the influence of the open cavity mode.

Equation A3.1 with Fd(t) = 0 is known in non-linear hydrodynamics as the
Stuart-Landau oscillator equation [64, 55]. The laser pulse at a given time t = toff

turns off and Eq. (A3.1) can be solved analytically by a slow variation of the
dipole coherence in polar form as 〈B̃ad

0 (t)〉 = |〈B̃ad
0 (t)〉|eiφ(t). Thus, the equations
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of motion for the amplitude and phase can be written as

d

dt
|〈B̃ad

0 (t)〉| = − γ̃
2
|〈B̃ad

0 (t)〉| (A4.1)

d

dt
φ(t) = 2

U

N
|〈B̃ad

0 (t)〉|2. (A4.2)

where their corresponding solutions are given by

|〈B̃ad
0 (t)〉| = Boffe

− γ̃
2

(t−toff) (A4.3)

φ(t) = φoff +
2UB2

off

Nγ̃

{
1− e−γ̃(t−toff)

}
. (A4.4)

with Boff = |〈B̃ad
0 (toff)〉| and φoff = φ(toff). The dipole coherence in the rotating

frame of the laser evolves as

〈B̂ad
0 (t)〉 = 〈B̂ad

0 (toff)〉e−
γ̃
2

(t−toff)e−iω0(t−toff) × exp[i∆φss(1− exp[−γ̃(t− toff)])],

(A4.5)
where ∆φss = φss − φoff and 〈B̂ad

0 (toff)〉 = Boffe
iφoff . The exponential that depends

on the relative phase ∆φ in Eq. (A4.5) evidences the nonlinear contributions,
instead of the solution with harmonic MQWs or in the weak driving regime. To
clarify, the analogous solution of the dipole coherence with U = 0 [B̂ad

0,L(t)] for
t ≥ toff is given by

〈B̂ad
0,L(t)〉 = −β(T )

2
√
NgF0

κ
e−(γ̃/2+iω0)t (A4.6)

where the factor β(T ) depends on the envelope functional shape, and the stationary
phase ∆φss = 0 due to the system evolves with a constant phase φss = φoff .

In the case of the phase, Eq. (A4.4) describes a stationary phase φ(t) = φss in the
long time regime (t� toff), which is given by

φss = φoff +
2UB2

off

Nγ̃
. (A4.7)

Note that the expression is quadratic respect to amplitude Boff and constant for
harmonic MQWs (U = 0).
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A4.1 Nonlinear phase shift ansatz for an arbitrary driving

pulse

We introduce an ansatz for the relative phase since the amplitude |Boff | cannot be
defined for general driving pulses. We define the nonlinear phase shift ∆φNL at
frequency ω0 as

∆φNL = αfit
2U

Nγ̃

(
F0

κ

)2

, (A4.8)

where αfit is a phenomenological parameter to be explored. The definition in Eq.
(A4.8) is possible considering that the squared amplitude of the dipole coherence
[Eq. (A4.3)] and the stationary phase [Eq. (A4.7)] grow proportional to the square
of the driving strength for the ratio F0/κ < 1.
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