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RESUMEN 

 

Los inventarios forestales basados en tecnología LiDAR ofrecen ventajas significativas en 

términos de costos y tiempos de ejecución en comparación con los métodos tradicionales. El 

método de masa o ABA (Area Based-Approach) es una metodología comúnmente utilizada 

en los inventarios LiDAR, la cual requiere variables de entrada, como datos del terreno y 

nubes de puntos LiDAR, para modelar características dasométricas clave, incluyendo altura 

dominante, área basal, densidad de rodal y volumen. La precisión de estos predictores 

dasométricos obtenidos a través del enfoque ABA depende en gran medida de la calidad de 

los datos de entrada y las condiciones del área de estudio, especialmente la densidad del 

rodal. Por lo tanto, es crucial determinar tamaños de parcelas de muestreo adecuados para 

diferentes condiciones de rodal, con el fin de obtener estimaciones dasométricas confiables. 

Además, es esencial evaluar el impacto de la densidad de puntos LiDAR utilizada en el 

análisis, considerando que un aumento excesivo en la densidad de puntos conlleva un 

incremento en los costos operativos asociados a los inventarios LiDAR. 

El objetivo de este estudio es investigar el efecto de la densidad de puntos LiDAR, el tamaño 

de la parcela de terreno y las condiciones del rodal en la modelación dasométrica utilizando 

el enfoque ABA. El trabajo se dividirá en tres fases. En la primera fase, se evaluarán dos 

condiciones de rodal, utilizando dos tamaños de parcelas de terreno, junto con una densidad 

de nube LiDAR de 400 puntos/m2. El objetivo es seleccionar las métricas más adecuadas 

para obtener modelos precisos de las variables dasométricas de interés utilizando un enfoque 

de regularizacion tipo LASSO. En la segunda fase, se analizará el efecto de la densidad de 

puntos LiDAR. Para ello, se reducirá de forma sistemática la densidad inicial de puntos en 

porcentajes desde el 80% hasta el 1%, generando un total de diez condiciones de densidad 

de puntos distintas. Se espera identificar un punto de inflexión en los resultados de las 

variables dasométricas, determinando así la densidad de puntos LiDAR óptima para realizar 

inventarios forestales sin incurrir en costos operativos excesivos asociados a densidades 

elevadas. Finalmente, la tercera fase tendrá como objetivo realizar modelación con el método 

SUR (regresión aparentemente no relacionada), metodología nueva en el área para la 

estimación de variables dasométricas con informacion LiDAR. 

Este estudio contribuirá al avance de la metodología de inventarios forestales basados en 

LiDAR, al proporcionar recomendaciones prácticas para la selección adecuada de densidades 

de puntos de nubes y tamaños de parcelas de terreno, mejorando la eficiencia y precisión en 

la modelación de inventarios forestales. 
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ABSTRACT 

 

Forest inventories based on LiDAR technology offer significant advantages in terms of cost 

and execution time compared to traditional methods. The Area Based-Approach (ABA) 

method is a commonly used methodology in LiDAR inventories, which requires input 

variables, such as terrain data and LiDAR point clouds, to model key dasometric 

characteristics, including dominant height, basal area, stand density and volume. The 

accuracy of these dasometric predictors obtained through the ABA approach is highly 

dependent on the quality of the input data and the conditions of the study area, especially 

stand density. Therefore, it is crucial to determine adequate sample plot sizes for different 

stand conditions to obtain reliable dasometric estimates. In addition, it is essential to evaluate 

the impact of the LiDAR point density used in the analysis, considering that an excessive 

increase in point density leads to an increase in the operational costs associated with LiDAR 

inventories. 

The objective of this study is to investigate the effect of LiDAR point density, plot size and 

stand conditions on dasometric modeling using the ABA approach. The work will be divided 

into three phases. In the first phase, two stand conditions will be evaluated, using two plot 

sizes, along with a LiDAR cloud density of 400 points/m². The objective is to select the most 

appropriate metrics to obtain accurate models of the dasometric variables of interest using a 

LASSO-type regularization approach. In the second phase, the effect of LiDAR point density 

will be analyzed. For this purpose, the initial point density will be systematically reduced in 

percentages from 80% to 1%, generating a total of ten different point density conditions. It 

is expected to identify a turning point in the results of the dasometric variables, thus 

determining the optimal LiDAR point density for forest inventories without incurring 

excessive operational costs associated with high densities. Finally, the third phase will aim 

to perform modeling with the SUR (seemingly unrelated regression) method, a new 

methodology in the area for the estimation of dasometric variables with LiDAR information. 

This study will contribute to the advancement of LiDAR-based forest inventory methodology 

by providing practical recommendations for the proper selection of cloud point densities and 

plot sizes, improving the efficiency and accuracy of forest inventory modeling. 
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INTRODUCTION 

Currently, traditional forest inventories are widely used as the primary tool for physically 

assessing stands. These inventories provide information for silvicultural management 

planning and forest harvesting (Johnson et al. 2007). However, conducting these traditional 

inventories involves significant costs and execution times, especially in areas that are difficult 

to access and travel. 

In recent years, a new methodology has emerged for conducting forest inventories using 

LiDAR (Light Detection and Ranging) technology. This technique is based on remote sensing 

to assess stands. LiDAR is a type of active remote sensing that emits beams of light towards 

objects and measures the time it takes to receive the light returns (Carter et al. 2012). These 

sensors can be mounted on manned or unmanned aerial vehicles such as drones, small planes 

or helicopters, they are known as ALS (Airborne Laser Sensor). During the overflight of the 

study area, they capture information in the form of a point cloud. This technique allows 

obtaining data more efficiently in terms of time and costs compared to traditional inventories 

in large stands with difficult accessibility (Zhang et al. 2016). 

Forest inventories using LiDAR technology improve the efficiency of data capture in spatial 

and temporal terms. One of the notable advantages is their ability to cover the entire study 

area, which allows observing the spatial variability of the data. This contrasts with traditional 

inventories, where the sample is reduced to the plot level (Goodbody et al. 2017). In terms 

of safety, LiDAR inventories are safer, as they require fewer personnel in the forest. However, 

to implement these inventories, users must have additional skills, such as programming, 

knowledge of geographic information systems, statistics, and, above all, understanding of 

forest behavior. These skills are necessary to analyze and interpret the information obtained 

from the LiDAR point cloud. 

One of the methods used in LiDAR forest inventories is the Area Based-Approach (ABA). 

This method involves establishing a relationship between forest variables obtained in the 

field and metrics derived from the information captured by the LiDAR cloud, with the 

objective of obtaining forest estimators for a specific area. These metrics, geometric in 

nature, are values and statistics that represent the vertical distribution of forest LiDAR 

returns, such as percentiles (White et al. 2013). The relationship between terrain data and 

LiDAR metrics is established by regression models, using approaches such as k-nearest 

neighbor (K-NN) (Næsset 2002) or by machine learning techniques, such as artificial neural 

networks and random forest (Corte et al. 2020). 

The dasometric variables of interest do not present a uniform behavior when using the ABA 

method for their estimation, the dominant height estimation is better related to the LiDAR 

cloud metrics than the stand density estimation. Treitz et al. (2012) obtained an RMSE value 

of 3.9% when estimating height in a conifer forest with a density of 300 to 500 trees/ha, using 

a linear regression model and LiDAR data of 3.2 points/m². Similarly, Silva et al. (2018) 

obtained comparable results for height in a Pinus Taeda plantation in southern Brazil, with a 

density of 1667 to 2000 trees/ha, obtaining an RMSE of 5.7% using 4 points/m² and a 
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nonparametric nearest neighbor (K-NN) model. In both studies, it was highlighted that stand 

height is the easiest variable to predict, as it shows a high correlation using only LiDAR 

metrics of height distribution, such as the 95th percentile (González-Ferreiro et al. 2012, 

Strunk et al. 2014, Varo-Martínez et al. 2017). In contrast, the dasometric variable of stand 

density presents a significant challenge. Rahlf et al. (2015) obtained an RMSE value of 51% 

in a conifer forest in southeastern Norway, with a variable stand density from 40 to 4100 

trees/ha, using LiDAR data of 1.2 points/m² and a multivariate nearest neighbor (K-NN) 

model. López and Sandoval (2023) reported improvements by incorporating a mixed method 

between ITD and ABA in the estimation of stand density with an RMSE of 20.9%. Silva et 

al. (2018), obtained a value of R2=0.38 when modeling the stand density variable, which 

confirms its difficulty in predicting it. From these results, it can be interpreted that the 

performance of the estimations depends on the one hand on the characteristics of the stands 

and on the quality of the LiDAR information. 

One of the crucial input data for the ABA workflow is the data obtained from the field plots. 

The quality of the data collection has a direct impact on the accuracy of the dasometric 

predictors of interest. An important factor to consider within this workflow is the accuracy 

of the plot center since a higher error in the plot center accuracy can result in mismatches 

when crossing the terrain information with the LiDAR information cloud. Mauro et al. (2011) 

determined that, when working with plots with a radius greater than 10 meters in terrain, the 

effects of positioning errors were negligible when studying forest tree height distributions. 

Furthermore, Ruiz et al. (2014) indicate that plots of at least 500-600 m² are necessary to 

estimate volume, biomass and basal area, and 300-400 m² for canopy cover in a low stand 

density conifer forest in Spain. They also point out that increasing plot size does not 

significantly improve the accuracy of the models and increases field operational costs. 

Another factor that influences plot size variation is the edge effect. This refers to situations 

in which the stem of an individual is inside the plot, but part of its crown extends outside the 

plot; or conversely, when an individual is outside the plot, but part of its crown is inside the 

plot. This generates an error in accuracy when comparing the data obtained in the field and 

the information provided by the LiDAR cloud (Mascaro et al. 2011, Packalen et al. 2015). 

Studies by Frazer et al. (2011) indicate that plot size has an impact on the accuracy of 

estimating forest structure attributes. The researchers found that larger plot areas provide 

greater precision in such estimation, as the edge effect is significantly reduced. 

In addition to considering plot size in field work to mitigate problems in data capture, it is 

crucial to consider the condition of the stand being studied. These effects may vary in 

different proportions depending on the stand density. It has been observed that forests with a 

higher tree density present predictor with a higher error in terms of RMSE compared to lower 

density forests (Belmonte et al. 2019). However, this increase in the error of the dasometric 

predictors is not only related to stand density, but also to the density of the LiDAR 

information cloud used. In forests with a high density of trees per hectare and when using a 

low density point cloud, problems arise when generating the digital terrain model. The 

limited number of points in the cloud is not sufficient to penetrate the coverage of the forest 

individuals, leading to an incorrect definition of the terrain surface. This problem is especially 
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exacerbated in terrain with steep topography, resulting in an overestimation or 

underestimation of the heights of individuals when modeling (White et al. 2013). 

Thus, the point density of the LiDAR cloud is a crucial factor in the ABA workflow, as it 

influences the metrics obtained during the modeling phase. It has been determined that 

working with clouds having a point density between 0.5 to 10 points per square meter 

(points/m²) does not generate large differences in the accuracy of dasometric predictors 

(Tompalski et al. 2019). In fact, it has been recommended to work with clouds having a 

density close to 1 point/m² to obtain good results (Jakubowski et al. 2013, Magnussen et al. 

2010). Sánchez et al. (2018) managed to obtain accurate predictors in sclerophyll forests in 

southern Spain using a density of only 0.5 points/m² in a forest of Pinus sylvestris L. A similar 

case was reported by Yoga et al. (2017), who obtained predictors with low estimation error 

in a coniferous forest in southeastern Canada using 6 points/m². In both cases, despite having 

low resolution LiDAR information, the good modeling results were due to favorable stand 

conditions, in terms of low stand density. 

Other studies have found significant differences in biomass, volume and stand density 

estimation when reducing LiDAR cloud point density in forests with higher tree density and 

irregular vertical structure, such as tropical forests (González-Ferreiro et al. 2012, Magnussen 

et al. 2010, Manuri et al. 2017). One of the possible factors contributing to this variation in 

results when using different point cloud densities is the impact on the metrics obtained from 

the LiDAR cloud, which are affected by the variation in point density (Roussel et al. 2017). 

It has been observed that the maximum height metric shows larger variations when the cloud 

density decreases (Gobakken and Næsset 2008, Hansen et al. 2015). However, these 

variations in metrics also depend on the size of the LiDAR flight footprint and the shape of 

the stand canopy. In other words, as a stand becomes more homogeneous, the differences in 

results between different LiDAR cloud densities will be smaller (Roussel et al. 2017). 

Using a LiDAR point density greater than 10 points/m² is considered high resolution, leading 

to more demanding computational analysis and increased costs within the workflow. Most 

studies have worked with this point density, but today, with the increasing accessibility of 

equipment with higher computational power and the development of new efficient software 

and programming codes, it is possible to analyze large amounts of information more 

effectively. It is essential to understand the importance of the quality of the input information 

in the ABA workflow, encompassing both terrain data and LiDAR point cloud. In addition, 

it is crucial to consider the relationship between these information factors and stand density. 

Stand density should be addressed as an additional factor when developing the modeling 

strategy and applying it operationally in forest inventories. The main objective of this 

research is to evaluate the plot size within the operational forest area and the influence of 

LiDAR point cloud density on the estimation of dasometric variables. The aim is to identify 

if there is a trend or an inflection point that allows improving the accuracy of the predictive 

variable models without the need to excessively increase the density of the cloud, thus 

avoiding higher operational costs. 

 



4 
 

METHODOLOGY 

Area of study  

The study was carried out in two forestry estates of the CMPC company in Chile, both of 

which are Pinus radiata plantations. The Coihueco property has an area of 49 ha and a stand 

density of approximately 770 trees/ha for pulp production. The Nihuinco property has an area 

of 60 ha and a stand density of approximately 400 trees/ha for the production of debobinable 

and sawmill products.  

Data capture  

The analysis design contemplated the evaluation of three factors. First, the two forest 

properties with different silvicultural treatments were considered, highlighting the difference 

in stand density, with the Coihueco property having a higher stand density (~770 trees/ha) 

than the Nihuinco property (~400 trees/ha). The second factor evaluated was the size of the 

sampling plots, where concentric plots of 300 and 500 m² were established, dimensions used 

in traditional forest inventory operations. The third and last factor evaluated was the density 

of points in the LiDAR information cloud. Both properties were obtained a LiDAR cloud 

with an approximate density of 400 points/m², which was reduced by 80%, 60%, 50%, 40%, 

40%, 30%, 20%, 20%, 15%, 10%, 5% and 1% of the total number of points. Each reduction 

process was performed randomly and each of these processes was repeated 100 times.  

In each of the properties, plots were established and systematically located according to the 

operational prescription of the forest inventory. In Coihueco 23 plots were established and in 

the Nihuinco property 36 plots were established. In each of the plots, the DBH and height of 

all the trees were recorded, and the information was subsequently processed to estimate.  

LiDAR data análisis 

The LiDAR information of each stand was processed using the ABA method workflow. This 

process was carried out using R software and the LidR library (Roussel et al. 2021). A 

cleaning and filtering of the point cloud was performed to obtain the position of the first 

returns in each study stand. From this, a classification of the points was made identifying soil 

and vegetation, generating the digital terrain model (DTM) and the digital surface model 

(DSM). Subsequently, the point cloud was normalized for its projection to the horizontal axis. 

Once the LiDAR information of both properties was processed, the information of each plot 

measured in the field was extracted according to the coordinate of the plot center and the 

radius corresponding to the surfaces of 300 and 500 m². Once the LiDAR information was 

obtained for both types of plots in the two properties, the set of standard LiDAR metrics was 

determined (Table 1). The LiDAR metrics were obtained for each set of the reduced point 

cloud and for each of the 100 iterations performed. 
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Table 1. Standard canopy height metrics obtained with LiDAR. 

Metrics Description 

Zmax Maximum height 

Zskew Asymmetry of height distribution  

Zkurt Kurtosis of height distribution 

Zentropy Entropy of height distribution  

Zmean Mean height 

Zsd Standard deviation of height distribution 

Zabove2 Percentage of returns over 2 m  

Zabovezmean Percentage of returns over mean height 

Zq5, …, Zq95 Percentile value of the height distribution between 5 to 95%. 

Zpcum1, …, Zpcum9 Cumulative percentage of the cloud divided in 10 equal parts  

 

Base modeling and selection of metrics 

The modeling was divided into three stages. In the first stage, a linear model was performed 

(Equation 1), where the metrics obtained from 100% of the LiDAR cloud information, 

selected with the LASSO selection method, were used to estimate the dasometric variables 

of dominant height (DH), basal area (BA), stand density (N) and volume (V). This linear 

model presented a matrix with the information of the metrics in the two stands with different 

conditions and with different plot size used for the extraction of this information (300 and 

500 m²). 

 

                                       Equation 1. 

                           

Where ŷk represents the estimated stand dasometric variable, X is the matrix of metric values 

corresponding to the stand and plot size, and β are the parameters associated with the metrics 

used in the independent model. 

As mentioned above, a selection of metrics is made for each model through LASSO type 

regularization (Equation 2), according to plot size and by stand. The LASSO regularization 

system penalizes the least relevant metrics, controlled by the hyperparameter λ. As λ 

increases, the penalty increases and more metrics are excluded in the model estimation of 

dasometric variables (James et al. 2013). The independent models fitted for each stand and 

plot size obtained will be compared using error indicators such as root mean square error 

(RMSE), Akaike index (AIC) and R². 
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                   Equation 2. 

Where yi represents the estimated dasometric variable of the stand in the i-th plot measured 

in the field, β0 and βj are the linear parameters of the model, xji is the j-th metric selected 

from a total of J-metrics in the i-th plot measured in the field, and λ is a hyperparameter of 

the Lasso method. 

Independent modeling with variation in LiDAR point density  

Once the model results were obtained with the selection of metrics based on the LiDAR cloud 

from the first stage, the effect of the density of the point cloud on the models adjusted 

independently for DH, BA, N and V was evaluated. Thus, this second stage of modeling was 

performed using the LiDAR metrics obtained for each stand and plot size, systematically 

decreasing the total percentage of the cloud, generating an iteration of 100 random point 

selections for percentage reduction. This resulted in a total of 10 point density conditions, 

ranging from 80% to 1% with a systematic reduction of the percentage of the point cloud in 

each plot (Figure 1). 

 

 

Figure 1. Example of a LiDAR point cloud systematics decrease of a 500 m² plot of the 

Coihueco property. 

The objective of this second stage was to evaluate the effect of LiDAR point cloud density 

by incorporating the LiDAR metrics obtained in each case as predictors in linear models of 
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DH, BA, N and V adjusted independently. The effect was evaluated in relation to the residual 

root mean square (RMSE) obtained in each fit, i.e. for each stand and plot size.  

Simultaneous modeling with LiDAR point density variation  

In the third stage, a simultaneous modeling strategy was performed for each stand and plot 

size. Here, the modeling of DH, BA, N and V generated a single system of equations, a 

method known as SUR (Seemingly unrelated regressions). This method considers the 

relationship between the errors of each model to obtain more consistent parameters. 

           Equation 3. 

Where ŷ represents the estimated dasometric variable of the stand (DH, BA, N and V), Xred 

is the matrix of metric values according to stand and plot size for each model obtained from 

the Lasso selection in the second modeling stage; β is the vector of parameters associated to 

the metrics used in the models and ε is the error of each model. To evaluate the inflection 

point where the RMSE of the models changes significantly in relation to the LiDAR cloud 

point density, a segmented modeling strategy was used using the Segmented library of the R 

software (Muggeo 2023). 
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RESULTS 

The first stage of the modeling of the dasometric variables DH, BA, N and V used the full 

density of the LiDAR information (~400 points/m²). In most cases in the 500 m² plots, better 

indicators of quality of fit were observed according to RMSE, AIC and R2 values (Table 2). 

Only in the Coihueco property did the BA modeling show higher RMSE values, when 

comparing the information from 300 and 500 m² plots, increasing from 6.49 to 6.64%, 

respectively. In the average adjustment models, when information from both plots was used, 

the same tendency was observed with the 500 m² plots in relation to 300 m². The BA and V 

variables showed the greatest difference, improving the RMSE from 14.72 to 10.60% and 

14.33 to 9.53% in the 300 to 500 m² plots, respectively.  

As for the AIC values, they showed a similar behavior to the RMSE (%), being better when 

plots of size 500 m² were used. The DH variable presented a greater decrease in this value in 

the models adjusted independently for each stand and in the average adjustment of both 

stands. Only one exception was observed in the estimation of AB and N, where the AIC value 

increased in the Coihueco stand from 67.53 to 69.17 and 142.43 to 146.88, respectively. 

Regarding R², in the average adjustment, improvements were observed in all the models that 

used the information from the 500 m² plots; the model for N achieved a value of 0.88. The 

Coihueco stand, which has an average stand density of 770 trees/ha, presented higher R² 

values than the Nihuinco property, which has a density of 400 trees/ha in the estimation of 

all the dasometric variables. 

Table 2. Results of RMSE, AIC and R² indicators of the models according to site and plot 

size for the estimation of dominant height, basal area, stand volume and stand density. 

 RMSE % AIC R² 

stands 
plot 

(m²) 
DH BA N V DH BA N V DH BA N V 

Nihuinco 300 3,39 13,69 17,48 15,15 60,69 115,14 209,60 205,87 0,31 0,33 0,15 0,30 

 500 2,06 9,55 13,52 10,21 42,58 103,05 206,93 192,32 0,33 0,54 0,38 0,54 

Coihueco 300 0,78 6,49 10,34 9,44 25,52 67,53 142,43 126,62 0,94 0,76 0,75 0,59 

 500 0,72 6,64 10,07 6,34 19,78 69,17 146,88 124,83 0,94 0,67 0,63 0,75 

Average 300 2,94 14,72 16,88 14,33 95,71 199,18 376,13 331,90 0,64 0,61 0,82 0,46 

 500 1,84 10,60 16,09 9,53 65,47 185,56 372,25 312,08 0,82 0,77 0,88 0,68 

 

Figure 2 shows the relationship between the measured dasometric variables and their 

estimates when using 100% of the LiDAR information, with average adjustment models. The 

models generate consistent estimates for the four variables evaluated and for both plot sizes. 

Consistent with the interpretation of the goodness-of-fit indicators, the predicted values of 

the four variables modeled using the information from the 500 m² plots fit better than the 

values estimated with a plot size of 300 m². 
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Figure 2. Plots with observed and estimated values of average fit model by plot size for the 

dasometric variables DH, BA, N and V. 

 

Figure 3 presents plots showing the behavior of RMSE as the percentage of LiDAR cloud 

points in the DH, BA, V, and N modeling of the second modeling stage decreases. In general, 

the average RMSE values remain constant as the LiDAR cloud resolution decreases; this 

effect was observed in the modeling that used both plot sizes. Another evident effect, is that 

as the LiDAR cloud density decreases, greater variability was observed in the RMSE results 

of the lower resolution models, between 1% (4 points/ m²) and 5% (20 points/m²), after this 

point, the RMSE values tend to stabilize, with the exception of the volume estimation with a 

plot size of 500 m², since no break point is identified in comparison to the other estimations 

that a break point is identified at 5% according to the segmented models. Analyzing the trend 
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of the RMSE values in the models that used the information from the 500 m² plots, it is 

possible to observe that here the RMSE values are lower in relation to the modeling 

performed with 300 m² plots and that this difference remains constant when analyzing the 

decrease in the density of the LiDAR cloud. The exception was evident in the N estimate, 

which was lower with a plot size of 300 m². The variation in values is more pronounced when 

a 300 m² plot is used to estimate DH, BA, N and V in the mean fit modeling and that effect 

is captured by our segmented models. 

  

 
Figure 3. Plots of RMSE values of 100 iterations by LiDAR point density according to plot 

size of DH, BA, N and V dasometric variables of average fit models.   
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Figure 4. Plots of RMSE values of 100 iterations by LiDAR point density according to plot 

size for DH, BA, N and V of the model by plot. 
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The results of the SUR regression modeling are presented in Table 3. In terms of root mean 

square error (RMSE %) and coefficient of determination (R²), the values obtained are very 

similar to those obtained using independent models. However, a significant improvement is 

observed in the estimation of V in the Coihueco stand when using a plot size of 300 m², where 

the RMSE % is reduced from 9.44 to 6.83 and the R² increases from 0.59 to 0.80. On the 

other hand, in the case of the stand density variable in the average adjustment condition of 

the study, the independent models show better results in terms of RMSE %, in this case, 

values of 16.88 and 16.09 are obtained, and when using plots of 300 m² and 500 m² 

respectively, the values of RMSE % increase to 19.84 and 17.30 with the SUR method. 

Figure 5 shows the relationship between the measured dasometric variables and their 

estimates when using 100% of the LiDAR information, with independent and SUR models 

for the average adjustment. The predicted values of the four modeled variables do not show 

a major difference between the independent and SUR models. 

 

Table 3. Results of RMSE (%) and R² indicators of the independent models and SUR method 

according to stand and plot size for DH, BA, V and N variables. 

Variable Stand Plot (m²) 
Independent Models  SUR Models  

RMSE (%) R² RMSE (%) R² 

DH Average 300 2,94 0,64 2,96 0,64 

  500 1,83 0,82 1,87 0,82 

 Nihuinco 300 3,39 0,31 3,44 0,28 

  500 2,06 0,33 2,09 0,31 

 Coihueco 300 0,78 0,94 0,59 0,80 

    500 0,72 0,94 0,86 0,91 

BA Average 300 14,72 0,61 14,99 0,61 

  500 10,60 0,77 11,06 0,75 

 Nihuinco 300 13,69 0,33 13,79 0,33 

  500 9,55 0,54 9,72 0,55 

 Coihueco 300 6,49 0,76 6,55 0,78 

   500 6,64 0,67 6,86 0,66 

N Average 300 16,88 0,82 19,84 0,76 

  500 16,09 0,88 17,30 0,79 

 Nihuinco 300 17,48 0,02 17,58 0,17 

  500 13,52 0,38 13,81 0,36 

 Coihueco 300 10,34 0,75 10,84 0,73 

    500 10,07 0,63 9,86 0,69 

V Average 300 14,33 0,46 14,09 0,48 

  500 9,53 0,68 9,66 0,68 

 Nihuinco 300 15,15 0,30 15,08 0,32 

  500 10,21 0,56 9,99 0,59 

 Coihueco 300 9,44 0,59 6,83 0,80 

   500 6,34 0,75 6,81 0,73 
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Figure 5. Plots with observed and estimated values of the independent model and SUR with 

average adjustment according to plot size for the dasometric variables HD, AB, N and V. 
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DISCUSSION 

The values obtained in terms of RMSE (%) in the average fit modeling were better in all 

cases of estimation of dasometric variables when a plot size of 500 m² was used, highlighting 

the improvement in the estimation of basal area and volume, decreasing the RMSE from 

14.72 to 10.60% and 14.33 to 9.53% respectively. Ruiz et al. (2014) indicate that plots of at 

least 500-600 m² are necessary to estimate volume, biomass and basal area, and using larger 

plots does not significantly increase modeling accuracy, but it does increase the cost and field 

work. Similarly, Li et al. (2022) found improvements when estimating dasometric variables 

with LiDAR information by systematically increasing the plot size from 100 to 900 m², 

indicating that at least a plot size of 600 m² should be used in the field plots, and that the 

estimates that decreased their RMSE the most were the basal area and volume variables when 

increasing the plot size.   

The estimation of the dasometric variable with better RMSE and R2 indicators was HD in 

the average adjustment modeling that incorporated both plots using the plot size of 500 m² 

for dominant height presented an RMSE(%) of 1.84 and an R2 of 0.82, which represents 

results higher than those obtained by Treitz et al. (2012) with an RMSE value of 3.9% and 

Silva et al. (2018) with an RMSE of 5.7%, both works conducted in conifer plantations. 

Regarding the estimation of basal area, an RMSE(%) of 10.60 and an R2 of 0.77 were 

obtained, improving the estimates of the work of Treitz et al. (2012) who reported an 

RMSE(%) of 14.12. Regarding volume estimation, an RMSE(%) of 9.53 and an R2 of 0.68 

were obtained, more accurate results when compared to the work of Pearse et al. (2019) who 

reported RMSE(%) values of 25 and the work of Lara-Gómez et al. (2023) with RMSE(%) 

values of 28.38, both works carried out in plantations of Pinus radiata. Finally, in the 

estimation of stand density, an RMSE(%) of 16.09 and an R2 of 0.88 were obtained, 

highlighting such estimation in comparison with the work of Rahlf et al. (2015) who obtained 

an RMSE(%) value of 51 or the work of Silva et al. (2018) in terms of R2 of 0.38, and even 

better than the work of López and Sandoval (2023) who reported improvements by 

incorporating a mixed method between ITD and ABA in the estimation of stand density with 

an RMSE of 20.9% in a Pinus radiata plantation. 

The Coihueco stand (~770 trees/ha) showed the best RMSE values in the adjusted models 

for all the dasometric variables compared to the Nihuinco stand (~400 trees/ha). This 

behavior can be attributed to the point density of the LiDAR cloud used of ~400 points/ m², 

which better penetrates the upper canopy, providing better vertical vegetation information 

(Wallace et al. 2016), and the Nihuinco property had more understory, which may have 

contributed to the higher RMSE despite having a lower stand density than the Coihueco 

property. Lara-Gómez et al. (2023) used the ABA and ITD methods to estimate values of 

height, basal area, volume and radal density in a Pinus radiata plantation in Chile, indicating 

that when using the ABA method, better estimation results are obtained in stands with higher 

density, while the ITD method obtained better results in stands with lower density. 
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In this research, LiDAR metrics were selected for the estimation models of dasometric 

variables using regularization (LASSO). The use and implementation of this selection 

method in this area of research is still incipient. This methodology can select the most 

appropriate variables to develop more robust models. Kankare et al. (2013) used this 

methodology to select metrics and estimate biomass and volume in a boreal forest in Finland 

using ABA obtaining RMSE values of 24.9 and 26.4%, respectively. Recently, Adhikari et 

al. (2023) obtained R² values of 0.88, 0.83 and 0.87 for volume, basal area and dominant 

height, respectively, when using the selection of metrics with LASSO type regularization in 

plantations of Eucalyptus globulus in Chile, recommending the use of this type of metric 

selection in the modeling of forest dasometric variables of interest, due to its easy 

implementation and good results. 

n this study we worked with information from the LiDAR point cloud of density ~400 

points/m² which could be considered high resolution. The results presented in Figure 3, slight 

variations in RMSE (%) are observed, similar result found by Pearse et al. (2019), evaluating 

the effect of density from 1 to 280 points/m² in the estimation of dasometric variables in a 

Pinus radiata plantation in Australia. A point of 5 % of cloud density (20 points/m²) is 

identified, where the variation is higher if the percentage of cloud used is lower, in the 

estimation of dominant height, basal area, volume and stand density variables. 

The results obtained with seemingly unrelated regression (SUR) have no significant 

differences compared to the results obtained with the independent models. Næsset et al. 

(2005) found minor differences when applying ordinary least squares (OLS), partial least 

squares (PLS) and SUR when estimating dasometric variables in a coniferous forest in 

Norway. Hao et al. (2022) found improvements when applying simultaneous SUR modeling 

to LiDAR information in estimating diameter distribution in a Larix olgensis plantation in 

China, pointing out the importance of considering spatial and inter-model correlations. SUR 

modeling is an underexplored procedure in estimating forest variables with LiDAR 

information, but the possibility of using this approach to use inter-model correlations to 

improve the efficiency of the estimates is highlighted (Woods et al. 2011). 
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CONCLUSION 

In this study, it has been shown that the plot size used in ground measurements for model 

calibration using LiDAR information is a significant factor in obtaining estimates of 

dasometric variables such as dominant height, basal area, stand volume and stand density. It 

is recommended to use 500 m² plots instead of 300 m² plots, since more accurate estimates 

were obtained. In addition, stand density was found to be an important factor to consider 

when using the ABA approach, since more accurate estimates were obtained in stands with a 

greater number of trees. On the other hand, the selection of metrics with the LASSO-type 

regularization approach proved to be a powerful tool, as good results were obtained in the 

study. The density of the point cloud did not prove to be a significant factor in the estimation 

of the dasometric variables, but it was observed that a value of approximately 20 points/m² 

showed less variation in the estimates. Finally, it is concluded that simultaneous modeling 

with apparently unrelated regression does not show significant improvements compared to 

independent models. 
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