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Abstract 

Multiple Sclerosis (MS) is a neurodegenerative disease whose main affected area is the central 

nervous system. The regions most affected by this disease are usually the motor and sensory regions. 

The study of the effects of MS has become increasingly relevant given that the prevalence of this 

pathology has been increasing in recent decades. Based on this, this work aimed to search for a 

relationship between cortical anatomical changes and changes in brain structural connectivity in 

subjects with MS. 

During this research, the study of changes was divided into two aspects: cortical anatomical 

changes and changes in brain structural connectivity. First, the anatomical study was applied over two 

databases. The first had only anatomical images, where each subject has 3 time points, separately by 

12 month each one. The second has anatomical and diffusion data, where each subject has 2 time 

points, separated by 3 years. The software for the longitudinal analysis was FreeSurfer. Then, to 

determine the anatomical changes, we used the generalized linear model (GLM). On the other hand, 

diffusion magnetic resonance imaging (dMRI) was used to study changes in brain structural 

connectivity. This study was carried out by analyzing the dMRI metrics of the brain fibers tracts. 

These metrics were obtained from the generalized q-sampling imaging (GQI) model. To examine the 

changes in the diffusion metrics obtained we employed a generalized equation model (GEE). Finally, 

we determined the relationship between the regions presenting significant changes at the cortical level 

and the brain fibers showing substantial differences across time. 

The regions that suffered significant anatomical changes at the cortical level are the pre and 

post-central regions and the superior temporal region, among others. In addition, there were changes 

in the parietal and occipital region, but these were much smaller compared to the previous ones. 

Concerning brain structural connectivity, the brain fibers that presented the significant changes are 

associated with the cortical regions highlighted in the anatomical analysis. From these results, the 

short brain fiber connecting the superior frontal and the pre-central region of the left hemisphere stands 

out since it was the only one that showed significant differences in all dMRI metrics. 

The values of the dMRI metrics did not match with the literature, our interpretation was that the 

treatments given to the subjects might be effective. We arrived at this conclusion by analyzing the 

relationship between the change in the Expanded Disability Status Scale (EDSS) value and the dMRI 

metrics. The analysis revealed there was an improvement in the EDSS value. However, due to the size 

of the database, it’s recommended that other kind of analyses be conducted to further support this 

conclusion.  
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Capítulo 1. Introduction 

1.1. General Introduction 

Multiple Sclerosis (MS) is a neurological inflammatory disease that is more common in young 

adults by demyelination of neurons and axonal damage [1]. It generates a deterioration at motor, 

sensory, and cognitive levels in the Central Nervous System (CNS) [2]. MS is the second leading 

cause of disability in young people in Latin America. The most affected part of the CNS by this disease 

is the brain. 

MS can manifest in three different ways: relapsing-remitting MS (RRMS), secondary 

progressive MS (SPMS), and primary progressive MS (PPMS). RRMS is the most common type, 

characterized by subjects experiencing relapses that persist for a short period of time and then 

disappear. Around 80 to 85% of MS patients are initially diagnosed with this form of the disease. 

SPMS has similar characteristics to RRMS, but instead of the subject experiencing relapses, this type 

of MS has a steady progression without periods of no symptoms. Finally, PPMS is the least common 

type, accounting for less than 10% of initial diagnoses. PPMS is characterized by presenting all the 

symptoms of MS at the beginning of the illness, with no relapses [3]. All the subjects of this research 

were diagnosed with RRMS. 

To carry out an MS study, the pathology's temporal evolution is a highly relevant variable for 

its analysis. For this reason, a longitudinal analysis provides a better overview of the impact of the 

pathology on the patients. Therefore, the application of this type of study is fundamental since it has 

the potential to guide the application of more appropriate treatments depending on the characteristics 

of each patient. This approach benefits the patient by receiving better treatment and the doctors who 

can carry out a better and more efficient follow-up of their patients [4]. 

Magnetic Resonance Imaging (MRI) is undoubtedly one of the most widely used tools for 

studying MS. Various imaging studies about MS have focused on multiple morphological or 

qualitative aspects and many others on the quantitative properties of MRI. The T1-weighted and Fluid-

Attenuated Inversion Recovery (FLAIR) images are the most widely used. T1-weighted images are a 

sequence of pulses that detect differences in longitudinal T1 relaxation times of tissues [5]. FLAIR 

images use a special inversion recovery sequence with a long inversion time, which removes the signal 

from the cerebrospinal fluid in the resulting images [6]. Another vital image used to analyze the impact 

of the MS is diffusion MRI (dMRI). The basic principles of dMRI are related to the movement of 
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water molecules in tissues. Water molecules in an anisotropic medium take a trajectory according to 

the shape of the bodies that restrict them [7]. 

Work related to MS usually focuses on the changes that the disease generates at the cortical 

level or in the WM. In the latter case, most studies focus on changes in the lesions developed in the 

WM. However, a common point between most of these research is using metrics that determine the 

levels of disability and the cognitive damage generated by the disease. The most used indices for this 

are the Expanded Disability Status Scale (EDSS) index, which measures the levels of disability of the 

patients, and the Symbol Digit Modalities Test (SDMT) index, which measures cognitive deterioration 

by measuring the response speed of the subjects. 

Works focusing on anatomical changes highlight regions that present significant changes, such 

as the precentral and superior frontal regions, and sensory areas, such as the superior temporal region. 

On the other hand, most works associated with the study of changes in WM focus on changes in 

lesions; few seek to see the changes that MS has on brain connectivity. Those who focus on changes 

in connectivity highlight the corpus callosum and the thalamus as connectivity centers. 

Finally, very few works seek the conjunction between anatomical changes and changes in the 

white matter, particularly studying brain connectivity through short brain fibers. 

This study aims to establish a relationship between the changes in cortical anatomical 

structures and the progression of the disease. We will use statistical methods and a longitudinal 

analysis to determine this relationship. Also, we will perform an analysis of the diffusion MRI metrics 

in a set of white matter bundles. This analysis allows us to associate the diffusion MRI changes with 

the anatomical changes to generate a better understanding of structural brain connectivity and its 

impact on the subjects with MS. 

In this thesis, we will work with two databases, DB1 and DB2. DB1 is integrated by 39 

subjects, each with three T1 MRI anatomical images separated for one year of difference. In addition, 

DB2 is integrated by 24 subjects, each with two T1 images, two FLAIR images, and two dMRI images 

separated for three years of difference. Both databases are local. DB1 acquired at the Hospital Clinico 

of the University of Chile, Santiago, Chile and DB2 acquired at the Columbia University Irving 

Medical Center, New York, USA. These databases will be described in greater detail in section 1.5. 
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1.2. Hypothesis 

Significant changes (p<0.05) can be found in cortical regions and be related to changes in 

white matter fiber bundles from T1, FLAIR, and diffusion magnetic resonance images of patients with 

Multiple Sclerosis in a longitudinal study of 2-time points. 

1.3. Goals 

1.3.1 General Goal. 

Study anatomical changes correlated with clinical metrics in individuals with Multiple 

Sclerosis by utilizing two longitudinal MRI databases, employing longitudinal pipelines and statistical 

analyses. Additionally, establish associations between these changes and statistically significant 

alterations in diffusion MRI metrics, with the aim to enhance our understanding of the progressive 

structural modifications in the brain caused by the disease over time. 

1.3.2 Specific Goals. 

• Determine anatomical variations in Multiple Sclerosis patients through a longitudinal analysis 

of T1 magnetic resonance images using FreeSurfer software on the DB1 and DB2 databases. 

• Evaluate disease progression associated with clinical metrics using statistical models, such as 

generalized linear models (GLM) and linear mixed-effects models (LME), on the DB1 

database, and the GLM model on the DB2 database. 

• Explore alterations in the microstructure of white matter fibers through statistical analysis in 

the DB2 database using generalized estimating equations (GEE) and their relation with 

anatomical changes. 

1.4. Scope and limitations 

A database of T1-w images provided by Professor Dr. Carlos Guevara, called DB1, will be 

used first. In addition, we will use a database of T1-w and dMRI images provided by Professor Dr. 

Victoria M Leavitt from Columbia University called DB2. We used different software tools to make 

all the analyses during this research. First, we used FreeSurfer (version 7.1.0, Athinoula A. Martinos 

Center for Biomedical Imaging, Charlestown, Massachusetts, USA) [8], which provides tools for 

analyzing MR images. It has visualization tools, atlases, and statistical methods that could be applied 

to the images. Also, during this thesis, we used DSI Studio. This software provides tools for diffusion 
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MRI analysis and brain connectivity and correlates findings with neuropsychological diseases [9]. In 

addition, to perform some of the statistical analysis, we used the Statistical Package for the Social 

Sciences (SPSS) software. This software supports executing different statistical models and ways to 

visualize statistical data [10]. 

 The longitudinal analysis will be applied to 39 MS subjects of DB1 and 24 MS subjects of 

DB2, and the diffusion MRI analysis will be applied only to the DB2 subjects. 

1.5. Materials 

There are two MRI databases available. DB1 comprises 39 subjects suffering from RRMS. 

The database was acquired on a Siemens 1.5 T MRI scanner. The acquisition protocol includes 

standard T1 anatomical images using 3D inversion-recovery prepared spoiled gradient-echo (IR 

SPGR). The parameters used for the volumetric sequence were the following: FOV of 250x234 [mm], 

matrix of 256x240 [mm], repetition time (TR) of 12 [ms], echo time (TE) of 5.68 [ms], angle 

excitation spin of 15°, isotropic voxel size of 0.98x0.98x0.98 [mm]. The patients underwent a second 

and third brain MRI within two years of follow-up. In addition, this database has two clinical metrics 

that will be used during this research work, the EDSS value and the SDMT test. Both clinical metrics 

were taken in person for all subjects at the moment of the acquisition of every time point. Every 

subject has both clinical metrics for every time point. Both clinical metrices that will be used in this 

research work are without corrections of any kind, so we used the raw value of the EDSS and SDMT 

test. 

DB2 is made up of 26 patients with RRMS. The database was acquired on a Siemens-Skyra 

3T MRI scanner using a 16-channel carbon head. The acquisition protocol for standard T1 anatomical 

images was 3D inversion-recovery prepared spoiled gradient-echo (IR SPGR), repetition time (RT) 

of 2400 [ms], echo time (TE), and repetition time (TR) of 2 [ms], rotation angle of 8°, voxel size of 

1x1x1 [mm], FOV = 256x256 [mm], 176 slices. Diffusion tensor images: TE, TR = 91 [ms], 4100 

[ms]; twist angle = 85°, FOV = 92x110 [mm], voxel size = 2.0x2.0x2.0 [mm], 75 slices, multiband 

acceleration factor = 3.0, 60 broadcast encoding directions with b = 1200 seconds/mm2 and a b = 0 

seconds/mm2. The patients underwent a second brain MRI within three years of follow-up. 

Both databases were acquired with the patient's consent and approved for research by local 

ethics committees. DB1 was approved by the ethics committee of Hospital Clinico of the University 

of Chile, Santiago, Chile, and DB2 was approved by the ethics committee of the Columbia University 

Irving Medical Center, New York, USA. 
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1.6. Methodology 

In this thesis, we carried out a bibliographical review of the works on Multiple Sclerosis 

disease and its longitudinal impact on different subjects. After that, a detailed study was conducted on 

the processing methods and the other types of longitudinal analysis of anatomical data. Then, based 

on the results of those studies, the statistical model, GLM model, was applied to our data to determine 

significant changes in the cortical thickness. Additionally, diffusion MRI data was processed and the 

dMRI metrics were analyzed using the GEE model to determine the level of significance of the fiber 

bundle alterations. Finally, we correlated the anatomical and diffusion changes. 

1.6.1 Analysis over DB1 

For DB1 database only T1-w images were available, which we used for testing concepts and 

methods during anatomical analysis. The results of this analysis were used later to compare them with 

the results of the DB2 analysis. This analysis was conducted in a local computer cluster available in 

the laboratory. 

A. Preprocessing and Longitudinal Analysis 

The DB1 database was pre-processed using a non-linear filtering tool to reduce the noise of 

the images and preserve their structure, called “Smallest Univalued Segment Assimilation Kernel” 

(SUSAN) [11], which is available in the FSL FMRIB Library software [12]. 

After the pre-processing step, we applied the longitudinal processing. This step was performed 

using the FreeSurfer software [8], divided into three stages: cross-sectional (CROSS), creation of the 

template (BASE), and longitudinal analysis (LONG). 

In CROSS, each image was processed independently. From this, a segmentation and a 

reconstruction of the cortical surface of each time point were generated, which were used in the 

following stages. 

In BASE, a template was built based on the three different time points of the database. For 

this, each image was resampled in the voxel space of the template using a cubic B-splice interpolation 

[13]. 

In LONG, the actual longitudinal processing was performed. Here, a brain mask was created 

by joining the previous results of all the time points of the same subject to compare each time point 

to the template. 
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B. Statistical Analysis. 

The longitudinal analysis was performed using two statistical models: the GLM and the LME 

model. The GLM model was applied using the toolbox available in FreeSurfer, and the LME model 

was applied using mass univariate analysis through a script using MATLAB R2020b software.  

In this statistical analysis, we looked for a correlation between the cortical thickness and the 

cortical volume with the EDSS and the SDMT parameters. 

1.6.2 Analysis over DB2. 

The analysis of the DB2 database was divided into two stages: the anatomical and diffusion 

MRI stages. The first stage was executed in the computer cluster provided by Professor Dr. Victoria 

M Leavitt from Columbia University. The second stage was conducted in a local computer cluster 

available in the laboratory. 

A. Anatomical Analysis. 

The DB2 data was preprocessed within the anatomical stage with a lesion inpainting process 

performed using the LST lesion segmentation tool [14], available in the SPM8 software. 

After this, DB2 was processed using the same longitudinal analysis applied to DB1, using 

FreeSurfer software. 

Statistical analysis was performed using a GLM statistical model, applied using the toolbox 

available in the FreeSurfer software. 

The application of this model requires several previous steps. The first stage was to move the 

time points to a common space (fsaverage). To do that, we used the command long_mris_slopes [8]. 

First, a table was generated, including each subject's features and some variables relevant to the 

analysis, such the hemisphere, the Full width at half maximum (FWHM) value, and the measure to be 

calculated, described in detail in a posterior section.  

Subsequently, the analysis was performed through the graphical user interface (GUI). In this 

GUI, we had to specify some parameters. First, we had to upload the previously created table, and we 

selected the comparison parameters. In this case, the comparison variables were the EDSS and SDMT. 

Finally, the type of analysis to be performed was initialized. Then, the graphical and statistical results 

are extracted through the command long_stats_slopes [8]. This command allowed us to visualize the 

results using the FreeSurfer visualizer. 
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B. Diffusion MRI Analysis. 

Finally, we applied a diffusion MRI processing pipeline. The diffusion MRI data was analyzed 

using DSI Studio software to extract the white matter bundles from DB2. This analysis was carried 

out in previous work by Buyukturkoglu et al. [15] using the same database. 

DSI Studio software was used for dMRI pre-processing, tractography calculation, and 

computing of the diffusion metrics, such as fractional anisotropy (FA), axial diffusivity (AD), radial 

diffusivity (RD), mean diffusivity (MD) and quantitative anisotropy (QA). In addition, Python and 

C++ codes were used to segment the WM bundles and calculate different tract-based diffusion 

metrics. 

Our analysis was divided into two steps to identify the most significant fiber bundle features. 

We began by applying a student t-test as an initial filter to the 168 bundles from our atlas. Next, we 

conducted a longitudinal statistical analysis. In this case, we used the generalized estimated equations 

(GEE) model to assess the significance level of each fiber bundle. This model uses diffusion metrics 

as factors and EDSS and SDMT values as covariates. 

Finally, a relation was computed between the anatomical and diffusion MRI results. 

1.7. Available resources 

A computer capable of working with existing databases was available, with an Intel i7-9700 

processor, 24 GB of RAM, and a Radeon RX570 video card financed by FONDECYT Project 

1221665. 

. 
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Capítulo 2.  Bibliographic Review 

2.1. Brain Anatomy 

The brain is the main structure of the nervous system and corresponds to 80% of the encephalic 

mass. It performs the so-called higher functions, for example, motor functions, sensitivity, and control 

of body functions. It is constituted by two hemispheres connected by a structure of fiber tracts called 

the corpus callosum [16]. The cerebral cortex mainly comprises gray matter (GM) and white matter 

(WM). The GM are regions of high-density neuronal bodies or somas, neuroglia, and demyelinated 

axons. In contrast, WM are regions where the myelinated axons of the neurons are located [17]. 

In the encephalon, two structures have the largest cortices, corresponding to the brain and the 

cerebellum. However, the highest concentration of neuronal cell bodies is found in the brain, given 

the multiple folds in the cerebral cortex, as shown in Figure 2.1. 

The primary function of the neuronal bodies is to process the information they receive from 

the different areas of the body, highlighting the control of movements, memory, sensations, and 

emotions, among others. 

The anatomical division of the cerebral cortex is into five lobes: frontal, parietal, temporal, 

occipital, and insula, each with different but associated functions. Also, there is the functional division 

of the cortex. The three central regions are the sensory, motor, and association. 

 

 

Figure 2.1 Cerebral cortex’s location and white matter [18]. 
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On the other hand, there are the neuronal axons, whose primary function is to transmit the 

information generated in the neuronal bodies to different sections of the WM. These axons are 

grouped, forming the so-called brain fiber tracts composed of fibers similar in trajectory, position, and 

size. These brain fibers can be classified as short fibers (~35 - 80 mm) that mainly connect close areas 

of the cortex and long fibers (~80 - 150 mm) that are present in the deep regions of the WM.  

These fiber tracts are traditionally grouped into three groups: association fibers are those that 

connect areas of the same cerebral hemisphere; projection fibers are those that connect areas of the 

cortex with deep nuclei of the brain, such as the basal nuclei; and finally, the commissural fibers are 

those that connect similar areas with their counterpart in the opposite hemisphere[19]. These 

classifications can be seen in Figure 2.2. 

 

Figure 2.2 Illustration shows the types of fibers in white matter [20]. 

2.2. State of the Art 

This section discusses the works related to MRI analysis in Multiple Sclerosis (MS). Firstly, 

we focus on works studying changes in the cortical surface using a longitudinal approach. Secondly, 

we highlights works related to alterations structural connectivity and its effects on the cortical surface 

of MS patients. Then, we present works similar to this thesis's objective, which is to search for a 

relationship between structural connectivity and changes in the cortical surface. Finally, the methods 

applied to the data will be described, such as the methods for the anatomical analysis and those used 

for the diffusion MRI analysis. 
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2.2.1 Study of Multiple Sclerosis using Magnetic Resonance Imaging 

A. T1-weighted MRI image, FLAIR image, and dMRI 

The principle of Magnetic Resonance Images is generally based on the atomic properties of 

water nuclei. In a simplified way, an external magnetic field aligns the hydrogen atoms within the 

tissue's water nuclei. This alignment is then perturbed by a radio frequency pulse (RF). During the 

image acquisition process, two times are defined. One is the repetition time (TR), the time between 

successive pulses applied to the same slice. The echo time (TE) is the time between the RF pulse and 

the reception of the echo signal. 

The sequences used in this work will be T1, FLAIR, and dMRI images. A short TR and TE 

characterize T1 images. In this image, the brightness and contrast depend on the T1 properties of the 

tissue [5]. On the other hand, in FLAIR images, the fluid signal is suppressed using an adequate long 

TE and a long inversion time (IT). The function of the inversion time is to flip the initial magnetization 

of all tissues in the image to a point opposite the main magnetic field. An inversion recovery sequence 

with a long IT of 2000-2500 [ms] is used for fluid suppression [6]. Finally, the dMRI images are based 

on measuring the random Brownian motion of water molecules within a tissue voxel. This image aims 

to attenuate TR based on how easily water molecules can diffuse in a specific region. The more easily 

water can diffuse, the less initial TR will remain [21]. 

B. Longitudinal and cortical approach to Multiple Sclerosis 

A longitudinal study is carried out based on multiple measurements of individuals for a 

prolonged time [22]. In the case of Multiple Sclerosis (MS), some longitudinal studies with anatomical 

and radiological correlation have enabled the measurement of this disease's impact at the cortical level 

or finding patterns that could help researchers prevent any relapse in their patients. Within this line, 

Rocca et al. [23] reviewed multiple longitudinal studies focused on the impact of MS on GM and its 

correlation with cognitive damage. Among the works mentioned by Rocca et al. is the one carried out 

by Camp et al. [24], considered a fundamental work when starting any longitudinal work associated 

with MS. This study established that there was a relationship between cognitive impairment and its 

impact on the GM at the cortical level.  

Among the works that follow this line is one from Hidalgo de la Cruz et al. [25], whose main 

objective was to find a regional pattern of alteration of the cortical thickness and its evolution in one 

year in patients with several types of MS. For the cross-sectional processing they used the software 
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FreeSurfer [8], that determined the cortical thickness of every image. As shown in Figure 2.3, the 

authors were able to decide that when comparing the baseline image and a later image, there was a 

decrease in the cortical thickness in MS patients, especially in three regions of the cortex: orbitofrontal 

lobe, precuneus, and frontal lobe lower-left parietal. In addition, they related the loss of cortical 

thickness in these areas to a high EDSS index value [26]. However, the researchers mention that the 

patients with long disease duration did not have high EDSS values, which could create some bias in 

the results. Finally, they did not perform any cognitive tests for the neurological evaluation of the 

patients. 

 

Figure 2.3 Cortical Regions Showing Significant Interaction of Cortical Thinning in (a) MS Patients vs. Control, 

(b) RRMS vs. Control, and (c) SPMS vs. RRMS. SPMS: Secondary Progressive Multiple Sclerosis, RRMS: 

Relapsing-Remitting Multiple Sclerosis [25]. 

 

In the work carried out by Pravata et al. [27] the aim was to investigate the association of the 

change in the cerebral cortex and other GM regions with depression and cognitive impairments 

associated with MS. FreeSurfer [8] was used to obtain the volumes of the cerebral cortex. Various 

neurological tests were used to determine the subjects' cognitive impairment levels. One of the tests 

they used was the SDMT [28]. To detect the brain areas with the most significant alteration, they used 

a multivariate covariance (MANCOVA) analysis to compare groups (control and subjects with MS). 

In general terms, they were looking for changes in the cortex and other brain areas. As shown in Figure 
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2.4, the most significant alterations were for the front-parietal-temporal lobe and the entorhinal cortex. 

A relationship was also found between cognitive impairment and depression, where the right temporal 

pole and the inferior frontal gyrus are affected. On the other hand, this research did not consider the 

dysfunction of cognitive domains and the decrease in the cortex thickness, which can generate 

alterations in the final results. In addition, the absence of longitudinal data made it difficult to 

determine whether MS or another pathology causes the degeneration of the cortex. 

 

Figure 2.4 Significant regions in the cerebral cortex according to the impact on cognitive impairment in patients 

with MS. The areas of light red and yellow colors present the highest levels of significance versus the darkest ones, the 

lowest level of significance [27]. 

 

In work by Fleischer et al. [29], the main interest was to evaluate the change of the GM at the 

cortical level and determine the brain atrophy through neuronal dynamics using atrophy parameters. 

The researchers used four metrics: modularity, clustering coefficient, local efficiency, and transitivity. 

In general terms, modularity measures the relationship between the connections of the regions of the 

brain, the clustering coefficient is a measure of the local organization through the number of relations 

between the areas of the brain, the local efficiency is a metric that tries to reflect how the information 

is exchanged between the regions of the brain, and finally, the transitivity is the probability of how 

close two areas are to each other. As shown in Figure 2.5, the four metrics increased in the first twelve 

months. The increased modularity was related to cortical reorganization and strengthening intra-

modular connections. The local efficiency and transitivity increases were associated with reinforcing 

communication between nearby regions. Finally, an increase in the clustering coefficient can be 

interpreted as an increase in the affected area by the MS in regions close to each other. The change in 

all these metrics was construed as a change in the neuronal dynamics of the MS subjects. No 
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significant differences were found in the cortex volume when considering the patients' inflammatory 

activity. However, the heterogeneity of the patients made it difficult to make comparisons. They did 

not analyze the relationship of the cognitive and the neural dynamics. 

 

Figure 2.5 Longitudinal Neural Connection Measures of MS Patients Versus Control Patients. (**p < 0.001). [29]. 

C. Structural Connectivity and its Alterations in Multiple Sclerosis 

The use of dMRI for the study of MS allows us to detect the effects of the disease on the WM 

connections. 

Mustafi et al. [30] was the first approach that analyzed brain fibers to detect alterations in WM 

in patients with MS. To see such alterations, the researchers used four metrics extracted from 

Diffusion Tensor Imaging (DTI). These metrics are AD, RD, MD, and FA. These metrics were 

described in detail in [31]. In addition, they selected regions of interest (ROIs) based on the number 

of lesions on the WM. For each subject, the researcher determines three types of ROIs: lesion, 

perilesion (regions surrounding the lesion), and normal-appear white matter. The authors used these 

ROIs to calculate the mean and standard deviations of the MRI measures. Figure 2.6 shows the 

relationships between the three ROIs and the different metrics. Finally, the researchers detected 

significant alterations in some of the DTI metrics of the ROIs classified as normal-appear white matter 

and those classified as perilesion. They concluded that using DTI metrics was a relevant source of 

information to detect alteration in the WM of subjects with MS. 
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Figure 2.6 Bar plots of T2-FLAIR and diffusion metrics in the three ROIs [30]. 

The lesion, perilesional, and NAWM ROIs are color-coded in red, blue, and green. Error bars denote the standard deviation across 36 

ROI sets. The overhead arrows indicate significant differences in measurements between pairs of ROIs at a Bonferroni-corrected P 

threshold of 0.017. Note that T2-FLAIR intensity is not a quantitative measure; thus, it was not tested for statistical significance at the 

group level. FLAIR: Fluid attenuated inversion recovery; NAWM: normal-appearing white matter; ROIs: regions of interest [30]. 

 

Another work related to the use of DTI was carried out by Klistorner et al. [32], whose main 

objective was determining the progression of WM alterations in patients with MS. For this, they used 

the same metrics that were used in [30]. The main difference between these two works was that [32] 

is longitudinal. They used two-time point images per subject (one as a baseline and another taken 

approximately two years later). The researchers used Jim 7 software for lesion inpainting. The authors 

detected two changes. The first was the significant change in the MD, which indicates the progression 

of brain atrophy. The second is the RD and AD correlation, as shown in Figure 2.7. This correlation 

led the researchers to conclude that the longitudinal alterations of diffusion metrics in subjects with 

MS were significant.  
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Figure 2.7 Correlation between AD and RD changes in individual lesions [32]. 

 

Another work by Kolasa et al. [33] aimed to study normal WM areas in MS patients using DTI 

metrics. The authors used T2 images to select ROIs where no lesions were detected. The researchers 

determined significant changes between the DTI metrics from the healthy control and the MS subjects, 

particularly in the corpus callosum, which presents the most important variations. Table 2.1 shows 

part of the original table where such variations are presented. The researchers observed diffusion MRI 

changes associated with MS patients but clarified that these changes had a different dynamic change 

for anatomical location. In another related work by Pokryszko-Dragan et al. [34] the aim was to assess 

both GM and WM damage in brain regions associated with disability using DTI metrics, such as FA 

and the apparent diffusion coefficient (ADC). The researchers found a decrease in FA and an increase 

in ADC in the thalamic connections and corpus callosum. In addition, the researchers determined that 

the changes in the DTI metrics are associated with alterations in tissue integrity. Also, the authors 

recommend using other metrics, such as brain region volume, and changing some methodological 

issues, like image acquisition. 
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Table 2.1 Part of the table showing the relationship of baseline DTI metrics with disability progression in the MS 

measured by EDSS increase over the 4‐year follow‐up [33]. 

 

 

In the previous works, the focus was to identify the alterations in the WM and its relation to 

the disability of the patients. In the following works, the focus will be on its association with the 

cognitive level. 

 The first work was proposed by Manca et al. [35], where the main objective was to establish 

a pattern between macrostructure and microstructure with the WM and cognitive performance. To 

find this pattern, researchers used two techniques: voxel-based morphometry (VBM) to T1 images 

[36] and tract-based spatial statistics (TBSS) to dMRI data [37]. The VBM was applied using SPM8, 

and TBSS was applied using FSL. Through a battery of cognitive tests, the researchers calculate the 

mental processing speed of the subjects. They use this metric to classify them according to their 

cognitive state. Both techniques generated different but related results. In the case of VBM, as shown 

in Figure 2.8, the main changes were detected in the semantic fluency area, where it is correlated with 

changes in cortical and subcortical regions of the GM, such as the occipital and temporal areas. On 

the other hand, TBSS results highlight the frontal associative and commissural areas as the regions 

that present the most significant changes. These areas are related to the cognitive state of the subjects. 
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Finally, the researchers said that preserving the WM fiber bundles is crucial to maintaining the 

integration of information regarding the cognitive condition of the subjects.  

 

Figure 2.8 GM regions correlated with scores on the semantic fluency task before (red) and after (blue) its 

execution, correcting for processing speed abilities at p < 0.05. The analysis here was made using VBM [35]. 

 

Also, the work proposed by Zhao et al. [38] had an objective similar to that of Manca et al. 

The difference was that instead of calculating the mental processing speed, the researchers divided 

the participants into two groups: cognitively impaired (CI) and cognitively preserved (CP). Both 

works employed TBSS as a correlation method. Additionally, this work used the FA to determine the 

changes between the groups. As shown in Figure 2.9, comparing the results between both groups, the 

right inferior longitudinal fasciculus, the right inferior frontal-occipital fasciculus, and the right corona 

radiata were the most affected among CI patients compared to CP patients. When diffusion metrics 

and cognitive performance were correlated, the connection with the most significant connection was 

the corpus callosum. Finally, the researchers highlight the importance of the white matter's 

microstructures and the use of FA as a metric for measuring these changes and the cognitive changes 

in the subjects. 
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Figure 2.9 TBSS results are in blue on mean FA (green) and MNI 1mm standard space, overlaid by lesion 

probability map (red). Tracts in deep blue displayed a smaller p-value or more meaningful results. (a) Reduced mean 

FA value on splenium of the corpus callosum, left anterior and posterior limb of the internal capsule and left cerebellar 

peduncle in CI patients compared to CP patients (b) Widespread areas of increased mean skeleton MD in CI patients 

compared with CP patients [38]. 

 

The following work focuses on the change of brain fibers and how such changes are related to 

MS subjects' clinical symptoms. This work was carried out by Storelli et al. [39] focus was on 

evaluating the capacity of the cross-section fiber bundle (FC) [40] for detecting atrophy in specific 

fiber bundles. They used the constrained spherical deconvolution (CSD) model, which employs a 

density function to obtain the orientation of the fibers [41]. They used a fixed-based morphometry 

analysis to assess differences in fiber bundles between the MS and control subjects. Also, they used a 

voxel-based analysis to determine the regions with the most significant changes in FA. The researchers 

found a generalized reduction in FC in patients with MS compared to healthy controls, as shown in 

Figure 2.80. A, where the most significant changes are presented in the right anterior cingulate, 

bilateral cerebellum, and several mesencephalic and diencephalic. They also found a reduction in FA 

in various connections. Figure 2.10.B shows the bundles with the most significant changes, such as 

the periventricular zone and the corpus callosum.  
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Figure 2.80. In (A), streamline segments were cropped from the template tractogram so that only streamline 

points that correspond to significant pixels (p value<0.05) were shown. Streamlines are colored by the percentage of 

decreased FC value in MS patients compared to Healthy Controls. (B) Voxels exhibited a significant (p value<0.05) 

reduction in FA in MS patients compared to Healthy Controls in axial, sagittal, and coronal views [39]. 

D. Relationship between cortex, fibers, and Multiple Sclerosis 

In the previous sections, we exposed the works performing anatomical and diffusion analysis 

of MS from a general point of view. Here, we will present various works that relate to these two 

analyses. 

First, Cooper et al. [42] established a relationship between normal white matter (NAWM) 

lesions and cortical thickness. In previous works, such as those proposed by Steenwijk et al. [43] and 

Dayan et al. [44], the primary way to measure damage in NAWM was by DTI. In this case, the 

researchers used the T1/T2-weighted ratio to measure the myelin in the WM. This is described in 

detail in [45]. Methodologically, the images were processed in the MNI space. Then, the images were 

co-registered based on the FLAIR images. Then, the lesions were extracted using the LST toolbox, 

and the masks were generated using the CAT12 toolbox, both available in the SPM12 software. The 

main results they found were that cortical thickness decreased significantly with increasing lesion 

volume. Also, they associated NAWM diffusivity changes with a decrease in the cortical thickness, 

which correlates with the first result obtained. Ultimately, they concluded that using the T1/T2 weight 

ratio was an effective metric for determining the effects of the NAWM in the cortex. Still, they suggest 

continuing the work for its validation in other regions. The disadvantage of this technique is the lower 

sensitivity compared to other methods. Even though this work is not directly related to what was done 
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in this thesis, it can be noted that it shows a relationship between changes in cortical thickness and 

alterations in white matter. 

On the other hand, Zhang et al. [46] evaluated the alterations in the GM and the microstructure 

of the WM. They used source-based morphometry (SBM), described in detail in [47]. Looking for 

these alterations was essential to establishing relationships between change in GM and WM. The first 

difference between previous studies was that the authors in this study used two databases. The first 

database was used to make all the measurements. The second database applied reliability tests to 

support the results from the first database. The researchers started by detecting and inpainting the 

lesions using proton density (PD) images through the Jim 6.0 tool. For the generation of masks, they 

used the FSL toolbox. Also, using FSL, they processed DTI data to calculate the FA metric, which 

will be used to detect changes in WM, and then used the SPM12 software through the VBM tool to 

generate segmentation and volume extraction of the brain GM. To facilitate the analysis, the GM was 

divided into the deep GM (caudate and thalamus), the sensorimotor GM, the inferior frontal gyrus and 

pars opercularis, the posterior GM, the occipital GM, and the cerebellar cortex. One of the main 

conclusions was that there was a pattern of change in cortex regions associated with the motor area, 

and they found the same way of change in subcortical regions. Also, significant differences were 

found in brain fibers related to the cognitive area, memory area, and processing speed. Finally, they 

concluded that they could not detect a significant connection between changes in cortical GM and 

WM. Still, they determined that the differences were clinically relevant and suggested continuing with 

studies associated with this topic.  

 Unlike the previously mentioned work, Pagani et al. [48] assess how changes in connectivity 

affect the motor and cognitive areas of MS patients focused on the impact of the WM lesions. First, 

they segmented and inpainted the WM lesions using the Jim 6.0 tool. Using DTI images, they 

calculated the FA. Then, they constructed a structural connectivity atlas, described in detail in [48]. 

Subsequently, this atlas was applied to each subject to calculate the connectome. Five properties to 

evaluate the results: the mean strength, the assortativity, the transitivity, the global efficiency, and the 

characteristic path length [49]. The results shown in Figure 2.91 indicate significant changes between 

groups in all the properties except in assortativity—the results of the disconnection analysis are shown 

in Figure 2.102. The connections are shown as nodes classified into centers from the control patients 

based on the strength and betweenness of the centers. The assortativity parameter was the one that 

presented the highest values in MS patients. The researchers found that the precuneus was identified 

as a hub of brain fibers altered for RRMS patients, suggesting that this region was critical when 
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disruptions in brain GM connectivity occur. Finally, the researchers determined that connectivity does 

not show significant changes based on their disconnection model, suggesting that the brain was 

resistant to damage from MS lesions. However, they recommend continuing with studies given the 

limitations they presented during the work.  

 

 

Figure 2.91 Results that show the linear dependence before and after disconnection. Scatter plots of global metrics 

before (x-axis) and after (y-axis) modeling of disconnection. Relapsing-remitting Multiple sclerosis (RRMS) patients are 

shown in blue, secondary progressive MS (SPMS) in red, and benign MS in green [48]. 
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Figure 2.102 Standard brain surface with hubs of the network. Hubs were found in healthy controls (first row), 

Multiple Sclerosis (MS) patients, and according to clinical phenotypes (second row), and the same after modeling of 

disconnection (third row). New hubs are colored green. Lost hubs are identified in violet. RR: Relapsing-Remitting MS; 

SP: Secondary Progressive MS [48]. 

The following work corresponds to the closest research to the work performed in this thesis. 

Bussas et al. [50] assessed whether WM fiber connectivity alterations in MS subjects could explain 

GM atrophy throughout the brain. As mentioned in previous works, WM lesions and cortical atrophy 

are fundamental when evaluating the severity of MS [51]. In this work, the preprocessing stages were 

like those of previous works: the lesion inpainting and the creation of gray and white-matter masks, 

using the LST and CAT12 tools, respectively. For the connectivity assessment, the researchers used 

the connectome rendered from the Human Connectome Project [52] to create a disconnectome map. 

The creation of this map is described in [50]. They performed two kinds of analysis: cross-sectional 

and longitudinal. For the cross-sectional study, they used the first image they took from the patients, 

and for the longitudinal, they used the first and the last image. They conducted the same study for 

every time point, considering each time point as an individual image. In contrast, they performed the 

difference between both time points for the longitudinal analysis and then determined the significant 

changes between them. They found a strong correlation between changes in subcortical structures and 

disconnection in the cross-sectional study. In addition, as shown in Figure 2.113.A, they found a 

correlation between disconnection and atrophy regions of the cerebral cortex. In the latter case, the 

areas with the most significant correlation were the precentral, middle frontal, and lingual regions.  
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Furthermore, the longitudinal results showed a strong correlation between atrophy in 

subcortical structures and disconnection. At the cortical level, as shown in Figure 2.113.B, they found 

a significance similar to the cross-sectional analysis, but it covers a larger area in this case. In 

conclusion, the authors determined an interesting correlation between the changes produced in the 

GM and WM at cortical and subcortical levels. 

 

 

 

Figure 2.113 Correlation of disconnection with gray matter atrophy. (a) Cross-sectional correlations between 

disconnectome maps and gray matter atrophy maps. (b) Longitudinal correlations between maps of disconnection 

increase and maps of atrophy increase. (a)–(b) Each panel contains axial slices of the voxel-wise correlations (top) as 

well as medial and lateral views of the surface-based correlations (bottom). The colors indicate the strength of the 

correlation according to the bars on the right (Pearson’s r). Only voxels or vertices that were significant levels are 

colored [50]. 
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E. Discussion 

Based on state of the art, we can observe the clinical importance of knowing how cortical GM 

changes are related to the WM alterations produced in MS disease. The T1 images provide helpful 

information regarding the anatomical effects of MS on GM. At the same time, diffusion MRI images 

enable the identification of the WM brain fiber alterations. Studies in which both images are used 

establish a more complete understanding of the impact of MS on the subjects. 

Many studies have been carried out on this topic, proposing several methods to identify the 

effects of MS on GM and WM. Such work has allowed us to increase our understanding of the effects 

of the disease on the brain. A main approach is the longitudinal analysis. Although the implementation 

of this analysis varies across the authors. 

Several works studied the impact of MS at the cortical level, some longitudinally, and others 

analyzed the relation of these changes with the degree of physical and psychological disability. This 

allows us to determine the regions where this pathology is most affected, highlighting the motor and 

sensory regions. In the case of the motor regions, the precentral and the superior frontal were the most 

mentioned by the researchers. The reason for that may be because this disease is characterized by 

having a significant effect on the mobility of the subjects. On the other hand, the highlighted sensorial 

regions were the superior parietal and superior temporal.  These two regions are strongly related to 

the visual and auditive processing. Also, the superior parietal region is associated with the sensory 

input of one of the hands of the subjects. All these effects, motor and sensory, are well-known and 

associated with MS. 

Other works establish the relationship between the WM changes, and MS. Some works studied 

the WM lesions, while others explored the changes in the brain fibers. From those works, it has been 

possible to conclude that the alterations in the WM are significant and that these could be related to 

the changes in the GM. The DTI was the primary technique to determine these changes. Specifically, 

using the DTI metrics, FA changes as one of the most essential and significant indicators of change 

in the WM brain fibers. The bundles most mentioned by the researchers that present substantial 

changes were the corpus callosum and the thalamic variations. The corpus callosum is highlighted 

because it is an important inter-hemispheric brain fiber hub connecting different motor and sensitive 

regions. The thalamus is well-known to be one of the most affected subcortical structures by MS. 

On the other hand, only a few studies have tried to establish the relationship between the three 

aspects: GM, WM, and MS clinical effects. Some associations have been observed between these 

three data types, some associated with subcortical areas, while others focused on cortical surface 



25 

 

regions. In these few studies, the anatomical cortical regions identified were those highlighted by 

previous purely anatomical studies, such as the precentral and the superior parietal regions. Likewise, 

the WM fibers identified in these few studies were also mentioned in previous studies: the corpus 

callosum and the thalamic variations. 

Finally, the lower number of this kind of works gives us optimism during this thesis work 

because it will allow us to contribute to the study of Multiple Sclerosis. 

2.2.2 Modeling of Longitudinal Data for Multiple Sclerosis 

A. Longitudinal Study in FreeSurfer 

Longitudinal analysis of medical images has become increasingly relevant in the clinical area 

due to its ability to provide a better perspective of changes that patients experience throughout their 

illness. Physicians can use these studies to track treatment progress and make the necessary 

modifications. A software extensively used to perform such analysis is FreeSurfer [7], which benefits 

from technical capabilities and specialization.  

FreeSurfer analysis consists of three stages: cross-sectional processing (CROSS), creation of 

a within-subject template (BASE), and longitudinal processing (LONG). First, in the CROSS stage, 

each image undergoes a cross-sectional analysis, which includes a full cortical reconstruction. Second, 

in the BASE stage, a template is generated for each subject using all the images from every time point. 

Finally, in the LONG stage, the longitudinal analysis is performed. 

B..1 CROSS Stage 

All images are processed independently using the recon-all function, which performs a cortical 

reconstruction of the images. This function executes 31 steps, described in Table A.1 in Annex A. On 

average, this stage can take five to six hours per image on a high-performance computer. Once 

completed, several directories are created containing all the new images and statistics. Sometimes, 

errors affect the reconstruction of the surface and subsequent analysis. However, manual editing is 

not recommended as it can add bias to the image and affect the quality of subsequent studies [7]. In 

such cases, it is recommended first to check the image for any errors during acquisition and then re-

run the stage. If the error persists, it is recommended to discard the image. 
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B..2 BASE Stage 

In this stage, a template is made for each subject using the data obtained in the previous stage. 

The aim is to establish the average anatomy of each subject. Like the CROSS stage, this process takes 

four to five hours for each subject. 

When creating the template, the software makes several adjustments. Firstly, it treats all 

images equally to prevent any asymmetry. Additionally, it avoids using higher-order warps to prevent 

any temporal contrast smoothing. 

This stage is divided into five steps: 

• Initialization of the template: It is determined by calculating the mean or median of each 

one of the images, then each input image is registered and resampled, and finally, this 

process is repeated. In the end, the file norm_template.mgz is obtained, which will be used 

in the following steps. 

• Normalization: Creation of control points and variation fields 

• Skull removal: the brain mask is resampled and averaged. 

• Registry: Uses norm_template.mgz for the Talairach registry. 

• Normalization: Uses norm_template.mgz for normalization. This ensures that 

norm_template is correctly normalized. 

B..3 LONG Stage 

The algorithm is initialized during the final processing stage using the information generated 

in the previous stages. Some data is copied directly, while others are used as inputs later. Similar 

procedures were done in this stage, that in the CROSS stage, which are explained in detail in Table 

A.1 in Annex A. The time taken for this stage is approximately two to three hours for each image, 

which is about half the time taken for the last two stages. A summary of the entire longitudinal 

processing carried out with FreeSurfer can be seen in Figure 2.14. 
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Figure 2.124 Simplified diagram of the three stages that make up longitudinal processing in FreeSurfer. Dotted 

line: Information used for initialization, Solid line: Information copied [8]. 

 

B. Generalized Linear Model (GLM) 

The generalized linear model (GLM) encompasses the distribution of non-normal responses 

and function modeling based on the arithmetic mean of the data. GLMs refer to a set of model classes 

that McCullagh and Nelder [53] popularized. From those existing to date, they assumed that the 

response variable of the system y has an exponential family distribution with mean uyo that is supposed 

to be a function of XyoTβ. The GLM comprises three parts: the random component, the systematic 

component, and the link function. 

The random component is the probability distribution of the response variable Y. These 

components follow a probability density function as shown in equation (2.1).  

𝑌 = 𝑓(𝑦𝑖; 𝜃𝑖) = 𝑎(𝜃𝑖)𝑏(𝑦𝑖)𝑒𝑥𝑝(𝑦𝑖  𝑄(𝜃𝑖)) (2.1) 

In this case, 𝑓(𝑦𝑖; 𝜃𝑖) represents an exponential distribution. The value of 𝑦𝑖 correspond to the 

independent observation of the response variable Y and the value of θi varies between 1 and N, where 

N is the total number of subjects to be analyzed. In addition, we have the parameter Q (θ), called the 

natural parameter. The a, b, and the exponential combine functions to create a specific distribution.  



28 

 

The systemic component is associated with the explanatory variables in the model, more 

specifically, their linear combination. Also, the systemic component is considered a linear predictor, 

as shown in equation (2.2). Here, the xij are the explanatory variables, and the 𝛽𝑗 is the intercept term. 

𝜂𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗

𝑗

 
(2.2) 

Finally, we have the link function, which aims to unify the random and systemic components. 

It indicates how the expected response values relate to the linear combination of the explanatory 

variables. To define the link function, we have to first redefine the response variable Y according to 

equation (2.3). From here, the E represents the expected value of Y. 

𝜇 = 𝐸(𝑌) (2.3) 

 So after that, the link function g( . ) is the one that joins µ, with the systemic component, 

represented as η. This relation is defined according to equation (2.4). 

𝜂 = 𝑔(𝜇) (2.4) 

Since the GLM is a group of statistical models, the link function will determine the appropriate 

model to work. A summary of the most popular GLMs is in Table 2.22.  

Table 2.2 Most popular GLM models for statistical analysis [53]. 

Model Name Random Component Link Function Systemic Component 

Linear Regression Normal Identity Continuous 

ANOVA Normal Identity Categorical 

ANCOVA Normal Identity Mixed 

Logit Mixed Binomial Logic Mixed 

Log-linear Poisson Logarithmic Categorical 

Poisson Regression Poisson Logarithmic Mixed 

Multinominal 

Response 

Multinominal Generalized Logic Mixed 

 

The use of the GLM model is popular among researchers. One of these is the work by Gracien 

et al. [54] which presents an approach that relates to the thickness cortical damage to T1 relaxation 

time and the increase in proton density using MRI images. The implementation of the GLM model 

was through FreeSurfer. The model used a t-test to calculate the metrics of all the time points for all 

the subjects. They use a FWHM equal to 5 [mm]. The FWHM is a measurement used to determine 

how smooth the image will be. The most common values are between 5 and 25 [mm]. In addition to 

the model, a test was applied to correct for multiple comparisons based on Monte Carlo simulation. 

They used a significance level of a p-value less than 0.05. Figure 2.15 indicates an increase in T1 and 
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proton density (PD), but those were unrelated to age, EDSS value, or disease duration. However, the 

researchers mention that these changes could be related to the MRI parameters. 

 

 

Figure 2.135 Map of percentage of change per year of PD and T1; red indicates a positive change, and blue indicates 

a negative change [54]. 

 

As we saw in the previous work, the correlation between the progress of the pathology and the 

parameters of an MRI image allows us to detect the effects of the MS on the brain and establish a 

relation with clinical and anatomical variables, which is highly relevant. Tillema et al. [55] described 

an approach to look for a pattern between cortical thickness change and cognitive impairment in 

RRMS subjects. Using the FreeSurfer software, they extracted the cortical thickness change for each 

image for every subject and used a GLM model to analyze the data. They used an FWHM equal to 10 

[mm] and multiple comparisons based on the Monte Carlo method, with a significant threshold of less 

than 0.001. In Figure 2.16, there are some regions in the cortex where the cortical thickness presents 

some level of decrease, as shown in the blue areas. In patients with MS, the cortical regions that show 

more significant changes are the medial temporal and inferior parietal regions. Finally, the researchers 

said the relation between cortical thickness change and cognitive impairment was present but not at a 

high level. However, one point to consider is that in this study, most of the patients are old, which 

could affect the results. 
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Figure 2.146 Comparison between healthy and MS patients shows limited but present thinning. The blue indicates 

the areas with the highest significance level with a negative correlation [55]. 

 

C. Analysis of Brain Fibers Bundles  

One of the analyses over the diffusion MRI images is the superficial white matter (SWM) 

analysis. SWM is characterized by short-association U-fibers [56]. The use of SWM analysis instead 

of the deep white matter (DWM) is because the myelin in the fibers in SWM wraps more sparsely 

than in the DWM [57]. Also, in the SWM, is the region with more amount of lesions in MS patients 

[58]. 

The use of SWM in studies associated with MS is not very frequent, highlighting the one done 

by Buyukturkoglu et al. [15]. In this work, the authors found non-random patterns in the early stages 

of MS before witnessing anatomical and functional changes. On the other hand, there are works 

associated with SWM but applied to other pathologies where the WM is also affected. One of these 

works is the one by Veale et al. [59] where SWM analysis was performed using DTI in patients with 

Alzheimer's. Their goal was to differentiate between changes caused by degeneration and 

organizational changes caused by illness. The researchers used FA, MD, neurite density index, scatter 

orientation index, and tissue fraction as metrics. They found that the changes in the microstructures 

of SWM and along the cortical surface suggest a change in the WM fibers by degeneration and at the 

organizational level, with low values of the neurite density index and a high value of the dispersion 

orientation index. 
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Another related work was done by Phillips et al. [60], aiming to establish the relevance of 

SWM for Huntington's disease, given the area's sensitivity to the effects of neurodegenerative 

diseases. The researchers used the DTI and T1 anatomical images of the subjects to achieve this goal. 

FA, MD, RD, AD, metrics were calculated from the DTI images. The researchers found an increase 

in AD and RD in pre-symptomatic subjects compared to control patients. In contrast, patients with the 

entire pathology present an increase in all diffusivity parameters, as shown in Figure 2.157. These 

results indicated that the SWM is where the pathology has a particular effect in previous stages or 

during the disease. 

 

 

Figure 2.157 Whole-brain mean diffusion metrics for SWM and group comparison. Bar graphs show significant 

differences between SWM AD, RD, MD, FA. FA, Fractional Anisotropy; AD, Axial Diffusivity; RD, Radial 

Diffusivity; MD, Mean Diffusivity (Units: 10−3 mm2/s) [60]. 

 

B..4 Superficial White Matter Analysis 

The SWM analysis performed for this research is like that done by the co-supervising professor 

at [15]. The application of this analysis is divided into four stages: tractography calculation, image 

normalization and coregistration, SWM bundle segmentation, and the calculation of the SWM 

metrics. All this process was applied through Python codes. All this processing of obtaining the 

diffusion metrics was done by the engineer Christopher Vergara. 
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A ..4.1 Tractography calculation 

This is an image preprocessing stage in which raw diffusion magnetic resonance images 

(dMRI) are used. For this stage, two software were used. First, the FSL tool, available in FMRIB's 

Diffusion Toolbox [12], was used to correct the distortions caused by the movement, the eddy 

currents, and the non-homogeneous field of the images. Also, the DSI Studio software was used to 

obtain the steamline deterministic tractography of the entire brain through the diffusion MRI images 

resulting from the previous stage [61]. For this research, the GQI images model was used [62]. 

The GQI model differs from the DTI model in that the isotropic diffusion and the anisotropic 

diffusion are separated in GQI, thus minimizing the partial volume of free water. Anisotropic diffusion 

is further quantified for each main diffusion direction, thus minimizing the partial volume of the 

crossed fibers [63]. In this step, all the diffusion metrics were calculated, such as FA, MD, RD, AD, 

and QA. Figure 2.168 shows a comparison between FA, obtained by DTI, and QA, obtained through 

GQI model. 

 

Figure 2.168 Difference between the FA and QA based on observed diffusion [62]. 

 

The use of the GQI model on data from patients with MS is rare, and there is not much 

literature in this area. Still, there is some work comparing the results between the DTI and the GQI 

models for other neurodegenerative diseases. For example, Guo et al. [64], to quantified how both 

models behaved by comparing their reference metrics, FA for the DTI model and QA for the GQI 

model. They used brain age to compare the models, which is a good predictor of neuroimaging. The 
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methodology for this study was based on machine learning models to predict the behavior of the 

metrics. The main results were that the predictions made using FA were more accurate and with a 

higher degree of sensitivity than those made with QA. However, the researchers mention that, 

according to previous studies [65], DTI images have a high degree of sensitivity to age and that the 

DTI model cannot detect differences between an intra- and extra-axonal compartment [66]. 

Another work related to the GQI model is by Li et al. [67], whose main objective was to 

establish an anatomical relationship between the trajectory of the medial longitudinal fasciculus 

(MLF) and the oculomotor nerve through tractography data. They reconstructed the fibers using the 

HCP-1065 protocol as a template [68]. The evaluation of the MLF is based on the Center for In Vivo 

Microscopy template at Duke University. They used the QA and FA metrics to compare the results of 

the GQI and the DTI model. One of the results the researchers highlighted was a decrease in all the 

metrics in the MLF regions that present lesions versus those without the WM lesions. The researchers 

interpreted these results as a decrease in the spin density of diffusion anisotropy when comparing the 

MLF of the areas with and without lesions. In addition, they highlight the relevance of the protocols 

used and the use of GQI-based tractography as a new evaluation and reconstruction tool. 

A ..4.2 Image normalization and coregistration 

During this research stage, we used two different kinds of images, T1 and DW images, to 

normalize them to the MNI space. The T1 and DW images were corrected using the SPM12 software. 

This process is the same as that used for the anatomical analysis, which will be described in greater 

detail later in section 3.3.1.C. Then, the T1 images were normalized to the MNI space. Also, the 

tractography was transformed into the MNI space. In this space, the WM bundles are identified and 

segmented directly from each subject’s tractography dataset. 

A ..4.3 Superficial White Matter Bundle Segmentation 

In the segmentation stage of the SWM bundles, the fibers of each tractography dataset already 

in the MNI space must be resampled with 21 equidistant points, as described in the work by Guevara 

et al. [69]. The algorithms used for segmentation are based on the combination of two atlas of SWM 

bundles. One is described by Guevara et al. [61], and the second is defined by Roman et al. [70]. The 

algorithm calculates a pairwise distance between each fiber of the resampled tractography dataset and 

each fiber of the atlas. Then, each fiber is labeled with the closest bundle when the distance is less 

than the threshold given by the atlas. Then, the indices of previously labeled fibers are used to extract 

the segmented bundles from the original tractography dataset in the diffusion space of every subject. 
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A ..4.4 Calculation of different metrics for SWM bundles 

A mask is created for each bundle to obtain the different diffusion metrics we use during this 

research. The bundle masks were then used to obtain diffusion metrics across the bundles, and the 

average of the obtained values are calculated. After this process, we got the mean diffusion metrics 

FA, QA, MD, AD, and RD for each bundle and each subject.  

D. Discussion 

Based on the literature on the different data modeling methods for longitudinal analysis, we 

choose FreeSurfer software for the anatomical study, the GLM model for the statistical anatomical 

research, and the SWM analysis for the diffusion MRI analysis. 

Several works support the use of FreeSurfer to carry out longitudinal analysis. The most 

significant advantage of this software is the quality of the calculations performed, especially the 

creation of cortical and subcortical masks, enabling for a more detailed description of the studied 

regions. Due to the quality of the results, especially at the cortical level, many researchers rank it 

above other software that performs similar analyses. However, one of the disadvantages is the 

significant learning curve for using the software. Also, the high demand for technical resources, as the 

time it takes to complete the analysis is of approximately 10 hours per subject. 

Regarding the statistical models available for carrying out longitudinal studies, the most used 

by several authors is the GLM model. This model's two most important advantages are its simplicity 

during its application and its good results. Although it is one of the most used, it has disadvantages. 

The first is that it only uses the arithmetic mean of the data to do its analysis. This could misrepresent 

the results because just one statistical variable could not represent all the effects of the disease on the 

subjects. The second disadvantage is the non-consideration of the covariates that change over time. 

The difficulties we experienced during this research focused on the learning curve for its application 

and the time consumed to learn how to interpret the results generated. 

Finally, using SWM analysis over diffusion MRI data is fundamental for analyzing brain 

connectivity. Using the diffusion metrics from this analysis allows us to more precisely detect the 

WM fibers bundles altered in MS. These affected fiber bundles can be connected to changes at the 

cortical surface.  

Understanding the effects of MS on brain connectivity and the cortical surface and the 

relationship between them may produce to a better understanding of the pathology. 
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Capítulo 3.  Longitudinal Analysis in Multiple Sclerosis 

3.1. Introduction 

Figure 3.1 shows a graphical representation of all the analysis done during this research. 

 

Figure 3.1 Graphical abstract of the longitudinal analysis in MS. 
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3.2. Longitudinal anatomical study on the DB1 database 

In this first section, the objective will be to expose the different tests carried out on the DB1 

database. This analysis of DB1 had two goals. The first was to generate anatomical results to compare 

with the results given by DB2. The second is using it as a test to determine the best metrics for future 

analysis and understand the software's functionality. All this analysis was done in the local cluster. 

3.2.1 Image ordering and preprocessing stage 

Figure 3.2 shows the schematic of each image's preprocessing steps. Here, a structural 

similarity index measurement (SSIM) was used to verify the performance of this stage. It is a metric 

for determining the similarity between two images, which is based on discarding those distortions that 

do not affect the structure of the image and do not affect the local intensity patterns. Finally, structural 

information considers the interdependence between each image pixel, carrying valuable information 

about its visual structure [71].  

 

Figure 3.2 Flowchart of the preprocessing step. The feedback process corresponds to the application of the SSIM 

metric to compare the results of different step with the previous one of the pre-processing stage. 

 

A. N4 Bias Correction Filter (N4ITK) 

The first step of image filtering was using the N4 Bias Correction filter. In general terms, this 

filter is an iterative method that seeks to maximize the high-frequency content of the intensity 

distribution of the tissue in the image. In other words, the algorithm assumes that the deviation field 

is a type of statistical error corresponding to a low-frequency artifact that alters the intensity of the 

image, so this filter seeks to attenuate these frequencies, improving the image quality [72]. 

The initial variables required for its operation can be found in Table 3.1. The execution of this 

filter was through Python scripts. We used, the Simple ITK, with its 
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N4BiasFieldCorrectionImageFilter () function. The execution time of this filter is around 10 minutes 

for each image [73]. The SSIM coefficient was used to check this filtering step's performance.  

Figure 3.3 shows an example of a comparison between the original image of a subject versus 

the same image already filtered. When applying the SSIM coefficient, the average result among all 

the images was 0.982, which can be interpreted as a small decrease in the noise of the image. 

Table 3.1 Variables of N4 Bias Correction [73]. 

Parameters Definition Values 

Image Mask It is generated when executing 

the script 

Not Applicable 

Shrinkage Factor Defined in image subsampling 

(reduces time) 

0-1, 1 indicates the original 

resolution 

Full with half maximum 

(fwhm) 
The FWHM is a measurement 

used to determine how smooth 

the image will be. Defined by 

default 

0 

Convergence Threshold Determined by the radius 

variation coefficient (defined by 

default). 

High values decrease execution 

time. 

Maximum Number of 

Iterations 

Defined by default High values increase execution 

time but improve results. In this 

case, 4 

 

Figure 3.3 Example of an original image and its image filtered using the N4ITK filter. On the left is a section of 

the original image before applying the N4ITK filter on the right, the same section, but after applying the N4ITK 

filter. From a qualitative point of view, no significant differences are observed, this is reflected in the value obtained 

from the SSIM metrics (0.982) which indicates that the level of similarity is very high. 
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B. Filtering using the SUSAN tool available in FSL software 

After using the N4ITK filter, it was possible to conclude that there was a noise reduction, but 

this was not very significant, so applying another filter was necessary. SUSAN is a tool available in 

the FSL software [9], whose primary function is reducing image noise. This tool is available for Linux 

operating system. 

The general operation of the SUSAN filtering tool consists of applying a non-linear filter for 

noise reduction. This filter calculates the averages of each voxel using the nearest voxels with similar 

intensity. The software takes approximately five minutes to process each image. Also, through the 

processing of the filter the software defines certain variables that, due to the nature of the process, 

these variables change throughout the execution. The definition of each variable was detailed in work 

conducted by Smith et al. [11]. 

Figure 3.4 shows an example of the result of this filtering step. Qualitatively, there is a visible 

improvement regarding the enhancement in the high-frequency areas. Also, there is an average SSIM 

value of 0.90, which could be interpreted as a noise reduction and greater effectiveness of the process, 

improving the quality of the images. 

 

Figure 3.4 Example that compares the original and filtered images using the SUSAN tool. On the left is a section of 

the original image before application; on the right is the same cut but after the pre-processing stage. 

 

3.2.2 Longitudinal Processing 

Longitudinal processing was performed using FreeSurfer software [8]. This processing was 

applied to images after the pre-processing stage. Firstly, the CROSS stage was applied, whose main 

objective is the full cortical reconstruction of the images of each subject. This took a series of steps, 
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all detailed in Table A.1 of Annex A. The process took four to five hours for each image. At the end 

of this stage, a series of images and files were available, highlighting the ones that had measurements 

of cortical changes of white and gray matter. 

Then, the BASE stage was applied. Here, a template was generated from the three images of 

each subject. This stage created a template image for every subject. Then, a whole segmentation and 

surface reconstruction was performed over this template. The execution time of this step was between 

four to six hours to create every template. Figure 3.5 shows an example of the template created for 

one of the subjects. The image shows its average anatomy over time, superimposed with the white 

matter and pial surfaces, highlighted in blue and red, respectively. 

Finally, the LONG stage was applied. Here is where each time point was processed together 

with the template. This step performed the same processing and calculations described in Table A.1 

of Annex A. An example of the results obtained is shown in Figure 3.6, where three time points are 

shown, one on top of the other, the third time being the most visible. The white matter and pial surfaces 

are drawn in different colors, one on top of the other. Red and blue were used for the first time point, 

pink and light blue for the second, and yellow and green for the third time-point. You can see if there 

are any anatomical changes between the three time points. This stage took two to three hours to 

perform all the processes and calculations per subject. The results from this final stage are used in the 

statistical analysis.  

 

 

Figure 3.5 Example of a BASE stage results—template of images of a subject, sagittal section (left), coronal 

section (right). The red indicates the gray matter and the blue indicate the pial surface. 
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Figure 3.6 Example of LONG stage results, sagittal slice (left), coronal slice (right). Red and blue for the first time 

point, pink and light blue for the second time point, and yellow and green for the third time point. 

3.2.3 Statistical analysis 

The statistical analyses on the DB1 database were applied using the GLM and the LME 

models. The use of two different statistical models was intended to compare the results and then to be 

able to select the most appropriate model to be used during the analysis of the DB2 database. 

A. Statistical analysis using GLM 

The application of the GLM was through FreeSurfer software. Its application is divided into 

three steps: 

1. Creation of the contrast matrix, 

2. Creation of a group description file FSGD (FreeSurfer Group Descriptor), 

3. Application of GLM commands. 

The first step consists of creating contrast vectors to find a relation between the cortical 

thickness and the cortical volume with the EDSS and the SDMT variables.  

So, the contrast vector was defined to find any difference between the cortical changes 

(thickness and volume) and both variables. 

The second step was creating a text file called the FSGD. This text file was used to describe 

the data and its characteristics, by FreeSurfer t read and process the data [74]. 

Finally, we applied of the GLM model, consisting of two parts: preprocessing, and analysis. 

For the preprocessing stage, each subject is resampling to a common space and then all the subjects 

are concatenated in the same file. Some variables must be initialized to perform this processing which 
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are listed in Table 3.2. Then, a spatial smoothing was executed, where the variables described in Table 

3.2 were initialized similarly to the preprocessing part. 

Table 3.2 Parameters used in the preprocessing stages of the GLM model. 

Part Function Description of the input 

Initial Preprocessing fsgd Table with initial data. 

target In this case, the space where the subjects will be 

analyzed is the space of average characteristics 

(fsaverage) from FreeSurfer. 

hemi Specify the hemisphere. 

meas Measure to be calculated, in this case, the cortical 

thickness and volume. 

Smoothing Stage hemi Specify the hemisphere. 

s Space to work (fsaverage). 

fwhm Specify the fwhm, in this case, 10. 

cortex Specifies the region of the brain where you work 

 

After this step, the statistical analysis itself is applied. To do this, FreeSurfer used a specific 

command called mri_glmfit, which uses the result of the previous steps and the contrast vectors as 

inputs. At the end of this step, a directory was created in which a series of documents were found, 

highlighting the one that showed the regions that present the most significant changes, called sig.mgh. 

The data types in these documents highlight significance levels (p values) for cortical surface regions. 

The entire execution of this analysis took ten minutes for each measurement to be analyzed (cortical 

volume and cortical thickness). 

For this model, a couple of definitions were made. One was the concept of correlation, which 

refers to the proportional between two variables. For this part of the study, the variables were the 

cortical thickness, cortical volume, and EDSS and SDMT variables. For visualization purposes, the 

positive correlation was shown in red, and the negative correlation was in blue. Another parameter to 

explain is the determination of the significance threshold. The software delivers all possible results, 

and limiting them to only those with a p-value of less than 0.05 is necessary. For this, FreeSurfer uses 

the equation − 𝑙𝑜𝑔 𝑝, so, a significance level of 1.30 was established since 0.05 = 10−1.30. In 

addition, to visualize better the affected regions, the Desikan-Killiany-Tourville (DKT) cortical region 

annotation map [75] was used, shown in Figure 3.7. 
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Figure 3.7 Regions in the DKT cortical labeling protocol [75]. 

 

B. Statistical analysis using LME 

The second statistical analysis of the DB1 database was the LME model. This considers other 

statistical variables besides the arithmetic mean, such as variance and standard deviation, which allow 

a better understanding of the results. Also, this model can take covariates that change over time, which 

is a difference from the GLM. 

Implementing the LME model using FreeSurfer gives the option to perform two types of 

analysis: univariate and massive univariate. In general terms, the univariate analysis will focus on the 

statistics of each region, that is, the differences in metrics such as cortical volume and thickness. In 

addition to the statistics, a massive univariate analysis will be done focus in the changes on the cortical 

surface regions. The massive univariate analysis was performed over the DB1 database. The 

application of this model is divided into four stages. 

B..1 Ordering the data 

The first thing to do in the data ordering stage was to create a table with all the subject's data. 

All this process was done in FreeSurfer. The table contains the disease duration, age, EDSS disability 

index value, and SDMT test result value. 

To execute the model, we used two functions available on FreeSurfer: mris_preproc and 

mri_surf2surf. The first function receives the table with the data of the subjects. Then, the hemisphere 

to be analyzed on and the space where the analyses are carried out. In this case, we consider the 

fsaverage space. The second command was used to smooth the cortical maps, which received as input 

the hemisphere, the space and the output of the previous process. As an additional parameter, the 
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FWHM value was added, for which, according to the literature, the best value is in the range between 

5 to 10 [mm]. For this study, we used a value of 10 [mm]. 

B..2 Reading the data and initializing the model 

From this stage, all the process was executed using the MATLAB software (version R2020b). 

For this stage, we must install a package of functions developed by J. Bernal et al. [76], [77] 

that were available in FreeSurfer. To be used, they must be added to the path in MATLAB. They can 

be added through the GUI of MATLAB by following the instructions in [78]. 

The first step was reading the file resulting from the previous stage. This file was read using a 

function that allows reading this type of file called fs_read_Y. The result of this function corresponds 

to a matrix where its columns contain all the information of each subject considering each time point. 

Then, we used the functions fs_read_surf and fs_read_label, whose role was to read the 

locations of the cortical surface and labeling to be used in later processing steps. 

Before the analysis, the linear model used must be defined. In this case, we used a simple 

model, as shown in equation (3.1).  

 

First, the 𝑌𝑖𝑗 represent the measurement j of subject i. The cortical variables (thickness and 

volume) were used in this case. Also, during the construction of the model, given the possibility of 

some non-linear variation of the vertices of the images, quadratic terms were added to the time tij to 

prepare the model for this eventuality.  

In this case, we considered the age of the subjects as a random variable of the model, 

represented by b2i in equation (3.1). In this model, this variable was used to construct the covariance 

matrix and contribute to the variability, which allows for inferring the impact of the fixed effects on 

cortical atrophy. 

  Then, a design matrix was created that incorporates all the fixed effects that, according to 

equation (3.1), correspond to the values  represented by β. In this case, we used the variables of age, 

time, and the result of the SDMT neurological test and EDSS value were considered fixed effects of 

this model, used to estimate the levels of cortical atrophy. It should be noted that β corresponds to the 

regression coefficients of the fixed values. These values were taken as the population-averaged 

𝑌𝑖𝑗 = 𝛽1 + 𝛽2 ∙ 𝑡𝑖𝑗 + 𝛽3 ∙ 𝑡𝑖𝑗
2 + 𝑏2𝑖 ∙ 𝑡𝑖𝑗 + 𝑒𝑖𝑗 ( 3.1 ) 
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interpretation, for example, the mean trajectories of the age of the subjects. Finally, eij correspond to 

the error generated when making the estimates.  

B..3 Parameter Estimation 

The first part of the longitudinal analysis using the LME model was the parameter estimation. 

This stage aims to provide parsimonious models for the trend in the mean response over time and for 

the covariance between repeated measurements in the same subject. 

For this, a spatiotemporal model was used, which is more powerful for detecting effects in the 

data than traditional vertex models when two or more random effects were included in the longitudinal 

statistical model. Also, even when we used just one random variable, the developers suggested using 

this model because it generated better results. Its application is divided into three steps. The initial 

temporal covariance component estimates are calculated in the first step. For this, the 

lme_mass_fit_EMinit function was used, which receives as an argument the design matrix, the original 

data, the random variables, and some parameters defined by default. The result of this step was a 

covariance matrix for each of the locations. In the second step, the covariance results were grouped 

into a homogeneous region using the lme_mass_RgGrow function, receiving the covariance matrix, 

the cortical surface for the left or right hemisphere, and the cortical labeling. Then, this process gives 

a matrix of the average values of the estimation and covariance for each location and generates a 

segmentation vector containing the number of regions for each vertex. These first two steps took an 

average calculation of no more than five minutes. 

Finally, the third step consists of adjusting the space-time model. This was performed using 

the lme_mass_fit_Rgw function, initialized using the covariance matrix and the segmentation vector, 

and the original data, the design matrix, and the random variable. At the end of this process, a matrix 

containing a list of variables for each voxel/vertex was delivered. The obtained variables were found 

in Table B.1, in Annex B. The total processing of this step took approximately 30 minutes. 

B..4 Correction for multiple comparisons 

In this last stage of processing, the results were generated. The first step was creating a contrast 

vector. In this case, the vector was designed to test if there is any difference in the cortical level 

(thickness and volume) due to the change in the SDMT and EDSS values. 

Finally, the lme_mass_F function was used, which receives the matrix with the variables for 

each voxel/vertex and the contrast vector as an argument. A matrix with the significant level for each 
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voxel/vertex was generated based on the p-value. These results were not immediately viewable and 

must go through a multiple comparison correction step to “filter” those regions with a significant level 

higher than 0.05. After this, the regions with the highest significance were obtained, and a table of 

values that correspond to those changes. 

3.3. Longitudinal anatomical study on the DB2 database 

In this section we describe the analysis of  DB2 database, that aimed to determine the 

anatomical changes of the cortical surface regions affected by MS. All this processing was executed 

in an external cluster provided by Professor Dr. Victoria M Leavitt. 

3.3.1 Image preprocessing 

The preprocessing stage of the DB2 database images was divided into four steps, whose goal 

was to prepare the structural images for their subsequent longitudinal analysis in FreeSurfer to obtain 

better results by inpainting the lesions in the WM. The execution of this stage was carried out through 

a bash master script. The entire process took approximately twenty minutes per image.  

A. Preprocessing 

In this first step, the inputs of the script were defined. The images used were the T1 and T2-

FLAIR images. A kappa value was used as a threshold for highlighting lesions. In this case, a kappa 

of 0.07 was used.  

This preprocessing step aims to prepare the images for later analysis in FreeSurfer, for which 

they went through a reorientation and extraction of regions of interest (ROIs). The fslreorient2std 

function [79] was used for the reorientation process, available in the FSL software, which seeks to 

reorient the image to match the standard image template (MNI152). This function receives the original 

image as argument and the name of the output image. Then, we used the function fslroi to extract the 

ROIs, also available in FSL. It receives as arguments the image resulting from the reorientation 

process and the name of the output image. It also gets the values of reference associated with the areas 

to be considered. In this case, we chose arguments that considered the full image [80]. 

B. Intensity Correction 

The second step corresponds to an intensity correction of the T1 image. To do so, we used the 

mri_nu_correct.mni function that is available in FreeSurfer. The function used nu_correct, a Montreal 

Neurological Institute (MNI) algorithm, to correct the lack of intensity uniformity. During the 
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execution, this function used values of float type instead of char. It also rescales the output so that the 

global mean was the same as the input. Finally, it received as arguments the image resulting from the 

preprocessing step and the name of the output of this process [81]. 

C. AC-PC Alignment 

In this third step, the objective was to reorient the T1 and FLAIR images. This step considers 

the anterior and posterior commissure reorientation, hence the ac-pc alignment. To carry out the co-

registration, we used the DARTEL tool available in the SPM12 software [82]. The idea was to register 

images by calculating a "flux field", which was "exponentiated" to generate forward and backward 

deformations. There were two ways to do this: Single images could be matched or simultaneous 

registration of, e.g., GM with GM, WM with WM. This procedure began by creating an average of all 

the images used as the initial template. Then, the deformations of this template were calculated for 

each of the individual images, and then the template was regenerated by computing the inverses of 

the images and averaging them. This procedure was repeated several times. And finally, the reoriented 

images were generated. The reference image obtained from this process served as the input argument 

for the co-registration process. 

Then to execute the co-registration process, we used the SPM co-registration module [83] that 

used as inputs: the reference image created from the previous process, the T1 or FLAIR image, 

depending on the alignment to be performed, and finally, associated parameters were defined: the 

objective function, the separation between sampling points, the accuracy of each variable and the 

smoothing of the histogram, the majority set to the default variables provided by the software. 

D. Lesion Inpainting 

Finally, there was the step of lesion inpainting. This was divided into two parts. The first part 

consists of generating the lesion map, for which the LST toolbox available in the SPM8 software was 

used [84]. It should be noted that although better versions of this toolbox are available in other versions 

of the SPM software, this version was chosen given the best results obtained by testing different 

thresholds and their subsequent comparison. 

The algorithm for the masks was based on lesion growth [85]. For this research, the most 

general version of the algorithm was used, which received as input arguments: the T1 image, the 

FLAIR image, the threshold value (the kappa value) that was used for the creation of the lesion map, 

and a threshold for the calculation of the binary lesion map. In addition, other values could be selected, 
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such as the maximum number of iterations and the Markov Random Field (MRF) parameter. In this 

case, these values were chosen by default. The algorithm took five to ten minutes to process each pair 

of images, although the time could be longer depending on the resolution of the T1 image. The result 

that we used to generate the lesion inpainting was the binary lesion map [84].  

For the generation of the lesion inpainting, we used the function lesion_filling available in the 

FSL software [86]. This function used the binary lesion map and the T1 image as input arguments to 

"fill" the areas in the structural image corresponding to the lesioned regions with similar intensities to 

the non-lesioned areas. Finally, the function receives as a final argument the name of the resulting 

image that has the lesion inpainted.  

As a form of validation of the results obtained in this stage of lesion inpainting, a review was 

carried out by Dr. Korhan Buyukturkoglu, who has experience in detecting lesions in the cerebral 

white matter in subjects with MS. 

The benefits of this stage are the determination of the percentage of the volume that these 

lesions occupy concerning the total volume of the brain. This value allows us to have an overview of 

the impact that MS has at this level on the brain, in particular on the volume of cerebral white matter. 

3.3.2 Longitudinal Processing 

The longitudinal processing applied to the images of the DB2 database was the same used for 

the images of the DB1 database, with the only difference being that the DB2 images were processed 

in the cluster provided Professor Victoria M Leavitt Ph.D. from Columbia University, New York, 

USA. 

The DB2 images were processed using FreeSurfer, passing the three stages of longitudinal 

processing: CROSS, BASE, and LONG.  

3.3.3 Statistical Analysis using GLM 

The statistical analysis of the longitudinal data was based on a two-stage model. The first stage 

of this model allows for converting the longitudinal data to a statistical variable, for example, the rate 

of atrophy or the percentage of change at the cortical level. The second stage allows for comparison 

of the measurements between groups or some covariate, for example, age, gender, time, etc. In this 

second stage, we applied the GLM analysis. One of the advantages of using this model was the 

possibility of working with the statistics and the cortical maps simultaneously and avoiding modeling 

the correlation structure of repeated measures. 
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First, we ordered the longitudinal data. This was done by creating a table where the name of 

the subjects was specified with their respective time point and the name given to the directory that 

contains the template of the subject (the result of the BASE stage at the longitudinal processing). In 

the other columns other variables could be added such as time, duration of the disease, among others. 

Then, the first stage consists of preparing the data. This stage was executed through FreeSurfer 

software, using the command -qcache. It prepares the data to be analyzed in the QDEC stage, an 

acronym for Query, Design, Estimate, and Contrast. The QDEC stage is the way that FreeSurfer 

applies the GLM model. The function long_mris_slopes was used, which has several input arguments. 

The first inputs corresponds to the data table, called longitudinal table qdec. Also, the type of 

measurement to be analyzed is specified, for example, cortical thickness, volume or curvature, then 

the hemisphere is selected. Finally, the column of the longitudinal table that represents the time, and 

the space where the study was performed are specified. In this case, we worked with the average space 

called fsaverage. All the measurements described in Table 3.3 were performed in this part of the 

analysis. 

Table 3.3 Functions associated with calculations performed in the data preparation stage [87]. 

Function Description 

--do-avg Compute the temporal average. 

--do-rate Compute the rate of change. 

--do-pc1 Compute the percentage change. 

--do-spc Compute a symmetrized percent of change. 

--do-stack Output a stacked thickness file for every subject. 

--do-label Intersect the cortex label to ensure we do not 

include non-cortex regions. 

 

After this preparation stage, the QDEC group analysis begins, for which a qdec table was built. 

The construction of this table was necessary because this analysis does not allow the direct application 

of a table with longitudinal data. To do so, the long_qdec_table function was used, whose role was to 

transform the previously used longitudinal table into a table based on cross-sectional analysis. The 

resulting table contains a line for each patient, which has the path to the directory where the template 

was located. We used this analysis because we did not use cofactors that change over time. The only 

variable that we used was the time. 
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In addition, a text file was created with the names of the new files created in the preparation 

stage. An example of this text file is shown in Table 3.4.  

Table 3.4 Lines with the names of measures calculated on the preparation step. 

Names of measures calculated on the preparation step 

MEASURE1=long.thickness-avg 

MEASURE2=long.thickness-rate 

MEASURE3=long.thickness-pc1 

MEASURE4=long.thickness-spc 

 

After the previous steps, the group-based surface analysis platform was opened through the 

GUI. 

Once the GUI was executed, the table created by long_qdec_table was loaded. In this process, 

values such as the mean and standard deviation of the data were obtained, which were used to calculate 

the different metrics. In addition, the lists of factors enumerated during the creation of the longitudinal 

data table were displayed, such as age, gender, and disease duration. Similarly, there was the option 

to generate new statistics, such as cortical thickness measurements or volume of the different cortex 

areas. Due to the purpose of this research, this last function was not used since they were calculated 

separately through FreeSurfer. 

After this, we proceeded to the design stage, where the variables to be considered were 

established, such as discrete and continuous factors, as well as the type of measurement to use, such 

as volume or cortical thickness, and if the analysis was structural or functional, among others. 

For this research, an analysis based on the surface and the morphological variations was 

considered. The cortical thickness for both hemispheres was considered a metric of interest, 

considering a smoothing (FWHM) of 10. Then, the variables to be evaluated must be selected. In this 

case, only time was considered as a continuous variable to determine the cortical thickness changes 

between the two time points of the DB2 database (3 years difference between each sample). Then, the 

design matrix type and the number of degrees of freedom for the calculations were left by default, 

which the platform developers recommend. The design matrix was based on the model Different 

Onset, Different Slope that estimated a separate intercept and slope for each covariate. The analysis 

process could take a few minutes depending on the number of subjects to be analyzed; in our case, the 

complete processing took around 30 minutes. 
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The last stage was the result visualization process where the changes of the cortical thickness 

over time was visualized. The premise with which it starts was that if there is any relation between 

the cortical thickness changes and the time between samples, a first approximation was obtained where 

all the differences between these two variables, significant and non-significant, are highlighted. Then, 

a new threshold was established to highlight the most significant regions based on a p-value less than 

0.05 [88]. 

Finally, the statistics of the regions that present the most significant correlations were obtained 

for the change in cortical thickness over time, considering all the subjects. 

For the extraction of the statistical values of the most significant regions, the mri_glmfit-sim 

function was used. This function took four arguments. The first entry was –glmdir, which received 

the directory on which the correction was made for multiple comparisons and statistics extraction. 

The following entry was the command --2spaces, which specifies that the analysis was performed on 

both hemispheres and thus has positive or negative effects on the cerebral cortex. The following entry 

was –cwp, where we specified the threshold for the cluster-wise analysis; set the default value of 0.05. 

Finally, the --cache entry receives two arguments. The first argument establishes the threshold value 

for the vertex-wise analysis, which defines the statistical significance for vertex selection. The 

program does not directly use the p-value as input, it must be specified employing the formula -log 

(p). We used a value of 4.0, translated as a p-value less than 0.0001, generating important significance 

levels. This value was based on the recommendation established in [89] where it was shown that using 

values lower than 3.0 significantly increased the number of false positives. The second argument for 

--cache specifies the direction of the analysis to perform: positive, negative, or both. In the case of 

this research, the positive direction (for positive correlations) and the negative direction (for negative 

correlations) were considered [90]. For this research, the negative correlation was interpreted as a 

decrease of the cortical thickness with time and the positive correlation as an increase of the cortical 

thickness with time. 

3.4. Longitudinal diffusion MRI study on the DB2 database 

To analyze the diffusion MRI data longitudinally, we follow two steps. The first step involves 

processing and obtaining the diffusion indices for each SWM bundle described in the previous chapter. 

The second step consists of analyzing the data itself. 

The analysis of the data was performed using spreadsheets. We created a spreadsheet with all 

the diffusion MRI metrics for each fiber bundle separated between the two time points, for all the 
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subjects. The spreadsheets were organized to consider the metrics for every fiber bundle; in this case, 

the FA, AD, RD, MD and QA. 

We divided the analysis into two steps to determine the significance level between time points 

for each diffusion MRI metric. The first step involves a transversal approach, which acts as a “filter” 

for the metrics. The second step involves a longitudinal approach. 

To start with the transversal approach, we used the t Student test. This test requires four 

arguments: two matrices containing the values of each subject for a specific bundle diffusion MRI 

metric, a value indicating the number of distribution tails (either one or two), and the type of test to 

perform on the data (paired, two-sample equal variance, or two-sample unequal variance). For this 

research, we chose a value of two for the number of distribution tails, corresponding to the probability 

of a higher absolute value of the t-statistic under the assumption of "same population means." Also, 

we selected the two-sample equal variance test, as it allows for a correlation between time points 

rather than just a correlation between the data from each time point. 

After calculating the significant value for every fiber bundle, we set the threshold as a p-value 

less than 0.05. By doing that, we can select the diffusion MRI metrics more significant, reducing the 

number we can compare. 

To compare the changes in the metrics, we calculated the arithmetic mean for each diffusion 

MRI metric for each time point. Then, we calculated the difference between these means and evaluated 

the result based on the guidelines established in [7].  

Then, to determine the significance level of the mean difference, we corrected for multiple 

comparisons. For this, we performed the Tukey-Kramer Honest Significant Difference (HSD). We 

used this method because it is recommended when comparing groups of more than six subjects. To 

perform HSD, the first step was determining a critical value of studentized range distribution (q). That 

value was obtained from a table that related the degrees of freedom and the number of groups [91]. In 

this case, the q value was 2.858. The next step was determining the standard error for every diffusion 

MRI metric. To do so, we calculated the variance between the time points. We calculated the 

arithmetic mean of each time point's variance to divide by the number of subjects, in this case, 24 

subjects, and finally got the square root of the value. Lastly, we determined the Tukey value for every 

diffusion MRI metric, which can be compared with our original q value. To do so, we divided the 

absolute mean difference by the standard error. 

Finally, the Tukey value was compared with the q value, and if the Tukey value was bigger 

than the q value, we could interpret that the mean difference between the two time points was 
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significant. Then, we correlated the p-value from the t-test and the significant mean difference from 

HSD and made a relation. The fiber diffusion MRI metric was significant if the two values were 

considered significant. 

After considering the limitations of the t-test for longitudinal analysis, we concluded that 

applying a longitudinal model was necessary. Upon review of the model presented in [92], we 

determined that the Generalized Estimation of Equations (GEE) model was the most fitting for our 

study. The GEE model establishes a regression relationship between covariates and changing 

variables over time. This effectiveness of the model lies in its ability to make correlations even when 

data is missing, particularly concerning variables that change over time. Additionally, it can provide 

dependable estimates even when the correlation structure contains errors. The GEE model has been 

widely utilized in other neurodegenerative pathologies studies, such as the work by R. Keogh et al. 

[93] and the work done by D. A. Maroof et al. [94]. 

In our case, GEE was applied through the SPSS software [10], allowing this model's most 

straightforward application through a GUI. Therefore, for its application, it is necessary to determine 

and establish specific parameters for use throughout the GEE. 

The determination of the variables in this study was divided into four parts. The first part was 

to specify the repeated parameters, which included the subject variable. In this case, it only sets the 

subject ID and the time point. The other parameters, such as the covariance matrix, the correlation 

matrix, and the number of iterations, were set by default.  

The second part was to specify the type of model, which involved selecting the distribution 

and the link function. SPSS provided two alternatives. The first was to choose from a list of possible 

responses, a combination of distribution and link functions. The second was to select the distribution 

and link functions manually. We determined that the first option was the best based on the data used 

in this research. We set the linear response with a normal distribution and an identity as a link function. 

During the third part of our process, our main objective was to ascertain the model's response. 

To achieve this, we had to establish the dependent variable. This variable comprised all the diffusion 

MRI metrics identified as significant in the earlier analysis. We kept all other parameters at their 

default settings. 

Next, we had to choose the predictors to include in our model carefully. For our particular 

study, we identified two types of predictors: factors and covariates. Factors are independent variables; 

in our case, we focused on the time difference between the two time points. Meanwhile, the covariates 
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were represented by the values of two variables - the EDSS and SDMT tests. It was essential to select 

these predictors thoughtfully to ensure accurate and meaningful results. 

Then, we needed to choose the model effects. The default model only includes an intercept, 

so we had to specify additional effects to create new relationships. We selected the time, EDSS, and 

SDMT values as new effects based on our research goals to determine potential interactions with the 

diffusion MRI metrics. We opted for a primary effect on the factor and covariates as it provides the 

most comprehensive effects for each variable. 

Our last part was determining the estimated marginal means for the factor, in this case, the 

time. We needed to specify a contrast to establish how hypothesis tests would compare the estimated 

means. We opted for pairwise contrast as it is computed for all-level combinations of the chosen 

factor, giving us an advantage over other possible differences. Additionally, we specified an 

adjustment for multiple comparisons. We decided on the Sequential Bonferroni method from the 

various possibilities SPSS offers. This procedure is a sequentially step-down rejective Bonferroni 

approach, which is less conservative when rejecting individual hypotheses than the original method. 
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Capítulo 4. Results 

4.1. Introduction 

This chapter will show the results of this work, including the anatomical analysis for both 

databases and the diffusion analysis of DB2. Also, at the end of this chapter will be a discussion 

section of the results. 

4.2. Anatomical Results for DB1 Database 

This section will show the results related to the cortical surface changes (thickness and 

volume) due to the shift in SDMT and EDSS metrics by applying the GLM and LME models. 

4.2.1 Changes at cortical level over time 

We conducted a study to analyze the changes in cortical surface over time by examining the 

correlation between the time and the cortical variables, thickness and volume. The results will be 

evaluated using statistical models, and we have set a significance threshold of p < 0.05. 

In Figure 4.1 (top), a correlation is shown between cortical thickness and time. The yellow 

regions indicate a positive correlation, meaning there is a significant decrease in cortical thickness 

over time. Meanwhile, the red regions represent regions with a less significant reduction. The 

highlighted regions in this case are from the frontal and superior frontal regions of the brain and some 

from the parietal and anterior temporal regions. 

In Figure 4.1 (bottom), we can observe the correlation between cortical volume and time. The 

color scheme used here is identical to the one used in the previous correlation. The highlighted regions 

in this correlation are similar to those for the cortical thickness correlation. However, the difference 

between these two correlations is that, in the case of cortical volume over time, the frontal regions 

present a higher coverage of changes than cortical thickness. 
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Figure 4.1 Cortical thickness and cortical volume change over time for left and right hemispheres. The regions in 

yellow have significant changes over time, and the red regions have a lower level of change over time. All the regions in 

the figure have a significance level of a p-value less than 0.05. The equation - log p = x is used to graph this measurement, 

so an x-value equal to 1.30 represents a p-value of 0.05.  
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4.2.2 GLM analysis 

This analysis used the GLM model to determine a significant correlation between cortical 

volume change and EDSS/SDMT value.  

Figure 4.2 (top) highlights the brain areas with the most significant changes in cortical volume 

related to EDSS. The pre-cuneus, rostral middle frontal, and superior frontal regions are most affected 

in the left hemisphere. Most affected areas show a negative correlation, represented by blue, indicating 

decreased cortical volume for increased EDSS values. Similarly, the superior parietal, rostral middle 

frontal, and superior frontal regions show the higher changes in the right hemisphere. While most 

regions show a negative correlation, some regions present a positive correlation.  

Figure 4.3 (top) shows the cortical regions most affected by variations in cortical volume 

related to the SDMT value. The left hemisphere's pre-central and superior temporal regions are the 

most affected. Most of these areas show a negative correlation. However, some areas, particularly in 

the superior temporal region, show a positive correlation, indicating increased cortical volume for an 

increase in the SDMT value. For the right hemisphere, the post-central and medial orbitofrontal 

regions are the most affected, with most regions showing a negative correlation. 

Furthermore, we have our second analysis using the GLM model to determine significant 

correlations between the changes in the cortical surface thickness and the EDSS and SDMT metrics.  

In Figure 4.2 (bottom), we can see the cortical regions primarily affected by changes in cortical 

thickness correlated with the EDSS value. The left hemisphere is most involved in the precuneus, 

caudal middle frontal, and pars triangularis regions, with a negative correlation indicating decreased 

cortical thickness. Conversely, the right hemisphere is most affected in the superior parietal, superior 

frontal, and rostral middle frontal regions. The main difference between the two hemispheres is the 

extent of the affected region.  

Figure 4.3 (bottom) shows the cortical regions with significant correlation of changes in 

cortical thickness and the SDMT value. The left hemisphere's pre-central and superior temporal 

regions have more affected surface areas. It is important to note that these regions are the same as 

those highlighted in the volume variation analysis. Similarly, the right hemisphere's pre-central and 

inferior parietal regions present related changes. Most of the affected regions in both hemispheres 

show a negative correlation.  

All numerical variations for the analysis are listed in Table C.1 in Annex C. 

Due to the lack of a control group for comparison, we conducted a separate analysis that 

considered the duration of the disease at the first MRI image acquisition as a co-factor. We used the 
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results of this analysis as a basis, which can be seen in Figure 4.4 for the correlation with the EDSS 

and Figure 4.5 for the correlation with the SDMT value. In all cases, the highlighted regions were 

almost the same as the analysis already described, with the main difference being the size of the 

affected areas. In this case, the affected regions were slightly smaller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

 

Figure 4.2 GLM analysis. Correlation between the volume and the thickness change with the EDSS value for the 

left and right hemispheres. The regions in blue have a negative correlation, which means a decrease in the volume 

change rate related to the EDSS. The red regions are those with a positive correlation. All the regions in the figure have 

a significance level of a p-value less than 0.05. The equation - log p = x is used to graph this measurement, so an x-value 

equal to 1.30 represents a p-value of 0.05. 
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Figure 4.3 GLM analysis. Correlation between the volume and the thickness change with the SDMT value for left 

and right hemispheres. The regions in blue have a negative correlation, which means a decrease in the volume change 

rate related to the SDMT. The red regions are those with a positive correlation. All the regions in the figure have a 

significance level of a p-value less than 0.05. The equation - log p = x is used to graph this measurement, so an x-value 

equal to 1.30 represents a p-value of 0.05. 
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Figure 4.4 GLM analysis. Correlation between the volume and the thickness changes with the EDSS value for left 

and right hemispheres.  This analysis considered the duration of the disease as a co-factor. The regions in blue 

have a negative correlation, which means a decrease in the volume change rate related to the EDSS. The red regions are 

those with a positive correlation. All the regions in the figure have a significance level of a p-value less than 0.05. The 

equation - log p = x is used to graph this measurement, so an x-value equal to 1.30 represents a p-value of 0.05. 
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Figure 4.5 GLM analysis. Correlation between the volume and the thickness changes with the SDMT value for 

left and right hemispheres.  This analysis considered the duration of the disease as a co-factor. The regions in blue 

have a negative correlation, which means a decrease in the volume change rate related to the SDMT. The red regions are 

those with a positive correlation. All the regions in the figure have a significance level of a p-value less than 0.05. The 

equation - log p = x is used to graph this measurement, so an x-value equal to 1.30 represents a p-value of 0.05. 
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4.2.3 LME analysis 

In this section, we present the findings of the LME model analysis. The main objective of this 

analysis was to establish a correlation between the cortical thickness and volume, and the changes in 

the EDSS and SDMT metrics. The age of the subjects was used as a random variable in this model.  

The correlation between the changes in cortical volume and the EDSS value was analyzed, 

and the results are presented in Figure 4.6 (top). The cortical regions in both hemispheres that present 

the significant changes in cortical volume correlated with the change in the EDSS value are in yellow. 

It is important to note that the subcortical region is entirely shown in yellow, but this does not represent 

any correlation because the analysis was performed only on the cortex surface. In the left hemisphere, 

the superior marginal and rostral middle frontal regions, among others, were the most affected. In the 

right hemisphere, the most affected regions were the supramarginal and superior temporal regions.  

In Figure 4.7 (top), we can see the cortical regions that have undergone significant changes in 

cortical volume related to the SDMT value. The color map used in this analysis is the same as the one 

used for the EDSS analysis. In the left hemisphere, the supramarginal, pre-central, and superior frontal 

regions, among others, are the most affected. Similarly, the inferior parietal and rostral middle frontal 

regions have significantly changed in the right hemisphere. 

The study also considered changes in cortical thickness and identified the most affected 

cortical regions related to the EDSS. Figure 4.6 (bottom) displays the color map used to illustrate these 

changes. The superior parietal and caudal anterior cingulate regions were among the most affected in 

the left hemisphere, while the inferior temporal and posterior cingulate regions were the most 

significantly changed in the right hemisphere.  

In Figure 4.7 (bottom), we can see the cortical regions that exhibited significant variations in 

cortical thickness related to the SDMT value. The supramarginal and middle temporal regions are 

among the most affected areas of the left hemisphere. In contrast, the right hemisphere shows 

variations in the supramarginal and post-central regions. 

 All numerical changes for the analysis can be found in Table C.1 of Annex C. 
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Figure 4.6 LME analysis. Regions that present the most significant changes in the cortical volume and cortical 

thickness related to the EDSS value. This analysis was done considering the age as a random variable. The yellow 

areas represent the regions with the highest change in the cortical thickness and volume correlation, while the red 

indicates that the rate of change tends to decrease. To graph this rate of change, the relation used is a normal distribution 

where the closest to 1 means a total change in that region. 
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Figure 4.7 LME analysis. Regions that present the most significant changes in the cortical volume and cortical 

thickness related to the SDMT value. This analysis was done considering the age as a random variable. The 

yellow areas represent the regions with the highest correlation of the change in the cortical thickness and volume with 

SDMT value, while the red indicates that the rate of change tends to decrease. To graph this rate of change, the relation 

used is a normal distribution where the closest to 1 means a total change in that region.  
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4.3. Anatomical Results for DB2 database 

This section presents the results of the GLM model applied to cortical thickness changes over 

time, as well as the preprocessing steps applied before the anatomical analysis to the DB2 database. 

4.3.1 Lesion Inpainting and the change in the number of lesions 

One of the preprocessing stages was the inpainting of the WM lesions. Table 4.1 shows the 

number of lesions and the percentage of volumetric change experienced between both time points for 

each subject. From here, we obtained positive and negative lesion variations. Thirteen subjects present 

positive variations in the volume of their lesions while ten subjects present negative variations in the 

volume of their lesions. 

Table 4.1 Number of WM lesions and the percentage of WM lesion volume change of every subject for both time 

points. The negative values of the percentage of change refer that was a decrease in the number of the lesion detected. 

This decrease may be due to a lower detection of lesions or the increase in size of some lesions, which could have 

generated a decline in smaller lesions. The positive values of the percentage of change refer that was a increase in the 

number of the lesion detected. 

Subjects N° of lesions on TP 1 N° of lesions on TP 2 Change of WM lesion volume (mm) 

1 52 52 -0.2 

2 7 10 48.9 

3 47 53 21.8 

4 20 23 28.5 

5 25 24 12.2 

6 37 36 -0.8 

7 56 46 -49.7 

8 19 17 11.5 

9 75 75 11.2 

10 46 46 19.3 

11 46 46 19.3 

12 12 17 29.1 

13 13 9 73.1 

14 43 33 22.1 

15 26 25 20.2 
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16 20 18 -18.0 

17 28 25 -4.4 

18 47 33 -22.3 

19 46 47 -4.0 

20 10 14 -8.7 

21 27 50 10.6 

22 51 47 -32.0 

23 63 57 -16.0 

 

4.3.2 Cortical thickness changes over time 

For this part, the significance threshold was set to a p-value less than 0.05 to highlight the 

regions with significant changes.  

First, for the left hemisphere, Table 4.2 shows the negative correlation between cortical 

thickness changes and the time between the acquired samples. The regions of the cortical surface that 

present the higher changes are the post-central, pre-cuneus, pars opercularis, lingual, and rostral 

anterior cingulate, among other regions with smaller affected surfaces. Also, Table 4.2 shows the 

positive correlation between the cortical thickness changes and the time between the samples. The 

regions of the cortical surface with the higher changes are the rostral medial frontal, insula, superior 

temporal, medial temporal, pars orbitalis, caudal medial frontal, superior frontal, lateral orbitofrontal, 

fusiform, and other regions with smaller affected surfaces. Figure 4.8 shows the affected areas with 

positive (in yellow) and negative (in blue) correlation with time. 
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Table 4.2 Surface of affected regions of the cortical surface in the left hemisphere with positive and negative 

correlations between the cortical thickness change and the time. The size of the regions is in mm2. The regions in red 

are those that present both correlations. (*) indicate another vertex of a previously mentioned region. 

Negative Correlation  Positive Correlation 

N° Surface Cortical Region Size 

(mm2) 

p-value  N° Surface Cortical Region Size 

(mm2) 

p-value 

1 Post-central 11609.19 0.0002  1 Rostral Middle Frontal 795.23 0.0002 

2 Pre-cuneus 7293.63 0.0002  2 Insula 712.38 0.0002 

3 Pars Opercularis 2014.50 0.0002  3 Superior Temporal 565.92 0.0002 

4 Lingual 1216.32 0.0002  4 Middle Temporal 313.90 0.0002 

5 Rostral Anterior Cingulate 1058.52 0.0002  5 Pars Opercularis 275.34 0.0002 

6 Rotral Middle Frontal 831.81 0.0002  6 Caudal Middle Frontal 177.78 0.0002 

7 Inferior Temporal 577.72 0.0002  7 Superior Frontal 152.85 0.0002 

8 Superior Temporal 384.39 0.0002  8 Lateral Orbitofrontal 133.50 0.0004 

9 Caudal Anterior Cingulate 265.77 0.0002  9 Fusiform 119.38 0.001 

10 Lateral Occipital 229.50 0.0002  10 Superior Temporal* 70.04 0.012 

11 Superior Frontal 116.60 0.0006  11 Superior Frontal* 63.03 0.017 

     12 Lateral Occipital 62.23 0.018 

     13 Inferior Temporal 61.08 0.019 

     14 Lateral Occipital* 57.17 0.023 
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Figure 4.8 Regions of the cortical surface in the left hemisphere presenting correlation between cortical thickness 

changes and time. The blue regions show a negative, and the yellow regions show a positive correlation between 

cortical thickness change and time. The legend shows the level of significance based on the -log p equation. 

 

In the same way, for the right hemisphere. Table 4.3 shows the correlations between cortical 

thickness changes and time. The regions of the cortical surface with the most negative correlations of 

significant changes are the superior parietal, medial orbitofrontal, superior temporal, precentral, 

postcentral, inferior temporal, and superior temporal. The regions with the most significant positive 

correlations of changes are the lateral orbitofrontal, superior temporal, middle temporal, insula, 

precentral, and superior parietal. Figure 4.9 shows the cortical regions with positive (in yellow) and 

negative (in blue) correlations. 
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Table 4.3 Surfaces affected regions of the cortical surface in the right hemisphere with positive and negative 

correlations between the cortical thickness change and the time. The size of the regions is in mm2. The regions in red 

are those that present both correlations. (*) indicate another vertex of a previously mentioned region. 

Negative Correlation  Positive Correlation 

N° Surface Cortical Region Size 

(mm2) 

p-value  N° Surface Cortical Region Size 

(mm2) 

p-value 

1 Superior Parietal 11900.67 0.0002  1 Lateral Orbito Frontal 624.78 0.0002 

2 Middle Orbito Frontal 10613.78 0.0002  2 Superior Temporal 623.34 0.0002 

3 Superior Temporal 801.04 0.0002  3 Middle Temporal 218.20 0.0002 

4 Pre-central 667.68 0.0002  4 Insula 189.36 0.0002 

5 Post-central 603.51 0.0002  5 Pre-central 121.89 0.0002 

6 Inferior Temporal 214.14 0.0002  6 Superior Parietal 121.07 0.0004 

7 Superior Temporal* 61.40 0.017  7 Banks of Superior 

Temporal Sulcus 

86.30 0.0042 

     8 Superior Temporal* 50.29 0.034 

     9 Rostral Middle Frontal 48.81 0.039 

 

 

  

Figure 4.9 Regions of the cortical surface in the right hemisphere presenting correlation between cortical 

thickness changes and time. The blue regions show a negative, and the yellow regions show a positive correlation 

between cortical thickness change and time. The legend shows the level of significance based on the -log p equation. 
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4.4. Diffusion MRI Results for DB2 database 

This section presents the changes in diffusion MRI metrics over time in the DB2 database. 

4.4.1 Results from the transversal analysis over DB2 

Here, we applied a transversal approach to the data to determine the most significant alterations 

of diffusion MRI metrics for every fiber bundle. We used the difference between the arithmetic means 

of the data for each fiber bundle to interpret each diffusion MRI metric. A t-test was performed on the 

data to determine the significance level. Then, a Tukey-Kramer Honest, Significant Difference test 

specified if the difference in the arithmetic means of each metric of each fiber bundle was considered 

significant.  

Initially, there were 162 short fiber bundles, each with five diffusion MRI metric (AD, MD, 

RD, FA, and QA), leading to 810 short brain fiber bundles measures to analyze. After this analysis, 

the number was reduced to 68 short brain fiber bundles measures among all diffusion MRI metrics.  

First, Table 4.4 shows the most significant fiber bundles measures separated by diffusion MRI 

metrics. As well as the previous analysis, the significant threshold was a p-value less than 0.05. There 

was no significant changes for the FA metrics. On the other hand, there are many brain fiber bundles 

where the QA metric was considered significant.  This metric is also a measure of anisotropy but 

calculated for each fiber and is less sensitive to edema. 
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Table 4.4 Brain fiber bundles measures with a significant change in the arithmetic mean separated by diffusion 

MRI metrics. The presentation of the fibers is based on the abbreviations for each cortical region according to the 

Desikan - Killiany atlas; the list of abbreviations is shown in Table E in annex E. The fibers bundles in red have 

significant difference in more than one diffusion MRI metric. The brain fiber bundles in blue is the only one that show 

differences in all the diffusion MRI metrics. 

Axial diffusivity (AD) 

 

Left Hemisphere CMF-SF_0 PoCi-PrCu_1 PrC-SF_0 

SF_SF_1r ST-TT_0  

Right Hemisphere IC-PrCu_0 LOF-MOF_0 PoC-Ins_0 

PoCi-SF_0 ST-TT_0  

     

Mean diffusivity (MD) 

 

Left Hemisphere CMF-SF_0 CMF-SF_1 PrC-SF_0 

Right Hemisphere PoC-Ins_0 SM-Ins_0 ST-TT_0 

     

Radial diffusivity (RD) 

 

Left Hemisphere PrC-SF_0   

Right Hemisphere SM-Ins_0   

     

Quantitative anisotropy (QA) 

Left Hemisphere 

CAC-PrCu_0 CMF-Op_0 CMF-PrC_0 

CMF-PrC_1 CMF-RMF_0 CMF-SF_0 

CMF-SF_1 IC-PrCu_0 IP-SP_0 

IP-SP_1 Op-PrC_0 Op-SF_0 

PoC-PrC_1 PoC-SP_0 PoCi-PrCu_0 

PoCi-PrCu_1 PoCi-PrCu_2 PoCi-RAC_0 

PoCi-SF_0 PrC-SF_0 PreCu_PreCu_0r 

RMF-SF_1 RoMF_RoMF_0i RoMF_RoMF_1i 

SF_SF_1r SM-Ins_0 SP-SM_0 

Tr_RoMF_0i   

Right Hemisphere 

CAC-PrCu_0 CMF-PrC_0 CMF-SF_0 

IC-PrCu_0 IP-SM_0 IP-SP_1 

Op-SF_0 PoC-PrC_1 PoC-PrC_2 

PoC-SP_0 PoC-SP_1 PoCi-PrCu_0 

PoCi-PrCu_1 PoCi-PrCu_2 PoCi-RAC_0 

PoCi-SF_0 PrC-Ins_0 PrC-SF_0 

PrC-SM_0 PrC-SP_0 PreCu_PreCu_0r 

RMF-SF_1 SF_SF_1r SM-Ins_0 

SP-SM_0   

 

 

4.4.2 Results from the longitudinal analysis over DB2 

Due to the longitudinal nature of the data, also, we applied a longitudinal study, in this case, 

through the GEE model. This model was used for the same fiber bundles considered significant by 

the transversal analysis. Table 4.5 compares the significance level between the t-test and the GEE 

model of the mean difference for every fiber bundle considered significant by the t-test. Like the 
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transversal analysis, all the fiber bundles showed significant measures. Still, in the GEE model, the 

significance level has lower values, indicating a better significance level. Figure 4.10 shows all fiber 

bundles considered significant by the GEE model for both hemispheres. 

The results for the diffusion MRI metrics we obtained were unlike what is normally expected, 

i.e, a decrease I anisotropy measures and an increase in diffusivity measures, differing from previous 

works related to the topic, as described in Chapter 2. We applied the GEE model again and, in this 

case, considering the EDSS value as a factor. The aim was to analyze the impact of the EDSS value 

on the fiber bundles metrics. 

Table D from Annex D shows the significance level for every fiber bundle measure correlated 

with the change in the EDSS value. A high EDSS value, it indicates a bad performance in the disability 

of the MS. And a decrease in the EDSS value indicates an improvement in the disability of the subject. 

First, we highlight that the change in the EDSS value is not significant in all the fiber bundle measures. 

One interpretation is that the fiber bundles with significant changes in the EDSS value present an 

improvement, maybe related to the subject's treatment. When we look at all these changes in the EDSS 

value, these are mostly in the lower values of EDSS instead to the higher values of EDSS.  

Table 4.6 shows the fiber bundles for both hemispheres where the EDSS value is significant 

and presents an improvement. Figure 4.11 shows these fiber bundles and the regions that these 

connect.  
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Table 4.5 Comparison of the significance level between the transversal analysis (t-test) and the longitudinal 

analysis (GEE model). The fibers' names are based on the abbreviations for each cortical region according to the 

Desikan - Killiany atlas; the list of abbreviations is shown in Table E in Annex E. The mean difference was calculated 

by subtraction between the diffusion MRI metric of the second and the first time point. 

Left Hemisphere  Right Hemisphere 

Name 
Mean 

Dif. 

p value 

t-test 

p value 

GEE 
 Name 

Mean 

Dif. 

p value     

t-test 

p value 

GEE 

CMF-SF_0_AD -0.0579 0.011 0.007  IC-PrCu_0_AD -0.0401 0.003 0.001 

PoCi-PrCu_1_AD -0.0468 0.004 0.002  LOF-MOF_0_AD -0.0423 0.020 0.014 

PrC-SF_0_AD -0.0645 0.020 0.014  PoC-Ins_0_AD -0.0409 0.033 0.025 

SF_SF_1r_AD -0.0539 0.038 0.029  PoCi-SF_0_AD -0.0506 0.015 0.010 

ST-TT_0_AD -0.0582 0.045 0.035  ST-TT_0_AD -0.0426 0.030 0.023 

         
CMF-SF_0_MD -0.0523 0.037 0.028  PoC-Ins_0_MD -0.0403 0.032 0.024 

CMF-SF_1_MD -0.0419 0.045 0.035  SM-Ins_0_MD -0.0421 0.001 0.001 

PrC-SF_0_MD -0.0700 0.017 0.011  ST-TT_0_MD -0.0417 0.035 0.027 

         
PrC-SF_0_RD -0.0728 0.020 0.014  SM-Ins_0_RD -0.0463 0.003 0.001 

         
CAC-PrCu_0_QA 0.0108 0.003 0.001  CAC-PrCu_0_QA 0.0115 0.001 0.001 

CMF-Op_0_QA 0.0084 0.022 0.016  CMF-PrC_0_QA 0.0099 0.033 0.025 

CMF-PrC_0_QA 0.0097 0.037 0.029  CMF-SF_0_QA 0.0088 0.031 0.023 

CMF-PrC_1_QA 0.0076 0.025 0.018  IC-PrCu_0_QA 0.0073 0.014 0.009 

CMF-RMF_0_QA 0.0084 0.021 0.015  IP-SM_0_QA 0.0094 0.033 0.025 

CMF-SF_0_QA 0.0098 0.018 0.012  IP-SP_1_QA 0.0098 0.025 0.018 

CMF-SF_1_QA 0.0098 0.011 0.007  Op-SF_0_QA 0.0079 0.027 0.020 

IC-PrCu_0_QA 0.0075 0.005 0.002  PoC-PrC_1_QA 0.0117 0.011 0.007 

IP-SP_0_QA 0.0101 0.023 0.016  PoC-PrC_2_QA 0.0103 0.027 0.019 

IP-SP_1_QA 0.0100 0.035 0.026  PoC-SP_0_QA 0.0096 0.020 0.014 

Op-PrC_0_QA 0.0074 0.017 0.012  PoC-SP_1_QA 0.0107 0.013 0.008 

Op-SF_0_QA 0.0093 0.013 0.008  PoCi-PrCu_0_QA 0.0088 0.006 0.003 

PoC-PrC_1_QA 0.0112 0.015 0.010  PoCi-PrCu_1_QA 0.0104 0.002 0.001 

PoC-SP_0_QA 0.0102 0.020 0.014  PoCi-PrCu_2_QA 0.0097 0.002 0.001 

PoCi-PrCu_0_QA 0.0074 0.012 0.007  PoCi-RAC_0_QA 0.0106 0.001 0.001 

PoCi-PrCu_1_QA 0.0097 0.004 0.002  PoCi-SF_0_QA 0.0100 0.007 0.004 

PoCi-PrCu_2_QA 0.0084 0.004 0.002  PrC-Ins_0_QA 0.0075 0.013 0.008 

PoCi-RAC_0_QA 0.0098 0.003 0.002  PrC-SF_0_QA 0.0096 0.022 0.016 

PoCi-SF_0_QA 0.0081 0.004 0.002  PrC-SM_0_QA 0.0095 0.044 0.034 

PrC-SF_0_QA 0.0122 0.006 0.003  PrC-SP_0_QA 0.0109 0.017 0.011 

PreCu_PreCu_0r_Q

A 

0.0075 0.042 0.032  PreCu_PreCu_0r_Q

A 

0.0086 0.050 0.040 

RMF-SF_1_QA 0.0081 0.027 0.020  RMF-SF_1_QA 0.0073 0.041 0.032 

RoMF_RoMF_0i_Q

A 

0.0082 0.007 0.004  SF_SF_1r_QA 0.0089 0.007 0.004 

RoMF_RoMF_1i_Q

A 

0.0073 0.019 0.013  SM-Ins_0_QA 0.0092 0.003 0.002 

SF_SF_1r_QA 0.0098 0.001 0.001  SP-SM_0_QA 0.0086 0.019 0.013 

SM-Ins_0_QA 0.0077 0.024 0.017      

SP-SM_0_QA 0.0069 0.029 0.038      

Tr_RoMF_0i_QA 0.0073 0.018 0.012      
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Figure 4.10 Short fiber bundles with significant difference in dMRI metrics for the left and right hemispheres. 

The significance was determined by a p-value less than 0.05, calculated using the GEE model. 

 

 

Table 4.6 Brain fiber bundles with a significant change in the EDSS value, separated by diffusion MRI metrics. 

The presentation of the fibers is based on the abbreviations for each cortical region according to the Desikan - Killiany 

atlas; the list of abbreviations is shown in Table E in annex E. The fiber bundles in red have more than one significant 

diffusion MRI metric.  

Axial diffusivity (AD) 

 

Left Hemisphere PrC-SF_0_AD   

Right Hemisphere PoCi-SF_0_AD   

     

Quantitative anisotropy (QA) 

Left Hemisphere 

CMF-PrC_1_QA CMF-RMF_0_QA CMF-SF_0_QA 

IP-SP_1_QA Op-SF_0_QA PrC-SF_0_QA 

RMF-SF_1_QA RoMF_RoMF_0i_QA RoMF_RoMF_1i_QA 

SP-SM_0_QA Tr_RoMF_0i_QA  

Right Hemisphere 

CAC-PrCu_0_QA IC-PrCu_0_QA Op-SF_0_QA 

PoCi-PrCu_0_QA PoCi-PrCu_1_QA PoCi-PrCu_2_QA 

PrC-Ins_0_QA PreCu_PreCu_0r_QA  
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Figure 4.11 Short fiber bundles with significant difference in dMRI metrics for the left and right hemispheres 

considering the EDSS value as a cofactor. The significance was determined by a p-value less than 0.05, calculated 

using the GEE model. 

 

 



76 

 

Capítulo 5. Conclusion 

5.1. Discussion 

When analyzing the results obtained from the anatomical analysis of the DB1 database, the first 

thing to highlight is that regardless of the correlation that was carried out, the results obtained for the 

changes in cortical thickness and cortical volume were very similar.  

Using the GLM model to determine the changes between cortical thickness and cortical volume 

related to the EDSS and SDMT variables allowed us to determine that the differences between cortical 

volume and thickness were similar and highlight mainly the same regions. In the case of the correlation 

between changes in cortical thickness and cortical volume related the EDSS value, the areas 

significant were mainly the precuneus, rostral middle frontal, caudal middle frontal, and superior 

frontal for the left hemisphere. While for the right hemisphere, we have the superior parietal, rostral 

middle frontal, and superior frontal regions. In these cases, the prevailing correlations were negative, 

indicating a decrease in cortical thickness related to the increase in the EDSS value. Additionally, it 

should be mentioned that although the predominant regions had negative correlations, there were also 

small regions with positive correlation, indicating an increase in cortical thickness. Our interpretation 

of this event can be explained as a kind of compensation by the brain in the initial stages of MS. 

On the other hand, when correlating changes in cortical thickness and volume to the SDMT 

value, the most prominent regions were the precentral and superior temporal regions for the left 

hemisphere, and the precentral, inferior parietal, and medial orbitofrontal regions for the right 

hemisphere. These regions are associated with sensory processing and information processing speed, 

functions that are associated with the value measured by the SDMT test. 

Something important to highlight about the GLM model was its simplicity of its application. 

This is partly due to the large amount of literature regarding its application since it is a model widely 

used in this type of research. However, it is not free from limitations, the main one being the use of 

only of the arithmetic mean of the data to determine the changes between the variables, limiting the 

interpretations that can be made of the results. 

On the other hand, the use of the LME model for the analysis of the same correlations between 

cortical changes (thickness and volume) and the EDSS and SDMT variables allowed us to determine 

that the regions that presented the significant changes coincided mostly with those highlighted by the 

GLM model for both hemispheres. The main difference with the GLM model is that in the LME 

model, the interpretation of the results is based on the identification of the regions that present the 
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most significant changes rather than the types of changes (positive or negative). The advantage of this 

type of analysis is that we can have a more general view of the regions that present changes, given the 

changes in the EDSS and SDMT variables. Furthermore, another advantage of this model is that in 

addition to using the arithmetic mean to perform the calculations, it uses the variance and standard 

deviation of the data. Using these two additional metrics allows for a broader interpretation of the 

results. However, one of the main disadvantages of using this model was its complex implementation 

and slow learning curve, and less available information. 

Given these results and the advantages and disadvantages of both models, it was decided to use 

the GLM model for the anatomical analysis of the DB2 database. 

On the other hand, as shown in the results of the DB2 database, there are two types of changes: 

cortical changes and diffusion MRI metrics changes.  

When we analyzed the anatomical changes in subjects with MS, we found negative and positive 

correlations. The negative correlations, which we interpret as decreased cortical thickness over time, 

cover a larger surface area and are much more predominant than the positive correlation. The regions 

most affected by this correlation were the left hemisphere's postcentral, precuneus, and lingual 

regions, and the right superior parietal, middle orbitofrontal, and superior temporal regions. In both 

cases, regions are associated with sensitive and sensory processing. Something to note about this 

correlation is that in the left hemisphere, there was a greater distribution in the size of the affected 

surface, while in the right hemisphere, two regions had the largest affected surface.  

On the other hand, the positive correlations, interpreted as an increase in cortical thickness over 

time, were present in several brain regions but on a smaller scale, covering much less surface area 

than the negative correlations. Highlighting the left hemisphere's rostral middle frontal, insula, and 

superior temporal regions, and the right lateral orbitofrontal, superior temporal, and middle temporal 

regions. These affected regions focus on emotional functions, language processing, and space 

recognition. This correlation affected a much smaller surface area than the negative correlation, was 

not concentrated in a particular region. Given that there were regions of coincidence between 

correlations and between hemispheres, a possible interpretation of these results is that in the initial 

stages of MS, the brain seeks compensation between the regions to supply reduced functions, given 

the effect of MS. 

In the case of the two anatomical studies, the results obtained, especially those associated with 

negative correlations with time, are related. This is because both databases highlight similar regions 

for both hemispheres in the same type of analysis. Also, the results of both studies are what was 
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expected according to the literature. Previous studies indicate that prominent regions in MS include 

the precentral, superior frontal, superior parietal, and superior temporal regions, which are motor and 

sensory regions. 

Respecting the changes in the diffusion MRI metrics, we found several fiber bundles with 

significant difference, in their metrics means regardless of the analysis (transversal or longitudinal).  

Given these results, we observed is the absence of significant change for FA in the fiber 

bundles. However, significant difference was found for QA, a more specific anisotropy metric. A main 

observation is the trend of the diffusion MRI metrics changes, which does not follow the expected 

sense according to the literature and previous works in the area. Our assumptions regarding these 

results are associated with a possible improvement of the subjects health given the treatments to which 

they are exposed. Using the EDSS value, we seek to verify if there was some degree of progress in 

the subjects' disability levels by correlating this value with the fiber bundles metrics. When performing 

this correlation, a favorable trend was obtained in the EDSS value related to the fiber bundles, showing 

a slight improvement in the subjects. Is important to highlight that these signs of improvement occur 

at the lowest levels of the EDSS value, which we interpret as the levels of progress that occur in 

subjects with initial stages of MS or who present a mild to moderate degree of disability. While the 

EDSS value trends show us somewhat positive trends, it is also essential to identify the regions that 

connect these fiber bundles with significant changes. The regions that connect these fibers for the left 

and right hemispheres are the superior temporal, superior frontal, and parietal regions, with the 

postcentral, posterior cingulate, and precentral regions. All of these regions are mainly associated with 

motor functions and sensory processing, which is in line with what is expected given the 

characteristics of the disease. Additionally, we can note that a brain fiber bundle presented significant 

changes in all diffusion MRI metrics, which is the fiber bundle that connects the precentral regions 

with the superior frontal region of the left hemisphere. This connection is also mainly associated with 

motor and working memory functions. 

Finally, we can establish that there is a relationship between cortical anatomical changes and 

changes in diffusion metrics in subjects with MS. We can reach this conclusion given that the regions 

that presented the most significant changes at the cortical level for both hemispheres partly coincide 

with the regions connected by the fibers showing significant changes. In this case, the regions that 

stand out are the postcentral and superior temporal regions for the left hemisphere and the superior 

parietal and superior temporal regions for the right hemisphere. However, some regions were 
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identified in one type of analysis but not in the other. One explanation could be using statistical models 

and the small number of subjects in the database. 

These finding are novel since there is no previous longitudinal study that analyzed anatomical 

and dMRI metrics in MS. 

 

5.2. Conclusions 

In conclusion, we could apply an anatomical longitudinal analysis on the T1 and FLAIR images 

on the subjects of the DB1 and DB2 databases using the FreeSurfer software. The results of this 

analysis were in line with what was expected since they highlighted regions of the cerebral cortex 

associated with the effects of MS. The regions that identified are motor and sensory processing areas, 

and regions related to processing speed. 

In addition, the statistical models, GLM and LME, were correctly applied to the DB1 database. 

The main conclusion that we can obtain after using both statistical models is that the execution and 

subsequent interpretation of results of the GLM model were more straightforward than the execution 

of the LME model despite obtaining similar results concerning the highlighted regions. This is partly 

explained given that the application of the GLM model is widely exposed in the literature, while the 

application of the LME model is much less frequent. 

Given these difficulties, applying the GLM model to the data from the DB2 database was 

decided. The results of the analysis of DB2 were in line with those expected from the literature. 

Regions very similar to those found for the DB1 database were identified. These regions have mainly 

motor and information processing speed functions. 

On the other hand, a cross-sectional and longitudinal statistical analysis was carried out on the 

diffusion MRI metrics of the short WM bundles. The cross-sectional study, executed through a t-test, 

was an initial "filter" for the fiber bundles, identifying various fiber bundles with significant difference 

for different metrics. Furthermore, in the longitudinal analysis, executed using the GEE model, the 

results confirmed what was found in the transversal study, giving the same fiber bundles as significant. 

We observed in the opposite trend of the diffusion metrics considered significant, i.e., an increase in 

QA and a decrease in diffusivity metrics. The explanation for this may be due to the treatments the 

subjects underwent, which could positively affect the subjects. 

Finally, when comparing the anatomical changes found with the changes in the diffusion MRI 

metrics, some coincidences could be found between the regions that presented a decrease in the 
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cortical thickness and the fiber bundle with significant changes. The most prevalent connection where 

between the precentral and the superior frontal regions. Also, these regions present significant 

anatomical changes. Based on these results and the highlighted regions, we can conclude that 

significant changes were found in cortical areas and associated with changes in brain fibers. This 

allows us to confirm our initial hypothesis. 

5.3. Limitations and Future Works 

This work was not free of limitations and difficulties. The first limitation of this work was the 

size of the databases used, being a small number of subjects, which generated difficulty in generalizing 

the results obtained. Another limitation was that the DB1 database had T1 images, and the DB2 

database had T1 and FLAIR images. This difference made it difficult to compare the results since the 

two databases went through different preprocessing stages. Also, the absence of diffusion MRI data 

of DB1 made it impossible to compare results in that aspect of the research. On the other hand, there 

are difficulties with the learning curves of the statistical methods and software used during the study, 

which generated delays in their application. One of the reasons for those delays was the small amount 

of literature that have some of the statistical methods and some of the software used. Finally, there 

was a delay in data acquisition due to the sanitary conditions present during much of this research, 

delaying the application of the analyses and the later interpretation of the results. 

On the other hand, a possible work is correlating anatomical and diffusion MRI changes 

concerning the EDSS and SDMT variables from the DB2 database. In addition, it uses information on 

the treatment to which the subjects are exposed to ratify or refute the observations found regarding 

the subjects' improvements when correlating with the EDSS variable and the fiber bundles changes. 

5.4. Research Presentation 

This section presents the national and international instances in which the work carried out 

during this research was presented. 

5.4.1 Papers WoS 

A paper was accepted in the Multiple Sclerosis and Related Disorders Journal (Q2). This paper 

aimed to compare the results of taking the Symbolic Digit Modalities Test (SDMT), the most reliable 

and sensitive cognitive measure in MS, measured in patients seen through telehealth versus in person. 
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• Title: Brain volumetric correlates of remotely versus in-person administered 

symbol digit modalities test in multiple sclerosis 

• Authors: Korhan Buyukturkoglu, Jordan D Dworkin, Victor Leiva, Frank A 

Provenzano, Pamela Guevara, Philip L De Jager, Victoria M Leavitt, Claire S Riley 

• Institutions: - Columbia University, New York, United States 

        - Universidad de Concepción, Concepción, Chile 

In addition, a paper will be sent to a specialized journal. This paper aims to show the results 

obtained using the DB1 database. The objective is to show the difference in outcomes between the 

GLM and LME statistical models and compare the regions that present the most significant changes 

at the cortical level. 

• Title: Longitudinal analysis of anatomical changes using magnetic resonance 

imaging in patients with Multiple Sclerosis 

• Authors: Víctor Leiva, Carlos Guevara, Pamela Guevara, Pablo Billeke, Alejandra 

Figueroa. 

• Institutions: - Universidad de Concepción, Concepción, Chile 

        - Universidad del Desarrollo, Santiago, Chile 

        - Universidad de Chile, Santiago, Chile 

 

Finally, another paper will be sent to a specialized journal. The content of this paper includes 

the results obtained throughout this research, both anatomical and diffusion MRI results, and the 

relation established between these two types of analysis. 

• Title: Longitudinal analysis of anatomical and diffusion changes by magnetic 

resonance imaging in patients with multiple sclerosis 

• Authors: Víctor Leiva, Korhan Buyukturkoglu, Christopher Vergara, Carlos Guevara, 

Pamela Guevara, Alexander Ratzan, Victoria M. Leavitt. 

• Institutions: - Universidad de Concepción, Concepción, Chile 

        - Columbia University, New York, United States 

        - Universidad de La Frontera, Temuco, Chile 

        - Universidad de Chile, Santiago, Chile 

 



82 

 

5.4.2 Conference Papers and Conference Abstracts 

A paper was accepted to the 14th Biomedical Engineering Congress Universidad de 

Concepción in Concepción, Chile, held on October 6-9, 2021.  This work was presented in the paper 

competition of the congress, obtaining third place. This paper showed the results associated with 

anatomical analysis based on the GLM and LME statistical models on the database DB1. In this case, 

the 39 subjects present in the database were used. 

• Title: Longitudinal study of anatomical changes in patients with multiple sclerosis 

using MRI 

• Authors: Víctor Leiva, Carlos Guevara, Pamela Guevara 

• Institutions: - Universidad de Concepción, Concepción, Chile 

        - Universidad de Chile, Santiago, Chile 

 

A poster was presented at the Technical Conference of the Advanced Center for Electrical and 

Electronic Engineering, AC3E, of the Universidad Tecnica Federico Santa Maria, Valparaiso, Chile, 

held on August 19, 2022. This work showed the results associated with the complete analysis of the 

anatomical model based on GLM statistical models on subjects from the DB2 database. In this case, 

the 23 subjects present in the database were used. 

• Title: Longitudinal anatomical changes in patients with Multiple Sclerosis 

• Authors: Víctor Leiva, Korhan Buyukturkoglu, Carlos Guevara, Pamela Guevara 

• Institutions: - Universidad de Concepción, Concepción, Chile 

        - Columbia University, New York, United States 

        - Universidad de Chile, Santiago, Chile 

 

A poster was presented at the 15th IEEE EMBS-SPS International Summer School on 

Biomedical Imaging, Cartagena, Colombia, held on April 13-17, 2023. This work showed the results 

associated with the complete analysis of the anatomical model based on GLM statistical models on 

subjects from the DB2 database and the preliminary results of the study of the diffusion metrics. In 

this case, the 23 subjects present in the database were used. 

• Title: Longitudinal anatomical and diffusion changes in patients with Multiple 

Sclerosis. 

• Authors: Víctor Leiva, Korhan Buyukturkoglu, Carlos Guevara, Pamela Guevara 
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• Institutions: - Universidad de Concepción, Concepción, Chile 

        - Columbia University, New York, United States 

        - Universidad de Chile, Santiago, Chile 

 

Finally, an abstract was accepted in the 9th Joint ECTRIMS-ACTRIMS Meeting, 11-13 

October 2023, Milan, Italy. This abstract was presented as a poster. This poster is the presentation of 

a work that will later be sent as a paper for publication. This work aims to predict the cognitive 

performance of individuals with MS using radiomic features and volumetric measurements of the 

thalamus and its nuclei extracted from clinical MRI data. Radiomics is a quantitative approach that 

offers a solution to extract information from medical images. 

• Title: Thalamus-derived Radiomic Features to Predict Cognitive Performance in 

MS. 

• Authors: Korhan Buyukturkogu1, Lin Lu, Hao Yang, Renan E. Orellana, Alexander 

Ratzan, Victor Leiva, Sinem Ozcelik, Binsheng Zhao, Victoria M. Leavitt, Claire S. 

Riley, Phil De Jager. 

• Institutions: - Columbia University Irving Medical Center, NY, USA. 

        - Columbia University MS Center, NY, USA. 

        - Universidad de Concepción, Department of Biomedical Engineering, 

Concepción, Chile 

        - The Center for Translational and Computational Neuroimmunology, 

NY, USA. 
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Anexo A. Stages that constitute the “recon-all” function. 

Table A.1 Stages that constitute the “recon-all” function. 

Stage Name Definition 

Motion Correction When there are multiple source volumes, this step will correct small 

movements between them and then average them together. 

NU intensity correction Non-uniform intensity normalization (N3) non-parametric corrects non-

uniformity of intensity in the MR data. 

Talairach This calculates the affine transformation from the original volume to the  

MNI305 atlas using the mritotal MINC program. 

Normalization Performs intensity normalization on the original volume and places the 

result in MRI/T1.mgz 

Skull Strip Delete the skull from MRI/T1.mgz. 

Automatic Subcortical 

Segmentation 

This is done in six stages. (1) CGA linear log. (2) Canonical 

Normalization, (3) Canonical Registration. (4) Neck removal, (5) 

Registration with skull, and (6) Subcortical labeling. The stages are listed 

below. 

MS Registration (GCA) Computes the transform to align the MRI/nu.mgz volume with the default 

GCA atlas 

AC normalization Greater standardization, based on the GCA model 

AC Register Computes a nonlinear transform to align with the GCA atlas 

Neck removal The neck region is removed from the volume corrected by NU 

MRI/nu.mgz 

EM registration with the skull Calculates the transformation to align the MRI / nu_noneck.mgz volume 

with the GCA volume that the skull has 

AC Labels  Label subcortical structures based on the GCA mode. 

ASeg Statistics  Calculate statistics on segmented subcortical structures. 

Normalization 2 Make a second intensity correction. 

WM segmentation Attempts to separate white matter from everything else 

Cut/Fill This creates the subcortical mass from which the original surface is  

made. 

Tessellation This is the step where the original surface is created. 

Original surface smoothing After tessellation, the original surface is very irregular because each 

triangle is on the edge of a voxel face, and thus they are at right angles. 

Inflation Inflation attempts to minimize metric distortion so that distances and  

areas are preserved 

QSphere This is the initial step of automatic topology repair. 

Automatic Topology Fixer Finds topological defects (i.e., holes in a filled hemisphere) 

Final Surface Create the white and pial surfaces, as well as the thickness file and the  

curvature file 

Cortical Ribbon Mask Create binary volume masks of the cortical ribbon, i.e., each voxel is 

either a one or a 0 

Spherical Inflation Inflates the original surface into a sphere while minimizing metric 

distortion 

Ipsilateral Surface 

Registration (Spherical 

Morph) 

Records the original surface of the spherical atlas 

Contralateral Surface 

Registration (Spherical 

Same as ipsilateral, but recorded on the contralateral atlas 



 

Morph) 

Average Curvature Resample the mean curvature of the atlas to that of the subject. 

Cortical Parcellation Assign a neuroanatomical label to each location on the cortical surface.  

It incorporates both the geometric information derived from the cortical  

model and the neuroanatomical convention 

Parcellation Statistics Run mris_anatomical_stats to create a summary table of cortical 

parcellation statistics for each structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Anexo B. Variables resulting from the lme_mass_fit_Rgw function. 

Table B.1 Variables resulting from the lme_mass_fit_Rgw function. 

Variables Name Definition 

Stats. Bhat Estimated vector of the population regression parameters 

Stats.CovBhat Estimated covariance matrix of the population regression parameters 

Stats. phisqhat Estimated intra-individual variability. 

Stats.Dhat Estimated random effects covariance matrix 

Stats.invEI Inverse of the expected information matrix of the constrained log-likelihood 

Stats.Pth, Stats.Qthth Matrices that are useful for inferences on fixed effects. 

Stats.lreml Values of the constrained maximum registration probability in the process of 

optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Anexo C. Numerical variations from the GLM and LME analysis over 

DB1. 

Table C Most affected regions by the cortical volume and thickness change due to the EDSS and SDMT 

parameters. All the areas shown are considered significant due to the threshold of a p-value less than 0.05. The surface 

size of the affected area is in mm2. The numbers in blue indicate a negative correlation between the parameters, and the 

red ones show a positive correlation. 

   Thickness Volume 

   Model Model 

   GLM LME GLM LME 

Lobes ROIs  Left Right Left Right Left Right Left Right 

Frontal 

Superior Frontal EDSS 1322.8 2903.9 368.1 - 2305.6 2150.4 - 95.4 

  SDMT 6.6 13.7 413.2 28.3 23.9 107.3 1313.3 395.5 

          

Rostral Middle Frontal EDSS 166.2 2541.2 31.5 36.3 3304.2 2422.0 17941.2 - 

  SDMT 65.3 19.3 25.7 344.6 27.0 - 165.2 2431.8 

          

Caudal Middle Frontal EDSS 1711.3 - - - 373.0 27.2 - - 

  SDMT - - - - - - - 518.4 

          

Pars Opercularis EDSS - 155.4 - - - 101.2 - 10.9 

  SDMT - - - 49.8 - - 128.5 27.8 

          

Pars Triangularis EDSS 1616.6 - - - 155.0 - - - 

  SDMT - - - 242.9 - - 8.0 296.9 

          

Pars Orbitalis EDSS - - - - - - - - 

  SDMT - - - - - - 104.7 - 

          

Lateral Orbitofrontal EDSS 137.2 423.1 251.0 99.3 14.7 566.5 210.7 132.1 

  SDMT 10.0 86.9 - - 68.6 180.0 - - 

          

Medial Orbitofrontal EDSS - - 105.2 34.3 - 10.9 29.0 - 

  SDMT - - 411.9 56.1 - 326.0 385.8 107.6 

          

Precentral EDSS 114.3 98.5 - 249.3 65.5 251.0 83.9 1507.8 

  SDMT 2253.2 2573.5 777.6 261.5 1267.9 250.8 1442.9 974.8 

          

Paracentral EDSS - 55.2 - - 60.5 55.2 10.8 88.8 

  SDMT - 7.7 665.8 154.4 - - 931.4 1207.0 

          

Frontal Pole EDSS 145.3 - 90.1 - - - - - 

  SDMT - 92.3 - - - - - - 

          

Rostal Anterior Cingulate EDSS - - 29.0 - - - - - 

  SDMT - - 26.5 - - - - - 

          

Caudal Anterior Cingulate EDSS - - 769.8 276.6 - - 21.3 - 

  SDMT - - 140.8 267.0 - - - 168.4 

 



 

Table C (continued) 

 

   Thickness Volume 

   Model Model 

   GLM LME GLM LME 

Lobes ROIs  Left Right Left Right Left Right Left Right 

Parietal 

Precuneus EDSS 5891.8 213.0 70.9 - 4869.5 41.7 - 103.1 

  SDMT - - 113.6 23.0 15.7 - 22.5 34.3 

          

Superior Parietal EDSS - 3156.0 53706.8 - 833.4 3641.8 - 62.3 

  SDMT - 4.3 22.7 429.0 38.1 - - 1401.4 

          

Supramarginal EDSS 36.1 471.2 - 375.0 164.6 434.4 26247.9 44624.3 

  SDMT 162.6 30.9 4170.5 11096.5 183.3 23.5 3615.6 - 

          

Inferior Parietal EDSS 49.9 196.6 - - - 298.4 8.3 9.6 

  SDMT 110.6 269.4 470.2 58.3 - 274.2 748.1 12954.9 

          

Postcentral EDSS 130.6 11.0 9.7 - 335.0 46.1 55.1 - 

  SDMT - 99.5 81.7 796.9 50.2 1559.5 249.0 1599.7 

          

Posterior Cingulate EDSS 6.9 - 411.2 556.6 33.8 - 549.0 49.3 

  SDMT - - 18.1 97.7 - - 153.1 206.2 

          

Isthmus Cingulate EDSS - - - 213.4 - - 8.4 111.9 

  SDMT - - 12.1 135.6 - - 73.0 121.2 

           

Temporal 

Superior Temporal EDSS 927.5 5.0 - 9.8 1091.0 46.3 536.7 3622.2 

  SDMT 1033.5 124.5 55.0 27.5 369.3 - 503.9 - 

          

Middle Temporal EDSS 11.9 932.8 155.2 36.2 - 664.5 - 122.0 

  SDMT - 129.3 1238.4 542.3 142.7 66.9 446.1 108.8 

          

Inferior Temporal EDSS - - - 56155.3 157.0 - 32.4 - 

  SDMT 51.7 - 9.7 - 18.7 15.8 134.9 - 

          

Banks of the Superior 
Temporal Sulcus3 EDSS - - - - - - - - 

  SDMT - - 11.7 8.9 - - - 13.6 

          

Fusiform EDSS 1222.9 53.2 - - 1104.3 74.2 - 167.1 

  SDMT 58.5 23.4 680.6 393.4   18.7 721.2 93.6 

 

 

 

 

 

 

 

 

 



 

Table C (continued) 

 

   Thickness Volume 
   Model Model 
   GLM LME GLM LME 
Lobes ROIs  Left Right Left Right Left Right Left Right 

Temporal 

Transverse Temporal EDSS - - - - - - - - 
  SDMT - - - - - - 7.3 - 
          

Entorhinal EDSS - - 19.3 - - - 32.9 125.2 
  SDMT 5.6 - - - 86.1 - 56.7 198.3 
          

Temporal Pole EDSS 22.7 - - - - - - - 
  SDMT - - - - - - - - 
          

Para hippocampal EDSS - - 102.8 16.8 - - 40.2 75.2 
  SDMT 6.6 - - 234.1 - - - 199.2 

           

Occipital 

Lingual EDSS 1214.0 308.2 150.6 - - 585.1 413.1 263.4 
  SDMT - 6.2 134.2 90.9 - 13.8 550.0 915.8 
          

Lateral Occipital EDSS 26.8 154.6 21.3 - 747.7 252.5 9.4 - 
  SDMT 187.7 144.4 69.3 310.3 19.8 63.0 345.6 715.1 
          

Cuneus EDSS 42.6 385.9 - - - 422.7 - - 
  SDMT - - 39.5 - - - 55.3 - 
          

Pericalcarine EDSS 37.1 12.3 124.4 - 828.9 98.8 450.6 - 
  SDMT - - - - - - - 35.4 

           

Insula 
  EDSS 233.8 - 76.6 9.9 20.9 41.2 39.7 97.8 
  SDMT 21.2 67.0 - 387.3 - 101.4 161.6 179.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Anexo D. Parameter Estimates tables for all the fiber bundles that the 

EDSS parameter's impact was considered significant in the 

general analysis. 

Table D Parameter Estimates tables for all the fiber bundles that the EDSS parameter's impact was considered 

significant in the general analysis. The B column shows the rate of change between the fiber bundle and the time and 

the EDSS parameter. In the case of the EDSS, it shows the rate for all the possible values of EDSS. The Sig. column 

shows the level of significance for every correlation. 

 
 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 1.322 0.0248 1.273 1.370 2850.188 1 0.000

[Time=1] 0.056 0.0248 0.007 0.104 5.046 1 0.025

[Time=2] 0
a

[EDSS=.00] -0.082 0.0275 -0.136 -0.028 8.926 1 0.003

[EDSS=1.00] -0.097 0.0214 -0.140 -0.055 20.691 1 0.000

[EDSS=1.50] -0.069 0.0350 -0.138 0.000 3.884 1 0.049

[EDSS=2.00] -0.153 0.0238 -0.200 -0.106 41.340 1 0.000

[EDSS=2.50] -0.060 0.0248 -0.109 -0.012 5.936 1 0.015

[EDSS=3.00] -0.118 0.0248 -0.167 -0.070 22.776 1 0.000

[EDSS=3.50] -0.203 0.0248 -0.252 -0.155 67.422 1 0.000

[EDSS=4.00] -0.070 0.0248 -0.119 -0.022 8.065 1 0.005

[EDSS=5.00] -0.010 0.0325 -0.074 0.054 0.094 1 0.760

[EDSS=6.00] 0.056 0.0535 -0.049 0.161 1.094 1 0.295

[EDSS=6.50] -0.091 0.0248 -0.139 -0.042 13.432 1 0.000

[EDSS=7.50] -0.046 0.0248 -0.094 0.003 3.416 1 0.065

[EDSS=8.00] 0
a

(Scale) 0.008

Dependent Variable: lh_PrC-SF_0_AD

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 1.184 0.0184 1.147 1.220 4124.824 1 0.000

[Time=1] 0.067 0.0184 0.031 0.103 13.217 1 0.000

[Time=2] 0
a

[EDSS=.00] -0.055 0.0157 -0.085 -0.024 12.028 1 0.001

[EDSS=1.00] -0.034 0.0222 -0.077 0.009 2.346 1 0.126

[EDSS=1.50] -0.017 0.0214 -0.059 0.025 0.632 1 0.427

[EDSS=2.00] 0.001 0.0182 -0.035 0.036 0.002 1 0.969

[EDSS=2.50] 0.124 0.0184 0.088 0.160 45.024 1 0.000

[EDSS=3.00] 0.079 0.0184 0.043 0.115 18.218 1 0.000

[EDSS=3.50] 0.015 0.0184 -0.022 0.051 0.627 1 0.428

[EDSS=4.00] 0.002 0.0184 -0.034 0.038 0.011 1 0.916

[EDSS=5.00] -0.014 0.0274 -0.068 0.040 0.263 1 0.608

[EDSS=6.00] 0.061 0.0531 -0.043 0.165 1.326 1 0.250

[EDSS=6.50] 0.033 0.0184 -0.004 0.069 3.112 1 0.078

[EDSS=7.50] -0.029 0.0184 -0.065 0.007 2.429 1 0.119

[EDSS=8.00] 0
a

(Scale) 0.004

Dependent Variable: rh_PoCi-SF_0_AD

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

  

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.080 0.0033 0.074 0.087 597.975 1 0.000

[Time=1] -0.007 0.0033 -0.014 -0.001 5.186 1 0.023

[Time=2] 0
a

[EDSS=.00] -0.014 0.0047 -0.023 -0.004 8.510 1 0.004

[EDSS=1.00] -0.016 0.0044 -0.025 -0.008 13.594 1 0.000

[EDSS=1.50] -0.013 0.0030 -0.019 -0.008 20.284 1 0.000

[EDSS=2.00] -0.013 0.0070 -0.027 0.001 3.328 1 0.068

[EDSS=2.50] -0.027 0.0033 -0.033 -0.020 65.716 1 0.000

[EDSS=3.00] -0.033 0.0033 -0.039 -0.026 100.273 1 0.000

[EDSS=3.50] -0.011 0.0033 -0.017 -0.004 10.276 1 0.001

[EDSS=4.00] 0.000 0.0033 -0.006 0.007 0.015 1 0.901

[EDSS=5.00] -0.004 0.0019 -0.008 0.000 4.574 1 0.032

[EDSS=6.00] -0.014 0.0024 -0.018 -0.009 31.896 1 0.000

[EDSS=6.50] -0.008 0.0033 -0.014 -0.001 5.760 1 0.016

[EDSS=7.50] 0.002 0.0033 -0.004 0.009 0.411 1 0.522

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_CMF-PrC_1_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.080 0.0035 0.073 0.087 524.214 1 0.000

[Time=1] -0.008 0.0035 -0.014 -0.001 4.761 1 0.029

[Time=2] 0
a

[EDSS=.00] -0.016 0.0047 -0.025 -0.006 11.049 1 0.001

[EDSS=1.00] -0.017 0.0047 -0.026 -0.008 13.118 1 0.000

[EDSS=1.50] -0.014 0.0035 -0.021 -0.008 17.098 1 0.000

[EDSS=2.00] -0.013 0.0073 -0.027 0.001 3.092 1 0.079

[EDSS=2.50] -0.021 0.0035 -0.028 -0.014 37.320 1 0.000

[EDSS=3.00] -0.036 0.0035 -0.043 -0.029 107.767 1 0.000

[EDSS=3.50] -0.010 0.0035 -0.016 -0.003 7.577 1 0.006

[EDSS=4.00] 0.005 0.0035 -0.002 0.011 1.751 1 0.186

[EDSS=5.00] -0.014 0.0027 -0.019 -0.009 26.745 1 0.000

[EDSS=6.00] -0.010 0.0023 -0.015 -0.006 19.834 1 0.000

[EDSS=6.50] -0.007 0.0035 -0.014 0.000 3.651 1 0.056

[EDSS=7.50] 0.004 0.0035 -0.003 0.011 1.213 1 0.271

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_CMF-RMF_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.082 0.0041 0.074 0.090 395.873 1 0.000

[Time=1] -0.010 0.0041 -0.018 -0.002 5.437 1 0.020

[Time=2] 0
a

[EDSS=.00] -0.012 0.0064 -0.024 0.001 3.388 1 0.066

[EDSS=1.00] -0.016 0.0049 -0.026 -0.007 11.146 1 0.001

[EDSS=1.50] -0.012 0.0036 -0.019 -0.005 11.523 1 0.001

[EDSS=2.00] -0.014 0.0044 -0.022 -0.005 9.793 1 0.002

[EDSS=2.50] -0.024 0.0041 -0.032 -0.016 34.418 1 0.000

[EDSS=3.00] -0.040 0.0041 -0.048 -0.032 94.422 1 0.000

[EDSS=3.50] -0.008 0.0041 -0.016 -8.663E-05 3.924 1 0.048

[EDSS=4.00] 0.003 0.0041 -0.005 0.011 0.604 1 0.437

[EDSS=5.00] -0.001 0.0021 -0.005 0.003 0.306 1 0.580

[EDSS=6.00] -0.009 0.0027 -0.014 -0.003 9.972 1 0.002

[EDSS=6.50] -0.005 0.0041 -0.013 0.003 1.262 1 0.261

[EDSS=7.50] 0.002 0.0041 -0.006 0.010 0.276 1 0.599

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_CMF-SF_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.100 0.0047 0.091 0.109 457.996 1 0.000

[Time=1] -0.012 0.0047 -0.021 -0.002 6.229 1 0.013

[Time=2] 0
a

[EDSS=.00] -0.019 0.0054 -0.030 -0.009 12.724 1 0.000

[EDSS=1.00] -0.015 0.0070 -0.029 -0.002 4.849 1 0.028

[EDSS=1.50] -0.017 0.0047 -0.026 -0.008 13.483 1 0.000

[EDSS=2.00] -0.022 0.0097 -0.041 -0.003 5.139 1 0.023

[EDSS=2.50] -0.028 0.0047 -0.037 -0.018 35.019 1 0.000

[EDSS=3.00] -0.039 0.0047 -0.048 -0.030 70.592 1 0.000

[EDSS=3.50] -0.025 0.0047 -0.034 -0.016 29.159 1 0.000

[EDSS=4.00] 0.003 0.0047 -0.006 0.012 0.446 1 0.504

[EDSS=5.00] -0.003 0.0056 -0.014 0.008 0.217 1 0.642

[EDSS=6.00] -0.008 0.0041 -0.016 0.000 4.230 1 0.040

[EDSS=6.50] -0.018 0.0047 -0.027 -0.009 15.040 1 0.000

[EDSS=7.50] -0.005 0.0047 -0.014 0.004 1.279 1 0.258

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_IP-SP_1_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.083 0.0036 0.076 0.090 532.556 1 0.000

[Time=1] -0.010 0.0036 -0.017 -0.002 6.949 1 0.008

[Time=2] 0
a

[EDSS=.00] -0.014 0.0049 -0.023 -0.004 8.041 1 0.005

[EDSS=1.00] -0.015 0.0049 -0.025 -0.006 9.860 1 0.002

[EDSS=1.50] -0.014 0.0034 -0.021 -0.007 17.300 1 0.000

[EDSS=2.00] -0.017 0.0074 -0.032 -0.003 5.498 1 0.019

[EDSS=2.50] -0.025 0.0036 -0.032 -0.018 48.438 1 0.000

[EDSS=3.00] -0.036 0.0036 -0.043 -0.029 99.346 1 0.000

[EDSS=3.50] -0.009 0.0036 -0.016 -0.002 5.919 1 0.015

[EDSS=4.00] 0.001 0.0036 -0.006 0.008 0.037 1 0.847

[EDSS=5.00] -0.004 0.0024 -0.009 0.001 2.550 1 0.110

[EDSS=6.00] -0.010 0.0038 -0.018 -0.003 7.699 1 0.006

[EDSS=6.50] -0.012 0.0036 -0.019 -0.005 11.097 1 0.001

[EDSS=7.50] 0.004 0.0036 -0.003 0.011 1.177 1 0.278

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_Op-SF_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.078 0.0043 0.069 0.086 321.718 1 0.000

[Time=1] -0.012 0.0043 -0.020 -0.003 7.152 1 0.007

[Time=2] 0
a

[EDSS=.00] -0.008 0.0060 -0.020 0.004 1.756 1 0.185

[EDSS=1.00] -0.007 0.0057 -0.018 0.004 1.700 1 0.192

[EDSS=1.50] -0.010 0.0033 -0.017 -0.004 9.158 1 0.002

[EDSS=2.00] 0.000 0.0099 -0.019 0.020 0.002 1 0.962

[EDSS=2.50] -0.016 0.0043 -0.025 -0.008 13.802 1 0.000

[EDSS=3.00] -0.023 0.0043 -0.031 -0.014 28.171 1 0.000

[EDSS=3.50] -0.015 0.0043 -0.023 -0.006 11.331 1 0.001

[EDSS=4.00] 0.001 0.0043 -0.007 0.010 0.065 1 0.799

[EDSS=5.00] 0.009 0.0040 0.001 0.017 4.963 1 0.026

[EDSS=6.00] 0.001 0.0028 -0.005 0.006 0.032 1 0.857

[EDSS=6.50] 0.002 0.0043 -0.006 0.011 0.260 1 0.610

[EDSS=7.50] 0.015 0.0043 0.006 0.023 11.298 1 0.001

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_PrC-SF_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.079 0.0035 0.072 0.086 514.379 1 0.000

[Time=1] -0.009 0.0035 -0.016 -0.002 6.365 1 0.012

[Time=2] 0
a

[EDSS=.00] -0.014 0.0047 -0.023 -0.004 8.423 1 0.004

[EDSS=1.00] -0.014 0.0051 -0.024 -0.004 7.306 1 0.007

[EDSS=1.50] -0.013 0.0033 -0.020 -0.007 16.172 1 0.000

[EDSS=2.00] -0.013 0.0084 -0.029 0.004 2.298 1 0.130

[EDSS=2.50] -0.027 0.0035 -0.034 -0.020 61.328 1 0.000

[EDSS=3.00] -0.034 0.0035 -0.041 -0.027 94.739 1 0.000

[EDSS=3.50] -0.018 0.0035 -0.025 -0.012 27.925 1 0.000

[EDSS=4.00] 0.000 0.0035 -0.007 0.007 0.001 1 0.975

[EDSS=5.00] -0.014 0.0018 -0.017 -0.010 60.478 1 0.000

[EDSS=6.00] -0.007 0.0034 -0.014 0.000 4.182 1 0.041

[EDSS=6.50] -0.012 0.0035 -0.018 -0.005 11.312 1 0.001

[EDSS=7.50] 0.005 0.0035 -0.002 0.012 2.134 1 0.144

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_RMF-SF_1_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.075 0.0027 0.070 0.081 761.963 1 0.000

[Time=1] -0.009 0.0027 -0.014 -0.004 11.155 1 0.001

[Time=2] 0
a

[EDSS=.00] -0.015 0.0035 -0.022 -0.008 18.396 1 0.000

[EDSS=1.00] -0.015 0.0042 -0.023 -0.006 12.096 1 0.001

[EDSS=1.50] -0.014 0.0027 -0.019 -0.008 25.078 1 0.000

[EDSS=2.00] -0.016 0.0062 -0.028 -0.004 6.881 1 0.009

[EDSS=2.50] -0.025 0.0027 -0.030 -0.020 83.213 1 0.000

[EDSS=3.00] -0.033 0.0027 -0.038 -0.028 146.893 1 0.000

[EDSS=3.50] -0.025 0.0027 -0.030 -0.019 80.648 1 0.000

[EDSS=4.00] -0.005 0.0027 -0.010 0.001 2.774 1 0.096

[EDSS=5.00] -0.012 0.0031 -0.018 -0.005 13.580 1 0.000

[EDSS=6.00] -0.009 0.0022 -0.014 -0.005 17.298 1 0.000

[EDSS=6.50] -0.008 0.0027 -0.014 -0.003 9.352 1 0.002

[EDSS=7.50] 0.005 0.0027 0.000 0.010 3.542 1 0.060

[EDSS=8.00] 0
a

(Scale) 9.740E-05

Dependent Variable: lh_RoMF_RoMF_0i_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.073 0.0032 0.066 0.079 519.199 1 0.000

[Time=1] -0.007 0.0032 -0.013 -0.001 5.205 1 0.023

[Time=2] 0
a

[EDSS=.00] -0.014 0.0039 -0.021 -0.006 12.555 1 0.000

[EDSS=1.00] -0.015 0.0044 -0.024 -0.007 12.329 1 0.000

[EDSS=1.50] -0.011 0.0030 -0.017 -0.005 13.447 1 0.000

[EDSS=2.00] -0.015 0.0068 -0.028 -0.002 4.962 1 0.026

[EDSS=2.50] -0.015 0.0032 -0.022 -0.009 23.587 1 0.000

[EDSS=3.00] -0.029 0.0032 -0.035 -0.022 80.428 1 0.000

[EDSS=3.50] -0.016 0.0032 -0.023 -0.010 26.848 1 0.000

[EDSS=4.00] -0.006 0.0032 -0.012 0.000 3.376 1 0.066

[EDSS=5.00] -0.010 0.0044 -0.018 -0.001 4.815 1 0.028

[EDSS=6.00] -0.010 0.0021 -0.015 -0.006 24.282 1 0.000

[EDSS=6.50] -0.003 0.0032 -0.009 0.004 0.624 1 0.430

[EDSS=7.50] 0.002 0.0032 -0.004 0.008 0.313 1 0.576

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_RoMF_RoMF_1i_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.088 0.0039 0.080 0.095 509.920 1 0.000

[Time=1] -0.009 0.0039 -0.017 -0.002 5.979 1 0.014

[Time=2] 0
a

[EDSS=.00] -0.015 0.0049 -0.025 -0.006 9.830 1 0.002

[EDSS=1.00] -0.015 0.0054 -0.026 -0.005 7.929 1 0.005

[EDSS=1.50] -0.016 0.0032 -0.022 -0.010 24.120 1 0.000

[EDSS=2.00] -0.017 0.0083 -0.034 -0.001 4.227 1 0.040

[EDSS=2.50] -0.020 0.0039 -0.027 -0.012 25.572 1 0.000

[EDSS=3.00] -0.037 0.0039 -0.044 -0.029 88.842 1 0.000

[EDSS=3.50] -0.022 0.0039 -0.030 -0.014 31.984 1 0.000

[EDSS=4.00] 0.003 0.0039 -0.005 0.010 0.415 1 0.519

[EDSS=5.00] -0.001 0.0043 -0.010 0.007 0.079 1 0.779

[EDSS=6.00] -0.010 0.0056 -0.021 0.001 3.022 1 0.082

[EDSS=6.50] -0.012 0.0039 -0.020 -0.005 10.215 1 0.001

[EDSS=7.50] -0.011 0.0039 -0.019 -0.003 7.868 1 0.005

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_SP-SM_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.072 0.0029 0.066 0.078 616.768 1 0.000

[Time=1] -0.008 0.0029 -0.013 -0.002 7.135 1 0.008

[Time=2] 0
a

[EDSS=.00] -0.014 0.0037 -0.021 -0.006 13.195 1 0.000

[EDSS=1.00] -0.016 0.0042 -0.024 -0.008 13.963 1 0.000

[EDSS=1.50] -0.011 0.0029 -0.017 -0.005 13.954 1 0.000

[EDSS=2.00] -0.017 0.0067 -0.030 -0.003 6.104 1 0.013

[EDSS=2.50] -0.021 0.0029 -0.027 -0.015 52.285 1 0.000

[EDSS=3.00] -0.033 0.0029 -0.038 -0.027 126.284 1 0.000

[EDSS=3.50] -0.019 0.0029 -0.024 -0.013 40.634 1 0.000

[EDSS=4.00] -0.006 0.0029 -0.012 -0.001 4.964 1 0.026

[EDSS=5.00] -0.017 0.0018 -0.021 -0.014 88.458 1 0.000

[EDSS=6.00] -0.009 0.0016 -0.013 -0.006 32.438 1 0.000

[EDSS=6.50] -0.004 0.0029 -0.010 0.001 2.122 1 0.145

[EDSS=7.50] 0.004 0.0029 -0.001 0.010 2.161 1 0.142

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: lh_Tr_RoMF_0i_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.076 0.0035 0.069 0.083 478.312 1 0.000

[Time=1] -0.013 0.0035 -0.020 -0.006 14.015 1 0.000

[Time=2] 0
a

[EDSS=.00] -0.012 0.0040 -0.019 -0.004 8.473 1 0.004

[EDSS=1.00] -0.012 0.0051 -0.022 -0.002 5.841 1 0.016

[EDSS=1.50] -0.012 0.0027 -0.017 -0.007 19.083 1 0.000

[EDSS=2.00] -0.013 0.0037 -0.020 -0.006 12.153 1 0.000

[EDSS=2.50] -0.026 0.0035 -0.032 -0.019 54.881 1 0.000

[EDSS=3.00] -0.033 0.0035 -0.040 -0.026 89.811 1 0.000

[EDSS=3.50] -0.017 0.0035 -0.024 -0.010 23.872 1 0.000

[EDSS=4.00] -0.007 0.0035 -0.014 -0.001 4.536 1 0.033

[EDSS=5.00] -0.001 0.0017 -0.004 0.003 0.092 1 0.762

[EDSS=6.00] -0.005 0.0055 -0.015 0.006 0.714 1 0.398

[EDSS=6.50] -0.011 0.0035 -0.018 -0.004 10.451 1 0.001

[EDSS=7.50] -0.002 0.0035 -0.009 0.005 0.402 1 0.526

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: rh_CAC-PrCu_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.063 0.0026 0.058 0.068 569.152 1 0.000

[Time=1] -0.007 0.0026 -0.013 -0.002 7.747 1 0.005

[Time=2] 0
a

[EDSS=.00] -0.011 0.0029 -0.017 -0.006 15.291 1 0.000

[EDSS=1.00] -0.009 0.0044 -0.017 9.336E-05 3.759 1 0.053

[EDSS=1.50] -0.011 0.0023 -0.015 -0.006 22.313 1 0.000

[EDSS=2.00] -0.011 0.0043 -0.020 -0.003 6.884 1 0.009

[EDSS=2.50] -0.014 0.0026 -0.020 -0.009 29.731 1 0.000

[EDSS=3.00] -0.027 0.0026 -0.033 -0.022 106.712 1 0.000

[EDSS=3.50] -0.011 0.0026 -0.016 -0.006 17.167 1 0.000

[EDSS=4.00] 0.012 0.0026 0.007 0.017 21.099 1 0.000

[EDSS=5.00] 0.004 0.0019 5.012E-05 0.008 3.944 1 0.047

[EDSS=6.00] -0.007 0.0036 -0.014 0.001 3.267 1 0.071

[EDSS=6.50] -0.012 0.0026 -0.017 -0.007 20.006 1 0.000

[EDSS=7.50] 0.005 0.0026 0.000 0.011 4.305 1 0.038

[EDSS=8.00] 0
a

(Scale) 8.446E-05

Dependent Variable: rh_IC-PrCu_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.073 0.0035 0.066 0.080 424.370 1 0.000

[Time=1] -0.008 0.0035 -0.015 -0.001 5.378 1 0.020

[Time=2] 0
a

[EDSS=.00] -0.007 0.0047 -0.016 0.003 1.997 1 0.158

[EDSS=1.00] -0.007 0.0053 -0.018 0.003 1.961 1 0.161

[EDSS=1.50] -0.007 0.0033 -0.014 -0.001 4.648 1 0.031

[EDSS=2.00] -0.004 0.0062 -0.016 0.008 0.468 1 0.494

[EDSS=2.50] -0.017 0.0035 -0.024 -0.010 23.816 1 0.000

[EDSS=3.00] -0.029 0.0035 -0.036 -0.022 69.030 1 0.000

[EDSS=3.50] -0.008 0.0035 -0.015 -0.001 5.330 1 0.021

[EDSS=4.00] 0.011 0.0035 0.005 0.018 10.529 1 0.001

[EDSS=5.00] 0.004 0.0027 -0.001 0.010 2.431 1 0.119

[EDSS=6.00] -0.001 0.0040 -0.009 0.007 0.082 1 0.775

[EDSS=6.50] -0.001 0.0035 -0.008 0.006 0.138 1 0.710

[EDSS=7.50] -0.001 0.0035 -0.008 0.006 0.138 1 0.710

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: rh_Op-SF_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.070 0.0032 0.064 0.077 481.752 1 0.000

[Time=1] -0.010 0.0032 -0.016 -0.003 8.883 1 0.003

[Time=2] 0
a

[EDSS=.00] -0.014 0.0032 -0.020 -0.007 18.605 1 0.000

[EDSS=1.00] -0.011 0.0051 -0.021 -0.001 5.067 1 0.024

[EDSS=1.50] -0.013 0.0025 -0.018 -0.008 26.830 1 0.000

[EDSS=2.00] -0.018 0.0035 -0.025 -0.011 26.493 1 0.000

[EDSS=2.50] -0.018 0.0032 -0.024 -0.011 30.765 1 0.000

[EDSS=3.00] -0.036 0.0032 -0.042 -0.030 126.549 1 0.000

[EDSS=3.50] -0.011 0.0032 -0.018 -0.005 12.576 1 0.000

[EDSS=4.00] 0.004 0.0032 -0.003 0.010 1.243 1 0.265

[EDSS=5.00] -0.003 0.0034 -0.010 0.003 0.954 1 0.329

[EDSS=6.00] -0.012 0.0035 -0.019 -0.005 12.473 1 0.000

[EDSS=6.50] -0.014 0.0032 -0.020 -0.007 18.456 1 0.000

[EDSS=7.50] 0.005 0.0032 -0.001 0.011 2.277 1 0.131

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: rh_PoCi-PrCu_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.068 0.0032 0.062 0.075 467.424 1 0.000

[Time=1] -0.012 0.0032 -0.018 -0.006 15.076 1 0.000

[Time=2] 0
a

[EDSS=.00] -0.008 0.0029 -0.014 -0.003 8.104 1 0.004

[EDSS=1.00] -0.007 0.0049 -0.016 0.003 1.806 1 0.179

[EDSS=1.50] -0.006 0.0028 -0.012 -0.001 4.707 1 0.030

[EDSS=2.00] -0.010 0.0047 -0.019 -0.001 4.414 1 0.036

[EDSS=2.50] -0.018 0.0032 -0.024 -0.012 33.048 1 0.000

[EDSS=3.00] -0.023 0.0032 -0.029 -0.017 51.729 1 0.000

[EDSS=3.50] -0.021 0.0032 -0.027 -0.014 42.346 1 0.000

[EDSS=4.00] -0.006 0.0032 -0.012 0.000 3.979 1 0.046

[EDSS=5.00] 0.007 0.0016 0.004 0.010 21.468 1 0.000

[EDSS=6.00] 0.002 0.0054 -0.008 0.013 0.178 1 0.673

[EDSS=6.50] -0.007 0.0032 -0.013 0.000 4.266 1 0.039

[EDSS=7.50] 0.002 0.0032 -0.004 0.008 0.410 1 0.522

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: rh_PoCi-PrCu_1_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Table D (continued) 

 

 

 

 

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.068 0.0033 0.061 0.074 432.365 1 0.000

[Time=1] -0.011 0.0033 -0.017 -0.004 10.970 1 0.001

[Time=2] 0
a

[EDSS=.00] -0.008 0.0035 -0.015 -0.001 5.185 1 0.023

[EDSS=1.00] -0.004 0.0052 -0.014 0.006 0.614 1 0.433

[EDSS=1.50] -0.007 0.0026 -0.012 -0.002 7.508 1 0.006

[EDSS=2.00] -0.011 0.0041 -0.019 -0.003 6.670 1 0.010

[EDSS=2.50] -0.015 0.0033 -0.021 -0.009 21.412 1 0.000

[EDSS=3.00] -0.025 0.0033 -0.031 -0.018 57.590 1 0.000

[EDSS=3.50] -0.007 0.0033 -0.013 -0.001 4.471 1 0.034

[EDSS=4.00] 0.002 0.0033 -0.004 0.009 0.504 1 0.478

[EDSS=5.00] 0.003 0.0016 -0.001 0.006 2.627 1 0.105

[EDSS=6.00] -0.002 0.0040 -0.010 0.006 0.304 1 0.581

[EDSS=6.50] -0.004 0.0033 -0.010 0.002 1.530 1 0.216

[EDSS=7.50] 0.003 0.0033 -0.003 0.009 0.877 1 0.349

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: rh_PoCi-PrCu_2_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.064 0.0029 0.059 0.070 484.984 1 0.000

[Time=1] -0.008 0.0029 -0.014 -0.002 7.654 1 0.006

[Time=2] 0
a

[EDSS=.00] -0.007 0.0032 -0.013 -0.001 4.839 1 0.028

[EDSS=1.00] -0.008 0.0049 -0.017 0.002 2.421 1 0.120

[EDSS=1.50] -0.006 0.0028 -0.011 -7.080E-05 3.942 1 0.047

[EDSS=2.00] -0.009 0.0031 -0.016 -0.003 9.164 1 0.002

[EDSS=2.50] -0.012 0.0029 -0.018 -0.006 16.194 1 0.000

[EDSS=3.00] -0.027 0.0029 -0.033 -0.021 84.168 1 0.000

[EDSS=3.50] -0.009 0.0029 -0.015 -0.004 10.380 1 0.001

[EDSS=4.00] 0.005 0.0029 -0.001 0.011 3.000 1 0.083

[EDSS=5.00] 0.002 0.0016 -0.001 0.006 1.956 1 0.162

[EDSS=6.00] 0.000 0.0040 -0.008 0.007 0.011 1 0.917

[EDSS=6.50] -0.004 0.0029 -0.010 0.001 2.356 1 0.125

[EDSS=7.50] 0.001 0.0029 -0.005 0.006 0.038 1 0.846

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: rh_PrC-Ins_0_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test
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Lower Upper Wald Chi-Square df Sig.

(Intercept) 0.084 0.0048 0.075 0.094 314.049 1 0.000

[Time=1] -0.009 0.0048 -0.018 0.000 3.557 1 0.059

[Time=2] 0
a

[EDSS=.00] -0.010 0.0049 -0.020 -0.001 4.440 1 0.035

[EDSS=1.00] -0.009 0.0066 -0.022 0.004 1.892 1 0.169

[EDSS=1.50] -0.009 0.0041 -0.017 -0.001 5.199 1 0.023

[EDSS=2.00] -0.014 0.0076 -0.029 0.001 3.286 1 0.070

[EDSS=2.50] -0.010 0.0048 -0.019 -0.001 4.442 1 0.035

[EDSS=3.00] -0.028 0.0048 -0.037 -0.018 33.789 1 0.000

[EDSS=3.50] -0.008 0.0048 -0.017 0.001 2.848 1 0.091

[EDSS=4.00] 0.010 0.0048 0.000 0.019 3.996 1 0.046

[EDSS=5.00] 0.006 0.0036 -0.001 0.013 2.977 1 0.084

[EDSS=6.00] -0.003 0.0050 -0.013 0.006 0.490 1 0.484

[EDSS=6.50] -0.016 0.0048 -0.025 -0.006 10.852 1 0.001

[EDSS=7.50] 0.002 0.0048 -0.007 0.011 0.181 1 0.671

[EDSS=8.00] 0
a

(Scale) 0.000

Dependent Variable: rh_PreCu_PreCu_0r_QA

Model: (Intercept), Time, EDSS

a. Set to zero because this parameter is redundant.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test



 

Anexo E. Abbreviations for every region in the cortical parcellation, 

according to the Desikan-Killiany atlas. 

Table E. Abbreviations for every region in the cortical parcellation, according to the Desikan-Killiany atlas. 

 

 

 

 

 

 

 

Region Abbreviation Region Abbreviation

Bankss B Pars tringularis Tr

Caudal anterior cingulate CAC Pericalcarine PeCa

Caudal middle frontal CMF Postcentral PoC

Cuneus Cu Posterior cingulate PoCi

Entorhinal En Precentral PrC

Fusiform Fu Precuneus PrCu

Inferior parietal IP Rostral anterior cingulate RAC

Inferior temporal IT Rostral middle frontal RMF

Isthmus cingulate IC Superior frontal SF

Lateral occipital LO Superior parietal SP

Lateral orbitofrontal LOF Superior temporal ST

Lingula Li Supramarginal SM

Medial orbitofrontal MOF Transverse temporal TT

Middle temporal MT Insula In

Parahippocampal PH Frontalpole FPol

Paracentral PC Temporalpole TPol

Pars opercularis Op

Pars orbitalis Or


