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ABSTRACT 

 

Numerical methods are being implemented widely in geotechnical engineering; however, methods 

based on continuum mechanics are not able to provide microscale level information. Discrete Element 

Method (DEM) discretize the space into discrete particles and, through the analysis of 

micromechanical parameters that define the contact model, macroscopic behavior can be studied. 

DEM can capture the information at the particle level, and it has proven to be a valuable tool in the 

analysis of static and cyclic behavior of soils. In this study, an attempt of improving an existing 

calibration of the contact law parameters for Karlsruhe fine sand has been made to validate it for 

different testing conditions using DEM. Samples are prepared at target relative density and two types 

of boundary conditions are applied to explore its effect on DEM simulation. The contact law 

parameters for the sand are recalibrated based on the experimental results of Wichtmann and 

Triantafyllidis (2016). Under drained conditions, the numerical samples are able to replicate the 

volumetric change behavior, the dilative and contractive behavior and the initial stiffness of the 

experiment. The undrained behavior is examined by applying a constant volume method, where for 

the loose state there is a good agreement with the experimental results. Cyclic undrained results for 

dense samples correlates with the outcomes obtained under monotonic undrained conditions, showing 

a stiffer response than the experiment. 

 

KEYWORDS: Discrete Element Method, relative density, boundary conditions, contact law, triaxial 

test, cyclic test. 
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CHAPTER 1   INTRODUCTION 

 

 

1.1 Motivation 

 

The Discrete Element Method has gained much relevance in geomechanics since its introduction by 

Cundall and Strack (1979). This modeling method allows investigating the mechanical behavior of 

granular material under different stress conditions. Soil is considered as a collection of particles rather 

than a continuous medium, which makes possible to determine a realistic behavior and to have a better 

understanding of their physical properties. 

 

Because of the discrete nature of granular soils, by laboratory testing it is difficult to obtain microscale 

information in addition to the overall macroscopic behavior of the soil. For a better understanding of 

macroscopic phenomena an insight into the microscopic level is required. It provides the possibility 

to perform localized measurements of forces at the particle contact, displacements and rotations of 

particles. 

 

The triaxial test is the most often used geotechnical laboratory experiment to examine the drained and 

undrained behavior of soil and the continuous development of testing devices have increased the 

reliability of experimental testing (Bishop and Henkel, 1957). From triaxial test, the evolution of axial 

and volumetric strain, deviatoric stress and pore pressure can be explored, making possible to deduce 

fundamental properties of soil as its shear strength, cohesion, and angle of internal friction, which 

allows predicting the behavior in a large-scale engineering application. To understand and simulate 

various complex phenomena, modelling must be performed to investigate the internal mechanism of 

the process. Numerical simulations provide a comprehensive way to examine such complex situation 

(Islam, 2021). 

 

This research work studies the macroscopic behavior of the soil from a micromechanical perspective 

by simulating triaxial tests using the Discrete Element Method modelling. Experimental test from the 

literature were replicated and compared to the obtained results. 
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1.2 General objetive 

Comprehend the micromechanical process that occur at the particle level seeking to understand the 

macroscopic behavior of granular materials under monotonic and cyclic loading and drained and 

undrained conditions, using the DEM software YADE. 

 

1.3 Specific objectives 

1. Validate the calibrated contact model by conducting simulations of geotechnical tests under 

monotonic loads and undrained conditions. 

 

2. Simulate dynamic tests with a focus on cyclic loading to evaluate liquefaction phenomena from a 

micromechanical perspective. 

 

3. Provide preliminary insights on the liquefaction phenomena from micromechanical perspective. 

 

 

1.4 Outline 

 

This research work consists of five main chapters: 

In Chapter 2 a literature review for topics related to this study is presented: an introduction to the 

Discrete Element Method and a conceptual framework on granular soils behavior under static and 

cyclic loading. In Chapter 3, a detailed methodology of the work was conducted, explaining the 

sample preparation, the generation of two types of boundary conditions, the calibration of the model 

parameters for Karlsruhe fine sand and how the triaxial tests were conducted. In Chapter 4, the 

simulations results are presented and discussed. Finally, Chapter 5 the outcomes of this research work 

are summarized and some recommendations for further development on this topic are mentioned.
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CHAPTER 2   LITERATURE REVIEW 

  

 

2.1  Discrete element method 

 

The Discrete Element Method (DEM) is a numerical method used to describe the mechanical behavior 

of discontinuous materials. Introduced by Cundall (1971), the DEM was first developed for the 

analysis of rock mechanic problems using deformable polygonal-shaped blocks and then applied to 

soils (Cundall and Starck, 1979). Based on the material is made of discrete particles, this method 

consists in a simulation of motion, that applies contact mechanics to describe the particle interactions 

with its neighboring particles as shown in Figure 2.1 (B). Forces and moments act on the particles so 

the effect of the detected contacts can be offset, and by integration of the Newton’s law of motion 

velocities and displacements of each particle can be computed in each step. 

 

 

Figure 2.1: Schematic diagram illustrating (A) elements and nodes (FEM) and (B) particles 

and contacts (DEM) (O’Sullivan, 2004). 

 

Different from the Finite Element Method (FEM) that divides a continuous medium to a finite number 

of elements that are connected by nodes (See Figure 2.1 (A)), DEM models the soil as a package of 

discrete particles that interact with each other in their contact zone. Numerical simulations with DEM 

provide more testing options and useful results than laboratory tests, due to the micromechanical 

response of the physical material (deformability, strength, dilatancy, strain location and others) can 
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be reproduced by determining the micro-properties of the material as normal, tangential and rolling 

stiffness and local friction (Belheine et al., 2009). In addition, DEM allows finite displacements and 

rotations of discrete bodies, including complete detachment, and while the calculation progresses, 

recognizes new contacts automatically. 

 
The basic features that define the Discrete Element Method are: 

• Particles are discrete elements that together comprise a complex system of particles. 

• These discrete elements move independently and interact with each other in the contact zones. 

• At particle level, rigid body mechanics are used, and the discrete elements are considered rigid 

elements. 

 

On the other hand, although it is a valuable tool, this method has computational limitations, as the 

model resolution at particle scale is computationally expensive and it is limited to the computational 

power. 

 
A typical DEM simulation starts with the creation and spatial orientation of the particles, which can 

be represented as spheres, polyhedral, among others. As the particles interact at contacts according to 

simple physical laws, and a finite difference (time-stepping) algorithm is applied, the software detects 

in each iteration the total amount of contacts between particles through collision detection engines. 

The forces and moments between particles resulting from the contact impel the particles into new 

positions within each time step by solving Newton’s equation of motion. The acceleration is 

determined by the Newton’s second law, then is integrated one time for obtaining the velocities, and 

then one more time for the displacements used to determine the new positions of the particles.  
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Figure 2.2: Flowchart of simulation for particle behavior using DEM. 

 

2.1.1  Kinematic variables 

 

In this section two spheres with initial centers at 𝐶1
⃗⃗⃗⃗  and 𝐶2

⃗⃗⃗⃗  and radius 𝑟1 and 𝑟2 as presented in Figure 

2.3 are considered. 

 

2.1.1.1.Normal displacement 

 

As two particles come into contact, an overlap occurs at the central part of the contact until equilibrium 

is reached. This equilibrium position is represented by the equilibrium distance 𝑑0, measured from 

the centers of the spheres, where neither repulsive nor attractive forces act on both spheres (Equation 

2.1). The overlap distance 𝑢𝑛 is used to determine the normal forces based on the normal stiffness and 

is calculated as follows: 

 

𝑑0 = |𝐶2
⃗⃗⃗⃗ − 𝐶1

⃗⃗⃗⃗ | (2.1) 

 

𝑢𝑛 = 𝑟1 + 𝑟2 − 𝑑0 (2.2) 

 

Where, 

 𝐶1,2
⃗⃗ ⃗⃗ ⃗⃗   = Position vectors of the spheres 
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 𝑟1,2 = Spheres radius 

 𝑑0 = Equilibrium distance 

 𝑢𝑛 = Overlap distance or normal displacement 

 

 

Figure 2.3: Overlap of particles 𝒖𝒏  used to compute the normal forces. 

 

2.1.1.2.Shear displacement 

 

The shear displacement 𝑢𝑡 is perpendicular to the contact plane along the 𝑛 axis (Figure 2.4). For the 

calculation of the tangential force component, both linear and rotational relative movement are taken 

into account. To obtain the shear displacement, the tangential velocity 𝑣𝑡 at the contact point must be 

determined by: 

 

𝑣𝑡 = 𝑣𝑟 − (𝑣𝑟 ∙ �⃗⃗� )�⃗⃗�  (2.3) 

 

 Where, 

 𝑣𝑟 = Relative velocity between particles 

 �⃗⃗�  = Unit normal vector 

 

𝑣𝑟 = (�̇�2 + 𝜔2 × 𝐶2
⃗⃗⃗⃗ ) − (�̇�1 + 𝜔1 × 𝐶1

⃗⃗⃗⃗ ) (2.4) 

 
Where,  

 �̇�1,2 = Translational velocity of both spheres 

 �̇�1,2 = Rotational velocity of both spheres 
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 𝐶1,2
⃗⃗ ⃗⃗ ⃗⃗   = Position vectors of the spheres 

 
 

𝑢𝑡 = 𝑣𝑡∆𝑡 (2.5) 

 

Where, 

 𝑢𝑡 = Shear displacement 

 𝑣𝑡 = Tangential velocity 

 ∆𝑡 = Time step 

 
 

Figure 2.4: Shear displacement 𝒖𝒕.  

 

2.1.2 Contact laws 

 

In simulations, the mechanical behavior of the material is defined by the application of constitutive 

models in DEM, also known as contact laws that will compute the contact forces existing between 

particles using the kinematic variables previously defined.   

 

This model resolves the contact force between two perfectly elastic spheres into normal and shear 

components with respect to the contact plane: 

 

�⃗⃗� = 𝑭𝒏
⃗⃗ ⃗⃗  + 𝑭𝒔

⃗⃗⃗⃗  (2.6) 

Where, 

 𝐹  = Contact force 

 𝐹𝑛⃗⃗  ⃗= Normal component of the contact force 

 𝐹𝑠⃗⃗  ⃗= Shear component of the contact force 
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The normal contact force is calculated from the overlap distance of the particles in contact: 

𝐹𝑛⃗⃗  ⃗ = 𝑘𝑛𝑢𝑛�⃗⃗�  (2.7) 

Where, 

 𝑘𝑛 = Normal stiffness at the contact 

 𝑢𝑛 = Overlap distance or normal displacement 

 �⃗⃗�  = Unit normal vector 

 
The normal stiffness can be calculated as follow: 

𝑘𝑛 = 𝐸𝑐

2𝑟1𝑟2
𝑟1 + 𝑟2

 (2.8) 

 
Where, 

 𝐸𝑐 = Contact stiffness 

 𝑟1,2 = Spheres radius 

 
In the other hand, the shear contact force is calculated by: 

𝐹𝑠⃗⃗  ⃗ = 𝑘𝑡𝑢𝑡 (2.9) 

Where, 

 𝑘𝑡 = Shear stiffness 

 𝑢𝑡 = Shear displacement 

 

The shear stiffness 𝑘𝑠 is calculated as follow: 

𝑘𝑠 = 𝐸𝑐𝑣𝑐

2𝑟1𝑟2
𝑟1 + 𝑟2

 (2.10) 

 Where, 

 𝑣𝑐 = Contact stiffness ratio 

 

Is important to explain the difference between the contact stiffness 𝐸𝑐 and the Young’s Modulus 𝐸, 

since the first one characterizes the contact at the particle scale and tends to be larger than the Young’s 

Modulus, that is directly related to the material at the macro scale. 

 

Moreover, a limiting value for the shear force is established, based on the Mohr-Coulomb equation, 

and implemented to check whether sliding will occur at the contact of grains. 
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𝐹𝑠⃗⃗  ⃗ ≤ 𝐹𝑛⃗⃗  ⃗tan(𝜑) (2.11) 

Where, 

 𝜑 = Contact friction angle 

 

Particles in DEM can have different geometries, but in order to keep a low calculation cost, usually 

the spherical particle shape is chosen (Widulinski, 2009). It is shown that spherical particles have a 

smaller angle of repose and reduced shear strength as compared to non-spherical particles 

(Rothenburg and Bathurst, 1992), which is why to simulate the effect of particle non-spherical shape 

and grain roughness, contact moments were introduced into the model increasing the rolling 

resistance. The contact moment increments are calculated based on the rotational stiffness 𝑘𝑟 

calculated as: 

 

𝑘𝑟 = 𝛽𝑘𝑡𝑟1𝑟2 (2.12) 

Where, 

 𝛽 = Dimensionless rotational stiffness coefficient 

 

The contact moment increment is calculated based on the rotational stiffness as: 

∆𝑀 = 𝑘𝑟∆�⃗⃗�  (2.13) 

 

Finally, the rotational moment �⃗⃗�  is limited by the rotational coefficient𝜂: 

�⃗⃗� ≤ 𝜂
𝑟1 + 𝑟2

2
𝐹𝑛⃗⃗  ⃗ (2.14) 

Where, 

 𝐹𝑛⃗⃗  ⃗ = Normal contact force 

 𝜂 = Rotational coefficient 

 

The contact law ‘Linear elastic with simple friction and simple rotation’ is used for the purposes of 

this study and is described in the following section. 
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2.1.2.1.Linear elastic with simple friction and simple rotation 

 

It is comprised of two parts: One related to the simple friction and the other related to simple rotation. 

The first one can be identified as a whole law called ‘Linear elastic with simple friction’ that was 

defined by Cundall and Strack (1979) and requires four contact parameters. This law is for linear 

compression and Mohr-Coulomb plasticity surface without cohesion. 

 

 The second part of the law was introduced as a modification of the previous linear elastic and 

perfectly plastic law by Iwashita and Oda (1998). It requires six contact parameters in total, because 

a rotational component is added along with the tangential component, which will be detailed below. 

 

1. Contact stiffness 𝐸𝑐 

2. Contact stiffness ratio 𝑣𝑐 = 𝑘𝑛/𝑘𝑠 

3. Contact friction angle 𝜑 

4. Material density 𝜌 

5. Rotational stiffness 𝑘𝑟 

6. Rotational coefficient 𝜂 

 

Because this contact model is an extended variant of the ‘Linear elastic with simple friction contact’ 

law, there is a provision of ‘switches’ for the command that applies the contact law ‘CohFricMat’ that 

create the law in YADE, which is used to switch rotation or cohesion off. When the rotation 

component is switched off, it behaves as the original law, otherwise it behaves as a linear elastic with 

simple friction and simple rotation, as predicted. The response of normal and tangential contact 

models is shown in Figure 2.5.  
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Figure 2.5: Mechanical response of the (A) normal contact model, (B) tangential contact model 

and (C) rotational contact model (Basson et al., 2010). 

 

2.1.3 Stability considerations 

2.1.3.1.Numerical damping 

 

In order to keep numerical stability of the simulations and to reach a quick convergence of the 

unbalanced forces to a quasi-static balance state of the group of particles, the kinetic energy must be 

dissipated by introducing numerical damping. As contact laws does not include damping based on 

velocity, an artificial numerical damping can be introduced by decreasing forces which increase the 

particle velocities and vice versa, comparing the current acceleration sense and particle velocity sense. 

This is done by component, which makes the damping scheme clearly non-physical, as it is not 

invariant with respect to coordinate system rotation; on the other hand, it is very easy to compute 

(Šmilauer, 2021). 

 

YADE provides the function ‘NewtonIntegrator’, where damping coefficient is specified as 

‘NewtonIntegrator.damping’. This function affects all the particles in the same way, despite their own 

frequencies. 

 

2.1.3.2.Critical timestep 

 

The discrete element method uses an explicit scheme of numerical integration to solve the equations 

of motion; however, this is only conditionally stable. The stability condition is given by time interval 
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between two successive functions execution ∆𝑡, for what is useful to stablish a limit value for the time 

step called critical time step  ∆𝑡𝑐𝑟. ∆𝑡𝑐𝑟 depends on the particle properties as the quantity of particles, 

number of contacts, stiffness and contact density (O’Sullivan, 2004). Finally, to secure the stability of 

the method the time step must be lower than the critical timestep. 

∆𝑡 ≤ ∆𝑡𝑐𝑟 (2.15) 

 

The critical timestep is calculated as: 

∆𝑡𝑐𝑟 =
2

𝜔𝑚𝑎𝑥
 (2.16) 

Where, 

𝜔𝑖 = Higher natural frequency inside the system 

 

The natural frequency for each element on the system is: 

𝜔𝑖 = 2√
𝑘𝑖

𝑚𝑖
 (2.17) 

Where, 

 𝑘𝑖 = Particle stiffness 

 𝑚𝑖 = Particle mass 

 
To define the time step of the simulation, YADE provides functions such as 

‘GlobalStiffnessTimeStepper’, which calculates it based on the particle stiffness for each contact 

(𝑘𝑖 , 𝑘𝑗), varying ∆𝑡 in each iteration, due to the contact number changes along the simulation.It 

supposes each contact has normal stiffness, shear stiffness and it is oriented by the contact plane 

normal (Šmilauer, 2021). 

 

 When no contacts occur between particles the critical time step ∆𝑡𝑐𝑟 = ∞, since 𝜔𝑚𝑎𝑥 = 0. In this 

case the time step estimation is based on the wave propagation velocity 𝑣𝑤𝑎𝑣𝑒 (See Equation 2-18), 

which shall not propagate further than a minimum distance 𝑑𝑚𝑖𝑛 = 𝑟𝑖. Considering the Equation 2-

19, is noticeable that higher contact stiffness will make the timestep decrease and resulting in 

decreasing the particle displacement during the timestep, which in case of model rigid particles will 

lead to high calculation times. To conclude, the contact stiffness is an important parameter to consider 

when obtaining accurate results within a reasonable simulation time. 
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𝑣𝑤𝑎𝑣𝑒 = √
𝐸𝑐

𝜌
 (2.18) 

 

∆𝑡𝑐𝑟 = 𝑟𝑖√
𝜌𝑖

𝐸𝑖
 (2.19) 

Where, 

 𝑟𝑖 = Particles radius  

 𝜌𝑖 = Particle density 

 𝐸𝑖 = Particle contact stiffness 

 

This time step calculation is implemented in YADE by means of the ‘utils.PWaveTimeStep’ function. 

It shows significant overestimation on the critical time step since it considers a certain amount of 

number of contacts per particle and makes simplifying assumptions: the function takes a ‘reasonable’ 

contact number given the radius distribution. To guarantee a stable simulation, the developers of the 

software YADE recommend using a percentage of the critical timestep given by the PWaveTimeStep 

algorithm ∆𝑡 = 0.3∆𝑡𝑐𝑟
𝑃𝑤𝑎𝑣𝑒 (Šmilauer, 2021). 

 

2.1.4 Fabric parameters 

 

In micromechanics, soil ‘fabric’ is an all-encompassing term used to describe the arrangement of 

particles, particle groups and void spaces etc. in the soil (Mitchell and Soga, 2005). The microstructure 

of granular assemblage can be manifested by a variety of fabric indices, such as the number of contacts 

and voids (Wang and Wei, 2016). 

 

2.1.4.1.Coordination number 

 

It is the average number of interactions that particles have with neighboring particles. YADE provides 

a function called ‘avgNumInteractions()’ which returns the average number of contacts per particle or 

coordination number 𝑍, by means of the following equation: 

𝑍 =
2𝐶

𝑁
 (2.20) 
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Where, 

 𝐶 = Total number of contacts within the arrange of particles 

 𝑁 = Total number of particles 

 

Activating the ‘skipFree’ switch in the function, particles not contributing to stable state of the packing 

are skipped. The mechanical coordination number 𝑍𝑚 is then estimated following the equation given 

by Thornton (2000): 

𝑍𝑚 =
2𝐶 − 𝑁1

𝑁 − 𝑁1 − 𝑁0
 (2.21) 

Where, 

 𝑁1 = Number of particles with only one contact 

 𝑁0 = Number of particles with no contacts 

 

Coordination number is influenced by the presence of walls surrounding the package, as in this area 

there is less contact between particles, creating bigger void spaces than in the rest of the sample. This 

effect is observed in a range area up to 1-2 sphere mean diameter from the wall. The 

‘avgNumInteractions()’ function has a ‘cutoff’ parameter which can help to reduce the wall effects by 

excluding this area of the sample’s bounding box from the calculations. 

 

2.1.4.2.Void ratio 

 

In YADE the ‘voxelporosity()’ function calculates the porosity by dividing the volume into a dense 

grid of cubes or voxels, defining the porosity 𝑛 as: 

𝑛 =
𝑉 − 𝑉𝑣

𝑉
 (2.22) 

Where, 

 𝑉 = Sample volume 

 𝑉𝑣 = Volume of voxels that fall inside the sphere 

 

Then, the void ratio 𝑒 can be calculated by: 

𝑛 =
𝑒

1 + 𝑒
 (2.23) 

Where, 
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 𝑛 = Porosity 

 

One of the most important parameters for porosity calculation is the size/resolution of the cubes. High-

resolution values throw better accurate results but increase the computation time. This function is also 

used to calculate the porosity in any sub-volume defined within the sample volume allowing studying 

and reducing the wall effects. 

 

2.1.5 Inertial number 

 

According to Modenese et al. (2012), it must be ensured that numerical simulations run under quasi-

static conditions to compare the experimental and numerical results, avoiding the influence id dynamic 

effects. For a sample to be considered under quasi-static conditions, the stress-strain-volume change 

behavior must be rate-independent. To define the quasi-static state, a dimensionless parameter called 

inertial number 𝐼 is used (Da Cruz et al., 2005): 

𝐼 = 𝜀̇𝑑√
𝜌

𝜎′
 (2.24) 

Where, 

 𝜀̇ = Strain rate 

 𝜌 = Density of the material 

 𝜎′ = Mean effective stress 

 𝑑 = Mean particle size 

 

Using small values of strain rate results on small values of 𝐼 which corresponds with the quasi-static 

condition: 𝐼 ≤ 10−2  (Da Cruz et al., 2005). The inertial number should be chosen in such a manner 

that the inertia forces are smaller than the contact forces to maintain the quasi-static condition (Cundall 

and Strack, 1979) and according to the results obtained by Lopera Perez et al. (2016), low inertial 

number shows a highly dilative behavior.  

  

In quasi-static regime, the effect of inertial forces is insignificant, and the simulation under quasi-

static conditions are independent of strain rate. Lopera Perez et al. (2016) found reliable simulation 

results were obtained when the value for the inertial number is less or equal to 2.5e-3. 
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2.2 Granular soil behavior under static loading 

2.2.1 Shear strength of soil 

 

It can be defined as the ultimate or maximum shear stress the soil can withstand (Holtz and Kovacs, 

1981). The parameters that characterize the shear strength of soils are determined by several laboratory 

shear tests, but the most common one is the triaxial test. 

 

To represent the soil stress-strain behavior and the volumetric variation-strain behavior under triaxial 

compression, the deviatoric stress 𝑞 is calculated as: 

𝑞 = 𝜎′1 − 𝜎′3 (2.25) 

Where,  

 𝜎′1 = Effective major principal stress 

 𝜎′3 = Effective minor principal stress 

 

Under drained conditions the effective stresses are used, so the deviatoric stress is defined as 𝑞 =

𝜎1 − 𝜎3. Figure 2.6 shows the stress-axial strain and the volumetric strain-axial strain response of 

granular soils under drained triaxial compression. 

 

 

Figure 2.6: Granular soil (A) stress-strain behavior and (B) volumetric behavior for dense and 

loose samples. 

 

At large axial strains the ultimate shear stress is achieved asymptotically for both the dense and the 

loose sample, regardless the initial void ratio. In the same Figure 2.6, it can be observed that for 

samples prepared with the same confining pressure, loose material tends to lose volume, meaning that 
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is compressed and dense material lose volume initially so then it starts to increase the volume, having 

a dilatating behavior. 

 

2.2.2 Critical state 

 

The critical state has been defined as the state at which the soil deforms continuously at constant void 

ratio and constant stress (Zhao and Evans, 2011). This final void ratio was called critical void ratio 

and proved to be dependent of the initial confining effective stress (Taylor, 1948). 

 

 

Figure 2.7: Critical state line and volumetric response for soils under (A) drained conditions 

and (B) undrained conditions. 

 

The critical state line (CSL) represents the correlation between the critical void ratio 𝑒𝑐𝑠 and the 

effective mean stress 𝑝′ (Equation 2.26). This line enables to classify different types of soils: The soil 

samples that initial conditions located it above the CSL, will be denominated as loose, meanwhile the 

samples located under the CSL will be denominated as dense. 

 

𝑝′ =
𝜎1 + 𝜎2 + 𝜎3

3
 (2.26) 

 

Granular soil behavior can be described based on the correlation between the initial void ratio and the 

critical void ratio by means of the state parameter 𝜓 (Been and Jefferies, 1985), used to characterize 
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the volumetric response of the soil. 𝜓 < 0 corresponds to dilatant behavior, and 𝜓 > 0 corresponds to 

contractive behavior.  

𝜓 = 𝑒0 − 𝑒𝑐𝑠 (2.27) 

 

Figure 2.8: State parameter 𝝍. 

 

2.2.3 Steady state in undrained triaxial test 

 

The steady state line (SSL) represents the presence of a unique line in the plot of void ratio against 

the effective mean principal stress at which the sand undergoes large deformation under constant void 

ratio, effective confining stress and shear stress. There is also another unique line termed as a quasi-

steady state line (QSSL) which represents the combination of the void ratio 𝑒  and the effective mean 

principal stress 𝑝′ at which the minimum shear strength is mobilized at medium to large shear strain 

(Tsukamoto and Ishihara, 2022). When the void ratio is significantly large, the steady state line and 

quasi-steady state line become coincident. At a medium to greater density, the quasi-steady state 

occurs at lower effective confining stress than steady state, leaving the QSSL always located at a lower 

position than the SSL in the 𝑒 - 𝑝′ plot (Figure 2.9). 
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Figure 2.9: Steady state lines in triaxial compression for Toyoura sand void ratio against 

effective mean principal stress (Tsukamoto and Ishihara, 2022). 

 

 

Figure 2.10: Schematic diagram showing typical behavior during the isotropically 

consolidated undrained compression (a) effective stress paths (b) stress-strain relations 

(Tsukamoto and Ishihara, 2022). 

 

As shown in Figure 2.10, the point A indicates that the specimens are isotropically consolidated with 

a given effective confining stress. The different kinds of undrained behavior depend on the density of 

soil specimens: The dense sample shows dilative behavior along the state of phase transformation B 

and the steady state C. The medium dense sample shows intermediate behavior along the quasi-steady 
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state B’ and the steady state C’. The loose sample shows contractive behavior along the quasi-steady 

state B’’ and the steady state C’’, where points B’’ and C’’ coincide. 

 

 

Figure 2.11: Characteristic state of undrained shearing behavior of sands: critical state (CS), 

phase transformation state (PTS), quasi-steady state (QSS) and undrained instability state 

(UIS) (Murphy, 2007). 

 

Experimental results show that the QSS constitutes a distinct soil state, which, strictly speaking, does 

not coincide with the PT. Nonetheless, the shear at the QSS and PT are almost identical (Murphy, 

2007). 

 

Figure 2.11 shows the instability state, at which the deviatoric stress 𝑞 reaches a local and temporary 

maximum. 

 

2.3 Granular soil behavior under cyclic loading: Liquefaction phenomena 

 

According to Sladen (1985), liquefaction can be defined as a: “Phenomenon wherein a mass of soil 

loses a large percentage of its shear resistance, when subjected to static, cyclic, or shock loading, and 

flows in a manner reassembling a liquid until the shear stresses acting on the mass are as low as the 

reduced shear resistance”. 
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The load application method can be classified into three types: Slow static loading, rapid or transient 

loading and cyclic loading, as illustrated in Figure 2.12. In the first one, the load is applied 

monotonically. In case the loading to failure is executed in a shorter time than the monotonic loading, 

is called rapid or transient loading. The term cyclic loading test will be used to imply the test in which 

rapid loads are repetitively applied (Ishihara, 1996). 

 

Figure 2.12: Types of loading (Ishihara, 1996). 

 

Relevant soil parameters in the liquefaction behavior that determine the susceptibility of occurrence 

are the particle size distribution and the relative density because cyclic behavior is governed largely 

by the looseness or denseness of the material (Tsukamoto and Ishihara, 2022). The fraction of fines 

and the plasticity indices are factors that also affect directly in the material behavior, although, 

according to Seed et al. (2003), plasticity is more relevant as a susceptibility criterion. 

 

2.3.1 Particle size distribution 

 

To determine the percentage of diverse grain sizes that compose the soil, a laboratory sieve analysis 

for coarse particles of sand and laboratory sedimentation analysis for fine particle of silt and clay are 

needed. This soil classification is useful to estimate soil properties as permeability and strength. 
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Figure 2.13: Particle size of soil pertinent to soil liquefaction triggering (Tsukamoto and 

Ishihara, 2022). 

 

As Figure 2.13 shows, the particles in the range of 0.08-2 mm fall into the sand fraction, the range 

where there is a high possibility of liquefaction occurrence. The Karlsruhe fine sand mean particle 

size is 0.14 mm. 

 

2.3.2 Cyclic mobility 

 

Defined by Casagrande (1976) as the progressive softening of a saturated sad specimen when 

subjected to cyclic loading at constant water content. 

 

Figure 2.14 (A) shows the plot of stress path, in terms of the deviator stress 𝑞 against the effective 

mean stress 𝑝′, where 𝑞 is defined by Equation 2-25 and 𝑝′by Equation 2-26. After isotropic 

consolidation, the stresses have the values of 𝜎1 = 𝜎3 = 𝜎′𝑜, where 𝜎′𝑜 represents the initial effective 

confining stress. For this example, the effective mean stress 𝑝′ begins to reduce from 𝜎′𝑜=100 kPa, 

while the stress cycles application continues the excess pore water pressure increases. When the 

effective stress becomes equal to zero, and the stress point tends to move along the failure envelope. 

 

In subsequent stress cycles, the effective mean stress tends to recover as the stress deviator amplitude 

increases, creating a butterfly-like loops close to the origin of the 𝑝′ - 𝑞 plot. 
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Figure 2.14: Plots of (A) effective stress path p’-q and (B) axial strain 𝜺𝒂 - deviatoric stress q 

curves for Tohoku cilica sand Dr=60% (Tsukamoto and Ishihara, 2022). 

 

The plots 𝑞 - 𝜀𝑎 are shown in Figure 2.14 (B), where the curves exhibit rather stiff response initially, 

increasing rapidly the axial strain 𝜀𝑎 towards extension as the cyclic stress application is continued. 

This rapid increase if axial stain is associated with the development of excess pore water pressure. 

 

2.4 Conclusions 

 

An enlightenment of the Discrete Element Method was presented in the first part of the chapter, 

describing the kinematic variables, the selected contact law, the importance of reaching the stability 

conditions considering the fabric parameters during the granular assemblage and their impact on the 

soil behavior. 

The second and third part of the chapter concentrates on granular soils behavior under static and cyclic 

loading, specifically addressing triaxial tests expected behavior and providing a foundation for 

understanding the dynamic response of granular soils. 
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CHAPTER 3   METHODOLOGY 

 

  

3.1  Introduction 

 

This chapter outlines the methodology employed for conducting the modeling process. It explains each 

step of the sample preparation and the configuration of the software taking into account the type of 

boundary and the drainage conditions under the triaxial tests were executed, besides considering the 

loading conditions. 

 

3.2 Sample preparation 

3.2.1 Testing material 

 

The material under study for the development of this thesis is the ‘Karlsruhe fine sand’. The results 

of the experimental database compiled by Wichtmann and Triantafyllidis (2016) are taken as a 

reference. The tested material shown in Figure 3.1 has almost no fines content, a predominantly 

subangular shape of the grains, a mean grain size d50 = 0.14 mm and a uniformity coefficient Cu =1.5. 

The minimum and maximum void ratios emin = 0.677 and emax = 1.054 were determined from standard 

tests (at mean pressure 𝑝 = 0) according to DIN 18126. The sand properties are summarized in Table 

3.1. 

 

Figure 3.1: Karlruhe fine sand (A) tested grain size distribution curve and (B) microscopic 

view of the grains (Wichtmann and Triantafyllidis, 2016) 
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Table 3.1: Properties of Karlsruhe fine sand (Wichtmann and Triantafyllidis, 2016) 

Grain shape d50 [mm] Cu = 
𝒅𝟔𝟎

𝒅𝟏𝟎
 [-] emin [-] emax [-] 

Sub-angular 0.14 1.5 0.677 1.054 

 

3.2.2 Boundary generation: Rigid boundaries 

 

These boundaries are rigid planes defined by three-point coordinates also called ‘walls’, which collide 

with the particles enclosed by them. No particle can cross this boundary; instead, the particle bounces 

back inside the border. Similar to particles, material properties and governing contact law must be 

defined for the boundaries.  In YADE the friction can be assigned to the by specifying a friction angle 

for the wall’s material. 

 

 

 

 

Line 5 of the shown code creates the material for the walls, where ‘CohFricMat’ is the selected contact 

law which was explained in the previous chapter. Hence, the parameters to be defined are the contact 

stiffness 𝐸𝑐, contact stiffness ratio 𝑣𝑐, contact friction angle 𝜑, density 𝜌, rotational stiffness 𝑘𝑟 and 

rotational coefficient 𝜂. Line 9 creates an axis-aligned bounding box, according to the given extreme 

corners coordinates of the package given in Line 1. 
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Figure 3.2: Rigid boundaries on all sides of a cubical space. 

 

3.2.3 Boundary generation: Rigid boundaries 

 

When utilized, particles can cross this type of boundary without resistance and new particles 

automatically reappear in the same position and with the same initial translational and angular velocity 

on the opposite side of the simulation border. These boundary conditions are applied to understand 

the granular material behavior in uniform strain field and to remove the boundary effects, since in 

samples with rigid boundaries a higher void ratio is obtained. This can be visualized by considering 

the void ratio variation across layers before and after the loading application: the void ratios of the 

boundary layers in the specimen with rigid walls are larger than those of the layers in the middle 

(Zhang, 2018). 

 

 

Contrary to the rigid boundaries case, the code does not define a material for the boundaries, however 

Line 2 of the code above defines the size of the cell where the spheres are to be contained. 
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Figure 3.3: Periodic boundaries on all sides on a cubical space. 

 

3.2.4 Maximum and minimum void ratio 

 

Isotropic compression is the method used to prepare the samples and determine the maximum and 

minimum void ratio in DEM. Defining a low contact friction angle value during the compression 

phase allows to obtain the densest soil state and defining a high contact friction angle to reach the 

loosest soil state. 

 

The friction angle was set to 0° and 27° (friction coefficient 0 and 0.51), obtaining the densest and 

loosest sample respectively. Also, friction angle of 18° (friction coefficient 0.34) is considered as the 

critical friction angle. The initial confining pressure is 100 kPa, meaning that the maximum and 

minimum void ratios are to be determined under that confining condition. 

 

Knowledge of these values is important to determine the relative density of the specimens during the 

sample preparation phase. 

 

3.2.5 Compression curves 

 

In order to study the confining pressure dependence of the void ratio values, the samples where further 

compressed until reaching a confining pressure of 400 kPa. The variation of the limiting void ratios 
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𝑒𝑚𝑎𝑥 and 𝑒𝑚𝑖𝑛 against mean pressure 𝑝  is plotted. The upper limit curve must be adjusted due to the 

curve poses a destabilization at the beginning, as Figure 3.4 shows. The reason of this behavior is that 

linear contact law works effectively until the critical friction angle of soil, beyond the dilation control 

the behavior which is not modelled in the isotropic compression simulation (Basson, 2018). The 

maximum void ratio will be determined as the initial value of the ‘fixed’ curve. There is no need to 

adjust the lower limit curve because it does not present any destabilization, meaning that the minimum 

void ratio will be the first value of that curve. 

 

Figure 3.4: Compression curves and limiting void ratios determination. 

 

3.2.6 Sample preparation at target relative density 

 

Since the subangular sand grains are represented in DEM with spheres for simplification, it is not 

likely to reproduce the void ratio values of the experimental samples, which are higher for a given 

relative density. Therefore, in order to create numerical samples that are comparable to the 

experimental ones, samples are prepared with the same the relative density 𝑅𝐷 instead of with the 

same void ratio. 

 

𝑅𝐷 =
𝑒𝑚𝑎𝑥 − 𝑒0

𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛
 (3.1) 

Where,  

 𝑒𝑚𝑎𝑥= Maximum void ratio 
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 𝑒𝑚𝑖𝑛 = Minimum void ratio 

 𝑒0 = Initial void ratio of the sample at that relative density 

 

For the sample a cloud of 1000 spherical particles is created to avoid high computational times. The 

specimens are then subjected to isotropic compression at a given confining pressure according to the 

experimental samples. Samples with different relative density are prepared varying the friction angle 

degree during isotropic compression. In YADE there are two methods to reach the desired confining 

pressure: controlling the velocity that the walls move inwards with keeping the particle size constant 

or increasing the volume of the particles until they occupy the box space and exert the pressure on the 

walls. When they reach the defined confining pressure inside the bounding box, the sample is 

preparation is finished. 

 

 Once the samples are prepared at a given confining pressure, the relative density of each one is 

determined by means of the Equation 3.1.  

 

3.3 Triaxial tests 

 

The triaxial test is one of the most reliable existent methods to determine the shear strength parameters. 

The reasons why this method is widely used in research are that it provides information about the 

stress-strain behavior of the soil that the direct shear test does not, as pore pressure changes and the 

fact that the state of stress at all intermediate stages upto failure is known. It also provides more 

uniform stress conditions than the direct shear test by concentrating the stress along the plane of 

failure, and it provides more flexibility in terms of loading path (Braja, 2001). 

 

3.3.1 Monotonic drained triaxial test 

In YADE, the loading conditions for the triaxial test on samples with rigid boundaries are applied by 

the engine ‘TriaxStressController’, which maintain constant stresses or constant strain rates on 

selected walls of a paralepidid packing with rigid boundaries. The stress/strain control is defined for 

each axis using the command ‘stressMask’ and target values are defined by goal1, goal2, and goal3 

(Šmilauer, 2021). 
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During the confining phase, the bitmask ‘TriaxStressController.stressMask’ must be defined, which 

determines whether the imposed goal values are stresses or strain rates. As the value is 7, three of the 

goal values are stresses exactly as Line 5 shows. The confining pressure that will be applied is defined 

in Line 4 of the given code below. 

 

 

 

For the deviatoric loading phase, in Line 10 of the code below, the bitmask 

‘TriaxStressController.stressMask’ is set to 5, meaning that two of the goal values will be stresses, 

which is verify in Lines 13 and 14. Line 18 shows that once the defined axial strain goal is achieved, 

the simulation is terminated. 

 

 

 

3.3.2 Monotonic undrained triaxial test 

The procedure of the confining phase is the same as the drained case, the difference lies in the loading 

phase. 

 

To simulate in the undrained condition, during the deviatoric loading phase, the constant volume 

method is often used in DEM modeling (Islam, 2021) by making the assumption that the particles and 

the fluid present inside the pores are incompressible. The method mainly consists of controlling the 
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volume variation by applying strain rates in the vertical and horizontal direction, so the sample volume 

is kept constant. As the code below shows, in Line 27, Line 28 and Line 29 are defined the strain rates 

for every direction, where the strain rate values in axis X and Z are half of the vertical component 

value.  

 

 

 

In the Line 30 of the code above, the bitmask ‘TriaxStressController.stressMask’ is set to zero, 

meaning that none of the goal values are stresses. In the Line 32, Line 33 and Line 34, the goal values 

for every direction are determined and shows that all of them are the strain rates defined before. The 

simulation ends once the axial strain defined in Line 38 is reached. 

 

In this method, the change of volume of specimen and the void ratio should be very close to zero. 

However, the void ratio or porosity can have a small deviation due to the evolving of the granular 

structure during shear (Islam, 2021). 

 

For samples with periodic boundaries, to apply the loading conditions, the engine 

‘PeriTriaxController’ is used. It also has a bitmask called ‘stressMask’ which determines whether the 

imposed goal values are stresses or strain rates. The code below shows how the confining phase is 

defined. 
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During the deviatoric phase, the ‘stressMask’ is redefined as Line 73 shows. Due to the simulation is 

undrained and a constant volume is needed, the strain rate is used to set the goals. 

 

 

3.3.3 Cyclic undrained triaxial test 

 

The cyclic triaxial test is the most common laboratory method used in practice to evaluate the 

liquefaction response of soils (Basson, 2018). 

 

After the confining phase, the constant volume is kept by controlling the strain rates in each direction, 

same as in the monotonic undrained test. The strain rates used in each direction are shown in Lines 

43, 44 and 45 of the code below. In order to apply shear loading cycles a deviatoric stress amplitude 

𝑞𝑎𝑚𝑝𝑙 is specified, so the loading direction will switch by changing the sign of the strain rates once 

the specified value of deviatoric stress amplitude is reached. 
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In the above code, the loading direction is changed when 𝑞 = 𝑞𝑎𝑚𝑝𝑙 =|60| kPa, redefining the goal 

values for each axis. At the vertical axis where there is compression will switch to extension and the 

two horizontal axes will switch from extension to compression as showed in Figure 3.5. 

 

Figure 3.5: Scheme of the cyclic loading application on 2D sample (Wang et al., 2016). 

 

3.3.4 Quasi-static condition 

To check the quasi-static criterion, the inertial number 𝐼 is calculated according to Equation 2-24 for 

the simulation conditions. Lopera Perez et al. (2016) proposed that the inertial number should be less 

than or equal to the upper limit of 2.5 x10-3 to ensure DEM simulations run under quasi-static regime. 

In this study, strain rates of 0.08, 0.05, 0.02 and 0.001 are used. The samples are compressed at a 

confining stress of 200 kPa and the density of the particle is 2650 kg/m3. The mean diameter of the 

grains is 0.14 millimeters and the particle size distribution was multiplied in DEM by a scale factor 

of 70.  

  

An example of Inertial number calculation for a strain rate of 0.08 is given below: 

𝐼 = 0.08 ∗ 70 ∗ 0.14[𝑚𝑚] ∗ 10−3 ∗
√

2650 [
𝑘𝑔
𝑚3]

200000[𝑃𝑎]
= 9.02𝑥10−5 

(3.2) 

 

The Table 3.2 summarizes the 𝐼 values obtained for each strain rate. As is can be seen, in all cases the 

inertial number is below the limit value. 
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Table 3.2: Inertial number for each strain rate used in the study. 

�̇� 𝑰 

0.001 1.13 E-06 

0.02 2.26 E-05 

0.05 5.64 E-05 

0.08 9.02 E-05 

 

3.3.5 Initial parameters 

 

Molina (2022) proposed a set of contact law parameters to simulate the Karlsruhe fine sand behavior. 

These parameters showed a good correlation with the behavior under monotonic drained triaxial tests. 

 

Table 3.3: Inertial Contact law parameters proposed by Molina (2022). 

Parameter Value 

Contact stiffness 𝐸𝑐 400 [MPa] 

Contact stiffness ratio 𝑣𝑐 0.3 

Rotational stiffness 𝑘𝑟 0.05 

Rotational coefficient 𝜂 0.25 

 

These contact law parameters lead to obtain the maximum void ratio 𝑒𝑚𝑎𝑥=0.9 and the minimum 

𝑒𝑚𝑖𝑛=0.67. In order to validate them, simulations of drained and undrained triaxial tests are carried 

out on samples isotropically compressed at 200 kPa (See Table 3.4 and Table 3.5). An inter particle-

friction coefficient of 0.51 was applied.   

 

Table 3.4: Program of drained monotonic triaxial compression tests according to Molina 

(2022) parameters. 

EXPERIMENTAL SAMPLES  DEM SAMPLES 

 𝒆𝟎 𝑹𝑫 
Frictional 

coefficient 
𝒆𝟎 𝑹𝑫 

TMD3 0.975 0.21 0.287 0.848 0.23 

TMD13 0.824 0.63 0.070 0.737 0.70 

TMD23 0.706 0.92 0.035 0.697 0.88 

 

 

Table 3.5: Program of undrained monotonic triaxial compression tests according to Molina 

(2022) parameters. 

EXPERIMENTAL SAMPLES  DEM SAMPLES 

 𝒆𝟎 𝑹𝑫 
Frictional 

coefficient 
𝒆𝟎 𝑹𝑫 

TMU2 0.814 0.64 0.105 0.757 0.62 
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TMU5 0.946 0.29 0.287 0.848 0.23 

TMU6 0.728 0.87 0.070 0.710 0.82 
 

 

Figure 3.6: (A) Stress-strain curves and (B) volumetric behavior of soil samples prepared with 

Molina (2022) parameters subjected to triaxial test under drained conditions. 

 

Although the loose and the medium dense specimen show a more dilative behavior than the 

experimental curves, the samples show a good match with the experiments overall, especially the 

dense specimen. Moreover, Figure 3.6 (A) shows the critical state is reached by all the specimens at 

an axial strain of approximately 30%.  

 

 

Figure 3.7: (A) Stress paths and (B) stress-strain relationship of soil samples prepared with 

Molina (2022) parameters subjected to triaxial test under undrained conditions. 
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Figure 3.8: Coordination number of soil samples prepared with Molina (2022) parameters 

subjected to triaxial test under undrained conditions. 

  

The samples with RD=0.82 and RD=0.62 do not present a good correlation with the experimental 

behavior: both of them show much stiffer response than the curves obtained experimentally. There is 

no loss of mean effective stress during simulation. On the other hand, Figure 3.7 (A) shows how the 

loose sample with RD=0.23 started losing effective stress as expected, but once the stress path finds 

the steady state line (SSL) loses all its strength at an axial strain value around 3%. (Figure 3.7 (B)). 

This behavior can also be observed in Figure 3.8, where the coordination number of the loose sample 

suddenly drops down to zero, meaning the specimen loses its resistant structure. 

 

Since the proposed set of parameters does not validate the material behavior under undrained 

conditions, a recalibration is to be done in order to better capture Karlsruhe fine sand behavior. 

 

3.3.6 Recalibration 

 

Several researchers have studied the influence that each parameter of the contact model in DEM has 

on the material behavior under drained triaxial test conditions (Basson, 2018; Islam, 2021; Molina, 

2021). Calibration of the contact model parameters is based on the trial-and-error method and the 

effect of each parameter was studied separately, by varying one parameter at the time while 

maintaining the rest constant. 
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The calibration process is as follows (Basson, 2018): 

 

1. Provide nominal values to the parameters based on literature. 

2. Calibrate the contact stiffness, which controls the initial response of the stress strain curve 

and macroscopic Young’s modulus of the material. 

3. Calibrate the contact stiffness ratio, which controls the initial volumetric response of the 

material. 

4. Calibrate the rotational stiffness, which controls the dilation angle and volume change 

response. 

5. Calibrate the rotational coefficient, which controls the peak stress in the stress strain curve. 

 

Figure 3.9 shows the typical behavior of dense and loose samples in triaxial testing under drained 

conditions showing the influence of different contact parameters on the response of material.  

 

Once the contact law parameter has been chosen, the relative density of the sample must be determined 

to check whether the combination of selected parameters need readjustment. Figure 3.10 shows a 

scheme of the calibration process.   
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Figure 3.9: Typical behavior of samples in triaxial testing and the influence of contact 

parameters on response (Basson et al., 2020). 
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Figure 3.10: Calibration process of the material (Molina, 2021). 

 

 

For the recalibration, cubic samples of length, width and height of 0.10 m with rigid boundaries are 

created using the process explained in Section 3.1 and isotropically compressed at a confining pressure 

of 200 kPa. Table 3.6 summarizes the selected new set of parameters for the Karlsruhe fine sand. 

 

Table 3.6: New contact law parameters. 

Parameter Value 

Contact stiffness 𝐸𝑐 200 [MPa] 

Contact stiffness ratio 𝑣𝑐 0.3 

Rotational stiffness 𝑘𝑟 0.05 

Rotational coefficient 𝜂 0.25 

 

The friction coefficient is adjusted as well to a value of 0.34. With these parameters, the maximum 

and minimum void ratio shown in Table 3.7 were obtained. 

 

Table 3.7: Obtained maximum and minimum void ratio. 

 𝑒𝑚𝑖𝑛 𝑒𝑚𝑎𝑥 

Rigid boundaries  0.65 0.88 
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Once the samples are prepared at a given confining pressure, the relative density of each one is 

determined by means of the Equation 3.1.  

 

 

Table 3.8: Program of drained monotonic triaxial compression tests according to recalibrated 

parameters using rigid boundaries. 

EXPERIMENTAL SAMPLES  DEM SAMPLES 

 𝒆𝟎 𝑹𝑫 𝒆𝟎 𝑹𝑫 

TMD8 0.859 0.52 0.752 0.55 

TMD13 0.824 0.63 0.737 0.62 

TMD23 0.706 0.92 0.664 0.94 

 

Table 3.9: Program of undrained monotonic triaxial compression tests according to 

recalibrated parameters using rigid boundaries. 

EXPERIMENTAL SAMPLES  DEM SAMPLES 

 e0 𝑹𝑫 e0 𝑹𝑫 

TMU2 0.814 0.64 0.737 0.62 

TMU5 0.946 0.29 0.803 0.32 

TMU6 0.728 0.87 0.683 0.85 

 

Table 3.10: Program of drained cyclic triaxial compression tests according to recalibrated 

parameters using rigid boundaries. 

EXPERIMENTAL  SAMPLES  DEM SAMPLES 

 e0 𝑹𝑫 e0 𝑹𝑫 

TCUI7 0.8 0.67 0.723 0.68 

   0.769 0.47 

   0.803 0.32 

 

In Table 3.8, Table 3.9 and Table 3.10 are summarized the experimental samples together with the 

corresponding numerical samples that are to be compared with under the following simulated tests: 

drained triaxial test with monotonic loading, undrained triaxial with monotonic loading and undrained 

triaxial test with cyclic loading .  

 

Also, numerical samples to be tested under undrained conditions using periodic boundaries were 

prepared (See Table 3.11), in which the same frictional coefficient used on the samples with rigid 

boundaries was applied. 
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Table 3.11: Program of undrained monotonic triaxial compression tests according to 

recalibrated parameters using periodic boundaries. 

EXPERIMENTAL SAMPLES  DEM SAMPLES 

 e0 𝑹𝑫 
Frictional 

coefficient 
e0 

TMU2 0.814 0.64 0.105 0.64 

TMU5 0.946 0.29 0.176 0.68 

TMU6 0.728 0.87 0.035 0.55 

 

3.4 Conclusions 

 

The followed method for the modelling has been explained. The understanding of effect of each 

contact law parameter is primordial for an accurate calibration of the model, trying to approach the 

initial conditions and results obtained with the experimental samples. It is important to observe the 

behavior of the compression curves to set the initial conditions, according to the maximum and 

minimum void ratios. 
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CHAPTER 4   RESULTS AND DISCUSSIONS 

 

 

4.1  Introduction 

 

This chapter presents the results of each triaxial test modelled under different loading and drainage 

conditions. The obtained results were compared to the experimental results obtained by Wichtmann 

and Triantafyllidis (2016).  

 

4.2 Monotonic drained triaxial test 

 

The simulations were performed in samples with different relative densities, summarized in Table 3.8. 

The two loosest samples show good agreement with the experimental results obtained by Wichtmann 

and Triantafyllidis (2016) in the volumetric strain-axial strain plot (See Figure 4.1), while the densest 

sample shows a less dilative behavior than the experiment. 

 

Figure 4.1: Volumetric behavior in drained monotonic triaxial tests performed on samples 

prepared different relative densities. 
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Figure 4.2: Stress-strain relationships measured in drained monotonic triaxial tests performed 

on samples prepared different relative densities. 

 

In Figure 4.2 the stress-strain behavior is presented. The simulations curves of the three samples show 

a good adjustment with the experimental curves for low values of axial strain, underlining an adequate 

choice of the contact stiffness. However, the peak deviatoric stresses are still not well captured, 

especially for the densest sample.  

 

For numerical simulations the critical state is reached at an axial strain close to 20% whereas in the 

experiment the critical state is possibly reached at an axial deformation of 30-35%. Nevertheless, both 

experiment and DEM simulations, achieve the same value of ultimate deviatoric strength.  

 

4.3 Monotonic undrained triaxial test 

 

4.3.1 Rigid boundaries 

The numerical results obtained under monotonic undrained triaxial compression compared to the 

experiments are presented in Figure 4.3 and Figure 4.4. The behavior of the two numerical specimens 

with lower relative density show a good fit with the experimental response. The stress-strain curves 

showed in Figure 4.3 for samples with RD=0.35 and RD=0.62 have similar slopes to the experimental 

results and they reach a similar ultimate deviatoric strength. Contrariwise, this behavior is not 
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observed in the sample with RD=0.88, as at the same ultimate axial strain, the numerical value of 

deviatoric stress is below the experimental curve.  

 

 

Figure 4.3: (A) Stress-strain relationship measured in undrained monotonic triaxial tests with 

different relative densities and (B) zoomed version. 

 

In Figure 4.4 the mean effective stress against deviatoric stress is plotted. The specimen with relative 

density of DR=0.35 shows a good adjustment with the experimental, the quasi-steady state (QSS) and 

the steady state line (SSL) slope are well achieved, even though the instability state (IS) point is not 

reached, as the deviatoric stress value, for the same pressure value, is higher than the experimental 

result. On the other hand, neither the sample with relative density RD=0.62 nor the sample with 

RD=0.88 reached the QSS or the IS point. 

 

Figure 4.5 shows the variation of the coordination number along the simulation. It can be seen how 

the number of contacts of the sample with RD=0.35 drops to a very low value until it reaches the QSS 

point, and both coordination number and mean pressure begin to increase. Differently, the couple of 

densest samples once they reach the steady state line (SSL), the coordination number increase.  
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Figure 4.4: (A) Stress path measured in undrained monotonic triaxial tests with different 

relative densities and (B) zoomed version. 

 

 

Figure 4.5: Coordination number measured in undrained monotonic triaxial tests with 

different relative densities against (A) axial strain and (B) mean pressure. 

 

Samples with similar relative density but compressed under different confining pressures have also 

been plotted in Figure 4.6 and Figure 4.7. In the stress-strain plot can be seen that the ultimate 

deviatoric stress and the slope of the sample compressed at 200 kPa is similar the experimental results, 

while the samples with higher confining pressures have an ultimate deviatoric stress value below the 

experimental curve. However, the Figure 4.7 shows that the specimen with highest confining pressure 
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has a better adjustment than the other cases due to it shows some loss in the mean effective stress, 

approaching the experimental QSS. In addition, the three samples emulate the slope of the steady state 

line well. Figure 4.8 shows how the coordination number of the three specimens drops until they reach 

the SSL. 

 

Figure 4.6: Stress-strain relationship measured in undrained monotonic triaxial tests with 

different confining pressures. 

 

 

Figure 4.7: Stress path measured in undrained monotonic triaxial tests with different 

confining pressures. 
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Figure 4.8: Coordination number measured in undrained monotonic triaxial tests with 

different confining pressures against (A) axial strain and (B) mean pressure. 

 

4.3.2 Periodic boundaries 

 

 In Figure 4.9 and Figure 4.10, the results of tests on samples prepared with periodic boundary 

conditions (See Table 11) are compared with the experiment and results obtained from tests on 

samples with rigid boundaries. For the sample with RD=0.62, the deviatoric stress at the same ultimate 

axial strain of the experimental curve, is reached better than the sample prepared with rigid walls. 

Even though the stress-strain curve of the densest sample with periodic boundaries is now lower and 

do not reach the ultimate deviatoric stress, the adjustment to the initial part of the experimental curve 

is better than its equivalent with rigid boundaries. 
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Figure 4.9: Stress-strain relationship measured in undrained monotonic triaxial tests with 

different confining pressures and periodic boundaries. 

 

As shown in Figure 4.10, the loosest sample experienced some instability when is close to the steady 

state line and, even the specimen with RD=0.62 and periodic boundaries shows some approaching to 

the QSS of the experimental curve, they do not fully simulate the experimental behavior.  

 

 

Figure 4.10: Stress path measured in undrained monotonic triaxial tests with different 

confining pressures and periodic boundaries. 
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4.4 Cyclic undrained triaxial test 

 

The behavior of the samples showed in Table 3.10 tested under cyclic undrained triaxial compression 

is presented below. The samples with RD=0.68 and RD=0.47 do not experience liquefaction to be 

analyzed. 

 

A loose sample with RD=0.32 was tested by applying stress cycles. It can be observed that the 

deviatoric stress values exceed the established limits (60 kPa), exposing a dynamic effect that is 

possibly due to the strain rate value. The sample presents a densification of loading cycles at the 

beginning of the simulation, but then the mean pressure decays per cycle are similar to the 

experimental results. Once the mean stress reaches zero, half a butterfly-like loop its generated, 

meaning that the sample reached the liquefaction state (See Figure 4.11). 

 

 

Figure 4.11: Stress path in undrained cyclic triaxial tests with isotropic initial stress and stress 

cycles performed on loose sample (RD=0.32). 

 

 Figure 4.12 shows how the axial strain of the numerical sample reach 8% approximately after one 

post-liquefaction cycle, which is larger the experimental results. That can be explained due to the 

difference of relative densities between both numerical and experimental samples. 
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In Figure 4.13 also can be seen the densification previously described. The simulation stars with a 

coordination number of 3.7 approximately, and for a large number of cycles it stays within the range 

of values [3.2 - 3.7]. The coordination number undergoes cyclic variations with an overall decreasing 

trend during pre-liquefaction loading. Once the coordination number drops below 1.9 the sample 

enters an instable state and will not regain effective stress until the coordination number exceed 1.9 

again, indicating that the sample actually reached the liquefaction state and experienced deformation.  

 

Figure 4.12: Stress-strain relationship in undrained cyclic triaxial tests with isotropic initial 

stress and stress cycles performed on loose sample (RD=0.32). 

 

Figure 4.13: Coordination number against deviatoric stress in undrained cyclic triaxial tests 

with isotropic initial stress and stress cycles performed on loose sample (RD=0.32).  
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4.5 Conclusions 

 

In this chapter, the results of the triaxial test modelling under different loading and drainage conditions 

were presented. DEM proved to be an appropriate tool to understand the micro-mechanical 

parameters. Numerical drained triaxial testing was able to replicate the dilative and contractive 

behavior. Under monotonic undrained loading conditions, the SSL slope is well resembled in all cases. 

In the simulations of undrained cyclic triaxial test did not show a significant relaxation in the mean 

effective stress. What remains for the future is to calibrate the rotational stiffness and rotational 

coefficient separately from the rest of the contact law parameters.
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CHAPTER 5   CONCLUSIONS 

 

This research aimed to study and evaluate the role microscopic parameters of a complex granular 

geometry play in the macroscopic behavior of Karlsruhe fine sand by means of DEM simulations of 

the triaxial test in both drained and undrained conditions under monotonic and cyclic loading.  

 

Since the real material is idealized as a packing of spherical particles for sake of simplification, the 

introduction of contacts moments is needed to simulate the interlocking effect of the sand grains 

subangular shape. Numerical drained triaxial testing using calibrated parameters was able to replicate 

the dilative and contractive behavior and, at large deformation, the tested samples reach the critical 

state (𝑞 = 500 kPa), independent of the initial density. DEM proved to be an appropriate tool to 

understand the micro-mechanical parameters that affect the macroscopic stress-strain-volume change 

response of samples.  

 

Simulations under monotonic undrained conditions were carried out with both rigid and periodic 

boundaries. In both cases, the two denser samples show an initial stiffer response than the experiment. 

However, the loosest sample resembled well the QSS of the experiment and both contractive and 

dilative tendencies can be observed. Although the ultimate deviatoric stress of the experiments is not 

reached by the dense sample, the SSL slope is well resembled in all cases.  

 

In the simulations of undrained cyclic triaxial test, DEM samples with RD=0.68 and RD=0.47, did 

not show a significant relaxation in the mean effective stress, demonstrating the samples were far from 

liquefaction. It correlates with the results obtained in the monotonic undrained triaxial test with rigid 

boundaries, where the mean effective stress of the densest samples did not decrease or reach the QSS. 

However, the sample with RD=0.32 presented a gradual decrease of mean stress after each load cycle 

towards zero, facing a complete loss of shear strength during liquefaction. 

 

The soil behavior under cyclic loading is correlated to the coordination number. The fabric parameter 

decreases with the increasing of number of cycles. It is annulled once the liquefaction is reached, 

allowing to evaluate the evolution of fabrics and identify a stability threshold below which the 

assembly has no longer a resistant structure. 
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Limiting void ratios were computed using isotropic compression and compared to the values reported 

in the literature. Although rotational law was used to simulate the angularity of the particles, limiting 

void ratios for DEM simulation were lower than the ones reported by Wichtmann and Triantafyllidis 

(2016); this evidences the inability to completely overcome the lack of use of the real shape of the 

grains. 

 

In this study, an attempt of improving an existing calibration of the contact law parameters was done 

in order to validate it for different testing conditions. For further development, to calibrate the 

rotational stiffness and rotational coefficient separately from the rest of the contact law parameters 

would be convenient. This way there will be a general set of contact law parameters for the sand 

(contact stiffness 𝐸𝑐, contact stiffness ratio 𝑣𝑐, contact friction angle 𝜑 and density 𝜌) and a set of 

rotational parameters (rotational stiffness 𝑘𝑟 and rotational coefficient 𝜂) trying to better simulate the 

interlocking effect of the sand grains for each loading and drainage conditions. 
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Resumen 

 
Numerical methods are being implemented widely in geotechnical engineering; however, methods 

based on continuum mechanics are not able to provide microscale level information. Discrete 

Element Method (DEM) discretize the space into discrete particles and, through the analysis of 

micromechanical parameters that define the contact model, macroscopic behavior can be studied. 

DEM can capture the information at the particle level, and it has proven to be a valuable tool in the 

analysis of static and cyclic behavior of soils. In this study, an attempt of improving an existing 

calibration of the contact law parameters for Karlsruhe fine sand has been made to validate it for 

different testing conditions using DEM. Samples are prepared at target relative density and two types 

of boundary conditions are applied to explore its effect on DEM simulation. The contact law 

parameters for the sand are recalibrated based on the experimental results of Wichtmann and 

Triantafyllidis (2016). Under drained conditions, the numerical samples are able to replicate the 

volumetric change behavior, the dilative and contractive behavior and the initial stiffness of the 

experiment. The undrained behavior is examined by applying a constant volume method, where for 

the loose state there is a good agreement with the experimental results. Cyclic undrained results for 

dense samples correlates with the outcomes obtained under monotonic undrained conditions, 

showing a stiffer response than the experiment. 

 
 


