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Abstract

The vast volume of astronomical data generated nightly by observatories, such as the

Vera C. Rubin Observatory, presents significant challenges in the classification and

analysis of light curves. These curves, characterized by their unique distributions across

various bands, irregular sampling, and varied cadences, necessitate sophisticated models

capable of generalization across diverse astronomical surveys. In this work, we conducted

empirical experiments to assess the transferability of a light curve transformer model to

datasets with different cadences and magnitude distributions, utilizing various positional

encodings. We proposed a new approach to directly incorporate temporal information into

the output of the last attention layer. Additionally, we modified the common finetuning

approach to assess the adaptability of the light curve transformer in contexts where the

cadence is markedly different from that of the dataset used for its pretraining. Our results

indicate that using trainable positional encodings leads to significant improvements in

transformer performance and training times. Our proposed positional encoding, applied to

the attention mechanism, can be trained more quickly than the traditional non-trainable

positional encoding transformer, while still achieving competitive results when transferred

to other datasets. Our approach to adapting the model to a dataset with a very different

cadence demonstrates that, in terms of reconstruction of astronomical time series, both

training time and computational space can be reduced. This approach achieves an

adaptation in the cadence of the survey without the need to train the entire model,

indicating a promising direction for future research in astronomical data analysis.
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Chapter 1

Introduction

The Vera C. Rubin Observatory (LSST; Ivezić et al. 2019) will produce a vast number

of observations every night in the sky, reaching up to 40 million events per night where the

brightness or location of a source change (Sánchez-Sáez et al. 2021). The classification of

this data is of utmost importance to astronomers as it allows them to acquire information

about the physical characteristics and properties of astronomical objects.

In recent years, the development of deep learning models has aided in categorization of

light curves (Charnock and Moss 2017; Donoso-Oliva et al. 2021; Muthukrishna et al. 2019).

However, light curves pose a considerable challenge as they have different distributions in

each of the bands, are irregularly sampled and have varying cadences depending on the

telescope at which measurements were taken (Pasquet et al. 2019; Yu et al. 2021). These

peculiarities make it difficult to generate models that are sufficiently generalizable to all

astronomical surveys.

Transformers, a type of deep learning model that use self-attention, have demonstrated

exceptional performance on light curves (Astorga et al. 2023; Donoso-Oliva et al. 2022;

Pimentel et al. 2022). In these models, temporal information is conveyed through positional

encoding (PE), typically provided by sine and cosine functions with varying frequencies

(Vaswani et al. 2017). However, the original proposal of PE was made in the context of text

data, assuming uniform word spacing, which differs from the characteristics of astronomical

time series. To tackle this challenge, we have focused on enhancing the robustness of the



1. Introduction 2

PE definition to effectively generalize to different astronomical surveys.

Currently, there is limited research utilizing positional encodings in transformer models

to represent temporal information in light curves. Allam Jr and McEwen (2022),

Donoso-Oliva et al. (2022), and Morvan et al. (2022) employed non-trainable positional

encodings by directly inserting timestamps into the predefined function in Vaswani et al.

(2017), achieving encouraging results compared to traditional deep learning methods.

Pimentel et al. (2022) and Astorga et al. (2023) proposed a new module based on Fourier

decomposition, with M harmonic components and trainable parameters, to induce

temporal information. Additionally, Pan et al. (2022) utilized the rotary positional

encoding proposed in Su et al. (2021) to explicitly leverage relative positions in the

self-attention formulation. However, no studies have analyzed the effect of positional

encoding of a transformer model within the light-curve domain.

Motivated by the above, we test different PEs, in a light curve transformer, and

evaluate their performance in the reconstruction of astronomical time series (pretraining

and finetuning stages) and the classification of variable stars. We use the architecture

proposed in Donoso-Oliva et al. (2022), which is a self-supervised light curve transformer

model. We perform an empirical comparison and analysis of several PEs on astronomical

surveys with different cadences. Additionally, we propose a new approach to incorporate

the temporal information and investigate the potential of adapting a transformer model to

a dataset with a significantly different cadence, without the need to train the entire model.

The remainder of this work is organized as follows: Firstly, Chapter 2 introduces the

fundamental concepts underlying the conducted research. Next, Chapter 3 elaborates on

the employed methodology in detail. Subsequently, Chapter 4 presents the analytical and

experimental results, discussion and limitations. Lastly, the final conclusions and future

research are given in Chapter 5.

1.1 Hypothesis

1. Employing a trainable positional encoding during pretraining yields improved

performance in terms of reduced total pretraining time without decrease in
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classification performance.

2. A trainable positional encoding within a light curve transformer is capable of capturing

sufficiently representative temporal relationships in a specific dataset.

3. To adapt a transformer pretrained on an astronomical dataset with a given cadence

to another dataset with a noticeably different cadence, we only need to train the

positional encoding.

1.2 Objectives

1.2.1 General Objective

Implement and evaluate trainable positional encodings on a light curve transformer to

improve the ability to adapt to astronomical surveys with different cadences.

1.2.2 Specific Objectives

i Implement trainable positional encodings, acquired from the existing literature, within

the ASTROMER architecture proposed by Donoso-Oliva et al. (2022).

ii Generate datasets with varying cadences, derived from the astronomical survey on

which the transformer was pretrained.

iii Conduct experimental evaluations on different astronomical surveys during both the

pretraining and finetuning stages, assessing performance in terms of Root Mean

Square Error (RMSE), R-Squared (R2), and total training time. Additionally,

perform experimental evaluations in the classification stage, assessing performance

based on the F1-score metric.

iv Analyze, compare, and discuss the effects of positional encoding on the reconstruction

and classification of light curves.
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Chapter 2

Theoretical Background

This chapter presents the important concepts that support this thesis and is distributed

in two main sections: Section 2.1 defines relevant astronomical concepts and Section 2.2

explores necessary concepts, from the point of view of deep learning, to understand the

work done.

2.1 Astronomy

In astronomy, spectroscopy and photometry are two different techniques used to measure

and analyze the light emitted by celestial objects. Spectroscopy measures light in terms of

its wavelength, which allows light to be broken down into its different spectral components,

while photometry measures the intensity of light emitted by a celestial object in a specific

range of wavelengths, usually in a narrow band of the electromagnetic spectrum.

2.1.1 Spectroscopy

Spectroscopy is the study of the interaction between electromagnetic radiation and

matter, with absorption or emission of radiant energy (Kirchhoff and Bunsen, 2008). In

astronomy, it is an observational technique oriented to the analysis of the spectral

composition of the light received from the celestial objects (Huggins and Miller, 1863).

Spectroscopy allows to analyze the composition of that light and deduce how much energy
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is received from a stars for each wavelength. Astronomers use that wavelength to identify

the chemical components of the objects through the absorption lines obtained in the

spectrum. In particular, this technique allows to analyze the light emitted or absorbed by

celestial objects and obtain detailed information on its temperature, rotation and

displacement speed with respect to the observer, among other aspects, as well as

concentrations of Hydrogen, Helium and traces of Silicon, among others elements, with

which it is possible to categorize different types of astronomical objects.

Although spectroscopy is a powerful technique for the study of astronomical objects,

limitations in terms of the exposure time needed to obtain an acceptable signal-to-noise

ratio in each wavelength band makes it unfeasible to use this technique on all celestial

objects that are seen every night in the sky.

2.1.2 Photometry

Unlike spectroscopy, which decomposes light into its spectral components, photometry

does not allow detailed detection of absorption or emission lines and uses broad filters to

measure the total amount of light emitted by an astronomical source in a given wavelength

range. The information extracted from photometry gives the possibility to produce light

curves, which represent the variability in light intensity with respect to time. In particular,

this process is performed using different specific ranges of light frequencies (photometric

bands) by means of optical filters located in the telescopes, which provides a more complete

profile to characterize a celestial object. Because information is available for the same object

in different bands or filters, a light curve in different bands can be viewed as a multivariate

time series with irregular observations for each photometric band.

2.1.3 Photometric Flux

The measurement obtained through the photometer corresponds to the photometric flux,

which is a measure of the amount of emitted light by a source in a given unit of time and area.

This measurement can be obtained by counting the amount of photons passing through an

aperture and falling on a detector. In general, there are several factors that can cause errors
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in brightness measurements in astronomy, some of these are: uncertainty about the mean

sky level due to noise in the annular space and Poisson noise due to the Poissonian nature

of photon emission (Larsen, 2010; McCracken, 2017). Therefore, it is common to associate

the photometric flux measurement , denoted by Fs ≥ 0, with an error estimate, represented

by σ ≥ 0. Careful calibration of observing instruments and repeated measurements of a

celestial object help to minimize these errors.

2.1.4 Apparent Magnitude

Photometric flux measurement can be used to calculate the apparent magnitude of a

celestial object. Magnitude is represented through a logarithmic scale in which an increase of

5 units represents a 100-fold decrease in the amount of light emitted by the object (Chromey,

2016).

To calculate the apparent magnitude, the measurements of the photometric flux of the

celestial object are compared with the measurements of a known reference star. The

apparent magnitude can be calculated using the following formula:

m = −2.5 log10( Fs

Fref

) + mref , (2.1)

where m is the apparent magnitude of the celestial object, Fs is its measured photometric

flux, Fref is the measured photometric flux of the reference star, and mref is the known

apparent magnitude of the reference star. Like flux measurement, the apparent magnitude

has an associated observation error. Therefore, magnitude measurements are expressed in

the form m ± σm, where σm ≥ 0 is the magnitude of the observational error.

2.1.5 Variable Stars

Variable stars are stars that change their brightness or apparent magnitude regularly or

irregularly with time. These changes in the brightness may be due to a variety of factors,

including variability in the rate of energy production in the star’s core, variability in the

amount of material in the star’s surface, or the presence of nearby stars (Percy, 2007).
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There are many types of variable stars, but some of the most common are as follows:

• Cepheids: are regular variable stars with periods of variation in brightness that can

be used to measure the distances to galaxies and star clusters.

• Eruptive flares: are variable stars that undergo repetitive flares that suddenly and

temporarily increase in brightness.

• Eclipsants: are variable stars where the variability in brightness is due to the

occlusion of a nearby star.

• RR Lyrae: are regular variable stars that are common in ancient galaxies and are

used as indicators of the distance to them.

• Miras: are variable stars of spectral type M that undergo slow and regular changes

in brightness over months or years.

• Novae: are variable stars that undergo repetitive and explosive flares that suddenly

and temporarily increase in brightness. Unlike Eruptive Flares, Novae has flares much

more intense and extensive eruptions.

• Eclipsing binaries: are variable stars consisting of two stars in elliptical orbit that

undergo changes in brightness due to mutual occlusion.

The classification of astronomical objects holds significant importance for multiple

reasons: (i) it contributes to an enhanced comprehension of stellar physics, (ii) it aids in

measuring distances to remote galaxies through the comparison of apparent magnitude

with intrinsic magnitude, (iii) it enables astronomers to discern patterns and trends in the

variability of stars, and (iv) it facilitates the study of the distribution and abundance of

diverse categories of variable stars in distinct regions of the universe, thereby providing

valuable insights into the formation and evolution of galaxies as well as stellar evolution.

2.2 Deep Learning

Deep learning is a subarea of machine learning based on artificial neural networks

(ANN) with hidden layers. The particularity of these networks is that they can extract
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complex patterns from large amounts of data solving tasks such as: image recognition,

natural language processing (NLP), text generation and audio classification, among others.

2.2.1 Perceptron

The fundamental building unit of an ANN is the perceptron, which is an artificial neuron

that seeks to mathematically model the behavior of a human neuron. This concept was

originally developed by Rosenblatt (1957). The perceptron is defined as follows:

ŷ = σ(wT x + b), (2.2)

where x ∈ Rn represents the input vector containing n values, w ∈ Rn represents the

parameters of the perceptron, b the intercept or bias, and ŷ represents the predicted output

of the model. The function σ, known as the activation function, is a nonlinear function

that transforms the result of the linear transformation and determines the output of the

perceptron.

2.2.2 Multilayer Perceptron (MLP)

The combination of several perceptrons, with interconnected hidden layers, forms a

multilayer perceptron (MLP, Rumelhart et al. 1986) and is a specific type of Feed-Forward

Neural Network (FNN), where the hidden layer units perform nonlinear transformations on

the input data. Mathematically, the MLP can be defined as:

ŷ = σ(W T x + b), (2.3)

where W ∈ Rm×n represents the matrix of parameters called weights, x ∈ Rn is the input

of the layer, ŷ ∈ Rm is the output of a layer of m neurons, b ∈ Rm is a vector containing

the bias of each neuron and σ is the activation function.

There are a wide variety of activation functions used in deep learning, however, the most

commonly used are the sigmoidal (Sigmoid), hyperbolic tangent (Tanh) and rectifying linear
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unit (ReLU) functions (Dubey et al., 2022). The equations are shown below:

Sigmoid (x) = 1
1 + e−x

, (2.4)

Tanh (x) = ex − e−x

ex + e−x
, (2.5)

ReLU (x) = max{0, x}. (2.6)

Training a multilayer perceptron involves updating the weights associated with each

connection among neurons to minimize a loss function that measures the difference

between predicted and real outputs. This process is performed using different optimization

algorithms, however, one of most common is gradient descent (Sun et al., 2019). In this

framework, the most frequent loss function for regression and classification are the mean

square error and the categorical cross-entropy loss function respectively (Wang et al.,

2020), which are defined as:

MSE (w) = 1
N

N∑
i=1

(yi − ŷi)2 , (2.7)

CCE(w) = −
N∑

i=1

C∑
c=1

yic log(ŷic), (2.8)

where ŷi corresponds to the model output for data i, yi corresponds to the actual desired

output for data i, C is the number of classes, and N is the total number of data used to

calculate the loss function.

2.2.3 Recurrent Neural Network (RNN)

When using sequential or time series data, MLPs cannot be used directly for learning

and prediction. Recurrent Neural Networks (RNN; Rumelhart et al. 1986) are a variant

of MLPs that can handle and predict patterns in data that have a temporal order. In

particular, these networks add the concept of “memory”, which helps them store the states

or information of previous inputs to generate the next output of the sequence.
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Vanilla RNN

Vanilla RNN is the most basic type of recurrent neural network, in which the input from

one layer serves as the output for the next. In simple terms, the RNN has two inputs:

the current input and the hidden state of the previous layer. Mathematically, it can be

expressed as (note that W represents independent weight matrices):

ht = fh(xt, ht−1) = σh(W T
ihxt + bi + W T

hhht−1 + bh), (2.9)

ŷt = fo(ht) = σo(W T
hyht + by), (2.10)

where the equation (2.9) computes current state vector ht ∈ Rdh as a function of the

current input vector xt ∈ Rdx and the hidden state vector of the previous layer ht−1. In this

framework, dx and dh represent the dimension of the input and state vector respectively.

The computation is performed using the weights matrices W ih and W hh, and the bias

vectors of bi and bh. Also, an arbitrary nonlinear activation function σh is used to induce

nonlinear interactions. Finally, the observed output of the system ŷt is modeled by a σo

function that uses as input the current state ht together with the weight matrix W hy and

the bias by.

A vanilla RNN is suitable for problems with short and static sequences, but has

difficulty retaining long-term information in longer sequences due to gradient

backpropagation (Hochreiter, 1998). This means that important features in the initial

input are lost as more cells are processed.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (Hochreiter and Schmidhuber, 1997) cells, unlike RNNs,

introduce “gates” that control the flow of information allowing better control and

preservation of information over time. LSTM cell can be described as (note that W
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represents independent weight matrices):

it = σ(W T
iixt + bii + W T

hiht−1 + bhi), (2.11)

f t = σ(W T
ifxt + bif + W T

hfht−1 + bhf ), (2.12)

ot = σ(W T
ioxt + bio + W T

hoht−1 + bho), (2.13)

gt = tanh (W T
igxt + big + W T

hght−1 + bhg), (2.14)

ct = f t ⊙ ct−1 + it ⊙ gt, (2.15)

ht = ot ⊙ tanh (ct), (2.16)

where [W ii, W hi, bii, bhi], [W if , W hf , bif , bhf ], and [W io, W ho, bio, bho] are the weights and

biases of the input, forget and output gates, respectively. Likewise, gt is the vector of

candidates that could be added to the new cell state ct, where ⊙ is the Hadamard product

(Davis, 1962). Finally, the selection of elements ct to be stored in the current state ht is

performed in Equation (2.16).

2.2.4 Transformers

The transformer model was first proposed in Vaswani et al. (2017) to solve the

problems of previous architectures in NLP. Theses problems corresponds to the variable

length sequences, long-term information retention and parallelization of temporal

information processing (Bahdanau et al., 2014; Cho et al., 2014a,b; Sutskever et al., 2014).

For this purpose, the transfomers are composed of two main modules: self-attention and

positional encoding.

Multi-Head Self-Attention

The objective of the self-attention module is to improve the model’s ability to handle

variable length input sequences and capture long-term relationships in the input. This

component is formulated using three different representations: query (Q), key (K) and value

(V ). Given an element Q and a list of K-V pairs, self-attention estimates the relevance of

an element with respect to the others by computing a similarity between the Q and each
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of the K. This similarity is used to take a weighted average of all V , which allows relating

different positions of the same sequence to compute a representation of the sequence. This

three representations are input transformations such that Q = E(x)iW
Q, K = E(x)iW

K ,

and V = E(x)iW
V , where E(x) represents the input token embedded within a high-

dimensional space and W Q, W K , and W V ∈ Rdx×dk are trainable weights matrices. The

equation that describes this mechanism can be expressed as:

eij =
E(x)iW

Q(E(x)jW
K)T

√
dk

, (2.17)

αij = exp(eij)∑L
l=1 exp(eil)

, (2.18)

zi =
L∑

j=1
αij(E(x)jW

V ), (2.19)

where dk is a hyperparameter that specifies the embedding size of the self-attention head.

The term eij is the scaled dot-product attention score between the i-th and j-th elements

of the sequence, αij are the attention weights, representing how much attention the model

should pay to the j-th element when processing the i-th element, and zi represents the

output vector for the i-th element from an h attention head, where h is a member of the set

{1, . . . , H}, indicative of the available attention heads.

Multi-head attention is generally employed, as it enables the model to simultaneously

process information from distinct representation subspaces at different positions. The

output from each head is concatenated (denoted as “Concat”) and subsequently projected,

facilitating the integration of information across various heads. This process is

mathematically represented as:

zi = Concat
(
z

(1)
i , ..., z

(H)
i

)
W O, (2.20)

where W O ∈ RH·dk×d is the matrix of trainable weights.

As can be seen, the self-attention module does not incorporate sequence order, i.e., it is

permutation invariant. However, preserving temporal order is important for any task that
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contains a sequence of items. For example, natural language is well structured and word

order is important for language comprehension (Sutskever et al., 2014). The following

Subsection shows the most common way to incorporate positional information into a

transformer model.

Positional Encoding

Unlike RNNs that process data from a sequence in a recurrent manner, the positional

encoding (PE; Vaswani et al., 2017) is a simple technique that allows exploiting the parallel

computation of self-attention layers and aims to encode and preserve temporal information

within an ordered sequence of data. The original transformer paper considered absolute

positional encodings, which can be defined as:

P E(pos, 2i) = sin(ω2i · pos), (2.21)

P E(pos, 2i+1) = cos(ω2i · pos), (2.22)

ωi = 2π

T
2i
dx

, (2.23)

where ωi is the angular frequency denoted in Equation (2.23), T is the period of the

function, pos is the position, i ∈ [0, ..., dx

2 ] is the dimensionality of the PE, and each

position is represented by the matrix P E ∈ RL×dx . Thus, this module vectorially

reproduces each position of a sequence in sine and cosine functions keeping the values in a

normalized range between [−1, 1]. In particular, each position is represented at different

angular frequencies with wavelengths from 2π to 2π × T , which allows to generate a

unique position representation for each word of a sequence.

Input Representation

Usually, there are two categories of positional encodings that represent positional

information in transformers, absolute and relative positional encoding. Both change the

way the attention blocks receive the input representation (contextual and positional

information).
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The absolute positional encoding was proposed in Vaswani et al. (2017), where an

embedded word with the positional encoding is directly added to generate the input

representation Si:

Si = E(x)i + P Ei, (2.24)

eij = SiW
Q(SjW

K)T

√
dk

, (2.25)

zi =
L∑

j=1
αij(SjW

V ), (2.26)

where S ∈ RL×dx is the sum of the contextual information passed through an embedding

layer and the positional information passed through the positional encoding. The other

terms were described in the Subsections above, in equation (2.17) and (2.19).

The relative positional encoding was proposed in Shaw et al. (2018), where they

incorporate representations of relative positions directly into the self-attention mechanism

of the transformer to encode the distance between any two positions. The formulation is

as follows:

eij =
E(x)iW

Q(E(x)jW
K + aK

ij )T

√
dk

, (2.27)

zi =
L∑

j=1
αij(E(x)jW

V + aV
ij), (2.28)

aK
ij = wK

clip(j−i,r), (2.29)

aV
ij = wV

clip(j−i,r), (2.30)

clip(j − i, r) = max(−r, min(r, j − i)), (2.31)

where aK
ij , aV

ij ∈ Rdx models the interaction between positions i and j. In particular, relative

positions within a clipping distance r are learned. Thus, wK
clip(j−i,r), wV

clip(j−i,r) ∈ Rdx for

−r ≤ clip(j − i, r) ≤ r for a maximum relative distance r. This method can be viewed as a
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i6i2 i4i3 i5i0 i1
a32= w-1 a34= w1

a35= w2

a30= w-2 a36= w2

a31= w-2

Figure 2.1: Example of interactions between various positions relative to a specific position.

labeled, directed, fully-connected graph, where the edge between the input elements i and j

will be represented by the vectors aK
ij and aV

ij . Figure 2.1 illustrates an example for position

3, taking into account only 7 observations and a maximum r of 2. As depicted, each pair

of positions i − j is assigned an embedding based on their relative difference. Similarly, for

positions greater than r or less than −r, the same weight vector wr or w−r is applied,

respectively. This approach limits the number of parameters and aids in generalizing across

different sequence lengths. Specifically, it enables the model to learn distinct interactions

based on the relative distances between tokens.

In general, the performance of both categories depends on the task to be solved. For

example, Wang et al. (2021) conclude that absolute position embeddings are favorable for

classification tasks and relative embeddings perform better for span prediction tasks.

Masked Language Model

Transformers are typically trained on large amounts of data to learn contextual

representations using a self-supervised objective depending on the task to be solved, such

as Causal Language Modeling (CLM), Masked Language Modeling (MLM), and Gap

Sentence Generation (GSG), among others. In particular, we use MLM. The goal of this

self-supervised objective is to train a language model to understand and predict the
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context of words in a sentence. For this purpose, a certain percentage (typically 15%) of

the tokens in a text sequence are randomly selected and replaced with a special [MASK]

token. This process creates a “corrupted” version of the original sentence, where some

words are hidden. The task of the model is to predict the original tokens that have been

masked out, based only on the context provided by the unmasked tokens. This requires

the model to develop a deep understanding of language and context. During training, the

model’s objective is to maximize the probability of correctly predicting the masked tokens.

Mathematically, it can be defined as follows: Given a sequence X = {xi}n
i=1, the input is

corrupted by hiding a certain percentage of random tokens to obtain X̂ ⊂ X. Then, a

transformer model parameterized by θ is trained and X is reconstructed by predicting the

masked tokens x̂ conditioned on X̂:

max
θ

log pθ(X|X̂) = max
θ

∑
i∈M

log pθ(x̂i = xi|X̂), (2.32)

where M represents the set of indices of the masked tokens within the sequence, and pθ

denotes the probability of the sequence X given the corrupted sequence X̂, as modeled by

the transformer with parameters θ.
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Chapter 3

Methodology

This chapter describes the baseline astronomical transformer employed in this thesis,

the various positional encodings subjected to testing with this architecture, the specifics of

the training procedure, and comprehensive description of the data used.

3.1 Baseline Light Curve Transformer Model

Consider light curves of L observations, defined by a vector of magnitudes x ∈ RL and

times t ∈ RL (MJD; Modified Julian Date). A standard transformer add up the projections

of the observational and temporal data into a single vector:

S = F F N(x) + P E(t), (3.1)

where F F N(x) ∈ RL×dx represents a FFN1, dx is the output size of this network, and

P E(t) ∈ RL×dpe is the temporal information passed through a positional encoding. To

perform the addition operation, dpe must equal to dx. As proposed by Donoso-Oliva et al.
1Following Donoso-Oliva et al. (2022), we use no activation function for F NN(x).
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(2022), the original positional encoding is expressed as a non-trainable function:

P E(t) 2j = sin (ω2j · t), (3.2)

P E(t) 2j+1 = cos (ω2j+1 · t), (3.3)

ωj = 2π

1000
j

dpe

, (3.4)

where ωj are the angular frequencies, 1000 defines the lower bound of frequencies, t is the

times vector, and j ∈ [0, ..., dpe − 1] are the dimensions of PE with a maximum of dpe

frequencies. This PE is a slight modification of the one proposed by Vaswani et al. (2017).

The self-attention blocks receive the matrix resulting from the previous step and can be

expressed as:

eij =
SiW

Q
(
SjW

K
)T

√
dk

, (3.5)

αij = exp(eij)∑L
l=1 exp(eil)

, (3.6)

zi =
L∑

j=1
αij

(
SjW

V
)

, (3.7)

where W Q, W K , and W V ∈ Rdx×dk are trainable weights matrices corresponding to the

query (Q), key (K), and value (V ), respectively, and dk is a hyperparameter that specifies

the embedding size of the self-attention head. The terms eij, αij, and zi represent the

similarity between the query and key vectors, the attention score and the output vector for

each observation, respectively. The output of a self-attention block considers the information

of the different heads h and is defined as:

zi = Concat
(
z

(1)
i , ..., z

(H)
i

)
W O, (3.8)

where W O ∈ RH·dk×d is a trainable weight matrix, and d is the dimension of the output
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z ∈ RL×d. This output can be used as input to other multi-head attention blocks to enable

the model to capture dependencies at multiple levels of abstraction. The final representation

is obtained in the last block. This representation is generated by a decoder FFN that

reconstructs the input magnitudes x̂ ∈ RL in a self-supervised objective task, by minimizing

the RMSE loss function. The resulting representation can serve as input for subsequent

tasks, such as classification or regression.

3.2 Positional Encodings

This section presents all the positional encodings tested in ASTROMER and introduces

a new approach to incorporate the temporal information.

3.2.1 Trainable

In order to capture temporal relationships from the light curves, we replaced the

angular frequencies with an embedding layer consisting of dpe trainable parameters. These

parameters were initialized with the predefined frequencies given in Eq. (3.4).

3.2.2 Fourier

We enhance the learnability and flexibility of the positional representation in Eqs. (3.2)

and (3.3) by modulating it with a MLP (Li et al., 2021):

P̂ E(t) = (ΦGeLU (P E(t) · W 1 + b1)) · W 2 + b2, (3.9)

where W 1 ∈ Rdpe×dl and W 2 ∈ Rdl×dpe are trainable parameters, b1 ∈ Rdl and b2 ∈ Rdpe

are biases, and ΦGeLU is the activation function. Here, dl is the number of neurons in the

hidden layer. In particular, W 2 projects the representation to the dimension of the input

embeddings.
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3.2.3 Recurrent

We followed the approach of Nyborg et al. (2022) and used a Gated Recurrent Unit

(GRU; Cho et al. 2014b) to incorporate temporal dependencies at time steps ti expressed

with the baseline positional encoding shown in Eqs. (3.2) and (3.3):

O(t) = GRU (P E(t)) , (3.10)

P̂ E(t) = O(t) · W p + bp, (3.11)

where O(t) ∈ RL×dpe is the output of the GRU at each time step, W p ∈ Rdpe×dpe is a

trainable weight matrix and bp ∈ Rdpe is the trainable bias.

3.2.4 Tupe-A

We follow the approach employed in Ke et al. (2020) for NLP and separate the mixed

correlations produced between observational and temporal information in the attention

matrix by redefining Eqs. (3.5) and (3.7). To represent the queries and keys of the

temporal information expressed by Eqs. (3.2) and (3.3), we introduce new parameters

Uq, Uk ∈ Rdpe×dk , respectively:

eij =
F F N(x)iW

Q
(
F F N(x)jW

K
)T

√
dk

+
P E(t)iU

Q
(
P E(t)jU

K
)T

√
dk

, (3.12)

zi =
L∑

j=1
αij(F F N(x)jW

V ). (3.13)

For efficiency, we share these new parameters across different multi-head attention blocks

Ke et al. (2020).

3.2.5 Concat

Following the same idea and aiming to minimize the noise generated in the attention

matrix due to mixed correlations between observational and temporal information, we
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concatenated them in separate orthogonal spaces:

S = [F F N(x) || P E(t)] . (3.14)

In this case, we utilize the trainable PE described in subsection 3.2.1.

3.2.6 PE on Attention (PEA)

To avoid mixing information, we propose incorporating positional encoding directly into

the final representation obtained from the last multi-head attention block:

ẑ = z + P E(t), (3.15)

where P E(t) is expressed by the baseline positional encoding shown in Eqs. (3.2) and

(3.3) as a non-trainable function. Here, the multi-head attention block takes only the

observational information F F N(x) to compute the attention.

3.3 Training Details

We divided this work into two experiments: the first involves analyzing various PEs

tested in ASTROMER and their effects on pretraining stage and classification task; the

second focuses on evaluating the adaptation of ASTROMER during the finetuning stage on

a real dataset, which has a significantly different cadence, as described in subsection 3.4.

We ran the experiments on a Nvidia RTX A5000 GPU, employing two multi-head

attention blocks with H = 4 heads and dk = 64 neurons. The model dimensions were set

at d = dx = dpe = 256 and dl = 64, with the exception of Concat PE, which employed

dx = dpe = 128. Light curve windows with a maximum length of L = 200 were considered.

For light curves that exceeded this length, subsequent time windows were sampled,

beginning from a random position. For light curves with fewer than L observations, zero

values were padded at the end. Each generated window was subtracted from its

observational and temporal mean, creating magnitude and time vectors with zero mean.
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3.3.1 Experiment 1

For the pretraining and finetuning stages, we followed the strategy used in Devlin et al.

(2018), masking a percentage of the observations in the light curves. Specifically, we selected

50% of the data for evaluating the reconstruction of the magnitude x in the loss function.

Within this percentage, we masked 30% of the observations, replaced 10% with random

values, and left the remaining 10% of observations visible. We used early stopping with

patience of 40 epochs on the validation loss. The Adam optimizer (Kingma and Ba, 2014)

was used with a learning rate of 10−5 and a batch size of 2, 000.

For the classification task, we used two hidden layers of 256 Long Short-Term Memory

(LSTM; Hochreiter and Schmidhuber 1997) units followed by a MLP with a softmax

activation function. The dimension of this output layer depends on the number of classes

to be classified. We also divided the training and validation sets into 3 folds with an 80/20

ratio, respectively. We used early stopping with a patience of 20 epochs on the validation

loss and the Adam optimizer with a learning rate of 10−4 and a batch size of 512.

3.3.2 Experiment 2

Since the relative relationships between magnitudes are dependent on astronomical

phenomena, and the cadences are determined exclusively by the survey rather than the

physical object being observed, we modify the common approach to finetuning. We

experiment with different configurations when performing this stage. In particular, we

tested finetuning only the positional encoding component and analyzed its effects

compared to finetuning only the FNN corresponding to the magnitudes, as well as the full

model.

For this stage, we used the same strategy used in Experiment 1. We selected 50% of

the data for evaluating the reconstruction of the magnitude x in the loss function. Within

this percentage, we masked 30% of the observations, replaced 10% with random values, and

left the remaining 10% of observations visible. We used early stopping with patience of 40

epochs on the validation loss. The Adam optimizer was used with a learning rate of 10−5

and a batch size of 2, 000.
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3.4 Data Description

The datasets employed in Experiment 1 for evaluating the pretraining stage and

classification task are identical to the real datasets used in Donoso-Oliva et al. (2022).

Conversely, the dataset used in Experiment 2, which aims to evaluate the adaptation of

ASTROMER during the finetuning stage, is another real dataset characterized by a

significantly shorter cadence compared to the one used for pretraining ASTROMER.

3.4.1 Experiment 1

For the pretraining stage, we utilized the MACHO light curves dataset (Alcock et al.,

2000), a project aimed at searching for gravitational microlensing events and variable stars

in the Milky Way. For this stage, we used unlabeled MACHO light curves and excluded

those exhibiting noisy behavior2. The dataset comprised a total of 1,529,386 light curves in

the R-band, with a median cadence of 1.00 days. The magnitude and cadence distributions

can be seen in Figure 3.1. Subsequently, we evaluated the performance of the pretrained

transformers on the classification task using a subset of 500 objects per class from the

MACHO labeled survey (Full hereafter, Cutri et al., 2003). Figure A.1 in Appendix A

shows various light curve samples from this dataset. To isolate the effect of cadence at

this task, we simulated three datasets from the MACHO labeled subset by modifying the

cadence of the light curves. Specifically, we removed observations from the light curves at
2We defined noise as points in the light curve with |Kurtosis| > 10, |Skewness| > 1, and a magnitude

error > 0.1.
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Figure 3.1: Unlabeled MACHO magnitude and cadence distributions.
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Figure 3.2: Magnitude distribution of the different data subsets.

rates of 3/4, 1/2, and 1/4, respectively. At a rate of 3/4, we removed the last observation

out of four, while at a rate of 1/4, the last three observations were removed. An example

of a light curve with observations removed at different rates can be seen in Figure A.2 in

Appendix A.

To account for external factors, such as changes in the band distribution, we also tested

the pretrained transformers on OGLE-III (Udalski, 2004), which was a variable star search

project that focuses on the search for gravitational microlensing and eruptive flares and

ATLAS (Heinze et al., 2018), which was an early warning system for terrestrial asteroid

impacts that seeks to detect and characterize astronomical objects that may pose a risk to

Earth. The OGLE-III data contains 358,288 I-band light curves and ATLAS data contains

422,630 orange-band light curves. Specifically, we used a subsample of 500 objects per class

from each labeled data subsets to consider the scenario where we have few labeled data.

Figures A.4 and A.3 in Appendix A illustrate different light curve samples from the OGLE

and ATLAS datasets, respectively.
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Figure 3.3: Cadence distribution of the different data subsets.

The magnitude distributions of the unlabeled MACHO data and the labeled datasets are

presented in Figures 3.1 and 3.2, respectively. This comparison highlights the similarities in

magnitude distributions across various labeled MACHO sets (full, 3/4, 1/2, and 1/4), and

the differences in magnitude distributions between the OGLE, ATLAS, and labeled MACHO

datasets. Similarly, the cadence distributions for the unlabeled and labeled data are shown

in Figures 3.1 and 3.3, respectively. Key statistical measures are provided to understand the

sampling frequency of observations within the light curves. The unlabeled MACHO dataset,

which served as the pretraining data for the transformers, exhibits a median of 1.00 and a

mean of 2.96 with a standard deviation of 17.19. These values indicate the time gap between

successive observations and the temporal separation between groups of observations in the

light curves. In particular, the unlabeled MACHO dataset demonstrates a smaller time gap

compared to the labeled MACHO dataset, while also exhibiting a higher standard deviation,

implying greater temporal separation between groups of observations. The labeled MACHO-

derived datasets (3/4, 1/2, and 1/4) exhibit an increase in both the median and standard
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deviation as light curve observations are reduced. Additionally, they show distinctions

compared to both the labeled and unlabeled MACHO datasets. Regarding OGLE, its

cadence displays similarities with that of the unlabeled MACHO dataset. However, ATLAS

exhibits more pronounced time gaps between groups of observations. The mean is influenced

by the standard deviation, while the median indicates that the observations are taken at

short time intervals.

Table 3.1 displays the classes used for each of the datasets. MACHO labeled has six

classes, OGLE has ten classes, and ATLAS has four classes. The modified cadence datasets

maintain the same number of classes as the MACHO labeled dataset.

Tag MACHO lab. OGLE ATLAS

EC Eclipsing Binary Eclipsing Binary -
ED - Detached Binary Detached Binary
ESD - Semi-detached Binary -
Mira - Mira Mira
OSARG - Small-amplitude red giant -

RRab RR Lyrae type ab RR Lyra type ab

Pulse
RRc RR Lyrae type c RR Lyrae type c
dsct - Delta Scuti

Cep 0 Cepheid type I CepheidCep 1 Cepheid type II

SRV - Semi-regular variable -
LPV Long period variable - -
CB - - Close Binaries

Table 3.1: Labels from each of the datasets used in the classification task.

3.4.2 Experiment 2

To assess the adaptability of ASTROMER in a context where the cadence is markedly

different from that of the dataset used for its pretraining, we employed data from “Kepler

Mission II: Eclipsing Binaries in DR2” (Slawson et al., 2011), which aimed to discover Earth-

like planets orbiting other stars. To focus exclusively on data with labels, we excluded the

“unclassified” labels from this dataset, resulting in a total of 2,014 light curves. Figure A.5
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Figure 3.4: Kepler cadence distribution.

in Appendix A displays a light curve from each class in the Kepler dataset, along with the

ID and cadence of each curve.

The magnitude and cadence distributions can be seen in Figure 3.4. It is noted that the

magnitudes in this dataset range from 0.99 ± 0.076. These were obtained over a spectral

range extending from the visible to the near-infrared, approximately from 430 nm to 890

nm. For the unlabeled MACHO dataset, the covered range was from about 550 nm to

approximately 800 nm. Regarding the cadence, the general measurement rate was 0.020

days with a small standard deviation of 28.8 minutes. This shows a significant difference

compared to the unlabeled MACHO dataset, which had observations taken every 1.00 day

with a standard deviation of 17.273 days.

We also capitalize on the fact that this dataset contains observations every 30 minutes

to generate an interpolation in time and match the cadence behavior of the real datasets

(MACHO, OGLE, and ATLAS). This approach allows us to create three datasets with the

same flow but with different and realistic cadences. Initially, we fit a kernel density estimate

(KDE) to the cadence of each dataset, using a Gaussian kernel and cross-validation over the

bandwidths. We find that the optimal bandwidths are 1, 031, 1, 300, and 0, 100 for MACHO,

OGLE, and ATLAS, respectively. Subsequently, we take the first MJD of each light curve

and sample different values from the KDE, accumulating these values until they match or

fall below the last MJD of the light curves. Finally, we linearly interpolate the flux for each

time point. Through this process, we obtained three sets of data with distinct cadences,

which we named: 1) Kepler with MACHO cadence, 2) Kepler with OGLE cadence, and 3)
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Figure 3.5: Cadence distribution of the different dataset modified from Kepler.

Kepler with ATLAS cadence. Figure 3.5 displays the cadence distribution of each of the

generated datasets, which can be compared to the actual datasets in Figure 3.3.
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Chapter 4

Results and Discussion

Table 4.1 provides the evaluation of a transformer pretrained from scratch using

different positional encodings on both simulated and real datasets. We pretrained each

transformer on the unlabeled MACHO data and evaluated the reconstruction of the

observational information in terms of RMSE and training time. We then used the

generated representation for training the classification layers on each labeled dataset and

evaluated its performance in terms of F1-score. Our baseline is the fixed positional

encoding described in subsection 3.1.

During pretraining, the Trainable PE demonstrated a slight improvement in terms of

the reconstruction RMSE and a significant reduction in training time when compared to

PE type MACHO unlab. MACHO lab. OGLE ATLAS
Full 3/4 1/2 1/4

RMSE Time (epochs) F1 (%) F1 (%) F1 (%) F1 (%) F1 (%) F1 (%)

Baseline .170 6d 14h (523) 71.6 ± 1.9 69.2 ± 1.9 66.2 ± 1.9 63.3 ± 1.5 71.3 ± 1.1 65.8 ± 1.4

Trainable .169 2d 13h (202) 72.9 ± 2.1 72.3 ± 1.0 71.0 ± 1.0 69.0 ± 0.5 74.9 ± 1.4 65.4 ± 1.8
Fourier .170 1d 20h (142) 73.0 ± 1.1 70.2 ± 1.9 67.8 ± 0.9 62.9 ± 2.0 72.0 ± 0.8 69.6 ± 0.1
Recurrent .197 0d 16h (048) 67.1 ± 1.8 63.5 ± 2.5 59.7 ± 1.9 54.6 ± 1.3 70.7 ± 1.1 68.3 ± 0.9
Tupe-A .219 0d 17h (084) 67.3 ± 1.6 66.1 ± 1.4 64.9 ± 1.0 60.8 ± 0.9 71.0 ± 1.0 67.5 ± 0.9
Concat .170 3d 01h (237) 73.4 ± 1.1 73.1 ± 1.7 70.9 ± 1.7 69.0 ± 1.8 74.5 ± 1.3 68.1 ± 0.6
PEA .199 0d 17h (058) 69.7 ± 0.9 68.9 ± 1.8 68.0 ± 1.0 65.5 ± 2.5 76.3 ± 1.2 66.9 ± 1.0

Table 4.1: Performance of different positional encodings in the pretraining stage and
classification task.
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the baseline. The Fourier and Concat PE matched the performance of the baseline while

needing less computational resources. The Fourier PE showed the best performance in terms

of both training time and reconstruction performance. Recurrent, Tupe-A, and PEA did

not outperform the Baseline in RMSE terms, but converged in less than a day of training.

Learning curves are shown in Figure B.1 in Appendix B.

Since we are analyzing which PE can generate a better representation during the

pretraining stage, we keep the transformer, including the PE, fixed when training for the

classification task. We start by evaluating the performance of the transformers on the

MACHO labeled datasets considering the effect of the change in cadence. The Trainable

PE outperformed the Baseline for all cadences. In particular, the degradation of results for

sparser light curves is less severe with the Trainable PE than with the non-trainable one.

Similarly, Fourier PE performs better than the baseline on three out of four datasets.

However, the degradation of results, as evaluated on the 1/2 and 1/4 cadences, was similar

to the baseline and worse than the Trainable PE. The Recurrent and Tupe-A PE show

worse classification performance than the baseline. The Concat PE outperformed the

Baseline and achieved three of the four best performances in terms of F1-score. Its

degradation was minimal for sparser light curves, and close to the Trainable PE. Finally,

PEA outperformed the baseline for cadences of 1/2 and 1/4, but did worse for the full and

3/4 cadences.

Upon adding changes in the magnitudes distributions using OGLE and ATLAS, we

observe that the baseline exhibits inferior overall F1-score performance. The trainable PE

model outperforms the baseline in OGLE and demonstrated a similar performance as the

baseline for ATLAS. The Fourier PE model showed superior performance in both

astronomical surveys with respect to the baseline. However, it did not outperform the

Trainable PE model in OGLE. In particular, the Fourier PE model obtained the best

F1-score in ATLAS. Similarly, the Recurrent and Tupe-A PE models outperformed the

baseline model in ATLAS and while exhibiting a similar performance in OGLE. Finally,

the Concat PE and PEA models outperformed the baseline in both OGLE and ATLAS,

with the latter obtaining the highest F1-score among all the PE on OGLE.
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The separation of temporal and observational information into orthogonal spaces

(Concat PE) results in better classification performance on all datasets, yielding the best

average F1-score overall. Recall that both the Trainable and Concat PE use the same

trainable PE: the first add the PE to a vectorized representation of the magnitudes, while

the second concatenates these vector. Both of these PEs show a small degradation in

results for the MACHO datasets with different cadences, implying that they allow for a

better representation of temporal information.

In terms of training time, all the trainable PEs and the proposed PEA exhibit reduced

pretraining time compared to the baseline. Out of the three models that take less than one

day to train (Recurrent, Tupe-A, and PEA), the best classification results for the different

MACHO cadence datasets are achieved by our proposed PEA. At the same time, PEA

outperforms the Recurrent and Tupe-A PEs when transfered to OGLE, while the three of

them achieve similar classification results on the ATLAS dataset (less than 1.6 sigma). This

is of particular importance when training large light curve models with massive datasets for

next generation surveys such as the LSST.

Figure 4.1 demonstrates the baseline transformer’s goodness of fit, pretrained on the

MACHO dataset, for the magnitude reconstruction task on the Kepler dataset. Initially,

we directly evaluate the pretrained transformer on the Kepler data, represented by the blue

bar. Subsequent steps involve finetuning the pretrained transformer by training different
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Figure 4.1: Evaluation of the goodness of fit for the various approaches tested.



4. Results and Discussion 32

model components. The orange bar indicates finetuning through the conventional approach

of adjusting all model weights. The green bar illustrates finetuning that includes training

the PE along with the common approach. The red bar depicts the finetuning process

focused solely on adjusting the PE weights. Another purple bar represents the adjustment

of weights for the FFN that projects the magnitudes. Lastly, the brown bar shows the

baseline transformer being pretrained from scratch on the Kepler data.

Figure 4.1 reveals that using a model pretrained on the unlabeled MACHO dataset and

directly evaluating it on the Kepler test data significantly degrades the results, leading to

a poor fit of −0.725, attributable to drastic cadence changes. Finetuning using the

common approach showed a significant improvement with a finetuning score of 0.756.

Adding training of the trainable PE to the common approach resulted in an adjustment of

0.760, which is comparable to the scenario where this component is not considered.

Training only the PE achieves a fit of 0.580, and training only the FFN achieves a fit of

0.356. This particularly indicates that the mismatch in the temporal component is more

significant than in the observational aspect, which can also be attributed to the fact that

magnitudes are influenced by astronomical phenomena, whereas cadences are determined

by the survey rather than by the observed physical object. In contrast, training the

transformer from scratch on the Kepler training data shows a better fit than using the

pretrained model on the unlabeled MACHO dataset. However, the fit remains deficient

and is not better than finetuning the pretrained model on a dataset with significantly

different cadence. This deficiency is attributed to the limited size of Kepler’s dataset,

which consists of only 2,014 light curves, hindering the model’s ability to extract sufficient

information. This is particularly challenging given that transformer models require

extensive data for pretraining relative to their parameter count.

We also evaluated the transformer, pretrained on the MACHO dataset, on Kepler data

with cadences from MACHO, OGLE, and ATLAS, as depicted in Figure 4.2. The color

coding of the bars follows the same legend as in Figure 4.1. The model was not pretrained

from scratch on data with altered cadences, as this approach was not the focus of our

work. Direct evaluation of the pretrained model on any dataset with changed cadence
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Figure 4.2: Evaluation of the goodness of fit for the modified Kepler cadence.

consistently showed a positive fit greater than 0.570. Employing the common approach, as

well as augmenting it with training of the PE weights, enhanced the fit relative to the direct

evaluation of the pretrained model, yielding very similar outcomes across all datasets. The

best fit achieved was 0.770 in OGLE, with the lowest at 0.735 in ATLAS. Lastly, training

solely the PE weights or the FFN weights resulted in improvements over the direct evaluation

of the pretrained model. However, they did not surpass a fit of 0.700.

Using a dataset with a significantly different cadence from that on which the transformer

was pretrained directly affected the model’s fit. However, adjusting the transformer weights

on the new dataset achieved results with an R2 value of up to 0.770 within an average of 2,807

hours. This demonstrates the model’s ability to adapt to a dataset with a markedly distinct

cadence. Although finetuning the entire model yielded better results, this approach can be

computationally demanding in terms of training time, GPU/CPU intensity, and additional

RAM required for gradient storage during parameter updates. In contrast, training only

the PE weights reduces computational demands (with only 256 parameters) and shortens

the training time by an average of 0,948 hour. However, this method resulted in a slight

decrease in performance compared to the common finetuning method. Simply changing the

cadence improves direct evaluation but does not significantly enhance the fit when finetuning

is performed on the dataset. Likewise, the gap between the effectiveness of adjusting PE

weights and FFN weights is reduced, since the difference in cadence and magnitudes is not
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as pronounced as it was with the original Kepler dataset.
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Chapter 5

Conclusion

This thesis has presented a comprehensive exploration into the adaptability and efficacy

of various positional encodings (PEs) in transformer models for astronomical light curve

analysis. Our empirical studies, centered on the light curve transformer model, provide

significant insights into the model’s performance across different astronomical surveys with

varying cadences and magnitude distributions.

Our results have demonstrated that using trainable positional encoding offers

advantages over a non-trainable PE baseline, both in terms of model performance and

computational efficiency. The latter is particularly critical when dealing with vast

astronomical datasets, such as those from the Vera C. Rubin Observatory. We have also

highlighted the benefits of separating observational and temporal information within the

attention matrix and proposed a new approach for incorporating temporal information

directly into the output of the last attention layer. Additionally, we show that our

proposed method trains faster than the baseline while achieving competitive classification

performance. On the other hand, our experiments showed that a pretrained transformer

can adapt to a dataset with a significantly different cadence and limited data. Similarly,

adjusting the dataset to match the cadence for which the model was trained improves

performance in the direct evaluation of the pretrained model. However, when performing

finetuning, the goodness of fit is similar. Finally, training only the PE has emerged as a

crucial strategy in adapting to datasets with markedly different cadences, such as the
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Kepler dataset. This method not only reduced computational resources but also

maintained respectable performance levels, achieving an R2 of 0.580 in the reconstruction

of light curves.

In light of our findings, it is evident that the choice of positional encoding in

transformer models plays a pivotal role in enhancing the models’ performance on

astronomical time series data. Trainable positional encodings, particularly those that

delineate temporal from observational information, present a promising avenue for future

research in this domain. They strike a delicate balance between computational efficiency

and model accuracy, a balance that is crucial for analyzing the vast volumes of data

produced by contemporary astronomical surveys. For future work, exploring whether the

embeddings generated by various finetuning techniques on the Kepler dataset and its

derivatives are sufficiently representative to distinguish between classes in subsequent tasks

could provide valuable insights. Additionally, assessing the adaptation of other positional

encodings to datasets with markedly different cadences would extend our understanding of

PE’s versatility. A particularly intriguing direction would be the development and

implementation of a positional encoding that can effectively capture the relative distances

between irregular observations in a time series. Such an approach could significantly

improve the model’s ability to handle the intricacies of astronomical data.

As we stand on the brink of a new era in astronomical research, powered by advanced

observatories and sophisticated data analysis techniques, this thesis contributes valuable

insights into the development of more efficient and accurate models for light curve

analysis. Our work lays the groundwork for further research in this area, potentially

leading to groundbreaking discoveries in our understanding of the universe.
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Appendix A

Methodology Figures

Different samples from each of the datasets can be seen in the figures of this chapter. Each

sampled light curve displays the ID, the class to which it belongs, and the median cadence

in days. In general, these Figures visually complement the explanations and distributions

of the data shown in Chapter 3.
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Figure A.1: Different samples from the dataset labeled MACHO.



A. Methodology Figures 44

−6.4

−6.2

M
ag

ni
tu

de

MACHO labeled — Median cadence: 3.97 days

−6.4

−6.2

M
ag

ni
tu

de

MACHO labeled 3/4 — Median cadence: 5.17 days

−6.4

−6.2

M
ag

ni
tu

de

MACHO labeled 2/4 — Median cadence: 8.95 days

49000 49500 50000 50500 51000 51500
MJD

−6.4

−6.2

M
ag

ni
tu

de

MACHO labeled 1/4 — Median cadence: 13.93 days

Figure A.2: A sample of a light curve with observations removed at varying rates from
the labeled MACHO dataset.
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Figure A.3: Different samples from the dataset ATLAS.
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Figure A.4: Different samples from the dataset OGLE.
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Figure A.5: Different samples from the dataset Kepler.
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Appendix B

Results and Discussion Figures

In this chapter, we present the learning curves on the validation set for the proposed

PEA and the positional encodings that achieved superior RMSE during pretraining. Figure

B.1 illustrates the pretraining of transformers using the same hyperparameters. The y-axis

represents the mean value of RMSE with a 4-step window, and the x-axis represents the

number of epochs displayed on a logarithmic scale. It is evident that trainable positional

encodings such as Trainable, Fourier, and Concat PE achieved comparable RMSE to the

baseline with significantly fewer epochs in pretraining (38.6%, 27.2%, and 45.3% of baseline

epochs, respectively). In contrast, the PEA method initially obtained a higher RMSE than

the baseline, but it achieved an average RMSE of 0.204 earlier than the baseline by utilizing

only 57.7% of the epochs.

Figure B.1: Validation loss in pretraining stage.
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