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Resumen

En esta tesis hemos realizado un estudio espectroscópico de carácter fenomenológico

de los grados de libertad octupolares presentes en la cadena de isótopos de radio
216–228Ra en el contexto del Modelo de Bosones spdf en Interacción (spdf -IBM).

Este carácter se debe al desarrollo de una rutina de minimización para la obtención

de los parámetros del hamiltoniano utilizado. En particular, analizamos sus

espectros de enerǵıa, transiciones electromagnéticas entre estados de igual (B(E2))

y distinta paridad (B(E1), B(E3)), y momentos multipolares, pudiendo comparar

estos resultados con recientes mediciones experimentales.

El interés en estos isótopos se basa en la presencia de deformación octupolar en

ellos, lo que se relaciona con los momentos dipolares eléctricos atómicos, cuya

medición puede poner a prueba la simetŕıa CP del Modelo Estándar de la F́ısica

de Part́ıculas.

Keywords – Modelo de bosones en interacción, deformación octupolar,

transiciones electromagnéticas
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Abstract

In this thesis we have made a spectroscopic study, of phenomenological nature,

of the octupole degrees of freedom present in the radium isotopic chain
216–228Ra in the context of the spdf Interacting Boson Model (spdf -IBM). The

phenomenological nature is due to the developement of a minimization routine for

obtaining the parameters of the chosen hamiltonian. In particular, we analyze their

energy spectra, electromagnetic transitions between states of the same (B(E2))

and different parity ((E1), B(E3)), and the multipole moments, comparing these

results with recent experimental measurements.

The interest on these isotopes emerges from the presence of octupole deformation in

them, which relates with the atomic electric dipole moments, whose measurements

may put to test the CP symmetry of the Standard Model of Particle Physics.

Keywords – Interacting boson model, octupole deformation, electromagnetic

transitions
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Chapter 1

Introduction

The nuclear many body problem still presents many challenges and difficulties

to be completely solved. One of these difficulties is the fact that there is not

an analytical expression for the nuclear forces between nucleons in the same

manner as there is the Coulomb law in electric systems. These nuclear forces are a

remainder from the interaction between the quarks composing the inner structure

of those nucleons. Another problem that arises is the fact that heavy nuclei possess

nucleons of the order of 200, a number too small to use statistical methods, and

too large for our current computational capacity to use first principle methods, so

we can not speak about a Nuclear Theory, but we can talk about several Nuclear

Models that are suitable on nuclei of different sizes.

One of these models is the Shell Model, which suggest that the inner structure of

the nucleus is similar to the electronic structure of atoms, with nucleons filling

different shells of the nucleus, with various orbitals in each shell. Similar to the

atomic case, in which the noble gases are exceptionally stable compared to their

neighbors, there are special values of the number of protons and neutrons (Z and

N, respectively) for which a given nucleus will be specially stable, those being

the nuclear magic numbers, 2, 8, 20, 28, 50, 82, 126, . . . , giving the nucleus a

spherical shape.

Continuing with the comparisons with the electronic structure of the atom,

the nucleons of an unclosed shell are referred to as valence nucleons, and

the interactions between them will origin different correlations that may cause

deviations in the nuclear shape away from the spherical. Some specific deformations
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that may arise are the quadrupole and octupole deformations, that may be detected

based on the measurements of the asociated multipole moments, those being a

direct evidence of them, as well as this may be infered based on the study of the

energy spectra of these nuclei.

One particular model that allow us to realize this studies is the Interacting Boson

Model (IBM), which allows to reproduce the low-lying energy levels of even-even

nuclei and to study some of their properties, such as the previously mentioned

multipole moments, by studying the electromagnetic transitions between different

states. The model, in general terms, takes the valence nucleons of the Shell

Model and considers that pairs of them are able to couple with given good values

of angular momentum. One particular version of this model, the spdf -IBM-

1, considers the existence of bosons with negative parity, and they allow the

description of phenomena asociated with octupole deformations, like the presence

of low-energy states with negative parity, and non-zero dipole and octupole electric

transition rates between states of different parity. This octupole deformation has

been one of the most studied topics in nuclear structure in recent years [1–3].

The rare-earth (Z ∼ 56, N ∼ 88) and actinide (Z ∼ 88, N ∼ 134) regions of

the nuclear chart show a bigger presence of octupole phenomena [1], so the

experimental and theoretical efforts have been centered in the elements present in

those regions, such as Ba, Ce, Sm or Nd in the rare-earth, and Th, U, Pu or Ra

in the actinides.

During the last decade, major experimental breakthroughs have been achieved in

the measurement of evidence of vibrational deformation in radon isotopes [4] and

permanent deformation in radium isotopes [5, 6]. New theoretical work has made

use of this results, like Nomura et al. in Ref. [7] via the sdf -IBM-1 and Vallejos

and Barea in Ref. [8] via the spdf -IBM-2, but there has not been new works that

make use of the spdf -IBM-1 since the work of Zamfir an Kusnezov in Ref. [9],

which was done before these measurements.

Taking into account the previous discussion, we think that the Interacting Boson

Model has been proven to provide an accurate description of the low energy states

of heavy nuclei. The current state of computational devices also allow us to

eliminate previous restrictions in the number of negative-parity bosons imposed

in the calculations of Zamfir and Kusnezov [9], which in combination with the
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new experimental data available and the election of an adequate hamiltonian,

we hipothesize that our approach will allow us to reproduce the experimentally

observed octupole phenomena in the radium isotopic chain, as well to make

predictions in those nuclei that do not possess experimental data avaliable.

The general objective of the present work is to study the octupole phenomena

present in some elements of the even-even Radium isotopic chain in the framework

of the spdf -IBM-1, serving as an update of the previous work made by Zamfir

and Kusnezov. In particular, we aimed to

1. Make numerical calculations to find a set of hamiltonian parameters for each

nuclei in the 216–226Ra isotopic chain that is able to reproduce fairly well

the experimental data available.

2. Identify the presence or absence of octupole deformation in the studied

Radium isotopes.

3. Study the effects that the interaction terms in our hamiltonian have on the

description of octupole-deformed nuclei.

This Thesis is divided as follows: In chapter 2 we present the theoretical aspects

behind the nuclear deformation, specially about the quadrupole and octupole

deformation, as well as some aspects about the Interacting Boson Model. In chapter

3 we discuss the methods that we worked with, each one of them answering to one

of the objectives previously listed. In chapter 4 we show and discuss the results of

the study of octupole phenomena in the case of the even-even Radium isotopic

chain. Finally, in chapter 5 we conclude our main ideas.
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Chapter 2

Theoretical Aspects

2.1 Deformation of Nuclei

The usual shape of a nucleus tends to be a sphere-like one, being completely

spherical in the absence of interactions between the valence nucleons (equilibrium

shape), which is the case for closed-shell nuclei, also known as magic nuclei.

In the most general case, one could parameterize the nuclear surface as a expansion

in spherical harmonics Yλ,µ [10], given by the expression

R(θ, φ) = R0

(
1 +

λmax∑
λ=2

λ∑
µ=−λ

αλ,µY
∗
λ,µ(θ, φ)

)
, (2.1.1)

where R0 ≈ 1.2A1/3 is the (spherical) nuclear radius and αλ,µ being the deformation

parameters. We can observe in the expression that the sum considers multipole

terms from λ = 2 onwards, disregarding dipole deformations (λ = 1). The reason

for this, as discussed in Ref. [11], is because the dipole deformations account for a

shift of the center of mass of the nucleus rather than to a proper deformation.

Taking into account the fact that the radius must be a real quantity, another

condition is imposed [12],

(αλ,µ)
∗ = (−1)µαλ,−µ , (2.1.2)

therefore reducing the number of free parameters.
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For the particular case in which the shape of the nucleus is symmetric with respect

of a given axis, that is usually taken as the z axis, all parameters with µ ≠ 0 will

vanish, so we can call the remaining parameters as βλ = αλ,0, and we rewrite the

expression for the radius as

R(θ, φ) = R0

(
1 +

λmax∑
λ=2

βλY
∗
λ,0(θ, φ)

)
. (2.1.3)

Each of the βλ parameters is associated with a different type of deformation of the

nucleus, like the quadrupole shapes (λ = 2) and octupole shapes (λ = 3). Both of

them are of interest for our work, in particular the last one, as there are more

open questions related to its presence in different regions of the periodic table. It

is important to mention that deformations with λ > 4 do exists, although they do

not seem to be of importance for the study of nuclear structure [11].

The different types of deformation have their microscopic origin in the attempts

of the nuclear system of minimizing its total energy [2], and arise from different

configurations in the number of protons, Z, and neutrons, N .

2.1.1 Rotational deformation

Following the discussion made in Refs. [10] and [13], let us consider the principal

axes from the nucleus to be labeled as 1, 2 and 3, with 3 being the symmetry

axis. These axes form an intrinsic frame of reference, that rotates along with the

nucleus with angular velocity ω. We can separate the hamiltonian of the system

in two parts, a intrinsic part that is dependent of the intrinsic variables of the

system, namely (qi, pi), and a rotational part, dependent on the angular momenta

Lω and possibly, other quantum numbers, that we will label by a, this is,

Hnucleus = Hint(qi, pi) +Hrot,a(Lω) . (2.1.4)

Therefore, the eigenstates of the hamiltonian will be a product of two states

depending on each variable, namely,

Ψa,L = Φa(q, p)φa,L(ω) . (2.1.5)
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Figure 2.1.1: Orientation of the intrinsic and laboratory frames in an axially
symmetric nucleus. Here, K represents the proyection of the angular momentum
L on the symmetry axis, and M represents the proyection over the z axis of the
laboratory frame.

Let us discuss first the rotational hamiltonian. Clasically, the angular momentum

of a rotating object is given by

L = Iω , (2.1.6)

where I is the moment of inertia of the object. If we consider the object to have

axial symmetry about 3, then we have that the diagonal components of the inertia

tensor in the intrinsic frame satisfy I1 = I2 = I, and I3 is a constant of the motion.

Then, after quantization, a hamiltonian for the rotating system can be given by

(Ref. [10])

H =
ℏ2

2I
(L2 − L2

3) +
ℏ2

2I3
L2
3 . (2.1.7)

If we label as K the eigenvalues of L3 and by M the eigenvalues of Lz, that is, the

projection of the angular momentum on the z axis of a Laboratory Frame with

coordinates (x, y, z) (see Fig. 2.1.1 for a visualization of the reference frames), and

L(L+ 1) the eigenvalues of L2, then we can completely define a state of motion

of the nucleus, analogous with the procedure with the classical Euler angles.
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The eigenvalues of the hamiltonian (2.1.7) are therefore given by

Erot =
ℏ2

2I
(L(L+ 1)−K2) +

ℏ2

2I3
K2 . (2.1.8)

From now onwards, we will occupy ourselves only with systems with K = 0, as

the work made during this thesis is restricted to states in the groundstate band

for positive parity (Kπ = 0+), and as stated in Ref. [1], in the light actinides, like

Radium, the lowest lying negative parity band is the band with Kπ = 0−. Then,

the rotational wavefunction for a system might be

φL,K=0,M(ω) =
1√
2π

YL,M(θ, ϕ) . (2.1.9)

Given that our Hamiltonian does not depend on the position in the intrinsic frame,

it is invariant under a rotation of 180◦ around one of the axes perpendicular to

the symmetry axis, like the 2 axis, we can say that the system is R invariant,

with the R = R2(π) operator acting on the intrinsic frame. Thus, this rotation R

is part of the intrinsic degrees of freedom of our nucleus, and not of the rotational

degrees of freedom. This condition can be expressed, as stated in [13], as

Rext
c = Ri , (2.1.10)

where Rext represents a rotation acting on the external variables, the possible

values of c are x, y, z, the axes of the the laboratory frame, and i = 1, 2, 3.

These eigenstates can be labeled by the eigenvalues of R, that we shall represent

as r. On the intrinsic part of our wavefunction, we have that

R2
i Φr,K=0(q) = r2Φr,K=0(q) = Φr,K=0(q) , (2.1.11)

as R2 = R2(2π) when the angular momentum of the system is of integer value,

and therefore, r = ±1.

On the other hand, when working on the laboratory frame, we will have that the

rotation Rc inverts the direction of the symmetry axis, that is, (θ → π − θ, ϕ →
ϕ+ π), so when acting over the external wavefunction, we have that

RcYL,M(θ, ϕ) = (−1)LYL,M(θ, ϕ) , (2.1.12)
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from where we observe that r = (−1)L, and therefore, the rotational spectrum

will contain states with only even or only odd values of L.

On the other hand, the parity operator P on the intrinsic basis (1, 2, 3) acts over

the intrinsic wavefunction as

PΦK=0(q) = πΦK=0(q) , (2.1.13)

such that its eigenvalues are π = ±1, so every member of the band will have

the same parity. Note that, given the fact that the value of r emerges from the

rotational wavefunction, the quantum numbers π and r are independent from

each other.

Finally, if our hamiltonian possesses T invariance, that is, invariance under time

reversal (t → −t), and it is also R invariant, then we can choose the phases for

the intrinsic states such that the combination RT = 1, in which case it acts on

the intrinsic wavefunction as

T ΦK=0(q) = rΦK=0(q) , (2.1.14)

and as its action over the spherical harmonics is given by

T YL,M(θ, ϕ) = (−1)MYL,−M(θ, ϕ) , (2.1.15)

its action over the total wavefunction is

T ΨK=0,L,M = (−1)L+MΨK=0,L,−M . (2.1.16)

With these symmetries into consideration, different geometries can be observed

in nuclei, particularly quadrupole deformation, which originates from a system

which hamiltonian has R−,P− and T -symmetries, in which its hamiltonian

possesses RP- and T -symmetries, but not R- and P-symmetry.

Given that the discussion will focus on states with K = 0, the rotational energy

in equation (2.1.8) becomes

Erot =
ℏ2

2I
L(L+ 1) , (2.1.17)
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where the moment of inertia is defined as

Iκ =
ℏLκ

ωκ

, (2.1.18)

and where κ is an index for the different components of the vector operators, and

the angular frequency ω can also be obtained from a power series expansion via

the relation

ℏ2L(L+ 1) = ω2I2 . (2.1.19)

2.1.2 Vibrational deformation

The existence of spherical shapes in the presence of magic nuclei, as well as the

existence of shapes with permanent deformation previously discussed, suggest the

existence of intermediate shapes, that are interpreted as fluctuations or vibrations

between the spherical shape and the deformed one.

One could approximate the vibrations on the nuclear surface as an harmonic

oscillator which, in the second quantization formulation, is described with a

hamiltonian of the form

Ĥ = ℏ
∑
k

ωk

(
Â†

kÂk +
1

2

)
, (2.1.20)

where Âk and Â†
k are the anihilation and creation operators for a phonon, and

where they satisfy [Âk, Â
†
k] = 1, and each k represents a vibrational mode. This

approximation supposes a spherical equilibrium shape. This hamiltonian has the

following eigenvalues,

En = E0 + ℏ
∑
k

ωknk , (2.1.21)

where E0 is the groundstate energy and nk is the number of phonons of a mode

with k units of angular momentum and parity (−1)k. In nuclear structure, it is

common to fix the groundstate to an energy of zero, so the energy spectra will

read

En = ℏ
∑
k

ωknk . (2.1.22)

If one adds a phonon with a given k, it is equivalent to add a Ykm dependence

on the nuclear wavefunction [14]. When adding more phonons, the number of
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possible states will be fully determined when considering the symmetrization or

antisymmetrization of the total wavefunction. One example of this, in the case of

even-even nuclei, will be developed in more detail in the next subsection.

The previously described procedure is adequate in the regime used in this work,

although it should be mentioned that for states with sufficiently large values of

angular momentum, the equilibrium shape could become non-spherical [13], and

the spectra will not exhibit the constant separation between states that can be

deduced from this hamiltonian.

Before entering on the next subsections of the discussion, we must clarify that,

when we refer to an Eλ or B(Eλ) transition, we refer to transitions occurring

between states with a difference in angular momentum of λ between them, for

example, between the state L and the state L− λ.

2.1.3 Quadrupole deformation

The existence of large B(E2) values that could not be explained by the predictions

of the Shell Model was the first evidence for the existence of deformation in nuclei,

and were explained as having their origin in rotational degrees of freedom, giving

birth to a collective model of nuclear structure [13]. The geometry of nuclei with

this deformation is that of a spheroid that may be oblate or prolate, depending

on the value of the parameter β2.

For even-even nuclei, the low-energy spectra shows the sequence of states Lπ =

0+, 2+, 4+, . . . with energies following roughly the equation of a symmetric rotor,

that is, equation (2.1.17).

This spectra, and thus nuclei with permanent quadrupole deformation, can be

observed in regions mid-way of a closed shell, with many particles outside of them.

A typical way of conveying this information is defining the ratio R4/2 between the

energy of the 4+ state and the energy of the 2+ state. For permanent deformation,

via the values obtained by equation (2.1.17), one gets thar R4/2 = 20/6 ≈ 3.33.

The levels that satisfy this expression for the energies form what is called a

rotational band.

Via an analysis of the energy spectra, more evidence of the presence of quadrupole

deformation can be found. Firstly, the fact that the low-lying spectra does not
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possess states with odd values of angular momentum is a consequence of the R

symmetry of the system, the absence of states with odd parity in the rotational

band is a consequence of the P invariance of the intrinsic hamiltonian, and

finally the absence of doublets with the same angular momentum and parity is a

consequence of the T invariance of the intrinsic hamiltonian, according to Ref.

[13]. The presence of these three invariances is, as stated previously in this chapter,

clear evidence of an spheroidal shape.

In the case of quadrupole vibrations, the first evidence is again obtained via the

ratio between the two first excited states, R4/2. For this, we may first explain

the presence of different values of angular momentum and their origin from the

number of quadrupole phonons in them, that is, phonons with k = 2 and parity

(−1)2 = +1. If one adds one quadrupole phonon to the groundstate of an even-even

nuclei, which is always 0+, one obtains a 2+ state. Adding a second quadrupole

phonon introduces not only a 4+ state, but also a second 0+ and 2+ states, the

three of them with similar energies. This triplet of states emerges from the possible

configurations of the M components of the spherical harmonics associated with

each phonon. Given that the total angular momentum added to the groundstate

is L = 4, then the possible M = M1 + M2 values go from −4 to +4, and the

possible combinations are given in table 2.1.1.

M1

M2 −2 −1 0 +1 +2

−2 −4 −3 −2 −1 0
−1 −3 −2 −1 0 +1
0 −2 −1 0 +1 +2

+1 −1 0 +1 +2 +3
+2 0 +1 +2 +3 +4

Table 2.1.1: Possible combinations of the z projections, M1 and M2, of two
quadrupole phonons into the total z component M . Table adapted from Ref. [14].

Nonetheless, given that for an even-even nuclei, the total wavefunction must

be totally symmetrical, configurations like (M1 = +1,M2 = −2) and (M1 =

−2,M2 = +1) must be identical, so there are only 15 possible combinations, those

being one with M = −4, one with M = −3, two with M = −2, two with M = −1,

three with M = 0, two with M = +1, two with M = +2, one with M = +3 and

one with M = +4. Then, we can observe that the possible values of L that admits

all these configurations are L = 4 for M ∈ {−4,−3,−2,−1, 0,+1,+2,+3,+4},
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Figure 2.1.2: The systematics of measured E2 and E3 intrinsic moments Qλ

for 0+ → 2+ and 0+ → 3− transitions, respectively, in the heavy mass region
(A ≥ 208). Figure taken from Ref. [6], published under the CC-BY-4.0 license.

L = 2 for M ∈ {−2,−1, 0,+1,+2}, and L = 0 to account for the third M = 0.

A similar analysis can explain the following values of angular momentum in a

vibrational spectra.

As we are interested only in the groundstate band, the only value of the triplet

that is of interest for us is the 4+ state, which is related to a two phonon state

with energy E(4+) = E(n2 = 2) = 2ℏω2, while the 2+ state is related to a one

phonon state with E(2+) = E(n2 = 1) = ℏω2. Therefore, the charasteristic ratio

R4/2 between these states is equal to 2, and the states in the groundstate band

will be evenly spaced.

Regarding the enhanced E2 transitions, we can observe in figure 2.1.2 the values

of the intrinsic quadrupole moments, Q2 ∼
√

B(E2) (in blue), that for 208Pb, a

double magic nuclei and therefore with two closed shells, the moment is quite

low in comparison with the ones observed in nuclei far from the closed shell, and

actually the value of Q2 increases when the number of nucleons, A, increases.

These deformations can be studied with different models that have different

approaches, like the Shell Model, microscopic models, collective models, mean-

field calculations and, in our interest, algebraic models. A first approach from an

algebraic model to describe a quadrupole deformed system is the Elliott SU(3)

model [15], in which the hamiltonian of the system possesses an harmonic oscillator
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term to account for shape oscillations, and one interaction term, given by the

quadrupole-quadrupole interaction, accounting for the permanent deformation.

Then, the hamiltonian may be written as,

H = H0 −
1

2
κ
∑
q

Q†
2qQ2q , (2.1.23)

where H0 corresponds to the harmonic oscillator hamiltonian. One of the strengths

of this model is the fact that we could assume that the transition operator

that describes E2 transitions is proportional to the quadrupole interaction Q2q,

reinforcing this quantity as a clear evidence of quadrupole deformation.

2.1.4 Octupole deformation

The presence of negative parity states in the low-lying energy spectra of some

nuclei, observed early in the history of nuclear physics, led to the suggestion that

there should be deformed nuclei with a reflection asymmetric shape [12], following

the discussion previously made in this document, as symmetric shapes like the

quadrupole ones do not allow the presence of states with different parity.

The regions in which this deformation is stronger is when both Z and N are

just higher than the magic numbers, this is, Z,N ∼ 34, 56, 88, 134 [1], like the

lanthanide region, where Z ∼ 56 and N ∼ 88, and the actinides where Z ∼ 88

and N ∼ 134. The geometry of these nuclei is usually refered to as a pear shape,

which is a consequence of the loss of the R symmetry of the system. This can

be viewed in the presence of states with both odd and even values of angular

momenta in the low-lying energy spectra, while we could also observe a violation

of P parity from the fact that in octupole deformed nuclei, the groundstate band

presents a parity alternating behavior. However, this shapes preserve the so called

RP symmetry, represented by the operator S = PR−1. Geometrically, this

represents a reflection in a plane that contains the symmetry axis [15]. This

S operator has its eigenvalues represented by the simplex quantum number s,

corresponding to the product between the eigenvalues of R and P,

s = π(−1)L . (2.1.24)

This symmetry is the reason of the parity-alternating rotational spectra observed
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in these kinds of even-even nuclei. These alternating parities could have the

following structure, depending on the value of s,

Lπ = 0+, 1−, 2+, . . . , s = +1 , (2.1.25)

Lπ = 0−, 1+, 2−, . . . , s = −1 . (2.1.26)

One of the first experimental evidence for the existence of octupole shapes emerges

from the observation of enhanced E1 and E3 transitions. According to Ref. [6],

the first ones seem to be enhanced from the new charge distribution that occurs

inside the nucleus, focusing them in the more pointed end of the “pear”, although

the interaction between the individual nucleons might reduce significantly the

collective enhancement, giving a near-zero value for the B(E1) transitions. Then,

to study the behavior of the B(E3) transitions is more reliable, since they have a

more collective origin and are not affected by the individual interactions [1, 6].

In figure 2.1.2 the values of the Q3 intrinsic moments, derived from the B(E3)

transitions, with Q3 ∼
√

B(E3), are shown for the region of heavy nuclei. It can

be seen that for 222Ra, 224Ra and 226Ra there is an enhancement on the values of Q3

in comparison with their neighbors, which is evidence of a rotational deformation,

in contrast to the behavior of the other nuclei shown, that is consistent with the

behavior of an octupole vibrator [1].

Regarding the analysis of the energy spectra, the very low-lying 1− states in some

nuclei suggest the presence of stable octupole deformation [16]. In this case, the

energy spectra of the positive and negative parity states is given, from a given

value of L onwards (usually L ∼ 5), from the energy of a quantum rotor like

equation (2.1.17), as stated in Ref. [2]. The angular momenta of the positive and

negative parity states will in these cases be equal to the vector that describes the

rotation of the nucleus, R, conventionally aligned to the x axis.

Vibrational deformation, on the other hand, usually appears as octupole modes of

a quadrupole deformed equilibrium shape, having their origin in the presence of an

octupole phonon that we may call n3, which carries 3 units of angular momentum,

coupled to the rotation vector, so the angular momentum of the negative parity

states is given by L− = R + n3.

One way that one might study this approach is via the so called rotational
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alignment of the nucleus, where one studies the behavior of the quantity ∆ix =

L− − L+ versus the rotational frequency of the nucleus, that is approximately

given by ℏω ≈ (EL − EL−2)/2, being EL the energy of a state with given L. If

the nuclei has rotational deformation then the expected value of ∆ix is zero, as in

this case L+ = L− = R. On the other hand, for octupole vibrational nuclei the

expected value of ∆ix would be the angular momentum of the octupole phonon,

3ℏ, as L− = R + 3ℏ = L+ + 3ℏ.

As with the quadrupole deformation, a microscopic approach can be made for

higher multipoles in a sort of extension of the SU(3) model previously discussed,

such that

H =
∑
j

ejc
†
jcj′ −

1

2

∑
λ

κλ

+λ∑
µ=−λ

Q†
λµ ·Qλµ +Hpair , (2.1.27)

where the first term corresponds to the shell-model potential (like an harmonic

oscillator), the second correspond to the different multipole-multipole interactions,

that for our purposes, can be limited to λ = 3, and the last one is the pairing

hamiltonian, as stated in Ref. [1].

2.2 The Interacting Boson Model

The Interacting Boson Model (IBM) takes the notion given by the Shell Model

that nuclei are composed by different states. In the shell model these states use

to be grouped in shells, which are named “closed” when the maximum occupancy

of their different states is reached. If it is not the case, there are so called valence

nucleons, which are fermions, in the “unclosed” shells. The IBM instead considers

nuclei composed by bosons, which are the counterpart of pairs of nucleons coupled

to a good value of angular momentum [17].

Using the algebraic properties of the model, it is capable of describing the

phenomena of low-lying collective states of medium-mass and heavy nuclei, such

as the energy spectrum and the electromagnetic transition rates between states.

Different extensions of this model have been developed for describing different

types of phenomena in given regions of the nuclear chart, taking into account

different physical considerations, but in this work we will discuss three of them:

the so called sd-IBM-1, which consists of the original formulation of the model

using bosons of positive parity and angular momenta Lπ = 0+, 2+, the sdf -IBM-1,
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that introduces the possibility to describe negative parity states using in addition

bosons with angular momentum and parity Lπ = 3−, and the spdf -IBM-1, the one

used in the calculations made in this work which also uses bosons with negative

parity and angular momentum Lπ = 1−.

2.2.1 sd-IBM-1

As stated before, this model has its foundations in the hypotesis that the nucleus

is a system made up by bosons, which correspond to nucleon pairs, without taking

into account if these pairs are made up by protons or by neutrons. Specifically, we

consider that there are two types of bosons, the s boson, with angular momentum

Lπ = 0+, and the d boson, with Lπ = 2+. These bosons allow us to describe the

positive parity collective states with low-lying energy [18].

From the point of view of the second quantization, let us consider the boson

creation and anihilation operators, such that we have

s†, s̃, d†µ, d̃µ , µ = {±2,±1, 0} , (2.2.1)

where µ corresponds to the projection on the z axis of the angular momentum,

s̃ = s, and d̃µ = (−1)µd−µ. This last definition is made so that the operators

behave like spherical tensors of Racah. We can express these tensors in a more

compact notation, namely bα can be one of the set {s, d−2, d−1, d0, d1, d2}, where
α = 1, 2, . . . , 6, so that they satisfy the boson conmutation relations given by

[bα, b
†
β] = δαβ , [bα, bβ] = 0 , [b†α, b

†
β] = 0 . (2.2.2)

A general hamiltonian in this model can be written as

H = E0 +
∑
αβ

eαβb
†
αbβ +

1

2

∑
αβγδ

uαβγδb
†
αb

†
βbγbδ , (2.2.3)

where E0 is a real quantity, b†b represents one body contributions to the

hamiltonian, and b†b†bb represents two-body contributions. The presence of

these interaction terms gives the model the name of interacting bosons. One can
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also write this hamiltonian in terms of multipole operators, which then becomes

H = E ′
0 + εdn̂d + c1L̂ · L̂+ c2Q̂

χ · Q̂χ + c3Û · Û + c4V̂ · V̂ , (2.2.4)

where

n̂d = d† · d̃ ,

L̂ =
√
10[d† × d̃](1) ,

Q̂χ = [d† × s̃+ s† × d̃](2) + χ[d† × d̃](2) ,

Û = [d† × d̃](3) ,

V̂ = [d† × d̃](4)

(2.2.5)

are the above mentioned multipole operators. In particular, n̂d corresponds to the

number operator for d bosons, L̂ corresponds to the angular momentum operator,

and Q̂χ corresponds to the quadrupole operator. The term n̂s = s† · s̃ is not

explicitely included in this realization, as it contributes to the E ′
0 value.

This parametrization is interesting because it allow us to describe electromagnetic

transitions between different states with transition operators proportional to each

multipole term, those being

T̂ (E0) = γ′
0 + β′′

0 n̂d ,

T̂ (M1) = g′L̂ ,

T̂ (E2) = α2Q̂
χ ,

T̂ (M3) = β3Û ,

T̂ (E4) = β4V̂ .

(2.2.6)

It is important to observe that on this version of the model there can only exist

electric transitions of even order, and magnetic transitions of odd order.

Generally, we would need to solve the eigenvalue problem numerically for a given

nucleus. However, there are three special cases in the context of the sd-IBM-1

that make use of group theory to give an analytical solution to the problem, being

called dynamical symmetries.

Following Ref. [19], we can define a new set of operators g : Gαβ = b†αbβ, with
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α, β = 1, . . . , 6. They satisfy the commutation relation

[Gαβ, Gρσ] = Gασδβρ −Gρβδσα , (2.2.7)

along with the Jacobi identity, so they form a Lie Algebra. In fact, these operators

satisfy the relations of the unitary Lie algebra u(6), and are generators of the Lie

group U(6)1.

The u(6) algebra has various sub-algebras, but in the context of nuclear physics

we need to include the algebra of three-dimensional rotations, so(3), if we want to

describe systems with good values of angular momentum. With this condition,

we have three sub-algebras that may be reduced to so(3)2, that we denote by the

group chains

U(6) ⊂ U(5) ⊂ O(5) ⊂ O(3) , (I)

U(6) ⊂ SU(3) ⊂ O(3) , (II)

U(6) ⊂ O(6) ⊂ O(5) ⊂ O(3) . (III)

(2.2.8)

Geometrically, chain (I) represents spherical nuclei, chain (II) represents

quadrupole-deformed nuclei, and chain (III) represents γ−unstable nuclei which

do not present axial symmetry.

For the study of quadrupole-deformed nuclei, an appropiate hamiltonian is given

by

HSU(3) = E0 − κ′L̂ · L̂− κ2Q̂ · Q̂ , (2.2.9)

but if we want to describe a given set of nuclei where a shape transition may occur,

specifically from the U(5) limit to the SU(3) limit (from a spherical shape to a

quadrupole-deformed one), according to Ref. [20] we can consider the following

hamiltonian

H = E0 + εdn̂d − κ′L̂ · L̂− κ2Q̂ · Q̂ . (2.2.10)

Nonetheless, as stated in Ref. [21], the term proportional to the angular momentum

just renormalizes the moment of inertia of the nuclear system, and choosing E0 = 0,

we can simplify our Hamiltonian to

H = εdn̂d − κ2Q̂ · Q̂ (2.2.11)

1Note that the algebra is denoted in lowercase, while the group is denoted in uppercase.
2In the context of nuclear physics, all orthogonal groups that we may use are special, so we will
drop the S onwards when refering to special orthogonal groups.
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for the study of an isotopic chain.

Despite the success that this model has shown in the description of nuclei with

quadrupole shapes, it is not capable of describing features of nuclei with negative

parity states, which would involve the inclusion of negative parity bosons, as

discussed in Ref. [22].

2.2.2 sdf-IBM-1

Given the experimental evidence about octupole features in the actinide region,

Refs. [20, 23, 24] discussed that they may be described via an f boson, carrying a

value of angular momentum Lπ = 3−, with a hamiltonian of the type

H = Hsd +Hf + Vfd , (2.2.12)

where Hsd is the hamiltonian (2.2.3) describing the quadrupole mode, Hf

describing the octupole mode, and Vfd describing the octupole-quadrupole

interaction. In their first article about the subject, the authors introduced both

the s boson of the sd−IBM, as well a sf boson for the ground level of octupole

excitations [23]. In the following works, however, they decided to identify this

sf boson with the s boson of the sd−IBM, which would be used in their work

onwards.

In this case, analytical solutions are only found when working in the case of nf = 1,

this is, the case of octupole vibrations [25], reducing the full hamiltonian (2.2.12)

to the expression

H = Hsd + ε′f (f
† · f̃) +

4∑
L=0

x′′
L[[f

† × f̃ ](L) × [d† × d̃](L)]
(0)
0

+ w2[[f
† × f̃ ](2) × [d† × s̃+ s† × d̃](2)]

(0)
0 . (2.2.13)

The inclusion of the f boson allows to describe electromagnetic transitions that

were previously forbidden, like the E1 and E3 transitions that, as discussed on

the previous section, are clear evidence of octupole phenomena.

The algebraic structure of this model is given by the U(13) group, via its

decomposition in the tensor product Usd(6)⊗ Uf (7) as stated in Ref. [25], where

Usd(6) is the algebra of the IBM-1 discussed in the previous section, and Uf(7)
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Figure 2.2.1: Dynamical symmetries associated to the decomposition of U(13).

is the algebra generated by the operators Bαβ = b†αb̃β, where α, β = 1, . . . , 7 and

bα corresponds to the fµ operators with different projections of their angular

momentum on the z axis. The detailed construction of this algebra is discussed

in Ref. [26]. In figure 2.2.1 we present a diagram of the possible dynamical

symmetries associated to this decomposition.

One particular case of interest for the discussion of our work is the one analyzed

in Ref. [20], in which the authors describe nuclei that possess a transitional

quadrupole shape between the U(5) and SU(3) limits, while also presenting

octupole phenomena. They may, therefore, be described with a hamiltonian of

the form

H = H
(I)→(II)
sd + ϵf + θfN + z[Q

(2)
f ×Q(2)](0) , (2.2.14)

where H
(I)→(II)
sd corresponds to equation (2.2.10), nf = 1, Q

(2)
f = 2

√
7[f † × f̃ ](2) is

the quadrupole operator of the f boson, Q(2) is the sd quadrupole operator defined

in equation (2.2.5), and θf and z are two parameters controlling the interaction

between the octupole bosons and the s and d bosons.

This hamiltonian, while being able to reproduce the energy spectra and the E3

transitions with quite some success, fails to describe the experimentally observed

E1 transitions without the need to include terms of higher order in the operator

to calculate them.

More recently, there have been works with the sdf -IBM in combination with

nuclear energy density functionals calculations in the lanthanide and actinide

regions [27, 28], that do not limit the number of f bosons and use different
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definitions of a general hamiltonian of the form

H = Hsd +Hf +Hsdf , (2.2.15)

where Hsd is consistently defined as the hamiltonian of equation (2.2.10), Hf is

the hamiltonian of the octupole mode, that usually includes the f boson number

operator and a quadrupole f boson interaction Qf , and Hsdf is the hamiltonian

of the interaction between the s, d and f bosons, usually involving a term of the

type Qsd ·Qf . These works include modfications that allow a better description of

the E3 transitions, as well as other phenomena, but they still lack a satisfactory

description of E1 transitions.

2.2.3 spdf-IBM-1

The difficulties to describe E1 transitions with the sdf -IBM-1 suggested that

the inclusion of another boson with negative parity may be needed. This new

boson, carrying 1 units of angular momentum, is labeled as the p boson [29].

The inclusion of the p boson was not met without some doubts, as they could

be associated with a dipole mode, that as discussed before, should only affect

the position of the center of mass of the nuclei. However, according to Ref. [29],

it facilitates the phenomenological treatement of the algebraic properties, and

appears to have its origins in the underlying microscopic structure of the nucleus.

The inclusion of the p boson allows a better depiction of the E1 transitions, in

contrast with the ones made in the context of the sdf−IBM-1, without the need

to include aditional high order terms to the transition operator. In adition, Ref.

[30] suggests that the inclusion of the p boson is justified since the interaction

between quadrupole and octupole degrees of freedom produces correlated pairs of

nucleons coupled to angular momentum Lπ = 1−, so the p boson is justified to

simulate this behavior.

From a group theoretical point of view, this model is associated with the u(16)

algebra, and therefore, the U(16) group, and a full discussion about the dynamical

symmetries observed can be found in Refs. [31, 32].

A general hamiltonian that may be used in the context of this model is the

one proposed by Ref. [30] for the study of thorium isotopes, that generalizes

the hamiltonian shown in equation (2.2.11) to include the dipole and octupole
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interactions, resulting in the form

H = εdnd + εpnp + εfnf − κ1Q
(1) ·Q(1) − κ2Q

(2) ·Q(2) − κ3Q
(3) ·Q(3) , (2.2.16)

where the number operators for the negative parity bosons are, respectively,

np = −p† · p̃ and nf = −f † · f̃ , and the Q(2) operator is consistently defined as

Q(2) = Q
(2)
sd + αQ

(2)
pf

= [d† × s̃+ s† × d̃](2) + χdd[d
† × d̃](2) (2.2.17)

+ α
(
χpp[p

† × p̃](2) + χff [f
† × f ](2) + χpf [p

† × f̃ + f † × p̃](2)
)
,

where the α and χ parameters change in the literature, as also do the dipole and

octupole operators. This study shows a great agreement between the theoretical

calculations and the experimental data both for energies and electromagnetic

transitions, specially the E1 moments with transition operators with only one

body terms, consistent with the transition operators for E2 and E3.

In the same context, Ref. [21] uses a hamiltonian similar to equation (2.2.16),

focusing only on the multipole terms. The authors derive the definition of the

dipole and octupole operators from the rλYλµ matrix elements between the sd shell

(N = 2) and the pf shell (N = 3) harmonic oscillator major shells, in the context

of the shell model. Here, N is the number that appears in the energy eigenvalues

for an harmonic oscillator. Those derivations are made as the quadrupole operator

is known to be derived from the same principle. The inclusion of the dipole term

is again justified from its influence on the electromagnetic transitions.

Another hamiltonian that may be used in the context of the model is the one used

in Ref. [9] in the actinide region, considering only the number operators and the

quadrupole interaction presented in equation (2.2.17), that is

H = εdnd + εpnp + εfnf − κQ(2) ·Q(2) . (2.2.18)

This selection is made given the diagonal nature of the terms in the decomposition

Uspdf (16) ⊃ Usd(6)⊗Upf (10). This work presents good results for the E1 transitions

with a one body operator, although it makes use of e1 effective charges that vary

along the isotopic chain to make precise fits. It also makes the point that to include

negative parity bosons in the positive parity states, it is necessary to also include
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a dipole interaction to the hamiltonian (2.2.18), although this inclusion does not

allow to exploit the diagonal nature of the previously mentioned hamiltonian.

They also observe that in the case in which εp = εf in the hamiltonian (2.2.18),

then one dynamical symmetry of the system emerges, the one asociated with the

rotational limit of the model that separately conserves the number of positive and

negative parity bosons,

Uspdf (16) ⊃ Usd(6)⊗ Upf (10) ⊃ SUsd(3)⊗ SUpf (3) ⊃ SUspdf (3) ⊃ Ospdf (3) .

(2.2.19)

During the last decade, there was a great boom in experimental data for the E1

and E3 transitions in different nuclei, like radon [4] and radium [5, 6], which

were used by Ref. [8] in the context of the spdf -IBM-2, that differentiates bosons

made up from protons of those made up from neutrons. The calculations of this

work reproduced sucessfully the experimental data available for the energies, E1,

E2 and E3 transitions on radon isotopes with a hamiltonian containing a small

number of free parameters.
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Chapter 3

Methods

As stated previously in this document, the objective of this work is to study the

octupole phenomena in the even-even Radium isotopes in the framework of the

spdf -IBM-1, aiming in particular to

1. Make numerical calculations to find a set of hamiltonian parameters for each

nuclei in the 216–228Ra isotopic chain that is able to reproduce fairly well

the experimental data available.

2. Identify the presence or absence of octupole deformation in the studied

Radium isotopes.

3. Study the effects that the interaction terms in our hamiltonian have on the

description of octupole-deformed nuclei.

For the present work, we have adopted a hamiltonian of the same form as the one

used by Refs. [30, 33], given by

Ĥ = εpn̂p + εdn̂d + εf n̂f − κ1Q̂
(1) · Q̂(1) − κ2Q̂

(2) · Q̂(2) − κ3Q̂
(3) · Q̂(3) . (3.0.1)

This election is made because we hypothesize that this hamiltonian is capable of

reproducing the quadrupole phenomena observed in transitional nuclei between

the SU(3) limit and the U(5) limit, as it was discusssed in the previous chapter, as

well as the octupole phenomena related with vibrational and rotational octupole

deformation. The inclusion of the dipole operator allow us to better describe

the electromagnetic transitions that occur in the range of isotopes to be studied,
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specially the E1 transitions, as it is stated in Refs. [9, 21].

For the multipole operators, we chose the definitions proposed in Ref. [21], those

being

Q̂(1)
µ =

√
8(d†p̃− p†d̃)(1) +

√
10(s†p̃− p†s̃)(1) +

√
42(d†f̃ − f †d̃)(1) , (3.0.2)

Q̂(2)
µ = (s†d̃+ d†s̃)(2) + χd(d

†d̃)(2) − 9
√
3

10
(p†p̃)(2)

− 3
√
7

5
(p†f̃ + f †p̃)(2) − 3

√
42

10
(f †f̃)(2) , (3.0.3)

Q̂(3)
µ = 2(p†d̃− d†p̃)(3) +

√
5(f †s̃− s†f̃)(3) +

√
6(f †d̃− d†f̃)(3) . (3.0.4)

The choice of these multipole operators was made as they allow us to use a

Q-consistent formalism for the study of the electromagnetic transitions and the

multipole moments given their hermiticity. Although the authors define the χd

parameter with a fixed value, χd = −
√
7/2, we decided to make it a free parameter,

as the value of −
√
7/2 is related to the generator of the SU(3) group, describing

permanent quadrupole deformation, while some of the isotopes on the chain itself

are not necessarily deformed. This choice was also made aiming to potentially

improve the results for the E2 transition rates.

On the other hand, the isotopic chain 216–228Ra was chosen as the experimental

data suggests the existence of octupole deformation in 222,224,226Ra, so we could

take these results as reference on our analysis, expanding it to the near nuclei in

search of the same kind of behavior in them.

The data for the energies was available in Ref. [34], while the transition rates were

retrieved from Ref. [5] for 224Ra, Ref. [6] 222Ra and 228Ra, Ref. [16] for 226Ra and

Ref. [34] for 216Ra and 218Ra. We were not able to find experimental data for the

transition rates to the groundstate in 216Ra, which is consistent with the lack of

data for the low-energy states of this nuclei, and no data for the transition rates

was available for 220Ra, although the data regarding the energies was available.

3.1 Numerical calculations

Our method consisted in obtaining the sparse matrices for each term of the

hamiltonian and the required transition operators via the ArbModel computer
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code [35]. Then a Python code constructs our hamiltonian as given in equation

(3.0.1), where each one of the parameters εi, κi are free, and subject to a least

squares minimization routine. This routine makes use of the iMinuit package

[36], which is based on the MINUIT routine proposed in Ref. [37]. Here, the

eigenvalues and eigenvectors problem is solved numerically in each iteration via

the scipy.sparse Python pachage with the LOBPCG method. This allows us to

calculate the energies and the transition rates of the states in the groundstate and

the low-lying states of both parities. The work was made with sparse matrices,

which reduce considerably the memory usage compared to the use of dense

matrices.

The χ2 function is defined as

χ2 = WE

∑
i

(Etheo
i − Eexp

i )2

∆Ei
2 +

∑
λ

WT (Eλ)

∑
j

(T (Eλ)theoj − T (Eλ)expj )2

∆T (Eλ)j
2 , (3.1.1)

with λ = 1, 2, 3. Here it can be seen that the χ2 includes the energies, that

are directly the eigenvalues of the hamiltonian, as well as the transition matrix

elements T (Eλ), defined as

T (Eλ;Li → Lf ) = ⟨Lf ||eλQ(λ)||Li⟩ , (3.1.2)

where Li, Lf are the initial and final states, eλ are the effective bosonic charges,

kept constant for all the isotopic chain, and ⟨·||M ||·⟩ represents reduced matrix

elements (a more extense definition is made in the appendix A.2). The ArbModel

code generates the transition matrices with the constants required to define

the reduced matrix elements. For each term on the χ2 function, we added the

experimental error as a weight for each term. We also included the Wk functions,

which act as a relative weight between the energies and the transition matrices to

give more relevance to the last ones on the minimization.

3.2 Presence of octupole deformation

Once the parameters are obtained, we can calculate the theoretical energies and

matrix elements, and use the last ones for the calculation of the electric transition
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rates B(Eλ), defined as

B(Eλ;Li → Lf ) =
1

2Li + 1
T (Eλ;Li → Lf )

2 , (3.2.1)

as well as intrinsic multipole moments Qλ, with special interest in the octupole

moment Q3. These quantities are given by

Qλ(Li → Lf ) =
1

(Li0λ0|Lf0)

√
16π

2λ+ 1

1

2Li + 1
T (Eλ;Li → Lf ) , (3.2.2)

where (Li0λ0|Lf0) is a Clebsch-Gordan coefficient, and for the special case of

λ = 1,

Q1(Li → Lf ) =
1

(Li010|Lf0)

√
4π

3

1

2Li + 1
T (E1;Li → Lf ) . (3.2.3)

In both cases, we are using the definitions given in Ref. [6] and its Supplementary

Material.

The presence of non-zero octupole moments are the main evidence of the presence

of octupole deformation in this isotopic chain, and we will compare our theoretical

calculations with the available experimental data of Refs. [5, 6].

3.3 Analysis of the effects of the multipole terms.

To understand the effect of each of the multipole terms over the description of the

octupole degrees of freedom in this chain, we will study three differents scenarios

for the interactions included in our hamiltonian, these being

1. Hint = Q̂(2) · Q̂(2),

2. Hint = Q̂(2) · Q̂(2) + Q̂(1) · Q̂(1),

3. Hint = Q̂(2) · Q̂(2) + Q̂(3) · Q̂(3),

with the objective of observing and discussing the role of the last two interactions

in an accurate description of octupole phenomena.

This is made by comparing the results obtained in each case between themselves

and with the result of the full hamiltonian (3.0.1) including, in principle, the three

multipole interactions. For this, we set the different κi parameter zero, in function
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of the desired interactions. The motivation for this study emerges from the fact

that, for example, Ref. [9] does not include octupole interaction on its hamiltonian,

which rises the question about the necessity (or absence) of its inclusion. Thus,

one might expect to observe a greater κ2 strength in nuclei far from the closed

shell, like 222–228Ra, as these nuclei should be closer to a quadrupole deformed

shape, this being the reason behind always including the quadrupole term.
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Chapter 4

Analysis and Discussion

4.1 Parameters.

As discussed in the previous chapter, the calculations were made via a computer

program developed for this work, which can be found in Ref. [38]. These

calculations resulted in a set of hamiltonian parameters presented in table 4.1.1.

Isotope εd εp εf κ2 κ1 κ3 χd

216Ra 0.777 1.999 0.689 0.0169 0.0051 0.0000 -2.405
218Ra 0.674 1.200 0.728 0.0140 0.0018 0.0000 -3.262
220Ra 0.557 1.099 0.549 0.0260 0.0044 0.0000 -2.900
222Ra 0.170 0.801 0.415 0.0284 0.0036 0.0000 -2.578
224Ra 0.176 0.899 0.779 0.0300 0.0043 0.0000 -1.920
226Ra 0.196 1.280 0.891 0.0282 0.0052 0.0000 -2.098
228Ra 0.245 1.195 0.793 0.0173 0.0032 0.0000 -2.733

Table 4.1.1: Set of parameters obtained for each nuclei of the isotopic chain.
The results for the εi and κi parameters are given in MeV, while the χd parameter
is adimensional.

At first glance, it is interesting that the κ3 parameter becomes zero for the whole

chain, implying that the octupole interaction is not needed for the description

of the octupole degrees of freedom. This will be discussed further in a future

subsection.

As can be seen more clearly in Fig. 4.1.1, we can observe two distinct regions

of parameters, specifically for κ1, κ2 and χd: the first region regards the lighter

nuclei (216–220Ra), while the second one regards the nuclei that have experimental
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Figure 4.1.1: Evolution of the hamiltonian parameters as a function of the mass
number.

evidence suggesting static and vibrational octupole deformation (222–228Ra). This

might also be related to the fact that the first isotopes mentioned possess a smaller

set of experimental data available, mainly their energy spectra, possibly inducing

to a behavior that does not follow the trend of the other nuclei of the chain. We

can also observe that for the second region of parameters, the results satisfy that

εp > εf > εd.

The energy of the quadrupole boson, εd, shows a rapid decrease with the mass

number, minimizing at 222Ra, and slowly increasing after. This might be attributed

to the lowering of the energies of the states in the positive parity band as a

consequence of the transition to a static quadrupole shape. The energy of the

dipole boson εp has a behavior similar to a parabola, being consistent with the

results in Ref. [9]. It can be observed that the nuclei for which εp and εf lie closer

in energy is for 224Ra, the nuclei which is understood to be the one where static

octupole deformation is stronger.

4.2 Spectroscopic properties.

4.2.1 Energy Spectra

We present the results for the energy levels in the isotopic chain in figure 4.1.2.

On the left side of each figure, we present the experimental energy levels retrieved
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Figure 4.1.2: Experimental (left) and theoretical (right) energy spectra for
216–228Ra. The blue lines represent positive-parity states, while the red lines
represent negative-parity states. The experimental results were obtained from Ref.
[34].
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from Ref. [34], while in the right side we present the results of our numerical

calculations.

The model reproduces with quite great success the experimental results in all of the

nuclei. The mean value of the Root Mean Squared Error (RMSE) for each nuclei

is of 0.101 [MeV], with the highest RMSE being observed for 216,218Ra, of around

0.15 [MeV]. These low values show that the model has great accuracy reproducing

the experimental energy spectra for this chain, taking into consideration that we

use only six parameters and twelve energy levels on the fitting process.

One might explain the strange behavior of the 1− state in 216Ra, being higher in

energy than both the 3− and 5− states, as a consequence of the high value of εp,

the energy of the dipole bosons, probably associated with the lack of experimental

data for the energy levels of this isotope. Phenomenologically, this can also be

attributed to the near spherical shape of this nucleus, as it lies near a closed

neutron shell (Nshell = 126, N216 = 128), and therefore the mechanism responsible

of octupole vibrations mentioned in Ref. [39] might have a greater influence over

this state. It is important to mention that we were not able to find studies in the

radium isotopic chain that include this isotope on their calculations.

The nucleus 218Ra shows perfect signs of a quadrupole vibrator, as their energy

levels are all equidistant from each other. The same applies for the negative parity

states, starting from the state 5−. The same behavior can be seen in for 220Ra,

although in this isotope our calculated 2+ states is slightly lower in energy than

expected. It is also interesting to note the fact that the level 1− is higher in

energy than the 3− state in the first nuclei, which is consistent with the recent

experimental data in Ref. [39], in which, as stated previously for 216Ra, the authors

suggest that the origin of this behavior emerges from an octupole vibrational

mechanism. From 220Ra onwards, the first negative parity state correspond to

the 1− state, and the spacing between the states of the negative parity band

appoximates qualitatively to an octupole rotor.

The spectra for 222,224,226Ra is consistent with both a static quadrupole deformed

shape, as the spacing between the positive parity states follows the rules for a

rotor (equation (2.1.17)), and with a static octupole deformed shape, given the

spacing between the negative parity states and the fact that from the state 5−

onwards, the positive and negative parity states alternate between both parities,
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becoming part of the same band.

Finally, we can observe that 228Ra posseses a quadrupole deformed shape, although

the negative parity band lies high in energy, appearing over the 6+ state. This

might be attributed to a vibrational mode, as the states do not form an alternating

band and thus belong to different energy bands.

Following the analysis made in Ref. [7], we can observe the odd-even staggering

present in each isotope in Fig. 4.2.1. A greater staggering is evidence of the positive

and negative parity states belong to different bands, with the negative parity states

forming their own rotational-like band, while a neglible staggering is evidence of a

single band composed by states of different parity, or more specifically, two bands

of different parity located close in energy. We can reproduce the experimentally

observed staggering, which is clear in 228Ra, while being less pronounced for 226Ra.

Another phenomena that can be studied from the energy spectra is the emergence

of octupole vibrational states, by calculating the energy displacement δE defined

in Ref. [40] as

δE(L) = E(L−)− E((L+ 1)+) + E((L− 1)−)

2
. (4.2.1)

If the nucleus exhibits stable octupole deformation, δE would be near to zero,

although this analysis does not inform us about the presence (or absence) of
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octupole vibrations. In figure 4.2.2 we plot the results.

It can be seen that our calculations reproduce quite well the experimental results,

and it is clear that the results for 222–226Ra tend to a value of δE ∼ 0 as the

angular momentum increases. The results for 228Ra are clear evidence of the

absence of permanent octupole deformation in this nuclei, and the same can be

said about the fluctuating behavior of 216Ra.

One should note the special case of 218Ra, in which the energy displacement

rapidly decreases with the angular momentum, becoming negative for L = 9, with

the experimental value continuing to decrease at L = 11, while our theoretical

calculations show an increase at L = 11, with δE near zero, which would suggest

that this nuclei would exhibit a static octupole shape. However, if one looks at

the calculated energy levels, it is visible that our 12+ state is lower in energy than

the experimental value, which accounts to this behavior. Something similar can

be said about 220Ra, although its experimental value lies near zero, in a similar

position to the one of 222,224Ra, which suggests a static behavior as well.
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4.2.2 Electromagnetic Transitions

Regarding the electromagnetic transitions B(Eλ), we show the results for the

transitions B(Eλ;λ → 0) in figure 4.2.3. We make a zoom in the B(E3; 3− → 0+)

transitions to observe in more detail their behavior in the region of 220–228Ra, as

the results for 216–218Ra are quite high in energy in comparison and thus difficult an

adequate contrast with the experimental data. We can observe that the calculated

B(E2) and B(E3) transitions are in great agreement with the experimental data

and the expected trends, while the B(E1) transitions are in adequate orders of

magnitude, although not as accurate compared to the other transitions.

The experimental data for B(E1) and B(E3) transitions was retrieved from Ref.

[5] for 224Ra, from Ref. [16] for 226Ra and from Ref. [6] and its supplementary

material for 222,228Ra. The experimental data for B(E2) transitions was retrieved

for the previously mentioned sources, as well from Ref. [34] for 216,218Ra.

4.2.2.1 B(E1) transitions

For B(E1) transition rates, we use the operator defined in equation (3.0.2) and

an effective charge e1 = 0.0039 [efm], constant for all nuclei in the chain. This

value was chosen as the best fit that shows a better agreement with the order of

magnitude of the available experimental data. The calculated transitions were

from the type L± → (L − 1)∓ based on the available experimental data. The

results are presented in table 4.2.1 and compared in figure 4.2.4 for the isotopes

with experimental results.

We can observe that there is a reasonable agreement between the experimental and

theoretical results, specially for the 1− → 0+ transitions. The really low values
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of 1− → 0+ transitions for 216Ra might be attributed to the lack of experimental

data available for this nucleus regarding this type of transitions, as well as a

consequence of the small boson space available for our calculations, limiting an

adequate description of the behavior in this nuclei.

The results for 218,220Ra are in the expected orders of magnitude for dipole

transitions, at least for the transitions at low levels. Our calculations for 222Ra are

an order of magnitude below the experimental results, which may be attributed

to low collective effects in comparison with the next, heavier isotopes in the chain.

This might be accounted for by using a different effective charge for this isotope,

as it is made in Ref. [9], but we decided to use a constant charge along the whole

chain.

We would like to point out the great accuracy observed for 228Ra at all values

of angular momentum, which may be a consequence of the above mentioned

collective effects, and also a result of the fitting process priorizing these transitions,

given that in comparison with the other isotopes studied, the dipole interactions



4.2. Spectroscopic properties. 37

and their trends are in a better agreement with the experimental data than the

quadrupole and octupole interactions.
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Figure 4.2.5: Comparison between the experimental (circle, in blue) and
theoretical (triangle, in green) values for the B(E2) transition rates, in Weisskopf
Units. The horizontal blue lines represent lower experimental limits. The
experimental values were taken from Refs. [4, 5, 16, 34].

With regards to the B(E2) transition rates, we chose an effective charge e2 = 14.3

[efm2], in the same order of magitude than the common e2 = 18 [efm2] found in

the literature, as well as the Q̂(2) operator defined in equation (3.0.3). All the

transitions calculated were of the type L± → (L− 2)±. The results are presented

in table 4.2.2 and compared in figure 4.2.5 for the isotopes with experimental data

available.
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We can observe that the predictions of the B(E2; 2+ → 0+) states are in a

reasonable agreement with the experimental data for all the nuclei except 228Ra,

which is highly overestimated. We observe that the value of these transitions get

higher with the mass number, which is consistent with the higher collective effects

observed in nuclei far from the closed neutron shell.

In the nuclei with more experimental data available, our results tend to maximize

on the 5− → 3− transition, after which they decrease in value for the next angular

momenta. This was also observed in Ref. [41], where is proposed that this behavior

might be related the nature of the model.

It is interesting to observe that our calculated transitions show a smoother behavior

with the angular momentum in comparison with the experimental data, in the

sense that the results do not fluctuate as much as the data does. This might be

attributed to a limitation of the model, as it can be seen in Ref. [19] where the

limiting cases of the dynamical symmetries in the sd-IBM-1, the B(E2) transitions

for the vibrational and rotational limits follow an inverted parabola as function

to the angular momentum, respectively given by

B(E2;L+ 2 → L)vib ∼ (L+ 2)(2N − L) , (4.2.2)

B(E2;L+ 2 → L)rot ∼ (2N − L)(2N + L+ 8) , (4.2.3)

where N is the number of bosons present in the nucleus.

4.2.2.3 B(E3) transitions

In this case, we utilized an effective charge e3 = 300 [efm3] and the Q̂(3) operator

from equation (3.0.4). We calculated transitions of the type L− → (L− 3)+ and

L± → (L− 1)∓ given the available data. Our calculations are presented in table

4.2.3 and compared in figure 4.2.6 for the isotopes with experimental results.

We can see that the B(E3; 3− → 0+) transition rates are in great agreement with

the experimental data for all nuclei in which it is available, and for the other

B(E3;L → L − 3) our results follow the trend of the experiments, except for
228Ra.

We are not currently capable, however, of reproducing the expected behavior for
216,218Ra, obtaining results that are higher than even the nuclei with permanent
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Figure 4.2.6: Comparison between the experimental (circle, in blue) and
theoretical (triangle, in green) values for the B(E3) transition rates, in Weisskopf
Units. We present the values for the B(E3;L → L− 3) transitions for L = 3, 5, 7
and the B(E3;L → L− 1) for L = 1, 3. The experimental values were taken from
Refs. [4, 5, 16].

octupole deformation. We attribute these values to a limitation of the hamiltonian

used in this work, as we can observe a value for κ1 in 216Ra, a nuclei near the

closed neutron shell, similar to that of 226Ra, a nuclei far from the closed shell

and expected to be octupole deformed. Therefore, we do not consider these

calculations to be adequate predictions for those nuclei.

In the case of 220Ra, our results consist on low values for the L → L−3 transitions

that suggest the absence of octupole deformation, which is in direct contrast

with what was discussed in relation to the behavior of its energy displacement.

However, in Ref. [6] is discussed that the observation of near-zero B(E3) values

for some but not all transitions, might be consistent with an octupole vibrational

shape.

4.2.3 Intrinsic Octupole Moments

We present in figure 4.2.7 a plot for the calculated Q3 intrinsic octupole moments

for all the isotopes on the chain, calculated using equation (3.2.2). According
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to Refs. [1, 2], the octupole vibrator limit occurs for values near the measured

moment of 208Pb, around 2100 [efm3], which is represented bu the red dotted line.
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Figure 4.2.7: Intrinsic octupole moments Q3 for the 3− → 0+ transition. The
green triangles correspond to our theoretical calculations, while the blue circles
correspond to experimental measures, reported in Ref. [6] for 222,228Ra and in
Ref. [5] for 224,226Ra. The moments are in units of efm3. The dotted red line
corresponds to the limit of octupole vibration, deduced from the value of the
octupole moment of 208Pb, according to Refs. [1, 2].

The first remarkable feature that can be observed is the really high values of

the moment for 216,218Ra, as a consequence of the high B(E3) values previously

discussed. We must recall that we do not consider that these results should be

taken as reliable, as we suppose that they are a consequence of an inadequate

hamiltionian more than an accurate description of the phenomena occurring in

these nuclei.

The low value of the moment for 220Ra suggests that this nuclei should not

exhibit octupole deformation, being better described as having a shape with really

small octupole vibrations around a quadrupole deformed equilibrium shape, again

consistent with the low value of the B(E3) transition in single particle units.

For the nuclei with experimental data available, we can again observe that our

calculations show great agreement with them. The results are consistent with the

expected behavior of 222–226Ra, which according to the literature is a static octupole
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shape. In the case of 228Ra, it is believed to present octupole vibrations over a

static quadrupole equilibrium shape, an idea reinforced by the error bars of the

experimental measure, having the posibility of being closer to the vibrational limit.

Given that our calculated moment is really close to the experimental measures,

and in consistency with the energy spectrum of this nucleus, we conclude that

our calculations also allow us to classify it as an octupole vibrator.

4.3 Influence of the multipole terms on the

hamiltonian.

As can be seen in table 4.1.1, the κ3 parameter is zero for all the isotopes in the

chain, which implies that the octupole interaction is not relevant to the description

of octupole phenomena when there already exists an interaction that mixes the

parity of the different states, this being the dipole interaction. This is consistent

with the behavior observed by Ref. [9], where their hamiltonian only includes

dipole and quadrupole interactions.

For this discussion, we turn off the dipole interaction in 224Ra by making κ1 = 0,

while keeping the other parameters constant. The comparison between the energy

spectra is presented in figure 4.3.1, and the transition rates are presented in table

4.3.1.
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Figure 4.3.1: Comparison between the experimental and theoreticals energy
levels of 224Ra in the presence or absence of the dipole interaction. The
experimental data is from Ref. [34].

It can be observed that in absence of the dipole interaction, the energy spectra of

the positive parity states still corresponds to the one of a quadrupole deformed
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shape, given the position of the 2+ and 4+ states, corresponding to a ratio

R4/2 ∼ 3.3. In fact, this quadrupole shape survives at higher spin, as the spacing

between the higher levels of positive parity follows the L(L+ 1) energy of a rotor,

although with a lower moment of inertia than in the experimental results. This

behavior implies that the dipole interaction increases the moment of inertia of the

nucleus, according to equation (2.1.17). In regards to the negative parity states,

these emerge at a higher energy, also showing a behavior similar to an octupole

rotor given the space between them, and together with the positive parity states

they do not follow the sequence 5−, 6+, 7−, . . . , meaning that the states of different

parity are not part of the same band.

Therefore, the inclusion of the dipole interaction seems to be responsible of the

lowering of the energy of the negative parity states, as well as having an effect

in the behavior of the high spin positive parity states, changing the shape of the

nuclei at them, and allowing the alternation of the positive and negative parity

states from 5− onwards, so the states become part of the same band.

In the case of the transition rates, it is particularly interesting the behavior of the

B(E1) transitions, as the theoretical value in absence of the dipole interaction is

more consistent with the experimental data than the case without it. This might

be evidence of the need for the inclusion of a new term in the hamiltonian, different

from the octupole interaction, which may be needed for a better description of

the B(E1) transition rates which, as discussed in Ref. [1], are more sensible to

microscopic considerations.

The B(E2) transitions seem to not be affected by the introduction of the dipole

interaction, keeping the results in the same order of magnitude of those including

the interaction. This behavior is expected, as the quadrupole transitions should

not be greatly affected by the introduction of an interaction of different multipole,

less if this interaction represents a transition with different parity.

Finally, we observe that the B(E3) transitions are greatly diminished without

the dipole interaction. This is probably attributed to the difficulty of describing

phenomena asociated with odd multipoles without an interaction of that kind.

For the sake of comparison, we also made calculations including an octupole

interaction (κ3 ̸= 0) while fixing the dipole interaction to zero. For this, we used

the parameters presented in table 4.1.1 for 224Ra as a seed except for κ1 which,
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Figure 4.3.2: Comparison between the experimental and theoretical energy levels
of 224Ra in the presence of quadrupole and dipole interactions, and quadrupole
and octupole interactions. The experimental data is from Ref. [34].

as said above, was fixed to zero. This resulted in the parameters shown in table

4.3.2. The energy spectra and electromagnetic transitions are presented in figure

4.3.2 and in table 4.3.3, respectively.

We can observe a lowering in the energy of both the positive and negative parity

states. This is specially visible for the positive parity states, that although they

conserve the behavior of a quadrupole rotor, it seems that the moment of inertia

of the nuclear shape has been increased given the distance between different states.

On the negative parity band, on the other hand, the behavior is similar than the

discussed when only considering the quadrupole interaction, so the negative parity

states do not become part of a single band of alternating parity with the positive

parity states.

Regarding the electromagnetic transition rates, we again observe a similar behavior

for the B(E1) transition rates, being more consistent with the same order of

magnitude than the experimental data in comparison with the case of quadrupole

and dipole interaction. However, the calculations for the B(E2) transitions are

greatly enhanced, being most of them in the order of 200 Weisskopf units, far

off the experimental results. The B(E3) transitions have a similar behavior for

the L → (L− 3) transitions, presenting results on the order of 100 single particle

units, while being lower than the calculations with the quadrupole and dipole

interactions in the transitions of the type L → (L− 1).

Given the discussion about the effects of the octupole interaction, specially over

the transition rates, it suggests that this interaction does not describe the octupole
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degrees of freedom as well as the dipole interaction used in this work.
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B(E1) Transition
(×10−3)

216Ra 218Ra 220Ra
Exp Theo Exp Theo Exp Theo

1− → 0+ - 0.0005 - 0.04 - 0.14
2+ → 1− - 0.0001 - 0.006 - 0.096
3− → 2+ - 0.19 - 0.13 - 0.23
4+ → 3− - 0.004 - 0.0001 - 0.14
5− → 4+ - 0.034 - 0.26 - 0.42
6+ → 5− - 0.319 5.7± 1.7 0.0013 - 0.23

B(E1) Transition
(×10−3)

222Ra 224Ra 226Ra
Exp Theo Exp Theo Exp Theo

1− → 0+ 0.95± 0.18 0.20 < 0.05 0.158 0.35± 0.13 0.58
2+ → 1− 1.12+0.24

−0.20 0.26 < 0.078 0.185 0.38± 0.11 0.76
3− → 2+ 4.08± 1.57 0.37 0.039+0.017

−0.014 0.243 0.22± 0.05 0.98
4+ → 3− 3.19+1.3

−1.1 0.31 - 0.303 0.15± 0.02 1.00
5− → 4+ 1.23+0.60

−0.24 0.48 0.04+0.03
−0.02 0.413 0.33± 0.05 1.36

6+ → 5− 2.11+0.44
−0.40 0.51 - 0.566 - 1.67

B(E1) Transition
(×10−3)

228Ra
Exp Theo

1− → 0+ 0.26+0.38
−0.24 0.26

2+ → 1− 0.32+0.28
−0.19 0.26

3− → 2+ 0.048± 0.43 0.40
4+ → 3− 0.30+0.26

−0.17 0.27
5− → 4+ 0.64± 0.59 0.52
6+ → 5− 0.018+0.09

−0.06 0.29

Table 4.2.1: Transition rates for the electric dipole transitions B(E1). The
results are presented in Weisskopf units. A dash represent the fact that no
experimental data was available for that transition.
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B(E2) Transition
216Ra 218Ra 220Ra

Exp Theo Exp Theo Exp Theo

2+ → 0+ - 12.3 25.5± 2.4 23.3 - 83.7
4+ → 2+ - 20.8 63± 12 54.9 - 110.4
6+ → 4+ > 7.0 0.3 46± 11 62.5 - 105.5
8+ → 6+ 9.6± 1.4 6.3 - 52.4 - 78.1
3− → 1− - 7.4 - 21.3 - 104.2
5− → 3− - 9.6 - 25.8 - 110.8

B(E2) Transition
222Ra 224Ra 226Ra

Exp Theo Exp Theo Exp Theo

2+ → 0+ 112.8+9.6
−8.2 101 98± 3 97 125± 1 127

4+ → 2+ 123± 14 139 137± 5 133 186+9
−5 176

6+ → 4+ 135+24
−21 134 156± 12 134 219+5

−6 178
8+ → 6+ 119+36

−28 123 180± 60 122 211+5
−8 170

3− → 1− 98+49
−40 128 93± 9 133 234+8

−15 164
5− → 3− 109+30

−26 144 180± 60 150 186+5
−9 187

B(E2) Transition
228Ra

Exp Theo

2+ → 0+ 142± 6 207
4+ → 2+ 201± 20 289
6+ → 4+ 243± 25 305
8+ → 6+ 247± 24 297
3− → 1− 249± 66 260
5− → 3− 167+34

−69 297

Table 4.2.2: Transition rates for the electric quadrupole transitions B(E2).
The results are presented in Weisskopf units. A dash represent the fact that no
experimental data was available for that transition.
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B(E3) Transition
216Ra 218Ra 220Ra

Exp Theo Exp Theo Exp Theo

3− → 0+ - 635 - 644 - 3.9
5− → 2+ - 443 - 358 - 1.0
7− → 4+ - 285 - 236 - 1.5
2+ → 1− - 108 - 0.63 - 39.3
3− → 2+ - 69.6 - 24.9 - 17.3

B(E3) Transition
222Ra 224Ra 226Ra

Exp Theo Exp Theo Exp Theo

3− → 0+ 62± 10 48 42± 3 42 55± 3 54
5− → 2+ 99± 22 77 61± 17 44 120± 8 87
7− → 4+ 248+45

−75 61 - 67 132+8
−15 104

2+ → 1− 49± 28 169 126± 24 115 94+5
−11 171

3− → 2+ 40+44
−40 122 < 600 74 62± 17 118

B(E3) Transition
228Ra

Exp Theo

3− → 0+ 35± 12 36
5− → 2+ 86± 23 35
7− → 4+ - 24
2+ → 1− 120± 41 101
3− → 2+ 0.17+0.9

−0.17 64

Table 4.2.3: Transition rates for the electric octupole transitions B(E3). The
results are presented in Weisskopf units. A dash represent the fact that no
experimental data was available for that transition.

216Ra 218Ra 220Ra 222Ra 224Ra 226Ra 228Ra
Q3 [efm3] 9406 9133 752 2652 2502 2862 2378

Table 4.2.4: Calculated intrinsic Q3 moments, in units of [efm3].
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Transition Exp Q(2) Q(2) +Q(1)

B(E1)× 10−3

(W.u.)

1− → 0+ < 0.050 0.033 0.158
2+ → 1− < 0.078 0.021 0.185
3− → 2+ 0.039+0.017

−0.014 0.054 0.243
4+ → 3− - 0.031 0.303
5− → 4+ 0.04+0.03

−0.02 0.079 0.413
6+ → 5− - 0.048 0.566

B(E2) (W.u.)

2+ → 0+ 98 ± 3 101 97
4+ → 2+ 137 ± 5 140 133
6+ → 4+ 156 ± 12 144 134
8+ → 6+ 180 ± 60 137 122
3− → 1− 93 ± 9 137 133
5− → 3− 190 ± 60 155 150

B(E3) (W.u.)

3− → 0+ 42 ± 3 21 42
5− → 2+ 61 ± 17 15 44
7− → 4+ - 4 67
1− → 2+ 126 ± 24 70 115
3− → 2+ < 600 41 74

Table 4.3.1: Comparison for the electric transition rates of 224Ra in the presence
of only quadrupole interaction (Q(2)) or a combination of the quadrupole and the
dipole interactions (Q(2) +Q(1)). The experimental data is from Ref. [5].

εd εp εf κ2 κ1 κ3 χd
224Ra 0.263 0.800 0.459 0.030 0.0000 0.0068 -1.232

Table 4.3.2: Results obtained for 224Ra considering quadrupole and octupole
interactions.
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Transition Exp Q(2) +Q(3) Q(2) +Q(1)

B(E1)× 10−3

(W.u.)

1− → 0+ < 0.050 0.043 0.158
2+ → 1− < 0.078 0.094 0.185
3− → 2+ 0.039+0.017

−0.014 0.089 0.243
4+ → 3− - 0.107 0.303
5− → 4+ 0.04+0.03

−0.02 0.088 0.413
6+ → 5− - 0.116 0.566

B(E2) (W.u.)

2+ → 0+ 98 ± 3 98 97
4+ → 2+ 137 ± 5 218 133
6+ → 4+ 156 ± 12 234 134
8+ → 6+ 180 ± 60 235 122
3− → 1− 93 ± 9 182 133
5− → 3− 190 ± 60 210 150

B(E3) (W.u.)

3− → 0+ 42 ± 3 24 42
5− → 2+ 61 ± 17 94 44
7− → 4+ - 112 67
2+ → 1− 126 ± 24 77 115
3− → 2+ < 600 67 74

Table 4.3.3: Comparison for the electric transition rates of 224Ra in the presence
of quadrupole and dipole interactions (Q(2) + Q(1)), and the quadrupole and
octupole interactions (Q(2) +Q(3)). The experimental data is from Ref. [5].
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Chapter 5

Final Remarks

In this work we have obtained theoretical results for the spectroscopic properties

of the 216–228Ra isotopic chain that are consistent with the experimental data

currently available, in particular the energy spectra and the B(E2) and B(E3)

transition rates. From the last ones via the derivation of intrinsic octupole moments

Q3 we can deduce the presence of static octupole deformation in 222–226Ra, and

of vibrational deformation in 228Ra.

The results presented for 220Ra are consistent with the behavior reported in the

literature for the electromagnetic transitions in this region of the nuclear chart,

and thus we present them as predictions, suggesting an octupole vibrational shape

for this isotope.

The results obtained for the isotopes 216,218Ra are not consistent with the expected

behavior deduced from the theory, as these nuclei are near a closed neutron shell

and thus should not exhibit signs of octupole deformation, in contrast with the

Q3 moments of around 9000 [efm3] obtained by our calculations. This suggests

that the hamiltonian that we used during this work might be adequate for the

description of deformed nuclei, but not for the description of lighter nuclei, as

we were not capable of finding a set of parameters in these nuclei that give a

reasonable description of their electromagnetic transitions, possibly associated

with the lack of experimental data available for them.

Regarding the B(E1) values calculated, improvements may be achieved with the

use of an effective charge that evolves along the isotopic chain, or by including a

new interaction in our hamiltonian instead of the octupole interaction, given that
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this term does not contribute to the calculated results. However, these calculations

are still of a reasonable accuracy overall, considering that the dipole transitions

are more dependent on the inner structure of each nucleus. This new interaction

might also help to improve the results for the B(E3) transitions in 216,218Ra to

something more in line with the expected behavior in the mass region.

We remark the fact that these calculations were made with a simple choice for the

hamiltonian and only seven (six) free parameter, where one of them seems to not

be relevant in the description of the octupole degrees of freedom. This success

takes us to propose that the minimization routine and the hamiltonian applied

for the radium chain in the context of the model might be applied to other chains

within the actinide region, like thorium, where there is also more experimental

data available.

As further work we would like to study the boson content of each state, which

may give us a better explanation for the behavior of some of the transitions, and

also study possible interactions that may account for the previously discussed

new interaction. Another viable posibility is to change the definition of our Q̂(2)

operator to be more similar to the one discussed in Ref. [21] including an α

parameter, the relative weight between the sd and pf parts of this operator shown

in equation (2.2.17), as a free parameter in our hamiltonian.
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Appendix A

Mathematical Elements

A.1 Spherical Tensors

The spherical tensors are elements that transform under rotations as a wavefunction

with good angular momentum [11]. A (irreducible) spherical tensor with k units of

angular momentum, T (k), possesses 2k + 1 components T
(k)
q , where q = −k, . . . , k.

Under a rotation R it transforms according to the following expression

T ′(k)
q =

k∑
q′=−k

T
(k)
q′ D (k)

q′,q(R) , (A.1.1)

where the D(R) matrices are the (2j + 1)-dimensional irreducible representations

of the rotation operator R(θ) [42], and their matrix elements D (j)
m′,m(D), sometimes

called Wigner functions, satisfy

D (j)
m′,m(R) = ⟨jm′|R(θ)|jm⟩ . (A.1.2)

These tensors allow the definition of the tensor products used in the IBM, for

which we shall use the notation of De Shalit and Talmi, this is,

T (k)
κ =

[
T (k1) × T (k2)

](k)
κ

=
∑
κ1,κ2

(k1κ1k2κ2|kκ)T (k1)
κ1

T (k2)
κ2

, (A.1.3)

where (k1κ1k2κ2|kκ) corresponds to a Clebsch-Gordan coefficient. The special
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case in which k = 0 = κ corresponds to the scalar (or dot) product, defined as

(
U (k) · V (k)

)
= (−1)k

√
2k + 1

[
U (k) × V (k)

](0)
0

. (A.1.4)

A.2 The Wigner-Eckart Theorem

The Wigner-Eckart theorem establishes that the matrix elements of spherical

tensor operators satisfy

⟨αLM |T (k)
q |βL′M ′⟩ = (−1)L−M

(
L k L′

−M q M ′

)
⟨αL||T (k)||βL′⟩ , (A.2.1)

where we use the definition of De Shalit and Talmi used in Ref. [25]. Here, α and

β are quantum numbers that may be needed to fully define each state, L,L′ are

the angular momentum quantum number, M,M ′ are the projection of the angular

momentum on the z axis, ⟨αL||T (k)||βL′⟩ correspond to a reduced matrix element,

and the 2× 3 array corresponds to a 3j−Wigner symbol, which is defined as [43](
L k L′

−M q M ′

)
=

(−1)L−k−M ′

√
2L′ + 1

(L(−M)kq|L′(−M ′)) , (A.2.2)

where the (L(−M)kq|L′(−M ′)) is a Clebsch-Gordan coefficient.

The significance of this theorem, according to the discussion in Ref. [42] , comes

from the two factors that compose it. The first factor, the 3j−Wigner symbol, is

related to the Clebsch-Gordan coefficients, so it depends only on the orientation of

the system and not on the nature of the tensor operator. The second factor, the

reduced matrix element, depends on the dynamics of the system (α, β, L, L′, k),

and has no dependence on the M,M ′ projections of the angular momenta on the z

axis nor on the q component of the tensor (the geometry of the system). Therefore,

to evaluate the matrix element it is necessary to know about the dynamics of

the system and only one of the geometric quantum numbers, as the other can be

obtained by the Clebsch-Gordan coefficients.
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