

UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS QUÍMICAS DEPARTAMENTO CIENCIAS DE LA TIERRA

GLACIOLOGÍA ESTRUCTURAL DE UN PEQUEÑO GLACIAR DE MONTAÑA: NEVADOS DE CHILLÁN, CHILE

Memoria para optar al Título de Geólogo

Ramón Antonio Herrera Soto

Profesor Patrocinante: Dr. Alfonso Andrés Fernández Rivera Profesores Comisión: Dr. Joaquín Alejandro Cortés Aranda Dr. Andrés Humberto Tassara Oddo

Concepción, 2024

 \bigodot 2023, Ramón Antonio Herrera Soto

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica del documento

No debo temer. El miedo es el asesino de la mente. El miedo es la pequeña muerte que trae la destrucción total. Enfrentaré mi miedo. Permitiré que pase sobre mí y a través de mí. Y cuando haya pasado, volveré el ojo interior para ver su camino. Donde el miedo se ha ido, no habrá nada. Solo yo permaneceré.

Frank Herbert

A la luz de mi vida

AGRADECIMIENTOS

Esta tesis fue posible gracias al financiamiento y dirección del proyecto ANILLO ACT210080 "Cold-Blooded: Drivers of Climate Change Refugia for glaciers and streamflow responses.", del Fondecyt 1201429 "Trajectories of glacier volume in the Sierra del Brujo, Central Chile (34°30'S) under the RCP8.5 scenario using reanalysis of multidecadal geodetic mass balance and coupled atmosphere-cryosphere modeling." y del monitoreo financiado por la DGA al Mountain GeoScience Group (MGSG) del Departamento de Geografía.

En primer lugar agradecer a Alfonso Fernández Rivera por aceptarme como alumno memorista, por su gran apoyo y guía en la elaboración de este proyecto investigativo, propiciando un grato ambiente de trabajo colaborativo y velando siempre por el desarrollo del equipo y estudiantado. Entre ellos, agradezco a Sofía Navas y Juan Varas, por su disposición para resolver mis varias dudas durante la realización de este trabajo. Al equipo del MGSG por acogerme en mi inmersión al estudio de la criósfera. A Jonathan Moraga y Macarena Salinas por su invaluable consejo durante las campañas de terreno. A todos ellos gracias por hacer de esta una experiencia enriquecedora y divertida. Le agradezco a Irina Rogozhina por introducirme en la glaciología, y a Valentina Peña por darme el empujón para seguir esta senda. A mis amigos Ambrosio Vega y Diego Acuña por escuchar atentamente mis desvaríos y animarme durante todo este proyecto. A todos mis amigos y amigas que me han apoyado durante estos largos años de vida universitaria, por las aventuras y las risas compartidas. Por supuesto, agradecer a todas las profesoras y profesores que han inspirado a lo largo de mi educación tanto escolar como universitaria.

Finalmente, agradecer a mi familia por las enseñanzas y sobre todo el inmenso amor que me han brindado, por la calidez recibida durante mi estadía en Concepción, gracias a lo cual he podido desarrollar mi espíritu de manera libre y llena de afecto. Agradezco enormemente a mi pareja Alexy Madrid por llenar tantos años de mi vida con inmensa felicidad. No alcanzan palabras para expresar el agradecimiento y cariño que les tengo.

Resumen

En este trabajo se estudia la glaciología estructural y morfología de un pequeño glaciar de montaña, el glaciar Nevados de Chillán, emplazado sobre un complejo volcánico del mismo nombre en el centro-sur de Chile. Esta región se considera, hidrológicamente hablando, como una de las áreas de montaña más vulnerables del planeta. Se describe el retroceso del hielo durante las últimas 5 décadas, utilizando imágenes satelitales para interpretar elementos tanto glaciológicos como geomorfológicos, que permiten reconstruir la evolución del sistema terrestre glaciar. Se calcula que desde 1975 el glaciar ha retrocedido en un 68% de longitud y ha perdido un 85% de su área superficial, pasando de 2.78km² a tan solo 0.41 en 2022. Esto implica una importante modificación en la morfología de la masa de hielo, comenzando por la separación del glaciar en 1987, con la aparición de un nunatak que durante la próxima década se expande hacia abajo hasta cortar el cuerpo de hielo, luego en 2018, el cuerpo principal se separa de la zona de acumulación emplazada sobre el cráter del volcán Nevado. Actualmente el glaciar se alimenta por dos zonas de acumulación, con sendas zonas de ablación conectadas por un puente de hielo cubierto de detritos, además, se reconocen hasta tres nunataks emergiendo desde distintas partes del cuerpo principal. La superficie de hielo limpio muestra complejos arreglos de grietas, con grietas transversas en alcances superiores y grietas *splaying* en alcances intermedios e inferiores, intersectandose en alturas medias, sobre todo en años más recientes. La evolución de estos patrones refleja los cambios en la dinámica del flujo de hielo y el control que ejerce la topografía subglacial en este. A su vez, la deflección y quiebre de grietas apunta a obstáculos en el lecho rocoso que eventualmente emergen como nunataks a través del hielo. Finalmente, en respuesta al rápido retraimiento del hielo las laderas se vuelven propensas a la caída de rocas, suministrando grandes cantidades de detrito a la superficie y cubriendo extensos sectores del glaciar. La relación de esta cubierta detrítica en expansión y la ablación debe ser estudiada para determinar la evolución del glaciar frente al cambio climático.

Palabras clave – glaciar de montaña, glaciología estructural, flujo de hielo, grietas

Abstract

This work aims to study the glaciologic and morphologic evolution of a small mountain glacier, the Nevados de Chillán glacier, emplaced over a volcanic complex of the same name on central-south Chile. This region is considered, hydrologically, as one of the most vulnerable mountain areas of the planet. We describe ice retreat since the last 5 decades, utilizing satellite imagery to interpret glaciological and geomorphological features, which allows us to reconstruct the evolution of the glacial landsystem. Glacier retreat and shrinking since 1975 has been calculated as roughly 68% of its lenght and 85% of its surface area, from 2.78km^2 to only 0.41 on 2022. This implies an important modification of the morphology of the ice mass, first, the glacier begins to split on 1987, with the appearance of a nunatak that expands downward for the next two decades cutting the ice mass in two tongues, then in 2018, the main body separates from an accumulation zone emplaced over the crater of Nevado volcano. Nowadays, the glacier feds from two accumulation zones, with their respective ablation zones connected by a debris covered ice bridge, also, we recognize up to 3 nunataks emerging from distinct points of the main body. The clean ice surface shows complex crevasse patterns, with transverse crevasses in upper reaches and splaying crevasses on middle and lower reaches, intersecting each other in middle heights, specially on recent years. The evolution of these patterns reflects the changes on ice flow dynamics and the control subglacial topography has on it. In turn, the deflection and interruption of crevasses point to obstacles on the bedrock that eventually emerge as nunataks through the ice. Lastly, in response to the fast retreat of the ice the slopes become prone to rock falls, supplying large quantities of debris to the ice surface and covering extensive portions of the glacier. The relation of this expanding debris cover and ablation must be studied to determine the evolution of the glacier in the face of climate change.

Índice general

A	GRA	DECI	MIENTO	S	Ι
Re	esum	\mathbf{en}			II
A	ostra	\mathbf{ct}			III
1.	Intr	oducci	ón		1
	1.1.	Plante	amiento d	el problema	3
	1.2.	Área d	e estudio		6
	1.3.	Hipóte	sis		11
	1.4.	Objeti	vos		11
		1.4.1.	Objetivo	General	11
		1.4.2.	Objetivos	Específicos	11
າ	Ма	rco Toć	rico		19
4.	2 1	Marco	Glaciológi	(CO	12
	2.1.	2.1.1	Glaciar		12
		2.1.1.	2111	Formación de un glaciar	13
			2.1.1.1.2	Zonas de un glaciar	14
			2.1.1.3.	Comportamiento glaciar	16
			2.1.1.4.	Variaciones glaciares	17
			2.1.1.5.	Balance de masa	18
		2.1.2.	Estructur	as y deformación en glaciares	20
			2.1.2.1.	Flujo de hielo	20
			2.1.2.2.	Deformación del hielo	21
			2.1.2.3.	Estructuras glaciológicas	25
		2.1.3.	Sistemas	de valle glacial	40
			2.1.3.1.	Incorporación y transporte de sedimentos	41
			2.1.3.2.	Dinámica de glaciares cubiertos	46
	2.2.	Marco	Geológico		50
		2.2.1.	Geología	Regional	52
		2.2.2.	Geomorfo	ología	56
			2.2.2.1.	Relieves glaciales erosivos	56
			2.2.2.2.	Relieves glaciares deposicionales	58
			2.2.2.3.	Relieves glaciofluviales	61

3.	Met	odología	64
	3.1.	Análisis de variación glaciar	65
	3.2.	Morfología y estructuras superficiales	69
	3.3.	Mapeo geomorfológico	73
4.	Aná	lisis	74
	4.1.	Variación glaciar	74
		4.1.1. Variación histórica y reciente de la extensión glaciar	74
		4.1.2. Evolución morfológica del glaciar Nevado	78
		4.1.2.1. Hipsometría \ldots	78
		4.1.2.2. Zona de ablación y cubierta detrítica	80
	4.2.	Estructuras y condiciones superficiales	83
		4.2.1. Mapeo glaciológico y geomorfológico	86
		4.2.2. Análisis de estructuras glaciológicas	95
5.	Disc	cusión	101
	5.1.	Cambios superficiales del glaciar Nevado	101
	5.2.	Efectos de la topografía subglacial en la dinámica glaciar	103
	5.3.	Respuesta del glaciar Nevado al cambio climático	105
6.	Con	clusiones	106
Bi	bliog	rafía A.	122
Ar	péndi	ce	123
1	A1.	Conceptos relevantes	123
		A1.1. Clasificación de glaciares	123
		A1.2. Modelo de flujo	125
		A1.3. Trazas de grieta	128
		A1.4. Tipos de falla	129
		A1.5. Relieves erosivos	131
	A2.	Recursos satelitales	133
	A3.	Recursos fotográficos	137
	A4.	Datos de grietas medidas	139
Bi	bliog	rafía Apéndices	170

V

Índice de tablas

$1.2.1.\mbox{Cronología}$ eruptiva del complejo volcánico Nevados de Chillán	9
2.1.1. Densidades típicas de transformación nieve a hielo	14
3.1.1.Productos satelitáles	66
3.2.1. Criterios de identificación estructuras y rasgos superficiales	72
3.3.1.Criterios de identificación de relieves geomorfológicos glaciares	73
4.1.1.Extensión glaciar en los Nevados de Chillán entre 1975 y 2022 4.1.2.Medidas de constituyentes glaciares e indice hipsométrico del glaciar	77
Nevado	81
A4.1.Mediciones de grietas Google Earth 2013	139
A4.2.Mediciones de grietas Google Earth 2016	150
A4.3.Mediciones de grietas ESRI World Imagery 2021	155
A4.4.Mediciones de grietas ESRI World Imagery 2022	160

Índice de figuras

1.2.1.Ubicación del área de estudio
1.2.2.Vista del glaciar Nevado
2.1.1.Formacion del hielo glaciar
2.1.2. Variación de facies de nieve con la altitud
2.1.3.Diagrama esquemático de flujo glaciar
2.1.4. Ilustración de stresses que actúan sobre una masa de hielo 22
2.1.5.Relación entre stress y agrietamiento en glaciares
$2.1.6. Unidades de flujo \dots 27$
2.1.7.Estratificación del hielo
2.1.8.Inconformidad en estratificación
$2.1.9. Modos de fractura \qquad \dots \qquad 30$
$2.1.1$ (Tipos de grietas encontradas en glaciares $\ldots \ldots \ldots \ldots \ldots 33$
2.1.1 Evolución de grietas y trazas de grieta
2.1.12A tributos principales de un pliegue
2.1.1 Relación entre foliación y plegamiento
2.1.14 Ablación diferencial por capas de foliación
2.1.1 Ejemplos de ojiva típicos
2.1.16 norporación y transporte de detritos en un glaciar de valle 41
2.1.17Transporte de detritos de alto y bajo nivel
2.1.18 Glaciar Kaufmann, Monte Haidinger, Nueva Zelanda
2.1.1 Ejemplos del rol de estructuras glaciares en transferencia de detritos 45
2.1.2 Curvas de Østrem
2.2.1.Anatomía de un estratovolcán
2.2.2. Interacción lava-hielo
2.2.3.Fragmento carta geológica
2.2.4 Evolución de sistemas terrestres glaciales 57
2.2.5 Sistemas de deposición glaciar
2.2.6 Believes glaciofluviales subglaciales y marginales al hielo
2.2.0.1teneves gracionaviares subgraciares y marginares ar meio
3.0.1.Estrategia metodológica
3.1.1.Muestra imágenes satelitales procesadas
3.1.2. Métricas glaciológicas
3.2.1. Medición de orientación y altura en grietas
3.2.2.Ejemplo diagrama de rosa Stereonet

4.1.1.Ilustraciones históricas del complejo volcánico Nevados de Chilán y					
sus glaciares					
4.1.2. Comparación de fotografía aérea de 1975 e imágen ASTER de 2011 76					
4.1.3.Dimensión temporal de la variación de área superficial 7					
4.1.4.Curvas hipsométricas años 1989, 2003, 2017 y 2022 79					
4.1.5.Desconexiones recientes del glaciar Nevado					
4.1.6.Colapso de cerro Negro y flujo de lengua glaciar cubierta 80					
4.1.7. Evolución morfológica y de la cubierta detrítica del glaciar Nevado 82					
4.1.8. Trayectoria teórica de la evolución detrítica					
4.2.1.Evolución estructural del glaciar Nevado					
4.2.2. Emergencia de detritos englaciales					
4.2.3.Lagunas termokársticas relictas					
4.2.4. Mapas glaciológicos 2013, 2016 y 2021 89					
4.2.5.Laderas y escarpes					
4.2.6. Exposición de lecho rocoso y acumulación detrítica 92					
4.2.7.Incorporación de detritos					
4.2.8. Mapa glaciológico 2022					
4.2.9.Distribución de grietas y trazas de grietas en el glaciar Nevado para					
$2013 \text{ y} 2022 \dots \dots \dots 96$					
4.2.1Œstructuras glaciológicas años 2013 y 2013					
4.2.1 Estructuras glaciológicas años 2021 y 2022 98					
4.2.12Dinámica de flujo del glaciar Nevado					
A1.1.Fuerzas gravitacionales que componen el <i>stress</i> impulsor 126					
A1.2.Formación de trazas de grieta tensionales					
A1.3.Modos de fallamiento en glaciares					
A2.1.Google Earth 2013					
A2.2.Google Earth 2016					
A2.3.ESRI 2021					
A2.4.ESRI 2022					
A2.5.Vista 3d 2022 $\dots \dots $					
A2.6. Mapas de pendiente \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 136					
A3.1.Grietas de resquebrajamiento					
A3.2.Presunto cono volcánico					
A3.3.Nunatak en alcances superiores					
A3.4.Sucesiones volcánicas					
A3.5.Puente de hielo cubierto					

Capítulo 1

Introducción

La historia climática de la Tierra está marcada por ciclos glaciales e interglaciales, asociados a la oscilación entre bajas y altas temperaturas globales, respectivamente. El último periodo glacial alcanzó su máxima extensión de hielo hace aproximadamente 18000 años, cubriendo cerca del 32 % de la superficie terrestre (Huggett, 2016). Actualmente la tierra se encuentra en un periodo interglaciar, con solamente un 10 % de la superficie total cubierta por glaciares (Cuffey and Paterson, 2010). A estos grandes ciclos se le suman tambien otros más cortos, como la llamada Pequeña Edad del Hielo establecida durante el siglo XVI.

El comportamiento de los glaciares está entonces estrechamente asociado al clima, donde las relaciones entre el balance energético superficial y la temperatura del aire, o la acumulación de nieve y la precipitación sólida, hacen de los glaciares indicadores sensibles del cambio climático (Haeberli and Beniston, 1998; Mark and Fernández, 2017). Por esta razón las fluctuaciones glaciares en la superficie terrestre son el objeto de multitud de estudios de distintas partes del mundo, por ejemplo en Europa (Zemp et al., 2008), América del Norte (Jiskoot et al., 2009; Hall et al., 2001) y en los Andes Sudamericanos (Leonardini, 2010; Bown and Rivera, 2007; Veettil et al., 2017). De estos estudios puede notarse que es en ambientes de montaña donde los glaciares han sufrido las más drásticas disminuciones en su extensión (Zemp et al., 2006; Ren et al., 2006), poniendo en riesgo estos ecosistemas dada la importancia hidrológica de estos glaciares, en cuanto a su capacidad de mantener caudales base durante el verano, así como su rol crítico durante periodos de sequía (Casassa et al., 2009; Gascoin et al., 2011;

Ohlanders et al., 2013).

Chile es uno de los países más englaciados del planeta, contiene cerca del 80 % de la superficie de hielo en Sudamérica (Rocha and Giering, 2017). El retroceso y disminución de la superficie de estos glaciares ha sido documentada a lo largo del país (Bown et al., 2008; Rivera et al., 2006; Barcaza et al., 2017; Pellicciotti et al., 2014) y su causa atribuida principalmente a los cambios en la temperatura y precipitación (Falvey and Garreaud, 2009; Quintana et al., 2004). En el contexto del cambio climático, la creciente cantidad de estudios que modelan la respuesta del hielo en distintos escenarios de calentamiento atmosférico, demuestran pérdida de masa de hielo generalizada en el territorio chileno (Braun et al., 2019; Dussaillant et al., 2019; Masiokas et al., 2020; Huggett, 2016).

La mayoría de los estudios del comportamiento glaciar en Chile se concentran en los campos de hielo patagónicos, seguidos por los glaciares de montaña de la zona central. En los últimos años ha aumentado sustancialmente la investigación glaciológica en zonas montañosas, principalmente debido al rol estos glaciares como indicadores climáticos y sus implicancias en la disponibilidad de agua (Haeberli et al., 2007), en vista a la escasez de este recurso, y en menor medida a los posibles riesgos que las interacciones glaciares, particularmente con sistemas volcánicos, pueden tener para la seguridad de la población que reside cercana a ellos. A pesar de esto, solo se monitorean regularmente los cambios de superficie y balance de masa de menos del 0.5 % del área englaciada en Chile, concentrada en menos de 5 glaciares (CECs, 2011).

El estudio de glaciares emplazados sobre volcanes en Chile se ha llevado a cabo en los volcánes Villarica (39°23'S-71°56'O), Mocho-Choshuenco (39°55'S-27°01'O), y recientemente en la Zona Volcánica Sur (ZVS) (37°-46°S), la cuál posee más de 60 volcánes (Ferrán, 1995), desde los Nevados de Chillán (36°51'S-71°22'O) hasta el Volcán Hudson (45°54'S-72°57'O), con una superficie glaciar de unos 500km² distribuidos sobre 26 volcanes activos (Rivera and Bown, 2013). Cabe recalcar además, que el territorio abarcado por la ZVS posee la mayor densidad poblacional de Chile (INE, 2005).

En este trabajo se presentan los estudios realizados sobre la evolución estructural y morfológica del glaciar Nevado (Caro Paredes, 2014), emplazado sobre el subcomplejo Cerro Blanco del complejo volcánico Nevados de Chillán, considerada

la región volcánica más activa de la región del Biobío (SERNAGEOMIN, 2022).

1.1. Planteamiento del problema

El complejo volcánico Nevados de Chillán fue a mediados del siglo XIX hogar de un extenso campo de hielo de unos 16km de longitud, según las observaciones de Philippi (1862). Estos glaciares pierden gran parte de su extensión en el siguiente siglo, alcanzando tan solo 7.28km² en 1978, y recientemente 2.65km² en 2011 (Caro Paredes, 2014). Esta drástica fragmentación y disminución de su área ha sido atribuida principalmente al cambio climático, y en menor medida a la actividad volcánica del sector (Rivera and Bown, 2013).

En Chile se han definido, de acuerdo a la Estrategia Nacional de Glaciares, cuatro macrozonas glaciológicas que representan condiciones glaciológicas, climáticas, e hidrológicas, relativamente homogéneas (CECs, 2009). Estas zonas se trazan usando como base las cuencas hidrográficas, dividiendo el país en una zona Norte, desde el límite con Perú ($\sim 18^{\circ}$ S) hasta la cuenca de río Choapa ($\sim 32^{\circ}$ S), una zona Central que termina al sur del río Maule ($\sim 36^{\circ}$ S), una zona Sur que llega hasta la cuenca del río Aysén (\sim 45°30'S), y finalmente una zona Austral que abarca el resto de Chile Continental (56° S). Encuentrase el área de estudio en el comienzo de la zona Sur, la segunda en cobertura de hielo, debido a importantes aumentos en la acumulación nival y pese a poseer solo glaciares pequeños, dado el descenso en altitud de los Andes. En esta región andina se ha calculado el calentamiento atmosférico en estudios como Falvey and Garreaud (2009), quienes calculan un aumento de 0.25°C por década entre 1979 y 2006, y Carrasco et al. (2008) que determinan un aumento entre 0.06 y 0.35°C entre 1961 y 2006, confirmado además por el IPCC (2014) el que establece un calentamiento del rango de los 0.8 a 1.25°C para el periodo entre 1901 y 2012 en la región. En cuanto a las precipitaciones, las tendencias apuntan a su disminución desde mediados del siglo XX, de acuerdo a mediciones realizadas principalmente en la costa y valles, y en menor medida en la cordillera (Carrasco et al., 2008; Schumacher et al., 2020). Dichos registros permiten la estimación de la Linea de Equilibrio Altitudinal (ELA, o Equilibrium Line Altitude) a los 37°S cercana a 3000 msnm durante 1958-2006, mostrando una tendencia al aumento de su altitud relacionada al aumento de temperaturas (Carrasco et al., 2005). A raíz de la menor precipitación, las reservas de agua

contenidas en los glaciares y ambientes de montaña de esta región toman mayor importancia, solventando en hasta cierto punto la demanda natural y antrópica del recurso, lo que la convierte en una de las áreas de montaña más vulnerables del planeta, hidrológicamente hablando (Immerzeel et al., 2020).

Este último siglo se ha observado un retroceso generalizado de los glaciares encontrados en la zona central de Chile (32°-41°S), atribuido principalmente al calentamiento de la atmósfera y disminución de las precipitaciones (Rivera et al., 2006). Junto a ello, la evolución de los glaciares se relaciona directamente a su tamaño, donde glaciares grandes ($\sim 90 \text{ km}^2$) no presentan avances, con solo algunas excepciones en los Campos de Hielo Patagónicos, glaciares medianos (7km^2) avanzan solo 3 veces en el siglo, y glaciares pequeños (>1 \text{km}^2) tienen altas fluctuaciones interanuales, haciendolos especialmente susceptibles a desaparecer durante años de poca precipitación, como ocurre en glaciares Europeos (Haeberli et al., 2011) y en glaciares de los Andes Tropicales (Morán-Tejeda et al., 2018). Las características propias de un sistema glaciar muchas veces serán factores relevantes en su respuesta al cambio climático, como el aspecto del cuerpo de hielo y en especial la topografía del valle, y por extensión la morfología misma del glaciar, por ejemplo, se ha observado que nunataks absorben y transfieren al hielo que les rodea el calor del sol (Paige, 1968), o también la formación de acantilados de hielo en zonas de muy alta pendiente, que con el retroceso del hielo y su adelgazamiento culminan en una fragmentación del glaciar (Davies et al., 2022).

Además de las fluctuaciones climáticas como agente externo que impulsa cambios en la superficie glaciar, puede sumarse el efecto de volcanes activos bajo o cercanos a glaciares. Algunos ejemplos de la interacción entre glaciares y volcanes son, el contacto entre flujos de lava y piroclastos con el hielo glaciar, provocando la destrucción de este (Julio-Miranda et al., 2008; Benson et al., 2007), cambios en el albedo producto de caída de tefra (Brock et al., 2007) y aumentos en la tasa de derretimiento por la actividad geotérmica en la base o bordes del glaciar (Cuffey and Paterson, 2010). Estudios en el sur de Chile establecen que el retroceso y adelgazamiento de capas de hielo emplazadas sobre volcanes activos tiene una componente asociada a dicha actividad, mediante erupciones, aumento de temperatura basal y deposición de tefra en sus superficies (Rivera et al. 2008, 2012). Adicionalmente, puede ocurrir que los materiales volcánicos y piroclásticos se mezclen con la nieve y hielo que se derriten producto de una erupción, provocando flujos de detritos de alta velocidad conocidos como lahares (Castruccio et al., 2010), los cuales representan un riesgo mayor para asentamientos cercanos a volcanes en nuestro país. En este contexto se hallan depósitos de lahares en los valles del río Chillán y estero Renegado, cercano al poblado de Las Trancas (Dixon et al., 1999).

Los estudios realizados en los Nevados de Chillán involucran establecer cambios en la extensión de glaciares desde 1975 (Caro Paredes, 2014; Zenteno, 2009; Rivera and Bown, 2013), con algunos centrándose en las interacciones glacio-volcánicas, véase erupciones subglaciares (Mee et al., 2006), lahares (Dixon et al., 1999), e influencia en balance de masa (Caro Paredes, 2014). En este contexto, los drásticos cambios en en la extensión y morfología del glaciar Nevado durante las últimas décadas dan cuenta de un sistema terrestre glacial complejo, donde el paisaje es modelado tanto por la acción glaciar como volcánica, complicando reconstrucciones paleoclimáticas del campo de hielo. Se hace necesario entonces estudiar la evolución del glaciar en cuanto a su estructura y rol como agente geomorfológico para entender su historia glaciológica y potencial de conservación en el siguiente siglo.

1.2. Área de estudio

El complejo volcánico Nevados de Chillán se ubica en la cuenca alta del río Itata en la comuna de Pinto, región de Ñuble, a unos 65km al este de la ciudad de Chillán. Compuesto de estratovolcanes de composición andesitica que forman una cadena montañosa coronada por al menos 27 cuerpos glaciares, los más meridionales dentro de la Zona Glaciológica Central, que suman 1.7 ± 1 km² (Zenteno, 2009; DGA, 2022a). Encuentrase el de mayor extensión, conocido como Glaciar Nevado, en el subcomplejo Cerro Blanco, acotando el área de estudio entre los 36°48'49"W-71°26'38"S y 36°51'25"W-71°23'30" (Figura 1.2.1). Para llegar al glaciar, se toma desde Chillán la ruta N-55 hasta el pueblo de Las Trancas, luego se vira al norte por el Camino a Shangri-la hasta la entrada al santuario, desde donde se caminan unos 5.2 km a través del bosque y escoriales hasta el campamento base en el refugio Waldorf, desde aquí se asciende por morrenas y coladas de lava otros 3.4 km aproximadamente hasta alcanzar el frente del glaciar, hoy en día a unos 2700 msnm.

El glaciar Nevado se emplaza sobre la ladera suroeste del volcán Nevado, y la ladera sur del cerro Negro, bajando a través del escarpado relieve volcánico (Figura 1.2.2). Desde sus primeros registros históricos, los que ubican el frente a alturas aproximadas de 1700 msnm (Domeyko, 1850), este glaciar ha disminuido su extensión drasticamente, las imágenes más antigas permiten estimar un área superficial de 2.78 km² en 1975, la que disminuye a poco más de la mitad para 2001, y alcanzando en 2021 apenas los 0.42 km², resultando en una perdida de casi el 75 % de su extensión (DGA, 2022a; Zenteno et al., 2004; CECs, 2011). Estos cambios en superficie concuerdan con la tendencia de retroceso para el macizo completo (Rivera and Bown, 2013), atribuible al aumento de temperaturas y ascenso altitudinal de la ELA de 200 m aproximadamente en 32 años (Carrasco et al., 2008; Nogami, 1976).

Esta importante disminución en extensión se ve acompañada de una drastica modificación en la morfología del glaciar debido a su retroceso y perdida de grosor (Caro Paredes, 2014; CECs, 2011). Pasando de tener una compleja morfología tipo *ice apron* en 1975, en solo una década pierde gran aprte de su sección occidental, y luego, durante el año 2000, el hielo limpio se retrae generando un quiebre de pendiente que da origen a una cascada de hielo recubierto, la que compone gran

Figura 1.2.1: Ubicación del área de estudio. A la izquierda se muestra parte de la ZVS. A la derecha los glaciares encontrados en los Nevados de Chillán (polígonos blancos), resaltando el glaciar Nevado en color celeste (DGA, 2022a), el área de estudio se delimita por el recuadro rojo y en amarillo se delinea la ruta al refugio Waldorf. Imágenes extraídas de ESRI World Ocean Basemap (izquierda), DEM ALOSPALSAR 2011 y composición Sentinel-2 14/03/2022 (derecha)

parte de la actual zona de ablación. Finalmente, en la última década, se desconecta de la zona de acumulación en el cráter del volcán Viejo, y el puente de hielo que conecta el cuerpo principal con la sección occidental se adelgaza y cubre de detritos.

En cuanto a la geología del complejo, los Nevados de Chillán se componen de dos edificios volcánicos, a partir de los cuales se desarrollan conos parásitos, piroclásticos, y domos de lavas (Dixon et al., 1999; Mee et al., 2006). Estos son conocidos como Subcomplejo Cerro Blanco, de composición andesítica y 3212msnm, y el Subcomplejo Las Termas, de composición dacítica y 3100msnm, separados por el Portezuelo Los Baños (Ferrán, 1995). Le conforman más de 17 centros de emisión reconocibles, siendo los más importantes el volcán Nevado y Santa Gertrudis, en el subcomplejo Cerro Blanco, y el volcán Chillán, Viejo, Nuevo, Arrau y Democrático, en el subcomplejo Las Termas (SERNAGEOMIN, 2022).

Figura 1.2.2: Fotografía del glaciar Nevado tomada a unos metros del refugio Waldorf el 7 de Febrero de 2022. Fuente propia.

La formación del complejo volcánico Nevados de Chillan data de hace 640 \pm 20 ka, desde entonces se han producido flujos de lava, piroclástos, depósitos de tefra y lahares durante los periodos glaciares e interglaciares del Cuaternario (Dixon et al., 1999; Mee et al., 2006; Petit-Breuilh, 1995). La actividad eruptiva del complejo ha sido registrada desde el siglo XVIII y cuantificada por medio del Indice de Explosividad Volcánica (VEI por sus siglas en inglés; Tabla 1.2.1). Las erupciones más antiguas registradas corresponen a la del Vn. Viejo en 1749, y Vn. Santa Gertrudis en 1864, en el siglo XX destaca la formación del Vn. Nuevo y erupción de Vn. Chillán, finalizando con la formación del Vn. Arrau en 1973. En 2003 se forma el Vn. Democrático, entre los cráteres de Nuevo y Arrau (Naranjo and Lara, 2004), desde entonces la mayor actividad se concentra en el Vn. Nuevo, caracterizada por sismos y pulsos eruptivos con emisión de ceniza, que recubren los glaciares circundantes. Actualmente esste centro eruptivo de encuentra en erupción, desde enero de 2016, donde se formó un nuevo cráter denominamo Nicanor. Dada su actividad, esta zona es el foco de investigación sobre peligros volcánicos (SERNAGEOMIN, 2022).

N°	Fecha (aaaa-mm-dd)	Descripción	VEI
1	1860-07-25	Actividad entre el Vn. Nevado y los Baños de Chillán, posible formación del Vn. Renegado.	2
2	1861-08-02 a 1963	Formación del Vn. Santa Gertrudis al oeste del Vn. Nevado.	2
3	1864-11-30	Actividad eruptiva en el Vn. Santa Gertrudis.	3
4	1865	Formación de un nuevo cono en el Vn. Santa Gertrudis.	-
6	1877-02-12	Continúa actividad en el volcán.	2
7	1883-01-21	Se produce avalancha volcánica en la ladera sur del Vn. Viejo.	3
9	1891-?-02	Erupción del Vn. Viejo, arrojando cenizas hasta 12km al oeste.	2
10	1893-03-04	Destrucción de los baños termales por generación de laháres en el Vn.	2
		Viejo.	
11	1898	Nueva producción de cenizas.	2
12	1906-08-16	Nacimiento del Vn. Nuevo. Generó laháres hacia los ríos Ñuble, Chillán y Renegado	2
14	1914	El Vn. Chillán emite una gruesa columna de cenizas.	2
15	1927-04-10	Se produce una nueva erupción en el Vn. Chillán.	2
16	1928-11-30	Se observa la erupción del vn. Nuevo que dura hasta 1929.	2
18	1935-07-02	Generación de laháres en el Vn. Nuevo fluyendo hacia el río Renegado.	2
19	1946 a 1947	Vn. Nuevo entra nuevamente en actividad.	2
20	1950	Nube blanca y fumarolas en el Vn. Nuevo.	-
21	1965	Desarrollo de fumarolas intermitentes en el Vn. Nuevo.	-
22	1972 a 1973	Fumarolas en las cumbres de los volcanes Nuevo y Viejo.	-
23	1973	Erupción y formación del Vn. Arrau. Producción de laháres.	2
24	1983 a 1987	Eyección de pequeñas columnas de cenizas en el cono del Vn. Arrau.	-
25	2003-08 a 09	Pequeña erupción que genera el cráter Democrático.	1
26	2004-01-22	Fumarolas de vapor de agua con débil olor a azufre.	-
27	2016-01-08 a	Episodio eruptivo que forma el crater Nicanor.	2
	2022-10-16		

Tabla 1.2.1: Cronología eruptiva del complejo volcánico Nevados de Chillán desde 1860, fecha en la cual se realizan las primeras observaciones de glaciares sobre los volcanes. Modificado de Caro Paredes (2014), adaptado a partir de Ferrán (1995), Naranjo and Lara (2004) y el Global Volcanism Program (www.volcano.si.edu [en línea], 2022).

Desde el punto de vista climático, esta región ha experimentado un acelerado aumento de las temperaturas y una marcada disminución en las precipitaciones (e.g. Schumacher et al., 2020), posiblemente atribuibles a los efectos del Fenómeno El Niño Oscilación Sur (ENOS). Estudios de las temperaturas atmosféricas de la costa, los valles y los Andes, realizados por Falvey and Garreaud (2009) para el periodo 1979-2006, determinan diferencias marcadas por la influencia oceánica y de la cordillera, con la zona costera enfriandose, y la depresión intermedia y los Andes calentándose. Otros estudios, como Carrasco et al. (2008) y IPCC (2014), calculan un aumento en las temperaturas de 0.06-0.35°C entre 1961 y 2008, y 0.8-1.25°C entre 1901 y 2012, respectivamente.

Se observa una tendencia negativa sobre las precipitaciones estudiadas en el área cercana a 36-37°S, con una disminución en la frecuencia de días con precipitación en las últimas décadas (Quintana et al., 2004). Estudios realizados por (Quintana and Aceituno, 2006) para el periodo 1940-2000 en la costa muestran esta tendencia

negativa desde el 1970. En este contexto la CONAMA en 2006 establece 5 zonas climáticas siguiento estos comportamientos, siendo relevantes para este estudio la Zona Centro Norte (ZCN) (32°-37°S), para la cual consideran las observaciones de Quintana and Aceituno (2006). Un estudio más reciente realizado por Carrasco et al. (2008) analiza las tendencias de precipitaciones para la costa y valles entre los años 1950 y 2000, encontrando también tendencias negativas, aunque enfatizan la falta de registros para zonas cordilleranas, que imposibilita un análisis completo de la región. Estas disminuciones en la precipitación durante el siglo XX ha sido asociada por algunos estudios a la influencia del ENOS en la precipitación nival (Masiokas et al., 2006), aunque esta relación puede ser poco significativa entre los 35°-38°S en los Andes (Escobar and Aceituno, 1998), donde se observa un aumento en las precipitaciones para los meses finales de primavera (Montecinos and Aceituno, 2003). Finalmente, cabe recalcar que los importantes gradientes topográficos del área, con las altas cumbres relativamente aisladas unas de otras, pueden influenciar los regímenes climáticos de acumulación (Fernández et al., 2021; Montecinos et al., 2017; Saavedra et al., 2017).

1.3. Hipótesis

 La evolución estructural y morfológica del Glaciar Nevado durante las últimas décadas de retroceso glaciar está fuertemente influenciada por la topografía compleja de su lecho rocoso, a su vez marcada por interacciones glacio-volcánicas.

1.4. Objetivos

1.4.1. Objetivo General

 Describir la evolución estructural y morfológica del Glaciar Nevado, enfocandose en la zona de ablación frontal y cubierta, y establecer su interacción con los relieves volcánicos donde está emplazado.

1.4.2. Objetivos Específicos

- Describir las estructuras y morfología superficial del glaciar durante las últimas décadas.
- Correlacionar las estructuras glaciológicas a los cambios en la dinámica glaciar.
- Evaluar la interacción del relieve volcánico con el retroceso glaciar.

Capítulo 2

Marco Teórico

2.1. Marco Glaciológico

2.1.1. Glaciar

Las definiciones de lo que es un glaciar son variadas, el año 2007 el Panel Intergubernamental de Expertos sobre el Cambio Climático (IPCC, por sus siglas en inglés) junto a la Organización Meteorológica Mundial (OMM) y el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) (Informe, 2007) definen glaciar como: "Masa de hielo terrestre que fluye pendiente abajo por efecto de la gravedad (mediante deformación interna y/o deslizamiento de su base), forzado por la presión interna y por el rozamiento de su base y en sus lados. Los glaciares se mantienen por la acumulación de nieve en grandes altitudes, compensada por la fusión en altitudes bajas o por la descarga vertida al mar".

Por su parte, durante el año 2009 en el marco de la Estrategia Nacional de Glaciares, promovida por la Dirección General de Aguas de Chile y elaborada por el Centro de Estudios Científicos (CECs), se propone una definición operativa, véase pensada en la identificación de glaciares con sensores remotos (DGA, 2009). De esta forma, se elabora la siguiente definición para glaciar: "Toda superficie de hielo y nieve permanente sobre el suelo, que sea visible por periodos de al menos 2 años y de un área igual o superior a $0.01 km^2$ (1ha). O cualquier superficie rocosa con evidencia superficial de flujo viscoso, producto de un alto contenido de hielo actual o pasado en el subsuelo".

Los glaciares pueden clasificarse en relación a varios aspectos, siendo las clasificaciones más utilizados en la literatura glaciológica las basadas en la morfología y la condición térmica de un cuerpo de hielo (DGA, 2009). La morfología de una masa de hielo dependerá en gran parte del tamaño mismo de este y de la topografía sobre la que se emplaza, pudiendo hallarse en multitud de contextos cada uno con rasgos característicos (Apéndice A1.1). Algunos ejemplos más conocidos incluyen los casquetes de hielo continental, glaciares de valle, y glaciares de montaña. Por otra parte, la distribución termal del hielo afectará de forma importante en la dinámica de un glaciar, controlando procesos clave como la evolución cristalográfica de la nieve. Se reconocen tres categorías: los glaciares fríos, con hielo muy por debajo los 0°C; glaciares temperados, donde toda su masa está a temperaturas de fusión del hielo; y glaciares politermales, que solo alcanzan temperaturas cercanas al punto de fusión en la lengua terminal (Apéndice A1.1).

2.1.1.1. Formación de un glaciar

La caída y acumulación de nieve es el comienzo de la formación de hielo glaciar, un proceso a menudo largo y complejo (Figura 2.1.1). La forma en que la nieve se vuelve hielo, y el tiempo que le toma a esta transformación, dependen de la temperatura. La nieve se convierte en hielo mucho más rápido en glaciares de regiones temperadas, donde los periodos de derretimiento se alternan con periodos donde la nieve húmeda se recongela, que en regiones muy frías como Antártica central, donde la temperatura se mantiene bien por debajo el punto de fusión durante todo el año (Cuffey and Paterson, 2010).

La transformación de nieve a hielo en zonas de aguanieve se relaciona con la compactación del grano, siendo el derretimiento un factor importante en la etapa inicial ya que aumenta la tasa de redondeamiento de granos y lubrica los granos, formando una película de agua entre estos cuya tensión superficial permite la compactación cerrada (Cuffey and Paterson, 2010). El término nieve usualmente se restringe a agua en estado sólido, en forma de cristal, que no ha cambiado mucho desde su caída. Cuando la nieve acumulada alcanza una mayor densidad producto de la compactación, llega a un estado intermedio en su transformación a hielo, denominado firn o neviza. Al alcanzar una densidad de 830 kg m⁻³ el hielo glaciar es formado, los distintos niveles de densidad definidos para esta transformación son establecidos por Cuffey and Paterson (2010) (Tabla 2.1.1).

Tabla 2.1.1: Densidades típicas (kgm^{-3}).

Nieve nueva	50-70
Nieve nueva húmeda	100-200
Nieve perenne	200-300
Escarcha profunda	100-300
Nieve comprimida por viento	350-400
Firn	400-830
Nieve y firn muy húmedo	700-800
Hielo glaciar	830-923
Adaptado de Cuffey and Paterson	(2010).

2.1.1.2. Zonas de un glaciar

La amplia variedad de lugares y condiciones en los que se manifiestan los glaciares hacen que pocos de ellos puedan ser acuñados completamente a una sola categoría, por tanto, hablar de diferentes zonas dentro de un glaciar es mejor que tratar de clasificarlos en su totalidad. La idea de zonas fue desarrollada por Benson (1961) y Müller (1962) (Figura 2.1.2). En Cuffey and Paterson (2010) se describen estas zonas, ordenándolas desde la elevación más alta (cabecera de un glaciar o centro de un casquete de hielo). Muy pocos glaciares muestran la secuencia completa, mientras que en cualquiera los límites de zona varían de año a año de acuerdo a condiciones climáticas:

- 1. **Zona de nieve seca:** Aquí no ocurre fusión, aún en verano. La linea de nieve seca marca el límite entre esta zona y la siguiente.
- 2. Zona de percolación: Algo de fusión superficial ocurre. El agua puede percolar una

cierta distancia en la nieve a temperaturas menores a 0° C antes de recongelarse y liberar suficiente calor latente para aumentar la temperatura de la nieve. Al avanzar el verano, capas más profundas de nieve se calientan hasta el punto de fusión.

- 3. Zona de nieve húmeda o aguanieve: En esta zona, para el final del verano, toda la nieve depositada desde el final del verano anterior ha alcanzado los 0°C. Algo de agua también percola hacia las capas más profundas depositadas en años previos, aunque no necesariamente en suficiente cantidad para aumentar su temperatura a 0°C.
- 4. Zona de hielo superpuesto: En bajas elevaciones se produce tanta agua de derretimiento que las capas de hielo mergen a una masa continua, denominado hielo superpuesto. Se restringe este termino para la región con un incremento anual de hielo superpuesto expuesto en superficie. También puede hallarse en la parte baja de la zona de aguanieve, pero enterrado bajo firn. La linea de nieve se refiere al límite entre las zonas de aguanieve y hielo superpuesto, siendo fácilmente ubicable por observaciones al final de la temporada de derretimiento; corresponde al límite entre firn y hielo en la superficie glaciar. El límite inferior de la zona de hielo superpuesto es la línea de equilibrio, o ELA por sus siglas en inglés.
- 5. Zona de ablación: El área bajo la línea de equilibrio. Aquí la superficie glaciar piede masa para el final del año. En años típicos, la superficie es hielo. En años con derretimiento mayor que el promedio, sin embargo, la zona de ablación se extiende glaciar-arriba hacia el firn.

Figura 2.1.2: Variación de facies de nieve con la altitud (a partir de Benson (1961)). La distancia horizontal desde la línea de equilibrio a la linea de nieve seca va desde decenas a cientos de kilómetros. Modificado de Hooke (2019).

2.1.1.3. Comportamiento glaciar

Para analizar el comportamiento glaciar en una región particular se utilizan generalmente en la literatura glaciológica tres parámetros, los que entregan una noción de las variaciones en la masa glaciar respecto a la altitud, cambios en la proporción de la zona de acumulación y el área que abarca un glaciar respecto a distribución altitudinal, estos son:

- ELA (equilibrium line altitude): Se define como una zona donde no se producen cambios de masa positivos ni negativos (Kaser et al., 2003). Su identificación requiere estudios de campo, dada la miriada de factores involucrados en su determinación, este varía regionalmente. Existen casos de glaciares sometidos a ablación en toda su superficie durante el periodo estival, u otros donde la zona de acumulación se extiende hasta el margen del hielo, donde masa se pierde por *calving*; en consecuencia, están desprovistos de una ELA (Cuffey and Paterson, 2010). En Chile, para el área de estudio, se ha estimado una ELA de 2800 msnm en 1976 (Nogami, 1976), que asciende a 2850 msnm para 2012 (Caro Paredes, 2014).
- AAR (accumulation area ratio): Se obtiene estimando la proporción del área de acumulación respecto al glaciar completo. En general, el valor del AAR para un balance de masa cero refleja la distribución de área-altitud de un glaciar, y como el balance especifico varía con la altitud (Gross et al., 1976). Por ejemplo el AAR de glaciares tropicales, tiende a ser alto debido a que la ablación incremente rápidamente glaciar-abajo cercano al terminus (Kaser and Osmaston, 2002). En los Nevados de Chillán, Caro Paredes (2014) estima un AAR que va desde 0.67 en 1976 a 0.58 en 2011.

Variaciones año-a-año de la ELA y AAR dependen del clima anual; en años cálidos o de baja precipitación, el balance de masa es negativo y la ELA es alta. Monitorear estos parámetros provee de una forma conveniente pero imprecisa para evaluar cambios en el balance de masa de muchos glaciares en una región, aunque los errores sean importantes en algunos años (Kuhn et al., 1999).

• Hipsometría: Consiste en la distribución del hielo respecto a su altitud, utilizada generalmente para estimar la estabilidad y respuesta de glaciares en el largo plazo. Tanto la ELA como el AAR están sujetos a variabilidad interna ya que implícitamente dependen de la forma y régimen glaciar. En su conjunto, estos parámetros pueden revelar el comportamiento de un glaciar y la influencia climática en su dinámica. Estudios al respecto en Chile nos muestran, por ejemplo, que la hipsometría puede ser y evolucionar de forma notoriamente distintiva para glaciares geográficamente cercanos, como el caso de los glaciares Queulat, Macá y Hudson (Fernández et al., 2010).

2.1.1.4. Variaciones glaciares

La documentación histórica de glaciares nos permite observar la formación de relieves geomorfológicos locales, tales como morrenas, y evaluar su relación a procesos glaciares, sirviendo de punto comparativo con la dinámica glaciar y sus cambios hasta la actualidad (Steiner et al., 2008). A lo largo de la historia se han registrado las altas montañas y los glaciares que contienen, por medio de relatos, pinturas y fotografías, como para los glaciares Alpinos, durante el siglo XIX (Steiner et al., 2008; Zemp et al., 2008). En Sudamérica, Rhoades (2008) estudian el retroceso y desaparición del glaciar Mama Cotacachi, Ecuador, basándose en crónicas de viajeros, montañistas y científicos, así como fotografías tomadas desde el siglo XIX. En los Andes centrales, se realizan observaciones desde principios del siglo XX por Brüggen (1928) y Lliboutry (1956), que junto a fotografías aéreas de la década de 1950, permiten determinar las variaciones de glaciares hasta la actualidad, como para los glaciares Juncal Norte y Sur, Olivares Beta y Gama, el glaciar Cipreses y Universidad (Masiokas et al., 2009). En los Nevados de Chillán registros históricos incluyen los de Domeyko (1850) y Philippi (1862) que describen e ilustran un extenso campo de hielo cubriendo el complejo volcánico, y fotografías aéreas obtenidas en la década de 1970. Más al sur, en los Campos de Hielo Patagónicos, relatos de exploradores han permitido realizar estimaciones históricas en l Glaciar Pio XI (Warren et al., 1997).

Los métodos utilizados más recientemente aprovechan la capacidad de los sensores remotos en el mapeo de glaciares y monitoreo de sus variaciones. Paul (2000) evalúa estas capacidades e identifica diferentes métodos para el mapeo de glaciares descubiertos, dividiéndolos en tres grupos: delimitación manual de bordes glaciares, Band Ratios, y técnicas de clasificación supervisada y no supervisada. La delimitación manual de glaciares se aplica generalmente en composiciones falso color en escenas Landsat MSS y TM, ASTER, y más recientemente Sentinel 2 (Paul et al., 2016), entregando una alta exactitud incluso en hielo cubierto, sin embargo no se aconseja para áreas extensas. El método Band Ratios consiste en la división de los datos numéricos (DN o *digital number*) de los píxeles de dos bandas, resultando en una máscara blanco y negro que nos muestra la extensión glaciar. Este método lo utiliza inicialmente Paul (2000), luego se perfecciona la técnica con la corrección de reflectancia atmosférica, mejorando los resultados (Kääb et al., 2002). La clasificación supervisada es utilizada primero por Gratton et al. (1990),

quienes aplican la clasificación de máximo de probabilidad (*Maximum-Likelihood*) en escenas MSS y TM, con ayuda de un Sistema de Información Geográfico (SIG). También, a través de una clasificación no supervisada, *Iterative Self Organizing Data Analysis* (ISODATA), se agrupan bandas del sensor TM.

El método más comúnmente utilizado es el de Band Ratios, que toma ventaja de los altos valores de reflectividad de nieve y hielo en el espectro visible, facilitando la identificación de glaciares a nivel regional (Racoviteanu et al., 2008). Esto le hace especialmente útil en la elaboración de inventarios glaciares, utilizándose en los inventario de Suiza (Kääb et al., 2002), Noruega (Andreassen et al., 2008) y Canadá (Svoboda and Paul, 2009). En nuestro país, la DGA (Dirección General de Aguas) por medio del Ministerio de Obras Públicas establece en la resolución 1851, con fecha al 17 de julio del 2009, los parámetros por los cuales deben ser identificados los glaciares Chilenos, actualizándose estos recientemente en mayo de 2022 (DGA, 2022).

2.1.1.5. Balance de masa

Se define el balance de masa como el estudio de los cambios en el volumen de hielo y nieve, y la distribución de estos en el espacio y el tiempo. En general, se realizan mediciones de balance de masa para un año hidrológico, también puede medirse el balance durante las estaciones de invierno o verano, e inclusive mensualmente, en estudios del cambio de ablación mensual por ejemplo, dependiendo del contexto climático de un glaciar será útil estudiar periodos de tiempo específicos. A partir del balance de masa medido es posible determinar la cantidad de agua que puede ser contenida y liberada, junto al comportamiento del glaciar esperado para cada año y a futuro, con estos valores siendo expresados como volúmenes equivalentes en agua por unidad de área. El balance específico puede subdividirse de acuerdo a donde dentro de la columna vertical el intercambio de masa ocurre, definiéndose balance superficial, basal y englacial. Generalmente el balance superficial es el que domina, sin embargo el balance basal puede ser importante en ambientes como plataformas flotantes de hielo o glaciares sobre volcanes activos (Cuffey and Paterson, 2010; Kaser et al., 2003).

El balance de masa se comprende como la suma algebraica de la ganancia y pérdida de la masa glaciar, representados por los conceptos de acumulación y ablación, respectivamente, que definen zonas en un glaciar, encontrándose la zona de acumulación sobre la ELA y la zona de ablación bajo esta. Se entiende por acumulación como todos los procesos a través de los cuales se le agrega hielo y nieve al glaciar, algunos de los cuales incluven precipitación sólida, avalanchas, formación de escarcha y congelamiento de lluvia, los que toman lugar normalmente en o cerca de la superficie glaciar. Por otra parte la ablación abarca todos los procesos por los cuales la nieve y el hielo son removidos del glaciar, siendo los más comunes el derretimiento, sublimación y la remoción de nieve por el viento, aunque también por *calving* en glaciares terminados en el mar o grandes lagos. Al comparar la cantidad de acumulación y ablación ocurrida en un glaciar para un periodo de tiempo determinado, si la primera es mayor que la segunda, se habla de un balance de masa positivo, caso contrario nos referimos a un balance de masa negativo (Kaser et al., 2003). Estas mediciones permiten establecer que el espesor de un glaciar alcanzaría, generalmente, un máximo a fines de primavera o comienzos del verano y un mínimo a finales de este último, completando el año hidrológico (Cuffey and Paterson, 2010), siendo esto fundamental a la hora de abordar el aprovechamiento del recurso hídrico, sobre todo durante la estación seca, para actividades antrópicas y ecosistémicas.

A grandes rasgos, se definen dos métodos principales para la medición del balance de masa en un glaciar, estos son el método glaciológico y el geodésico y se definen como:

- El Método Glaciológico: Tradicionalmente utilizado en las mediciones del cambio de masa en la superficie glaciar, consiste en la instalación de una red de balizas que permiten registrar los cambios de altura de nieve y hielo en el glaciar, además de la densidad para distinguir entre zonas de acumulación y ablación. Generalmente son suficientes entre 10 y 15 balizas para obtener un balance de masa, sin importar el tamaño del glaciar (Fountain and Vecchia2, 1999), aunque pueden requerirse menos si se toma en consideración la altura de las balizas (Cogley, 1999). La densidad se estima a partir de la excavación de pozos en la nieve y/o mediante el uso de un Monte Rosa, que consiste en la extracción de testigos de nieve. Su precisión depende de las fuentes de incertidumbre durante el muestreo, como una mala distribución de los puntos, insuficiencia de estos o la incorrecta toma de los datos in situ.
- El Método Geodésico: Consiste en el análisis de datos de elevación superficial obtenidos principalmente por sensores remotos. Algunos recursos

utilizados son imágenes captadas por sensores activos y pasivos, GPS, fotografías aéreas y cartografía regular, de los cuales es posible extraer información para generar modelos de elevación digital (DEM por sus siglas en inglés). Estos datos de elevación son comparados en dos fechas diferentes pudiendo así establecer los cambios volumétricos que sufre el glaciar en dicho periodo. Luego estas variaciones volumétricas son convertidas en balance de masa utilizando la densidad del hielo glaciar. Se utiliza en general para calcular el balance de masa neto sobre grandes periodos de tiempo, destacándose en una mayor cobertura superficial del glaciar, sobre todo en zonas de compleja topografía, además, permite obtener el balance de todo el sistema glaciar, incluyendo variaciones dinámicas y pérdidas por *calving*.

2.1.2. Estructuras y deformación en glaciares

Los glaciares y mantos de hielo transportan masa desde los puntos altos de sus zonas de acumulación hasta el terminus de sus zonas de ablación, fluyendo en respuesta a la gravedad a través del paisaje. Encontrándose en un estado semi-sólido, geológicamente el hielo glaciar puede considerarse como una roca metamórfica de composición mono-mineral, la cual se deforma e incorpora material al fluir. Así, se generan diversas estructuras en el hielo, las que pueden hablarnos sobre las condiciones de flujo pasadas y actuales de una masa de hielo, similar a como las estructuras geológicas nos dan información sobre los movimientos y fuerzas que actúan sobre la corteza terrestre.

2.1.2.1. Flujo de hielo

El flujo de una masa de hielo se da por la deformación que resulta del *stress* que ejerce sobre ella la gravedad. Esta fuerza gravitatoria es derivada del hecho que los glaciares se precipitan hacia su terminus como resultado del imbalance espacial entre las zonas de acumulación y ablación (Sección 2.1.1.5), y además, del gradiente de presión ejercido en el glaciar por la gravedad, cuyos componentes se detallan en el Apéndice A1.2 (Cuffey and Paterson (2010); Figura 2.1.3). De no haber una pendiente superficial, no existiría este imbalance y por ende no habría flujo. Este flujo puede entenderse de dos maneras: primero, en términos mecánicos, las fuerzas gravitacionales que causan el flujo son resistidas por fuerzas dentro del hielo y a lo largo de sus límites, dependiendo así de las propiedades del hielo, del

substrato, y de la geometría del glaciar, y en segundo lugar, se reconoce que un glaciar tiende a un estado estable, ajustado a su rol en el ciclo hidrológico, la nieve añade masa al glaciar que es eventualmente perdida como agua de derretimiento y icebergs, así, el flujo se determina por el aporte de masa al sistema (en función de la nieve, derretimiento, y geometría de la cuenca) y por la geometría del área de descarga.

Figura 2.1.3: Diagrama esquemático de una plataforma de hielo glaciar de valle v mostrando la locación de la zona de acumulación, la zona de ablación v la linea de equilibrio. Rutas de flujo principales se muestran también. Modificado de Sugden and John (1976) en Bennett and Glasser (2011).

2.1.2.2. Deformación del hielo

Al ser sometido a las fuerzas descritas anteriormente, el hielo sufre deformación, cambiando su forma y dimensión. Estas fuerzas, denominadas como stress al actuar sobre un cuerpo de hielo, pueden ser separadas en dos componentes básicos ejercidos sobre una superficie: (a) stress actuando perpendicular a una superficie (stress normal, σ); y (b) stress actuando paralelo a una superficie (stress de cizalle, τ). En cada caso, el stress actuando sobre la superficie se compone de dos tracciones iguales y opuestas. Para los stresses normales son tracciones opuestas a lo largo de una superficie, ya sea tirando en direcciones opuestas (stress tensional) o actuando una hacia la otra (stress compresivo). Los stresses de cizalle tienen tracciones paralelas a lo largo de un plano; sin embargo, estas actúan en direcciones opuestas.

El stress en un punto especifico puede ilustrarse usando un elemento de stress donde los stresses normal y de cizalle actúan en un cubo infinitesimal pueden ser descritos por tres planos perpendiculares (Figura 2.1.4a).

Por tanto, como los pares de stresses de cizalle opuestos deben estar en equilibrio

Figura 2.1.4: (a) Elemento de stress infinitesimal ilustrando los nueve componentes de stress actuando en tres planos perpendiculares. Stresses normales (σ) son azules, y stresses de cizalle (τ) son rojos, con la primera letra subscrita describiendo la dirección del stress, y la segunda describiendo la dirección perpendicular al plano en el cual el stress actúa. Para asegurar que no exista aceleración rotacional, stresses de cizalle opuestos son iguales ($\tau_{xy} = \tau_{yx}, \tau_{xz} = \tau_{zx},$ $\tau_{yz} = \tau_{zy}$), por tanto, seis componentes de stress independientes (tres normales, tres de cizalle) pueden describir el estado de stress en cualquier punto dado. (b) Diagrama conceptual de una sección transversal y longitudinal a través de un glaciar idealizado, ilustrando los stresses normales (σ) y de cizalle (τ) principales, en azul y rojo respectivamente, que actúan dentro de la lengua de un glaciar de valle. Notar que tamaños de flechas no están a escala, y no representan magnitudes comparativas de stress. Obtenido de (Jennings and Hambrey, 2021).

para asegurar que no exista aceleración rotacional del elemento de stress, puede describirse el estado de stress en cualquier punto dado usando seis componentes independientes de stress, tres normales y tres de cizalle (Cuffey and Paterson, 2010). Para describir los stresses actuando en una masa de hielo, se usa un sistema de coordenadas Cartesiano rectangular, donde el eje-x se orienta longitudinal a lo largo del glaciar (paralelo al flujo), el eje-y se orienta transversalmente (perpendicular al flujo), y el eje-z en la vertical (Figura 2.1.4b). El tipo de stress es identificado por σ para stress normal y τ para el de cizalle, cada uno seguido por (*i*) indicando la dirección enla que actúa el stress, y por (*j*) indicando la dirección perpendicular al plano en cual el stress actúa (Benn and Evans, 2014). De esta forma, un stress normal actuando en la dirección-x se denota como σ_{xx} , mientras que un stress de cizalle actuando en la dirección-x en un plano orientado perpendicular al eje-y se denotaría por τ_{xy} (Figura 2.1.4).

Stresses normales dentro del cuerpo de una masa de hielo pueden actuar en múltiples direcciones, principalmente como resultado del hielo esparciéndose bajo su propio peso. Es por tanto útil considerar el stress normal promedio, o presión "criostática" (referida también por algunos autores como presión "hidrostática" o "litostática"), y como cualquier stress normal dado difiere de este valor. Este "stress deviatorio" puede ser resuelto, por ejemplo, en la dirección-x (σ'_{xx}) usando:

$$\sigma'_{xx} = \sigma_{xx} - \frac{1}{3}(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) \tag{2.1.1}$$

Vale la pena notar que en ciertas circunstancias, el stress deviatorio puede ser tensional, aún cuando la componente de stresses normales sea compresiva (Benn and Evans, 2014).

Aún cuando es a menudo útil tratar los stresses normales y de cizalle como mutuamente excluyentes, estos son miembros finales de un continuo, y están por tanto fundamentalmente enlazados el uno al otro; un cuerpo de hielo que experimente stress de cizalle esta simultáneamente sometido a stress normal, cuyo máximo se da a un ángulo de 45° desde el plano de cizalle, y vice versa. En consecuencia, al rotar el sistema de coordenadas Cartesiano, es posible describir stress en cualquier punto dado usando solo tres stresses normales, denominados tensores de stress principales. En la realidad, el hielo esta sometido a una combinación de stresses normales y de cizalle que coalescen para formar un nuevo set de stresses deviatorios y de cizalle. El combinado set de stresses puede por tanto ser resuelto en tres componentes principales de stress, sea valores máximos, intermedios y mínimos, que se orientan perpendiculares uno al otro, y se asignan como σ_1 , σ_2 y σ_3 donde $\sigma_1 > \sigma_2 > \sigma_3$. Resulta útil deducir los tensores de stress principales al considerar la formación de estructuras glaciológicas, por ejemplo, para explicar la iniciación y desarrollo de grietas (Figura 2.1.5; Nye, 1952) Aún así, es a menudo mas relevante utilizar análisis de deformación (mediciones de deformación in situ) o modelar deformación acumulativa para poder entender las estructuras en glaciares (Jennings and Hambrey, 2021).

Figura 2.1.5: Vista en planta de patrones de grietas en un glaciar de valle. Los elementos cuadrados sobre cada diagrama ilustran el stress normal (σ) y de cizalle (τ), en azul y rojo respectivamente, actuando en la superficie glaciar cerca del margen superior (izquierda), y los relacionados stresses principales (derecha), con valores negativos indicando stress principal compresivo. El tamaño y orientación de las flechas representan la dirección y magnitud de un stress principal. (a) Grietas chevrón resultado de cizalle lateral actuando en el margen del glaciar. (b) Grietas transversas curvadas resultado de stress de cizalle lateral combinado con stress tensional longitudinal (régimen de flujo extensional). (c) Grietas *splaying* resultado de stress de cizalle lateral combinado con stress compresivo longitudinal (régimen de flujo compresivo). Modificado de Nye (1952) en Jennings and Hambrey (2021).

De esta forma, el hielo glaciar puede ser considerado como una roca metamórfica mono-mineral. En glaciares temperados el hielo se deforma a temperaturas muy cercanas al punto de fusión, mientras que en glaciares fríos esto ocurre a decenas de grados bajo este punto. Así, un glaciar puede servir como un modelo de deformación rocosa, considerando que en un glaciar alpino típico las tasas de deformación son unos seis ordenes de magnitud más rápidas que en cinturones montañosos compresivos (Hambrey and Milnes, 1977), y estas pueden ser determinadas por mediciones in situ de velocidad y dirección de flujo. El hielo de un glaciar puede tener una edad o tiempo de residencia que va desde algunos siglos en glaciares de valle, hasta milenios en caudales de hielo mayores, e inclusive millones de años en los mantos de hielo Antárticos. La historia deformacional de un "paquete" de hielo sigue por tanto una ruta compleja, comenzando como nieve en el área de acumulación que, por enterramiento, sufre diagénesis y se convierte en hielo glaciar, este luego es sujeto al equivalente de metamorfismo regional de alto grado, que involucra fusión parcial y recristalización, fracturamiento, plegamiento, y cizallamiento (Hambrey and Lawson, 2000).

2.1.2.3. Estructuras glaciológicas

Como en el caso de las rocas, los estratos de nieve convertida en hielo se acumulan sistemáticamente y en consecuencia se deforman progresivamente para producir un amplio rango de estructuras. Como resultado, estructuras formadas en glaciares pueden clasificarse como "primarias" o "secundarias". Las estructuras primarias, como su nombre lo indica, se forman en primera instancia por la acumulación y acreción del nuevo material que cae sobre a superficie glaciar, luego, las estructuras secundarias se originan como resultado de la deformación del hielo producida por el flujo de un glaciar. Estas estructuras secundarias pueden dividirse en dos categorías: producto de "deformación frágil", o de "deformación plástica (dúctil)". Las estructuras frágiles resultan del fracturamiento frágil del hielo, formando un amplio rango de fracturas incluyendo fracturas abiertas (grietas), fracturas cerradas (trazas de grieta), y fallas. Los rasgos dúctiles se forman cuando las estructuras primarias son alteradas a variables grados por arrastre de hielo, resultando comúnmente en plegamiento y foliación (Colgan et al., 2016; Hambrey, 1994; Hambrey and Lawson, 2000).

Usualmente se describen las estructuras glaciares en relación a la evolución estructural del glaciar completo, en un intento de distinguir las diferentes fases de deformación y el desarrollo secuencial de estructuras. Para esto se utilizan convenciones tomadas de la geología estructural (cf. Hambrey and Milnes, 1977) que permiten describir estructuras según su orden de formación, como se indica por relaciones de corte. Estructuras planares son usualmente acuñadas como S_0 , S_1 , S_2 ... en orden ascendente de formación, usando los criterios empleados por Hambrey and Lawson (2000); Goodsell et al. (2005a) y Cuffey and Paterson (2010), con fases de plegamiento asociadas acuñadas como F_1 , F_2 ... indicando fases mayores de deformación. Similar a como ocurre en formaciones rocosas, el hielo glaciar esta sujeto a varias fases de deformación, sin embargo, a diferencia de estas,
en glaciares estas fases no están siempre claramente separadas temporalmente, si no que mergen una sobre la otra para formar fases continuas. Al deformarse la masa de hielo completa al mismo tiempo, fases de deformación distintivas ocurren simultáneamente, por ejemplo, mientras S_0 ocurre en el área de acumulación, S_3 toma lugar en los alcances inferiores del glaciar, por tanto, se considera que la separación temporal de fases de deformación es imposible (Hambrey and Milnes, 1977; Hambrey and Lawson, 2000), un concepto que esta siendo adoptado, si bien tentativamente, en investigaciones geológicas (e.g. Gray and Mitra, 1993). De esta forma, fases deformacionales en glaciares no se relacionan en una escala temporal, si no que al paso de un paquete de hielo a través de la masa de hielo (Hambrey and Lawson, 2000). Algunas estructuras glaciológicas menores tales como peculiariedades cristalinas e inconformidades son usualmente excluidas de la descripción secuencial de formación estructural debido a que se les considera insignificantes en relación a la evolución estructural de la masa de hielo completa (Goodsell et al., 2005b).

Las estructuras reconocidas en la superficie de un glaciar pueden hablarnos acerca de las condiciones de flujo que este posee. Un glaciar puede tener múltiples áreas fuente cada cual provee de un caudal de hielo, referidos comúnmente como "unidades de flujo", los que finalmente convergen para formar la lengua glaciar. Estas unidades de flujo tienen diferentes historias deformacionales, siendo cada una reconocible a través del glaciar. En glaciares de gran tamaño estas pueden ser reconocidas por la presencia de morrenas mediales (Figura 2.1.6a), o en otros de menor envergadura, por zonas de intensa foliación (Figura 2.1.6b) o cambios abruptos en el arreglo de estructuras glaciológicas. A continuación se provee de una descripción de las principales estructuras encontradas en el hielo glaciar, comenzando por las estructuras primarias y luego las secundarias (frágiles y dúctiles), con el fin de comprender su significancia en la cinemática del flujo glaciar.

La estructura primaria dominante en glaciares es la estratificación, generalmente compuesta de capas de hielo paralelas a la superficie diferenciadas unas de otras por tamaños variables de cristales de hielo, contenido de burbujas y de tierra. La naturaleza estratificada del hielo representa el apilamiento anual de caída de nieve depositado paralelo a la superficie del glaciar, preservada durante la firnificación (Figura 2.1.7 izquierda; Hambrey and Lawson, 2000). Este hielo estratificado,

Figura 2.1.6: Unidades de flujo definidas por: Morrenas mediales, (a) Glaciar Kaskawulsh, Brazo Sur, Yukon, Canadá; (b) Zonas de fuerte foliación longitudinal (flechas negras) sets entre de estructuras arqueadas (flechas azules), Glaciar Fountain, Isla Bylot, Canadá. Modificado de Jennings and Hambrey (2021).

preservado en núcleos excavados a través de mantos de hielo y casquetes glaciares, proveen de una rica fuente de datos químicos, desde los cuales se obtienen registros climáticos de alta resolución. Los límites entre estos estratos representan superficies de igual edad, o isócronas (Cuffey and Paterson, 2010), que en algunos lugares son enfatizadas por capas de ceniza volcánica interdigitada (Figura 2.1.7 derecha).

Las diferentes facies de hielo (i.e. tipos de hielo) representan variaciones estacionales en la formación inicial del paquete de nieve (Wadham and Nuttall, 2002). En un glaciar temperado típico, capas relativamente gruesas de hielo grueso con burbujas representan acumulación de nieve invernal que ha sufrido fusión parcial y recongelamiento. Hielo grueso limpio de alta densidad es el resultado de recongelamiento de agua de derretimiento como una capa en la base del paquete de nieve invernal. Estratos más delgados en comparación consistentes de finos cristales de hielo representan la acumulación de nieve veraniega. En glaciares politermales, alguna o la mayoría de la acumulación se da en forma de hielo superimpuesto, que resulta de un paquete de nieve saturado, resultando en hielo denso pero que

Figura 2.1.7: Ejemplos de la estratificación del hielo glaciar. A la izquierda, estratificación expuesta en la zona de ablación cubierta del glaciar Grande en el Cerro Tronador, Región de los Lagos. Fotografía de Alfonso Fernández. A la derecha, capas de material volcánico interdigitadas en el hielo observadas en una grieta del glaciar Nevado, Chillán. Fotografía propia.

retiene burbujas de aire. En glaciares fríos, donde no ocurre fusión, una superficie endurecida por el viento, o variaciones en concentración de burbujas controladas por la temperatura y tasas de acumulación (Spencer et al., 2006), pueden marcar el límite entre los estratos. En todos los tipos de glaciares, las capas veraniegas comúnmente contienen polvo transportado por el viento y material orgánico, que es atrapado en la nieve superficial (Cuffey and Paterson, 2010; Goodsell et al., 2005b; Hambrey, 1994). Los periodos de excesiva ablación superficial pueden remover muchas capas previas produciendo una inconformidad (Figura 2.1.8), que representa un hiato en la deposición sistemática de capas de nieve (Goodsell et al., 2005b,a), estas inconformidades también pueden producirse por irregularidades en la topografía, que llevan a una acumulación total neta en áreas aparte de los alcances superiores de una masa de hielo (Hudleston, 2015).

Figura 2.1.8:Inconformidad enel hielo estratificado expuesto enun acantilado de hielo sobre Puerto Granito, Victoria Land, Antártica. Fotografía obtenida de (Jennings and Hambrey, 2021).

Las estructuras primarias son mejor preservadas en glaciares de circo o pequeños glaciares de valle, en glaciares más grandes muchos de estos rasgos son sobrescritos y destruidos por la foliación y apertura de grietas.

Resultado de la deformación que sufre el hielo al fluir, se generan distintos tipos de estructuras secundarias dependiendo en primera instancia de la posición en la vertical del cuerpo glaciar donde observemos, utilizando términos geológicos, en la superficie de la corteza encontraremos deformación del tipo frágil, representadas en glaciares como grietas y fallas, mientras que en profundidad podremos observar la formación de estructuras de tipo dúctil como pliegues y foliación, similar a la deformación en terrenos metamórficos (Herzfeld and Mayer, 1997).

Comenzando con las estructuras frágiles, las más comunes y notorias son las grietas, encontradas en casi todas las masas de hielo, estas representan fracturas tensionales abiertas resultantes del fallamiento frágil del hielo glaciar en respuesta al stress, usualmente como consecuencia del flujo de hielo sobre topografía abrupta del lecho o a través de geometrías de canal variables. Las grietas son un rasgo muy relevante en la dinámica glaciar, pues nos hablan de como los glaciares fluyen y se deforman, como el agua de derretimiento superficial puede alcanzar el lecho e influenciar el deslizamiento y descarga de hielo, como los procesos de *calving* y formación de icebergs toman lugar, e inclusive influenciar el balance de masa superficial de un glaciar al incrementar la ablación supraglaciar y retención de agua de derretimiento superficial supraglaciar y retención de agua de derretimiento (Colgan et al., 2016).

La propagación de fracturas ocurre en tres formas fundamentales (modos de fractura) dependiendo de la configuración del stress aplicado (Figura 2.1.9) (Benn et al. 2007; Van der Veen 1998, 1999):

- 1. Modo I ("apertura"): Stresses tensionales aplicados normales al plano de fractura tiran de cada lado de la fractura. Propagación de la ruptura ocurre perpendicular a la dirección de máxima extensión.
- 2. Modo II ("deslizamiento"): Las paredes de la fractura permanecen en contacto mientras stress de cizalle es aplicado paralelo al plano de fractura. Propagación de la ruptura ocurre en la misma dirección del stress de cizalle aplicado.
- 3. Modo III ("desgarramiento"): Stress de cizalle es nuevamente aplicado paralelo al plano de fractura; sin embargo, la propagación de la ruptura

ocurre en ángulos rectos al stress de cizalle aplicado.

Figura 2.1.9: Diagrama esquemático ilustrando los diferentes modos posibles de fractura en un glaciar, desarrollados en respuesta a stress tensional (Modo I) y de cizalle (Modos II y III). Notar que la propagación de la fractura es hacia la página. Modificado de (Benn et al., 2007) en (Jennings and Hambrey, 2021).

A menudo se asume que las grietas superficiales se forman primeramente en respuesta a stress tensional (Modo I de fractura), desarrollándose inicialmente normales a la máxima tasa de deformación extensional (Van der Veen, 1998). Sin embargo, una combinación de modos de fractura puede ocurrir simultáneamente, lo que es referido como un modo de fractura mixto (Colgan et al., 2016; Van der Veen, 1999). Un amplio rango de orientaciones de grietas puede existir, dependiendo de la morfología del glaciar y los regímenes de stress presentes. Aún así, el fracturamiento superficial esta mayormente asociado con áreas de flujo rápido y extensional, tal como acantilados de hielo (Hambrey and Lawson, 2000; Harper et al., 1998).

La presencia de grietas en la superficie de un glaciar sugiere que un criterio de fractura debe haber sido alcanzado o sobrepasado para inducir fracturamiento (Campbell et al., 2013; Vaughan, 1993), sin embargo, debido a la altamente variable resistencia tensional del hielo, dependiente de diferentes propiedades de este, dicho criterio no ha podido ser identificado completamente. Otro tópico en debate es la profundidad a la cual las grietas se propagan. Stresses tensionales muchas veces exceden la resistencia tensional del hielo a través del grosor completo de la masa de hielo, sin embargo, grietas abiertas tienden a estar confinadas a una capa superficial comparativamente somera. A medida que la profundidad de penetración de una grieta incrementa, el stress tensional deviatorio que tira de las paredes de la grieta es contrarrestado por el stress compresivo ejercido por la presión de sobrecarga del hielo (Van der Veen, 1999). Por otra parte, en grietas rellenas de

agua, la presión ejercida por el peso de la columna de agua actúa en la misma dirección que el stress tensional deviatorio, forzando las paredes de la grieta a separarse por un proceso denominado "hidrofracturamiento", así, a medida que la grieta se propaga más profundo, la presión ejercida por el agua permite mayor penetración, alcanzando en algunos casos el lecho del glaciar (Benn et al., 2007; Van der Veen, 1998).

Los patrones de grietas varían enormemente dependiendo de la distribución espacial de las fracturas en el glaciar y la configuración de stress presente durante su formación. Así, estos patrones pueden ser indicadores útiles a la hora de analizar las dinámicas que ha experimentado una masa de hielo en el pasado y en el presente (Harper et al., 1998; Herzfeld et al., 2004). Generalmente, las grietas se forman en respuesta al stress tensional principal, sin embargo, existen excepciones a esta regla, tales como grietas formadas en los márgenes de un glaciar o donde este pasa sobre colinas en el lecho rocoso. Las grietas pueden cambiar su orientación respecto al stress tensional principal en lo que son advectadas por el flujo de hielo, especialmente en áreas marginales donde existen zonas de fuerte cizallamiento simple. Grietas más antiguas pueden también ser sobrescritas por nuevas grietas, comúnmente intersectando a bajos ángulos (Van der Veen 1999, 2011). Así, al observar los diferentes patrones de grietas, es posible deducir aproximadamente la orientación de las principales superficies de deformación, y por tanto la configuración de stress requerida para su formación inicial, aún cuando la mayoría de mediciones en terreno han demostrado que las grietas no están siempre perfectamente alineadas con los ejes principales de stress. Se ha sugerido que esto ocurre como resultado de un modo de fractura mixto (Van der Veen, 1999), donde el Modo II de fractura se sobreimpone en fracturas Modo I. Estos patrones, además, cambian con el paso del tiempo, véase, durante recesión glaciar, las grietas abiertas disminuyen en número a lo que el hielo se vuelve menos dinámico, haciendo su estudio interesante en relación a la respuesta de un glaciar al cambio climático.

A continuación se describe el origen de patrones de grietas comunes y su relación con las configuraciones de stress en un glaciar (Figura 2.1.10):

• Grietas transversas se forman en áreas que experimentan extensión longitudinal (σ_{xx}) . En alcances medios de un glaciar el tensor de stress σ_1 se alinea con la dirección de flujo, desarrollando grietas normales a su máxima extensión (Cuffey and Paterson, 2010). Generalmente desarrolladas cerca de la linea central de glaciares o en acantilados de hielo donde domina el flujo extensivo y cizalle puro; sin embargo, pueden extenderse hacia los margenes del glaciar, donde son rotadas. Cuando se forman inmediatamente bajo las laderas de un circo glaciar se les conocen como *bergschrund*.

- Grietas longitudinales se forman en áreas dominadas por extensión transversal local (σ_{yy}) . El tensor de stress σ_1 es por tanto orientado perpendicular a la dirección principal del flujo de hielo en la lengua glaciar, desarrollando fracturas lineares que se alinean longitudinales a lo largo del glaciar. Estas se encuentran principalmente en areas donde la lengua glaciar se engrosa, tal como en un valle abriéndose o luego de fluir pasada una constricción en el valle glaciar.
- Grietas splaying se forman en áreas de flujo longitudinal compresivo. Hacia la linea central de un glaciar, el efecto de arrastre lateral es negligible, por tanto grietas lineares longitudinales se forman resultado de extensión transversal (σ_{yy}). Sin embargo, hacia los margenes del glaciar una combinación de compresión longitudinal (σ_{xx}) y stress cizallante (τ_{xy}) rotan el tensor de stress σ_1 de manera que se orienta oblicuo al flujo glaciar, curvando así las grietas inicialmente longitudinales de manera que encuentran los bordes del glaciar en ángulos menores a 45° (Nye, 1952).
- Grietas chevrón son fracturas lineares orientadas oblicuas glaciar-arriba que resultan de stresses de cizalle actuando en los margenes glaciares (τ_{xy}), similares a grietas splaying. En consecuencia, la dirección del tensor de stress σ_1 se orienta glaciar-abajo a 45° de la dirección de flujo. Estas se abren perpendiculares al plano de máxima extensión, desarrollándose así oblicuas glaciar-arriba e intersectando el margen del glaciar a 45° (Nye, 1952).
- Grietas en echelón se desarrollan en respuesta a stress de cizalle y rotación, condiciones usualmente encontradas en el exterior de un doblez del margen glaciar, o cerca de los bordes de caudales de hielo. Típicamente encontradas en regímenes extensionales con gradientes de velocidad lateral perpendiculares al flujo, análogos a cortes tensionales en rocas deformadas (Hambrey and Lawson, 2000). Sin embargo, continuada deformación dúctil puede rotar la sección central de grietas, alterando la fractura a una forma sigmoidal, así, pueden diferenciarse diferentes generaciones de fracturas en echelon al observar las diferentes magnitudes de rotación.
- Grietas radiales resultan del esparcimiento lateral no confinado del hielo, asociado a
 glaciares de piedemonte, aunque observados también en el morro de glaciares de valle
 que no son más confinados por las laderas del valle o morrenas laterales. Divergencia de
 flujos en el terminus glaciar causa extensión paralela al margen, permitiendo a las grietas
 desarrollarse en ángulos rectos al margen glaciar y formando un patrón radial (Cuffey
 and Paterson, 2010).
- Bloques entre-grietas se desarrollan en áreas altamente agrietadas donde torres de hielo (también conocidos como séracs) permanecen entre grietas. Usualmente encontradas en

acantilados de hielo, la topografía irregular del lecho combinada con flujo extensional (σ_{xx}) es necesario para la formación de estos bloques. El colapso de estos es común al volverse los séracs inestables resultado del movimiento glaciar y la ablación superficial. Acumulación de detritos de hielo de colapsos de bloques a menudo forma una brecha de hielo. La reorientación de stresses alrededor de grietas abiertas mientras el fracturamiento aún sigue activo puede llevar a complejos patrones de fractura que se ven comúnmente en glaciares surgentes y en acantilados de hielo.

Figura 2.1.10: Esquema illustrativo de los varios tipos de grietas encontrados en glaciares. Obtenido de (Colgan et al., 2016).

Una vez formadas, las grietas pueden ser transportadas de forma pasiva glaciar abajo hacia diferentes regímenes de stress donde la forma, orientación y manteo de las grietas son modificados. Es común que los patrones de grietas cambien completamente al entrar en un nuevo régimen de stress (Figura 2.1.11). Fracturas que permanecen abiertas por extensos periodos de tiempo a menudo desarrollan rasgos de derretimiento, similar a aquellos que se forman en terrenos kársticos, como estalactitas y glaseados. Sin embargo, a menudo las grietas son cerradas al ser advectadas glaciar abajo, formando las llamadas trazas de grietas. Esta transición es especialmente evidente en margenes de glaciares donde cizalle simple rota y cierra grietas, a menudo abriendo nuevas grietas orientadas en una dirección más favorable al régimen de stress, y por tanto cortando las trazas de grietas más antiguas. Las observaciones de grietas deformadas y trazas de grieta pueden entonces hablarnos de velocidades y dinámica del flujo de hielo y de los regímenes de stress cambiantes (Hambrey and Lawson, 2000; Herzfeld et al., 2004).

Figura 2.1.11: Modelo esquemático que muestra la evolución de grietas y rotación de trazas de grieta y cabalgamientos en un glaciar de valle, basado en observaciones del Glaciar Blanco, Isla Axel Heiberg, Canadá. Cabalgamientos muestran incorporación de detritos cerca del morro. Modificado de Hambrey and Müller (1978) en Jennings and Hambrey (2021).

Además de producto del cierre de gritas abiertas, las trazas de grietas, definidas como "cicatrices" planares, lineares o curvilíneas compuestas de capas de hielo limpio grueso, se relacionan al fracturamiento tensional (Apéndice A1.3; Colgan et al., 2016; Hambrey, 1994; Hambrey and Lawson, 2000; Jennings and Hambrey, 2021).

La geometría de las trazas de grieta reflejan la orientación inicial de grietas abiertas, pero se deforman eventualmente a una forma arqueada. Glaciar abajo, las grietas se vuelven cada vez más atenuadas, mientras que su manteo glaciar arriba declina al moverse hacia abajo, reflejando el gradiente vertical de velocidad. Trazas de grieta arqueadas representan planos de debilidad y pueden ser rotados hasta que se orienten a una posición favorable para futuros desplazamientos. De esta forma pueden ser reactivados como fallas cabalgantes en el morro de un glaciar, como se demuestra en el Glaciar White, Isla Axel Heiberg, Artico Canadiense (Hambrey and Müller, 1978).

Utilizando convenciones de la geología estructural se reconocen varios tipos de fallas posibles en un glaciar (Apéndice A1.4), sin embargo, el estudio del comportamiento y formación de fallas en cuerpos glaciares aún tiene numerosas aristas abiertas al debate, sobre todo al hablar de fallas cabalgantes; desde las características de una fractura que permitan su identificación como falla, hasta la definición de las condiciones que la dinámica glaciar necesita alcanzar para su formación. En particular, las condiciones requeridas para que cualquier tipo de falla cabalgante se desarrolle como una estructura nueva son cuestionados en la teoría, siendo plausible su formación solo si importantes stresses compresivos son experimentados por capas de hielo de flujo activo con abundancia de debilidades estructurales o fracturas pre-existentes, y aún así, incluso durante las altas tasas de stress ocurridas en surgencias activas de glaciares de valle, mediciones en terreno tienden a no favorecer el fallamiento cabalgante en el hielo glaciar (Moore et al., 2010).

Figura 2.1.12: Atributos principales de los componentes de un pliegue.

las estructuras En cuanto a de carácter dúctil que son encontradas en un glaciar, a escala macroscópica tenemos el plegamiento que ocurre en la mayoría de masas de hielo en un rango de escalas diferentes, como consecuencia de cambios en la geometría del valle y variaciones en el flujo (Hambrey and Lawson, 2000). En geología estructural se utilizan términos estándar para diferenciar los diferentes elementos en rocas plagadas, los cuales son igualmente aplicables al hielo glaciar (Figura 2.1.12). Debido a

una combinación de compresión lateral y cizalle simple resultante del flujo de hielo desde un área de acumulación amplia hacia una lengua estrecha, es común que la estratificación primaria y fracturas sean plegadas (Goodsell et al., 2005a; Hambrey and Glasser, 2003).

En menor escala, la foliación es una estructura dúctil que podemos encontrar en la mayoría de glaciares, definida como una estructura planar pervasiva desarrollada en dos configuraciones principales: (a) longitudinal; y (b) arqueada (o transversa) (Allen et al., 1960; Hambrey and Milnes, 1977; Hambrey and Lawson, 2000). La foliación se compone de capas discontinuas anastomosadas de hielo grueso limpio, grueso con burbujas, y de grano fino, con capas individuales típicamente varios metros de largo, peor rara vez excediendo muchos centímetros en grosor. Cristalográficamente, la foliación se define por variaciones en tamaño de grano,

forma, y concentración de burbujas, además de ocasionalmente por burbujas de aire elongadas, cristales elongados, o planos de cizalle discretos, o una combinación de estos (Hambrey and Müller, 1978). Diferentes modos de formación se han sugerido para los varios tipos de foliación.

La foliación longitudinal es derivada comúnmente de la estratificación, como se revela por la similitud de facies de hielo y la relación transicional entre ambas estructuras (Goodsell et al., 2005a; Hambrey and Milnes, 1977). Al fluir el hielo desde amplias cuencas de acumulación y converger a una lengua estrecha, la deformación dúctil de la estratificación primaria en regímenes de cizalle puro y simple gradualmente pliega las capas inicialmente paralelas a la superficie. Con plegamiento continuado ocurre transposición, y la eventual atenuación de brazos de pliegue reorienta las capas hasta que quedan paralelas al flujo y son orientadas longitudinalmente (Figura 2.1.13), una transición comparable a la observada en rocas metamórficas (Hambrey and Lawson, 2000; Hobbs et al., 1976). Este tipo de foliación es más pronunciada donde el plegamiento es más apretado, tal como en la confluencia de unidades de flujo y en los márgenes de un glaciar (Hambrey and Lawson, 2000). La foliación longitudinal también resulta de transposición de otras estructuras planares como trazas de grietas, las que pueden ser transversas al flujo pero rotar en un régimen de cizalle simple hasta una dirección paralela, particularmente cerca de los margenes del glaciar.

Las diferentes facies de hielo contenidas en la foliación poseen albedos variables, y por tanto están sujetas a meteorización diferencial, reflejada en el desarrollo de relieves de escala sub-métrica como crestas y surcos, que se vuelven más pronunciados si la radiación solar es fuerte, pero menos en superficies afectadas por la lluvia (Figura 2.1.14).

A diferencia de la foliación longitudinal, la foliación arqueada o transversa es el resultado del paso de trazas de grieta hacia un régimen de stress compresivo (e.g. bajo un acantilado de hielo), donde el apilamiento transversal es amplificado (Allen et al., 1960; Hambrey and Lawson, 2000; Hambrey and Milnes, 1977). Así, la foliación arqueada se desarrolla en un régimen de cizalle puro donde la foliación se forma normal a la tasa de strain compresivo máxima y permanece de esta forma al viajar a través del glaciar. En otras palabras, la foliación se forma y permanece perpendicular al eje corto (eje-z) de la elipse de deformación.

Figura 2.1.13: Diagrama esquemático para ilustrar la relación entre la foliación y el plegamiento. Desde una estratificación sin deformación (I), el hielo puede evolucionar por transposición (a) o clivaje (b), cuyas etapas se definen como: a) II, estratificación plegada (estilo similar); III, estratificación fuertemente plegada (estilo isoclinal), con incipiente foliación en los limbos de pliegue; IV, fuertemente foliada con charnelas de pliegue remanentes. Modificado de Hambrey (1994). b) II, estratificación plegada con foliación axial incipiente; III, fuerte foliación axial planar y pliegues similares apretados. Modificado de Jennings and Hambrey (2021).

Naturalmente, existen estructuras en glaciares formadas por una combinación de procesos frágiles y dúciles, dentro de las cuales podemos considerar el hielo basal, distinguido de otros tipos de hielo glaciar en que posee características físicas y químicas únicas, notablemente altas concentraciones de detritos, y una alta proporción de hielo de regelación. El estudio de las facies de hielo basal, expuestas en secciones de acantilados marginales, es importante para deducir las condiciones y procesos que toman lugar en o cerca del lecho de un glaciar o un manto de hielo (Alley et al., 1997; Hubbard et al., 2009; Moore, 2014). Varios tipos de hielo basal han sido definidos en base a la concentración de detritos, tipo de hielo, y contenido de burbujas de aire, las propiedades de estas distintas facies impactan en como se deforman, por ejemplo, las propiedades mecánicas y dinámicas de mezclas de hielo y detritos son afectadas por varios factores, lo que complica l relación entre contenido detrítico y deformación (Hubbard et al., 2009; Moore, 2014).

En la superficie del hielo podemos encontrar ojivas, enigmáticas bandas u ondas arqueadas alternantes que son ocasionalmente observadas bajo acantilados de

Figura 2.1.14: Típica foliación longitudinal de capas anastomosadas de hielo grueso limpio, grueso con burbujas y fino, mostrando la ablación diferencial por sus diferentes albedos, Austre Brøggerbreen, Svalbard. Fotografía obtenida de (Jennings and Hambrey, 2021).

hielo en glaciares de valle. Su naturaleza convexa glaciar-abajo refleja diferencias en el flujo de hielo a lo largo de la amplitud del glaciar. Dos tipos de ojivas se han reconocido: (a) ojivas bandeadas; y (b) ojivas onduladas. Las ojivas bandeadas son a veces referidas como bandas de Forbes, al haber sido descritas primeramente por James Forbes y Louis Agassiz en el Mer de Glacier, Alpes Franceses, o como "ojivas morrenicas" (Gunn, 1964). Las ojivas onduladas se caracterizan por arcos en forma de onda. Ambos tipos comúnmente se juxtaponen (Goodsell et al., 2002; Hambrey and Lawson, 2000; Post and LaChapelle, 1971).

Las ojivas bandeadas consisten de bandas oscuras de hielo rico en detritos altamente foliado alternadas con bandas claras de hielo grueso con burbujas (Figura 2.1.15a), mientras que las ojivas onduladas son ondulaciones arqueadas superficiales con una amplitud máxima de 5 metros aproximadamente encontradas bajo un acantilado de hielo (Figura 2.1.15b)(Goodsell et al., 2002; Herbst et al., 2006). La estructura de las ojivas bandeadas es compleja, comparada a menudo con cucharas anidadas con el manteo de las capas orientado glaciar arriba, en la cual la deformación interna juega un rol importante. Entre las muchas hipótesis, cizallamiento fue sugerido por Chamberlin (1895), y "fallamiento inverso con plegamiento de arrastre asociado" por Posamentier (1978). Un estudio estructural detallado de ojivas fue llevado a cabo por Goodsell et al. (2002), quien mapea en 3-D e inspecciona usando radar penetrante las ojivas bajo el acantilado de hielo en el Bas Glacier d'Arolla en Suiza. Modificando el modelo de Posamentier (1978), propone que las bandas oscuras de las ojivas representan la expresión superficial de intensa foliación manteando glaciar-arriba formada en la base de un acantilado de hielo. En cuando a las ojivas onduladas, de acepta generalmente que su formación es el resultado de variaciones estacionales en la ablación al incrementar la velocidad del hielo entrando a un acantilado de hielo, creando una morfología de onda-y-fosa para el movimiento anual del hielo a través del acantilado. La extensión y resultante adelgazamiento del hielo aseguran que el hielo sobre el acantilado tenga mayor área superficial que en el resto del glaciar. Por tanto, comparativamente más ablación durante los meses de verano es reflejada en el descenso de la superficie para formar las fosas de onda, mientras que las crestas reflejan el paso a través de un acantilado de hielo durante los meses de invierno donde la nieve se acumula, reflejando radiación, y por tanto tiene una superficie comparativamente más alta (Jennings and Hambrey, 2021).

Figura 2.1.15: Ejemplos de ojiva típicos. (a) Ojivas bandeadas o bandas de Forbes formadas en la base de una caída de hielo en Mer de Glace, Francia. (b) Ojivas de onda desarrrollandose en la caída de hielo del Ewigschneefeld, Grosser Aletschgletscher, Suiza. Fotografías obtenidas de Jennings and Hambrey (2021).

Un rasgo curioso de algunas ojivas es la falta de relieve entre las bandas claras y oscuras, ya que uno esperaría que la ablación diferencial fuera evidente. Esto es verdadero en el Mer de Glace, donde Vincent et al. (2018) estudia el balance de masa de las bandas claras y oscuras individualmente. Ellos encuentran que el albedo es 40 % menor en las bandas oscuras comparadas a las claras, pero que el balance de masa era similar. Variaciones en la rugosidad de la superficie fue considerada como la razón de estos resultados.

Para finalizar, entendemos que la hidrología de un glaciar juega un rol crucial en la dinámica y evolución de este, en cuanto a estructuras glaciológicas, la acción de caudales supra-, en-, y sub-glaciales lleva a la erosión de canales, moulins, y cañones (St Germain and Moorman, 2019). Muchos de estos rasgos son controlados por estructuras existentes, como grietas, trazas de grietas y foliación. Los canales y moulins en sí, son eventualmente sanados con agua congelada o nieve, o cerrados debido a la deformación del hielo, dejando estructuras distintivas. Además de los mismos sistemas de drenaje incisos en el hielo y posteriormente rellenos o cerrados, pueden encontrarse estructuras discretas como singularidades cristalinas, formadas por el cierre de "piscinas" circulares o elípticas que alguna vez fueron los huecos de moulins o conductos englaciales (Jennings et al., 2014), y agujeros crioconíticos, resultantes de la acumulación de polvo y detrito fino que altera el albedo superficial, llevando a ablación diferencial que derrite el parche detrítico y lo "entierra" dejando agujeros cilíndricos (MacDonell and Fitzsimons, 2008) que pueden volverse el hogar de bacterias y otras comunidades microbiológicas (Wharton Jr et al., 1985).

2.1.3. Sistemas de valle glacial

Para describir los sedimentos y relieves característicos asociados con glaciares de valle en ambientes de montaña y tierras altas, Boulton and Eyles (1979) introducen el concepto de sistema de valle glacial (*glaciated valley landsystem*), enfocandose en la escala de la cuenca deposicional completa, componiendo así una miríada de ambientes deposicionales distintos que migran y se juxtaponen. Además, dado que los valles glaciares se presentan desde ambientes polares hasta ecuatoriales, el contexto climático y régimen termal glaciar añaden aún más variabilidad (Evans and Gooster, 2014).

A pesar de esta variabilidad, los sistemas de valles glacial tienden a tener algunos rasgos recurrentes como resultado de dos factores principales:

- La fuerte influencia de la topografía en la morfología glaciar, rutas de transporte de sedimento y cuencas deposicionales.
- La importancia de detritos de fuentes supraglaciares en la dotación de sedimento glaciar.

Antes de examinar los sistemas de valle glacial, se deben considerar las fuentes y rutas de transporte de detritos a través de glaciares de valle, y las formas en las que la cubierta detrítica influencia la dinámica glaciar.

2.1.3.1. Incorporación y transporte de sedimentos

Los procesos que incorporan detritos a la superficie glaciar (Figura 2.1.16) incluyen flujos de detritos, avalanchas de nieve, caída de rocas, y avalanchas de rocas (Gordon and Birnie, 1986), además, una menor proporción de detritos es incorporada en posiciones subglaciales por medio de erosión glaciar y regelación. En regiones tectónicamente activas pueden ser significativas las avalanchas de roca generadas por terremotos (Hewitt, 1988), aunque muchas de estas avalanchas no tienen un gatillante claro.

Figura 2.1.16: Incorporación y transporte de detritos en un glaciar de valle. 1 = enterramiento de detritos de caída de roca en área de acumulación, 2 = transporte englacial y derretimiento en área de ablación, 3 = zona de tracción basal, 4 = zona de suspensión, 5 = till basal (puede sufrir deformación), 6 = tabique detrítico elevado bajo cofluencia glaciar, 7 = cúmulo difuso de detrito de caída de roca, 8 = detritos elevados desde el lecho por flujo compresivo y cizalle cercano al margen, 9 = morrena medial de interacción de caudales de hielo, 10 = morrena medial ablación-dominante, 11 = morrena medial tipo avalancha, 12 = morrena lateral supraglaciar. Obtenido de Benn and Evans (2014).

La incorporación de detritos a la superficie glaciar por procesos de movimiento de masa es parcialmente controlado por la topografía del área de captación, la cual determina el gradiente, área y distribución de las áreas fuente de detritos. Adicionalmente, la litología del lecho rocoso donde se emplaza el glaciar puede resultar introducir contrastes en el suministro de detritos supraglaciales entre cuencas de otra forma similares, litologías sedimentarias aportan mayor cantidad de detritos que rocas más competentes como ígneas y metamórficas. La importancia de las tasas relativas de suministro de detritos y nieve/hielo a la superficie glaciar es usualmente subestimada. Glaciares con altas concentraciones detríticas tienden a ocurrir donde tasas de caída de rocas son altas y/o la caída de nieve es baja.

Las rutas de transporte de detritos incorporados en glaciares de valle son variadas, aunque pueden distinguirse dos niveles principales dentro de un glaciar (Benn and Evans, 2014), denominados como "transporte detrítico de alto nivel" y "transporte detrítico de bajo nivel" (Figura 2.1.17):

Transporte de Alto Nivel: Involucra el transporte de detritos sin que entren en contacto con la base del glaciar. El producto es a menudo conocido como "detrito transportado pasivamente" debido a que se mantiene altamente inalterado durante su transporte, reteniendo sus características primarias. En el área de acumulación, los detritos que caen sobre la superficie desde paredes rocosas adyacentes o nunataks será enterrada por acumulaciones de nieve fresca. El detrito entonces se concentra en capas a lo largo de la estratificación de hielo primaria formada por la acumulación anual, luego estos siguen una ruta englacial hasta emerger del glaciar en la zona de ablación, formando una cubierta supraglaciar al descender la superficie del hielo por derretimiento.

Los detritos que caen sobre el glaciar en la zona de ablación no serán enterrados en el hielo a menos que caigan en una grieta, y por tanto formaran parte de la cubierta detrítica. También pueden acumularse estos detritos supraglaciales en crestas conocidas como morrenas mediales, las que se dividen en dos categorías: interacción de caudales de hielo; y ablación-dominante. Las primeras se forman por la cofluencia de dos morrenas laterales en el cruce de dos glaciares, y consisten de una cresta de hielo cubierta de detrito que se extiende bajo el tronco del glaciar, formando un tabique detrítico vertical que puede extenderse hasta el lecho glaciar. Las morrenas mediales ablación-dominantes se forman donde crestas de detrito englacial son reveladas glaciar abajo por derretimiento superficial, estas parecen "crecer" desde la superficie glaciar en la zona de ablación.

La estructura detrítica en la superficie de un glaciar es también afectada por la tasa de aporte de detritos relativa a la velocidad de flujo glaciar, si el aporte es alto y la velocidad baja, una gruesa capa detrítica puede acumularse, por el contrario si el aporte es bajo y la velocidad alta, la cubierta detrítica se esparcirá en la superficie rápidamente y será más delgada.

Transporte de Bajo Nivel: Es el transporte de detritos en o cercano a la base del glaciar. Este puede derivar directamente desde el lecho por incorporación subglacial o indirectamente desde detritos que caen hacia la superficie glaciar y encuentran su camino hacia el

Figura 2.1.17: Diagrama esquemático ilustrando las rutas de transporte de detritos a través de un glaciar de valle típico. Se reconocen dos rutas: I) transporte de alto nivel en el cual los detritos no alcanzan el lecho; y II) transporte de bajo nivel donde el detrito viaja en contacto con el lecho. Reproducido de Boulton and McL (1993) en Bennett and Glasser (2011).

lecho a través de grietas y el movimiento descendente asociado con flujo extensional o derretimiento basal. Este detrito permanece en la base del glaciar hasta que es o depositado subglacialmente o liberado en el morro o margen glaciar. Alternativamente, puede ser elevado hacia la superficie del glaciar mediante cabalgamiento o flujo ascendente dentro del hielo formado por un flujo compresivo. Una vez incorporados, los detritos basales se concentran tanto lateral como verticalmente durante el flujo glaciar. La extensión vertical del detrito basal puede ser incrementada por plegamiento o cabalgamiento de hielo basal rico en detritos. También puede concentrarse alrededor de obstáculos en el lecho rocoso.

Debido a la importante alteración de los detritos transportados en niveles bajos del glaciar, se les refiere a menudo como "activamente transportados". Partículas en la zona de tracción experimentan considerable modificación a través de los procesos de trituración y abrasión. Estos son típicamente esféricos y redondeados, y usualmente distribuciones de tamaño de grano bimodales o multimodales. el material transportado dentro del hielo basal puede desarrollar una fuerte "fábrica de particula", donde las partículas elongadas se alinean con la dirección del flujo del hielo. Esta propiedad es de particular importancia ya que los sedimentos glaciares pueden heredar esta fábrica. También puede transportarse material bajo un glaciar mediante canales subglaciales de agua de derretimiento y a través de deformación de sedimento.

Los detritos pasan entre rutas de transporte por varios procesos, incluyendo derretimiento, enterramiento por nieve, ingestión por grietas, y movimiento a lo largo de estructuras glaciares. En terrenos de alto relieve, escarpados acantilados de hielo sobre zonas de ablación de bajo gradiente comúnmente elevan detritos desde el transporte de bajo nivel al de alto nivel por medio de avalanchas y reconstitución glaciar, suplementando grandes volúmenes de detritos a cubiertas supraglaciares (Figura 2.1.18).

Figura 2.1.18: Avalanchareconstitución de una lengua glaciar transfiriendo un tabique detrítico englacial y basal hacia una cubierta detrítica supraglacial. Glaciar Kaufmann, Monte Haidinger, Nueva Zelanda. Fotografía obtenida de Evans and Gooster (2014).

Como se ha mencionado, las estructuras glaciares producidas por la deformación interna del hielo están íntimamente relacionadas con el transporte de detritos. El hielo glaciar es similar a cualquier otro tipo de material geológico en el sentido que se compone de estratos que progresivamente se deforman para producir una amplia gama de estructuras (Sección 2.1.2.3). Típicamente, un glaciar va a revelar un desarrollo secuencial de estructuras sobre el tiempo y consecuentemente el hielo en el morro glaciar puede registrar varias fases de deformación. Estas fases reflejan el paso de una "parcela" de hielo a través del glaciar desde su tope al terminus. Así, la transferencia de detritos ocurre en la mayoría de morros glaciares en el área de ablación, debido a que el flujo compresivo en esta posición causa el flujo ascendente de hielo rico en detritos. En algunos glaciares este proceso es facilitado por el desarrollo de cabalgamientos, fallas cabalgantes o planos de cizalle, que pueden transferir detrito basal a posiciones englaciales o supraglaciales. La incorporación de detritos en cabalgamientos puede ocurrir de diferentes formas, variando desde incorporación de delgadas laminas de hielo rico en detrito a grandes volúmenes de sedimento congelado que se adosan al lecho glaciar y se elevan a lo largo de los planos de falla (Figura 2.1.19, izquierda). También puede darse que el agua de derretimiento se eleve a lo largo de los cabalgamientos, elevando cantidades substanciales de sedimento glaciofluvial a la superficie del hielo (Figura 2.1.19, derecha).

Figura 2.1.19: Ejemplos del rol de estructuras glaciares en transferencia de detritos. A la izquierda, la zona terminal de un glaciar de valle en Svalbard, mostrando detritos distribuidos en la superficie del hielo en montículos y pináculos como resultado del control estructural del hielo, los detritos han sido elevados a lo largo de fallas dentro del hielo. A la derecha, un pináculo de detritos en la superficie del Marthabreen, Svalbard, se ilustra como diferentes poblaciones de sedimentos pueden ocurrir en cercana proximidad, con cantos y bloques bien redondeados emergiendo desde una falla y mezclándose con el material supraglaciar en la superficie del hielo. Ambas fotografías fueron tomadas por N.F. Glasser.

La transferencia de detritos basales a posiciones englaciales o supraglaciales es particularmente importante en determinar los procesos deposicionales que operan dentro de un glaciar. Por ejemplo, la presencia de cabalgamientos es un control importante en su estructura detrítica. Gruesas concentraciones detríticas englaciales y supraglaciales pueden ser creadas por cabalgamiento y estas pueden tener notorias implicaciones para la liberación de detritos desde el glaciar. Esto resulta en marcadas diferencias dependiendo del régimen termal de un glaciar, ya que los cabalgamientos son comparativamente raros en glaciares cálidos y gruesas capas detríticas basales son inusuales, mermadas por el derretimiento basal; así, el transporte de detritos en glaciares temperados es dominado por transporte de alto nivel (pasivo), y en contraste, glaciares politermales a menudo presentan planos de falla bien desarrollados, resultando en concentraciones mayores de detritos englaciales y una mezcla de detritos supraglaciales en el morro transportados tanto desde altos niveles como en bajos. La capa de detritos subglacial puede también ser más gruesa debido a la regelación en zonas de transición termal. Por otra parte, glaciares completamente fríos son dominados por transporte detrítico de alto nivel, aunque pueden desarrollarse capas detríticas subglaciares.

2.1.3.2. Dinámica de glaciares cubiertos

La cubierta detrítica de un glaciar tiene una importante influencia en su dinámica. Globalmente, un 44 % de los glaciares está cubierto de detritos, siendo esta prominente (>1.0km²) en al menos un 15 % (Herreid and Pellicciotti, 2020). La estructura de esta cubierta en cualquier glaciar es controlada por varios factores locales, que incluyen la geología, relieve topográfico y dinámica glaciar (Bishop et al., 2011), adicionalmente, estudios alrededor del mundo muestran una expansión espacial generalizada de la cubierta detrítica, atribuyendo este cambio a un clima cada vez más cálido (e.g. Deline, 2005; Glasser et al., 2016). A pesar de esto, la cubierta detrítica ha sido largamente omitida de modelos glaciares globales, justificado por sus propiedades heterogéneas y asumida distribución global dispersa. Entre la evidencia de expansión de esta cubierta y su omisión de modelos globales, tres desconocidos fundamentales deben ser resueltos para cerrar esta brecha de conocimiento: la distribución espacial, grosor, y evolución tridimensional del detrito supraglaciar (Herreid and Pellicciotti, 2020).

Uno de los efectos que tiene la cubierta detrítica en la dinámica de un glaciar radica en su relación con la ablación. Una cubierta delgada (< 5 cm) promueve la ablación, ya que causa una reducción en el albedo e incrementa la absorción de radiación de onda corta y larga, por otra parte una capa gruesa de detritos aísla el hielo subyacente y reduce la ablación, dada su baja conductividad termal (Östrem, 1959; Nakawo and Young, 1981) (Figura 2.1.20). En glaciares cubiertos, el grosor del detrito generalmente incrementa hacia el terminus, invirtiendo el gradiente de ablación y causando tasas de ablación muy bajas en la parte baja del glaciar. Esto causa que la zona de ablación se expanda para compensar la ganancia de masa en la zona de acumulación, resultando en que glaciares cubiertos en equilibrio tengan

Figura 2.1.20: Selección de algunas curvas de Østrem, mostrando tasas de derretimiento de hielo versus grosor de cubierta detrítica. Modificado de Mattson (1993).

La respuesta de los glaciares a las fluctuaciones climáticas esta fuertemente influenciada por el grado de cubierta detrítica supraglaciar. Para glaciares limpios, los cambios volumétricos del hielo se reflejan en oscilaciones del terminus, mientras que la respuesta de glaciares cubiertos al calentamiento climático es mitigada por el efecto aislante del detrito. Sin embargo, si el calentamiento es sostenido, tales glaciares pueden entrar una fase de muy rápida ablación si lagos en contacto con el hielo se expanden por *calving* (Kirkbride, 1993; Reynolds, 2000; Benn et al., 2001). El retroceso de glaciares cubiertos y el cese de la entrega de sedimentos a las morrenas terminales puede entonces retrasar significativamente los efectos del cambio climático (Benn and Owen, 2002).

Durante periodos de estabilidad o engrosamiento glaciar, el terminus de glaciares altamente cargados con detritos son el foco de dramática agradación de sedimentos, formando algunas de los más impresionantes relieves deposicionales glaciares (Quincey and Glasser, 2009). Considerable variación en el desarrollo de estos relieves ocurre entre glaciares, desde morrenas laterales-frontales con escarpadas paredes hasta abanicos de detritos y cabeceras de desague de bajo gradiente en contacto con el hielo. Esta variación depende en su mayor parte del suministro relativo de hielo y detrito hacia el área terminal, y la eficiencia de su extracción por agua de derretimiento. Shroder et al. (2000) contrasta los ambientes del terminus de tres glaciares en el macizo Nanga Parbat, Pakistán, e identifica tres controles primarios en el desarrollo de relieves:

- suministro total de sedimento hacia el glaciar por caída de roca y avalanchas, que determina la cantidad de detrito disponible para deposición marginal al hielo
- la velocidad del hielo en la zona de ablación, que controla si el detrito se acumulará supraglaciarmente o será transferido hacia el margen del hielo para su deposición
- 3. la habilidad de los procesos fluviales para remover sedimentos desde el margen del hielo, lo que determina si la acumulación de sedimento se focaliza en las zonas marginal al hielo o proglaciar.

Aunque pueda hablarse que los glaciares cubiertos son parcialmente indiferentes al clima, esto no es estrictamente verdadero, si bien la cubierta detrítica puede retrasar los efectos del cambio climático en el hielo, esta misma cubierta puede verse afectada por estos cambios. Las grandes morrenas laterales-terminales pueden actuar como significativas barreras para el avance glaciar, particularmente si las tasas de deposición son altas, de forma que la variación en el balance de masa en glaciares cubiertos se manifiesta comúnmente como engrosamiento y adelgazamiento en lugar de avance y retroceso. Estudios en estos tipos de glaciares enfatizan condiciones de balance de masa negativas donde hielo es insulado en incrementos bajo una cubierta creciente de detrito supraglaciar (Nakawo and Rana, 1999; Naito et al., 2000). Bajo un balance negativo, cuando los gradientes y velocidades incrementan, la cubierta detrítica podría acentuar los efectos de ondas cinemáticas (Thomson et al., 2000), impulsando una tendencia expansionaria sobre múltiples ciclos de balance de masa.

Kirkbride (2000) sugiere que la carga supraglaciar incrementa sobre varios ciclos de balance de masa, lo que complica la respuesta de glaciares cubiertos a la variación climática. Ciertamente, es debatible el hecho que un verdadero equilibrio entre volumen glaciar y clima pueda ser alcanzado alguna vez. Si las tasas de ablación medias especificas declinan debido a la sobrecarga supraglaciar, una consecuencia necesaria es la expansión continuada de la zona de ablación. Por tanto, en un clima constante, un glaciar cubierto de detritos deberá avanzar para mantener un balance de masa en equilibrio. Los lentos y sostenidos avances de glaciares rocosos con núcleo de hielo reflejan de forma similar influencias glacio-dinámicas y una tendencia expansionaria.

2.2. Marco Geológico

El Complejo Volcánico Nevados de Chillán (CVNCh), compuesto de 13 estratovolcánes, se construye sobre un basamento de lavas y rocas graníticas cenozoicas y presenta diferentes centros de emisión dispuestos a lo largo de una dorsal de 10 km en dirección NO. Aún no presentando una actividad histórica muy agitada, si se ha presentado en diversos sectores a lo largo de dicha dorsal (Naranjo et al., 2008).

Figura 2.2.1: Diagrama simplificado de la anatomía y productos de un estratovolcán típico de los Estados Unidos Occidentales y Alaska. Adaptado desde Myers et al. (2008).

En general un estratovolcán o volcán compuesto se define por ser construido por muchas estratos de lava solidificada que forman un perfil abrupto con un cráter en su cima, con periódicas erupciones explosivas y efusivas, las primeras pueden provocar el colapso del cráter y formar calderas. La lava que fluye desde este tipo de volcán es generalmente félsica, con niveles de silicio intermedios, formada comúnmente en zonas de subducción, la que dada su viscosidad típicamente se enfría y endurece antes de extenderse lejos del centro eruptivo, dando lugar a las abruptas y escarpadas paredes que caracterizan un estratovolcán (Figura 2.2.1). La actividad del Nevados de Chillán comienza a manifestarse hace

aproximadamente 650 ka, con extensas coladas de lava andesítica subglacial y continúa durante el Pleistoceno Medio, con diversos megapulsos efusivos andesíticos principalmente hacia el oeste. Durante el Pleistoceno Superior se desarrollan vastas zonas y diversos centros de emisión alrededor del sector central, el cual para entonces podría ya estar siendo ocupado por un cuerpo glaciar. Alrededor de los 40 ka se emiten ignimbritas, asociadas a la generación de calderas cuyos escarpes abruptos pueden encontrarse al NO, S y E del complejo. Posteriormente los subcomplejos Cerro Blanco y Las Termas, a 6 km uno del otro en dirección NO, evolucionan de forma separada, definiendo varias cimas y centros de emisión en cada uno de ellos. La dispersión de tefra señala que la actividad explosiva holocena ha sido a partir de los 9 ka del tipo vulcaniano y subpliniano.

La actividad eruptiva histórica del CVNCh se caracteriza por manifestarse en diversos centros de emisión y por prolongados ciclos eruptivos de meses hasta años de duración. Según investigaciones de cronistas documentadas por Brüggen (1948), la más antigua conocida ocurre durante 1751 en el volcán Chillán y fue de carácter explosivo. Luego, toma lugar a comienzos de agosto de 1861 el ciclo eruptivo que da origen al volcán Santa Gertrudis sobre el blanco NO del Subcomplejo Cerro Blanco (Philippi, 1862), la alta emisión de lavas generó lahares encauzados por el río Nuble. En relación a esta erupción, se menciona en Goll (1904) la apertura de un nuevo cráter a 200 m bajo la cumbre del Cerro Blanco. Posteriormente se informan por la prensa diversas explosiones entre 1883 y 1884, luego en 1891 y 1898 hubo erupciones explosivas que destacaron en el volcán Chillán o volcán Viejo. En agosto de 1906 se inicia uno de los ciclos eruptivos más prolongados que da origen al volcán Nuevo, cuya actividad se mantiene hasta fines de ese año con mayor intensidad (Petit-Breuilh, 1995), se detectan explosiones esporádicas hasta 1946. Un comportamiento eruptivo similar toma lugar a partir de julio de 1973 al pie sur del volcán Nuevo, desarrollandose el actual volcán Arrau (Dixon et al., 1999). Actualmente, la actividad volcánica en forma de fumarolas se da principalmente en el volcán Nuevo, y en 2003 una explosión vulcaniana menor da origen al cráter Chudcún (Naranjo and Lara, 2004).

Tal como se ha mencionado, el CVNCh tiene una historia donde interactúan los sistemas volcánicos y glaciares, hasta el día de hoy dichas interacciones pueden observarse en pequeña escala en el subcomplejo Las Termas (Caro Paredes, 2014) y en registros históricos con la erupción de Santa Gertrudis (Mee et al., 2006). Estas interacciones se han estudiado principalmente en relación a los flujos de lava y piroclástos que se ponen en contacto con el glaciar y provocan una disminución de su espesor, y en casos extremos, amplia destrucción del cuerpo de hielo. Otros efectos pueden ser la modificación del balance de masa glaciar debido al recubrimiento de este por tefra y ceniza de volcanes activos, además del adelgazamiento del hielo producto del calor geotermal transmitido desde el interior del lecho rocoso (Wilson and Head, 2007; Brock et al., 2007), el cual puede

Figura 2.2.2: Diagrama representando los distintos tipos de interacción lava-hielo. Se reconocen flujos de lava en contacto con el hielo desde zonas adyacentes (1), subglacial (2) y a través de diques al interior de la masa de hielo (3). Adaptado desde Wilson and Head (2007).

evidenciarse en superficie con cambios morfológicos como grietas y cuevas de hielo. Dicha relación entre volcanes activos y glaciares dependen del comportamiento eruptivo y las características del glaciar, distintos tipos de interacción del hielo con flujos de lava caliente se ilustran en la Figura 2.2.2. Algunos ejemplos de estas interacciones son los avances de lava sobre y adyacentes al hielo observadas en los glaciares del volcán Villarrica, sumados a procesos eruptivos subglaciales manifestados en la superficie del glaciar de caldera en el volcán Hudson (Rivera and Bown, 2013; Romero, 2012), similar a ejemplos de erupciones subglaciales mejor estudiados en Islandia como en el Vatnajökull (Gudmundsson et al., 1997; Jakobsson and Gudmundsson, 2008).

2.2.1. Geología Regional

El basamento del área donde se ha desarrollado el Complejo Volcánico Nevados de Chillán ha sido estudiado por autores como Gajardo et al. (1981) y Muñoz and Niemeyer (1984), donde se reconocen rocas volcánicas, volcanoclásticas, sedimentarias y plutónicas cenozoicas, sobre las cuales se ha labrado un paisaje glacial que alberga la historia del CVNCh.

Formación Cura-Mallín Miocm (Mioceno Inferior-Medio):

Definida por González and Vergara (1962), está constituida por una sucesión subhorizontal, con suave inclinación al oeste, de rocas piroclásticas, sedimentarias clásticas y coladas de lava subordinadas de composición intermedia (Muñoz and Niemeyer, 1984). Su distribución es más extendida al oeste del complejo. Subyace discordantemente a las volcanitas de la

Formación Cola de Zorro y es intruida por rocas plutónicas del Batolito Santa Gertrudis-Bullileo.

Batolito Santa Gertrudis-Bullileo Msgb (Mioceno):

Según la descripción de Muñoz and Niemeyer (1984) esta unidad incluye diversas facies rocosas que en las cercanías del CVNCh se manifiestan predominantemente como monzodioritas cuarcíferas, con filones tardimagmáticos graníticos y facies granodioríticas subordinadas. Estas rocas se intruyen en las capas de la Formación Cura-Mallín, y al norte del complejo volcánico son cubiertas mediantes discordancia erosiva por coladas de lava y capas piroclásticas de la Formación Cola de Zorro. Datos radiométricos de K-Ar ubican esta unidad entre los 17,2 y 5,8 Ma.

Formación Cola de Zorro PIPcz (Plioceno Superior-Pleistoceno):

Definida por González and Vergara (1962), se conforma por lavas y rocas piroclásticas de composición andesítica y disposición horizontal discordante sobre niveles de la Formación Cura-Mallín y el Batolito Santa Gertrudis-Bullileo. En algunos sectores pueden reconocerse centros de emisión que constituyen antiguos volcanes erodados. Según los datos radiométricos aportados por Muñoz and Niemeyer (1984), esta unidad tiene una edad Pliocena tardía-Pleistocena.

Las rocas que afloran en el área de estudio (Figura 2.2.3), cercanas al glaciar Nevado en el Subcomplejo Cerro Blanco, incluyen unidades del Complejo Ancestral y Volcanes Satélites, Depósitos Sedimentarios y Volcanoclásticos, y del Subcomplejo Cerro Blanco, definidas por Naranjo et al. (2008):

Lavas Lanalhue PII (Pleistoceno Superior):

Sucesión alternante caracterizada por una superficie planar de lavas gruesas, así como niveles y centros de emisión de escoria. Alta variación composicional, desde andesitas basálticas hasta riolitas. Cubren a las lavas de la Formación Cola de Zorro y en el sector norte, son cubiertas o cortadas lateralmente por las lavas más antiguas del Subcomplejo Cerro Blanco. Se presenta como secuencias que comprenden una gran variedad de litologías, ocasionalmente asociadas a complejos centros de emisión subglaciales (Mee et al., 2009). Incluyen coladas de lavas andesíticas de plagioclasa, olivino y escaso clinopiroxeno, de unos 5 a 8m de potencia. Algunas lavas muestran lóbulos con diaclasamiento fragmentario y texturas vítreas en sus márgenes. Asociadas a hialoclastitas, diversas formas de fracturas poligonales centimétricas y estructuras de pseudoalmohadillas, que sugieren un enfriamiento rápido por vapor o agua, probablemente en condiciones de emplazamiento subglacial (Lescinsky and Fink, 2000).

Depósitos Morrénicos indiferenciados PHm (Pleistoceno Medio-Holoceno):

Acumulaciones de detritos matriz soportados, con mala selección, principalmente constituidos por limos, arenas, bloques y bolones de material volcánico. pueden alcanzar espesores de 10 a 30 m y se acumulan alrededor de los frentes de las lenguas glaciares más antiguas. Pueden encontrarse al oeste del Subcomplejo Cerro Blanco, acumulados contra el escarpe de caldera labrado en las Lavas Lanalhue. Puede inferirse en base a sus formas que su acumulación precede la formación del volcán Blanco. En cambio, aquellas acumulaciones al SO de dicho subcomplejo, parecen más recientes y representarían las morrenas frontales del glaciar Nevado.

Lavas Orientales CBlo (Pleitoceno Superior):

Volumen principal del edificio del Subcomplejo Cerro Blanco, son lavas porfíricas andesíticas y dacíticas en bloques, con parcial erosión glacial. Sobreponen a las Lavas Lanalhue y son cubiertas en discordancia por los depósitos piroclásticos del volcán Gato y las lavas del volcán Democrático. Una datación de $23,9\pm5,4$ ka las asigna al Pleistoceno Superior tardío (Dixon et al., 1999).

Volcán Colcura Cbc (Pleistoceno Superior-Holoceno):

Lavas de bloque y aa, brechas y depósitos de avalancha de detritos, corresponden a los remanentes de une stratocono de lavas. Cubren en discordancia a las Lavas Lanalhue y subyacen los depósitos piroclásticos del volcán Gato y a las lavas de los volcanes Calfú, Pichicalfú y Blanco. Se distribuyen sobre el flanco norte, este y principalmente al SO del Subcomplejo Cerro Blanco. Basados en dos edades Ar/Ar se le asigna al Pleistoceno Superior-Holoceno (Naranjo et al., 2008).

Volcanes Gato CBg y Blanco Cbb (Holoceno):

Estructuras halladas en la parte alta del edificio del Subcomplejo Cerro Blanco. Consisten en dos estratoconos dacíticos de bajo contenido en sílice, formados por intercalaciones de lavas y abundante material piroclástico. La composición de estos volcánes les distingue del resto de volcanes del Subcomplejo Cerro Blanco. De acuerdo a crónicas del siglo XIX, es posible que un evento eruptivo menor haya ocurrido en el volcán Gato en 1861 (Brüggen, 1948).

Volcanes Calfú, Pichicalfú y Los Baños CBcpb (Holoceno):

Ubicados sobre el flanco sur del Subcomplejo Cerro Blanco, se distinguen tres volcanes menores de andesitas máficas. El volcán Calfú es un cono piroclástico y cráter de explosión, que expone una alta proporción de depósitos piroclásticos de tipo vulcaniano. Sus unidades iniciales consisten en delgadas lavas andesíticas y niveles aglutinados soldados. Se sobrepone una sucesión piroclástica de tobas grises con posible origen freatomagmático, que a su vez son cubiertas por una secuencia de escoria andesítica, coronada por una brecha de explosión hidrotermal. Hacia el sur el volcán Pichicalfú aparece como un estratocono de piroclastos y más al SE se ubica el cono Los Baños. Estos volcanes forman un grupo geoquímicamente distintivo de andesitas porfíricas, a la que se le otorga la denominación de "tipo Calfú" (Dixon et al., 1999), con una mineralogía similar a las lavas del volcán Colcura peor con composiciones más máficas.

Depósitos Piroclásticos indiferenciados Hpi (Holoceno):

La distribución de estos depósitos, principalmente de caída, ha estado controlada por los vientos predominantes de la zona, y en consecuencia se distribuyen mayoritariamente hacia el este y ESE del complejo. En general se componen de una secuencia de 4 niveles de

pómez, sobre las cuales se reconocen niveles de cenizas ricas en fragmentos líticos juveniles. Se clasifican, según su limitada dispersión, constituyentes y aspecto en terreno, como depósitos de tipo subpliniano y vulcnaiano (Dixon et al., 1999). En base a determinaciones radiométricas de ¹⁴C en materiales orgánicos intercalados, se calcula una edad entre los 9 y 5,5 ka (Naranjo et al., 2008).

Volcán Santa Gertrudis CBsg (1861-1865 d.C.):

En agosto de 1861 comienza sobre el flanco NO del Subcomplejo Cerro Blanco la erupción que da origen al volcán Santa Gertrudis. Consiste en un cono de escorias y un campo de lava andesítica porfírica de bloques. Se ubica a unos 500 m bajo la cumbre del Cerro Blanco. sus lavas fueron emitidas en su mayoría entre 1861 y 1862 y se mantiene hasta 1865 (Philippi, 1862). La emisión de lava fue acompañada por explosiones estrombolianas y generó lahares causados por la fusión de hielo y nieve. La composición de sus lavas cae en el grupo de "tipo Calfú". En un estudio de Mee et al. (2006) se presentan evidencias de emplazamiento subglacial en las lavas de este volcán, consistente con las crónicas que relatan la formación de un lahar emplazado hacia el río Ñuble (Philippi, 1862).

Figura 2.2.3: Fragmento de la Carta Geológica del complejo volcánico Nevados de Chillán, resaltando el área de estudio para indicar las unidades geológicas que contiene. Modificado de (Naranjo et al., 2008).

2.2.2. Geomorfología

Durante la construcción del Complejo Volcánico Nevados de Chillán han tomado lugar varios ciclos glaciares que han jugado un importante rol en la definición del relieve que vemos hoy en día. Se sugiere que en el último máximo glaciar un extenso casquete de hielo cubría las cimas del complejo volcánico, con algunas porciones topográficas emergiendo como nunataks. Desde entonces el hielo ha labrado el paisaje volcánico con su retroceso, dejando una serie de relieves geomorfológicos entre los que destacan grandes y extensas morrenas, abundantes rocas pulidas y/o estriadas, y extensos campos de depósitos glaciofluviales.

Debido a la naturaleza dinámica de los glaciares, donde la transferencia de masa desde los alcances superiores al termino del hielo genera que este fluya de manera continua (balance de masa glaciar), el paisaje donde se emplazan esta siendo constantemente modificado por la acción de sus procesos. De esta forma, se reconocen una multitud de relieves formados tanto por la erosión generada al fluir el hielo sobre la roca, como por la deposición de material detrítico que es incorporado y transportado por el hielo y los conductos hidrológicos dentro de este (Figura 2.2.4).

2.2.2.1. Relieves glaciales erosivos

Los glaciares y mantos de hielo son agentes erosivos muy eficientes. Los efectos son bastante notorios en los terrenos montañosos, donde el hielo transporta material arrancado del lecho rocoso hacia regiones más bajas, dejando profundos valles (Figura 2.2.4). Los relieves formados por la erosión glaciar abarcan un extenso rango de envergaduras, definiendo rasgos que van desde los pocos milímetros hasta miles de kilómetros. Así, los tipos de relieve que pueden generarse son varios, y pueden ser agrupados según su proceso formativo dominante: abrasión, una combinación entre abrasión y arranque o fracturamiento, trituración o molienda de rocas, y erosión por hielo glaciar y resquebrajamiento de escarcha, además, se definen relieves residuales, representados por las ruinas de una masa de roca elevada luego de pasar por los procesos mencionados anteriormente (Hambrey, 1994; Huggett and Shuttleworth, 2022). En general, el tipo de rasgo erosivo formado por un flujo de hielo estará controlado principalmente por cuatro factores: (1) velocidad de movimiento del glaciar; (2) espesor del hielo; (3) forma, abundancia y dureza de los fragmentos de roca contenidos por el hielo en la base del glaciar,

Figura 2.2.4: Evolución de algunos relieves glaciares alpinos. a) Un paisaje previo a una edad de hielo. b) El mismo paisaje durante una edad de hielo y c) posterior a una edad de hielo. Adaptado de Trenhaile (1998) en Huggett and Shuttleworth (2022).

y (4) la erosionabilidad de la superficie por donde fluye el glaciar (Tarbuck and Lutgens, 2005).

La abrasión glaciar, resultado del arrastre del hielo y su carga de fragmentos rocosos sobre el lecho, produce un amplio rango de estructuras alineadas en dirección del flujo de hielo, las que al ser cartografiadas permiten la reconstrucción del paleo-flujo glaciar. Al deslizarse sobre obstáculos, el hielo tiende a desgastar el barlovento de la roca y suavizarla, el sotavento de esta es sujeto por su parte a fracturamiento rocoso. Por otra parte, no toda la acción abrasiva genera estos rasgos alineados al flujo, en el caso que el hielo cargue con partículas más finas puede llegar a pulir las superficies rocosas. Entre estos relieves de incluyen los mismos valles glaciares, domos y rocas estriadas (Apéndice A1.5). Luego, debido a la combinación entre la abrasión y el fracturamiento de rocas se forma una serie de relieves que van desde 1 m hasta los 10 km en tamaño, destacándose los circos y peldaños de valle (Apéndice A1.5). Producto de la trituración de rocas se generan rasgos de pequeña escala, con forma creciente, que ocurren en superficies rocosas estriadas y pulidas, y se forman por la acción de detritos adosados a la base del glaciar. Estos rasgos vienen en una variedad de formas, incluyendo fracturas menguantes (concavidad hacia el flujo de hielo), ranuras crecientes (concavidad contra el flujo de hielo), y marcas de vibración.

Finalmente, los rasgos residuales representan las porciones rocosas esculpidas por la abrasión, fracturamiento de hielo y escarcha, y movimientos de masas. Estos relieves tienden a mantenerse mucho tiempo después de que el hielo se ha derretido. Estos incluyen: (1) aretes, bordes afilados y serrados formados por dos circos adyacentes; (2) cuernos, puntiaguda cima formada donde tres o más circos se unen; (3) cols, portezuelos entre aretes y/o cuernos; y (4) nunataks, afloramientos de roca que van desde menos de un km hasta cientos de km y se rodean completamente de hielo, estos incluyen partes de montañas donde no se ha formado hielo, o cadenas montañosas completas (como las Montañas Transantarticas) que han escapado la formación de hielo en todas partes menos sus flancos.

2.2.2.2. Relieves glaciares deposicionales

Como se exploró en la Sección 2.1.3, un glaciar tiene la capacidad de incorporar y transportar gran cantidad de material detrítico, para finalmente depositarlo y formar una amplia gama de relieves (Figura 2.2.5). Generalmente estos relieves se agrupan en primer lugar de acuerdo a su posición en relación con el hielo (supraglacial, subglacial, y marginales) y luego en relación a su orientación respecto a la dirección del flujo de hielo (paralela, transversa, y no-orientada) (Huggett and Shuttleworth, 2022).

Figura 2.2.5: Modelo de sistema terrestre para glaciares de valle con incorporación de detritos relativamente baja. 1= Detrito incorporado supraglaciarmente; 2= Linea de corte periglacial sobre lecho erodado por hielo. 3= Morrena medial; 4= Superficie de till aflautada; 5= Retrabajo paraglacial de depósitos glacigénicos; 6 y 7= Morrenas laterales, mostrando asimetría dentro del valle. Obtenido de Benn and Evans (2014)

Los detritos que se acumulan en la superficie glaciar permanecen solo lo que el glaciar lo hace, pero producen notorios rasgos denominados **supraglaciales**. En las laderas del hielo se producen morrenas laterales, mientras que en lugares donde dos flujos de hielo coalescen o existe un nunatak separando un cuerpo de hielo se forman morrenas mediales, ambas se generan paralelas al glaciar y las primeras presentan un mayor potencial de preservación. Otro tipo de morrenas denominadas cabalgantes se producen por la compresión longitudinal que fuerza detritos en la superficie a extenderse transversalmente a la superficie glaciar. Sin estar particularmente orientadas respecto al movimiento del hielo, pueden depositarse

conos de detritos, bloques erráticos, y rellenos de grietas. Con el retroceso del hielo aparecen las llamadas morrenas hummocky o de desintegración, constituidas por ensamblajes aparentemente aleatorios de hummocks y crestas de till y otros sedimentos pobremente seleccionados, se atribuyen generalmente a deposición supraglacial, aunque algunas de sus relieves sugieren orígenes subglaciales.

A partir de los procesos ocurridos bajo la base de un glaciar (deformación, flujo, deslizamiento, alojamiento, y roturación) se forma multitud de relieves subglaciales. Es conveniente clasificarlas de acuerdo a su orientación con la dirección del flujo de hielo, sea paralela, transversa, y no-orientada. Los rasgos que se disponen paralelos al flujo son crestas de variable tamaño, tales como drumlins y flautas, siendo los primeros, elongadas colinas con una forma ovalada o de cigarro, los más característicos productos de deposición glacial. Luego, entre los rasgos transversales al flujo de hielo encontramos las morrenas De Geer, una serie de crestas pequeñas y casi paralelas de till asociadas con lagos, y las morrenas Rogen, de forma creciente y formadas por el empuje subglacial. Finalmente, varios tipos de morrena terrestre no muestran particular orientación respecto al flujo de hielo, estas se constituyen de una sábana de sedimento glacial mezclado, mayormente tills y otras diamictitas, y típicamente tienen un bajo relieve. Gran parte de estos relieves se componen de till subglacial, formados por un rango de procesos activos en la zona de tracción subglacial, Evans et al. (2006) distingue tres tipos distintivos de till: 1) glaciotectonita, rocas o sedimento deformado por cizalle que retiene algo de sus características estructurales; 2) till de tracción subglacial, sedimentos liberados directamente desde el hielo por derretimiento por presión o desde el sustrato y luego desintegrado y homogeneizado por cizallamiento; y 3) till de derretimiento, sedimentos liberados por el derretimiento de hielo glaciar rico en detritos estancado o de lento movimiento y depositado directamente.

Finalmente, los relieves producidos en el margen del hielo, o **marginales al hielo**, incluyen diferentes tipos de morrenas de límite, formadas alrededor del morro glaciar. Destacan entre estas las morrenas terminales, de forma arqueada y formadas alrededor del lóbulo de un glaciar en su punto más alejado, las morrenas recessionales, que marcan un tiempo de pausa temporal al retroceso glaciar y no tocan actualmente al glaciar, las morrenas de empuje, formadas por los sedimentos siendo apretados por el morro glaciar, particularmente en glaciares fríos. Otros relieves marginales que no poseen orientación preferencial respecto al flujo de hielo incluyen morrenas hummocky y otras formas asociadas a movimientos de masa, como caída de roca o flujo de detritos.

2.2.2.3. Relieves glaciofluviales

Si bien el flujo de hielo glaciar es el mayor agente erosivo en ambientes glaciares, el transporte y deposición de estos sedimentos arrancados del lecho rocoso es llevado a cabo por el escurrimiento de agua de derretimiento, la que genera complejos canales subglaciales que llevan estos sedimentos. Luego de dejar el glaciar, el agua de derretimiento cargada por detritos puede erosionar sedimentos, como también depositar dichos detritos para formar relieves deposicionales marginales al hielo y proglaciares (Huggett and Shuttleworth, 2022).

El agua de derretimiento en un glaciar que desciende a la base de este por medio de grietas y otros conductos puede formar redes de drenaje, e incluso lagos en casquetes lo suficientemente grandes, que pueden generar relieves **subglaciales** en su paso hacia el terminus del glaciar. En primer lugar, dichos drenajes pueden erosionar el sedimento blando bajo el hielo formando extensos canales (Figura 2.2.6a), algunos de los cuales pueden incluso labrarse colina arriba gracias a la presión ejercida por el hielo. En caso que el agua de derretimiento cargue con gran cantidad de sedimentos, estos pueden resultar depositándose bajo el glaciar y formando eskers (Figura 2.2.6b), largas y serpenteantes crestas formadas mayormente de arena y grava.

Luego, el agua de derretimiento que fluye en contacto o cercana al hielo genera relieves **marginales al hielo**. Este flujo puede erosionar las laderas a lo largo del margen del glaciar, formando canales de agua de derretimiento y de sobreflujo en contacto con el hielo o entre morrenas laterales y la ladera del valle. El principal relieve deposicional asociado con los margenes del hielo es conocido como kame y puede ser de varios tipos (Figura 2.2.6b), estos se encuentran generalmente con eskers y corresponden a relieves de techo plano que ocurren como hummocks, amplias áreas de plateau, o como terrazas rotas. Los kames no poseen individualmente una orientación preferencial respecto al flujo de hielo, aunque es posible encontrar terrazas de kame que se desarrollan paralelas al flujo desde los caudales que fluyen a lo largo de un margen que retrocede lentamente, también, cuando el agua de derretimiento se libera desde un morro o flanco glaciar hacia un lago o mar, pueden formarse montículos de techo plano y con forma de

Figura 2.2.6: Relieves subglaciales y marginales al hielo. a) Un paisaje en la etapa final de deglaciación. b) Un paisaje pasada la deglaciación. Adaptado de Flint (1971) en Huggett and Shuttleworth (2022).

abanico conocidos como kame delta o morrenas deltaicas.

Finalmente, frente a un glaciar el agua de derretimiento tenderá a formar redes de drenaje extensas que eventualmente forman ríos, en este contexto se generan relieves **proglaciares**. Estos caudales en general fluyen de manera rápida y están cargados de sedimento, los que se depositan frente al glaciar creando sistemas trenzados y lagos en algunas ocasiones, estos sistemas de ríos trenzados son conocidos como planicies de inundación o sandares (sandur en singular), las que pueden alcanzar anchos tan grandes como su largo, y en sistemas montañosos ocupar todo el ancho del valle, donde se les conoce como trenes de valle. En los meses de verano la mayor cantidad de agua descargada desde el glaciar por derretimiento puede generar inundaciones en este sistema, en los casos que un gran lago se halla formado, dichas inundaciones pueden llegar a ser catastróficas y de gran magnitud, estas son conocidas como jökulhlaups, un ejemplo histórico de eventos de este tipo es el de Skaidarásandur en Islandia, donde el rápido derretimiento de 3.8km^3 de hielo luego de una erupción volcánica en el 30 de Septiembre de 1996 bajo el casquete de hielo Vatnajökull generó una inundación con una descarga de cerca de $20.000m^3/s$ de agua, capaz de transportar bloques de hielo de hasta 25m (Gudmundsson et al., 1997; Van Loon, 2004). En algunos casos, cuando con el retroceso glaciar o una inundación deja un bloque de hielo muerto, este decae y es enterrado, luego de que este hielo se derrita queda un agujero o pozo en el sistema trenzado conocido como kettle, agujero kettle, o pozo de hielo (Figura 2.2.6).

Capítulo 3

Metodología

La metodología empleada se compone a grandes rasgos de dos partes fundamentales, enfocadas sobre todo en el uso de sensores remotos y observaciones hechas en terreno (Figura 3.0.1): en primer lugar la caracterización glaciológica, donde se mapean las estructuras y morfologías superficiales del glaciar, y se analiza su variación durante las últimas décadas, luego, se describe el contexto geomorfológico, considerando el cuerpo glaciar como parte de este, y estableciendo su influencia en los cambios recientes del paisaje.

Para todo el mapeo y digitalización se hizo uso del software libre QGIS 3.16 con los siguientes plugins instalados:

- autoSaver plugin, para guardado automático del progreso.
- Digitilizing Tools plugins, para opciones adicionales de digitalización.
- GdalTools y SAGA plugin, para extracción de datos de elevación.
- Georeferencer GDAL plugin, para la georeferenciación de imágenes aéreas y satelitales.
- Multipart Split plugin, para el mejor manejo de múltiples formas en la misma capa.
- QGIS2threejs, para la creación de modelos 3d.

Los mapas fueron diseñados usando QGIS. Luego estos mapas y otras gráficas fueron retocadas usando Adobe Illustrator 2020.

Figura 3.0.1: Estrategia metodológica empleada en este trabajo.

3.1. Análisis de variación glaciar

En primer lugar se hace una revisión de los escritos de Domeyko (1850); Philippi (1862) y Pissis (1875), quienes describen visualmente la forma y extensión de los glaciares encontrados en los Nevados de Chillán.

Luego, mediante uso de sensores remotos, dada la acotada envergadura del cuerpo glaciar, se identifica manualmente su extensión, siguiendo la definición de glaciar simplificada de la GLIMS: "masa de hielo que presenta un patrón de flujo activo" (Rau et al., 2005). Para la delimitación de los límites glaciares se utilizan distintos métodos haciendo uso de imágenes satelitales provenientes de distintos sensores, datadas al final de la temporada de ablación para minimizar la cobertura nival (Febrero-Marzo) y con menos de un 10 % de nubosidad sobre el glaciar, entre los años 1987 y 2022 (Tabla 3.1.1).

Sensor	Fecha (dd-mm-aaaa)	Resolución (m)	Fuente
Landsat 4 MSS y TM	17-03-1989	30; 60	USGS
Landsat 7 $ETM+$	19-03-2001	15; 30; 60	USGS
Landsat 7 $ETM+$	17-02-2002	15; 30; 60	USGS
Landsat 7 $ETM+$	09-04-2003	15; 30; 60	USGS
Landsat 7 $\rm ETM+$	23-02-2004	15; 30; 60	USGS
Landsat 7 $\rm ETM+$	19-03-2007	15; 30; 60	USGS
Landsat 7 $\rm ETM+$	27-03-2010	15; 30; 60	USGS
Landsat 7 $\rm ETM+$	17-04-2012	15; 30; 60	USGS
Landsat 8 OLI TIRS	26-02-2014	15; 30	USGS
Landsat 8 OLI TIRS	28-04-2013	15; 30	USGS
Landsat 8 OLI TIRS	02-04-2015	15; 30	USGS
Sentinel-2A	08-03-2016	10; 20; 60	USGS
Sentinel 2A	20-03-2017	10; 20; 60	USGS
Sentinel 2B	28-02-2018	10; 20; 60	USGS
Sentinel 2A	20-03-2019	10; 20; 60	USGS
Sentinel 2A	14-03-2020	10; 20; 60	USGS
Sentinel 2A	29-03-2021	10; 20; 60	USGS
Sentinel 2A	14-03-2022	10; 20; 60	USGS
SPOT 1	03-03-1987	21	CNES
SPOT 2	28-03-1993	13	CNES
SPOT 3	25-02-1996	13	CNES
SPOT 4	03-03-2001	15	CNES
SPOT 4	27-03-2002	12	CNES
SPOT 4	13-03-2010	26	CNES
SPOT 5	04-04-2003	5.5	CNES
SPOT 5	10-02-2004	5.5	CNES
SPOT 5	04-03-2007	12.5	CNES
SPOT 5	21-02-2012	12.5	CNES
ALOS PALSAR	01-03-2007	12.5	NASA
ALOS PALSAR	12-03-2011	12.5	NASA
Google Earth	03-03-2013	0.65	Google
Google Earth	29-03-2016	0.65	Google
ArcGis World Imagery	13-10-2021	0.30; 0.60; 15	ESRI
ArcGis World Imagery	31-08-2022	0.30; 0.60; 15	ESRI
Mavic Pro 2	06-04-2022	0.05	MGSG

Tabla 3.1.1: Productos satelitales utilizados para la obtención de parámetros glaciares y para el mapeo glaciológico y geomorfológico. La mayoría corresponde a imágenes satelitales multiespectrales, productos DEM (*Digital Elevation Map*) se destacan en negrita y escena UAV (*unmanned aerial vehicle*) en cursiva. USGS = U.S. Geological Survey; CNES = Centre National D'Etudes Spatiales; NASA = National Aeronautics and Space Administration; ESRI = Environmental Systems Research Institute; MGSG = Mountain GeoScience Group.

Primero se utilizan los métodos propuestos por Paul (2000), el de Band Ratios y la combinación de bandas multiespectrales (Figura 3.1.1). El método Band Ratio consiste en la división de dos bandas utilizando la calculadora raster del software QGIS 3.16. Se utilizan distintas bandas para cada sensor dadas sus diferentes amplitudes, estas son:

Para Landsat ETM+ y TM: TM3/TM5 y TM4/TM5 (Paul, 2000).

Para Sentinel-2: MSI4/MSI11 y MSI8/MSI11 (Paul et al., 2016).

Figura 3.1.1: Muestras de imágenes satelitales (Sentinel 2 año 2022) procesadas para su análisis. De izquierda a derecha: combinación de bandas 11, 8A y 4; Indice Diferencial Normalizado de Nieve; Band Ratio 8/11; Band Ratio 4/11.

Para los Band Ratios obtenidos de imágenes Sentinel-2, Paul et al. (2016) establecen valores de número dígital (DN) que un píxel debe tener para ser considerado como facie glaciar, estos son: $0 \leq MSI4/MSI11 \leq 2 \ge 0 \leq MSI8/MSI11 \leq 1$. Además se utiliza el NDSI, o Índice Diferencial Normalizado de Nieve, obtenido mediante el calculo de bandas: [Verde-SWIR]/[Verde+SWIR]. Aplicado tanto para imágenes Landsat 7 y 8 como para Sentinel-2 (Paul et al., 2016). Se prosigue revisando los límites obtenidos mediante interpretación visual, utilizando la combinación falso color de imágenes MSS, siendo para Landsat ETM+ y TM las bandas 5, 4 y 3, mientras que para Sentinel-2 las bandas 11, 8A y 4 (Paul et al., 2016).

Para mapear las secciones del glaciar cubiertas de detrito volcánico se consideran los criterios adoptados por Lardeux et al. (2016) donde definen la cubierta detrítica como sectores donde apenas es visible hielo limpio, con sus límites precisos definidos en base a observaciones en terreno y por sensores remotos de relieves que evidencien flujo, en adición a otras señales tales como el color, textura, y posición de la salida del agua (Paul et al., 2013). Esta cubierta detrítica debe ser persistente, eso es, aparecer en imágenes separadas por al menos un año. Otros parámetros útiles a la hora de distinguir una zona de glaciar cubierto pueden obtenerse de un modelo digital de elevación, véase mapa de sombras, rugosidad, curvatura de perfil, entre otros, sin embargo dadas la poca disponibilidad de fechas con productos de alta resolución se decide no considerarlos pertinentes.

Se calcula el error del área glaciar (Ea) asociado a la delimitación manual de esta utilizando la siguiente ecuación:

$$Ea = P \times Ep \tag{3.1.1}$$

Donde P es el perímetro del glaciar y Ep es 1/4 de la dimensión del píxel.

Se deriva entonces la extensión glaciar para cada año utilizando la calculadora de campos de QGIS 3.16 y se establecen las tasas de cambio glaciar para el periodo 1989-2022. La longitud glaciar se mide en base a una linea central de flujo trazada para la imagen más antigua analizada (1989), la que se recorta para los límites glaciares de años subsecuentes. Se obtienen además las alturas mínima, máxima y media utilizando la herramienta de estadística zonal de QGIS 3.16 con información topográfica de un DEM ALOS PALSAR.

Lugo, se eligen cuatro imágenes para realizar un análisis hipsométrico y morfológico del glaciar, junto a la dinámica de su zona de ablación en relación a la acumulación detrítica y cobertura eventual del frente glaciar. Estas imágenes son las que poseen mejor calidad visual (e.g. sin errores en la toma de datos del satélite o importantes deformaciones), menor cantidad de nieve en la escena y que muestran cambios significativos en la morfología del glaciar. Se extraen entonces las curvas hipsométricas para cada año utilizando la extensión glaciar y un DEM ALOS PALSAR del 2011 (fecha intermedia entre las seleccionadas). Estas se representan en porcentaje de área versus altitud absoluta y normalizada para caracterizar el retroceso y la evolución morfológica respectivamente. Se obtiene además el índice hipsométrico (HI), definido por Jiskoot et al. (2009), para describir el cambio morfológico del glaciar:

$$HI = \frac{(H_{max} - H_{med})}{(H_{med} - H_{min})}$$
(3.1.2)

donde H_{max} y H_{min} son las elevaciones glaciares máxima y mínima, y H_{med} la elevación media. Considerando que si 0<HI<1, entonces HI = -1/HI, este índice se traduce como: very top heavy (<-1.5), top heavy (-1.5<HI<-1.2), equidimensional (-1.2<HI<1.2), bottom heavy (1.2<HI<1.5), y very bottom heavy (>1.5).

Finalmente, para analizar la dinámica de la zona de ablación y el estado evolutivo de la cubierta detrítica, se estima en primer lugar la Línea de Equilibrio Altitudinal (ELA) como la mediana de las alturas del área glaciar para cada fecha, con esto se puede definir el área de ablación y extraer los valores necesarios para el calculo de métricas comúnmente usadas en literatura glaciológica: el porcentaje cubierto de detritos, y la razón del área de la zona de acumulación (AAR) (Meier, 1962), además de cuatro nuevas métricas propuestas por Herreid and Pellicciotti (2020) para mostrar la progresión conceptual de la cubierta detrítica: etapa, definida como el porcentaje de cubierta detrítica en el área de ablación; potencial de expansión detrítica y de expansión futura, que describen la capacidad de expansión de la cubierta detrítica respecto a su límite con el hielo limpio; y abundancia morrénica, idéntica a la etapa excepto en que esta expresada en términos de perímetro en vez de área y por tanto es proporcional a la complejidad de la estructura de morrenas (Figura 3.1.2).

3.2. Morfología y estructuras superficiales

Ya definida la variación del área superficial del glaciar en el tiempo, el siguiente paso es caracterizar a mayor detalle los cambios morfológicos sufridos por la masa de hielo en su retroceso. Para esto se hace uso de imágenes satelitales de alta resolución tomadas entre los años 1987 y 2022, obtenidas por los sensores SPOT y Sentinel-2, y aún mayor resolución de Google Earth y ESRI World Imagery, y fotografías y ortofotografías dron obtenidas en las campañas de Enero, Febrero

Figura 3.1.2: Definición de métricas y sus cantidades constituyentes en un glaciar ejemplificadas en el glaciar Kangjiaruo, Sudeste Asiático, utilizadas para mostrar una progresión conceptual de la evolución de la cubierta detrítica. Adaptado de Herreid and Pellicciotti (2020).

y Abril de 2022. Utilizando estas imágenes se describen la evolución del glaciar, siguiendo la metodología de Aniya (1985) y Davies et al. (2022), en relación a su área de drenaje y condiciones superficiales, véase cubierta detrítica, caída de rocas, acantilados de hielo, entre otros. Además, haciendo uso de estas mismas imágenes se identifican otros rasgos superficiales del hielo como grietas, trazas de grietas y fallas, siguiendo los criterios de identificación descritos en Goodsell et al. (2005a). Las características que permiten la identificación de estos rasgos superficiales en el glaciar se resumen en la Tabla 3.2.1, teniendo en cuenta las diferencias sustanciales de los glaciares en cuanto a tamaño, topografía y contexto geológico del área donde se emplazan, estos criterios se han adaptado para usarse en el área de estudio. Cabe recalcar, que las imágenes SPOT debieron ser geo-referenciadas manualmente con el método spline antes de ser utilizadas, lo que conlleva cierta deformación de las escenas. Para trazar los límites glaciares de estas imágenes se utilizó como referencia los trazados obtenidos en el análisis de imágenes Landsat y, para visualizar sin deformación algunas estructuras, las imágenes originales sin geo-referenciar fueron visualizadas en SAGA GIS para facilitar su interpretación.

Mapeadas estas estructuras, utilizando las imágenes de más alta resolución, cada forma se representa como mapa de calor (o Estimación de Densidad de Núcleo) en QGIS para visualizar la concentración de grietas en la superficie del hielo, además, se deriva la altura de las grietas calculando la altura del centroide con un DEM (Figura 3.2.1) para analizar su concentración altitudinal con curvas de acumulación. Luego, para analizar las orientaciones de grietas y trazas de grietas identificadas, se mide el rumbo de la recta trazada desde el punto inicial al final de cada grieta, como se ilustra en la Figura 3.2.1, utilizando la calculadora de campos de QGIS 3.16.

Figura 3.2.1: Ilustración que visualiza la medición de la orientación (θ) у altura (h) de grietas trazas de grieta, у calculando el rumbo la recta trazada de por los puntos inicial y final de una grieta, y la altura del centroide, respectivamente. El fondo gris representa la ladera rocosa y la flecha celeste el flujo del hielo.

Ya obtenidas las orientaciones, estas se visualizan en diagramas de rosas obtenidos mediante el programa Stereonet 11, desarrollado por Rick Allmendinger, agrupadas en tres rangos altitudinales definidos en base al tipo de estructura observada, con el fin de determinar patrones de orientación de grietas con respecto a su altura en el cuerpo glaciar. El rumbo de los planos se grafica como ejes para una mejor visualización en relación al flujo glaciar (Figura 3.2.2).

Figura 3.2.2: Ejemplo de la visualización de rumbos de grietas glaciares en diagramas de rosa con el programa Stereonet 11.

Exposición de rocaLecho rocosoSe observa como parches emergiendo desde el glacia.CapasdetríticasPuljo de detritosParches café oscuro a negro como en el centro.CapasdetríticasParches café oscuro a negro glaciar, emergiendo desde la gran envergadura.CapasdetríticasCubierta detríticaParches gris oscuro de text la superficie glaciar.ApilamientoEstratificación primariaNo observada en imágenes sistematicoApilamientoEstratificación primariaNo observada en imágenes de otras rotadas en una dir pueden estar "espara estructuras de otras rotadas en una dir pueden estar "esparcidas" fuino separa estructuras de ritansDiscontinuidadLínnite de unidad de de otras rotadas en una dir previamente formadas.DiscontinuidadLínnite de unidad de de otras rotadas en una dir previamente formadas.EstructurasTrazas de grietaFanto como lineas rectas oscuras, pue como lineas oscuras deform previamente formadas.Estructura de bandasOgivasEstructura de bandasAristicasOgivasEstructura de bandas	Se observa como parches totalmente negros de roca Ra emergiendo desde el glaciar tanto cerca de sus bordes to como en el centro. Parches café oscuro a negro discontinuos en la superficie E5 glaciar, emergiendo desde laderas del valle y grietas de va gran envergadura. Parches gris oscuro de textura suave y continuos sobre E5 la superficie glaciar. No observada en imágenes satelitales. Do No observada en imágenes satelitales. Do de otras rotadas en una dirección distinta. Estructuras pueden estar "esparcidas" a lo largo de la unión.	toca sólida rugosa asomandose entre el hielo sobre odo en zonas de alto agrietamiento y pendiente, de stas se desprende gran cantidad de detritos. Extensión de hielo cubierta con detrito de tamaño ariable, apilandose en sectores de menor pendiente. Extensión de hielo cubierta con capas detriticas gruesas le material proveniente de caída de rocas y transporte inglaciar. Delgadas capas oscuras entre gruesas capas claras de im a menudo encontradas paralelas a linea de nieve ecediendo a finales del verano. Sección transversal observada a veces en grietas de alcances superiores del
CapasdetríticasFlujo de detritosParches café oscuro a negro continuascontinuascontinuasParches café oscuro a negro glaciar, emergiendo desde l gran envergadura.CapasdetríticasCubierta detríticaParches gris oscuro de text la superficie glaciar.ApilamientoEstratificación primariaNo observada en imágenes sistematicoApilamientoEstratificación primariaNo observada en imágenes la superficie glaciar.ApilamientoEstratificación primariaNo observada en imágenes la superficie glaciar.ApilamientoEstratificación primariaNo observada en imágenes la superficie glaciar.ApilamientoEstructuralIninea linon separa estructuras de otras rotadas en una dir pueden estar "esparidas" corta otros rasgos.EstructurasTrazas de grietaEncontrada primero en ar ineas rectas oscuras, pue conta dros rasgos.Estructura de bandasOgivasEstructura arqueada con localizad bajo caída de hiAutoritata y oscurasOgivasEstructura arqueada con	Parches café oscuro a negro discontinuos en la superficie E3 glaciar, emergiendo desde laderas del valle y grietas de va gran envergadura. Parches gris oscuro de textura suave y continuos sobre E5 la superficie glaciar. No observada en imágenes satelitales. Do de ob Unión separa estructuras rotadas en una orientación de otras rotadas en una dirección distinta. Estructuras pueden estar "esparcidas" a lo largo de la unión.	Extensión de hielo cubierta con detrito de tamaño ariable, apilandose en sectores de menor pendiente. Extensión de hielo cubierta con capas detriticas gruesas le material proveniente de caída de rocas y transporte inglaciar. Delgadas capas oscuras entre gruesas capas claras de irn a menudo encontradas paralelas a linea de nieve ecediendo a finales del verano. Sección transversal bervada a veces en grietas de alcances superiores del
CapasdetriticasCubierta detríticaParches gris oscuro de text la superficie glaciar.ApilamientoEstratificación primariaNo observada en imágenes sistematicoApilamientoEstratificación primariaNo observada en imágenes a superficie glaciar.DiscontinuidadLímite de unidad de flujoUnión separa estructuras de otras rotadas en uma dir pueden estar "esparcidas" estructurasDiscontinuidadLímite de unidad de flujoUnión separa estructuras de otras rotadas en uma dir pueden estar "esparcidas" estructurasBistructuralTrazas de grietaTanto como lineas rectas oscuras, pue corta otros rasgos.EstructuraTrazas de grietaEncontrada primero en ar lineas rectas oscuras, pue como lineas oscuras deform previamente formadas.Estructura de bandasOgivasEstructura arqueada con localizad bajo caída de hi	Parches gris oscuro de textura suave y continuos sobre Ey la superficie glaciar. No observada en imágenes satelitales. Dr fir fir fir de observada estructuras rotadas en una orientación de otras rotadas en una dirección distinta. Estructuras pueden estar "esparcidas" a lo largo de la unión.	Xitensión de hielo cubierta con capas detriticas gruesas le material proveniente de caída de rocas y transporte nglaciar. Delgadas capas oscuras entre gruesas capas claras de irn a menudo encontradas paralelas a linea de nieve ecediendo a finales del verano. Sección transversal observada a veces en grietas de alcances superiores del
ApilamientoEstratificación primariaNo observada en imágenessistematicoEstratificación primariaNo observada en imágenesDiscontinuidadLímite de unidad de flujoUnión separa estructuras i de otras rotadas en uma dir pueden estar "esparcidas"DiscontinuidadLímite de unidad de estructuralUnión separa estructuras i de otras rotadas en uma dir pueden estar "esparcidas"GrietasGrietasTanto como lineas rectas bineas rectas oscuras (rellen corta otros rasgos.EstructurasTrazas de grietaEncontrada primero en ar lineas rectas oscuras, pue como lineas oscuras deform previamente formadas.Estructura de bandasOgivasEstructura arqueada con localizada bajo caída de hi	No observada en imágenes satelitales. Do fir fir re- ob Unión separa estructuras rotadas en una orientación de otras rotadas en una dirección distinta. Estructuras pueden estar "esparcidas" a lo largo de la unión. la	Delgadas capas oscuras entre gruesas capas claras de irn a menudo encontradas paralelas a linea de nieve ecediendo a finales del verano. Sección transversal bervada a veces en grietas de alcances superiores del
DiscontinuidadLímite de unidad de de otras rotadas en una dir pueden estar "esparcidas" a de otras rotadas en una dir pueden estar "esparcidas" a GrietasLímite de unidad de de otras rotadas en una dir pueden estar "esparcidas" a funeas rectas b lineas rectas oscuras (rellen corta otros rasgos.GrietasGrietasTanto como lineas rectas b lineas rectas oscuras (rellen corta otros rasgos.EstructurasTrazas de grietaEncontrada primero en ar lineas rectas oscuras deform previamente formadas.Estructura de bandasOgivasEstructura arqueada con localizada bajo caída de hi	Unión separa estructuras rotadas en una orientación Di de otras rotadas en una dirección distinta. Estructuras po pueden estar "esparcidas" a lo largo de la unión. la	laciar.
Grietas Grietas Tanto como lineas rectas lineas rectas oscuras (rellen Estructuras Trazas de grieta lineas rectas oscuras, rellen Estructuras Trazas de grieta Encontrada primero en ar transversas/arqueadas Encontrada primero en ar ineas rectas oscuras, pue transversas/arqueadas Encontrada primero en ar ineas rectas oscuras, pue transversas/arqueadas Trazas de grieta Encontrada primero en ar transversas/arqueadas Trazas de grieta Ineas oscuras deform transversas/arqueadas Ogivas Estructura arqueada con claras y oscuras Iocalizada bajo caída de hi Iocalizada bajo caída de hi		Difícil de identificar de cerca, pero puede ser reconocida or estructuras orientadas a angulos distintos en cada ado de un area de intensa foliación.
EstructurasTrazas de grietaEncontrada primero en ar lineas rectas oscuras, pue como lineas oscuras deform previamente formadas.Estructura de bandasOgivasEstructura arqueada con localizada bajo caída de hi	Tanto como Imeas rectas blancas (rellena de meve) o Uj lineas rectas oscuras (rellena de agua o sin relleno), que corta otros rasgos.	Jna ruptura con apertura visible.
Estructura de bandas Ogivas Estructura arqueada con claras y oscuras incluitada bajo caída de hi	Encontrada primero en areas de agrietamiento como Rulineas rectas oscuras, pueden seguirse glaciar abajo <2 como lineas oscuras deformadas, cortando estructuras de previamente formadas.	Aasgos lineares o arqueados, usualmente de ancho 20cm, que pueden seguirse lateralmente por decenas le metros, cortando otras estructuras.
	Estructura arqueada con bandas claras y oscuras, Di localizada bajo caída de hielo.	Difícil de observar en terreno.
Agrietamento caouco y Acamutado de meio - zonas de denso agreciamen denso - clara, muchas veces con va	Zonas de denso agrietamiento sin una dirección de flujo Se clara, muchas veces con varias grietas mergiendo. ro	bectores de muy alta pendiente con alto agrietamiento, ercanos a los bordes del glaciar o exposición de lecho ocos.
Estructuras planares Fallas Desplazamiento de estruct cercanas a márgenes y o crestas cubiertas de detr terminus recto.	Desplazamiento de estructuras previamente formadas Es o crestas cubiertas de detritos a lo largo de un plano gr recto.	3scalón en la superficie glaciar, paralelo a trazas de rietas cercanas al terminus del glaciar. Desplazamiento le crestas cubiertas de detritos.
Estructura longitudinal Foliación longitudinal No observada en imágenes de alta pendiente	No observada en imágenes satelitales. C: y pa	Capas alternantes discontinuas de hielo blanco rico · libre de burbujas con hielo azul, paralelas o sub- aralelas al movimiento superficial del hielo.

no-genéticos e interpretacionales son indicados. Adaptado a partir de Goodsell et al. (2005a) y Davies et al. (2022). Tat

3.3. Mapeo geomorfológico

Adicionalmente, se realiza un mapeo geomofológico temático enfocado en los relieves deposicionales y erosivos recientes del glaciar Nevado, así como en la provenencia de los detritos que cada año aumentan sobre la superficie del hielo. El alcance de dicho mapeo es más bien somero pues no incluye la obtención de información de detalle como sedimentología o geocronología de los relieves, aunque la identificación de estos por medio de sensores remotos ayudaría a estudios más específicos. Nuevamente, criterios utilizados en la identificación de relieves en otros estudios son adaptados para utilizarse en el área (Tabla 3.3.1).

Dada la poca envergadura del glaciar Nevado se prefirió utilizar solamente las escenas de muy alta resolución de Google Earth y ESRI, acoplados a un modelo de mapa de sombras obtenido a partir de un DEM para ayudar a la identificación, utilizando un ángulo de inclinación de la iluminación de 30° y azimuth ortogonales de 45 y 315°, además de una exageración vertical de magnitud 3 (Smith and Clark, 2005; Hughes et al., 2010). Para las imágenes de Google Earth se utiliza el relieve nativo del software Google Earth Pro. Adicionalmente, para tener una mejor idea de los rasgos más permanentes en el contexto glaciar como morrenas o la topografía misma del valle se deriva la pendiente y curvatura de perfil (Smith and Clark, 2005).

Relieve	Descripción	Identificación
Morrena	Crestas y montículos de variable tamaño	Crestas lineales semi-continuos de sedimento
	formadas por sedimento glacial depositado con su avance o retroceso.	semi-consolidado emplazados en márgenes del valle y zona proglaciar.
Gullies	Micro-valles formados por escorrentía de lluvia y derretimiento de nieve en sedimento	Depresiones lineales meandriformes marcadas y agrupadas en las laderas del valle.
Escarpe	no consolidado. Acantilados abruptos formados por el colapso	Cuñas lineales observadas en laderas v
Listarpe	de una ladera de roca.	alcances superiores seguidas de un marcado quiebre de pendiente.
Área de scree	Sectores donde sedimento rocoso no consolidado cae desde las laderas producto de meteorización física.	Zonas cubiertas de rocas angulosas y de gran tamaño esparcidas cerca del cuerpo de hielo, en general ubicadas bajo escarpes.
Terreno	Ensamblaje de cúmulos y montículos de	Zonas de sedimento semi-consolidado y baja
hummocky	detrito y sedimento glacial, incluyendo posiblemente morrenas con núcleo de hielo.	pendiente en el área proglaciar, donde se observa el flujo de cursos de agua y lagunas termokársticas.

Tabla 3.3.1: Criterios de identificación de relieves geomorfológicos glaciares. Adaptado a partir de Lardeux et al. (2016) y Chandler et al. (2018).

Capítulo 4

Análisis

4.1. Variación glaciar

4.1.1. Variación histórica y reciente de la extensión glaciar

Las primeras descripciones visuales de los cuerpos glaciares en los Nevados de Chillán las realiza Domeyko (1850), donde registra su ascenso hacia el volcán el 24 de enero de 1849. Domeyko identifica el frente del glaciar a tan solo cientos de metros del término de la selva, la cual alcanzaba los 1577 o 1660 msnm en el volcán Nevado. Observando desde las Termas de Chillán Domeyko describe el volcán Nevado como cubierto por hielo, exceptuando solo su cima, el cual baja desde las altas pendientes del cerro y forma un campo de hielo cuyo frente reposa sobre los 2113 msnm aproximadamente. Este campo de hielo baja además por el norte del cerro Negro, alcanzando el valle hasta cerca de 236 m, bajo fumarolas de vapor que darían cuenta de una temprana actividad del volcán Santa Gertrudis.

Una década más tarde, Philippi (1862) describe el campo de hielo junto a la actividad eruptiva del volcán Santa Gertrudis (Figura 4.1.1a). En marzo de 1862 el naturalista asciende por el río Chillán, observando su naciente en el glaciar, por la ruta al norte del cerro Negro. El campo de hielo llenaba la depresión entre el volcán Nevado, el cerro Negro y el cerro Colorado (Figura 4.1.1b), con la lengua de hielo que descendía entre estos dos últimos reducida a un pequeño glaciarete en la actualidad. Philippi describe el hielo como compacto y transparente, con un característico color azul, visto a través de grietas de a lo menos 125m de extensión

y de solo unos centímetros de ancho, y una superficie homogénea interrumpida solamente por ondulaciones de uno a dos metros, las que podrían tratarse de ojivas. Además de sus propias observaciones, Philippi incluye un informe realizado por el ingeniero Siemse, quien describe un gran campo de hielo entre el volcán Viejo, el volcán Nevado y el cerro Negro, cuya envergadura se estima de hasta 8 km de largo y 1.8 km de ancho.

Figura 4.1.1: Ilustraciones históricas del complejo volcánico Nevados de Chilán y sus glaciares. a) Pintura de Philippi (1862) retratando el nuevo volcán de Chillán, o volcán Santa Gertrudis, visto desde la ladera del cerro Negro. b) Ilustración del campo de hielo sobre el complejo volcánico en 1862 (Philippi, 1862). c) Los Nevados de Chillán, illustrados por Pissis (1875), donde: 1= Vn. Nevado, 2= Vn. Viejo, 3= Vn. Nuevo^{*}, 4= Los Baños, K= Escorias, K'= Retinita, L= Fonolita. *Vn. Santa Gertrudis a la izquerda.

Trece años más tarde, Pissis (1875) publica lo que llamó el "límite inferior de las nieves eternas en la zona central", de donde se deriva la altitud aproximada de ELA en los Nevados de Chillan a unos 2400 msnm (Caro Paredes, 2014). En ese mismo trabajo Pissis ilustra una vista de los volcanes de los Nevados de Chillán, en la que puede observarse el valle marcado por el cuerpo de hielo descendiendo desde el volcán Nevado, y donde acuña como volcán Nuevo al volcán Santa Gertrudis, emplazado al noroeste del volcán Nevado (Figura 4.1.1c).

Más recientemente, el vuelo Trimetrogon de 1945 nos permite observar el estado del campo de hielo sobre el complejo volcánico, el que al compararlo con una imagen falso color del sensor Aster del año 2011 (Figura 4.1.2; Caro Paredes (2014)) nos permite observar el importante retroceso glaciar y la desaparición de las masas de hielo encontradas en Portezuelo Los Baños y el glaciar documentado por Philippi entre el Volcán Nevado y el cerro Negro. Se puede apreciar también el retroceso del Glaciar Nevado, que desciende desde la cima del volcán Nevado, pero sin embargo, no es posible cuantificar la magnitud de su retroceso con estos recursos, aunque puede estimarse la altura del frente a unos 2250 msnm.

Figura 4.1.2: Fotografía aérea TRIMETROGON de 1975 (izquierda) y composición de bandas ASTER del 19 de febrero del 2011 sobre DEM SRTM 3 (derecha), se estima la antigua posición del frente (linea roja). Modificado de Caro Paredes (2014).

Enfocándonos en el glaciar Nevado, se hace uso de imágenes satelitales para delinear la extensión del glaciar y calcular su variación entre los años 1975 y 2022. Los resultados de este análisis se presentan en la Tabla 4.1.1 y se grafican en la Figura 4.1.3, que nos muestran una tasa de retroceso glaciar anual relativamente constante, de 74 ma⁻¹ en promedio, alcanzando altos valores en los años 2004 y 2018 debido a la desconexión topográfica de grandes porciones de hielo en la zona de ablación y acumulación, respectivamente, y con breves momentos de avance en los años 2001, 2002 y 2007. Se aprecia un breve lapso de estabilidad, con menor retraimiento y hasta avances, posterior a retrocesos importantes por la desconexión de masas de hielo. Cabe recalcar que debido a la compleja geometría del glaciar en la década de los 80 y 90 (de tipo *ice apron*, Cogley et al. (2010)), la delimitación del eje central resulta difícil, induciendo a una posible incertidumbre en el cálculo

de la longitud del glaciar. La altura del frente glaciar por su parte ha ido en aumento de manera constante, con dos periodos de estabilidad entre 2004-2007 y 2018-2020. En cuanto al área superficial, esta decrece más constantemente a un ritmo de 0.05 km²a⁻¹, siendo el año de mayor pérdida de hielo, 2018 con 0.19km² menos que 2017, coincidente con la desconexión del área de acumulación en el cráter del Volcán Nevado, y resultando en una pérdida total del 85 % del hielo desde 1975 hasta hoy. Solo en 2003 y 2010 gana el glaciar unos 0.04 y 0.01 km² respectivamente, avances considerados no significativos al estar dentro del margen de error de medición.

Año	Área (km^2)	Cambio de área $(\mathrm{km}^2 \mathrm{a}^{-1})$	Longitud (m)	Tasa cambio longitud (ma^{-1})	Altura mínima (m)
1975*	2.78		3152		2210
1989	1.97	-0.06	2819	-23.8	2264
1998*	1.53	-0.05	2236	-64.8	2514
2001	1.28	-0.08	2246	+3.3	2397
2002	1.24	-0.04	2260	+14	2404
2003	1.29	+0.04	2223	-37	2417
2004	1.21	-0.07	1906	-317	2485
2007	1.15	-0.02	1955	+16.3	2485
2010	1.16	+0.01	1824	-43.7	2517
2012	1.07	-0.05	1740	-42	2539
2016	0.92	-0.04	1689	-12.8	2589
2017	0.89	-0.03	1665	-24	2615
2018	0.70	-0.19	1274	-391	2632
2019	0.64	-0.05	1229	-45	2630
2020	0.54	-0.10	1190	-39	2667
2021	0.48	-0.06	1104	-86	2667
2022	0.41	-0.07	999	-105	2688

Tabla 4.1.1: Variaciones de superficie y frente entre 1975 y 2022, obtenidas del análisis de imágenes satelitales (Landsat y Sentinel) y DEM ALOS PALSAR 2011 (valores para * extraídos del informe DGA (2022a)).

Figura 4.1.3: Dimensión temporal de la variación de área superficial, en negro se muestra la extensión del glaciar para los años medidos con el error calculado; en azul el cambio de área anual.

4.1.2. Evolución morfológica del glaciar Nevado

4.1.2.1. Hipsometría

Las curvas hipsométricas, absolutas y normalizadas, generadas para los años 1989, 2003, 2017 y 2022 se presentan en la Figura 4.1.4, estas muestran una pérdida de masa relativamente balanceada hasta el año 2017, luego del cual la curva cambia drásticamente mostrando una importante pérdida de masa en la zona de acumulación, atribuida a la desconexión del glaciar con la masa de hielo sobre el cráter del volcán Nevado (Figura 4.1.5). Puede observarse a partir de las Lineas de Equilibrio Altitudinal estimadas por Nogami (1976) y Caro Paredes (2014) que en un inicio el glaciar comparte equitativamente su masa entre las zonas de acumulación y ablación, para con el pasar de los años concentrar cada vez más su área en los alcances inferiores y por ende, asumiendo un ascenso constante de la ELA, en su zona de ablación.

En las curvas normalizadas pueden notarse pérdidas focalizadas en los alcances medios, 0.7 y 0.5 para 2003 y 2017 respectivamente, que se atribuyen a la progresiva separación entre ambas lenguas del glaciar iniciada durante los años 90 (ver Sección 4.2 para detalles), la que culmina en 2022 con la desaparición del puente de hielo que les conecta (Figura 4.1.5), aunque, se piensa que este podría permanecer aún insulado bajo una gruesa capa de detritos. También se aprecia un importante cambio en la morfología entre las curvas de 2017 y 2022, con muy poca área glaciar

Figura 4.1.4: Curvas hipsométricas absolutas y normalizadas (izquierda y derecha respectivamente) del Glaciar Nevado para los años 1989, 2003, 2017 y 2022 obtenidas a partir del DEM ALOS PALSAR 2011. Lineas de Equilibrio Altitudinal estimadas para 1976 por Nogami (1976) y 2012 por Caro Paredes (2014).

presente en las máximas alturas de este, debido a la desconexión de la zona de acumulación en el cráter entre estas fechas y las muy inclinadas paredes del volcán en estas alturas, que acentúan los efectos del adelgazamiento del hielo. Al calcular el Índice Hipsométrico (HI), podemos observar una distribución equidimensional del área glaciar para el periodo 1989-2017 (ligeramente cargada hacia arriba en 2003) que pasa a concentrarse fuertemente en las alturas medias y mínimas para el 2022 (Tabla 4.1.2).

Figura 4.1.5: Composiciones falso color con bandas 11,8A y 4 de Sentinel-2 para los años 2017, 2018 y 2020 (de izquierda a derecha). Se puede observar la desconexión del glaciar con la zona de acumulación emplazada sobre el cráter del volcán Nevado (flechas) y la desaparición del puente de hielo que conecta ambas lenguas, el cual ya se veía altamente cubierto de detritos en 2017 (círculo).

4.1.2.2. Zona de ablación y cubierta detrítica

Para analizar cuantitativamente la evolución de la zona de ablación y su cubierta detrítica a través de los años, se empieza por estimar una Linea de Equilibrio Altitudinal local para el glaciar Nevado en cuatro años escogidos y calcular su longitud dentro del cuerpo glaciar, definiendo así el área de ablación para cada estadio (Tabla 4.1.2). Se obtiene una ELA que aumenta de forma importante entre 1989 y 2003, para luego mantenerse relativamente estable hasta el día de hoy con una variación de 25m como máximo, se destaca además que con la desconexión de la porción glaciar ubicada en el cráter del volcán Nevado la ELA desciende unos 20m. Luego se procede a delimitar la cubierta detrítica del glaciar, esto resulta dificultoso debido a la baja resolución de las imágenes disponibles en relación al pequeño tamaño del glaciar estudiado; solo en las imágenes de la última década pueden apreciarse indicadores de alta confianza, como el movimiento de hielo cubierto para el periodo 2017-2022, donde el colapso de una ladera del cerro Negro cubre gran parte de la lengua occidental (Figura 4.1.6). En la zona del frente se delimita el área cubierta basándose principalmente en la rugosidad del terreno, su coherencia topográfica con el glaciar, y las tonalidades claras que indicasen la presencia de hielo enterrado.

Figura 4.1.6: Composiciones falso color con bandas 11,8A y 4 de Sentinel-2 que muestran el colapso de un segmento del cerro Negro en 2018 sobre la lengua occidental del glaciar Nevado. Se evidencia un movimiento importante del hielo cubierto el primer año después del colapso, a partir de la observación de los montículos formados por este, indicados con flechas y su posición original destacada por líneas punteadas.

Se define entonces el área de hielo cubierta por detritos, que muestra un claro aumento en la última década, y sobre todo en su proporción respecto al área de hielo limpio o descubierto con un aumento de más del 15%. Sin embargo, en 2003 tanto la proporción como área absoluta disminuye respecto a 1989, lo que podría indicar una renovación de un ciclo de cobertura detrítica y desconexión de porciones de hielo cubiertas del glaciar (Herreid and Pellicciotti, 2020). Para analizar esto más a fondo se extraen una serie de valores de la Tabla 4.1.2 que permiten el cálculo de métricas usadas en la literatura glaciológica para evaluar la evolución de la cubierta detrítica.

Año	$\begin{array}{c} \text{Hielo} \\ \text{limpio} \\ (\text{km}^2) \end{array}$	$\begin{array}{c} {\rm Hielo} \\ {\rm cubierto} \\ {\rm (km^2)} \end{array}$	%	Perímetro cubierto (km)	ELA (km)	$\begin{array}{c} {\rm \acute{A}rea}\\ {\rm ablaci\acute{o}n}\\ {\rm (km^2)} \end{array}$	Perímetro ablación (km)	Límite limpio/cubier (km)	to HI	Clase
1989	1.79	0.18	9.0	4.2	0.97 (2773m)	0.98	7.0	2.24	-1.15	equidimensional
2003	1.24	0.05	3.5	2.6	1.05~(2870m)	0.63	7.6	1.75	-1.31	top heavy
2017	1.24	0.15	16.5	7.6	$1.02 \ (2895m)$	0.45	8.7	4.29	1.15	equidimensional
2022	0.30	0.11	26.3	3.9	$0.77 \ (2874m)$	0.21	4.5	1.03	1.51	very bottom heavy

Tabla 4.1.2: Medidas de constituyentes glaciares (hielo limpio y cubierto, zona de ablación y ELA). Índice Hipsométrico (HI) y Clase derivada obtenido de DEM ALOS PALSAR 2011.

Los resultados obtenidos se muestran en la Figura 4.1.7, la cual nos permite visualizar los cambios morfológicos del glaciar Nevado en las últimas décadas. Aquí puede apreciarse el control topográfico en las mayores pérdidas de hielo, principalmente en la separación de cuerpos glaciares, siguiendo su adelgazamiento, en acantilados de alta pendiente o por la emergencia de porciones de lecho rocoso o nunataks (Davies et al., 2022). Estos nunataks pueden también contribuir a la tasa de ablación, al absorber y transferir mayor calor de la radiación solar hacia el hielo (Paige, 1968). Las métricas calculadas nos hablan el estado de la cubierta detrítica y la evolución del glaciar respecto a esta.

El accumulation area ratio (AAR) es de 0.5 en 1989, consistente con una clase hipsométrica equidimensional, mientras que luego presenta una disminución neta de 0.03 para 2022 con un aumento de 0.01 en 2003, una disminución tan pequeña se explica en la incertidumbre de la estimación de la ELA una vez desconectado el glaciar del área de acumulación en el cráter. Por otra parte, la proporción detrítica en la superficie glaciar comienza siendo de un 9%, que disminuye a un 4% en 2003, y luego sigue aumentando hasta alcanzar un 26% en 2022. Aplicando la métrica definida como Etapa de la cubierta detrítica, para 2003 estaría comenzando

Figura 4.1.7: Evolución morfológica del glaciar Nevado, con la progresión de la cubierta detrítica en su área de ablación representada tanto visualmente como en el cálculo de métricas usadas en la literatura glaciológica. Imágenes satelitales Landsat (1989, 2003) y Sentinel-2 (2017, 2022). ELA = equilibrium line altitude; AAR = accumulation area ratio.

un nuevo "ciclo" de expansión de cobertura detrítica y retroceso del hielo que culmine con la desconexión de masa glaciar cubierta, reflejado también en el mayor potencial de expansión detrítica para 2003 y su disminución a menos de la mitad para 2022 (Figura 4.1.8). En teoría, un glaciar alcanza un potencial de expansión detrítica máximo, especifico para dicho glaciar (≤ 1), en el peak de abundancia de bandas morrénicas discretas, para decrecer al momento de coalescencia de estas morrenas formando una cubierta detrítica continua.

Por su parte, la abundancia de morrenas muestra una complejidad estructural baja de los cuerpos morrénicos sobre la superficie glaciar, con un mínimo de 0.3 en 2003, consistente con lo discutido anteriormente. En 2017 donde se reconoce una etapa temprana de cobertura detrítica con múltiples zonas de acumulación de material rocoso, dando un alto valor de 0.9, que se mantiene hacia 2022 con

Figura 4.1.8: Trayectoria teórica de la evolución detrítica en términos de la Etapa y Potencial de expansión detrítica. Este último alcanza un valor máximo y converge al valor verdadero de expansión detrítica futura a lo que la Etapa se acerca a 1 y la capacidad de carga es superada. EPM = Evolución Pasado el Máximo; DCC = Distancia a Capacidad de Carga. Obtenido de (Herreid and Pellicciotti, 2020).

la coalescencia de estos centros de acumulación detrítica, alcanzando un mayor relleno de la superficie de ablación por detritos, e incluso de una pequeña parte de la superficie de acumulación, marcando un claro avance en la evolución de la cubierta detrítica.

4.2. Estructuras y condiciones superficiales

Para estudiar más a fondo la dinámica del glaciar Nevado durante las últimas décadas, se prosigue analizando las imágenes de mayor resolución, que permiten una descripción a mayor detalle de la superficie glaciar. De esta forma se trazan primero los límites glaciares, utilizando de base los resultados de imágenes Landsat en la sección anterior, junto a posibles zonas cubiertas de detritos; luego, se identifican y mapean las grietas superficiales, con el fin de interpretar el flujo del glaciar a partir de estas. Se presenta entonces una serie de escenas de satélites SPOT y Sentinel-2 desde 1987 hasta el 2017 (Figura 4.2.1). Cabe recordar que las imágenes SPOT (5 de las 6 escenas mostradas) debieron ser geo-referenciadas manualmente con el método spline antes de ser utilizadas,

Figura 4.2.1: Evolución estructural del glaciar Nevado entre los años 1987 y 2017. Elaborada a partir de imágenes SPOT (1987-2012) y Sentinel 2 (2017).

implicando una deformación que lleva a un mayor error analítico y limitando los resultados a una descripción cualitativa de la evolución glaciar.

Los evolución de la morfología glaciar se caracteriza por bruscas modificaciones que muestran una estrecha relación con la compleja topografía del complejo volcánico donde se emplaza. El primer cambio importante comienza en 1987 con la emergencia de una pequeña porción de lecho rocoso en medio del glaciar, la que, con el adelgazamiento y retroceso del glaciar, en tan solo 9 años se extiende casi hasta el margen frontal, y termina por separar el frente glaciar en dos lenguas para el 2002. Actualmente el filo que separa ambas lenguas muestra una topografía bastante irregular, casi globular, definiéndose como una colada de lava moldeada la erosión glaciar. Esta por irregularidad del terreno resulta en la proyección de sombra sobre algunos parches de hielo, como el puente de hielo conectando ambas lenguas u otras masas menores cubiertas por detritos, posiblemente contribuyendo a su conservación (Apéndice A3.5).

Con el pasar de los años el adelgazamiento del hielo provoca que este se resquebraje sobre las protuberancias topográficas, provocando ultimamente la desconexión de importantes masas de hielo del flujo principal, siendo la más reciente la separación del área de acumulación emplazada en el cráter del volcán, dejando su cima expuesta y descubriendo gruesas sucesiones de material volcánico (Apéndice A3.4).

Esto además se relaciona con la espacialmente variable presencia de material detrítico cubriendo el glaciar, apareciendo tanto en la zona de ablación como en la de acumulación, preferentemente У en los bordes del glaciar y bajo laderas escarpadas, hablando de un origen posible en avalanchas de roca producidas por colapsos enlas inclinadas pendientes, como la ocurrida en 2018, desestabilizadas por la pérdida del hielo glaciar que se encajaba en ellas. Sobre esta cubierta detrítica, en 2017 puede verse como

Figura 4.2.2: Emergencia de detritos englaciales cercanos al frente de hielo cubierto, Enero de 2022. Fotografía propia.

en el frente del glaciar progresa mediante la emergencia de detritos englaciales, incorporados posiblemente en los alcances superiores a través de las grietas de mayor tamaño (Figura 4.2.2). En este último respecto, se observa una alta concentración de material cubriendo y "manchando" el glaciar, cuyo posible origen sea la caída de cenizas provenientes de la actividad de forma el cráter Nicanor, en el volcán Nuevo hacia el SE.

En cuanto a las estructuras superficiales (grietas), puede observarse una predominancia de grietas transversales en las zonas altas del área de acumulación, generalizada a través de los años, las que transicionan a grietas tipo *splaying* glaciar abajo, indicando un cambio del régimen de stress extensional en los alcances superiores a uno compresivo llegando a la mitad del glaciar. En los bordes del glaciar, sobre todo hacia el SO, se forman algunas grietas chevrón, concentradas en los alcances superiores, y en alcances inferiores se pueden encontrar grietas en echelón que marcan obstáculos en el lecho rocoso, evidentes al comparar las imágenes de 2003 y 2017. Pueden observarse también acantilados de hielo, muy notorios en 2003 y en menor medida en 2007 y 2017, evidenciados por densos grupos de grietas en los que intersectan grietas transversales y *splaying*, concentradas bajo sectores de alta pendiente y en general cercanos a emergencias de lecho rocoso. A partir del arreglo de grietas en general, puede observarse desde 2003 la separación del tronco principal del glaciar en dos unidades de flujo, marcada más notoriamente en un inicio por el cambio abrupto de orientación en alcances intermedios, que con el paso de los años se extiende hasta el área de acumulación generando grupos de grietas transversales con orientaciones similares pero distintivas.

4.2.1. Mapeo glaciológico y geomorfológico

Se presentan los resultados del análisis a detalle de las estructuras glaciológicas superficiales y geomorfología proglaciar, utilizando las imágenes de muy alta resolución de Google Earth, para los años 2013 y 2016 (Apéndices A2.1 y A2.2 respectivamente), y ESRI World Imagery, para los años 2021 y 2022 (Apéndices A2.3 y A2.4 respectivamente), complementada esta última fecha con las observaciones hechas en terreno el 15 de enero de 2022. En estas imágenes es posible identificar una mayor cantidad de rasgos dinámicos en el sistema glaciar, permitiendo un mayor entendimiento de la evolución de este y los factores que le rigen. Así, se elaboran los mapas presentados en las Figuras 4.2.4 y 4.2.8, descritos de la siguiente forma:

Google Earth, Marzo de 2013: Se calcula una extensión glaciar de unos 1.2 km², con una porción de hielo cubierto por detritos de 0.25km² marcada por termokarst y grietas subyacentes. En este año pueden observarse los primeros indicios de la separación del cuerpo principal con el área de acumulación en el cráter, que producto del adelgazamiento del hielo se divide a lo largo del filo del volcán. Más abajo, en alcances intermedios, comienza a aparecer la cubierta detrítica, alimentada entre los 2800 y 3000 msnm por zonas de scree, o caída de rocas, en las empinadas laderas y bajo los 2800 msnm por material fino transportado por gullies. Pasado el frente pueden encontrarse varias extensiones de terreno hummocky por donde es descargada el agua de derretimiento, en algunos casos presentan hielo muerto y lagunas termokársticas relictas (Figura 4.2.3). Dos de estos terrenos, hallados bajo escarpes al sureste de ambas lenguas glaciares llaman la atención al encontrarse su posible origen en la reconstitución

del hielo que cae desde los escarpes que marcan el límite del glaciar. En cuanto a la superficie del hielo, se reconoce gran cantidad de grietas y trazas de grieta a lo largo de toda la superficie de hielo limpio, en los alcances superiores se ven grietas transversales de gran envergadura (hasta 290 m), las que definen un régimen de flujo extensional y en dirección suroeste, levemente perturbado hacia el oeste a juzgar por un quiebre en la continuidad de grietas, sus orientaciones e incremento en apertura, denotando la formación de un acantilado de hielo.

Figura 4.2.3: Lagunas termokásticas relictas observadas en la escena de Google Earth año 2013, destacadas con círculos celestes.

En alcances intermedios del principal cuerpo aparecen algunas grietas chevrón en los márgenes del glaciar, y cerca del puente de hielo grietas en echelón, las que intersectan hacia el centro del flujo de hielo principal con grietas tipo splaying, características de un régimen de flujo compresivo, concentradas a alturas de entre 2750 y 2900 msnm. De estos caóticos sectores, cercanos a los bordes del cuerpo principal, es posible

observar la emergencia de material detrítico englacial. Alcanzando la porción inferior del cuerpo principal el agrietamiento se da en los márgenes del glaciar, y solo se interiorizan cuando el hielo limpio es limitado por la porción cubierta, en esta sección desprovista de agrietamiento significativo puede notarse un grupo de ojivas bandeadas, que parecen definir un corredor de hielo de rápido flujo bajo un acantilado de hielo. Además, pueden encontrarse un par de glaciaretes al noreste y suroeste del cerro pirámide, así como un parche de terreno hummocky en el cráter al sureste.

Google Earth, Marzo de 2016: La extensión glaciar se reduce a 1.06 km², con el mayor retroceso focalizado en el frente cubierto del cuerpo principal, donde el glaciar es separado de una porción de terminus por un acantilado de gran altura, además se observa un notorio adelgazamiento del hielo en el cráter y el puente de hielo, con este último comenzando a cubrirse de material detrítico. Se ve que aparece al menos una nueva zona de scree en el cerro Negro (o Pirámide), mientras que los terrenos hummocky parecen colapsar como resultado de la activación de procesos glaciofluviales, en la forma de flujos de agua de derretimiento supradetríticos. En la superficie del hielo se observan los cambios más notorios, en los alcances superiores, sobre los 2800 msnm, aparecen extensas grietas transversas de gran apertura que forman un acantilado de hielo, con presencia inclusive de séracs, marcando un claro quiebre en el flujo del paquete de hielo noroccidental. En alcances intermedios las condiciones son similares al 2013 excepto por la aparición de algunas grietas *splaying* a mayor altura. En la porción más baja encontramos menor cantidad de grietas y la ausencia de las ojivas vistas en 2013, interpretado como una reducción en la velocidad de flujo, lo que se refuerza con la ausencia de estructuras significativas cercanas al frente cubierto. Por otra parte, podemos notar que en ambos costados del terminus glaciar aparecen emergencias detríticas, más prominente en el margen suroriental, donde una gruesa capa de material detrítico baja hasta el frente de hielo cubierto desde un pequeño campo de grietas cercanas a la ladera. Cabe mencionar que la parte alta del glaciar se encuentra cubierta con nieve haciendo difícil la identificación de rasgos como grietas, aunque, esta misma nos permite estimar una Linea de Equilibrio (ELA) trazada a lo largo del limite de nieve y hielo, entre los 2800 y 2850 msnm.

ESRI World Imagery, Octubre de 2021: En tan solo cinco años la extensión del glaciar disminuye a 0.68 km², principalmente producto de la desconexión del cuerpo principal con las áreas de acumulación emplazadas sobre el cráter del volcán. Se identifica un importante retroceso en el frente del cuerpo principal, con una importante expansión de la proporción cubierta en detritos (un 37 % con 0.25 km²), alcanzando incluso el puente de hielo que conecta a la lengua menor. Adicionalmente, esta lengua se ha cubierto extensivamente de material detrítico proveniente de la remoción en masa de 2017, propagada unos 1600 mts hacia el suroeste desde el cerro negro, dificultando la delimitación del frente. Es posible que el importante aporte detrítico de las inestables laderas insula el hielo subyacente mermando su retroceso. Debido al drástico adelgazamiento del cuerpo de hielo, han sido expuestas varias porciones de lecho rocoso (nunataks), con las de mayor envergadura en las porción medial del cuerpo glaciar y en medio del puente de hielo; puede observarse un re-congelamiento del hielo al pasar a través de estos

obstáculos. Estos cuerpos de roca basal afectan de manera importante el flujo del glaciar, reflejado en el patrón de grietas, en los alcances superiores una pequeña emergencia de roca marca un quiebre en la continuidad de las grietas transversales y divide el flujo, más abajo en la ladera oriental, un importante cuerpo de roca deflecta el flujo generando un grupo de grietas en echelón que intersectan un acantilado de hielo. Se nota además la aparición de grietas *splaying* a mucha altura, posiblemente atribuible a un estancamiento en el flujo provocado por los obstáculos rocosos, propiciando un régimen de stress compresivo, y adicionalmente, pueden observarse lo que parecieran ser trazas de ojiva en la parte baja del hielo limpio. Finalmente, puede observarse una incipiente acumulación de material detrítico en el centro del cuerpo principal, alineada con la exposición de lecho rocoso a mayor altura, esto se interpreta como resultado de la frecuente caída de rocas y material detrítico desde los alcances superiores del glaciar, tanto del filo recientemente expuesto en el cráter como del mismo nunatak descrito anteriormente, fenómeno que ha sido observado durante las campañas de terreno. Igual que para 2016, la parte alta del glaciar se encuentra cubierta de nieve permitiendo la estimación de una ELA entre los 2850 y 2900 msnm.

Figura 4.2.4: Mapas glaciológicos y geomorfológicos de escenas Google Earth (arriba) para los años 2013 y 2016 (izquierda y derecha respectivamente) y ESRI World Imagery para el año 2021 (abajo). En la miniatura de cada mapa se muestra la escena utilizada con relieve en 3d.

ESRI World Imagery, Agosto de 2022: La superficie glaciar se reduce en 0.64 km², mientras que la extensión de la cubierta detrítica aumenta sustancialmente, alcanzando casi un 50 % del total (0.317 km²), sobre todo en los alcances superiores donde las inestables laderas, expuestas por el adelgazamiento del hielo, definen zonas de scree que aportan sustancial material detrítico desde los numerosos escarpes identificados (Figura 4.2.5a y b). La delimitación del frente se hace aún más difícil, en la lengua menor atisbos de estructuras glaciológicas bajo la cubierta detrítica, interpretados como taludes de hielo, nos permiten inferir hasta donde llega el hielo aún conectado, mientras que en el frente del cuerpo principal se traza un límite basados en la rugosidad del terreno, observada desde fotografías aéreas UAV (Figura 4.2.5c), y la presencia de hielo recubierto cercano a canales en el área (Figura 4.2.5d). Al no haber sido posible el acceso en terreno al área de la lengua

menor y dado el caótico estado de la zona debido a la remoción en masa del 2017, la incertidumbre en la delimitación de su frente se considera alta. El puente de hielo parece haber desaparecido por encima del cuerpo rocoso expuesto, mientras que bajo este la sombra generada por el mismo podría jugar un rol, en conjunto con el recubrimiento de detritos, en la conservación del puente que conecta los cuerpos glaciares (Figura 4.2.5b).

Figura 4.2.5: a) Fotografía de la ladera oriental en los alcances superiores del glaciar, pueden verse múltiples flujos de agua. b) Fotografía de la ladera occidental del glaciar mostrando el puente de hielo cubierto que une ambas lenguas de este. c) Fotografía área de UAV (*Unmaned Aereal Vehicle*) del frente cubierto, se indica posición desde donde se toma la fotografía d) Hielo recubierto por material detrítico en la ladera oriental del área de ablación.

Bajo los obstáculos rocosos emergiendo del cuerpo principal sigue observándose el re-congelamiento del hielo que fluye a través de ellos, al menos a principios de 2022 (Figura 4.2.6a y b); para el momento de captura de la imagen ESRI dicho hielo ya se encuentra cubierto de material detrítico. La ausencia de nieve en esta fecha permite la descripción de muchas estructuras superficiales, a juzgar por el patrón de grietas en los alcances superiores, podemos ver una clara división del flujo desde prácticamente el tope del cuerpo glaciar que se acentúa con la exposición de lecho rocoso (Figura 4.2.6c), mucho más notoria ahora, y desde el cual cae material detrítico que termina acumulándose más abajo en la superficie del hielo (Figura 4.2.6d).

Figura 4.2.6: Fotografías de exposición de lecho rocoso en diferentes partes del glaciar (a, b y c) y de la acumulación de detritos supraglaciales en alcances medios del glaciar.

Así, se definen dos unidades de flujo en el cuerpo principal, a la izquierda se observa un acantilado de hielo con algunas grietas *splaying* muy rectas extendiéndose hasta la otra unidad de flujo, más abajo solo se ven pequeñas grietas chevron bajo el puente de hielo y algunas trazas de grieta, a la derecha aparecen grietas transversales de gran apertura y densidad, que intersectan con grietas *splaying* a gran altura, bajando por el cuerpo de hielo vemos un sector relativamente desprovisto de estructuras al centro de la unidad de flujo y grietas chevrón hacia la ladera oriental, que se fragmentan como grietas en echelón al llegar al obstáculo rocoso y luego intersectan grietas *splaying*. Bajo estas últimas se reconoce un set de ojivas, en una posición relativa similar a la de 2013, indicando una perturbación

Figura 4.2.7: Fotografías de la acumulación de detritos en la superficie del hielo (a y c) y su incorporación a través de grietas (a y b).

del flujo de hielo presumiblemente asociada al glaciar siendo más dinámico en respuesta a mayores temperaturas (asumiendo en base a la ocurrencia de ojivas en las escenas carentes de cubierta nival importante). En muchos de estos campos de grietas se evidencia la incorporación de detritos caídos desde las laderas de la cuenca, sobre todo cercano a los márgenes (Figura 4.2.7).

Finalmente, podemos notar la aparición de flujos de agua de derretimiento de importante caudal sobre la cubierta detrítica, e incluso cercanos al límite con el hielo descubierto, ciertamente, a lo largo de la superficie del glaciar recorrida en terreno se observaron varios sectores con escorrentía de agua de derretimiento, encauzada en algunos casos por las grietas, inclusive, cerca de la ladera oriental se logró escuchar el característico sonido del agua fluyendo por moulins dentro del hielo.

Figura 4.2.8: Mapa glaciológico y geomorfológico para el año 2022 elaborado a partir de imagen ESRI World Imagery, y fotografía aérea UAV para la delimitación del frente cubierto. Se estima la edad de dos morrenas para los años 2012 y 1999 al comparar con escenas de años anteriores. Remarcado rojo en la lengua occidental indica alta incertidumbre en el mapeo del frente de hielo cubierto.

4.2.2. Análisis de estructuras glaciológicas

Se estudian los patrones de grietas y trazas de grieta utilizando las escenas de mayor resolución, abarcando entre 2013 y 2022, en cuanto a su posición dentro de la superficie de hielo y su orientación, para descifrar las condiciones de flujo del glaciar. La información derivada de cada grieta mapeada se presenta en el Apéndice A4. Primero, se analiza la distribución de las grietas en la superficie del glaciar, utilizando mapas de calor que nos muestran donde se concentra la aparición de grietas (Figura 4.2.9a), puede observarse que para 2013 la mayor cantidad de grietas aparece en los alcances inferiores, concentradas mayormente cercanas al borde y en zonas de pendientes mayores a 26° (Apéndice A2.6). En alcances superiores si bien la pendiente alta las grietas parecen distribuirse de manera más uniforme. Llama la atención un clúster bajo el puente de hielo en la lengua principal, lugar donde actualmente protuve el lecho rocoso. Para 2022 se tiene que tanto la altura máxima y mínima de aparición de grietas es acotada, no solo por la pérdida de hielo en ambos extremos, si no por la expansión de la cubierta detrítica. De esta forma, se acumula la mayor cantidad de grietas en los alcances medios y superiores del glaciar, nuevamente concentrados en los bordes del hielo y rodeando los nunataks que han aparecido. Este cambio en la distribución altitudinal de la concentración de grietas es evidente al comparar las curvas de acumulación para ambos años (Figura 4.2.9b), donde si bien es posible apreciar una menor cantidad de grietas en el tope el hielo (producto de adelgazamiento y desconexión), este patrón cambia rápidamente para mostrar una mayor altura promedio para la aparición de grietas.

Luego, se generan diagramas de rosa con la orientación de grietas y trazas de grieta, considerada como un eje para mejor visualización, a su vez, estas se agrupan en tres grupos altitudinales definidos en base al tipo de estructuras observadas. Así se obtienen las figuras presentadas a continuación, siendo estas analizadas en pares, sea 2013-2016 y 2021-2022, debido a que la cubierta nival presente para los años 2016 y 2021 dificultan la identificación de estructuras superficiales, aunque, esta misma línea de nieve nos permite hacer un estimado de la ELA para cada período.

Durante el primer periodo 2013-2016 (Figura 4.2.10) se estima una ELA entre los 2850 y 2900 msnm, más baja hacia el oeste en la lengua inferior donde desciende

Figura 4.2.9: Distribución de grietas y trazas de grietas en el glaciar Nevado para 2013 y 2022. a) Mapas de calor. b) Curvas de acumulación: Porcentaje de grietas versus Altitud.

a casi 2750 msnm. Podemos observar al menos dos orientaciones preferenciales en el cuerpo glaciar completo, predominando una dirección casi W-E, que representa las grietas transversales al flujo del hielo concentradas en alcances superiores, con una población menor en dirección NW-SE, representando en su mayoría grietas *splaying*, cabe recalcar que para 2016 estas últimas parecen ser más prominentes dado que la mayoría de grietas transversales halladas en alcances superiores se encuentran cubiertas de nieve. Al observar las poblaciones separadas por altura podemos notar que es en los alcances intermedios del cuerpo de hielo donde más se diversifican las orientaciones de grietas, atribuible a un cambio en las condiciones de flujo y esfuerzos en el hielo, se destaca además que la mayor densidad de grietas se halla en las cercanías de la ELA, concentrándose bajo esta y cercanas a los márgenes del glaciar. Hacia el terminus podemos observar la influencia de la cubierta detrítica en las estructuras, ya que al perturbar el flujo y estancar algunos sectores del hielo estas estructuras superficiales se ven rotadas y muestran variadas orientaciones. Los cambios más notorios observables a lo largo de este periodo son la segmentación de las grietas transversales más prominentes en los alcances superiores, presumiblemente debido a la influencia de la topografía del lecho, que podría estar perturbando el flujo del hielo, y el avance de la cubierta de detritos concentrada al parecer hacia los sectores con mayor densidad de agrietamiento.

Figura 4.2.10: Estructuras glaciológicas superficiales mapeadas para los años 2013 y 2016, representadas en diagramas de rosa y agrupados por altura dentro del cuerpo Lineas glaciar. continuas representan grietas y trazas de grieta; linea segmentada amarilla representa la ELA estimada (2016); lineas de punto y guión representan límites de unidad de flujo. Diagramas de rosa están escalados de forma que el radio del circulo representa el 50%de la cantidad de datos.

Para 2021-2022 (Figura 4.2.11) puede estimarse una ELA entre los 2900 y 2950 msnm, difícil de definir en la lengua menor debido a la perturbación visual de la remoción en masa ocurrida en 2017. Se observa una tendencia más marcada de grietas transversales en dirección W-E, concentrándose estas en los alcances superiores y siendo tapadas por nieve casi en su mayoría en 2021. Se recalca la presencia a alturas de hasta 3000 msnm de grietas *splaying*, concentradas casi exclusivamente en el lado oriental del cuerpo de hielo. Podemos observar que nuevamente la mayor cantidad de grietas ocurre en la zona media y cercanas a la ELA, aunque, a diferencia del periodo anterior, se pueden encontrar más
grietas en la zona más alta que cerca del morro glaciar. También, puede verse una emergencia de lecho rocoso en la posición donde el trazado de grietas se vio interrumpido en el periodo anterior, la influencia de este obstáculo rocoso parece extenderse unas decenas de metros hacia arriba y abajo, posiblemente definiendo dos unidades de flujo dentro del cuerpo principal. Otras exposiciones de lecho de

Figura 4.2.11: Estructuras glaciológicas superficiales mapeadas para los años 2021 У 2022, representadas en diagramas de rosa y agrupados por altura dentro del cuerpo glaciar. Lineas continuas representan grietas y trazas de grieta; linea segmentada amarilla representa la ELA estimada (2021); lineas de punto y guión representan límites de unidad de flujo. de rosa Diagramas están escalados de forma que el radio del circulo representa el 50%de la cantidad de datos.

mayor tamaño en la sección inferior del glaciar deflectan e interrumpen el flujo normal del glaciar, provocando el paso por re-congelamiento del hielo sobre estos y estancando el flujo en sus inmediaciones. El rápido avance de la cubierta detrítica es evidente, se puede reconocer la periodicidad del recubrimiento por detritos caídos desde las laderas en los sectores más altos donde se logra ver aún grietas bajo capas delgadas de material detrítico.

Finalmente, basándonos en los patrones de grietas y topografía de la cuenca, es posible deducir la dinámica de flujo de este glaciar, como se presenta en la Figura 4.2.12, donde se infieren direcciones de flujo y su velocidad teórica, así como los posibles límites de las unidades de flujo. Se definen para 2013 tres unidades de flujo

en alcances superiores, dos en la lengua principal, cuya separación se marca por la perdida de continuidad en las grietas transversales, y otra correspondiente a la lengua menor, donde el puente de hielo actúa en si mismo como el límite separador. La aparición de ojivas en alcances inferiores de la lengua mayor, en conjunto a la forma de la cubierta detrítica y el marcado término de grietas, parecen indicar un corredor de flujo de hielo al centro del glaciar. Para 2022 la lengua menor ya se ha

Figura 4.2.12: Dinámica de flujo del glaciar Nevado basada en la interpretación de patrones de grieta y topografía de la cuenca.

separado claramente del flujo del cuerpo principal, marcado por un prominente nunatak, por su parte, dicho cuerpo principal muestra la separación del flujo vista en 2013 evidentemente marcada por la aparición de un nuevo nunatak y la acumulación de detritos en la superficie del hielo glaciar abajo. La unidad de flujo oriental, de mayor tamaño, se caracteriza por la deflección del flujo al pasar sobre un nunatak en su borde, bajo el cual parece definirse un corredor de flujo marcado por nuevas ojivas. Si tenemos en cuenta que el flujo de hielo responde al balance de masa, podemos ver como las estructuras descritas se contrastan con la distribución de la pérdida de masa, obtenida por el balance de masa geodésico realizado por DGA (2022a), donde se destaca, para el periodo 2000-2021, una alta tasa de pérdida de espesor concentrada en posiciones cercanas a la aparición de ojivas. Una tendencia similar se observa en el balance de masa 2021-2022 (DGA, 2022b), mostrando una alta pérdida anual sobre la zona de ojivas observada en 2022, aunque los mayores valores se hallan en la cabecera. En este mismo informe se muestran las velocidades del hielo medidas con balizas, que para el periodo mencionado coinciden con altas velocidades de flujo cercanas a la zona de ojivas, seguidas de una desaceleración al llegar al frente cubierto por detritos.

De este análisis se evidencia la influencia de la topografía del lecho rocoso en la dinámica de flujo del glaciar Nevado, el adelgazamiento del hielo nos muestra que en los sectores donde las grietas son interrumpidas o donde intersectan distintos tipos de grietas terminan por aparecer estas protuberancias del lecho rocoso que hoy interrumpen y estancan el flujo del hielo. También, puede notarse el efecto de la expansión del área glaciar cubierta de detritos, que confina el hielo y podría estancar su flujo, haciéndole menos dinámico en los alcances inferiores donde dicha cubierta presenta su mayor expansión.

Capítulo 5

Discusión

5.1. Cambios superficiales del glaciar Nevado

Desde las primeras observaciones del campo de hielo realizadas a mediados del siglo XIX (Domeyko, 1850; Philippi, 1862; Pissis, 1875), que describen al menos dos lenguas de gran tamaño (de hasta 16 km de largo) descendiendo por los flancos del cerro Blanco, separadas por el cerro Negro o Pirámide, el glaciar Nevado ha retrocedido y en consecuencia fragmentado varias veces, como respuesta al adelgazamiento del hielo sobre una topografía volcánica altamente irregular, alcanzando tan solo unos 3 km de longitud para 1975, fecha de las primeras imágenes aéreas disponibles para este estudio. Este drástico retroceso se evidencia en la formación de pequeñas morrenas y escarpes en las laderas del complejo volcánico, además de un paisaje glaciofluvial caracterizado por sedimentos de grano fino, e incluso, algunos sectores donde aún puede encontrarse hielo muerto bajo gruesas capas de sedimento. La reciente exposición de los relieves antes cubiertos por el hielo hace que sean sujetos a meteorización y erodados por el viento y precipitación, para luego ser depositados sobre antiguas coladas de lava. Estos depósitos de material fino y semi-consolidado sirve hoy en día de hogar para diversa flora y fauna. Cabe recalcar que gran parte del terreno descubierto por el retroceso del hielo no ha sido mapeado geológicamente, con la información más actualizada datada al 1980 aproximadamente, a juzgar por la extensión retratada en la carta geológica de los Nevados de Chillán (Naranjo et al., 2008).

La evolución reciente del glaciar Nevado muestra un rápido retroceso del hielo,

pasando de poseer un área superficial de unos 2.78 km^2 en 1975 a tan solo 0.41 km^2 en 2022, alcanzando una pérdida de casi un 85 % de su superficie. Actualmente, el glaciar apenas alcanza el kilómetro de longitud, y su altura mínima es de 2688 msnm, 400 m más que en 1975. A lo largo de este periodo el hielo se ha retraído de manera constante, con un par de importantes desconexiones de hielo observadas para los años 2004 y 2018, controladas por sectores de alta pendiente en la topografía subglaciar ubicados tanto en el frente como en la cima del volcán. A su vez, el análisis hipsométrico muestra como la distribución altitudinal del área superficial ha cambiado de manera importante, concentrándose con el pasar de los años cada vez más superficie en las partes inferiores del glaciar, bajo la línea de equilibrio altitudinal (ELA), cambiando su clasificación como glaciar equidimensional/cargado-hacia-arriba a la de equidimensional/muy-cargado-haciaabajo en solo 20 años. Es importante mencionar que estos resultados distan de otro estudio que calcula la extensión glaciar basada en el NDSI (Peña and De Moraes, 2020), sin embargo coinciden con los resultados del último monitoreo de la Dirección General de Aguas (DGA, 2022a), esto se explica en que con la delimitación manual y el uso de múltiples criterios visuales es posible mapear sectores parcial o completamente cubiertos de detritos.

Finalmente, la más contemporánea exposición de rocas subglaciares, tanto en alcances superiores como cercanas al frente del hielo limpio, muestra la magnitud del adelgazamiento, y abre interrogantes respecto a la interacción del glaciar con la topografía y las características geológicas del sistema terrestre donde se emplaza, particularmente en relación a su dinámica de flujo y a la evolución de su cubierta detrítica. Curiosamente, la porción de roca de la ladera oriental del glaciar (Apéndice A3.2) podría tratarse de un pequeño cono volcánico suavizado por la erosión glaciar, hablando de la posible ocurrencia de procesos glacio-volcánicos subglaciales en el pasado, por otra parte, considerando la continuada erosión de la ladera del volcán a través de los periodos glaciares e inter-glaciares, las rocas que protruyen desde el hielo debido a su mayor resistencia podrían representar los remanentes de antiguos conductos del edificio volcánico.

5.2. Efectos de la topografía subglacial en la dinámica glaciar

El complejo volcánico Nevados de Chillán se caracteriza por una compleja topografía formada en su mayoría por coladas de lava, resultantes de las varias erupciones volcánicas ocurridas a lo largo de su historia. En principio, el campo de hielo que cubría el complejo volcánico debió ser suficientemente extenso para que el control topográfico se limitara tan solo a la separación de los flujos de hielo por las cumbres más altas. Sin embargo, a medida que los glaciares retroceden y se adelgazan, las irregularidades del lecho comienzan a interceder cada vez más en la dinámica glaciar. Una importante influencia de la topografía subglacial puede observarse por primera vez en 1987 con la aparición de un nunatak en los alcances superiores del glaciar, años anteriores a la exposición de la roca, puede verse que influencia la forma de las grietas superficiales. En las década siguiente este nunatak se expande glaciar abajo, hasta en los años 2000 separar completamente el glaciar en dos lenguas unidas por un puente de hielo en sus alcances superiores.

Gracias a las imágenes de más alta resolución podemos estudiar más de cerca los efectos que estas irregularidades topográficas tienen en el flujo del hielo, analizando las grietas y sus patrones. Además de la variación altitudinal de poblaciones de grieta, con grietas transversales en alcances superiores/zona de acumulación y tipo *splaying* en alcances inferiores/zona de ablación que indican el cambio del régimen de stress de extensivo a compresivo (Goodsell et al., 2005a; Colgan et al., 2016), podemos observar acantilados de hielo en zonas de alta pendiente y donde posteriormente aparecen protuberancias topográficas, en estas zonas puede incluso verse la inflexión de grietas e interrupción de su continuidad, denotando sectores de distinta velocidad de flujo. Con el adelgazamiento del hielo estas protuberancias quedan expuestas en superficie, afectando de distinta manera el flujo del hielo, la exposición rocosa encontrada a más altura (Apéndice A3.3) separa claramente el hielo en dos unidades de flujo para 2022, sugiriendo una trayectoria similar a la ocurrida en 1987, mientras que los cuerpos rocosos cercanos al límite hielo limpio/cubierto, al hallarse en los márgenes del glaciar, deflectan y retrasan el flujo del hielo, incluso llevándolo a pasar sobre estos obstáculos por medio de recongelamiento. Este efecto obstaculizante en los márgenes puede llevar al encauzamiento del flujo por un canal estrecho, y podría ser la razón de la aparición

de ojivas, las que a juzgar por su intermitente aparición (en verano de 2013 y 2022, en primavera de 2021 se ven solo como trazas) indican cambios en la dinámica de flujo, aunque no queda claro si su ocurrencia se debe a efectos topográficos o climáticos. Esta dinámica resulta consistente con lo observado por Aniya et al. (2002) en el glaciar Soler. Entre 1984 y 1999 observaron como las ojivas tienden a permanecer en zonas cercanas a cascadas de hielo, probablemente debido a su flujo relativamente rápido; en otras zonas, las ojivas son más efímeras o cambian de tipo (onda a fajas claras/oscuras intercaladas y viceversa). Vale la pena añadir que la alta densidad de grietas supone un medio para la incorporación del material detrítico proveniente de las laderas volcánicas o de la ceniza de los conos activos del complejo hacia el suroeste a un posiciones englaciales, para finalmente emerger en el frente del glaciar y construir las morrenas terminales.

Finalmente, algunas grietas de los alcances superiores, notablemente cercanas a la exposición rocosa, presentan formas difícilmente atribuibles a un flujo normal de hielo, generándose posiblemente a la pérdida de cohesión de la masa de hielo por el adelgazamiento y alza de temperaturas, lo que provocaría que este se resquebraje por gravedad sobre protuberancias topográficas (Apéndice A3.1). Este hecho, junto a los altos valores de disminución de masa vertical entre 2021 y 2022 $(-3.75 \ ma^{-1}; DGA, 2022b)$, y la aparición de grietas tipo *splaying* en los alcances superiores del glaciar, nos hablan de una expansión del área de ablación, pudiendo alcanzar la totalidad del cuerpo de hielo en los meses de alta temperatura. Un comportamiento similar se observa en la lengua del glaciar Forni, en los Alpes italianos, donde este tipo de agrietamiento se interpreta como estructuras de falla que indican un cambio en la dinámica del hielo desde un régimen de flujo típico a un escenario de desintegración (Azzoni et al., 2017). Adicionalmente, los vectores de movimiento obtenidos en DGA (2022b) sugieren velocidades de 2.1 ma^{-1} al centro del glaciar, implicando que un copo de nieve caído en la cabecera del glaciar saldría de este en unos 400-500 años de no haber fusión. Si tomamos la disminución de masa vertical del balance de masa geodésico como la fusión, tenemos que es más rápida que el flujo de hielo, lo que significa que aún de haber significativa acumulación en los alcances superiores, esta no es suficiente para reemplazar la pérdida de hielo.

5.3. Respuesta del glaciar Nevado al cambio climático

El glaciar Nevado presenta una alta y clara sensibilidad a las fluctuaciones climáticas, habiendo perdido cerca de un 80% de su superficie en tan solo 50 años, esto se debe principalmente a su posición geográfica, y al hecho que se emplaza en la montaña más alta en relación al resto del relieve (Fernández et al., 2021). En la región, las temperaturas han aumentado de manera acelerada (Carrasco et al., 2008) y las precipitaciones han sufrido una marcada disminución (Schumacher et al., 2020). Estas condiciones climáticas, sumado a las observaciones de grietas en zonas altas del glaciar dan a pensar que en estaciones cálidas con baja precipitación el glaciar podría estar sufriendo de una fragmentación transversal, lo que se respalda con los resultados de balance de masa geodésicos negativos en alcances altos del glaciar (DGA, 2022b). Sin embargo, el rápido crecimiento de la cubierta detrítica en la superficie del glaciar los últimos años, proveniente de las cada vez más inestables laderas de material volcánico, podrían significar un potencial de conservación del hielo bajo estas capas de sedimento, sean lo suficientemente gruesas para aislarlo de las alzas en temperaturas atmosféricas. Con las imágenes de más alta resolución y junto a observaciones hechas en terreno podemos observar evidencias de flujo y hielo enterrado bajo material detrítico en sectores bien alejados del frente de hielo descubierto, reforzando más la idea que dicha cubierta detrítica podría jugar un rol importante en la conservación del glaciar con el aumento de temperaturas. Por otra parte, en la lengua menor, donde ha sido cubierta por la remoción en masa, se observan para 2022 algunos taludes de hielo cercanos al frente inferido, los que según estudios pueden ser los focos de ablación acelerada (Farías-Barahona et al., 2020). Para corroborar estas hipótesis son necesarios mayores estudios y observaciones, particularmente respecto evidencias de flujo de hielo cubierto para delimitar con confianza el verdadero frente del glaciar, un mapeo más a detalle de la geomorfología proglaciar para entender mejor la dinámica reciente del glaciar, y la cuantificación del potencial de absorción de calor de la cubierta detrítica.

Capítulo 6

Conclusiones

De este trabajo y sus resultados se ha llegado a las siguientes conclusiones:

- A partir del análisis de imágenes satelitales podemos ver que el glaciar Nevado presenta una tasa de retraimiento de magnitud significativa, retrocediendo 74 m y perdiendo 0.05 m² de área superficial anualmente, en promedio desde 1975, solo se registran dos instancias de avance aunque casi negligibles, considerando una pérdida total de un 68 % de su longitud y del 85 % de su área. Este gran retroceso se tiene en cuenta desde las primeras observaciones históricas, donde se describe un gran campo de hielo de hasta 16km de largo bajando por dos de los flancos del cerro Blanco (o volcán Nevado), el que ha retrocedido de manera constante a la vista de los pobladores de Las Trancas. Dado que esta zona no ha sido muy estudiada en lo que respecta a su geomorfología glaciar, la extensión del campo de hielo en periodos más antiguos no es clara. Actualmente se están estudiando estos relieves con el fin de determinar esta extensión en el último periodo frío conocido como Pequeña Edad de Hielo.
- Junto con este marcado retroceso puede observarse como la morfología del glaciar Nevado ha cambiado radicalmente a lo largo de su historia. Los cronistas la describen primero como un extenso campo de hielo que solo deja a la vista las cumbres de los cerros Negro (o Pirámide) y Blanco, que a finales del siglo XIX pierde gran parte de su flanco noroccidental debido a la erupción del volcán Santa Gertrudis. A partir de entonces el hielo se concentra en la ladera suroccidental del volcán, limitado al noroeste por el

cerro Negro y al sureste por el cráter Calfú. En las décadas recientes puede observarse como la morfología del cuerpo de hielo se complejiza a medida que retrocede y se adelgaza, mostrando cada vez más la influencia de la topografía subglacial, que debido al contexto volcánico esta resulta ser muy accidentada, con altos acantilados y filos marcados formados por coladas de lava. Más notoriamente, en 1987 comienza a separarse el glaciar en dos lenguas producto de un filo de roca emergente, hoy en día ambos cuerpos de hielo se conectan apenas por un puente de hielo recubierto de detritos, y también, entre 2016 y 2018, el cuerpo principal se desconecta de la zona de acumulación emplazada dentro del cráter del volcán Nevado.

- Además de controlar la morfología del cuerpo de hielo, la topografía subglacial tiene efectos importantes en la dinámica de flujo glaciar, y por ende, en las estructuras glaciológicas superficiales. Esta influencia es notoria por primera vez previo a la aparición del nunatak en 1987, donde se observa un quiebre en la continuidad de las grietas transversales. Este fenómeno vuelve a observarse años antes de la aparición de un nuevo nunatak en 2021, que podría implicar una nueva separación del cuerpo de hielo. Otros efectos observados incluyen la formación de cascadas de hielo en zonas de alta pendiente, caracterizadas por gran densidad de grietas transversales, y la aparición de grietas *splaying* y chevrón en sectores donde altos topográficos bajo el hielo parecen estancar o desviar su flujo.
- La influencia del sistema volcánico en la dinámica glaciar se puede dar de varias maneras, la más evidente es la destrucción de masas de hielo por la erupción de material volcánico, como en la creación del volcán Santa Gertrudis. Otros efectos importantes son el recubrimiento de la superficie de hielo por productos piroclásticos como ceniza y tefra, provenientes del centro eruptivo del subcomplejo Las Termas, que debido a la coloración oscura del material posee la capacidad de disminuir sustancialmente el albedo, potencialmente incrementando la ablación si estas capas no son los suficientemente gruesas para insular el hielo. Además, debido a la naturaleza estratificada del edificio volcánico donde se emplaza el glaciar, con el retroceso de este se exponen las erosionadas e inestables laderas, propiciando la caída de detritos y hasta remociones en masa, aportando sustancial material detrítico a la superficie del hielo, el cual es incorporado, transportado y

finalmente depositado por el glaciar, creando sectores de hielo cubierto por detritos cada vez más extensos en proporción al hielo limpio. Este último aspecto es especialmente importante en relación a la delimitación del cuerpo glaciar, pues una incorrecta interpretación de la extensión del hielo cubierto puede resultar en una subestimación del área glaciar real.

- Adicionalmente, puede hacerse una conexión entre la evolución estructural y morfológica del glaciar y su respuesta al cambio climático, puede observarse en principio como las pérdidas de hielo más importantes se dan con la aparición de nunataks y en sectores de alta pendiente, donde el agrietamiento es extenso y en algunos casos de gran apertura, implicando una ablación focalizada dado el aumento del área superficial de hielo expuesta. Esto es especialmente notorio los últimos años, donde la mayor pérdida de masa se ha calculado en la cabecera del glaciar, donde las muy altas pendientes provocan un extensivo agrietamiento.
- Finalmente, la clara sensibilidad del glaciar a cambios en la temperatura y precipitación, producto de su posición geográfica y características topográficas regionales, le hacen un excelente prospecto para estudiar los efectos del cambio climático. Para este fin se hace necesario un mayor estudio de la dinámica glaciar en el pasado, hasta alcanzar una reconstrucción de su historia desde el último máximo glaciar. Uno de los efectos de esta sensibilidad se muestra en los últimos años con la posible expansión de la zona de ablación hasta grandes alturas dentro del cuerpo de hielo, evidenciada en grietas relictas, fracturas gravitacionales, y por sobre todo alta tasa de adelgazamiento en los alcances superiores. Por otra parte, dada la reciente dinámica de recubrimiento detrítico se vuelve interesante estudiar el potencial de conservación del hielo en el glaciar Nevado, este estudio ha mostrado que importantes extensiones de hielo se encuentran activas bajo capas de detritos suficientemente gruesas para aislarlo de las alzas de temperatura.

Bibliografía

- Allen, C., Kamb, W., Meier, M., and Sharp, R. (1960). Structure of the lower blue glacier, washington. *The Journal of Geology*, 68(6):601–625.
- Alley, R. B., Cuffey, K., Evenson, E., Strasser, J., Lawson, D., and Larson, G. (1997). How glaciers entrain and transport basal sediment: physical constraints. *Quaternary Science Reviews*, 16(9):1017–1038.
- Andreassen, L., Paul, F., Kääb, A., and Hausberg, J. (2008). Landsat-derived glacier inventory for jotunheimen, norway, and deduced glacier changes since the 1930s. *The Cryosphere*, 2(2):131–145.
- Aniya, M. (1985). Structure and morphology of soler glacier. Glaciological Studies in Patagonia Northern Icefield, 1983-1984.
- Aniya, M., Naruse, R., and Yamaguchi, S. (2002). Utilization of 6× 6 cm format vertical aerial photographs for repetitive mapping of surface morphology and measurement of flow velocities of a small glacier in a remote area: Glaciar soler, hielo patagónico norte, chile. Annals of Glaciology, 34:385–390.
- Azzoni, R. S., Fugazza, D., Zennaro, M., Zucali, M., D'Agata, C., Maragno, D., Cernuschi, M., Smiraglia, C., and Diolaiuti, G. A. (2017). Recent structural evolution of forni glacier tongue (ortles-cevedale group, central italian alps). *Journal of Maps*, 13(2):870–878.
- Barcaza, G., Nussbaumer, S. U., Tapia, G., Valdés, J., García, J.-L., Videla, Y., Albornoz, A., and Arias, V. (2017). Glacier inventory and recent glacier variations in the andes of chile, south america. *Annals of Glaciology*, 58(75pt2):166–180.
- Benn, D., Wiseman, S., and Hands, K. (2001). Growth and drainage of supraglacial lakes on debris-mantled ngozumpa glacier, khumbu himal, nepal. *Journal of Glaciology*, 47(159):626–638.
- Benn, D. I. and Evans, D. J. (2014). Glaciers & glaciation. Routledge.
- Benn, D. I. and Owen, L. A. (2002). Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. *Quaternary International*, 97:3–25.

- Benn, D. I., Warren, C. R., and Mottram, R. H. (2007). Calving processes and the dynamics of calving glaciers. *Earth-Science Reviews*, 82(3-4):143–179.
- Bennett, M. M. and Glasser, N. F. (2011). Glacial geology: ice sheets and landforms. John Wiley & Sons.
- Benson, C. (1961). Stratigraphic studies in the snow and firm of the greenland ice sheet. *Folia Geographica Danica*, 9:13–37.
- Benson, C., Motyka, R., McNUTT, S., Luethi, M., and Truffer, M. (2007). Glacier– volcano interactions in the north crater of mt wrangell, alaska. Annals of Glaciology, 45:48–57.
- Bishop, M. P., Björnsson, H., Haeberli, W., Oerlemans, J., Shroder, J. F., and Tranter, M. (2011). *Encyclopedia of snow, ice and glaciers*. Springer Science & Business Media.
- Boulton, G. and Eyles, N. (1979). Sedimentation by valley glaciers: a model and genetic classification. *Moraines and varves*, 33:11–23.
- Boulton, G. and McL, D. P. (1993). Ice ages and climatic change. Holmes' Principles of Physical Geology. Chapman and Hall, London,, pages 439–469.
- Bown, F. and Rivera, A. (2007). Climate changes and recent glacier behaviour in the chilean lake district. *Global and Planetary Change*, 59(1-4):79–86.
- Bown, F., Rivera, A., and Acuña, C. (2008). Recent glacier variations at the aconcagua basin, central chilean andes. *Annals of Glaciology*, 48:43–48.
- Braun, M. H., Malz, P., Sommer, C., Farías-Barahona, D., Sauter, T., Casassa, G., Soruco, A., Skvarca, P., and Seehaus, T. C. (2019). Constraining glacier elevation and mass changes in south america. *Nature Climate Change*, 9(2):130–136.
- Brock, B., Rivera, A., Casassa, G., Bown, F., and Acuña, C. (2007). The surface energy balance of an active ice-covered volcano: Villarrica volcano, southern chile. *Annals of Glaciology*, 45:104–114.
- Brüggen, J. (1928). La glaciación actual y cuaternaria de la cordillera de los andes. In Anales de la Universidad de Chile, pages ág–599.
- Brüggen, J. (1948). Contribución a la geología de los volcanes y termas de chillán.
- Campbell, S., Roy, S., Kreutz, K., Arcone, S. A., Osterberg, E. C., and Koons, P. (2013). Strain-rate estimates for crevasse formation at an alpine ice divide: Mount hunter, alaska. *Annals of Glaciology*, 54(63):200–208.
- Caro Paredes, D. A. (2014). Estudios glaciológicos en los nevados de chillán.
- Carrasco, J. F., Casassa, G., and Quintana, J. (2005). Changes of the 0 c isotherm and the equilibrium line altitude in central chile during the last quarter of the 20th century/changements de l'isotherme 0 c et de la ligne d'équilibre des neiges dans le chili central durant le dernier quart du 20ème siècle. *Hydrological Sciences Journal*, 50(6).

- Carrasco, J. F., Osorio, R., and Casassa, G. (2008). Secular trend of the equilibriumline altitude on the western side of the southern andes, derived from radiosonde and surface observations. *Journal of Glaciology*, 54(186):538–550.
- Casassa, G., López, P., Pouyaud, B., and Escobar, F. (2009). Detection of changes in glacial run-off in alpine basins: examples from north america, the alps, central asia and the andes. *Hydrological Processes: An International Journal*, 23(1):31–41.
- Castruccio, A., Clavero, J., and Rivera, A. (2010). Comparative study of lahars generated by the 1961 and 1971 eruptions of calbuco and villarrica volcanoes, southern andes of chile. *Journal of Volcanology and Geothermal Research*, 190(3-4):297–311.
- CECs (2009). Estrategia nacional de glaciares. Informe para Dirección General de Aguas -MOP. Dirección General de Aguas -MOP.
- CECs (2011). Variaciones recientes de glaciares en Chile según principales zonas glaciológicas. Dirección General de Aguas -MOP.
- Chamberlin, T. C. (1895). The classification of american glacial deposits. The Journal of Geology, 3(3):270–277.
- Chandler, B. M., Lovell, H., Boston, C. M., Lukas, S., Barr, I. D., Benediktsson, Í. Ö., Benn, D. I., Clark, C. D., Darvill, C. M., Evans, D. J., et al. (2018). Glacial geomorphological mapping: A review of approaches and frameworks for best practice. *Earth-Science Reviews*, 185:806–846.
- Cogley, J. G. (1999). Effective sample size for glacier mass balance. *Geografiska* Annaler: Series A, Physical Geography, 81(4):497–507.
- Cogley, J. G., Arendt, A., Bauder, A., Braithwaite, R., Hock, R., Jansson, P., Kaser, G., Moller, M., Nicholson, L., Rasmussen, L., et al. (2010). Glossary of glacier mass balance and related terms.
- Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., and Grigsby, S. (2016). Glacier crevasses: Observations, models, and mass balance implications. *Reviews of Geophysics*, 54(1):119–161.
- CONAMA (2006). Estudio de la variabilidad climática en Chile para el siglo XXI. Informe final. Universidad de Chile, Departamento de Geofísica de la Facultad de Ciencias, Físicas y Matemáticas.
- Cuffey, K. M. and Paterson, W. S. B. (2010). *The physics of glaciers*. 4^a Edición. Academic Press.
- Davies, B., Bendle, J., Carrivick, J., McNabb, R., McNeil, C., Pelto, M., Campbell, S., Holt, T., Ely, J., and Markle, B. (2022). Topographic controls on ice flow and recession for juneau icefield (alaska/british columbia). *Earth Surface Processes* and Landforms, 47(9):2357–2390.

- Deline, P. (2005). Change in surface debris cover on mont blanc massif glaciers after the 'little ice age'termination. *The Holocene*, 15(2):302–309.
- DGA (2009). "*Estrategia Nacional de Glaciares*". s.d.t. n°205. ministerio de obras públicas. chile. 147.
- DGA (2022). Metodología del inventario público de glaciares, sdt n°447, 2022. ministerio de obras públicas, dirección general de aguas, unidad de nieves y glaciología. realizado por casassa, g. espinoza, a., segovia, a., huenante, j.
- DGA (2022a). MONITOREO DE DETALLE DEL GLACIAR NOROESTE DEL COMPLEJO VOLCÁNICO NEVADOS DE CHILLÁN, 2020-2021, REGIÓN DE ÑUBLE, SDT N°519, 2022. MINISTERIO DE OBRAS PÚBLICAS, DIRECCIÓN GENERAL DE AGUAS, UNIDAD DE GLACIOLOGÍA Y NIEVES. Realizado por: DEPARTAMENTO DE GEOGRAFÍA, UNIVERSIDAD DE CONCEPCIÓN.
- DGA (2022b). MONITOREO DE DETALLE INTENSIVO DEL GLACIAR PRINCIPAL DEL COMPLEJO VOLCÁNICO NEVADOS DE CHILLÁN, REGIÓN DE ÑUBLE, MACROZONA SUR, 2021-2022, SDT N°529, 2022. MINISTERIO DE OBRAS PÚBLICAS, DIRECCIÓN GENERAL DE AGUAS, UNIDAD DE GLACIOLOGÍA Y NIEVES. Realizado por: DEPARTAMENTO DE GEOGRAFÍA, UNIVERSIDAD DE CONCEPCIÓN.
- Dixon, H. J., Murphy, M. D., Sparks, S. J., Chávez, R., Naranjo, J. A., Dunkley, P. N., Young, S. R., Gilbert, J. S., and Pringle, M. R. (1999). The geology of nevados de chillán volcano, chile. *Revista geológica de Chile*, 26(2):227–253.
- Domeyko, I. (1850). Viaje a las cordilleras de talca i de chillán: Primera parte. In Anales de la Universidad de Chile.
- Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier, V., Rabatel, A., Pitte, P., and Ruiz, L. (2019). Two decades of glacier mass loss along the andes. *Nature Geoscience*, 12(10):802–808.
- Escobar, F. and Aceituno, P. (1998). Influencia del fenómeno enso sobre la precipitación nival en el sector andino de chile central durante el invierno. *Bulletin de L'institut Français D'études Andines*, 27(3):753–759.
- Evans, D. and Gooster, L. (2014). Glacial landsystems. Routledge.
- Evans, D., Phillips, E., Hiemstra, J., and Auton, C. (2006). Subglacial till: formation, sedimentary characteristics and classification. *Earth-Science Reviews*, 78(1-2):115–176.
- Falvey, M. and Garreaud, R. D. (2009). Regional cooling in a warming world: Recent temperature trends in the southeast pacific and along the west coast of subtropical south america (1979–2006). Journal of Geophysical Research: Atmospheres, 114(D4).
- Farías-Barahona, D., Ayala, Á., Bravo, C., Vivero, S., Seehaus, T., Vijay, S.,

Schaefer, M., Buglio, F., Casassa, G., and Braun, M. H. (2020). 60 years of glacier elevation and mass changes in the maipo river basin, central andes of chile. *Remote Sensing*, 12(10):1658.

- Fernández, A., Araos, J., and Marín, J. (2010). Inventory and geometrical changes in small glaciers covering three northern patagonian summits using remote sensing and gis techniques. *Journal of Mountain Science*, 7(1):26–35.
- Fernández, A., Schumacher, V., Ciocca, I., Rifo, A., Muñoz, A. A., and Justino, F. (2021). Validation of a 9-km wrf dynamical downscaling of temperature and precipitation for the period 1980–2005 over central south chile. *Theoretical and Applied Climatology*, 143(1):361–378.
- Ferrán, O. G. (1995). Volcanes de Chile. Instituto Geográfico Militar.
- Flint, R. F. (1971). Glacial and quaternary geology. (No Title).
- Fountain, A. G. and Vecchia2, A. (1999). How many stakes are required to measure the mass balance of a glacier? *Geografiska Annaler: Series A, Physical Geography*, 81(4):563–573.
- Gajardo, C. et al. (1981). Hoja concepción-chillán. (No Title).
- Gascoin, S., Kinnard, C., Ponce, R., Lhermitte, S., MacDonell, S., and Rabatel, A. (2011). Glacier contribution to streamflow in two headwaters of the huasco river, dry andes of chile. *The Cryosphere*, 5(4):1099–1113.
- Glasser, N. F., Holt, T. O., Evans, Z. D., Davies, B. J., Pelto, M., and Harrison, S. (2016). Recent spatial and temporal variations in debris cover on patagonian glaciers. *Geomorphology*, 273:202–216.
- Goll, F. (1904). Die Erdbeben Chiles: ein Verzeichnis der Erdbeben und Vulkanausbrüche in Chile bis zum Ende des Jahres 1879 nebst einigen allgemeinen Bemerkungen zu diesen Erdbeben, volume 14. Theodore Ackermann.
- González, O. and Vergara, M. (1962). Reconocimiento geológico de la cordillera de los andes entre los paralelos 358 y 388s. Universidad de Chile, Instituto de Geologia Publicación, 24.
- Goodsell, B., Hambrey, M., Glasser, N., Nienow, P., and Mair, D. (2005a). The structural glaciology of a temperate valley glacier: Haut glacier d'arolla, valais, switzerland. Arctic, Antarctic, and Alpine Research, 37(2):218–232.
- Goodsell, B., Hambrey, M. J., and Glasser, N. F. (2002). Formation of band ogives and associated structures at bas glacier d'arolla, valais, switzerland. *Journal of Glaciology*, 48(161):287–300.
- Goodsell, B., Hambrey, M. J., and Glasser, N. F. (2005b). Debris transport in a temperate valley glacier: Haut glacier d'arolla, valais, switzerland. *Journal of Glaciology*, 51(172):139–146.

- Gordon, J. and Birnie, R. (1986). Production and transfer of subaerially generated rock debris and resulting landforms on south georgia: an introductory perspective. *British Antarctic Survey Bulletin*, 72:25–46.
- Gratton, D. J., Howarth, P. J., and Marceau, D. J. (1990). Combining dem parameters with landsat mss and tm imagery in a gis for mountain glacier characterization. *IEEE Transactions on Geoscience and Remote Sensing*, 28:766– 769.
- Gray, M. B. and Mitra, G. (1993). Migration of deformation fronts during progressive deformation: evidence from detailed structural studies in the pennsylvania anthracite region, usa. *Journal of Structural Geology*, 15(3-5):435– 449.
- Gross, G. v. et al. (1976). Methodische untersuchungen über die schneegrenze in alpinen gletschergebieten.
- Gudmundsson, M. T., Sigmundsson, F., and Björnsson, H. (1997). Ice–volcano interaction of the 1996 gjálp subglacial eruption, vatnajökull, iceland. *Nature*, 389(6654):954–957.
- Gunn, B. M. (1964). Flow rates and secondary structures of fox and franz josef glaciers, new zealand. *Journal of Glaciology*, 5(38):173–190.
- Haeberli, W. and Beniston, M. (1998). Climate change and its impacts on glaciers and permafrost in the alps. *Ambio*, pages 258–265.
- Haeberli, W., Hoelzle, M., Paul, F., and Zemp, M. (2007). Integrated monitoring of mountain glaciers as key indicators of global climate change: the european alps. Annals of glaciology, 46:150–160.
- Haeberli, W., Paul, F., Zemp, M., Crutzen, P., Bengtsson, L., and Ramanathan, V. (2011). Vanishing glaciers in the european alps. *Pontificia Academia Scientiarum*. *Scripta Varia*, (118):online.
- Hall, D. K., Bayr, K. J., Bindschadler, R. A., and Schöner, W. (2001). Changes in the pasterze glacier, austria, as measured from the ground and space. In *Proceedings of the 58th Eastern Snow Conference*, pages 17–19.
- Hambrey, M. and Müller, F. (1978). Structures and ice deformation in the white glacier, axel heiberg island, northwest territories, canada. *Journal of Glaciology*, 20(82):41–66.
- Hambrey, M. J. (1994). Glacial environments. UBC Press.
- Hambrey, M. J. and Glasser, N. F. (2003). The role of folding and foliation development in the genesis of medial moraines: examples from svalbard glaciers. *The Journal of Geology*, 111(4):471–485.
- Hambrey, M. J. and Lawson, W. (2000). Structural styles and deformation fields in glaciers: a review. *Geological Society, London, Special Publications*, 176(1):59–83.

- Hambrey, M. J. and Milnes, A. (1977). Structural geology of an alpine glacier (griesgletscher, valais, switzerland).
- Harper, J. T., Humphrey, N., and Pfeffer, W. T. (1998). Crevasse patterns and the strain-rate tensor: a high-resolution comparison. *Journal of Glaciology*, 44(146):68–76.
- Herbst, P., Neubauer, F., and Schöpfer, M. P. (2006). The development of brittle structures in an alpine valley glacier: Pasterzenkees, austria, 1887–1997. *Journal* of Glaciology, 52(176):128–136.
- Herreid, S. and Pellicciotti, F. (2020). The state of rock debris covering earth's glaciers. *Nature Geoscience*, 13(9):621–627.
- Herzfeld, U. C., Clarke, G. K., Mayer, H., and Greve, R. (2004). Derivation of deformation characteristics in fast-moving glaciers. *Computers & Geosciences*, 30(3):291–302.
- Herzfeld, U. C. and Mayer, H. (1997). Surge of bering glacier and bagley ice field, alaska: an update to august 1995 and an interpretation of brittle-deformation patterns. *Journal of Glaciology*, 43(145):427–434.
- Hewitt, K. (1988). Catastrophic landslide deposits in the karakoram himalaya. *Science*, 242(4875):64–67.
- Hobbs, B. E., Means, W. D., and Williams, P. F. (1976). An outline of structural geology, volume 25. Wiley New York.
- Hooke, R. L. (2019). *Principles of glacier mechanics*. Cambridge university press.
- Hubbard, B., Cook, S., and Coulson, H. (2009). Basal ice facies: a review and unifying approach. *Quaternary Science Reviews*, 28(19-20):1956–1969.
- Hudleston, P. J. (2015). Structures and fabrics in glacial ice: A review. Journal of Structural Geology, 81:1–27.
- Huggett, R. and Shuttleworth, E. (2022). *Fundamentals of geomorphology*. Taylor & Francis.
- Huggett, R. J. (2016). Fundamentals of geomorphology. 4^a Edición. Nueva York, Editorial Routledge.
- Hughes, A. L., Clark, C. D., and Jordan, C. J. (2010). Subglacial bedforms of the last british ice sheet. *Journal of Maps*, 6(1):543–563.
- Immerzeel, W. W., Lutz, A., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B., Elmore, A., et al. (2020). Importance and vulnerability of the world's water towers. *Nature*, 577(7790):364–369.
- INE (2005). Chile: Ciudades, Pueblos, Aldeas y Caserios. Instituto Nacional de Estadísticas, Santiago. 173-200.

- Informe, I. (2007). Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático.
- IPCC (2014). Climate change 2014 synthesis report. IPCC: Geneva, Szwitzerland.
- Jakobsson, S. P. and Gudmundsson, M. T. (2008). Subglacial and intraglacial volcanic formations in iceland. *Jökull*, 58:179–196.
- Jennings, S. J. and Hambrey, M. J. (2021). Structures and deformation in glaciers and ice sheets. *Reviews of Geophysics*, 59(3):e2021RG000743.
- Jennings, S. J., Hambrey, M. J., and Glasser, N. F. (2014). Ice flow-unit influence on glacier structure, debris entrainment and transport. *Earth Surface Processes* and Landforms, 39(10):1279–1292.
- Jiskoot, H., Curran, C. J., Tessler, D. L., and Shenton, L. R. (2009). Changes in clemenceau icefield and chaba group glaciers, canada, related to hypsometry, tributary detachment, length-slope and area-aspect relations. *Annals of Glaciology*, 50(53):133–143.
- Julio-Miranda, P., Delgado-Granados, H., Huggel, C., and Kääb, A. (2008). Impact of the eruptive activity on glacier evolution at popocatépetl volcano (méxico) during 1994–2004. Journal of Volcanology and Geothermal Research, 170(1-2):86–98.
- Kääb, A., Paul, F., Maisch, M., Hoelzle, M., and Haeberli, W. (2002). The new remote-sensing-derived swiss glacier inventory: Ii. first results. Annals of Glaciology, 34:362–366.
- Kaser, G., Fountain, A., Jansson, P., Heucke, E., and Knaus, M. (2003). A manual for monitoring the mass balance of mountain glaciers, volume 137. Unesco Paris.
- Kaser, G. and Osmaston, H. (2002). *Tropical glaciers*. Cambridge University Press.
- Kirkbride, M. P. (1993). The temporal significance of transitions from melting to calving termini at glaciers in the central southern alps of new zealand. *The Holocene*, 3(3):232–240.
- Kirkbride, M. P. (2000). Ice marginal geomorphology and holocene expansion of debris-covered tasman glacier, new zealand. In *Debris-covered Glaciers: Proceedings of an International Workshop Held at the University of Washington in Seattle, Washington, USA, 13-15 September 2000*, number 264, page 211. IAHS.
- Kuhn, M., Dreiseitl, E., Hofinger, S., Markl, G., Span, N., and Kaser, G. (1999). Measurements and models of the mass balance of hintereisferner. *Geografiska Annaler: Series A, Physical Geography*, 81(4):659–670.

- Lardeux, P., Glasser, N., Holt, T., and Hubbard, B. (2016). Glaciological and geomorphological map of glacier noir and glacier blanc, french alps. *Journal of Maps*, 12(3):582–596.
- Leonardini, G. (2010). Análisis mensual de los balances de masa glaciológico e hidrológico del glaciar tropical Zongo (Bolivia). PhD thesis, Tesis de grado en Física. Universidad Mayor de San Andrés, Bolivia. 8-9.
- Lescinsky, D. T. and Fink, J. H. (2000). Lava and ice interaction at stratovolcanoes: use of characteristic features to determine past glacial extents and future volcanic hazards. *Journal of Geophysical Research: Solid Earth*, 105(B10):23711–23726.
- Lliboutry, L. (1956). Nieves y glaciares de chile. Fundamentos de glaciologia, 471.
- MacDonell, S. and Fitzsimons, S. (2008). The formation and hydrological significance of cryoconite holes. *Progress in Physical Geography*, 32(6):595– 610.
- Mark, B. G. and Fernández, A. (2017). The significance of mountain glaciers as sentinels of climate and environmental change. *Geography Compass*, 11(6):e12318.
- Masiokas, M. H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., et al. (2020). A review of the current state and recent changes of the andean cryosphere. *Frontiers in Earth Science*, 8:99.
- Masiokas, M. H., Rivera, A., Espizua, L. E., Villalba, R., Delgado, S., and Aravena, J. C. (2009). Glacier fluctuations in extratropical south america during the past 1000 years. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 281(3-4):242–268.
- Masiokas, M. H., Villalba, R., Luckman, B. H., Le Quesne, C., and Aravena, J. C. (2006). Snowpack variations in the central andes of argentina and chile, 1951– 2005: Large-scale atmospheric influences and implications for water resources in the region. *Journal of climate*, 19(24):6334–6352.
- Mattson, L. (1993). Ablation on debris covered glaciers: an example from the rakhiot glacier, punjab, himalaya. *Snow and glacier hydrology*.
- Mee, K., Gilbert, J. S., McGarvie, D. W., Naranjo, J. A., and Pringle, M. S. (2009). Palaeoenvironment reconstruction, volcanic evolution and geochronology of the cerro blanco subcomplex, nevados de chillán volcanic complex, central chile. *Bulletin of volcanology*, 71:933–952.
- Mee, K., Tuffen, H., and Gilbert, J. (2006). Snow-contact volcanic facies and their use in determining past eruptive environments at nevados de chillán volcano, chile. *Bulletin of volcanology*, 68(4):363–376.
- Meier, M. F. (1962). Proposed definitions for glacier mass budget terms. *Journal* of Glaciology, 4(33):252–263.

- Montecinos, A. and Aceituno, P. (2003). Seasonality of the enso-related rainfall variability in central chile and associated circulation anomalies. *Journal of climate*, 16(2):281–296.
- Montecinos, A., Muñoz, R. C., Oviedo, S., Martínez, A., and Villagrán, V. (2017). Climatological characterization of puelche winds down the western slope of the extratropical andes mountains using the ncep climate forecast system reanalysis. *Journal of Applied Meteorology and Climatology*, 56(3):677–696.
- Moore, P. L. (2014). Deformation of debris-ice mixtures. *Reviews of Geophysics*, 52(3):435–467.
- Moore, P. L., Iverson, N. R., and Cohen, D. (2010). Conditions for thrust faulting in a glacier. *Journal of Geophysical Research: Earth Surface*, 115(F2).
- Morán-Tejeda, E., Ceballos, J. L., Peña, K., Lorenzo-Lacruz, J., and López-Moreno, J. I. (2018). Recent evolution and associated hydrological dynamics of a vanishing tropical andean glacier: Glaciar de conejeras, colombia. *Hydrology* and Earth System Sciences, 22(10):5445–5461.
- Müller, F. (1962). Zonation in the accumulation area of the glaciers of axel heiberg island, nwt, canada. *Journal of Glaciology*, 4(33):302–311.
- Muñoz, J. and Niemeyer, H. (1984). Carta geológica de chile no. 64: Hoja laguna del maule, regiones del maule y del bio bio. servicio nacional de geología y minería. *Santiago*.
- Myers, B., Brantley, S., Stauffer, P., and Hendley, J. (2008). Ii.(2008). what are volcano hazards? usgs fact sheet 002-97.
- Naito, N., Nakawo, M., Kadota, T., and Raymond, C. F. (2000). Numerical simulation of recent shrinkage of khumbu glacier, nepal himalayas. *IAHS PUBLICATION*, pages 245–254.
- Nakawo, M. and Rana, B. (1999). Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geografiska Annaler: Series A, Physical Geography, 81(4):695–701.
- Nakawo, M. and Young, G. J. (1981). Field experiments to determine the effect of a debris layer on ablation of glacier ice. *Annals of Glaciology*, 2:85–91.
- Naranjo, J., Gilbert, J. S., and Sparks, R. (2008). Geología del complejo volcánico nevados de chillán, région del biobío. servicio nacional geología y minería, carta geológía de chile, serie geología básica, mapa escala 1: 50,000, santiago.
- Naranjo, J. A. and Lara, L. E. (2004). August-september 2003 small vulcanian eruption at the nevados de chillán volcanic complex (36° 50's), southern andes (chile). *Revista geológica de Chile*, 31(2):359–366.
- Nogami, M. (1976). Altitude of the modern snowline and pleistocene snowline in the andes. *Geographical Report of Tokyo Metropolitan University*. 11: 7186, page 153.

- Nye, J. F. (1952). A comparison between the theoretical and the measured long profile of the unteraar glacier. *Journal of Glaciology*, 2(12):103–107.
- Ohlanders, N., Rodriguez, M., and McPhee, J. (2013). Stable water isotope variation in a central andean watershed dominated by glacier and snowmelt. *Hydrology and Earth System Sciences*, 17(3):1035–1050.
- Ostrem, G. (1959). Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. *Geografiska Annaler*, 41(4):228–230.
- Paige, R. (1968). Sub-surface melt pools in the mcmurdo ice shelf, antarctica. Journal of Glaciology, 7(51):511–516.
- Paul, F. (2000). Evaluation of different methods for glacier mapping using landsat tm. EARSeL eProceedings, 1(1):239–245.
- Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S., Konovalov, V., Le Bris, R., et al. (2013). On the accuracy of glacier outlines derived from remote-sensing data. *Annals of Glaciology*, 54(63):171–182.
- Paul, F., Winsvold, S. H., Kääb, A., Nagler, T., and Schwaizer, G. (2016). Glacier remote sensing using sentinel-2. part ii: Mapping glacier extents and surface facies, and comparison to landsat 8. *Remote Sensing*, 8(7):575.
- Pellicciotti, F., Ragettli, S., Carenzo, M., and McPhee, J. (2014). Changes of glaciers in the andes of chile and priorities for future work. *Science of the Total Environment*, 493:1197–1210.
- Peña, C. C. L. and De Moraes, M. (2020). Efectos del cambio climático sobre los glaciares del complejo volcánico nevados de chillán. *Revista Geográfica de Chile Terra Australis*, 56(1):5–13.
- Petit-Breuilh, M. (1995). The volcanic history of nevados de chillán volcano, chile. British Geological Survey Technical Report WC/95/86, Nottingham, UK.
- Philippi, R. (1862). Viaje a los baños i al nuevo volcán de chillán. In Anales de la Universidad de Chile, volume 20, pages 279–306.
- Pissis, A. (1875). Geografía física de la República de Chile. Instituto geográfico de Paris, C. Delagrave.
- Posamentier, H. W. (1978). Thoughts on ogive formation. *Journal of Glaciology*, 20(82):218–220.
- Post, A. and LaChapelle, E. (1971). Glacier ice: Seattle. The Mountaineers and University of Washington Press, III p.
- Quincey, D. J. and Glasser, N. F. (2009). Morphological and ice-dynamical changes on the tasman glacier, new zealand, 1990–2007. *Global and Planetary Change*, 68(3):185–197.
- Quintana, J. and Aceituno, P. (2006). Trends and interdecadal variability of rainfall in chile. In *Proceedings of*, volume 8, pages 24–28.

- Quintana, J. M., Aceituno Gutiérrez, P., et al. (2004). Estudio de los factores que explican la variabilidad de la precipitación en chile en escalas de tiempo interdecadal.
- Racoviteanu, A. E., Williams, M. W., and Barry, R. G. (2008). Optical remote sensing of glacier characteristics: a review with focus on the himalaya. *Sensors*, 8(5):3355–3383.
- Rau, F., Mauz, F., Vogt, S., Khalsa, S. J. S., and Raup, B. (2005). Illustrated glims glacier classification manual. *Institut für Physische Geographie Freiburg*, *Germany, and National Snow and Ice Data Center, Boulder, USA, version*, 1:755.
- Ren, J., Jing, Z., Pu, J., and Qin, X. (2006). Glacier variations and climate change in the central himalaya over the past few decades. *Annals of Glaciology*, 43:218–222.
- Reynolds, J. M. (2000). On the formation of supraglacial lakes on debris-covered glaciers. *Debris-covered glaciers*.
- Rhoades, R. (2008). Desaparición del glaciar mama cotacachi: investigación etnoecológica y cambio climático en los andes de ecuador. *Pirineos*, 163:37–50.
- Rivera, A., Acuña, C., and Casassa, G. (2006). Glacier variations in central chile (32 s-41 s). Glacier Science and Environmental Change. Blackwell, Oxford, UK, pages 246-247.
- Rivera, A. and Bown, F. (2013). Recent glacier variations on active ice capped volcanoes in the southern volcanic zone (37–46 s), chilean andes. *Journal of South American Earth Sciences*, 45:345–356.
- Rivera, A., Bown, F., Carrión, D., and Zenteno, P. (2012). Glacier responses to recent volcanic activity in southern chile. *Environmental Research Letters*, 7(1):014036.
- Rivera, A., Corripio, J. G., Brock, B., Clavero, J., and Wendt, J. (2008). Monitoring ice-capped active volcán villarrica, southern chile, using terrestrial photography combined with automatic weather stations and global positioning systems. *Journal of Glaciology*, 54(188):920–930.
- Rocha, A. A. S. and Giering, Y. A. V. (2017). Caracterización glaciológica de chile. *Investigaciones Geográficas*, (53):3–24.
- Romero, J. (2012). Some backgrounds on the short october 2011 eruption at mt. hudson, 45 300s, southern andes. pyroclastic flow. *J Geol*, 1:1–8.
- Saavedra, F. A., Kampf, S. K., Fassnacht, S. R., and Sibold, J. S. (2017). A snow climatology of the andes mountains from modis snow cover data. *International Journal of Climatology*, 37(3):1526–1539.
- Schumacher, V., Justino, F., Fernández, A., Meseguer-Ruiz, O., Sarricolea, P., Comin, A., Peroni Venancio, L., and Althoff, D. (2020). Comparison

between observations and gridded data sets over complex terrain in the chilean andes: Precipitation and temperature. *International Journal of Climatology*, 40(12):5266–5288.

- SERNAGEOMIN (2022). Complejo Volcánico Nevados de Chillán. https://rnvv. sernageomin.cl/complejo-volcanico-nevados-de-chillan/. [en línea; consulta el 7 de Septiembre de 2022].
- Shroder, J. F., Bishop, M. P., Copland, L., and Sloan, V. F. (2000). Debris-covered glaciers and rock glaciers in the nanga parbat himalaya, pakistan. *Geografiska* Annaler: Series A, Physical Geography, 82(1):17–31.
- Smith, M. J. and Clark, C. D. (2005). Methods for the visualization of digital elevation models for landform mapping. *Earth Surface Processes and Landforms*, 30(7):885–900.
- Spencer, M., Alley, R., and Fitzpatrick, J. (2006). Developing a bubble numberdensity paleoclimatic indicator for glacier ice. *Journal of Glaciology*, 52(178):358– 364.
- St Germain, S. L. and Moorman, B. J. (2019). Long-term observations of supraglacial streams on an arctic glacier. *Journal of Glaciology*, 65(254):900–911.
- Steiner, D., UHL, H. Z., and Bauder, A. (2008). Two alpine glaciers over the past two centuries. Darkening peaks: glacier retreat, science, and society, page 83.
- Sugden, D. E. and John, B. S. (1976). Glaciers and landscape: a geomorphological approach, volume 365. Edward Arnold London.
- Svoboda, F. and Paul, F. (2009). A new glacier inventory on southern baffin island, canada, from aster data: I. applied methods, challenges and solutions. *Annals of Glaciology*, 50(53):11–21.
- Tarbuck, E. J. and Lutgens, F. K. (2005). Ciencias de la tierra. Universitario, page 32.
- Thomson, M., Kirkbride, M., and Brock, B. (2000). Twentieth century surface elevation change of the miage glacier, italian alps. *IAHS-AISH publication*, pages 219–225.
- Trenhaile, A. S. (1998). Geomorphology: a canadian perspective. (No Title).
- Van der Veen, C. (1998). Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Regions Science and Technology, 27(1):31–47.
- Van der Veen, C. (1999). Crevasses on glaciers. Polar Geography, 23(3):213–245.
- Van der Veen, C. (2011). Crevasses. Encyclopedia of snow, ice and glaciers, pages 165–168.
- Van Loon, A. (2004). From speculation to model: the challenge of launching new ideas in the earth sciences. *Earth-Science Reviews*, 65(3-4):305–313.

- Vaughan, D. G. (1993). Relating the occurrence of crevasses to surface strain rates. Journal of Glaciology, 39(132):255–266.
- Veettil, B. K., Wang, S., de Souza, S. F., Bremer, U. F., and Simões, J. C. (2017). Glacier monitoring and glacier-climate interactions in the tropical andes: A review. *Journal of South American Earth Sciences*, 77:218–246.
- Vincent, C., Dumont, M., Six, D., Brun, F., Picard, G., and Arnaud, L. (2018). Why do the dark and light ogives of forbes bands have similar surface mass balances? *Journal of Glaciology*, 64(244):236–246.
- Wadham, J. L. and Nuttall, A.-M. (2002). Multiphase formation of superimposed ice during a mass-balance year at a maritime high-arctic glacier. *Journal of Glaciology*, 48(163):545–551.
- Warren, C. R., Rivera, A., and Post, A. (1997). Greatest holocene advance of glaciar pío xi, chilean patagonia: possible causes. *Annals of Glaciology*, 24:11–15.
- Wharton Jr, R. A., McKay, C. P., Simmons Jr, G. M., and Parker, B. C. (1985). Cryoconite holes on glaciers. *Bioscience*, pages 499–503.
- Wilson, L. and Head, J. W. (2007). Heat transfer in volcano-ice interactions on earth. *Annals of Glaciology*, 45:83–86.
- Zemp, M., Haeberli, W., Hoelzle, M., and Paul, F. (2006). Alpine glaciers to disappear within decades? *Geophysical Research Letters*, 33(13).
- Zemp, M., Paul, F., Hoelzle, M., and Haeberli, W. (2008). Glacier fluctuations in the european alps, 1850–2000. *Darkening Peaks Glacier Retreat Sci. Soc.*
- Zenteno, P., Rivera, A., and García, R. (2004). Glacier inventory of the Itata basin derived from satellite imagery: historical trends and recent variations at Nevados de Chillán volcano (36 56' S-71 20' W). VIII International Earth Sciences Congress, Santiago, pages 18–28.
- Zenteno, P. F. (2009). Variaciones recientes de los glaciares en la zona centro sur de chile y su relación con los cambios climáticos y la actividad volcánica.

Apéndice A

Apéndice

A1. Conceptos relevantes

A1.1. Clasificación de glaciares

Según morfología:

- Casquetes de hielo continental (*ice sheets*): Gran masa de hielo que cubre un continente (Antártica, Groenlandia), y no está totalmente controlada por la topografía subyacente. Caracterizado por mayor actividad en sus bordes y a lo largo de corrientes de hielo.
- Plataformas de hielo (*ice shelves*): Porción flotante de un glaciar terminado en aguas oceánicas profundas. Las principales se encuentran en Antártica (Ross, Ronne-Filchner y Amery), como también en Groenlandia y el Ártico canadiense.
- Corrientes de hielo (*ice streams*): Referente a glaciares que drenan un casquete de hielo continental mediante altas tasas de flujo, muy superiores a las del entorno glacial. Estas corrientes carecen de una delimitación precisa en todos sus márgenes, siendo reconocibles por rasgos como la orientación de giertas laterales que separan zonas de máximo flujo de aquellas menos activas.
- Glaciares de piedemonte (*piedmont glaciers*): Son glaciares enclavados en las montañas pero cuya alimentación es suficientemente abundante para que una lengua de hielo penetre el piedemonte, derramando su caudal de hielo en forma de abanico divergente. En Patagonia aún existen ejemplos como el glaciar San Quintín en el Campo de Hielo Norte.
- Glaciares de valle (valley glaciers): Caracterizados por tener una o más zonas de acumulación, ubicadas en subcuencas o circos, que cofluyen en un valle angosto, permitiendo el flujo de hielo aguas abajo. También llamados glaciares Alpinos, por ser la forma típica de varios glaciares en los Alpes. Casos típicos en Chile central son el

Juncal Norte y Juncal Sur.

- Glaciares en calota (*ice caps*): Caracterizados por fluir de forma radial desde la cúspide de un centro montañoso, muchas veces de naturaleza volcánica. La ablación se produce por los bordes, sea por el contorno en su conjunto o por medio de lenguas que bajan a los valles. En Chile destacan las calotas del Volcán Osorno.
- Campos de hielo (*icefields*): Grandes superficies de hielo que exhiben una compleja zona de acumulación compuesta por una planicie en altura o *plateau* y zonas escarpadas rodeándole. Todo este hielo es evacuado mediante varias lenguas efluentes, definidas por la topografía subyacente. Ejemplos típicos son los Campos de Hielo Patagónicos.
- Glaciares de cráter (crater glaciers): Emplazados en una depresión topográfica, rodeada de un cordón montañoso que impide la evacuación superficial del hielo acumulado, el que fluye al centro de la depresión. Pierde masa por ablación superficial y gracias al calor geotermal de los conos y cráteres que les contienen. Un ejemplo destacado es el glaciar emplazado en la caldera del Volcán Sollipulli.
- Glaciares de montaña (mountain glacier): Ubicados en las partes altas de la cordillera, de variadas formas y donde la evacuación desde una amplia zona de acumulación se da por medio de una pequeña lengua glaciar (comparada a la de un glaciar de valle). Un ejemplo sería el Glaciar Nevado en los Nevados de Chillán, motivo de este estudio.
- Glaciares de circo (*cirque glacier*): Son aquellos que ocupan una depresión semicircular generada por erosión glaciar (circo), rodeada por flancos montañosos de muy alta pendiente, culminadas en cumbres o cordones tipo "aretes". Al retroceder (o desaparecer) el glaciar estas depresiones son ocupadas por un lago. Un caso típico es el glaciar de circo en el Valle del Francés, Parque Nacional Torres del Paine.
- Glaciaretes (glaciaretes o ice apron): Corresponden a las masas más pequeñas de hielo, sin existir una definición exacta de sus dimensiones. Suelen encontrarse en laderas de montañas, depresiones, sectores en sombra, etc. Pueden no presentar evidencia de flujo, y en años muy secos tienden a desaparecer, cubrirse de material o reducirse significativamente.
- Glaciares rocosos (rock glaciers): Cuerpos de hielo y rocas, que evidencian flujo, aunque a tasas muy inferiores que glaciares descubiertos, dada la baja proporción de hielo, hasta inferior al 50 % del volumen total. Su caracterización y origen es aún discutido en la comunidad glaciológica. Se definen dos orígenes para estos cuerpos de hielo y roca: glaciogénico, véase generados a partir de un glaciar descubierto que evoluciona a uno rocoso luego de ser recubierto por material morrénico o de avalanchas y disminuyese su alimentación nival, reduciendo su flujo hasta cambiar completamente su morfología; o pedogenético, véase originado en la evolución de una forma del relieve, a partir del permafrost de montaña o suelo congelado, cuyo flujo (solifluxión), puede acrecentarse con mayor proporción de agua sólida interglaciar.

Según condicion térmica:

- Glaciares fríos: Son aquellos que poseen una temperatura del hielo muy por debajo los 0°C. La ablación es por lo general escasa, generada por ocasionales eventos cálidos que solo afectan la temperatura superficial. Parte importante de la pérdida de masa ocurre por sublimación y deflación, y en algunos casos, como en Antártica, por calving. La acumulación se da por precipitación nivosa, seca y de baja densidad. En Chile existen glaciares fríos en la Zona Norte, ubicados a gran altura con temperaturas de entre -8,5 a -20°C.
- Glaciares temperados: Un glaciar temperado posee en toda su masa la temperatura de fusión del hielo, la cual varía con la presión, afectada de forma directa por el espesor, densidad y aceleración de graverdad del hielo glaciar. La acumulación se da por variados procesos deposicionales, incluyendo nieve húmeda, seca, avalanchas laterales, granizo, y recongelamiento. La ablación ocurre por derretimiento, y en menor medida sublimación, calving y deflación. En Chile la mayoria de glaciares son temperados, siendo los encontrados en la Zona Austral ejemplos típicos.
- Glaciares politermales: Corresponden a glaciares cuya temperatura esta muy por debajo del punto de fusión, solo con la base de la lengua terminal alcanzando temperaturas cercanas al punto de fusión, generando cierto nivel de derretimiento estival y mayor deslizamiento basal. Este comportamiento se observa en algunos glaciares del ártico canadiense y de Svalbard (Noruega), no siendo detectado alguno en Chile.

A1.2. Modelo de flujo

Como un primer modelo de un glaciar, se considera una losa de hielo de lados paralelos con grosor H, descansando sobre un plano de pendiente α (Figura A1.1a). El largo y ancho de la losa es grande comparado con H. El peso de la columna de hielo perpendicular al plano tiene una componente $\rho gH\sin \alpha$ paralela al plano, donde ρ es la densidad y g la aceleración gravitacional. Esta componente se define como el stress impulsor, τ_d . Para llegar al equilibrio, fuerzas opuestas deben balancear este stress impulsor, siendo en la mayoría de glaciares el arrastre basal τ_b la más importante, referido a menudo como stress de cizalle basal o resistencia basal. De esta forma:

$$\tau_d = \rho g H \sin \alpha \qquad y \qquad \tau_b = f' \tau_d,$$
 (A1.1)

donde f' denota un número usualmente de orden uno.

Luego, una masa de hielo con pendiente superficial α , pero descansando sobre un plano horizontal, representa mejor una plataforma de hielo o la zona baja de un glaciar de montaña de gran tamaño (Figura A1.1b). Considerando el equilibrio de

Figura A1.1: Fuerzas gravitacionales que componen el *stress* impulsor: (a) el componente pendiente-abajo de la carga, (b) la fuerza del gradiente de presión, y (c) la combinación. Obtenido de Cuffey and Paterson (2010).

una columna ABCD en dirección normal al *plano-xz*, debido al comportamiento de fluido del hielo, una presión normal actúa sobre AB y CD con una magnitud dada aproximadamente por la cabecera hidrostática. La presión entonces incrementa desde cero en B a ρgH en A, donde AB = H. Integrando la presión obtenemos la fuerza normal en AB, o $\frac{1}{\rho}gH^2$. La fuerza normal en CD por tanto sería $\frac{1}{2}\rho gH^2 + d/dx[\frac{1}{2}\rho gH^2]\delta x$. La diferencia entre ambas es una fuerza horizontal hacia la derecha (el *stress* impulsor), nuevamente balanceado en parte por el arrastre basal:

$$\tau_d = -\rho g H \frac{dH}{dx} = \rho g H \tan \alpha \qquad \text{y} \qquad \tau_b = f' \tau_d,$$
(A1.2)

donde, como antes, f' denota un numero usualmente de orden uno. Un glaciar real no se ajusta del todo a cualquiera de esos simple casos, sin embargo la forma precisa tiene poca influencia en la fuerza que impulsa el flujo. En profundidad, en cualquier glaciar siempre existe un gradiente horizontal de cabecera hidrostática proporcional a $-dS dx = \tan \alpha$, donde S es la elevación de la superficie del hielo y α la pendiente superficial. Esto significa que una columna vertical siempre será empujada por un stress impulsor horizontal de magnitud $\tau_d = \rho g H \tan \alpha$, independiente de la pendiente del lecho. La gravedad por tanto siempre empuja un glaciar horizontalmente, en dirección de la pendiente superficial descendiente. La componente horizontal del arrastre basal y otras fuerzas opuestas deben balancear la horizontal τ_d .

Ahora, considerando el balance de fuerzas paralelas al lecho en una sección en

forma de cuña con lados perpendiculares al lecho glaciar (Figura A1.1b; Nye (1952)). Asumiendo una pequeña pendiente basal, se mide H perpendicular al lecho, entonces, en dirección pendiente abajo, la componente de peso $[\rho H \sin \beta] \delta x$ se suma a la fuerza de gradiente hidrostático (Ecuación A1.2), $-\rho g H [dH/dx] \delta x$, para dar una fuerza impulsora $\tau_d \delta x$. Nuevamente, τ_d es balanceado en parte por arrastre basal pendiente arriba $\tau_b \delta x$:

$$[\rho gH\sin\beta]\delta x - \rho gH[dH/dx]\delta x = f'\tau_b\delta x.$$
(A1.3)

Pero para ángulos pequeños $dH/dx = \beta - \alpha \text{ y sin } \beta = \beta$. Por tanto

$$\tau_d \approx \rho g H \alpha$$
 y $\tau_b = f' \tau_d.$ (A1.4)

Algunas de las varias implicaciones que estas fórmulas nos entregan son:

- El stress impulsor, y por tanto el stress de cizalle en el lecho, son determinados por la pendiente superficial. Así, el hielo tiende a fluir en la dirección de máxima pendiente superficial aún si el lecho se precipita en dirección opuesta.
- 2. Esto resulta en que lineas de flujo puedan ser determinadas desde un mapa de contornos de la superficie del hielo, provisto que "pendiente" se interprete como el valor medio sobre distancias varias veces el grosor del hielo. Rasgos de pequeña escala como hummocks no afectan el flujo.
- 3. Asumiendo perfecta plasticidad, podemos escribir

$$H = \frac{1}{f'}, \frac{\tau_o}{\rho_i g \alpha} \tag{A1.5}$$

Si $\tau_o = 100 k Pa$ y f' = 1, entonces $\tau_o / \rho_i g = 11m$. Con este valor, un estimado del grosor del hielo puede ser obtenido solo con mediciones de pendiente superficial.

4. La Ecuación A1.5 implica un valor aproximadamente constante para $H\alpha$. Por tanto un glaciar sería relativamente delgado donde la superficie es inclinada y grueso donde esta se aplana. Puntos de inflexión en la superficie corresponden a las cimas de colinas en el lecho rocoso. Además, esta relación implicaría ciertas formas generales para el perfil de glaciares.

A1.3. Trazas de grieta

Trazas de grietas del tipo vena tensional (Figura A1.2a) comúnmente ocurren dentro y bajo campos de grietas, extendiéndose desde, y formándose entre, grietas abiertas. En glaciares de valle se extienden lateralmente típicamente por decenas a cientos de metros, distancias mucho más largas que la mayoría de grietas abiertas. En consecuencia se sugiere que estas venas no solo se forman luego que grietas abiertas son cerradas, si no que también como las extensiones lateral y vertical de grietas actualmente abiertas (Goodsell et al., 2005). Este tipo de trazas pueden también ser divididas en dos grupos dependiendo si el plano de fractura posee o no crecimiento cristalográfico. Aquellas que no tienen crecimiento se desarrollan como fracturas discretas que no experimentan apertura, y por tanto representan una traza de grieta cerrada, las que en la superficie se presentan como delgadas trazas oscuras, que ocasionalmente experimentan ablación superficial incrementada, redondeando los bordes de la fractura. Aquellas venas con crecimiento cristalográfico también se desarrollan como planos de fractura discretos, sin embargo, elongados cristales interconectados de hielo grueso-limpio y comparativamente libre de burbujas se desarrollan perpendiculares a los margenes de la fractura, ocasionalmente con secuencias de burbujas atravesando al centro o a lo largo de los margenes de la fractura. Estas dos categorias representan miembros finales de un continuo, y aunque pueden desarrollarse como rasgos independientes no relacionados, una vena tensional inicialmente sin crecimiento cristalográfico puede desarrollar cristales al transportarse glaciar abajo hacia un régimen de stress diferente.

La presencia de tantas trazas de grieta en comparación a fracturas abiertas en muchos glaciares de valle, combinado con las observaciones de trazas localizadas dentro, o cerca de, áreas de grietas abiertas, sugiere que las venas tensionales pueden ocurrir como rasgos independientes, y no necesariamente experimentan alguna apertura (Hambrey and Lawson, 2000; Jennings and Hambrey, 2021). Volviendo a los modos de fractura, se entiende que el Modo I está limitado a una capa superficial comparativamente somera, el Modo II y III no requiere la separación física de las paredes de fractura dada su asociación con stresses de cizalle actuando paralelos al plano de fractura, así, este cizallamiento no está compensado con la profundidad, haciendo posible que fracturas Modo II o III sean sobreimpuestas en fracturas Modo I para penetrar a profundidades mucho mayores que las posibles para fracturas Modo I (Van der Veen, 1999).

Por su parte, las grietas rellenas de agua (Figura A1.2b) forman gruesas capas verticales de hielo limpio y grueso azulado con comparativamente pocas burbujas. Su geometría es curvilínea en la superficie glaciar, y pueden alcanzar anchos de hasta unos cuantos metros. En estos rasgos, cristales de hielo crecen perpendiculares el borde de la grieta al recongelarse el agua de derretimiento, formando grandes cristales que de combinan para formar una sutura donde se encuentran en el medio, a menudo definida por límites de cristales y trenes de burbujas. Desplazamiento cizallante de marcadores pasivos en cada lado del margen sugiere fallamiento de deslizamiento en el rumbo a lo largo del plano de fractura (e.g. Van der Veen, 1999). En algunos glaciares, pueden acumularse detritos en grietas rellenas de agua, proveyendo una fuente importante de incorporación de detritos englaciales. Así, se forman trazas de grietas rellenas de detritos donde una grieta es rellena de detrito supraglacial y subsecuentemente se cierra, un proceso común en glaciares cubiertos de detritos, donde estas grietas proveen una ruta para flujo de agua englacial (Benn et al., 2012).

A diferencia de las venas tensionales que pueden potencialmente propagarse a profundidad y son observadas regularmente en los morros de glaciares de valle, las trazas de grietas rellenas de agua pueden no siempre penetrar a tales profundidades. En circunstancias donde hay insuficiente aporte de agua de derretimiento para iniciar y mantener hidrofracturamiento, estas trazas de grieta pueden alcanzar profundidades solo similares a aquellas de grietas abiertas rellenas de aire. Así, estos rasgos pueden no sobrevivir por grandes distancias glaciar abajo debido a la ablación superficial (Jennings and Hambrey, 2021).

A1.4. Tipos de falla

Varios tipos diferentes de fallas han sido observados en glaciares dependiendo en los diferentes regímenes de stress presentes, equivalente a las convenciones utilizadas en geología estructural (Figura A1.3), y la geometría del valle glaciar, estos pueden definirse como:

 Fallas normales encontradas predominantemente a lo largo de los margenes laterales de un glaciar, resultando de extensión horizontal perpendicular al margen (Herbst et al., 2006), relacionadas algunas veces a colapso o fallamiento marginal al hielo (Phillips et al., 2013). Durante su formación inicial, los tensores de stress intermedio (σ₂) y mínimo (σ₃)

Figura A1.2: Arriba, diagrama esquemático que ilustra la formación de trazas de grieta del tipo vena tensional por recristalización, flechas azules y rojas indican extensión y compresión respectivamente: I) Hielo no deformado. II) Desarrollo de un plano de fractura (linea punteada) normal a la tasa de strain tensional principal. III) Formación de una capa de hielo limpio (área achurada), solución por presión (manchas negras) en límites de cristales favorablemente orientados con respecto a la tasa de strain compresivo principal y migración de agua (flechas negras) en intersecciones de 3 granos hacia la zona de fractura. IV) Desarollo de una segunda fractura con continuada migración de agua hacia la zona de fractura. Adaptado de (Hambrey et al., 1980). Abajo, fotografías: a) Vista en planta de trazas de grieta en el glaciar Trapridge, Yukón, Canadá, compuesta de hielo grueso limpio (azul) con una sutura central distintiva definida por burbujas de aire. b) Grandes grietas rellenas de agua congelada en un iceberg volcado en Flyvefjord, Groenlandia oriental. Obtenidas de (Jennings and Hambrey, 2021).

se orientan en la horizontal, paralelo y perpendicular al plano de falla respectivamente, con el tensor de stress máximo (σ_1) orientado verticalmente. Fallas normales se han observado también en el morro glaciar donde la masa de hielo no está más confinada por sus morrenas laterales, y en acantilados de hielo conde las paredes inferiores de grietas son desplazadas en el abrupto gradiente (Cuffey and Paterson, 2010).

- Fallas concéntricas son un tipo de falla normal cada vez más común que nace de la formación de cavidades subglaciales por agua de derretimiento al estancarse la lengua de un glaciar, llevando al colapso de la superficie del hielo.
- Fallas de deslizamiento en el rumbo se desarrollan donde la tensión horizontal y la compresión se orientan perpendiculares una a la otra en regímenes de stress donde los stresses principales máximo y mínimo (σ_1 y σ_3 respectivamente) residen en el plano

horizontal, y el tensor de stress intermedio σ_2 se orienta verticalmente (Modo III de fractura). También referidas como "fallas de desgarramiento", se observan a pequeña escala donde la falla corta y desplaza grietas y trazas de grieta. Estas fallas son usualmente fracturas lineales verticales, sin embargo, es más común que debilidades estructurales como trazas de grietas sean reorientadas y reactivadas como fallas de deslizamiento en el rumbo.

Fallas cabalgantes ocurren en áreas de compresión longitudinal, usualmente en o cerca del morro en respuesta a: (a) respuesta a rápico avance, donde hielo estancado o de lento movimiento obstruye el flujo, como ocurre en glaciares surgentes; (b) donde existe una obstrucción topográfica o pendiente reversa; o (c) donde hay un cambio glaciar-abajo desde condiciones del lecho húmedas a congeladas, como se da en glaciares politermales. Durante fallamiento cabalgante, los tensores de stress máximo (σ_1) e intermedio (σ_2) están en el plano horizontal, orientados perpendicular y paralelo a la fractura respectivamente, con el tensor mínimo (σ_3) orientado verticalmente. El movimiento es acomodado por un una relación de deslizamiento en el manteo; sin embargo, estudios observan que también existe una componente de deslizamiento en el rumbo, sugiriendo un régimen de stress transpesivo (Fleming et al., 2013; Lovell et al., 2015). En muchos glaciares se asume que estas fallas se desarrollan a lo largo de planos de debilidad pre-existentes, como trazas de grietas transversas transportadas glaciar abajo (Goodsell et al., 2005). Estas estructuras son especialmente relevantes a la hora de hablar del transporte de material detrítico desde posiciones basales de un glaciar a su superficie en su morro, muchas fracturas interpretadas como fallas cabalgantes comúnmente contienen detritos que tienen origen basal.

A1.5. Relieves erosivos

Formados por abrasión:

- Regiones erodadas corresponden a los rasgos abrasivos más extensos, son relieves de baja amplitud e irregulares producidos por la erosión de grandes regiones tales como el Escudo Laurentiano en Norteamérica. Usualmente se componen de una colección de rasgos rocosos alineados al flujo, cuencas rocosas, y formas de barlovento y sotavento (stoss and lee).
- Valles glaciales son dramáticos relieves lineales formados por la erosión causada por el flujo de hielo en glaciares de valle o bajo caudales de hielo en mantos y casquetes. La mayoría posee una sección transversal en forma de U, y un perfil longitudinal muy irregular con secciones cortas y abruptas intercaladas con secciones largas y planas. A veces el lecho de estos valles termina bajo en nivel del mar, constituyendo un valle glaciar ahogado por el mar conocido como fiordo.
- Domos y lomas se forman donde el flujo de hielo encuentra una obstrucción y al ser incapaz de destruirla, deja un cerro alargado en dirección del flujo. Se les conoce también

Strike-slip fault

Figura A1.3: Representación gráfica de los tres tipos de fallamiento en el hielo glaciar con la orientación de los principales tensores de stress en su formación (σ_1 -rojo-máximo, σ_2 -verde-intermedio, σ_3 -amarillo-mínimo). Modificado de (Fossen, 2010) en (Jennings and Hambrey, 2021).

como drumlins de roca o colinas alineadas y pueden alcanzar unos 100 m en tamaño.

- Rocas estriadas, pulidas y ranuradas se forman por la acción de material rocoso transportado por el flujo de hielo. Clastos grandes (de 1 cm o más) erosionan la roca creando estriaciones (cortes finos en forma de U) o ranuras (cortes de unos cuantos metros de profundidad y varios cientos de metros de largo), mientras que el material más fino, especialmente la fracción arcillosa, erosiona la roca puliendo su superficie.
- Formas moldeadas plásticamente son complejas y suaves formas (formas-p) encontradas en superficies rocosas. De origen debatible, se especula la abrasión glaciar, el movimiento de till saturado en la base o laderas de un glaciar, y la erosión por agua de derretimiento, especialmente aquella a alta presión bajo el glaciar.

Formados por abrasión y fracturamiento:

Circos son huecos formados en terreno montañoso, típicamente con forma de sillón. De variado tamaño, la forma clásica consiste en una cuenca profunda de roca, con una pared en la cabecera casi vertical y un borde o labio de roca en su frente, a menudo contiene un lago. Son formados por la acción combinada de hielo temperado y abundante agua de derretimiento. Se les considera indicadores indiscutibles de actividad glacial pasada. (foto)

- Formas de barlovento y sotavento se forman por la abrasión y arranque glaciar y son rasgos asimétricos alargados, siendo alineados en el barlovento (abrasión) y corrugados en el sotavento (arranque) (foto). Una forma común de este tipo de relieve son las rocas aborregadas, llamadas así por su similitud a la lana de un borrego, que pueden variar en largo desde decenas a pocos cientos de metros y se desarrollan mejor en rocas cristalinas diaclasadas.
- Peldaños de valle son laderas muy inclinadas y rocosas que marcan el limite de sobreprofundizaciones de valles glaciares. Se cree que se forman cuando el hielo se desliza sobre quiebres en la pendiente relacionados a afloramiento de rocas duras, haciendo que el hielo pierda contacto con el suelo y creando una cavidad donde los procesos de congelamiento-deshielo ayudan al rompimiento de bloques.

A2. Recursos satelitales

Figura A2.1: Imagen Google Earth del año 2013 utilizada para análisis.

Figura A2.2: Imagen Google Earth del año 2016 utilizada para análisis.

Figura A2.3: Imagen ESRI World Imagery del año 2021 utilizada para análisis.

Figura A2.4: Imagen ESRI World Imagery del año 2022 utilizada para análisis.

Figura A2.5: Vista en 3d del subcomplejo Cerro Blanco, donde se emplaza el glaciar Nevado. Se sobrepone la imágen ESRI World Imagery de 2022 sobre un DEM ALOS PALSAR de 2011.

Figura A2.6: Pendientes extraídas desde DEM ALOS PALSAR 2011, se muestra en delineado la extensión glaciar para 2013 (izquierda) y 2022 (derecha). En blanco la extensión de hielo limpio, en gris la extensión de hielo cubierto, y en negro la emergencia de lecho rocoso. Se representan con Modo de Mezcla raster tipo Pantalla los mapas de calor de grietas.

A3. Recursos fotográficos

Figura A3.1: Grietas de resquebrajamiento en la parte alta del glaciar. Fotografía propia.

Figura A3.2: Exposición de lecho rocoso en alcances inferiores del glaciar que se piensa podría ser un antiguo cono volcánico. Fotografía propia.

Figura A3.3: Aparición de un nuevo nunatak en medio de los alcances superiores del cuerpo de hielo. Fotografía propia.

Figura A3.4: Sucesiones de capas de material volcánico expuesto en la parte alta de la ladera oriental del glaciar. Fotografía propia.

Figura A3.5: Puente de hielo recubierto por detritos sobre el filo que separa ambas lenguas del glaciar. Fotografía propia.

A4. Datos de grietas medidas

Tipo	Azimuth	Dip Direction	Largo (m)	Х	Y	Altura
Grieta	101	191	150	284825	5920668	2851
Grieta	104	194	232	284825	5920659	2848
Grieta	97	187	47	284788	5920656	2845
Grieta	104	194	71	284826	5920648	2846
Grieta	97	187	199	284856	5920639	2848
Grieta	98	188	126	284818	5920637	2842
Grieta	98	188	133	284833	5920629	2843
Grieta	94	184	191	284863	5920622	2848
Grieta	106	196	89	284812	5920621	2840
Grieta	101	191	56	284821	5920613	2839
Grieta	95	185	140	284863	5920607	2845
Grieta	93	183	58	284840	5920595	2837
Grieta	320	230	68	284870	5920617	2848
Grieta	313	200	48	284870	5020580	2841
Crieta	165	255	40	204013	5020634	2854
Crista	166	255	77	204000	5020627	2004
Grieta	174	250	11 96	204090	5920037	2007
Grieta	1/4	204	80	204900	5920040	2001
Grieta	187	211	82	284917	5920641	2802
Grieta	159	249	33	284931	5920622	2859
Grieta	164	254	31	284939	5920619	2861
Grieta	168	258	39	284943	5920627	2861
Grieta	170	260	35	284948	5920631	2865
Grieta	178	268	72	284973	5920644	2875
Grieta	177	267	40	284978	5920645	2875
Grieta	181	271	53	284990	5920648	2878
Grieta	144	234	28	284898	5920547	2832
Grieta	154	244	29	284902	5920554	2837
Grieta	156	246	24	284905	5920560	2837
Grieta	145	235	43	284925	5920555	2842
Grieta	147	237	54	284940	5920547	2840
Grieta	137	227	165	285339	5921040	3139
Grieta	121	211	112	285309	5921125	3169
Grieta	102	192	26	285213	5921169	3173
Grieta	112	202	29	285239	5921153	3165
Grieta	123	213	40	285345	5921108	3174
Grieta	139	229	15	285368	5921087	3170
Grieta	158	248	43	285377	5921043	3155
Grieta	145	235	116	285410	5921042	3166
Grieta	151	241	89	285389	5921037	3152
Grieta	145	235	85	285389	5921006	3143
Grieta	151	241	77	285451	5921178	3171
Grieta	184	274	24	285450	5921236	3162
Grieta	148	238	53	285484	5921198	3165
Grieta	149	239	22	285472	5921207	3164
Grieta	141	231	19	285503	5921200	3159
Grieta	141	231	40	285524	5921178	3155
Grieta	131	221	57	285493	5921173	3165

Tabla A4.1: Mediciones de grietas Google Earth 2013

	I.		I			
Grieta	154	244	43	285479	5921244	3159
Grieta	150	240	48	285498	5921257	3150
Grieta	135	225	47	285520	5921218	3153
Grieta	128	218	29	285361	5920941	3111
Grieta	165	255	19	285371	5920915	3092
Grieta	145	235	63	285324	5920974	3102
Grieta	148	238	28	285374	5920891	3092
Grieta	175	265	70	285310	5920892	3057
Grieta	132	222	11	285354	5921086	3166
Grieta	109	199	53	285242	5921089	3127
Grieta	106	196	37	285292	5921075	3141
Grieta	132	222	132	285470	5921122	3177
Grieta	120	210	35	285314	5921056	3145
Grieta	127	217	58	285347	5921019	3136
Grieta	139	229	41	285301	5921020	3124
Grieta	138	228	132	285287	5921006	3115
Grieta	128	218	46	285265	5920994	3096
Grieta	155	245	49	285237	5921011	3084
Grieta	89	179	36	285276	5920986	3092
Grieta	115	205	296	285224	5920975	3051
Grieta	163	253	15	285319	5920944	3081
Grieta	172	262	12	285315	5920936	3074
Grieta	119	209	77	285206	5921058	3097
Grieta	123	213	77	285183	5921136	3132
Grieta	109	199	25	285202	5921127	3137
Grieta	90	180	23	285229	5921125	3150
Grieta	108	198	20	285226	5921115	3140
Grieta	83	173	12	285205	5921087	3102
Grieta	127	217	98	285110	5921119	3095
Grieta	128	218	26	285148	5921079	3085
Grieta	121	211	28	285158	5921077	3083
Grieta	123	213	40	285122	5921107	3088
Grieta	109	199	44	285108	5921099	3080
Grieta	103	193	56	285069	5921090	3082
Grieta	111	201	37	285108	5921086	3074
Grieta	121	211	15	285103	5921109	3087
Grieta	102	192	69	285043	5921051	3059
Traza de grieta	121	211	46	285139	5921130	3110
Traza de grieta	99	189	19	285134	5921118	3098
Grieta	114	204	147	285176	5921042	3085
Grieta	113	203	37	285108	5921069	3069
Grieta	125	215	8	285113	5921067	3072
Grieta	101	191	33	285115	5921061	3068
Grieta	103	193	14	285048	5921030	3048
Grieta	100	190	19	285058	5921036	3048
Grieta	98	188	28	285100	5920998	3024
Grieta	103	193	69	285129	5920989	3022
Grieta	98	188	43	285132	5920998	3032
Grieta	107	197	59	285122	5920984	3022
Grieta	128	218	26	285151	5920987	3029
Grieta	116	206	16	285096	5920984	3015
Grieta	112	202	28	285048	5920972	3008
Grieta	114	204	23	285075	5920958	2999
					-	

	Grieta	110	200	15	285094	5920950	2995
	Grieta	100	190	9	285116	5920937	2994
	Grieta	108	198	12	285120	5920932	2994
	Grieta	110	200	79	285048	5920946	2995
	Grieta	101	191	111	285072	5921211	3162
	Grieta	106	196	32	285076	5921212	3162
	Grieta	106	196	36	285111	5921206	3166
	Grieta	91	181	24	285039	5921231	3173
	Grieta	84	174	33	285070	5921256	3183
	Grieta	114	204	114	285135	5921228	3182
	Grieta	127	217	48	285196	5921195	3177
	Grieta	116	206	33	285182	5921054	3088
	Grieta	84	174	84	285013	5921098	3087
	Grieta	77	167	40	284985	5921080	3079
	Grieta	70	160	81	285012	5921122	3102
	Grieta	108	198	70	285128	5921224	3174
	Traza de grieta	274	184	117	285069	5921163	3126
	Grieta	131	221	25	284873	5920970	2992
	Grieta	83	173	94	284884	5920927	2974
	Grieta	154	244	25	284860	5920946	2981
	Grieta	134	224	27	284863	5920931	2975
	Grieta	95	185	10	284880	5920914	2966
	Grieta	98	188	13	284887	5920945	2983
	Grieta	94	184	14	284890	5920948	2983
	Grieta	97	187	15	284882	5920934	2977
	Traza de grieta	77	167	33	284896	5920941	2983
	Grieta	122	212	73	285186	5920866	2977
	Grieta	128	218	71	285197	5920875	2981
	Grieta	152	242	38	285228	5920837	2977
	Grieta	104	194	22	285137	5920953	3009
	Grieta	117	207	145	285198	5920926	3015
	Grieta	112	202	74	285180	5920927	3006
	Grieta	131	221	38	285218	5920911	3015
	Grieta	155	245	39	285276	5920896	3033
	Grieta	136	226	63	285267	5920870	3018
	Grieta	150	240	22	285285	5920926	3048
	Grieta	123	213	33	285138	5920802	2934
	Grieta	127	217	36	285140	5920818	2942
	Grieta	124	214	40	285172	5920860	2968
	Grieta	161	251	45	285203	5920799	2952
	Grieta	154	244	26	285148	5920705	2912
	Grieta	151	241	20	285138	5920705	2908
	Grieta	159	249	36	285007	5920860	2952
	Grieta	47	137	38	284919	5920844	2926
	Grieta	40	130	35	284937	5920861	2935
	Traza de grieta	154	244	26	285003	5920844	2946
	Traza de grieta	118	208	74	285029	5920820	2937
	Traza de grieta	111	201	68	285028	5920813	2930
	Traza de grieta	279	189	80	285012	5920809	2927
	Grieta	334	244	21	285040	5920808	2935
	Grieta	317	227	14	285051	5920813	2938
	Traza de grieta	100	190	9	284997	5920959	3004
	Traza de grieta	96	186	9	285004	5920953	3004
L	5		1	1	-		

Traza de grieta	92	182	30	285019	5920951	2995	
Traza de grieta	117	207	20	285088	5920945	2995	
Traza de grieta	96	186	58	285033	5920796	2924	
Grieta	337	247	70	285077	5920704	2903	
Grieta	338	248	50	285067	5920695	2900	
Grieta	334	244	25	285051	5920681	2897	
Traza de grieta	331	241	37	285333	5920893	3065	
Grieta	90	180	46	284924	5921045	3059	
Grieta	80	170	65	284956	5921002	3025	
Grieta	92	182	19	284926	5921041	3059	
Grieta	50	140	19	284956	5921045	3057	
Grieta	113	203	22	284840	5921009	3024	Ĺ
Grieta	112	202	7	284859	5921002	3009	
Grieta	111	201	18	284870	5920998	3009	
Grieta	121	211	11	284883	5920994	3010	
Grieta	89	179	29	284812	5921063	3050	
Grieta	93	183	18	284836	5921065	3057	
Grieta	95	185	17	284846	5921070	3061	
Grieta	93	183	76	284804	5921029	3038	
Traza de grieta	79	169	38	284820	5921039	3039	
Grieta	77	167	10	284771	5921004	3020	
Grieta	295	205	45	284812	5920916	2962	
Grieta	104	194	35	284794	5920901	2942	
Grieta	139	229	19	284849	5920902	2954	
Grieta	117	207	36	284869	5920891	2956	
Grieta	86	176	121	284823	5920876	2935	
Grieta	93	183	78	284829	5920865	2929	
Grieta	134	224	50	284847	5920883	2946	
Grieta	106	196	73	284813	5920891	2946	
Grieta	90	180	112	284732	5920905	2946	
Grieta	83	173	56	284722	5920918	2952	
Grieta	99	189	30	284754	5920920	2950	
Grieta	100	190	65	284774	5920921	2955	
Grieta	86	176	53	284790	5920930	2965	
Grieta	83	173	24	284781	5920858	2919	
Grieta	140	230	14	284798	5920844	2916	
Grieta	146	236	12	284801	5920846	2916	
Grieta	89	179	38	284710	5920728	2855	
Grieta	92	182	61	284760	5920722	2860	
Traza de grieta	117	207	123	284770	5920601	2828	
Traza de grieta	115	205	92	284765	5920616	2834	
Traza de grieta	300	210	96	284697	5920631	2828	
Traza de grieta	113	203	54	284747	5920572	2820	
Traza de grieta	113	203	59	284762	5920589	2825	
Traza de grieta	105	195	51	284792	5920562	2820	Ĺ
Traza de grieta	121	211	37	284879	5920579	2841	
Traza de grieta	119	209	33	284867	5920575	2835	
Traza de grieta	103	193	41	284817	5920587	2831	
Traza de grieta	279	189	42	284821	5920582	2831	
Grieta	319	229	71	284999	5920576	2858	
Grieta	319	229	57	284992	5920566	2855	
Grieta	126	216	40	285009	5920607	2876	
Grieta	79	169	35	284556	5920701	2828	
1	1	1	1	1	l i i i i i i i i i i i i i i i i i i i	I	ł.

Grieta	89	179	25	284601	5920713	2838
Grieta	55	145	82	284767	5920568	2822
Grieta	59	149	97	284758	5920583	2824
Grieta	198	288	62	284768	5920536	2811
Grieta	16	286	68	284789	5920548	2815
Traza de grieta	126	216	103	284855	5920506	2803
Grieta	89	179	42	284569	5920662	2818
Grieta	112	202	28	284606	5920661	2821
Grieta	94	184	42	284577	5920646	2815
Grieta	93	183	12	284581	5920677	2824
Grieta	83	173	28	284576	5920694	2831
Grieta	88	178	42	284607	5920701	2833
Grieta	89	179	39	284621	5920668	2825
Grieta	75	165	33	284585	5920693	2832
Grieta	272	182	29	284599	5920638	2814
Grieta	99	189	23	284607	5920629	2814
Grieta	94	184	30	284613	5920647	2817
Grieta	91	181	32	284603	5920656	2821
Grieta	90	180	22	284563	5920746	2847
Grieta	83	173	58	284582	5920755	2856
Grieta	103	193	27	284586	5920737	2847
Traza de grieta	86	176	20	284582	5920640	2811
Traza de grieta	92	182	19	284570	5920650	2814
Traza de grieta	91	181	23	284586	5920669	2824
Traza de grieta	91	181	22	284596	5920651	2817
Traza de grieta	88	178	22	284613	5920660	2821
Grieta	86	176	54	284622	5920565	2795
Grieta	88	178	55	284645	5020561	2796
Grieta	91	181	23	284615	5920555	2790
Grieta	80	179	33	284640	5020555	2704
Grieta	84	174	44	284669	5920552	2796
Grieta	00	189	32	204000	5020547	2700
Grieta	100	100	67	284675	5020540	2792
Grieta	100	103	59	284675	5020534	2705
Grieta	99	189	44	284626	5920535	2795
Grieta	95	185	53	284644	5020503	2701
Grieta	83	173	17	284625	5020520	2731
Traza do griota	116	206	55	284660	5020515	2703
Traza de grieta	86	176	22	284656	5020530	2793
Traza de grieta	105	105	22	284612	5020524	2780
Traza de grieta	103	195	78	284615	5020524	2780
Traza de grieta	102	192	82	284615	5020507	2109
Traza de grieta	109	199	45	204015	5020514	2101
Traza de grieta	111	201	40 62	204013	5020314	2101
Crists	87	201	40	204014	5020560	2704
Grieta		102	40	204034	5020560	2194
Crieta	102	192	0	204012	5020550	2700
Grieta	100	170	10	204000	5020559	2790
Grieta	00	170	20	204044	5020502	2192
Grieta	104	104	15	204409	5020549	2118
Grieta	104	194	15	284465	5920541	2778
Grieta	107	197	19	284503	5020555	2702
Grieta	85	175	21	284550	5920555	2793
Grieta	78	168	17	284554	5920561	2793

a		101				
Grieta	94	184	61	284518	5920533	2780
Grieta	105	195	21	284525	5920527	2779
Grieta	102	192	7	284527	5920537	2782
Grieta	98	188	56	284530	5920520	2779
Grieta	106	196	10	284516	5920527	2777
Grieta	102	192	25	284545	5920525	2781
Grieta	88	178	70	284560	5920509	2782
Grieta	117	207	32	284512	5920512	2773
Grieta	95	185	15	284521	5920514	2773
Grieta	100	190	64	284529	5920518	2779
Grieta	96	186	30	284541	5920499	2773
Grieta	90	180	56	284567	5920495	2778
Grieta	103	193	47	284550	5920486	2771
Grieta	98	188	44	284576	5920484	2778
Grieta	119	209	45	284506	5920503	2767
Grieta	96	186	37	284551	5920477	2767
Grieta	98	188	63	284583	5920475	2774
Grieta	111	201	12	284569	5920480	2774
Grieta	107	197	31	284540	5920473	2765
Grieta	100	190	47	284575	5920464	2770
Grieta	99	189	25	284558	5920473	2767
Grieta	100	190	29	284587	5920469	2778
Grieta	106	196	12	284532	5920484	2767
Grieta	128	218	32	284504	5920508	2771
Grieta	106	196	41	284546	5920465	2761
Grieta	104	194	29	284560	5920464	2767
Grieta	104	194	45	284588	5920454	2774
Crieta	104	100	45	284570	5020454	2766
Grieta	100	190	28	284503	5020401	2765
Crieta	112	203	20	284541	5020440	2761
Grieta	109	108	29	204041	5020455	2701
Grieta	70	190		204047	5920457	2704
Grieta	10	108	29	204422	5920475	2740
Grieta	02	172	20	204420	5920407	2745
Grieta	82	172	14	284415	5920456	2737
Grieta	18	108	17	284418	5920452	2731
Grieta	89	179	30	284434	5920421	2729
Grieta	88	178	33	284436	5920429	2734
Grieta	81	171	27	284441	5920436	2734
Grieta	94	184	29	284433	5920414	2719
Grieta	91	181	15	284460	5920476	2753
Grieta	86	176	21	284460	5920484	2757
Grieta	86	176	24	284502	5920476	2760
Grieta	99	189	33	284505	5920458	2757
Grieta	96	186	21	284504	5920451	2753
Grieta	106	196	51	284504	5920448	2753
Grieta	87	177	20	284501	5920465	2757
Grieta	92	182	26	284508	5920434	2748
Grieta	89	179	20	284516	5920437	2750
Grieta	103	193	21	284513	5920426	2745
Grieta	107	197	19	284508	5920419	2743
Grieta	85	175	22	284502	5920472	2760
Traza de grieta	157	247	42	284495	5920485	2761
Grieta	96	186	25	284508	5920462	2757

Traza de grieta	120	210	94	284544	5920429	2753
Traza de grieta	151	241	46	284508	5920465	2757
Traza de grieta	144	234	71	284508	5920479	2763
Traza de grieta	115	205	82	284544	5920419	2748
Traza de grieta	106	196	73	284565	5920427	2753
Traza de grieta	292	202	55	284580	5920418	2756
Traza de grieta	288	198	56	284576	5920430	2761
Traza de grieta	330	240	53	284529	5920471	2763
Traza de grieta	114	204	25	284543	5920450	2757
Grieta	288	198	20	284576	5920447	2766
Grieta	91	181	20	284502	5920536	2778
Grieta	197	287	122	284526	5920480	2767
Grieta	193	283	88	284519	5920490	2765
Grieta	1	271	56	284715	5920506	2802
Grieta	35	125	21	284721	5920527	2802
Grieta	123	213	21	284690	5920523	2796
Grieta	183	210	65	284700	5020020	2708
Grieta	180	270	86	284703	5020490	2798
Crieta	251	210	63	284704	5020434	2780
Grieta	330	201	03	284707	5020428	2782
Grieta	355	245	23	204732	5020415	2782
Grieta	227	205	20	204713	5020417	2705
Grieta	199	247	29	204723	5020400	2102
Grieta	162	272	12	204097	5020464	2790
Grieta	170	240	50	204095	5020431	2101
Grieta	164	202	75	284095	5020430	2780
Grieta	104	204	10	204703	5020205	2780
Grieta	226	249	21	204712	5020393	2119
Grieta	220	240	34	204722	5020270	2119
Grieta	224	249	24	204129	5020379	2719
Grieta	254	244	29	204730	5920364	2700
Grieta		204	10	204720	5920418	2104
Grieta	344	204	31	284722	5920437	2181
Grieta		240	40	204745	5920555	2111
Grieta	344	254	29 60	284740	5920340 5020224	2774
Grieta	042 007	202	00	204731	5920554 F000202	2771
Grieta	337	247	44	284727	5920323	2769
Grieta	240	243	13	284729	5920322	2709
Grieta	340	250	29	284722	5920314	2707
Grieta	331	241	16	284715	5920357	2773
Grieta	162	252	69	284694	5920405	2778
Grieta	349	259	51	284682	5920423	2780
Grieta	312	222	19	284708	5920336	2764
Grieta	313	223	26	284711	5920343	2771
Grieta	343	253	24	284723	5920318	2769
Grieta	98	188	68	284444	5920374	2704
Grieta	99	189	86	284448	5920360	2702
Grieta	100	190	52	284452	5920361	2702
Grieta	102	192	39	284431	5920380	2707
Grieta	105	195	18	284422	5920374	2701
Grieta	104	194	33	284441	5920367	2704
Grieta	101	191	39	284457	5920368	2707
Grieta	117	207	44	284422	5920358	2696
Grieta	115	205	16	284418	5920363	2693

Grieta	106	196	67	284445	5920356	2699	Ĺ
Grieta	101	191	69	284455	5920349	2698	
Grieta	135	225	38	284411	5920348	2689	
Grieta	95	185	26	284433	5920391	2713	
Grieta	100	190	15	284430	5920387	2707	
Traza de grieta	106	196	34	284456	5920339	2695	
Traza de grieta	120	210	64	284427	5920339	2689	
Traza de grieta	128	218	67	284417	5920328	2685	
Traza de grieta	133	223	52	284416	5920335	2685	
Traza de grieta	138	228	27	284415	5920354	2693	
Grieta	87	177	27	284387	5920321	2675	
Traza de grieta	126	216	38	284424	5920309	2684	
Grieta	90	180	42	284391	5920318	2675	
Grieta	91	181	23	284363	5920312	2669	
Grieta	96	186	21	284384	5920307	2672	
Grieta	346	256	31	284390	5920299	2670	
Grieta	89	179	52	284388	5920275	2667	Ĺ
Grieta	89	179	51	284404	5920290	2672	
Grieta	104	194	17	284358	5920304	2667	
Grieta	97	187	26	284381	5920298	2668	
Grieta	146	236	48	284407	5920306	2675	
Grieta	92	182	58	284391	5920269	2667	
Grieta	86	176	120	284398	5920263	2669	
Grieta	90	180	53	284348	5920235	2652	
Grieta	79	169	108	284431	5920242	2673	
Grieta	76	166	65	284433	5920257	2675	
Grieta	90	180	36	284411	5920242	2670	
Grieta	75	165	88	284440	5920255	2678	
Grieta	85	175	34	284342	5920231	2648	
Grieta	111	201	25	284344	5920219	2645	
Grieta	100	190	23	284341	5920216	2645	
Traza de grieta	161	251	41	284387	5920285	2669	
Traza de grieta	164	254	35	284388	5920288	2669	
Traza de grieta	316	226	19	284371	5920290	2666	
Traza de grieta	334	244	20	284368	5920287	2664	
Traza de grieta	81	171	23	284357	5920239	2652	
Traza de grieta	138	228	17	284402	5920294	2673	
Traza de grieta	146	236	15	284400	5920291	2673	
Traza de grieta	328	238	54	284403	5920201	2678	
Traza de grieta	314	200	37	284489	5920220	2694	
Traza de grieta	312	224	51	284503	5920282	2696	
Traza de grieta	306	216	31	284497	5920280	2696	
Traza de grieta	302	210	53	284520	5920282	2698	
Traza de grieta	194	212	37	284508	5920202	2697	
Traza de grieta	305	214	116	284550	5920291	2031	
Traza de grieta	303	210	63	284559	5920303	2711 2710	
Grieta	131	215	70	284609	5920204	2725	
Grieta	288	108	18	284446	5920234	2690	
Grieta	105	105	18	284450	5920319	2690	
Grieta	0/	18/	76	284270	5920320	2655	
Criota	94 00	180	17	204019	5020220	2000	
Grieta	90 Q1	181	10	204309 284226	5920219	2000 2630	
Grieta	118	208	10	284350	5920201	2059	
Gileta	110	200	54	204307	0920204	2007	ĺ.

Grieta	94	184	12	284329	5920184	2632
Grieta	93	183	32	284390	5920209	2654
Grieta	93	183	63	284378	5920230	2658
Grieta	88	178	23	284359	5920188	2643
Grieta	89	179	18	284362	5920195	2646
Grieta	88	178	18	284336	5920198	2639
Grieta	107	197	50	284363	5920112	2625
Grieta	87	177	22	284353	5920123	2625
Grieta	159	249	49	284392	5920071	2621
Grieta	168	258	50	284405	5920088	2626
Grieta	153	243	61	284398	5920082	2626
Grieta	166	256	29	284413	5920090	2627
Grieta	167	257	60	284402	5920093	2629
Grieta	166	256	25	284420	5920077	2624
Grieta	170	260	18	284426	5920087	2628
Grieta	134	224	46	284386	5920068	2621
Grieta	135	225	65	284325	5920036	2594
Grieta	86	176	38	284315	5920026	2586
Grieta	156	246	39	284330	5920018	2590
Grieta	109	199	26	284325	5920002	2583
Grieta	351	261	14	284333	5919998	2583
Grieta	296	206	17	284336	5920060	2605
Grieta	337	247	15	284362	5920036	2606
Grieta	116	206	37	284350	5920076	2613
Grieta	287	197	35	284360	5920078	2619
Grieta	288	198	18	284322	5920058	2600
Grieta	88	178	64	284231	5919946	2529
Grieta	89	179	60	284237	5919952	2532
Grieta	20	290	23	284247	5919947	2535
Grieta	339	249	17	284354	5920036	2603
Grieta	327	237	20	284346	5920029	2598
Grieta	118	208	198	284356	5920866	2856
Grieta	124	214	37	284335	5920867	2859
Grieta	125	215	52	284357	5920862	2845
Grieta	132	222	64	284399	5920823	2832
Grieta	127	217	47	284415	5920833	2841
Grieta	120	210	29	284339	5920856	2850
Grieta	128	218	74	284376	5920833	2831
Grieta	123	213	23	284334	5920854	2854
Grieta	137	227	31	284411	5920815	2833
Grieta	137	227	46	284443	5920841	2857
Grieta	327	237	90	284356	5920809	2820
Grieta	159	249	46	284400	5920854	2849
Grieta	279	189	26	284403	5920791	2823
Grieta	307	217	58	284435	5920831	2852
Grieta	139	229	47	284417	5920859	2851
Grieta	122	212	19	284418	5920852	2845
Grieta	152	242	40	284438	5920818	2847
Grieta	135	225	51	284460	5920831	2861
Grieta	144	234	30	284467	5920832	2861
Grieta	160	254	10	284452	5920703	2844
Grieta	348	258	26	284460	5920795	2848
Grieta	351	261	14	284457	5920804	2848
Gried	001	201	1.4	201101	0020004	2040

Gr	rieta	357	267	26	284408	5920777	2814	
Gr	rieta	298	208	92	284382	5920816	2826	
Gr	rieta	138	228	41	284304	5920796	2799	
Gr	rieta	352	262	43	284502	5920837	2868	
Gr	rieta	355	265	43	284513	5920837	2871	
Gr	rieta	318	228	51	284476	5920838	2864	
Gr	rieta	317	227	16	284476	5920845	2870	
Gr	rieta	320	230	19	284485	5920816	2862	
Gr	rieta	327	237	19	284481	5920827	2859	
Gr	rieta	322	232	36	284488	5920844	2872	
Gr	rieta	338	248	28	284546	5920935	2917	
Gr	rieta	316	226	22	284564	5920964	2934	
Gr	rieta	100	190	30	284375	5920976	2914	
Gr	rieta	117	207	28	284408	5920950	2899	
Traza	de grieta	110	200	26	284425	5920966	2906	
Traza	le grieta	119	209	43	284474	5920946	2902	
G	rieta	96	186	63	284346	5920948	2897	
G	rieta	86	176	26	284290	5920928	2889	
G	rieta	94	184	62	284390	5921018	2934	
G	rieta	98	188	59	284465	5921021	2937	
G	rieta	94	184	22	284507	5921017	2944	
G	rieta	96	186	14	284426	5921008	2927	
G	rieta	161	251	68	284325	5920760	2791	
G	rieta	144	234	43	284334	5920765	2791	
G	rieta	150	240	61	284294	5920763	2787	
	riota	171	240	42	284307	5920767	2788	
	riota	151	201	20	204007	5920001	2583	
	riota	317	241	20	284310	5010004	2505	
	riota	207	227	10	284319	5020000	2578	
	riota	125	201	16	284913	5010060	2570	
	ioto	111	220	10	284244	5010064	2544	
	ieta	211	201	15	284200	5010017	2541	
	ieta	147	221	10	204199	5919917	2507	
G	ieta	147	237	20 17	204204	5010077	2500	
G	ieta	100	249	17	204294	5919977	2001	
G	ieta	109	199	49	204210	5920750	2796	
G	ieta	130	220	102	204292	5920745	2700	
G	ieta	109	229	105	204201	5920759	2100	
G	ieta	123	213	140	204204	5920729	2701	
G	ieta	04	1/4	104	204204	5920757	2701	
	rieta	291	201	(8 51	284171	5920733	27762	
G	ieta	201	200	31	204220	5920715	2705	
G	ieta	301	211	30	284245	5920727	2709	
G	neta	1/4	264	29	284257	5920699	2762	
Gr	neta	118	208	87	284265	5920690	2758	
Gr	rieta	163	253	22	284253	5920683	2756	
Gr	neta	342	252	77	284257	5920680	2756	
Gr	neta	45	135	46	284219	5920710	2761	
Gr	neta	239	149	60	284186	5920650	2729	
Gr	neta	77	167	50	284157	5920651	2726	
Gr	neta	65	155	60	284163	5920663	2732	
Gr	neta	289	199	11	284201	5920656	2738	
Gr Gr	neta	271	181	23	284195	5920661	2736	
G1	rieta	280	190	25	284168	5920666	2738	l

Grieta	240	150	59	284163	5920643	2726
Grieta	243	153	28	284162	5920647	2726
Grieta	237	147	33	284148	5920642	2726
Grieta	277	187	17	284204	5920673	2745
Grieta	55	145	45	284241	5920710	2765
Grieta	40	130	47	284193	5920684	2749
Grieta	289	199	19	284192	5920669	2742
Grieta	323	233	31	284267	5920636	2736
Grieta	294	204	16	284266	5920675	2752
Grieta	323	233	13	284287	5920663	2750
Grieta	306	216	9	284290	5920665	2756
Grieta	317	227	19	284284	5920657	2750
Grieta	297	207	17	284269	5920678	2758
Grieta	298	208	18	284255	5920690	2756
Grieta	138	228	52	284291	5920706	2775
Grieta	1	271	11	284315	5920694	2769
Grieta	346	256	21	284220	5920571	2707
Grieta	341	251	19	284215	5920565	2704
Grieta	333	243	17	284266	5920617	2733
Grieta	140	230	41	284179	5920540	2700
Grieta	131	221	28	284173	5920541	2703
Grieta	118	208	38	284167	5920538	2699
Grieta	117	207	28	284162	5920534	2699
Grieta	115	205	24	284185	5920553	2702
Grieta	102	192	11	284186	5920558	2705
Grieta	84	174	16	284198	5920555	2704
Grieta	111	201	29	284160	5920529	2699
Grieta	157	247	16	284152	5920504	2691
Grieta	148	238	16	284147	5920499	2687
Traza de grieta	123	213	30	284183	5920546	2703
Grieta	168	258	14	284184	5920520	2697
Grieta	339	249	9	284179	5920517	2697
Grieta	73	163	22	284185	5920525	2696
Grieta	89	179	15	284154	5920510	2691
Grieta	321	231	30	284152	5920518	2695
Grieta	293	201	19	284147	5920528	2698
Grieta	26	296	54	284082	5920564	2697
Grieta	10	280	39	284104	5920598	2712
Grieta	21	200	71	284113	5920594	2712
Grieta	15	285	51	284124	5920585	2710
Grieta	18	288	32	284093	5920585	2710
Grieta	11	281	30	284133	5920575	2707
Traza de grieta	10	280	30	284179	5920624	2701
Grieta	71	161	78	284076	5920657	2738
Grieta	74	164	67	284078	5920646	2729
Grieta	72	162	35	284066	5920637	2724
Grieta	71	161	56	284082	5920632	2729
Grieta	70	160	91	284047	5920600	9715
Grieta	84	174	<u>4</u> 1	284060	5920616	2718
Grieta	101	101	38 41	284449	5021015	2110
Grieta	101	131	00	204442	0021010	2000

Tipo	Azimuth	Dip Direction	Largo (m)	Х	Y	Altura
Grieta	138	228	67	285123	5920817	2943
Grieta	143	233	91	285064	5920839	2951
Grieta	132	222	53	285137	5920783	2931
Grieta	154	244	109	285308	5920937	3063
Grieta	146	236	79	285296	5921026	3120
Grieta	122	212	166	285246	5921049	3109
Grieta	103	193	67	285301	5920984	3101
Grieta	111	201	167	285233	5921122	3150
Grieta	101	191	56	285201	5921084	3102
Grieta	121	211	101	285233	5921095	3128
Grieta	126	216	137	285299	5921053	3135
Grieta	116	206	84	285438	5921116	3176
Grieta	142	232	51	285411	5921066	3176
Grieta	140	230	66	285314	5921070	3150
Grieta	147	237	118	285360	5921027	3140
Grieta	335	245	47	285390	5921008	3143
Grieta	354	264	95	285485	5921005	3168
Grieta	162	252	92	285453	5921004	3163
Grieta	310	220	107	285453	5921081	3177
Grieta	141	231	174	285472	5921064	3174
Grieta	130	220	56	285495	5921133	3170
Grieta	112	202	30	285430	5921137	3174
Grieta	125	215	52	285464	5921123	3177
Grieta	139	229	70	285505	5921075	3170
Grieta	124	214	27	285393	5921102	3176
Grieta	327	237	45	285423	5921076	3177
Grieta	142	232	47	285451	5921054	3176
Grieta	345	255	32	285428	5920976	3139
Grieta	331	241	43	285394	5921061	3165
Grieta	338	248	40	285383	5921056	3161
Grieta	319	229	24	285366	5921050	3151
Grieta	136	226	28	285340	5920980	3114
Grieta	148	238	58	285327	5920987	3108
Grieta	172	262	32	285175	5921166	3164
Grieta	146	236	92	285357	5920936	3102
Grieta	158	248	80	285369	5920978	3125
Grieta	146	236	65	285355	5920979	3119
Grieta	135	225	98	285215	5920979	3047
Grieta	128	218	78	285208	5920963	3027
Grieta	142	232	39	285140	5920699	2906
Grieta	124	214	63	285171	5920769	2934
Grieta	171	261	25	285083	5920756	2917
Grieta	160	250	35	285089	5920725	2904
Grieta	160	250	164	285067	5920740	2905
Grieta	162	252	65	285044	5920746	2904
Grieta	162	252	91	285070	5920708	2901
Grieta	166	256	70	285021	5920727	2888
Grieta	173	263	49	285025	5920680	2890
Grieta	157	247	68	285054	5920688	2897
Grieta	160	250	40	285070	5920681	2899

 Tabla A4.2: Mediciones de grietas Google Earth 2016

Grieta	168	258	23	285064	5920684	2899
Grieta	168	258	56	285099	5920654	2894
Grieta	160	250	45	285106	5920681	2898
Grieta	164	254	47	285107	5920648	2891
Grieta	158	248	58	285187	5920813	2951
Grieta	147	237	83	285229	5920835	2977
Grieta	140	230	46	285184	5920845	2962
Grieta	149	239	31	285213	5920835	2970
Grieta	164	254	26	285215	5920789	2956
Grieta	152	242	37	285207	5920787	2951
Grieta	66	156	170	284882	5920818	2910
Grieta	182	272	73	284975	5920643	2875
Grieta	99	189	51	285060	5920914	2983
Grieta	120	210	21	285032	5920926	2981
Traza de grieta	83	173	63	285012	5920943	2995
Grieta	83	173	141	284983	5920990	3022
Grieta	55	145	83	284966	5921031	3052
Grieta	98	188	91	285068	5921052	3055
Grieta	71	161	20	284983	5921032	3054
Crieta	114	204	20	285070	5021059	3060
Grieta	114	204	40	285086	5021000	3000
Grieta	108	205	149	20000	5021070	2076
Grieta	100	190	142	200110	5921079	2084
Grieta	122	212	122	200102	5921096	3084
Grieta	108	198	67	285217	5921051	3099
Falla	89	179	49	285249	5921143	3167
Grieta	101	191	41	284928	5921121	3100
Grieta	83	173	111	284837	5921075	3061
Grieta	85	175	142	284819	5921030	3039
Grieta	107	197	77	284847	5921017	3035
Grieta	74	164	25	284770	5920995	3011
Grieta	119	209	134	284825	5921002	3016
Grieta	73	163	49	284793	5921029	3036
Grieta	80	170	23	284792	5920995	3015
Grieta	98	188	23	284805	5920999	3016
Grieta	134	224	43	284849	5920966	2993
Grieta	70	160	22	284766	5920982	3000
Grieta	125	215	20	284843	5920952	2980
Grieta	72	162	103	284912	5920956	2995
Grieta	90	180	93	284798	5920922	2959
Grieta	91	181	59	284901	5920932	2982
Grieta	172	262	71	284966	5920629	2868
Grieta	184	274	16	284958	5920653	2871
Grieta	163	253	35	284964	5920607	2863
Grieta	167	257	71	284953	5920619	2863
Grieta	196	286	36	284908	5920650	2861
Grieta	190	280	84	284897	5920638	2860
Grieta	192	282	35	284894	5920657	2861
Grieta	183	273	64	284879	5920632	2854
Traza de grieta	178	268	50	284886	5920611	2852
Traza de grieta	176	266	32	284956	5920624	2863
Grieta	165	255	60	284944	5920609	2859
Grieta	184	274	42	284899	5920618	2857
Grieta	103	193	103	284809	5920658	2846

Grieta	95	185	66	284846	5920654	2850	
Grieta	101	191	56	284803	5920650	2843	
Grieta	118	208	52	284782	5920649	2841	
Grieta	89	179	91	284835	5920643	2848	
Grieta	91	181	13	284850	5920646	2850	
Grieta	106	196	38	284773	5920645	2841	
Grieta	88	178	109	284848	5920634	2848	
Grieta	97	187	127	284825	5920628	2843	
Grieta	86	176	51	284840	5920627	2843	
Grieta	91	181	45	284833	5920619	2841	
Grieta	170	260	33	284859	5920612	2842	
Grieta	86	176	176	284874	5920617	2851	
Grieta	86	176	71	284909	5920631	2860	
Grieta	132	222	24	284770	5920637	2837	
Grieta	94	184	58	284844	5920607	2840	
Grieta	87	177	19	284805	5920605	2836	
Grieta	91	181	30	284834	5920604	2839	
Grieta	82	172	43	284917	5920601	2852	
Grieta	85	175	60	284923	5920613	2857	
Grieta	186	276	77	284910	5920618	2858	
Grieta	197	287	33	284914	5920612	2856	
Grieta	195	285	38	284917	5920606	2856	
Grieta	150	240	36	284913	5920547	2835	
Grieta	151	241	23	284914	5920552	2835	
Grieta	156	246	20	284928	5920564	2842	
Grieta	190	280	58	284729	5920500	2801	
Grieta	184	274	18	284729	5920475	2796	
Grieta	168	258	86	284732	5920407	2782	
Grieta	187	277	59	284715	5920486	2798	
Grieta	169	259	85	284723	5920417	2784	
Grieta	170	260	83	284712	5920416	2783	
Grieta	175	265	57	284706	5920418	2782	
Grieta	184	200	25	284708	5920480	2796	
Grieta	167	214	20 56	284700	5920414	2780	
Traza de grieta	182	272	28	284704	5920495	2798	
Grieta	180	270	20	284721	5920488	2798	
Grieta	182	272	30	284716	5920476	2795	
Traza de grieta	334	244	43	284697	5920343	2768	
Traza de grieta	329	239	20	284729	5920351	2700	
Traza de grieta	323	233	18	284736	5920368	2779	
Traza de grieta	348	258	58	284739	5920418	2785	
Grieta	357	267	18	284719	5920478	2798	
Traza de grieta	88	178	26	284760	5920498	2802	
Grieta	86	176	35	284833	5920599	2836	
Traza de grieta	81	171	31	284849	5920594	2839	
Grieta	96	186	97	284701	5920708	2849	
Grieta	92	182	79	284653	5920698	2841	
Grieta	77	167	52	284627	5920717	2845	
Grieta	79	169	75	284593	5920663	2891	
Grieta	84	174	31	284611	5920678	2825	
Grieta	78	168	17	284605	5920660	2821	
Traza de grieta	90	180	51	284633	5920657	2820	
Grieta	90 90	180	30	284617	5920636	2813	
Gileta	0	1 100	0.0	201011	0020000	2010	L

Grieta	77	167	41	284627	5920648	2816
Grieta	93	183	62	284641	5920690	2832
Traza de grieta	108	198	57	284738	5920675	2842
Traza de grieta	101	191	64	284709	5920701	2846
Traza de grieta	207	297	81	284714	5920652	2832
Grieta	106	196	33	284661	5920668	2831
Grieta	74	164	22	284675	5920540	2795
Traza de grieta	39	129	118	284709	5920573	2809
Grieta	70	160	28	284671	5920549	2796
Traza de grieta	59	149	27	284693	5920538	2797
Traza de grieta	132	222	38	284680	5920534	2795
Traza de grieta	132	222	22	284683	5920537	2795
Grieta	54	144	50	284695	5920533	2797
Traza de grieta	87	177	72	284872	5920574	2837
Traza de grieta	88	178	72	284866	5920582	2839
Grieta	81	171	16	284655	5920556	2797
Grieta	86	176	48	284568	5920499	2778
Grieta	87	177	18	284519	5920526	2777
Grieta	92	182	35	284543	5920519	2781
Grieta	98	188	21	284529	5920536	2782
Grieta	87	177	51	284573	5920483	2778
Grieta	88	178	55	284557	5920513	2779
Grieta	86	176	32	284567	5920488	2774
Grieta	76	166	14	284587	5920496	2783
Grieta	90	180	25	284572	5920471	2774
Grieta	85	175	27	284584	5920477	2774
Grieta	87	177	12	284597	5920494	2785
Traza de grieta	314	224	44	284550	5920443	2759
Grieta	120	210	16	284526	5920425	2747
Grieta	88	178	34	284537	5920455	2761
Grieta	98	188	48	284455	5920381	2713
Grieta	104	194	35	284450	5920371	2707
Grieta	107	197	61	284452	5920365	2702
Grieta	106	196	27	284457	5920358	2702
Grieta	117	207	40	284441	5920357	2699
Grieta	71	161	53	284464	5920437	2741
Grieta	89	179	30	284458	5920421	2733
Grieta	82	172	25	284489	5920352	2705
Grieta	272	182	40	284837	5920856	2931
Grieta	105	195	99	284414	5920917	2887
Grieta	100	190	119	284363	5920944	2898
Grieta	60	150	34	284327	5920960	2904
Grieta	162	252	94	284354	5920826	2825
Grieta	113	203	53	284315	5920906	2876
Grieta	137	227	33	284331	5920889	2868
Grieta	128	218	83	284403	5920814	2828
Grieta	126	216	89	284378	5920817	2826
Grieta	140	230	52	284366	5920835	2829
Traza de grieta	131	221	26	284380	5920808	2821
Grieta	129	219	40	284368	5920850	2835
Grieta	139	229	66	284416	5920822	2838
Grieta	132	222	60	284424	5920830	2846
Grieta	119	209	64	284410	5920826	2838

Grieta	136	226	26	284474	5920824	2859
Grieta	145	235	20 39	284488	5920822	2862
Grieta	150	240	95	284335	5920765	2793
Grieta	149	239	85	284308	5920762	2787
Grieta	136	226	61	284321	5920757	2789
Grieta	135	225	44	284293	5920760	2787
Grieta	133	223	30	284310	5920739	2783
Grieta	134	224	52	284292	5920747	2786
Grieta	126	216	78	284290	5920735	2784
Grieta	140	230	70	284284	5920737	2783
Grieta	134	224	25	284309	5920707	2776
Grieta	193	283	33	284240	5920754	2789
Grieta	103	193	57	284270	5920736	2781
Grieta	124	214	60	284258	5920719	2772
Grieta	112	202	67	284271	5920723	2776
Grieta	43	133	47	284224	5920713	2763
Traza de grieta	88	178	70	284191	5920668	2742
Grieta	60	150	44	284101	5920658	2735
Grieta	56	146	45	284078	5920632	2722
Grieta	62	152	24	284070	5920616	2718
Grieta	204	294	30	284087	5920569	2704
Grieta	203	293	47	284097	5920575	2706
Grieta	13	283	52	284129	5920603	2716
Grieta	45	135	62	284187	5920671	2742
Grieta	157	247	56	284267	5920684	2758
Grieta	121	211	20	284293	5920646	2746
Grieta	133	223	18	284300	5920663	2752
Grieta	131	221	24	284301	5920705	2776
Grieta	348	258	23	284236	5920577	2710
Grieta	334	244	14	284233	5920565	2708
Grieta	329	239	30	284193	5920540	2699
Grieta	359	269	30	284166	5920513	2692
Grieta	126	216	16	284188	5920536	2699
Traza de grieta	328	238	34	284541	5920429	2753
Traza de grieta	93	183	25	284529	5920450	2756
Grieta	87	177	213	284772	5920887	2934
Grieta	94	184	186	284840	5920929	2973
Grieta	115	205	75	285013	5920912	2973
Grieta	117	207	171	285096	5920921	2988
Grieta	105	195	151	285111	5920944	2998
Grieta	326	236	57	285187	5920873	2977
Grieta	147	237	111	285248	5920991	3086
Grieta	100	190	111	285054	5921035	3048
Grieta	56	146	163	285003	5921093	3087
Grieta	52	142	103	284988	5921103	3087

Tipo	Azimuth	Dip Direction	Largo (m)	Х	Y	Altura
Grieta	157	247	38	285020	5920854	2956
Grieta	139	229	36	285044	5920824	2941
Grieta	135	225	57	284988	5920782	2909
Grieta	110	200	56	285061	5920795	2935
Grieta	35	125	56	284941	5920868	2942
Grieta	136	226	48	285060	5920824	2946
Grieta	159	249	68	285028	5920707	2891
Grieta	108	198	72	285056	5921050	3057
Grieta	63	153	117	285027	5921117	3101
Grieta	300	210	44	285115	5921004	3036
Grieta	108	198	60	285051	5921031	3048
Grieta	52	142	43	284908	5920844	2926
Grieta	158	248	18	284997	5920644	2881
Grieta	342	252	33	285020	5920666	2886
Grieta	75	165	47	284662	5920544	2796
Grieta	253	163	58	284671	5920538	2794
Grieta	107	197	75	284792	5920680	2852
Grieta	76	166	42	284714	5920897	2940
Grieta	86	176	128	284668	5920783	2876
Grieta	83	173	70	284634	5920769	2874
Grieta	94	184	73	284785	5920649	2842
Grieta	110	200	36	284829	5920651	2846
Grieta	105	195	54	284815	5920648	2844
Grieta	166	256	34	284978	5920657	2877
Grieta	165	255	25	284974	5920647	2875
Grieta	144	234	52	285035	5920730	2899
Grieta	139	229	80	285014	5920811	2927
Grieta	137	227	19	285080	5920831	2952
Grieta	94	184	51	284843	5920621	2843
Grieta	98	188	64	284821	5920638	2842
Grieta	97	187	33	284870	5920635	2851
Grieta	113	203	21	284845	5920653	2850
Grieta	170	260	39	284913	5920639	2860
Grieta	161	251	34	284927	5920634	2861
Grieta	95	185	32	284881	5920643	2856
Grieta	86	176	35	284873	5920649	2856
Grieta	158	248	19	285007	5920651	2881
Grieta	168	258	11	285008	5920663	2882
Grieta	55	145	59	284807	5920608	2836
Grieta	89	179	23	284829	5920611	2839
Grieta	109	199	33	284770	5920666	2846
Grieta	70	160	37	284771	5920623	2834
Grieta	145	235	52	285024	5920834	2945
Grieta	312	222	41	284817	5920906	2953
Grieta	309	219	33	284813	5920890	2946
Grieta	275	185	21	284780	5920912	2948
Grieta	276	186	26	284790	5920920	2957
Grieta	114	204	35	284789	5920883	2935
Grieta	291	201	23	284795	5920896	2942
Grieta	325	235	28	285064	5920680	2899

Tabla A4.3: Mediciones de grietas ESRI World Imagery 2021

Grieta	325	235	33	285064	5920693	2900	
Grieta	318	228	50	285077	5920717	2904	
Grieta	329	239	23	285079	5920709	2903	
Grieta	142	232	21	285101	5920784	2929	
Grieta	311	221	34	285065	5920740	2905	
Grieta	157	247	20	285032	5920751	2900	
Grieta	140	230	14	285081	5920749	2911	
Grieta	143	233	15	285059	5920773	2922	
Grieta	137	227	13	285066	5920761	2916	
Grieta	142	232	17	285071	5920750	2910	
Grieta	134	224	25	285096	5920742	2912	
Grieta	137	227	14	285030	5920762	2905	
Grieta	151	241	15	285042	5920745	2904	
Grieta	147	237	23	285055	5920719	2900	
Grieta	160	250	24	285021	5920716	2888	
Grieta	123	213	19	285041	5920769	2916	
Grieta	288	198	30	284936	5920894	2964	
Grieta	97	187	28	284948	5920914	2976	
Grieta	73	163	115	284820	5920771	2886	
Grieta	71	161	32	284657	5920552	2795	
Grieta	76	166	49	284634	5920558	2795	
Grieta	58	148	21	284795	5920588	2829	
Grieta	174	264	36	284906	5920632	2860	
Grieta	93	183	130	284860	5920629	2851	
Traza de Grieta	114	204	29	284790	5920673	2849	
Traza de Grieta	114	204	14	284752	5920656	2841	
Traza de Grieta	113	203	23	284799	5920664	2846	
Grieta	112	202	22	284847	5920656	2852	
Grieta	97	187	26	284869	5920656	2855	
Traza de Grieta	109	199	16	284845	5920662	2850	
Falla	69	159	51	284571	5920662	2818	
Traza de Grieta	335	245	38	284620	5920670	2825	
Traza de Grieta	332	242	54	284608	5920675	2825	
Grieta	292	202	24	284838	5920942	2980	
Traza de Grieta	269	179	42	284798	5920943	2977	
Traza de Grieta	268	178	31	284796	5920940	2975	
Traza de Grieta	82	172	58	284785	5920936	2965	
Grieta	86	176	44	284916	5920926	2981	
Grieta	101	191	39	284946	5920955	3004	
Traza de Grieta	289	199	54	284979	5920870	2951	
Traza de Grieta	296	206	56	284988	5920855	2948	
Traza de Grieta	151	241	26	285018	5920834	2942	
Traza de Grieta	126	216	30	285036	5920811	2935	
Traza de Grieta	98	188	56	285075	5920782	2930	
Grieta	107	197	78	285080	5920801	2936	
Grieta	137	227	24	285142	5920803	2938	
Grieta	136	226	16	285141	5920797	2934	
Grieta	308	218	30	285142	5920914	2992	
Grieta	316	226	9	285131	5920910	2989	
Grieta	295	205	23	285120	5920923	2990	
Grieta	131	221	14	285093	5920921	2988	
Grieta	132	222	21	285101	5920906	2985	
Grieta	101	191	12	285066	5920943	2995	
			-				÷

0	109	109	94	005007	F000000	0001
Grieta	103	193	24 12	285087	5920933	2991
Grieta	138	228	13	280111	5921021	3045
Grieta	142	232	22	285135	5921008	3046
Grieta	95	185	40	285071	5921106	3089
Traza de Grieta	128	218	129	284706	5920503	2799
Traza de Grieta	102	192	65	284726	5920465	2792
Traza de Grieta	292	202	50	284734	5920514	2804
Traza de Grieta	234	144	41	284793	5920573	2825
Traza de Grieta	280	190	27	284759	5920739	2861
Traza de Grieta	307	217	12	284752	5920732	2861
Traza de Grieta	89	179	20	284766	5920746	2870
Traza de Grieta	93	183	91	284657	5920702	2841
Grieta	61	151	18	284550	5920500	2775
Grieta	91	181	30	284548	5920507	2779
Grieta	250	160	30	284569	5920486	2774
Grieta	150	240	33	284835	5920906	2959
Grieta	123	213	12	284797	5920912	2951
Traza de Grieta	99	189	26	284832	5920937	2972
Traza de Grieta	120	210	30	284866	5920924	2970
Grieta	155	245	36	285092	5920724	2904
Traza de Grieta	323	233	22	285026	5920683	2890
Traza de Grieta	328	238	22	285024	5920700	2890
Traza de Grieta	316	226	9	285024	5920671	2889
Traza de Grieta	315	225	11	285025	5920674	2889
Traza de Grieta	141	231	6	285057	5920708	2899
Traza de Grieta	340	250	23	285065	5920670	2897
Traza de Grieta	146	236	11	285069	5920716	2902
Traza de Grieta	152	242	9	285066	5920712	2901
Traza de Grieta	87	177	79	284700	5920721	2852
Traza de Grieta	90	180	65	284634	5920687	2832
Grieta	172	262	34	284887	5920643	2859
Grieta	186	276	30	284896	5920639	2857
Grieta	295	205	28	284909	5920639	2860
Traza de Grieta	112	202	29	284845	5920649	2848
Traza de Grieta	110	200	10	284807	5920663	2846
Traza de Grieta	115	205	23	284819	5920660	2847
Grieta	123	213	7	284824	5920664	2848
Traza de Grieta	3	273	39	284899	5920677	2865
Traza de Grieta	9	279	24	284887	5920676	2863
Traza de Grieta	1	271	15	284915	5920666	2867
Traza de Grieta	168	258	19	284933	5920644	2863
Grieta	155	245	17	284960	5920641	2871
Traza de Grieta	267	177	50	284589	5920630	2813
Traza de Grieta	254	164	26	284598	5920643	2817
Traza de Grieta	259	169	24	284576	5920658	2820
Traza de Grieta	100	190	19	284740	5920625	2831
Traza de Grieta	84	174	16	284755	5920628	2835
Traza de Grieta	108	198	24	284776	5920638	2838
Traza de Grieta	44	134	31	284772	5920587	2827
Traza de Grieta	52	142	19	284791	5920611	2834
Traza de Grieta	80	170	18	284815	5920598	2835
Grieta	86	176	20	284803	5920608	2836
Traza de Grieta	105	195	27	284997	5920841	2946
	•	•		•		

Traza de Grieta	109	199	58	285056	5920769	2920	
Grieta	141	231	37	285056	5920782	2926	
Grieta	129	219	61	285009	5920793	2917	
Traza de Grieta	70	160	29	284885	5920845	2925	
Traza de Grieta	211	301	34	284911	5920828	2914	
Grieta	116	206	20	284818	5920877	2932	
Traza de Grieta	121	211	33	284927	5920862	2933	
Grieta	99	189	29	284645	5920808	2897	
Traza de Grieta	88	178	89	284675	5920800	2881	
Grieta	89	179	32	284776	5920855	2919	
Grieta	106	196	15	285100	5921114	3087	
Grieta	111	201	19	285093	5921086	3074	
Grieta	114	204	13	285096	5921077	3069	
Grieta	111	201	34	285096	5921146	3116	
Grieta	126	216	16	285100	5921128	3105	
Grieta	123	213	11	285109	5921115	3095	
Grieta	129	219	26	285145	5920955	3009	
Grieta	337	247	14	284483	5920832	2864	
Grieta	144	234	21	284422	5920872	2861	
Grieta	133	223	68	284454	5920862	2868	
Traza de Grieta	138	228	32	284447	5920861	2868	
Traza de Grieta	142	232	53	284445	5920851	2857	
Grieta	139	229	24	284461	5920838	2861	
Grieta	150	240	12	284472	5920851	2870	
Traza de Grieta	147	237	27	284504	5920862	2877	
Grieta	119	209	56	284394	5920879	2866	
Traza de Grieta	127	217	33	284399	5920871	2858	
Grieta	331	241	41	284416	5920855	2851	
Traza de Grieta	321	231	25	284423	5920851	2850	
Grieta	146	236	29	284415	5920846	2845	
Grieta	128	218	35	284379	5920852	2837	
Traza de Grieta	130	220	25	284373	5920852	2837	
Traza de Grieta	135	225	29	284380	5920856	2846	
Grieta	306	216	20	284384	5920861	2848	
Grieta	120	210	20	284399	5920845	2842	
Grieta	123	213	23	284357	5920859	2845	
Falla	89	179	47	284248	5920781	2803	
Grieta	319	229	43	284327	5920792	2807	
Grieta	133	223	38	284315	5920793	2802	
Traza de Grieta	301	211	34	284305	5920784	2791	
Traza de Grieta	158	248	30	284391	5920831	2833	
Grieta	129	219	44	284492	5920982	2923	
Grieta	285	195	53	284496	5920999	2929	
Grieta	187	277	47	285012	5920893	2969	
Grieta	104	194	20	284983	5920911	2973	
Grieta	281	191	15	284939	5920920	2986	
Grieta	109	199	22	284922	5921023	3039	
Grieta	76	166	36	284987	5921038	3055	
Grieta	64	154	20	284992	5921048	3060	
Grieta	91	181	16	284950	5920998	3025	
Grieta	82	172	41	284971	5921020	3044	
Grieta	63	153	22	285005	5921194	3149	
Grieta	119	209	14	285080	5921161	3126	
							۴.

Grieta	88	178	57	284738	5920913	2946
Traza de Grieta	153	243	96	284639	5920677	2826
Traza de Grieta	155	245	89	284656	5920679	2835
Grieta	163	253	88	284606	5920639	2814
Grieta	263	173	64	284594	5920730	2847
Traza de Grieta	273	183	52	284695	5920714	2849
Grieta	339	249	40	284953	5920713	2883
Grieta	166	256	21	285039	5920702	2895
Grieta	326	236	31	285021	5920683	2886
Grieta	269	179	40	285008	5920585	2862
Grieta	87	177	42	285010	5920610	2876
Falla	18	288	47	284867	5920480	2797
Grieta	315	225	43	284798	5920838	2910
Grieta	307	217	18	284801	5920844	2916
Grieta	117	207	70	285101	5920815	2941
Falla	123	213	51	284268	5920753	2785
Grieta	281	191	30	284830	5921012	3025
Grieta	274	184	44	284825	5921017	3034
Grieta	101	191	55	284844	5920987	3004
Grieta	289	199	31	285066	5920866	2967
Grieta	104	194	52	285087	5920890	2973
Grieta	147	237	21	285087	5920677	2897
Falla	182	272	17	285181	5920825	2950
Grieta	160	250	29	285153	5920812	2939
Grieta	54	144	35	284770	5920946	2966

Tipo	Azimuth	Dip Direction	Largo (m)	Х	Y	Altura
Grieta	154	245	70	285021	5920846	2950
Grieta	152	242	35	285041	5920872	2966
Grieta	119	209	64	285060	5920806	2940
Grieta	126	216	46	285089	5920832	2952
Grieta	147	238	56	285014	5920837	2942
Grieta	141	231	55	285015	5920818	2933
Grieta	128	218	57	285044	5920805	2935
Grieta	131	221	28	285045	5920783	2923
Traza de grieta	102	192	40	285065	5920781	2929
Traza de grieta	98	189	53	285063	5920799	2935
Grieta	113	204	78	285076	5920812	2942
Grieta	128	219	14	285064	5920809	2940
Grieta	121	211	22	285088	5920805	2942
Grieta	118	209	109	285095	5920815	2942
Grieta	141	231	85	285038	5920849	2954
Grieta	127	218	24	285089	5920839	2952
Grieta	130	220	22	285106	5920828	2947
Grieta	136	226	48	285115	5920834	2951
Grieta	103	193	80	285075	5920789	2930
Grieta	133	224	16	285094	5920793	2936
Grieta	130	221	12	285102	5920790	2935
Grieta	144	235	17	285097	5920776	2923
Traza de grieta	97	188	69	285062	5920773	2922
Grieta	141	231	12	285037	5920780	2923
Grieta	143	233	15	285049	5920755	2914
Traza de grieta	104	194	113	285045	5920761	2910
Grieta	140	231	9	285047	5920770	2920
Grieta	145	236	7	285045	5920769	2916
Grieta	133	224	12	285052	5920761	2914
Grieta	155	246	12	285057	5920762	2914
Grieta	138	229	21	285067	5920742	2910
Grieta	132	222	16	285076	5920742	2911
Grieta	143	233	7	285077	5920737	2906
Grieta	132	222	31	285091	5920756	2917
Traza de grieta	146	237	11	285057	5920740	2903
Grieta	130	220	14	285075	5920766	2924
Traza de grieta	126	216	25	285084	5920748	2911
Grieta	143	234	12	285034	5920728	2895
Grieta	159	249	34	285037	5920729	2899
Grieta	135	226	21	285032	5920747	2900
Grieta	131	222	7	285026	5920750	2900
Grieta	134	224	12	285035	5920759	2910
Grieta	155	246	27	285026	5920727	2892
Grieta	163	254	42	285035	5920708	2896
Grieta	142	233	26	285019	5920710	2887
Grieta	160	250	11	285023	5920699	2890
Grieta	165	256	19	285030	5920686	2890
Grieta	158	248	11	285035	5920686	2894
Traza de grieta	143	234	11	285008	5920703	2884
Traza de grieta	152	243	13	285018	5920691	2886

Tabla A4.4: Mediciones de grietas ESRI World Imagery 2022

1	1	1		1		1
Grieta	148	239	20	285018	5920675	2886
Grieta	160	250	21	285013	5920673	2886
Grieta	138	229	14	285011	5920666	2886
Grieta	147	238	16	285004	5920657	2882
Traza de grieta	340	250	17	284993	5920669	2880
Traza de grieta	165	255	31	284982	5920675	2878
Grieta	343	253	37	284980	5920666	2878
Grieta	162	252	15	284979	5920665	2878
Grieta	346	256	35	284975	5920661	2877
Traza de grieta	135	225	10	284993	5920638	2876
Traza de grieta	139	229	12	284991	5920637	2876
Grieta	139	229	17	285003	5920648	2881
Grieta	153	244	11	284999	5920645	2881
Traza de grieta	138	229	33	285001	5920802	2917
Traza de grieta	111	201	41	284982	5920834	2932
Traza de grieta	83	173	33	284974	5920827	2926
Traza de grieta	106	196	46	284919	5920742	2887
Grieta	122	213	38	284984	5920862	2948
Grieta	116	206	46	284983	5920854	2944
Grieta	133	224	14	285061	5920837	2951
Grieta	106	196	38	285083	5920823	2947
Grieta	136	226	53	285131	5920807	2938
Grieta	131	221	21	285137	5920794	2934
Grieta	115	206	19	285121	5920811	2940
Grieta	140	231	44	285136	5920836	2948
Grieta	136	227	54	285133	5920862	2963
Grieta	119	209	6	285149	5920836	2949
Grieta	118	208	12	285153	5920830	2949
Grieta	144	234	11	285153	5920822	2944
Grieta	132	223	22	285119	5920864	2963
Grieta	109	200	45	285097	5920884	2975
Grieta	129	220	9	285069	5920872	2967
Traza de grieta	99	190	44	285055	5920888	2972
Grieta	121	212	29	285186	5920856	2971
Grieta	120	211	21	285155	5920869	2973
Grieta	124	214	47	285163	5920906	2997
Grieta	140	230	23	285173	5920888	2982
Grieta	123	214	33	285196	5920877	2977
Grieta	121	211	23	285176	5920851	2962
Grieta	121	211	27	285160	5920856	2966
Traza de grieta	116	207	19	285121	5920781	2929
Grieta	93	184	21	285057	5920580	2870
Grieta	98	189	23	285052	5920572	2866
Grieta	153	243	34	284973	5920646	2875
Grieta	154	244	16	284966	5920648	2871
Grieta	151	241	12	284960	5920647	2871
Grieta	148	239	8	284965	5920644	2871
Grieta	154	245	10	284953	5920638	2865
Grieta	167	258	8	284958	5920640	2865
Grieta	161	252	7	284951	5920634	2865
Grieta	142	233	6	285009	5920660	2885
Grieta	87	177	50	285057	5921178	3138
Grieta	84	175	25	285045	5921170	3137

Criota	265	175	0	285081	5021172	3130
Grieta	104	105	34	285074	5021175	3135
Grieta	204	195	14	205074	5021100	2115
Grieta	201	191	14 50	200000	5921152	2110
Grieta	10	100	52	200011	5921155	3110
Grieta	92	183	59	285068	5921148	3114
Grieta	272	182	41	285075	5921141	3114
Grieta	86	176	115	285041	5921124	3100
Grieta	68	158	25	285001	5921097	3087
Grieta	103	194	58	285064	5921103	3089
Grieta	276	186	23	285101	5921109	3087
Grieta	274	184	43	285033	5921071	3074
Grieta	68	159	39	284977	5921069	3071
Grieta	291	201	31	284936	5921081	3082
Grieta	284	194	35	284924	5921071	3077
Grieta	99	189	73	284912	5921079	3084
Grieta	100	191	61	284892	5921069	3074
Grieta	95	185	100	284885	5921045	3059
Grieta	97	187	38	284912	5921038	3049
Grieta	112	203	24	284928	5921030	3048
Grieta	119	209	17	284934	5921056	3068
Grieta	105	195	99	285035	5921049	3059
Grieta	105	195	30	285048	5921056	3065
	107	197	37	285030	5921048	3060
Grieta	119	209	39	285089	5921047	3055
Grieta	107	197	37	285081	5921061	3060
Grieta	126	216	44	285126	5921024	3050
Grieta	117	207	34	285097	5921022	3041
Grieta	143	233	15	285119	5921014	3036
Grieta	121	211	20	285102	5921030	3050
Grieta	124	215	14	285114	5921030	3053
Grieta	128	218	24	285129	5921011	3041
Grieta	97	188	102	285026	5921011	3053
Crieta	78	160	30	284084	5021023	3054
Crieta	102	109	35	285010	5021040	3061
Grieta	102	200	50	285048	5021045	3048
Grieta	117	200	71	285040	5020060	2011
Grieta	117	207	71	205040	5920909	2006
Grieta	120	217		200011	5920907	3000
Grieta	120	210	20	200007	5920970	3008
Grieta	107	197	39	285083	5921005	3030
Grieta	105	195	31	285101	5921015	3033
Grieta	102	192	26	285079	5921043	3054
Grieta	110	200	15	285077	5921041	3054
Grieta	112	202	35	285069	5921073	3069
Grieta	81	172	15	284983	5921026	3047
Grieta	117	208	59	285039	5921006	3036
Grieta	96	186	113	284983	5920950	2999
Grieta	110	201	114	285045	5920952	2994
Grieta	96	187	25	285060	5920949	2995
Grieta	119	209	16	285056	5920956	3001
Grieta	128	219	11	285072	5920942	2995
Grieta	117	207	9	285086	5920963	3000
Grieta	138	229	26	285094	5920959	3000
Grieta	125	216	23	285093	5920971	3006

	1	1		1		i i
Grieta	132	222	36	285114	5920968	3009
Grieta	115	206	36	285086	5920942	2995
Grieta	114	205	45	285105	5920941	2996
Grieta	127	218	58	285025	5920922	2981
Grieta	100	191	118	284960	5920934	2993
Grieta	93	184	28	285027	5921001	3031
Grieta	112	202	35	285103	5921008	3033
Traza de grieta	145	236	7	285073	5920986	3013
Grieta	66	157	65	284895	5920839	2918
Grieta	89	180	48	284977	5921015	3039
Grieta	94	185	43	284833	5921042	3048
Grieta	103	194	36	284888	5921023	3037
Grieta	81	172	18	284881	5921018	3036
Traza de grieta	88	179	13	284905	5921023	3038
Grieta	88	178	88	284809	5921013	3024
Grieta	107	198	6	284860	5921013	3021
Grieta	83	174	36	284776	5921022	3029
Grieta	81	172	24	284867	5921031	3046
Grieta	90	181	30	284810	5920983	3007
Grieta	91	181	20	284781	5920985	3003
Grieta	266	177	20	204701	50200001	3016
Crieta	108	108	20	204131	5020084	3002
Grieta	100	102	22	204050	5020002	2012
Grieta	104	195	50	204001	50200992	2014
Grieta	104	195	10	204030	5920996	3014 2016
Grieta	101	191	18	284800	5921002	3010
Grieta	110	200	32	284846	5921004	3024
Grieta	104	195	15	284934	5920972	3009
Grieta	111	202	11	284936	5920978	3016
Grieta	272	182	29	284823	5920954	2988
Grieta	84	175	20	284779	5920949	2971
Grieta	289	200	16	284801	5920962	2987
Grieta	276	187	33	284780	5920959	2982
Grieta	97	188	33	284803	5920938	2968
Grieta	75	165	31	284782	5921035	3035
Grieta	289	200	24	284823	5921038	3042
Grieta	279	189	52	284967	5920904	2975
Grieta	98	188	26	284925	5920914	2975
Grieta	132	222	7	284942	5920916	2986
Grieta	121	211	8	284943	5920920	2986
Grieta	290	201	46	284985	5920910	2972
Grieta	102	193	23	284953	5920921	2985
Falla	48	139	26	284941	5920909	2976
Grieta	99	190	22	284864	5920894	2956
Grieta	269	179	25	284888	5920883	2950
Grieta	271	182	18	284874	5920862	2933
Grieta	135	226	28	284834	5920901	2949
Grieta	106	197	33	284839	5920967	2995
Grieta	116	207	18	284846	5920974	2993
Grieta	302	213	30	284855	5920976	2993
Grieta	70	161	27	284862	5920972	2992
Grieta	112	203	5	284857	5920967	2993
Grieta	137	227	16	284839	5920976	2995
Grieta	106	196	10	284833	5920976	2996
			1	1	1	1

Traza de grieta	286	196	13	284822	5920970	2996	
Traza de grieta	282	192	8	284790	5920978	3005	
Grieta	263	173	29	284776	5920972	2993	
Grieta	282	193	39	284821	5921008	3025	
Grieta	127	218	17	285071	5920919	2987	
Grieta	118	208	20	285088	5920908	2985	
Grieta	112	203	17	285088	5920923	2988	
Grieta	127	217	14	285093	5920912	2985	
Grieta	313	224	22	285097	5920921	2989	
Grieta	138	228	21	285061	5920923	2987	
Grieta	312	222	18	285077	5920902	2978	
Grieta	143	234	32	285040	5920920	2983	
Grieta	138	229	19	285046	5920924	2983	
Grieta	112	203	26	285057	5920910	2981	
Grieta	251	162	17	285025	5920903	2976	
Grieta	136	227	19	285080	5920874	2967	
Grieta	299	210	22	285155	5920874	2973	
Grieta	289	200	16	285135	5920885	2981	
Grieta	310	220	29	285169	5920877	2973	
Grieta	115	205	19	285092	5920897	2979	
Grieta	120	210	14	285103	5920896	2981	
Traza de grieta	284	195	18	284945	5920852	2929	
Traza de grieta	293	204	32	284920	5920864	2933	
Traza de grieta	287	197	31	284941	5920871	2942	
Grieta	221	132	41	284948	5920874	2944	
Grieta	41	131	25	284945	5920862	2935	
Grieta	225	135	28	284965	5920871	2947	
Traza de grieta	233	144	27	284948	5920846	2931	
Grieta	105	196	31	284983	5920885	2958	
Grieta	99	189	67	284807	5920930	2968	
Grieta	340	251	14	284825	5920921	2964	
Grieta	96	186	20	284823	5920925	2964	
Grieta	280	190	49	284804	5920921	2959	
Grieta	105	196	48	284790	5920907	2949	
Grieta	108	199	18	284753	5920934	2955	
Grieta	271	181	44	284769	5920920	2952	
Grieta	84	175	22	284754	5920926	2950	
Grieta	283	194	50	284796	5920880	2935	
Grieta	277	187	81	284729	5920893	2941	
Grieta	92	183	18	284784	5920867	2928	Ĺ
Grieta	106	196	87	284768	5920850	2911	
Grieta	96	186	57	284764	5920842	2911	
Grieta	101	191	33	284777	5920855	2919	
Grieta	125	216	36	284798	5920867	2930	
Grieta	110	200	13	284766	5920896	2941	
Grieta	115	206	25	284774	5920897	2941	
Grieta	129	220	17	284789	5920894	2942	
Grieta	115	205	17	284827	5920942	2980	
Grieta	90	180	71	284771	5920829	2903	
Grieta	314	224	12	284771	5920819	2895	
Grieta	138	228	22	284768	5920838	2903	
Traza de grieta	124	215	18	284797	5920818	2905	
Grieta	84	174	42	284827	5920812	2904	
		1		1			

Grieta	85	175	76	284817	5920803	2898
Grieta	86	177	77	284812	5920786	2892
Grieta	102	192	11	284786	5920789	2888
Grieta	91	181	126	284708	5920810	2887
Grieta	93	184	92	284701	5920794	2879
Grieta	92	182	72	284694	5920780	2873
Grieta	98	188	50	284788	5920778	2888
Grieta	94	185	16	284804	5920773	2885
Traza de grieta	317	227	16	284784	5920817	2898
Traza de grieta	142	233	20	284752	5920826	2894
Traza de grieta	72	162	74	284856	5920788	2891
Traza de grieta	76	166	22	284833	5920782	2892
Grieta	101	192	17	284759	5920768	2879
Grieta	100	190	11	284774	5920768	2881
Grieta	90	180	46	284798	5920769	2885
Grieta	89	180	28	284773	5920758	2878
Grieta	95	185	60	284775	5920746	2873
Traza de grieta	272	182	52	284675	5920764	2863
Grieta	274	184	31	284625	5920757	2866
Grieta	103	194	20	284596	5920762	2860
Grieta	104	195	31	284605	5920770	2870
Grieta	104	194	15	284554	5920743	2844
Grieta	98	189	13	284559	5920767	2859
Grieta	92	183	17	284560	5920761	2853
Grieta	123	214	11	284578	5920750	2850
Grieta	318	228	29	285151	5920855	2964
Grieta	284	194	20	285179	5920841	2962
Grieta	122	212	49	285124	5920912	2989
Grieta	114	205	16	285139	5920913	2992
Traza de grieta	75	165	47	284906	5920826	2912
Traza de grieta	117	207	29	284977	5920767	2906
Grieta	104	194	23	284594	5920759	2860
Traza de grieta	262	172	94	284647	5920729	2853
Traza de grieta	131	221	66	284645	5920715	2843
Traza de grieta	325	235	73	284624	5920694	2836
Traza de grieta	312	222	21	284633	5920715	2845
Traza de grieta	82	172	81	284635	5920663	2821
Traza de grieta	84	175	53	284624	5920713	2841
Grieta	104	194	73	284804	5920676	2849
Grieta	97	187	63	284786	5920668	2849
Grieta	94	185	37	284788	5920657	2845
Grieta	77	168	29	284773	5920651	2841
Grieta	101	192	32	284805	5920659	2846
Grieta	102	193	17	284819	5920652	2844
Grieta	101	191	14	284817	5920661	2847
Grieta	104	195	14	284837	5920655	2850
Grieta	100	191	70	284857	5920644	2850
Grieta	101	191	13	284835	5920653	2850
Grieta	99	189	21	284856	5920649	2850
Grieta	269	180	25	284886	5920652	2859
Grieta	101	192	43	284852	5920655	2852
Grieta	98	188	18	284839	5920643	2848
Grieta	101	191	47	284865	5920634	2851
	I	1	I	1		· ·

Grieta	106	196	35	284813	5920641	2844	ĺ
Grieta	92	183	35	284829	5920624	2841	
Grieta	77	168	27	284822	5920633	2843	
Grieta	93	184	38	284809	5920649	2843	
Grieta	105	195	40	284810	5920678	2853	
Grieta	341	252	28	284900	5920646	2861	
Grieta	172	263	24	284922	5920645	2863	
Grieta	151	241	21	284893	5920655	2861	
Traza de grieta	179	270	28	284873	5920644	2856	
Grieta	341	251	13	284887	5920653	2859	
Grieta	334	245	13	284890	5920653	2861	
Grieta	88	179	13	284892	5920644	2859	
Grieta	357	267	31	284907	5920650	2861	
Traza de grieta	165	256	37	284914	5920656	2864	
Traza de grieta	110	201	24	284933	5920635	2861	
Grieta	347	257	18	284896	5920631	2857	
Grieta	102	192	15	284875	5920626	2851	
Grieta	96	186	48	284854	5920625	2845	
Grieta	69	160	23	284808	5920605	2836	
Traza de grieta	64	155	23	284813	5920615	2838	
Traza de grieta	318	229	23	284707	5920489	2796	
Traza de grieta	307	218	37	284712	5920497	2800	
Traza de grieta	313	223	25	284713	5920504	2802	
Grieta	195	285	14	284698	5920482	2796	
Traza de grieta	320	231	35	284715	5920472	2795	
Traza de grieta	337	247	22	284704	5920468	2794	
Traza de grieta	336	246	20	284697	5920544	2802	
Traza de grieta	355	266	31	284700	5920570	2809	
Grieta	71	162	35	284665	5920541	2796	
Grieta	88	178	16	284667	5920537	2794	
Traza de grieta	92	182	31	284775	5920517	2807	
Traza de grieta	93	183	14	284753	5920512	2806	
Grieta	164	255	45	284793	5920396	2781	
Traza de grieta	162	253	29	284765	5920390	2780	
Grieta	181	272	30	284807	5920415	2781	
Traza de grieta	65	156	26	284649	5920549	2795	
Grieta	77	167	34	284652	5920544	2795	
Traza de grieta	88	179	30	284646	5920602	2805	
Traza de grieta	92	182	14	284588	5920645	2817	
Grieta	102	193	20	284441	5920462	2743	
Grieta	116	206	18	284438	5920476	2748	
Traza de grieta	80	170	77	284637	5920692	2838	
Traza de grieta	86	177	18	284586	5920657	2821	
Traza de grieta	260	171	53	284653	5920680	2835	
Traza de grieta	264	175	36	284607	5920692	2833	
Grieta	286	197	64	284804	5920687	2853	
Grieta	284	195	71	284815	5920692	2856	
Grieta	89	179	50	284949	5920996	3025	
Grieta	296	206	41	284812	5920903	2953	
Grieta	301	211	35	285022	5920890	2968	
Grieta	151	241	23	285110	5920896	2982	
Grieta	104	194	22	285056	5920904	2981	
Grieta	108	199	10	284938	5920883	2951	

	Traza de grieta	313	223	33	284861	5920761	2879
	Traza de grieta	127	218	21	284857	5920772	2885
	Traza de grieta	116	207	19	284867	5920769	2884
	Grieta	274	185	17	284751	5920734	2861
	Traza de grieta	154	245	14	284749	5920732	2861
	Grieta	281	191	22	284744	5920727	2855
	Grieta	103	193	14	284741	5920776	2872
	Grieta	122	213	88	284408	5920896	2872
	Grieta	111	201	72	284410	5920912	2881
	Grieta	120	211	60	284395	5920896	2871
	Grieta	123	214	58	284392	5920890	2866
	Grieta	110	200	53	284420	5920988	2914
	Grieta	111	202	42	284359	5920902	2873
	Grieta	118	209	41	284350	5920898	2873
	Grieta	117	208	58	284391	5920876	2858
	Grieta	124	215	38	284352	5920891	2873
	Grieta	105	195	91	284433	5920919	2888
	Grieta	105	196	44	284346	5920932	2891
	Grieta	133	223	32	284322	5920888	2868
	Grieta	111	201	81	284363	5920875	2855
	Grieta	115	206	14	284340	5920872	2859
	Grieta	120	211	30	284333	5920859	2854
	Grieta	299	209	11	284369	5920849	2835
	Grieta	296	207	20	284350	5920864	2845
	Grieta	312	223	16	284338	5920849	2842
	Grieta	300	211	20	284334	5920855	2850
	Grieta	93	184	65	284424	5920959	2901
	Grieta	99	189	33	284429	5920956	2901
	Grieta	272	183	113	284414	5920943	2897
	Grieta	119	210	31	284303	5920798	2799
	Grieta	105	196	44	284295	5920819	2825
	Grieta	116	207	33	284293	5920830	2839
	Grieta	316	226	31	284329	5920852	2846
	Grieta	97	188	25	284326	5920839	2837
	Grieta	282	193	23	284307	5920875	2864
	Grieta	117	207	61	284313	5920884	2868
	Grieta	90	181	36	284225	5920777	2799
	Grieta	91	181	26	284240	5920794	2814
	Falla	305	216	39	284246	5920692	2760
	Falla	299	209	29	284234	5920671	2749
	Falla	290	200	28	284088	5920528	2689
	Falla	277	188	25	284081	5920516	2680
	Grieta	96	186	33	284053	5920635	2726
	Grieta	89	179	35	284024	5920628	2733
	Falla	111	202	26	284251	5920757	2789
	Grieta	100	191	8	284332	5920831	2837
	Grieta	103	194	14	284326	5920823	2827
	Grieta	117	208	9	284323	5920821	2827
	Grieta	115	206	52	284316	5920802	2802
	Traza de grieta	321	231	40	284463	5920872	2877
	Traza de grieta	291	202	23	284422	5920917	2888
	Grieta	343	254	14	285091	5920712	2903
	Grieta	341	252	10	285065	5920687	2899
1					1	1	

Traza de grieta	67	157	24	284862	5920772	2884
Grieta	87	178	20	284770	5920646	2839
Grieta	262	172	38	284997	5921110	3095
Grieta	111	202	17	285038	5921049	3059
Grieta	157	248	23	284972	5920660	2877

Bibliografía Apéndices

- Benn, D., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S. (2012). Response of debriscovered glaciers in the mount everest region to recent warming, and implications for outburst flood hazards. *Earth-Science Reviews*, 114(1-2):156–174.
- Cuffey, K. M. and Paterson, W. S. B. (2010). *The physics of glaciers*. 4^a Edición. Academic Press.
- Fleming, E. J., Lovell, H., Stevenson, C. T., Petronis, M. S., Benn, D. I., Hambrey, M. J., and Fairchild, I. J. (2013). Magnetic fabrics in the basal ice of a surge-type glacier. *Journal of Geophysical Research: Earth Surface*, 118(4):2263–2278.
- Fossen, H. (2010). Structural geology, cambridge university press. New York, pages 205–207.
- Goodsell, B., Hambrey, M., Glasser, N., Nienow, P., and Mair, D. (2005). The structural glaciology of a temperate valley glacier: Haut glacier d'arolla, valais, switzerland. Arctic, Antarctic, and Alpine Research, 37(2):218–232.
- Hambrey, M., Milnes, A., and Siegenthaler, H. (1980). Dynamics and structure of griesgletscher, switzerland. *Journal of Glaciology*, 25(92):215–228.
- Hambrey, M. J. and Lawson, W. (2000). Structural styles and deformation fields in glaciers: a review. *Geological Society, London, Special Publications*, 176(1):59–83.
- Herbst, P., Neubauer, F., and Schöpfer, M. P. (2006). The development of brittle structures in an alpine valley glacier: Pasterzenkees, austria, 1887–1997. *Journal* of Glaciology, 52(176):128–136.
- Jennings, S. J. and Hambrey, M. J. (2021). Structures and deformation in glaciers and ice sheets. *Reviews of Geophysics*, 59(3):e2021RG000743.
- Lovell, H., Fleming, E. J., Benn, D. I., Hubbard, B., Lukas, S., and Naegeli, K. (2015). Former dynamic behaviour of a cold-based valley glacier on svalbard revealed by basal ice and structural glaciology investigations. *Journal of Glaciology*, 61(226):309–328.
- Nye, J. F. (1952). A comparison between the theoretical and the measured long profile of the unteraar glacier. *Journal of Glaciology*, 2(12):103–107.
Phillips, E., Finlayson, A., and Jones, L. (2013). Fracturing, block faulting, and moulin development associated with progressive collapse and retreat of a maritime glacier: Falljökull, se iceland. *Journal of Geophysical Research: Earth Surface*, 118(3):1545–1561.

Van der Veen, C. (1999). Crevasses on glaciers. Polar Geography, 23(3):213-245.