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Abstract 

 

Chilean commercial, public, and residential sector consume 35 % of the electrical 
energy in the country. Given the continuous economic growth of society, this 
percentage will increase gradually, as expected. However, Chile has also made efforts 
to transition towards power decarbonization, in line with the global context that seeks 
to reduce its carbon footprint. Distribution grids are a complex infrastructure and, 
within this scenario, are reaching an intelligent configuration. As a result of this 
transformation, the proportion of renewable energy sources (RESs) is constantly 
increasing, and advanced metering systems are playing an essential role in recording 
electricity data to provide insights into customers’ behavior and corresponding 
lifestyles. Conditioned by the gradual deregulation of the distribution sector, new 
market agents are participating in the electricity market, making customers’ service 
more active and competitive. Therefore, integrating renewable capacity by exploiting 
the operational flexibility that can arrive from scheduling demand is vital in the 
current distribution system. Efficient scheduling can also help to decouple economic 
growth from energy consumption. However, both renewable production and demand 
exhibit a stochastic behavior, which leads to an increase in uncertainty due to forecast 
errors in generation and deviations in demand in real-time. This uncertainty 
jeopardizes the safe operation of the distribution system. 

This thesis focuses on real-time demand response (DR) scheduling based on 
customized online learning of customers’ behavior considering uncertainty. 

First, the thesis proposes an online framework to characterize demand response (DR) 
over time. The approach facilitates obtaining and updating the daily consumption 
patterns of customers. The essential concept of response profile class (RPC) is 
introduced for characterization, complemented by the measure of the variability in 
customer behavior. For daily profiles, the work uses a modified version of the 
incremental clustering by fast search and find of density peaks (CFSFDP) algorithm 
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that considers the multivariate normal kernel density estimator and incremental forms 
of the Davies-Bouldin and Xie-Beni validity indices. Case studies conducted using 
real-world and simulated daily profiles of residential and commercial Chilean end-
users demonstrate how the proposed approach can continuously characterize DR. 
Results prove that the presented framework achieves realistic customer models for 
effective energy management by estimating customer response to the price signal at 
the distribution system operator (DSO) level. 

Second, the thesis proposes an online framework for scheduling customers’ power 
responses to support integrating photovoltaic (PV) generation into the distribution 
system. The approach helps the management of demand flexibilities by providing 
optimal control prices in real-time. A bi-level optimization model is used to model 
interactions between the DSO in the upper level, which seeks to maximize the profit, 
and customers in the lower level, who reduce their electricity bills. In addition, to 
obtain the RPCs of customers, a characterization stage is introduced by applying the 
CFSFDP algorithm to daily profiles. The pricing problem, however, is highly 
challenging since the DSO also requires ensuring the reliable operation of the 
distribution grid and dealing with uncertainties in consumption and renewable 
production. Accordingly, the work includes and reformulates chance constraints (CCs) 
for squared nodal voltage and complex power flow in lines. The chance-constrained 
bi-level problem converts to an equivalent mixed-integer second-order cone 
programming problem, embedded into a model predictive control to exploit newly 
available information of the system states. A case study using real-world local market 
prices and daily profiles of residential and commercial Chilean end-users on the IEEE-
37 node test distribution feeder demonstrates how the proposed framework can 
schedule DR considering uncertainty. 

Third, for optimal scheduling of other distribution-level energy resources, the previous 
framework is expanded by including dispatchable inverters of PV facilities. The 
approach also addresses uncertainty in the distribution system modeling by 
incorporating, in addition to the above, CCs for the apparent power of PV inverters. 
A case study with real-world local market prices and daily profiles of Chilean 
residential and commercial end-users on the IEEE-37 node test distribution feeder 
demonstrates how the presented framework enables optimal real-time scheduling of 
customers and PV facilities. 

The investigation has significant implications both technically, by enhancing the 
efficiency and reliability of the distribution system, and economically, by generating 
financial benefits for market players. Furthermore, its methodology is applicable and 
suitable to meet the practical requirements of Chilean society.



 

 

Resumen 

 

En Chile, el 35 % del consumo de energía eléctrica se debe al sector comercial, público 
y residencial. Es esperado que este valor aumente sucesivamente dado el continuo 
desarrollo económico de la sociedad. Por otro lado, el país se encuentra desde hace 
algunos años inmerso en un proceso de transición marcado por un contexto 
internacional que busca la descarbonización de la matriz energética, para disminuir 
con ello la huella de carbono. Los sistemas eléctricos, y en particular las redes de 
distribución constituyen una infraestructura muy compleja, y en medio de esta 
panorámica están adquiriendo una configuración de red inteligente. En la medida de 
esta transformación, la proporción de fuentes de energía renovable, esencial para el 
futuro energético sostenible, crece constantemente. Los sistemas de medición 
inteligente, además, están desempeñando un papel vital al registrar datos de consumo 
que proporcionan información sobre el comportamiento y estilos de vida de los 
clientes. Condicionado por la gradual desregulación del segmento de distribución, 
nuevos actores toman parte también en el mercado de electricidad y el servicio al 
cliente se hace más activo y competitivo. Por consiguiente, la integración de la 
creciente capacidad renovable mediante la explotación de la flexibilidad de operación 
que puede obtenerse a partir de la programación de la demanda resulta un pilar básico 
en la red de distribución actual. Una programación eficiente garantiza además el 
desacople entre el crecimiento económico y el consumo de energía. Sin embargo, una 
propiedad inherente tanto de la generación renovable como de la demanda es su 
comportamiento estocástico. Por tanto, el aumento de la incertidumbre a partir de 
errores de pronóstico en la generación y desviaciones de la demanda en tiempo real 
compromete la operación segura del sistema. 

Esta tesis tiene como objetivo la programación de la respuesta de la demanda (DR) en 
tiempo real a partir del aprendizaje en línea personalizado de los clientes 
considerando la incertidumbre.  
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La primera parte de la tesis propone una metodología en línea para caracterizar en el 
tiempo la DR. El enfoque facilita la obtención y actualización de los patrones diarios 
de consumo de los clientes. Para la caracterización, se introduce el concepto esencial 
de clase de perfil de respuesta (RPC), complementado con la medida de la variabilidad 
en el comportamiento del cliente. El trabajo utiliza para los perfiles diarios una versión 
modificada del algoritmo incremental clustering by fast search and find of density peaks 
(CFSFDP) que considera el estimador de densidad kernel normal multivariante y 
formas incrementales de los índices de validación Davies-Bouldin y Xie-Beni. Se 
presentan estudios de caso que demuestran cómo el enfoque propuesto permite 
caracterizar continuamente la DR empleando perfiles diarios reales y simulados de 
clientes residenciales y comerciales del sur de Chile. Los resultados prueban que la 
metodología logra modelos de clientes realistas para una gestión eficaz de la energía 
al estimar la respuesta de estos a una señal de precio a nivel del operador del sistema 
de distribución (DSO). 

La segunda parte de la tesis propone una metodología en línea para programar las 
respuestas de demanda de los clientes y favorecer la integración de la generación 
fotovoltaica en el sistema de distribución. El enfoque propuesto contribuye a la gestión 
de la flexibilidad de la demanda al proporcionar precios de control óptimos en tiempo 
real. Se utiliza un modelo de optimización de dos niveles para modelar las 
interacciones entre el DSO en el nivel superior, que persigue maximizar su ganancia, 
y los clientes en el nivel inferior, que buscan reducir sus facturas de electricidad. Para 
obtener las RPC de los clientes, se introduce una etapa de caracterización aplicando 
el algoritmo CFSFDP a los perfiles diarios. Sin embargo, la generación de precios de 
control plantea un gran desafío, ya que el DSO requiere garantizar también la 
operación confiable de la red y abordar la incertidumbre en el consumo y la 
producción renovable. En consecuencia, el trabajo incluye y reformula restricciones 
probabilísticas para el voltaje cuadrático en nodos y el flujo de potencia complejo en 
líneas. El problema de dos niveles con restricciones probabilísticas se transforma en 
un problema equivalente de programación de cono de segundo orden entera mixta, 
embebido en un modelo de control predictivo para explotar información disponible 
de los estados del sistema. Un estudio de caso que emplea precios locales y perfiles 
diarios de los clientes chilenos residenciales y comerciales en el alimentador de prueba 
de 37 nodos de IEEE demuestra cómo el enfoque permite programar la DR en tiempo 
real, considerando la incertidumbre en el voltaje en nodos y el flujo de potencia en 
líneas. 

En la tercera parte de la tesis, para abordar la programación óptima de otros recursos 
de energía a nivel de sistema de distribución, se expande el análisis de la segunda parte 
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considerando el control de los inversores de las instalaciones fotovoltaicas. Un nuevo 
estudio de caso con precios locales y perfiles diarios de los clientes chilenos 
residenciales y comerciales en el alimentador de prueba de 37 nodos de IEEE 
demuestra cómo el enfoque presentado permite la programación óptima en tiempo 
real tanto de los clientes como de las instalaciones fotovoltaicas, incluyendo, además 
de la incertidumbre previa, la correspondiente a la potencia aparente de los inversores. 

La investigación desarrollada tiene gran importancia tanto desde el punto de vista 
técnico, al propiciar una operación más eficiente y confiable del sistema de 
distribución, como económico, con ganancias financieras para los participantes del 
mercado. La misma es aplicable según su metodología y se ajusta a la exigencia 
práctica para la sociedad chilena.
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Nomenclature 

 

General notation 

In this thesis, (column) vectors are in bold lower case, such as 𝐱; sets and matrices are 
interchangeably in bold upper case, such as 𝐗. The notation 𝐱~𝒩(𝛍, 𝚺) means that 
𝐱 is a normal random vector with mean vector 𝛍 and covariance matrix 𝚺. Last, ℜ(∙) 
and ℑ(∙) denote the real and imaginary parts of a complex number, the operator 𝔼[∙] 
indicates the expected value, and [∙]! is used for transposition, (∙)∗ for the complex 
conjugate, and ⊥ for the complementarity. 

 

Sets, parameters, and variables 

𝐋 Set of customers {1, … , 𝐿} 
𝐓 Set of time points {1, … , 𝑇} 
𝐩:# Expected active power profile of customer 𝑙 [�̅�#$ 	…	�̅�#%]

! 
�̅�#& Expected active power of customer 𝑙 at time point 𝑡 
𝑞A#& Expected reactive power of customer 𝑙 at time point 𝑡 
𝑠#̅& Expected complex power of customer 𝑙 at time point 𝑡 
𝑝#!
'(), 𝑝#!

'*+ Minimum and maximum power bounds for �̅�#& 
𝑟#!
,, 𝑟#!

- Maximum ramp-down rate and ramp-up rate for �̅�#& 
𝑒# Minimum daily energy for customer 𝑙 
𝛥𝑡 Interval between two consecutive time points 
𝜏 Initial number of days 
𝐩./ 𝑖th initial active power profile [𝑝./$…	𝑝.

/
%]
! 

𝐏/ Initial set of daily profiles {𝐩./, 𝑖 = 1, … , 𝑁/} 
𝐩# Active power profile of customer 𝑙 [𝑝#$ 	…	𝑝#%]

!  
𝐏 Set of daily profiles {𝐩#} 
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𝜌 Local density 
𝛿 Minimum distance 
𝛾 Product of 𝜌 and 𝛿 
ℎ& Smoothing parameter of time point 𝑡 
𝐜0/, 𝐜0 Cluster center of cluster 𝑘, 𝑘 = 1,… , 𝐾 
𝐆0/, 𝐆0 Cluster 𝑘 of daily profiles S𝐜0/	𝐩0,2/ 	…	𝐩0,3"#

/ T, U𝐜0/	𝐩0,2 	…	𝐩0,3"V 
𝑠(𝐆0/), 𝑠(𝐆0) Structure distance of  𝐆0/, 𝐆0 
𝑁4 Number of representative points 
𝛼 Shrink factor 

𝐑0/ , 𝐑0 
Set of representative points of cluster 𝑘 Y𝐫0,5/ , 𝑢 = 1,… , 𝑁4\, 
Y𝐫0,5, 𝑢 = 1,… , 𝑁4\ 

𝐀 Auxiliary matrix U𝐩0,#	𝐫0,6/ V 
𝛨# Variability of customer 𝑙 
𝜆#& Electricity price of customer 𝑙 at time point 𝑡 
𝛽#!
'(), 𝛽#!

'*+ Dual variables of 𝑝#!
'(), 𝑝#!

'*+ 
𝜓#!
, , 𝜓#!

-  Dual variables of 𝑟#!
,, 𝑟#!

- 
𝜀# Dual variable of 𝑒#  
𝐆 Set of PV facilities {1, … , 𝐺} 
𝑝#& Active power of customer 𝑙 at time point 𝑡 
𝑞#& Reactive power of customer 𝑙 at time point 𝑡 
�̅�7& Active power forecast of PV facility 𝑔 at time point 𝑡 
𝑞A7& Reactive power forecast of PV facility 𝑔 at time point 𝑡 
𝑠7̅& Complex power forecast of PV facility 𝑔 at time point 𝑡 
�̅�7!
*8 Forecast of available active power of PV facility 𝑔 at time point 𝑡 
𝑝7& Active power of PV facility 𝑔 at time point 𝑡 
𝑞7& Reactive power of PV facility 𝑔 at time point 𝑡 
𝐍 Set of nodes of the distribution system {1, … , 𝑁} 
{0} Slack node 
𝐄 Set of distribution lines {(𝑚, 𝑛) ∶ 𝑚 ∈ 𝐍 ∪ {0}, 𝑛 ∈ 𝐍} 
𝑃9& Active power of node 𝑛 at time point 𝑡 
𝑄9& Reactive power of node 𝑛 at time point 𝑡 
𝑆9& Complex power of node 𝑛 at time point 𝑡 
𝑣9& Voltage magnitude of node 𝑛 at time point 𝑡 
𝑉9& Squared voltage of node 𝑛 at time point 𝑡 

𝑉A9& 
Squared voltage of node 𝑛 at time point 𝑡 with expected and forecast 
values 

𝑉'(), 𝑉'*+ Minimum and maximum voltage limits for 𝑉9& 
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𝑅:9 Resistance of line 𝑚𝑛 
𝑋:9 Reactance of line 𝑚𝑛 
𝑍:9 Impedance of line 𝑚𝑛 
𝑃:9& Active power flow from node 𝑚 to node 𝑛 at time point 𝑡 

𝑃A:9& 
Active power flow from node 𝑚 to node 𝑛 at time point 𝑡 with 
expected and forecast values 

𝑄:9& Reactive power flow from node 𝑚 to node 𝑛 at time point 𝑡 

𝑄A:9& 
Reactive power flow from node 𝑚 to node 𝑛 at time point 𝑡 with 
expected and forecast values 

𝑆:9& Complex power flow from node 𝑚 to node 𝑛 at time point 𝑡 
𝑆:9'*+	 Power flow limit of line 𝑚𝑛 
𝐩𝐧& Active power of nodes [𝑃$&…	𝑃3&]

! 
𝐪𝐧& Reactive power of nodes [𝑄$&…	𝑄3&]

! 

𝐃 |𝐄| × 𝑁 binary matrix for mapping values of active and reactive power 
in nodes into power flows and voltages 

𝐝:9 Vector corresponding to the 𝑚𝑛th row of 𝐃 
𝐝9 Vector corresponding to the 𝑛th column of 𝐃 

𝐇 [𝐿 + 𝐺] × 𝑁 binary matrix indicating the belonging of each customer 𝑙 
and PV facility 𝑔 to the corresponding node 𝑛 

𝐡9 Vector corresponding to the 𝑛th column of 𝐇 
𝐩& Active power of customers and PV facilities at time point 𝑡 
𝐪& Reactive power of customers and PV facilities at time point 𝑡 
𝜉#& Deviation of the customer response 
𝜉7& PV forecast error 
𝛏& Vector of active power deviation or forecast error in the nodes 
𝜎7& Standard deviation of forecast errors for PV facility 𝑔 at time point 𝑡 

𝚯& 
𝑁 × 𝑁 diagonal matrix of tangents correspondingly relating the active 
and reactive nodal deviations or errors at time point 𝑡 

𝐑 𝑁 × 𝑁 diagonal matrix of line resistances 
𝐗 𝑁 × 𝑁 diagonal matrix of line reactances 
𝜆&<	 Locational marginal price at time point 𝑡 
𝜆'(), 𝜆'*+	 Minimum and maximum price bounds for 𝜆#& 
𝜆4	 Regulated price 
𝜖8	 Violation probability for nodal voltages 
𝜖(	 Violation probability for power flows in lines 
𝜖=	 Violation probability for PV facilities 
Φ	 Cumulative distribution function of the standard normal distribution 
𝐈 Set of sides {1, … , 𝐼} of the inscribed polygon 
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𝐖 𝐼 × 3 matrix of coefficients  
𝐬 Vector of elements in ℝ>  
𝜂. Slope of side 𝑖 of the inscribed polygon 
𝜉$., 𝜉2. Vertices of side 𝑖 on the inscribed polygon 
𝜃	 Angle between two consecutive vertices of the inscribed polygon 

𝑀?, 𝑀@ Positive constants denoting upper bounds for the primal and dual 
variables 

𝛣#!
'(), 𝛣#!

'*+ Binary variables 
𝛹#!
,, 𝛹#!

-	 Binary variables 
𝛦# Binary variable 
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CC Chance constraint 
CDF Cumulative distribution function 
CFSFDP Clustering by fast search and find of density peaks 
DER Distributed energy resource 
DR Demand response 
DSO Distribution system operator 
ESS Energy storage system 
iDB Incremental Davies-Bouldin index 
iXB Incremental Xie-Beni index 
KKT Karush-Kuhn-Tucker 
LMP Locational marginal price 
MILP Mixed-integer linear programming 
MISOCP Mixed-integer second-order cone programming 
MPC Model predictive control 
OPF Optimal power flow 
PCA Principal component analysis 
PV Photovoltaic 
RES Renewable energy source 
RPC Response profile class 
SOC Second-order cone 
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Chapter 1 

Introduction 

 

In 2022, disruptions in supply, rising energy prices, and record deployment and 
investment in renewables marked the energy sector. Solar photovoltaics (PV) 
accounted for 70 % of the total capacity additions of renewable power, where 
centralized utility-scale PV, for example, reached 124.8	GW of new installations 
driven by tenders and the attractiveness of power purchase agreements, and 
distributed PV added 115.2	GW. 

As fundamental changes reshape the global energy system, policymakers, grid 
operators, and investors are becoming more aware of the role that renewable energy 
sources (RESs) play beyond mitigating climate change. Among the key benefits that 
renewables bring to a new energy system are energy security, economic and social 
value creation, and, potentially, higher geopolitical stability. However, integrating and 
expanding renewables to achieve high shares in utility power grids remains a 
significant challenge. Effective grid integration requires technology development, 
supporting policies, increased investment, and coordination among stakeholder 
groups. Also, their variable nature can affect system stability, making it more difficult 
to balance supply and demand, especially considering that for electricity demand, an 
estimated increase of 2 to 3 % is expected annually from 2021 to 2030 [1]. 

Technically, increasing shares of renewable power in power systems requires higher 
degrees of flexibility, not only from the electricity suppliers. Indeed, flexibility on the 
generation side usually leads to operating conventional units at production levels 
higher or lower than their optimum to accommodate the inherent variability of 
renewable generation by ramping up or down. Further, these ramping excursions may 
often end with the start-up or shutdown of conventional units. Consequently, high 
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variations of renewable generation to accommodate may result in power plants 
operating less efficiently, thus reducing the emissions savings brought about by the 
contribution of renewables to the electricity supply. However, a power system 
equipped with demand response (DR) can better cope with this by taking advantage 
of the flexibility of consumers [2]. In particular, the implementation of DR targets the 
control of the customer’s power-consuming behavior to meet the following objectives: 
1) reduction of the peak power consumption; 2) reduction of the total needed power 
generation, as the main result of the prior objective; 3) change of the demand to follow 
the available supply, especially with high penetration of RESs; and 4) elimination of 
overloads in the distribution system [3]. Time-varying pricing (also called dynamic 
pricing) can induce the DR of consumers, thereby improving economic efficiency and 
enhancing welfare concerning other forms [4]. 

As advanced metering infrastructures become more affordable, accessible, and spread 
in the distribution grid, more entities will take advantage of distributed energy 
resources (DERs), such as distributed PV, energy storage systems (ESSs), and DR. 
Thus, conventional passive customers will become active participants in the retail 
electricity market by providing DERs more efficiently and effectively [5]. 

1.1 Background 
Integrating renewable capacity by exploiting the operational flexibility that can arrive 
from scheduling demand is vital in the current distribution system. Efficient scheduling 
also guarantees the decoupling between economic growth and electrical energy 
consumption, materializing in more environmental and financial benefits. The 
proposed approach in this thesis considers the management of demand flexibility by 
providing optimal control prices in real-time. 

A critical challenge in the optimal scheduling of the distribution grid operation is that 
great uncertainty characterizes the required decisions, particularly with the increasing 
integration of weather-dependent generation facilities, which makes the available 
production capacity uncertain. Moreover, DERs that are being increasingly adopted 
close to individual consumption significantly increase the load uncertainty from the 
point of view of the distribution system operator (DSO). Thus, future distribution 
systems will involve great uncertainty on both the production and consumption sides 
[6]. 

Solving the scheduling problem on radial distribution grids also involves distribution 
systems’ constraints relative to nodal voltages and power flows in lines. Traditionally, 
energy management approaches solve this problem as a deterministic programming 
model that targets a day-ahead scheduling task based on time points forecast for the 
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above variables. However, obtaining accurate forecasts of these uncertain variables is 
typically unattainable. Therefore, the increase in uncertainty of forecast errors in 
generation and deviations of demand in real-time can jeopardize the reliable 
operation of the distribution system in providing electricity to customers. In addition, 
the higher presence of local markets leads to an increase in intra-day electricity 
trading, thus distancing real-time from day-ahead scheduling. 

Accounting for uncertainty in the scheduling of demand-side resources has been 
proposed in the literature by several stochastic methods, including robust optimization 
[6], stochastic programming [7], and chance-constrained formulations [8], [9]. The 
main difference between these approaches relies on how they address the uncertainty. 
Robust optimization, for instance, uses sets or distribution bounds to characterize the 
range of variability of the uncertain parameters [6]. In stochastic programming, 
uncertainty is described based on stochastic processes, conveniently characterized 
using scenarios [7]. In chance-constrained optimization problems, constraints state 
that the probability of a random event is kept smaller than a target value [8]. 

For several years now, a set of initiatives has been deployed in Chile to promote 
adequate legal frameworks for the continuous development of the country’s 
distribution sector. 

In the National Congress, the bill proposing changes to the right of customers’ 
electrical portability, known as the Electrical Portability Bill [10], continues to be 
debated. The bill aims to modernize the regulatory framework of the distribution 
segment, building on the progress made in law No. 21.194 [11], as a joint effort of the 
Ministry of Energy and the National Energy Commission.  

This bill is structured based on the following four main ideas: 1) grant all customers 
the right to choose their energy supplier, which allows them to have higher 
management over their energy consumption and potentially save money on their bills; 
2) make supply tenders flexible, allowing for supplier choice and ensuring secure 
supply, compatible with recognizing the retailer as new market agent; 3) ensure the 
entry of new players to the electricity market, such as the Information Manager (this 
private and tendered body aims to guarantee complete independence of information 
management, protect end-users data, provide controlled and symmetrical access to 
interested parties, and offer tools to end-users to facilitate their decision-making 
process); and 4) respect the current tendered supply contracts whereas gradually 
transitioning to new ones. 

Both organizations also seek to implement a flexibility strategy for the National 
Electrical System (SEN) [12]. The objective is to define actions that can help achieve 
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market signals and processes to facilitate the development and use of the necessary 
flexibility for the safe, efficient, and sustainable operation of the SEN. The strategy 
has various supporting features, namely the commitment to achieve carbon neutrality 
by 2050, the present and future rise in renewable generation influencing the system 
operation, the transformation in the electrical system’s dynamics concerning energy 
flows, and the existence of significant net demand ramps with a predicted increase in 
future scenarios.  

In defining the guidelines for future modifications of the regulatory framework in 
facing the above challenges, the strategy outlines the following actions: 1) developing 
a market design that fosters a more flexible power system; 2) creating a regulatory 
framework for ESSs and other emerging flexible technologies; and 3) ensuring the 
flexible operation of the power system. For example, the National Congress has 
recently passed Law No. 21.505 [13], published in 2022, to promote the introduction 
of storage technologies to facilitate the integration of RESs into the electrical mix and 
the use of electromobility in the distribution grid. 

Summarizing, in recent years, the DR scheduling problem has been the focus of 
several solutions in the technical literature. However, most of these solutions do not 
assess the effect of the final consumption profiles on the distribution grid, and they also 
concentrate on the day-ahead market, leading to higher uncertainty in decision-
making due to the separation of actual renewable generation from forecasted values 
or unexpected behaviors in load and electricity prices. This situation can create a 
complex scenario for the DSO because of the unavailability of fully dispatching some 
renewable resources in real-time (with the consequent power curtailments) or, 
conversely, the requirement of a greater reserve from the power system. 

On the other hand, in the literature, the continuous characterization of customers’ 
consumption behavior to understand their preferences and provide customized 
services in terms of DR has not yet been explored deeply. This study is essential for 
two reasons: 1) to accurately balance these preferences with the needs of the 
distribution operator; and 2) because each consumer’s installed power and flexibility 
to respond to the price signal are not the same. 

1.2 Hypothesis and Objective 
The hypothesis of the thesis is as follows: 

Using a stochastic optimization based on the continuous learning of the sensitivity of 
groups of customers to electricity price signals and their characterization contributes 
to the effective scheduling of DR in real-time. 
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The hypothesis is founded on the following scientific questions intended for the 
development of the thesis: 

1) Can a price-based DR program be customized for groups of customers over time? 

2) Is it feasible to determine in real-time the price signals that provide desired power 
responses from customers? 

3) How can a management framework be defined to minimize operational costs and 
maintain the power balance in real time while considering grid conditions and 
uncertainties in demand and renewable generation? 

Then, the objective of the thesis is as follows: 

To develop a real-time DR scheduling based on customized online learning of 
customers considering uncertainty. 

1.3 Contributions 
The contributions of the thesis in addressing the above challenges are summarized 
below, divided into online DR characterization, online DR scheduling, and online 
scheduling of distribution-level energy resources. 

1.2.1 Online DR Characterization 

1) An innovative framework for online DR characterization is proposed. The thesis 
presents the modified incremental clustering by fast search and find of density peaks 
(CFSFDP) algorithm, defined to work in a Hilbert space. Online clustering introduces 
the multivariate normal kernel density estimator for robustness to the number of 
objects in clusters and the monitoring of algorithmic performance through 
incremental forms of the Davies-Bouldin (iDB) and Xie-Beni (iXB) validity indices. 

2) Application of the proposed approach allows the DSO to perform two essential 
activities: updating the response profile class (RPC) and variability when customer 
response materializes (at the end of the day) and estimating customer behavior to price 
signals based on a known RPC (within the next day). 

3) The framework is tested with real-world and simulated daily profiles. Results show 
the online process for obtaining RPCs of residential and commercial Chilean end-
users. The thesis also provides a comparison and sensitivity analysis employing 
different combinations for the number of representatives and shrink factor. 

1.2.2 Online DR Scheduling 

1) An online framework for scheduling customers’ power responses to integrate PV 
production into the distribution system is proposed. The thesis introduces a bi-level 
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optimization model where the DSO in the upper level pursues maximizing its profit 
by determining the optimal price signals, while customers in the lower level aim to 
reduce their electricity bills. 

2) The proposed framework ensures the reliable operation of the distribution grid by 
limiting squared nodal voltages and complex power flows in lines with high 
probability. Specifically, chance constraints (CCs) are considered for these magnitudes 
and reformulated accordingly. The chance-constrained bi-level model then converts 
to an equivalent mixed-integer second-order cone programming (MISOCP) problem 
to find the globally optimal solution. 

3) The framework is tested with the real-world daily profiles of residential and 
commercial Chilean end-users on the IEEE-37 node test distribution feeder. Results 
demonstrate how the proposed model can schedule DR in real time. The thesis also 
explores the impact of uncertainty on system operation and presents a comparison 
analysis with the deterministic formulation involving the DSO’s profit and feasibility 
of the CCs. 

1.2.3 Online Scheduling of Distribution-Level Energy Resources 

1) An extension of the chance-constrained bi-level model to also determine optimal 
power set points for dispatchable inverters of PV facilities is proposed such that limits 
of squared nodal voltages, complex power flows in lines, and inverters’ capacity are 
satisfied with high probability. 

2) The framework is tested in a new case study with the real-world daily profiles of 
Chilean residential and commercial end-users on the IEEE-37 node test distribution 
feeder. Results demonstrate how the presented framework enables optimal real-time 
scheduling of flexible customers and PV facilities while considering both the previous 
uncertainty and uncertainty concerning the operation of PV facilities. 

The investigation corresponds with the current policies implemented in the country’s 
distribution sector. For example, it aligns with the flexibility strategy for the SEN 
concerning the operation scheduling improvement through intra-day updates. Also, 
to implement the investigation successfully, the separation proposed by the Electrical 
Portability Bill between electricity distribution, as a business of the electrical grid 
infrastructure, and electricity trading, as an activity carried out under competition, is 
crucial. 

The proposed framework comprises the following advantages for the DSO: 1) online 
characterization of customer behavior, thus obtaining mathematical models to 
estimate the customer response according to consumption preferences and 
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environmental factors; 2) online scheduling of customers’ power responses into the 
distribution system accounting for uncertainty; 3) optimal determining of inverters’ 
power set points and coordination of their dispatch according to grid requirements 
and local market conditions; 4) ensuring reliable operation of the distribution system 
during periods of peak demand or fluctuations of PV production; 5) earning financial 
benefits; and 6) reducing investment in traditional centralized power reserves by 
harnessing the combined capacity of the demand-side energy resources. 

Finally, the investigation presented in this thesis has been reported in the following 
relevant publications: 

1) L. Marrero, D. Sbárbaro, and L. García-Santander, “Customized Scheduling of 
Demand Response with Dispatchable Photovoltaic Inverters,” IEEE Transactions on 
Power Systems (under review). 

2) L. Marrero, D. Sbaŕbaro, and L. García-Santander, “Online Scheduling of 
Demand Response for Renewable Integration Considering Uncertainty,” Journal of 
Modern Power and Clean Energy (for resubmission). 

3) L. Marrero, D. Sbárbaro, and L. García-Santander, “Online Demand Response 
Characterization Based on Variability in Customer Behavior,” Journal of Modern Power 
and Clean Energy (accepted, 2023), doi: 10.35833/MPCE.2023.000516. 

4) M. Kippke, L. Marrero, and L. García-Santander, “Advanced Metering 
Infrastructure for Customers Identification,” Xplore Technology Award 2023 for a 
Sustainable World, Bad Pyrmont, Germany, 2023. 

5) L. Marrero, L. García-Santander, and D. Sbárbaro, “Caracterización de patrones 
de consumo y estilos de vida de clientes residenciales,” IX International Congress Biobío 
Energía, Concepción, Chile, 2020. 

1.4 Thesis Organization 
The organization of the thesis is as follows: 

Chapter 2 presents the online framework to characterize customers’ DR over time. 
The chapter provides the theoretical foundations and mathematical models and then 
describes the solution methodology for the online characterization. Two case studies 
based on real-world and simulated daily profiles test the proposed framework. The 
chapter concludes with a performance monitoring and a comparison and sensitivity 
analysis. 

Chapter 3 presents the online framework for scheduling customers’ DR to support 
integrating PV generation into the distribution system. The chapter first provides 
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theoretical foundations and mathematical models. Then, it defines the problem 
formulation under uncertainty and describes its solution methodology. Finally, a case 
study with real-world daily profiles of customers and the IEEE-37 node test 
distribution feeder assesses the proposed approach and analyzes the uncertainty cost. 

Chapter 4 presents the online framework designated for the optimal scheduling of 
the distribution-level energy resources. The chapter introduces the mathematical 
model for dispatchable inverters of PV facilities and extends the previous problem 
formulation by considering the uncertainty corresponding to their operation. The 
proposed framework is assessed in a case study using the real-world daily profiles of 
customers and the IEEE-37 node test distribution feeder. 

Chapter 5 summarizes the contents of the thesis, giving an overview of the most 
important results. It further provides some directions for future work.



 

 



 

 

Chapter 2 

Online Demand Response Characterization Based 
on Electricity Consumption Patterns 

 

This chapter proposes an online framework to characterize demand response (DR) 
over time. The proposed approach facilitates obtaining and updating the daily 
consumption patterns of customers. The essential concept of response profile class 
(RPC) is introduced for characterization, complemented by the measure of the 
variability in customer behavior. The chapter uses for daily profiles a modified version 
of the incremental clustering by fast search and find of density peaks (CFSFDP) 
algorithm that considers the multivariate normal kernel density estimator and 
incremental forms of the Davies-Bouldin (iDB) and Xie-Beni (iXB) validity indices. 
Case studies conducted using real-world and simulated daily profiles of residential and 
commercial Chilean end-users demonstrate how the proposed approach can 
continuously characterize DR. Results prove that the presented framework achieves 
realistic customer models for effective energy management by estimating the customer 
response to price signals at the distribution system operator (DSO) level. 

2.1 Motivation 
The intrinsic socio-demographic characteristics (individual preferences) of customers 
and real-time externalities (environmental factors) can influence their response [14] in 
price-based DR programs. Typically, this information is private and unknown. 
However, understanding how end-users respond conditioned by these influences is 
essential for estimating their potential for flexibility and designing correct pricing 
schemes to match the distribution system’s operation needs. To that end, a processing 
and subsequent characterization of daily load profiles are required first. These tasks 
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represent a notable challenge since electricity data are data streams; thus, online 
clustering is necessary for handling it. 

Although, in general, there are many papers in the literature about online (or stream) 
clustering foundations and algorithms (see, for instance, the recent surveys [15]-[17]), 
few studies have been reported directly addressing this topic with application to 
electricity data, which is the focus of this investigation. The same observation is found 
in related works [18] and [19]. 

However, several studies have recently analyzed customers’ electricity consumption 
by exploiting important offline clustering methods. For example, Sun, Konstantelos, 
and Strbac [20] classify 2613 households under diverse load conditions such as 
calendar seasons and days. A clustering is applied in [21] to load patterns represented 
as images, and then periods with similar consumption levels are identified by 
considering load variation and uncertainty. A bi-level load shape dictionary is 
developed in [22], where extracted features such as weekly and seasonal patterns and 
segment entropy characterize customers’ energy usage. Consumption dynamics for 
each end-user are formulated first in [23]; then, from a clustering process, an 
evaluation of variability in the resulting clusters is performed by an entropy analysis. 
Haben, Singleton, and Grindrod [24] extract, classify and verify the reliability of the 
clustering and discover clusters that describe end-users according to their demand and 
variability. Reference [25] uses an encoding system with a load-shape dictionary in 44 
million daily profiles, focusing on segmenting customers’ lifestyles. Finally, in [26], a 
distributed-centralized identification method to extract and characterize typical daily 
patterns is proposed for industrial customers. 

Despite the valuable contributions of these methods, they lack developing an online 
characterization. On the other hand, De Silva et al. [27] present an interim 
summarization function for the load data streams and an algorithm that incrementally 
learns and accumulates characterized patterns in six smart meters (SMs). Reference 
[28] implements the division of the load data streams in time windows, where objects 
in each window are assigned to different clusters (or concepts) whose structural change 
over time is analyzed, although they are not updated recursively. Similarly, an 
approach is presented in [19] that, by extracting interpretable features from consumer 
data, performs change detection and improves forecasting on aggregated time series 
within clusters. An incremental algorithm is devised in [18] to detect pattern drifts 
through load pattern extraction, intergradation, and modification, but it works with 
only one customer simultaneously. Finally, Le Ray and Pinson [29] introduce an 
online adaptive clustering for load profiling. However, these studies mainly focused 
on analyzing changes in consumption patterns rather than characterizing customer 
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behavior. The main advantage of this characterization for the DSO is obtaining online 
mathematical models to estimate the customer response according to consumption 
preferences and environmental factors. The DSO can then procure electrical energy 
with more certainty from the electricity pool. 

This chapter presents an online framework for characterizing the customer response 
from the DSO perspective. The continuous processing of daily profiles makes it 
possible to know the customers’ RPCs and compute their variability. The 
methodology comprises a modified version of the incremental CFSFDP algorithm of 
Zhao et al. [30], based on the seminal work of Rodriguez and Laio [31]. Previous 
experiences using the CFSFDP algorithm for load profiling in related studies [23] and 
[26] support this selection. The incremental formulation adapts this original offline 
algorithm to work in an online setup. The presented version considers the multivariate 
normal kernel density estimator, which is robust to the number of objects in clusters 
during online processing, and the iDB and iXB validity indices [32] to provide 
information about the algorithmic performance. The DSO can obtain the expected 
consumptions of customers from their corresponding RPCs. 

The customer response to the price signal has also been studied recently in the 
literature in the context of DR pricing. For example, in [33], strategies for setting real-
time prices are developed by implicitly learning consumer’s price elasticity online, 
although only own-price elasticity is in load changes. In [34], a model from the 
aggregator perspective runs a pricing program with distribution system constraints 
and learns the price sensitivities of customers. Finally, Tao et al. [35] adopt a non-
intrusive load monitoring-based pricing approach that estimates the DR potential of 
thermostatically controlled loads and then models the price responsiveness of 
customers. While how to generate time-varying price signals is beyond the scope of 
this chapter, the proposed approach provides the DSO with two powerful instruments 
to achieve this: 1) the updated customer models for the estimation of responses to 
different price signals; 2) the modeling of the underlying probability distribution of 
random deviations in demand from expected values, inherent to the customer’ 
stochastic behavior. According to [9], demand uncertainty generally has a normal 
distribution; therefore, the approach is suitable for finding information about the 
statistical moments. 

The main contributions of the chapter are summarized below: 

1) An innovative framework for online DR characterization is proposed. The chapter 
presents the modified incremental CFSFDP algorithm, defined to work in a Hilbert 
space. Online clustering introduces the multivariate normal kernel density estimator 
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for robustness to the number of objects in clusters and the monitoring of algorithmic 
performance through the iDB and iXB validity indices. 

2) Application of the proposed approach allows the DSO to perform two essential 
activities: updating the RPC and variability when customer response materializes (at 
the end of the day) and estimating the customer behavior to price signals based on a 
known RPC (within the next day). 

3) The framework is tested with real-world and simulated daily profiles. Results show 
the online process for obtaining RPCs of residential and commercial Chilean end-
users. The chapter also provides a comparison analysis with the online algorithm in 
[29] and a sensitivity analysis employing different combinations for the number of 
representatives and shrink factor. 

The organization of the chapter is as follows. Section 2.2 provides the theoretical 
foundations and mathematical models. Section 2.3 describes the solution 
methodology. Section 2.4 presents two case studies with real-world and simulated 
daily profiles to assess the proposed framework. The performance monitoring and the 
comparison and sensitivity analysis are discussed in Section 2.5. Finally, Section 2.6 
concludes the chapter. 

2.2 Problem Framework 
The DSO needs to ensure the reliability of the distribution grid, which may include 
small distributed solar generation units and generally has tight capacity constraints. 
By appropriately choosing dynamic price signals to be broadcasted to consumers 
enrolled in a price-based DR program, the DSO can reduce distribution system costs 
and increase reliability, for example, by shifting flexible consumption to periods with 
high stochastic production [2]. 

This chapter considers the price-setting DSO that aims at managing the demand 
flexibility and pursues estimating the consumers’ behavior to price signals. To this end, 
the DSO performs the daily processing of load profiles through the modified 
incremental CFSFDP algorithm to update the RPCs and variability of customers. 
Using the corresponding RPCs, the DSO can generate the expected consumption 
profiles in response to control price signals. Therefore, it can decide with high 
certainty how much electricity to trade, for example, in the balancing market within 
the day. Figure 2.1 illustrates the problem framework. 
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Figure 2.1. Framework for the online DR characterization. 

 

2.2.1 Flexible Customer Expected Response 

Let �̅�#& = �̅�#& + 𝑗𝑞A#& designate an expected complex power value to be consumed at 
time point 𝑡 by a customer 𝑙 under a contract; therefore, �̅�#& = 	ℜ�	�̅�#&� is the active 
component and 𝑞A#& = 	ℑ�	𝑠#̅&� the reactive one. Furthermore, �̅�#& ∈ 𝒮#&, where 𝒮#& is 
the consumption region that contains the customer’s active and reactive power values 
in 𝑡, positioned in the complex plane. It is possible to obtain a bounded and convex 
approximation 𝒮A#& of this region given practical bounds, both for active and reactive 
power. Although the estimation of 𝑞A#& is fundamental for the analysis at the 
distribution system level, this chapter focuses specifically on the active power responses 
of end-users. The following linear model for setting a flexible active power profile is 
defined [2]: 

 

𝑝#!
'() ≤ �̅�#& ≤ 𝑝#!

'*+ ∶ 𝛽#!
'(), 𝛽#!

'*+,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																													(2.1) 

−𝑟#!
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≥ 𝑒# ∶ 𝜀# ,					𝑙 ∈ 𝐋,																																																																			(2.3) 
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Equation (2.1) provides the expected response �̅�#& between a minimum 𝑝#!
'() and 

maximum 𝑝#!
'*+ bound for customer 𝑙 at time point 𝑡, where �̅�#& is an element of vector 

𝐩:# that represents the expected profile of the customer, that is, 𝐩:# = [�̅�#$ 	…	�̅�#%]
!. 

Likewise, 𝐋 = {1,… , 𝐿} and 𝐓 = {1,… , 𝑇} are respectively the sets of customers and 
time points within the day. Also, �̅�#& can increase or decrease depending on the market 
price due to the combined use of shifting and shedding loads. Equation (2.2) forces 
ramp limits on the decrease and increase of active power in two successive time points, 
with 𝑟#!

, and 𝑟#!
- as the maximum ramp-down rate and ramp-up rate, respectively. 

Finally, a minimum daily energy 𝑒# is specified by (2.3) to account for basic activities, 
where 𝛥𝑡 is the interval between two consecutive time points. Variables arranged after 
the colon are dual. 

An important observation to consider actual consumption features of consumers is 
that each region 𝒮A#& is time-varying since the bounds vary over time based on their 
preferences and environmental factors. The study exploits this and develops an online 
processing and subsequent characterization of daily load profiles. From the 
corresponding outcome, it is attainable to differentiate the behaviors of consumers 
through RPCs, where each RPC represents for a customer a portion (of similar daily 
profiles or vectors) of the polytope that entirely contains its load scenarios in the vector 
space. Therefore, based on these classes or portions, a more refined estimation of the 
consumption activity is feasible. 

From a set of daily profiles associated with a RPC, each pair of parameters 𝑝#!
'() and 

𝑝#!
'*+ of the model can be obtained as the corresponding extreme values, providing 

the convex (inner) approximation of the active power. 

Regarding the values of the maximum ramp rates in (2.2), because they are related 
to the speed at which the consumer can decrease or increase its demand, they differ 
for each time point of the day and between RPCs. The strategy for its online 
determination is to consider the load changes from time point 𝑡 − 1 to the next 𝑡, 𝑡 =
2,… , 𝑇, within the set of daily profiles of the RPC. Then, the following expressions 
result: 

 

𝑟#!
,𝛥𝑡 = max

D?$!%&B?$!E
�𝑝#&B$ − 𝑝#&� ,				𝑙 ∈ 𝐋, 𝑡 = 2,… , 𝑇,							(2.4) 

𝑟#!
-𝛥𝑡 = max

D?$!B?$!%&E
�𝑝#& − 𝑝#&B$� ,				𝑙 ∈ 𝐋, 𝑡 = 2,… , 𝑇,							(2.5) 
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where (2.4) and (2.5) indicate a decrease and an increase in demand concerning the 
previous time point, respectively. 

Lastly, the minimum daily energy can be the lowest total consumption among all the 
profiles within the RPC. 

2.3 Solution Methodology 
Daily processing of load profiles favors the appropriate characterization of customer 
behavior. To make this analysis scalable and because consumers can be associated 
based on the similarity of their consumption patterns, this work presents an 
incremental clustering, whose description is the first focus of the section. The rest 
considers the performance monitoring and the estimation of the variability of the 
customer response. 

Following Figure 2.1, Algorithm 1 outlines the online workflow that runs at the end 
of each day when customer response materializes. 

2.3.1 Modified Incremental CFSFDP Algorithm 

Let 𝐏/ = {𝐩#/}, with each vector 𝐩#/ = [𝑝#/$…	𝑝#
/
F%]

!, denote an initial set of power 
profiles collected during 𝜏 days from 𝐿 customers equipped with SMs. Let the initial 
power profile of each customer recast into 𝜏 daily load profiles. By gathering all these 
new profiles, the initial set is reformulated then with a total of 𝑁/ = 	𝜏𝐿 vectors of 𝑇-
tuples, that is, 𝐏/ = {𝐩./, 𝑖 = 1, … , 𝑁/}, with each vector 𝐩./ = [𝑝./$…	𝑝.

/
%]
!. 

Furthermore, a set 𝐏 = {𝐩#} of load profiles is processed daily after this historical 
collection. 

Any structure in the vector space depends on the similarity metric and the clustering 
criterion, which expresses how to use the metric. In the investigation, the metric 
𝑑2: ℝ% × ℝ% → ℝ, defined in (2.6) in terms of the ℓ2 norm for any pair of vectors 𝐩./ 
and 𝐩G/, is employed. Hence, ℝ% is a normed linear vector space, particularly a Hilbert 
space, due to the induced norm [36]. 

 

𝑑2�𝐩./, 𝐩G/� = ¦𝐩./ − 𝐩G/¦2,					∀	𝐩.
/, 𝐩G/ ∈ 𝐏/,																							(2.6) 

 

The implementation of the modified incremental CFSFDP algorithm involves the 
following stages: 
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1) Application of the CFSFDP Algorithm: The CFSFDP algorithm uses the initial set 
𝐏/, where the clustering criterion relies on the computation of two magnitudes for 
each object 𝐩./: the local density 𝜌. and the minimum distance 𝛿. concerning the 
vectors of higher density: 

 

𝜌. =
1

𝑁/ℎ$⋯ℎ%
�©ª𝓀¬

𝑝./& − 𝑝G
/
&

ℎ&


%

&C$

®
3#

GC$

,					𝑖 = 1,… , 𝑁/,					(2.7) 

𝛿. = min
𝐩'
#∈𝐏#

𝑑2�𝐩./, 𝐩G/�																																																																							(2.8) 

										s. t.		𝜌G ≥ 𝜌. ,					𝑖, 𝑗 = 1,… , 𝑁/,																																														(2.9) 
 

where, unlike [30] and [31] that use the cutoff distance of high sensitivity to a small 
number of objects, (2.7) denotes the general form of a multivariate product kernel 
estimator at point 𝐩./ of the probability density function, in which the same (univariate) 
kernel function 𝓀(⋅) is used each time point 𝑡 with a different smoothing parameter 
ℎ&. Without loss of generality, let the normal kernel be selected. Then, according to 
Scott’s rule [37] in ℝ%, each smoothing parameter can be approximated as ℎ& =
𝜎&𝑁/

B$
%KLM , with 𝜎& as the standard deviation for time point 𝑡. 

For the object 𝐩./ with the highest density, the distance is: 

 

𝛿. = max
𝐩'
#∈𝐏#

𝑑2�𝐩./, 𝐩G/�																																														(2.10) 

 

Each cluster center 𝐜0/, 𝑘 = 1,… , 𝐾, describes a dominant consumption pattern and 
is expected to be surrounded by a neighborhood with lower local density and at a 
relatively large distance from any object with a higher local density. To identify the 
centers, both the plot of 𝛿. as a function of 𝜌. for each object (the so-called decision 
graph) and the plot of quantities 𝛾$, … , 𝛾3# in decreasing order, each 𝛾. = 𝜌.𝛿., can 
be used [31]. After detecting the centers, each remaining object is assigned to the same 
cluster as its nearest neighbor of higher density. Each cluster is denoted as 𝐆0/ =
S𝐜0/	𝐩0,2/ 	…	𝐩0,3"#

/ T, where 𝑁0/ is the number of daily profiles. 
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2) Determination of the Representatives: With this approach, each cluster is 
represented by a fixed number of representative points generated by selecting first 
well-scattered points and then shrinking them toward the center by a specified 
fraction. The approach helps to identify clusters with non-spherical shapes and wide 
variances in size [38]. 

Let 𝑁4 be the number of representative points of clusters and let 𝐑0/ =
Y𝐫0,5/ , 𝑢 = 1,… , 𝑁4\ be the set of these points to select for any cluster 𝑘. Their 
determination follows a sequential order. A selected vector 𝐩0,./  becomes a 
representative vector 𝐫0,5/ . The first representative is: 

 

𝐫0,$/ = arg	max
𝐩",)
# ∈𝐆"

#
𝑑2(𝐩0,./ , 𝐜0/)																																																		(2.11) 

 

while the rest of them are selected one by one as follows: 

 

𝐫0,5/ = arg	max
𝐩",)
# ∈𝐆"

#∖𝐑"
#
¸ min
𝐫",*
# ∈𝐑"

#
𝑑2�𝐩0,./ , 𝐫0,6/ �¹																																																						(2.12) 

														s. t.		𝑑2�𝐩0,./ , 𝐫0,6/ � ≥ 𝑒BRS𝐆"
#T,					𝑘 = 1,… , 𝐾, 𝑢 = 2,… ,𝑁4,					(2.13) 

 

where 𝐫0,6/  is a representative vector in 𝐑0/ , for instance, to select the second 
representative, 𝐫0,6/  is 𝐫0,$/ , to select the third representative, 𝐫0,6/  could be 𝐫0,$/  or 𝐫0,2/ , 
and so on; and 𝑠(𝐆0/) is the structure distance of 𝐆0/, expressed in (2.14) based on the 
mean 𝜇0,& and standard deviation 𝜎0,& of time point 𝑡 [30]. 

 

𝑠(𝐆0/) = »�¼
𝜎0,&
𝜇0,&

½
2%

&C$

∑ 𝜇0,&%
&C$

𝑇 ,					𝑘 = 1,… , 𝐾,																					(2.14) 

 

The shrinking process of the representative points depends on the (user-defined) shrink 
factor 𝛼 ∈ [0,1]: 
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𝐫0,5/ = 𝐫0,5/ + 𝛼�𝐜0/ − 𝐫0,5/ �,					𝑘 = 1,… , 𝐾, 𝑢 = 1,… ,𝑁4,					(2.15) 
 

Shrinking the scattered points toward the center undoes surface abnormalities and 
mitigates the effect of outliers since these are typically further away from the cluster 
center [38]. 

3) Assignment of New Load Profiles: With a new daily set 𝐏, each object 𝐩# is assigned 
to the cluster 𝐆0/ with the nearest representative. To that end, the local density 𝜌# is 
set initially to zero, and the minimum distance 𝛿# is as follows: 

 

𝛿# = min
𝐫",+
# ∈𝐑"

#
𝑑2�𝐩# , 𝐫0,5/ �																																													(2.16) 

 

The assignment causes a change in the cluster structure, which requires updating the 
representative points. Assuming 𝐫0,6/  as the nearest representative to the assigned 
vector 𝐩0,#, the solution of the problem below is found: 

 

arg	max
𝐩",$,𝐫",*

# ∈𝐀
¼ min
𝐫",+
# ∈𝐑"

#∖𝐫",*
#
𝑑2U𝐀(1: 𝑇, 𝑐), 𝐫0,5/ V½																																																(2.17) 

s. t.		𝑑2U𝐀(1: 𝑇, 𝑐), 𝐫0,5/ V ≥ 𝑒BRS𝐆"
#T,					𝑘 = 1,… , 𝐾, 𝑙 ∈ 𝐋, 𝑐 = 1, 2,					(2.18) 

 

where 𝐀 = U𝐩0,#	𝐫0,6/ V is an auxiliary matrix, with the column 𝑐. 

From this result, if 𝐩0,# produces the maximum value, then 𝐩0,# replaces 𝐫0,6/  as the 
new representative [30]. Each cluster is denoted as 𝐆0 = U𝐜0/	𝐩0,2 	…	𝐩0,3"V, where 
𝑁0 is the number of daily profiles. 

4) Splitting Procedure: In this stage, the algorithm looks for clusters with more than 
one dominant pattern. Specifically, in each new cluster 𝐆0, parameters 𝜌. and 𝛿., and 
the quantity 𝛾., are first obtained for each object 𝐩0,.. Based on these product values, 
new cluster centers can be identified, and the remaining objects assigned as in the 
CFSFDP algorithm [30]. Since only very few clusters arise in practice, an empirical 
criterion by computing the mean of the ten highest quantities can deliver new centers 
if these objects have a value higher than this. 
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5) Merging Procedure: This stage happens if new clusters arise, looking for those 
containing a similar dominant pattern. Specifically, the connected graph is 
constructed to find components connected between clusters. The minimum distance 
between any two clusters 𝐆0 and 𝐆:, 𝑘,𝑚 = 1,… , 𝐾, is computed as: 

 

𝐷(𝐆0, 𝐆:) 	= min
𝐫",+∈𝐑",𝐫,,*∈𝐑,

𝑑2�𝐫0,5, 𝐫:,6�																								(2.19) 

 

If 𝐷(𝐆0, 𝐆:) ≤ 𝑠(𝐆0) and 𝐷(𝐆0, 𝐆:) ≤ 𝑠(𝐆:), an edge is added between them. 
After adding all the edges, the graph with multiple components results, and the clusters 
with the same component can be merged [30]. 

2.3.2 Incremental Indices for Performance Monitoring 

Lately, some authors [32], [39], [40] have extended several of the offline cluster 
validity indices to deal with the clustering over data streams. This study implements 
the iDB and iXB indices to monitor the performance of the online algorithm. 

For indices’ computation, the compactness term is essential. The study considers the 
incremental formulation proposed in [32], which represents a counterpart hard for 
the calculation of the compactness as considered in [39] (in the context of fuzzy 
clustering). This formulation is applied to clusters that do not undergo splitting or 
merging, and for calculating both indices, the corresponding equations in [32] are 
employed (see Appendix A). Instead, the work applies the offline forms of both indices 
to clusters that arise due to a split or merger. However, the compactness formulation 
in this study is more straightforward than the one described in [32] due to the 
following differences: 1) the calculation is executed after the assignment of objects in 
𝐏 to clusters and not after the assignment of each, 2) the use of a cluster center 𝐜0 
instead of the centroid, which changes with the added objects. In both indices, smaller 
values mean better solutions, whereas sudden changes indicate changes in the 
cohesion and separation of clusters produced by the online algorithm [17]. 

2.3.3 Variability of the Customer Response 

To measure the uncertainty about the daily RPC for each customer, the entropy value 
[36] is used in the study: 

 

𝛨# = −𝔼[logℙ(𝐜0)],					𝑙 ∈ 𝐋, 𝑘 = 1,… , 𝐾,																							(2.20) 
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where 𝔼[∙] denotes the expectation operator and ℙ(⋅) is the probability of the cluster 
center followed up to the current day. 

Equation (2.20) is solved after each daily observation of RPCs and gives the amount 
of information inherent to each, that is, the variability in customer behavior. 

 

Algorithm 1 Online DR Characterization 
Input: Set 𝐏, 𝐆0/, 𝐑0/ , 𝑘 = 1,… , 𝐾 
1:   for 𝑡 ← 𝑇 do 
2:       Assign each object 𝐩# to the corresponding cluster by (2.16) 
          and solve (2.17) − (2.18) to update the representative 
3:       for each cluster 𝐆0, do 
4:           Compute the local density by (2.7) and the minimum 
              distance by (2.8) − (2.10) for each object, and select 
              new cluster centers through their products if they exist 
5:           Assign each remaining object to the corresponding cluster 
              and select the representatives by (2.11) − (2.15) 
6:       end for 
7:       if new clusters arise then 
8:           Compute the minimum distance between all pairs of 
              clusters by (2.19) and merge accordingly  
9:           In the merged clusters, compute the local density by (2.7) 
              and the minimum distance by (2.8) − (2.10) for each 
              object, select as center the object with the highest product 
              value and the representatives by (2.11) − (2.15) 
10:     end if 
11:     Compute the iDB and iXB validity indices 
12:     Update the RPCs and variability of customers by (2.20) 
13: end for 

 

2.4 Case Studies 
This section presents two case studies to demonstrate the benefits of the approach. 
The first case study involves residential and commercial electricity data recorded over 
six weeks (February 1 to March 13, 2020), with 15-minute intervals. The Hilbert space 
is then ℝVW. The number of customers is 925, charged with a regulated tariff; however, 
the study assumes they practice an optimizing behavior, using electricity in known off-
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peak periods. Therefore, Algorithm 1 is applied continuously when each day ends, 
simulating the succession of days during this period. As a result, the DSO can update 
the RPCs and variability of customers at the end of the day. The second case study 
considers numerical simulations for an additional week, where the DSO broadcasts 
price signals daily. Based on each daily update of RPCs from Algorithm 1, this case 
study allows obtaining expected load profiles of customers for the next day. 

2.4.1 Case study Using Real-World Data Set 

Incompleteness in electricity data is a common trend. Then, cleaning is executed by 
identifying and discarding daily profiles with missing and inconsistent values. The 
initial set 𝐏/ considers the first week of measurement data. Thus, each set 𝐏 of profiles 
corresponding to the rest of the days is processed incrementally. Likewise, the 
normalization of each daily profile concerning its maximum value is implemented to 
facilitate the clustering process. 

The application of the CFSFDP algorithm to 𝐏/ allows the identification of four initial 
clusters through the decision graph and the plot of quantities 𝛾$, … , 𝛾3# in decreasing 
order. Figure 2.2 depicts this result and highlights the selected centers with colored 
and bigger dots. One of them is remarkably different, while the remaining three differ 
from the rest mainly due to the distance parameter, which means that these points do 
not have a neighborhood as high as the first. 

 

 
Figure 2.2. Plots for identification of the initial clusters, including a zoom to better 
distinguish the last three: the decision graph and quantities 𝛾$, … , 𝛾3# in decreasing 

order (with abscissa axis in logarithmic scale). 
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Representative points in clusters are the basis for assigning new profiles. The 
incremental clustering uses the following parameter values: 𝑁4 = 8 and 𝛼 = 0.4. To 
better observe the shrinking of representatives, Figure 2.3 shows the process for the 
points that belong to the initial cluster 3, with the lowest cardinality, into a two-
dimensional space using the principal component analysis (PCA) [36]. Representative 
points and the cluster center are highlighted in bigger black dots and a blue diamond, 
respectively. In ℝVW, this comprises the translation of the points around the center. 

 

 
Figure 2.3. Scatter data of cluster 3 for PCA before and after the shrinking process, 
with representatives in bigger black dots and the cluster center in a blue diamond. 

 

The online algorithm produces five final clusters considering the real-world data set. 
Figure 2.4 illustrates its evolution starting from the initial four. Following the 
trajectories, it is possible to identify the origin for each cluster, that is, the one from 
which they arise and the corresponding date. In the same way, for those clusters that 
fade, it is noticeable which one they merge with and the corresponding date. Cluster 
1 is the only one that maintains from the beginning. Also, several arise and fade in the 
last days of the period, which is attributed to a change in the consumption behavior 
of most customers since February is a vacation month and March is a month of more 
work activity and back to school. Finally, some isolated objects (with small density and 
great distance) are classified as outliers and discarded during online processing. 

Since customers generally have well-defined behaviors (at least for a specific period) 
and these behaviors repeat between them, continuous splitting of clusters is 
uncommon. Also, a splitting rarely generates more than two clusters. The same 
happens with merging. Figure 2.4 confirms these observations, with some exceptions 
in the last days where splits and mergers increase. On the other hand, since a cluster 
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might contain at most two dominant patterns, the empirical criterion presented in the 
splitting procedure to split it directly (without analysis as in Figure 2.2) is simple but 
effective (this includes the isolated objects treated as outliers). 

 

 
Figure 2.4. Evolution of clusters for the measurement period. 

 

Figure 2.5 depicts the response profiles for the five clusters, and Table 2.1 gives their 
cardinality and daily average consumption. The most increased percentage of cluster 
2 (over 70 %) concludes that this pattern is present in most residential end-users; 
however, it also includes commercial establishments and small businesses. Cluster 1 
presents the highest consumption and more stable behavior. Cluster 3 shows a slightly 
lower consumption in the morning. Daily profiles with irregular behavior are much 
more noticeable in cluster 4, and cluster 5 has a typical residential pattern of low 
consumption. 

 

Table 2.1. Cardinality and Daily Average Consumption of the Final Clusters 

Final cluster Cardinality Average consumption (kWh) 

1 4153 50.5 

2 26684 30.3 

3 2643 37.4 

4 3629 27.8 

5  349 19.9 
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The appropriate characterization of customers’ behavior is essential in a control-by-
price strategy. Table 2.2 summarizes the RPCs of customers and the combinations of 
these daily patterns, which is the main benefit of the present framework. Most 
consumers use four RPCs within the measurement period. 

 

 

 
Figure 2.5. Daily consumption profiles of the final clusters, with cluster centers in 

black. 
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To complement this, the variability between the patterns in the combination is 
fundamental. For example, customers 99 and 630 (these are internal identifications 
for privacy-preserving) have equally the most common combination: 1-2-3-4; 
however, the probabilities on energy usage are very different, which are 0.047-0.905-
0.024-0.024 and 0.286-0.238-0.286-0.19, respectively, and their corresponding 
entropy values are 𝛨VV = 0.1796 and 𝛨W>/ = 0.5965 (with the general mean of 
0.2436). The lower value is because of the predominance of the second pattern and 
the very low probability of the rest, which implies less uncertainty about the daily RPC 
for customer 99. Figure 2.6 confirms this information based on the daily consumption 
profiles of both consumers, where a more uncertain daily behavior characterizes 
customer 630. 

 

Table 2.2. RPCs of Customers and their Combinations 

RPC 1 2 3 4 5 

Number of 
customers 130 215 264 294 22 

Combination 
of RPCs 
(number of 
customers of 
the 
combination) 

2 (122) 1-2 (85) 1-2-3 (58) 1-2-4-5 (14) 1-2-3-4-5 (22) 

4 (4) 2-4 (100) 1-2-4 (69) 1-2-3-4 (248)  

1 (4) 1-4 (2) 2-4-5 (32) 2-3-4-5 (29)  

 2-3 (8) 2-3-4 (91) 1-2-3-5 (3)  

 1-3 (6) 1-3-4 (6)   

 2-5 (12) 2-3-5 (4)   

 3-4 (2) 1-2-5 (4)   

 

2.4.2 Case Study Using Simulated Data Set 

This case explores the effect of relaxing the regulatory condition to allow the price to 
fall in off-peak periods and to increase in peak periods. For simplicity, the DSO 
broadcasts a single price signal to all consumers each day of the specified week (from 
March 14 to 20, 2020); however, customized price signals can be designed according 
to customers’ behavior and broadcasted, for example, each hour of the day to exploit 
newly available information of the system states. Figure 2.7 depicts these price signals 
generated from the hourly demand profiles of the power system in that week [41]. 
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Figure 2.6. Daily consumption profiles of customers 99 and 630 for the 

measurement period. 

 

 
Figure 2.7. Price signals generated according to the Chilean power system demand 

from March 14 to 20, 2020. 

 

The execution of numerical simulations considers the following ideas: 1) a realistic 
situation in which consumers use each day the RPC with the highest probability for 
that day; 2) to estimate active power responses to the price signal, customers practice 
a daily cost minimization; hence, the chapter employs the linear programming 
problem in (2.21) [2], where 𝜆#& represents the electricity price at time point 𝑡; 3) to 
account for the presence of stochasticity in the responses, each random deviation from 
the expected active power value at time point 𝑡 follows a normal distribution with 
mean zero and variance of 0.01	kWh2. 
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min
𝐩X$

©�𝜆#&�̅�#&𝛥𝑡
%

&C$

®																																																	(2.21) 

s. t.		(2.1) − (2.3)																																																															 

 

For example, considering the same two customers and March 14, the RPC with the 
highest probability for this day results in RPC 2 for customer 99 and RPC 3 for 
customer 630. Figure 2.8 represents their corresponding mathematical models 
according to the RPCs, from which the optimizing behavior can be found. Each 
model involves the minimum and maximum bounds, which in general follow the 
shape of clusters 2 and 3 in Figure 2.5, respectively, and the maximum ramp values 
given by products 𝑟#!

,𝛥𝑡 and 𝑟#!
-𝛥𝑡. Both consumers present time points with a high 

predominance of one of the ramp rates, which implies a higher flexibility of that ramp 
rate. For customer 630, lower values around 6 AM indicate less flexibility for this time. 
Finally, the minimum daily energy is 73.73	kWh for customer 99 and 34.45	kWh for 
customer 630. 

After the simulation period, the final clusters increase to six. Figure 2.9 illustrates their 
response profiles, and Table 2.3 gives their cardinality and daily average consumption. 
The main difference concerning the case with the real-world data set is the new arising 
cluster 5, related in shape to the previous cluster 2. Most of the new daily profiles 
under the effect of the price signals are added to this cluster, which is also indicated in 
Table 2.3. Considering the shape of the control signals with the lower prices in the 
early morning and the corresponding constraints on bounds and maximum ramp 
rates during these hours, most of the new daily profiles present lower consumption to 
reduce the final cost. In addition, the algorithm assigns the lower consumption profiles 
of cluster 2 to this new cluster. Based on these factors, cluster 5 shows the lowest energy 
value, whereas for cluster 2, the cardinality decreases notably, and its average 
consumption increases. Finally, the same cluster centers hold from the case using the 
real-world data set. 

Table 2.4 summarizes the RPCs and their combinations including the simulation 
period. Most consumers continue to use four RPCs, but the most common 
combination is now 1-2-3-4-5. 
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Figure 2.8. Minimum and maximum bounds (in green, right scale) and ramp values 
𝑟#!
,𝛥𝑡 and 𝑟#!

-𝛥𝑡 (in red and blue, respectively, left scale) for customers 99 and 630. 

 

Table 2.3. Cardinality and Daily Average Consumption of the New Final Clusters 

Final cluster Cardinality (ratio of new 
daily profiles) 

Average consumption 
(kWh) 

1 4227 (0.01) 51.7 

2 12003 (0.05) 45.4 

3 2467 (0.03) 34.2 

4 6041 (0.32) 31.1 

5 18960 (0.58) 17.5 

6  190 (0.01) 21 
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Figure 2.9. Daily consumption profiles of the new final clusters, with cluster centers 

in black. 
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Table 2.4. RPCs of Customers and their Combinations 

RPC 1 2 3 4 5 6 

Number of 
customers 9 67 242 305 282 20 

Combination 
of RPCs 
(number of 
customers of 
the 
combination) 

2 (5) 4-5 (34) 1-4-5 (6) 1-2-4-5 (135) 
1-2-4-5-6 

(17) 
1-2-3-4-
5-6 (20) 

5 (3) 2-5 (27) 2-4-5 (172) 1-3-4-5 (40) 1-2-3-4-5 
(252)  

4 (1) 3-4 (2) 3-4-5 (29) 2-3-4-5 (85) 1-3-4-5-6 (3)  

 1-2 (1) 1-2-4 (7) 2-4-5-6 (24) 
2-3-4-5-6 

(10)  

 1-4 (1) 1-3-4 (11) 1-2-3-5 (5)   

 1-5 (1) 2-5-6 (7) 1-2-3-4 (12)   

 3-5 (1) 1-2-5 (10) 1-4-5-6 (3)   

   1-2-5-6 (1)   

 

2.5 Performance Monitoring and Comparison and 
Sensitive Analysis 

Considering the real-world data set, this section first analyzes the monitoring of the 
clustering algorithm based on the iDB and iXB indices. The comparison with the 
online algorithm in [29] and the sensitivity analysis employing the number of 
representatives and the shrink factor are also investigated. 

2.5.1 Performance Monitoring of the Online Clustering 

To assess the cohesion and separation of clusters produced in the online processing, 
Figure 2.10 depicts the iDB and iXB indices. A high correlation characterizes the 
measurement period, and the resulting trend of the values exhibits good performance 
for the algorithm based on an adequate assignment of objects. 

On days when splitting or merging events happen (as shown in Figure 2.4), the indices 
almost always show a slight increase or decrease, respectively. Conversely, both 
remain constant when clusters hold from one day to the next. Then, the usefulness of 
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these incremental forms for monitoring the evolution of the online algorithm is 
proved, as in other correctly and poorly partitioned data sets [32]. The higher values 
in the last few days are due to the change in daily patterns attributed to most 
consumers. 

 

 
Figure 2.10. Evolution of the iDB and iXB validity indices for the measurement 

period. 

 

2.5.2 Comparison Analysis 

The work uses the algorithm in [29] for comparison purposes since it also processes 
daily profiles. Concerning the proposed framework, this algorithm has two main 
differences: 1) it uses centroids, which is not always valid in practice since clusters 
ideally need to have a spherical structure in the vector space; 2) it discards past daily 
profiles and preserves this information only through a distance matrix and the 
centroids themselves, which are updated daily. 

The algorithm is applied using the ℓ2 norm and the first week for the consensus 
clustering [29], in which the k-means method uses the set {2, … , 8} for the number of 
clusters per instance. Table 2.5 gives the result of two cases with different parameter 
values for the facility cost 𝐶Y that decides the split and the minimum distance between 
centroids 𝑑:.9 that favors the merger, where 𝐷? is the mean of the probability 
distances. The rest of the parameter values comprise the initial number of clusters 𝐾/ 
obtained from the corresponding dendrogram, the exponential forgetting 𝜈, and the 
number of disruptive loads 𝛾:.9, which remain as in the application with electricity 
data in [29]. Specifically, different parameter values in the second case produce many 
more splits and mergers. 

11 16 21 26 2 7 12
February 7 - March 13, 2020

0

1

2

3

4

5

In
de

x 
va

lu
e

iDB
iXB



Chapter 2. Online Demand Response Characterization 32 

 

Table 2.5. Parameter Values and Final Clusters Using the Algorithm in [29] 

Case 
Parameter value Final 

clusters 𝐾/ 𝜈 𝛾:.9 𝐶Y 𝑑:.9 

1 7 0.85 5 6 × 𝐷? 0.5 × 𝐷? 6 

2 7 0.85 5 5 × 𝐷? 0.8 × 𝐷? 8 

 

Figure 2.11 illustrates the evolution of the iDB and iXB indices in these two cases, 
where high-magnitude spikes that suggest a poorer assignment of daily profiles are 
present in both. 

 

 
Figure 2.11. Evolution of the iDB and iXB validity indices for the measurement 
period in two cases with different parameter values using the algorithm in [29]. 

 

2.5.3 Sensitivity Analysis 

The sensitivity analysis evaluates the influence of changes on the number of 
representatives 𝑁4 and the shrink factor 𝛼. Table 2.6 shows solutions for a group of 
selected values of these parameters. 

Considering 𝑁4, the trend is to obtain fewer clusters as this number increases. With 
one representative (the cluster center itself), nine final clusters result, which is close to 
the eight final clusters of case 2 using the algorithm in [18] (which employs the 
centroid). With 𝑁4 = 4, a high difference between the maximum and minimum values 
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is obtained for the iDB index. Generally, it is hard to establish the final number of 
these scattered points in the vector space. With a relatively small number, a large 
cluster can split incorrectly, but with a large number, two close clusters are more likely 
to merge. According to the values of the indices in Table 2.6 with the real-world data 
set, using 𝑁4 ≥ 6 produces adequate results. 

Concerning 𝛼, it is not practical to take very low or very high values [38]. In addition 
to 𝛼 = 1, Table 2.6 presents the results with 𝛼 = 0.3 and 𝛼 = 0.5. Similarly, with a 
smaller value of 𝛼, the scattered points shrink little, and merging between two clusters 
is more likely to occur, whereas larger values cause these points to move more toward 
the cluster center and favor the splitting. 

 

Table 2.6. Final Clusters and Mean, Standard Deviation, and Difference Between 
the Maximum and Minimum iDB and iXB Indices for Different Values of 𝑁4 and 𝛼 

𝑁4 𝛼 
Final 

clusters 

Mean, standard 
deviation, and difference 
between the maximum 

and minimum iDB 
indices 

Mean, standard 
deviation, and difference 
between the maximum 

and minimum iXB 
indices 

8 0.4 5 1.57, 0.65, 2.89 1.02, 0.65, 2.37 

4 0.4 6 2.92, 5.81, 29.68 1.52, 0.83, 3.27 

6 0.4 5 1.47, 0.3, 1.04 1.2, 0.67, 2.23 

10 0.4 3 1.27, 0.2, 0.88 0.61, 0.31, 1.36 

12 0.4 3 1.19, 0.16, 0.76 0.6, 0.35, 1.34 

8 0.3 3 1.41, 0.52, 3.23 1.14, 0.78, 3.5 

8 0.5 5 1.28, 0.21, 0.96 0.75, 0.42, 1.52 

1 1 9 1.86, 0.19, 0.76 1.34, 0.25, 1.22 

 

2.6 Conclusion 
The main idea of this chapter is to propose an online framework for DR 
characterization. In particular, the DSO can use the proposed framework to obtain 
and update daily the RPCs and variability of customers and estimate the customer 
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response to a price signal based on a known RPC, which is suitable for effective energy 
management on the demand side. 

On the other hand, the underlying probability distribution of random deviations in 
demand from expected values is generally unknown. However, the framework 
contributes to modeling it since each daily deviation can be considered a realization 
of the corresponding random variable. Using the parameters of this empirical 
distribution overcomes the limitation of making distributional assumptions that can 
result in risky or more conservative costly solutions. 

Some technical and practical complications arise with each set 𝐏 of load profiles and 
the higher amount that needs to be processed daily, in particular: 1) more 
computational effort is demanded; 2) as clusters extend in the vector space, a larger 
𝑁4 might eventually be more appropriate for capturing their geometry; 3) the time to 
find the information about the RPCs of customers and estimate their responses could 
be higher than that available by the DSO. Thus, a suitable strategy to include in the 
online algorithm is the well-known sliding window [15], according to which the 
number of daily profiles remains practically constant, and the information of interest 
is present. Algorithm 1 favors the inclusion of this strategy. 

While processing and analyzing load data streams represent a significant challenge, 
the case studies using real-world and simulated daily profiles of Chilean end-users 
demonstrate the applicability of the proposed approach. According to the results, most 
consumers use four RPCs within the measurement period. Furthermore, the iDB and 
iXB indices behavior and the comparison analysis verify the adequate assignment of 
objects of the online clustering. 

 

 

 

 

 

 

 

 

 



 

 



 

 

Chapter 3 

Online Demand Response Scheduling for Renewable 
Integration Considering Uncertainty 

 

This chapter proposes an online framework for scheduling customers’ power 
responses to support integrating photovoltaic (PV) generation into the distribution 
system by providing customized control prices. A bi-level optimization model is used 
to model the interactions between the distribution system operator (DSO) in the upper 
level, which seeks to maximize its profit, and customers in the lower level, who reduce 
their electricity bills. The pricing problem, however, is highly challenging since the 
DSO also requires ensuring the reliable operation of the distribution grid and dealing 
with uncertainties in consumption and renewable production. Accordingly, the 
chapter includes and reformulates chance constraints (CCs) for squared nodal voltage 
and complex power flow in lines. The chance-constrained bi-level problem finally 
converts to an equivalent mixed-integer second-order cone programming (MISOCP) 
problem. A case study using real-world local market prices and daily profiles of 
residential and commercial Chilean end-users on the IEEE-37 node test distribution 
feeder demonstrates how the proposed framework can schedule demand response 
(DR) considering uncertainty. 

3.1 Motivation 
DR is a demand reduction or shift of electricity use by customers to make electricity 
systems flexible and reliable, which is beneficial under increasing shares of intermittent 
renewable energy. In a price-based DR program, price signals are formulated to 
stimulate the customers, encouraging price responsiveness and demand flexibility 
[35]. 
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In this context, several recent investigations have attempted to determine effective 
time-varying price signals for customers by exploiting important mathematical 
programming models. Furthermore, these investigations can be classified based on the 
designed price signal. On the one hand, some approaches determine a uniform price 
for a set of dissimilar customers; on the other hand, others determine customized 
pricing schemes for different groups of customers. Within the former, for example, 
Tung, Trung, and Bao [42] analyze the energy scheduling of the load-serving entity 
and formulate its interaction with flexible and inflexible aggregate loads as a bi-level 
problem that delivers hourly pricing tariffs for the flexible ones. Reference [43] 
proposes a stochastic bi-level model for transactive energy in which the load-serving 
entity aims to optimize profit and reserve capacity and similarly designs dynamic 
prices for the aggregate flexible loads. A hierarchical structure with the DSO, DR 
providers, and customers is formulated in [44] using a two-stage Stackelberg game, 
where dynamic and static prices are proposed for the flexible and inflexible end-users, 
respectively. A stochastic scheduling framework is also designed in [45] to determine 
the value-based hourly retail prices and the bidding strategy of the distribution 
company in the day-ahead market. Reference [46] uses reinforcement learning to 
decide the dynamic retail pricing strategy according to both demand profiles and 
dissatisfaction levels of customers and market prices. Cai et al. [47] present a dynamic 
pricing model for promoting renewable integration and flattening the grid demand 
profile using a bi-level optimization that coordinately dispatches flexible loads. In [48], 
a bi-level model that formulates the interaction between the DSO and end-users 
allows for designing tariffs with the inclusion of uncertainty in demand, PV generation, 
and market prices through scenarios. In [35], based on the DR potential of 
thermostatically controlled loads, a multi-perspective pricing model is proposed to 
formulate proper DR price signals. Finally, a stochastic bi-level model is proposed in 
[49] to design daily retail prices for energy management of thermal loads in a 
community of buildings. 

Differently, He, Liu, and Zhang [50] introduce a customized pricing framework based 
on consumers’ occupancy status that comprises a day-ahead stage for designing time-
of-use price structures and a real-time stage for final prices using a Stackelberg game. 
In [51], assuming different types of flexible consumers, a bi-level optimization model 
is proposed for personalized retail pricing design and demand bidding in the day-
ahead market. Finally, a dynamic pricing approach, which includes adaptive customer 
segmentation and customized demand modeling for clusters, is presented in [52]. 
However, even though these studies make a significant additional effort by producing 
dynamic pricing schemes according to customer preferences and providing financial 
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profits, they do not assess the effect of the final consumption profiles on the distribution 
grid due to these tariffs. Additionally, the pricing approaches above target a day-ahead 
programming task, where the price signals are determined based on forecasting future 
time states. Instead, given the high stochasticity in consumer behavior, renewable 
generation, and market price, online scheduling is more suitable for handling 
uncertainty. 

This chapter presents an online framework for scheduling customers’ power responses 
to integrate PV production into the distribution system. To this end, the work 
introduces a bi-level optimization model [2], [53] where the DSO in the upper level 
is actively involved in the balancing market and maximizes its profit by determining 
the customized price signals. Customers in the lower level reduce their electricity bills 
when the prices materialize. Also, the study incorporates a customer characterization 
stage where the CFSFDP algorithm allows obtaining the RPCs for consumers. The 
pricing problem, however, is highly challenging since the DSO requires ensuring the 
reliable operation of the distribution grid and dealing with uncertainties in 
consumption and PV production. Like studies [54]-[59] in the context of analyzing 
the stochasticity of distributed resources in the distribution grid, this investigation 
leverages chance-constrained programming for uncertainty-aware decisions of the 
DSO. Specifically, CCs for squared voltage and complex power flow are included and 
reformulated. Therefore, the chance-constrained bi-level problem converts to an 
equivalent MISOCP problem to find the globally optimal solution. Finally, due to 
load deviations and forecast errors on PV generation, the chapter presents online 
scheduling by applying a model predictive control (MPC). 

Addressing uncertainty using chance-constrained programming involves, in general, 
a joint chance-constrained modeling that requires the operational constraints to be 
satisfied simultaneously, with a joint violation probability 𝜖 [60]. However, the feasible 
region induced by this setup is nonconvex and leads to an NP-hard optimization 
problem. A classical approximation scheme to deal with this intractability is the 
Bonferroni approximation, which decomposes the joint CC into single CCs, each with 
a violation probability 𝜖! ∈ [0, 𝜖], such that ∑ 𝜖!! ≤ 𝜖. Therefore, solving the system of 
single CCs is significantly straightforward, and any solution satisfying all single 
constraints also satisfies the joint CC [61]. The shortcoming of the Bonferroni 
approximation is that the solution quality depends critically on the values of the 
violation probabilities [62], whose optimal estimation is also an NP-hard problem 
[61]. 

Two commonly used choices are the following: 1) an outer approximation that relaxes 
the requirement of simultaneously satisfying all single constraints and adopts that 𝜖. =



Chapter 3. Online Demand Response Scheduling 39 

𝜖	∀𝑖 (the least conservative choice); 2) an inner approximation where each single CC 
has the same violation probability, with a value obtained dividing 𝜖 by the number of 
single constraints (overly conservative solution) [61], [62]. For applications in power 
systems, single CCs with outer approximation can be more appropriate as they limit 
the risk of individual component failures. In practice, this also involves the possibility 
of using different values of 𝜖 according to types of constraints, thus pointing to high-
risk components or areas [63]. In this investigation, the chance-constrained bi-level 
model for optimal DR scheduling employs single CCs considering the above criteria. 

The main contributions of the chapter are summarized below: 

1) An online framework for scheduling customers’ power responses to integrate PV 
production into the distribution system is proposed. The chapter introduces a bi-level 
optimization model where the DSO in the upper level pursues maximizing its profit 
by determining the optimal price signals, while customers in the lower level reduce 
their electricity bills when the prices materialize. 

2) The proposed framework ensures the reliable operation of the distribution grid by 
limiting squared nodal voltages and complex power flows in lines with high probability 
through CCs. The chance-constrained bi-level problem then converts to an equivalent 
MISOCP problem. 

3) The framework is tested in a case study with real-world market prices and daily 
profiles of residential and commercial Chilean end-users on the IEEE-37 node test 
distribution feeder. Results demonstrate how the proposed model can schedule DR in 
real time. The chapter also explores the impact of uncertainty on system operation 
and presents a comparison analysis with the deterministic formulation involving the 
DSO’s profit and feasibility of the CCs. 

The organization of this chapter is as follows: Section 3.2 provides the problem 
framework with theoretical foundations and models. Section 3.3 defines the problem 
formulation under uncertainty. Section 3.4 describes the solution methodology. A case 
study is presented in Section 3.5 to assess the proposed framework and analyze the 
uncertainty cost. Finally, Section 3.6 concludes the chapter. 

3.2 Problem Framework 
This work considers the case in which the DSO aims to schedule demand flexibilities 
to integrate a lower local PV production and maximize the profit in energy supply. 
Therefore, the DSO becomes more self-sufficient. To this end, the DSO broadcasts 
control price signals to customers each hour, which defines the real-time framework 
of the model. Concerning each customer’s decision process, the investigation assumes 
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that the demand profile derives from an optimizing behavior. Due to the stochastic 
nature of customer response and PV generation, the DSO requires trading in the 
balancing market. For simplicity, the chapter only accounts for this energy market for 
the net difference between consumption and production within the distribution 
system. However, part of the electrical energy can be procured from other markets in 
the electricity pool (for example, the day-ahead market) and the futures market [7] to 
hedge the price uncertainty. The PV production forecast and the locational marginal 
price (LMP) are also updated each hour of the day. Finally, the framework considers 
an advanced metering infrastructure that enables two-way communication. Thus, 
each consumer presents an energy management system that performs optimal 
scheduling of loads subject to daily consumption preferences to reduce the electricity 
bill. Figure 3.1 illustrates the problem framework. 

 

 
Figure 3.1. Framework for the online DR scheduling. 

 

3.2.1 PV Facility Model 

Similarly to the linear model for setting a flexible active power profile in (2.1) − (2.3), 
let �̅�7& = �̅�7& + 𝑗𝑞A7& be a complex power forecast to be injected by a PV generation 
facility 𝑔 ∈ 𝐆 at time point 𝑡, where 𝐆 = {1,… , 𝐺} is the set of PV facilities. Therefore, 

�̅�7& = 	ℜ É�̅�7&Ê is the active component, which represents the active power forecast at 

the AC side of the inverter, and 𝑞A7& = 	ℑ É�̅�7&Ê the reactive one. Then, �̅�7& ∈ 𝒮7&, 
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where 𝒮7& is the production region that contains the inverter’s active and reactive 
power set points of PV facility 𝑔 in 𝑡, positioned in the complex plane. 

The following control strategy for setting a flexible active power profile is defined: 

 

0 ≤ �̅�7& ≤ �̅�7!
*8,				𝑔 ∈ 𝐆, 𝑡 ∈ 𝐓,																													(3.1) 

 

Equation (3.1) denotes an active power curtailment provided by the inverter, where 
�̅�7!
*8 is the forecast of the available active power, which coincides with the maximum 

power point and varies stochastically over time based on solar irradiance. 

The chapter considers the operation at unit power factor (which means that 𝑞A7& = 0). 
When solar facilities inject the available active power with this condition, power 
quality and reliability concerns in the distribution system may emerge for sufficiently 
high levels of deployed capacities [54]. Therefore, curtailing active power contributes 
to preventing this. However, the effective coupling of flexible consumption to PV 
production is also essential to limit power curtailments. 

3.2.2 Distribution System Model 

This thesis uses the linear DistFlow model [64], a lossless approximation of the AC 
power flow equations, to account for power flows and nodal voltages in the 
distribution system. The approximate relations facilitate the application of convex 
reformulations to CCs for a robust solution, which is the focus of the study, rather 
than providing comprehensive theoretical guarantees for solving the AC optimal 
power flow (OPF). 

Let a radial distribution system comprising the corresponding nodes, collected in the 
set 𝐍 ∪ {0}, 𝐍 = {1,… , 𝑁}, and distribution lines, represented by the set of pairs of 
nodes 𝐄 = {(𝑚, 𝑛) ∶ 𝑚 ∈ 𝐍 ∪ {0}, 𝑛 ∈ 𝐍}. Any sending node 𝑚 lies on the unique 
path from node 0 to its receiving node 𝑛. Node 0 designates the secondary of the 
power transformer at the substation and is considered the slack node; thus, its nominal 
voltage 𝑣/ is fixed and known (typically 1.0	pu). 

The power injection in slack node 0 depends on the power states of the rest of the 
nodes. Each node 𝑛 is characterized at time point 𝑡 by its complex power 𝑆9& = 𝑃9& +
𝑗𝑄9&, where 𝑃9& and 𝑄9& denote the active and reactive power, respectively, and the 
magnitude of its complex voltage 𝑣9&. To provide linear operators, let 𝑉9& be the 
square of 𝑣9&, with 𝑉9& ∈ [𝑉

'(), 𝑉'*+], where 𝑉'() and 𝑉'*+ are the minimum and 
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maximum voltage limits. Likewise, each line (𝑚, 𝑛) has an impedance value 𝑍:9 =
𝑅:9 + 𝑗𝑋:9, with 𝑅:9 and 𝑋:9 representing the resistance and reactance, 
respectively. Also, let 𝑆:9& = 𝑃:9& + 𝑗𝑄:9& designate the complex power flow from 
node 𝑚 to node 𝑛 at time point 𝑡, where 𝑃:9& and 𝑄:9& denote the active and reactive 
power flows, respectively, and let 𝑆:9'*+ represents the power flow limit. 

From the above parameters, the following linear power flow and voltage equations 
are defined for the model: 

 

𝑃:9& = 𝐝:9
!𝐩𝐧&,					(𝑚, 𝑛) ∈ 𝐄, 𝑡 ∈ 𝐓,																													(3.2) 

𝑄:9& = 𝐝:9
!𝐪𝐧&,					(𝑚, 𝑛) ∈ 𝐄, 𝑡 ∈ 𝐓,																												(3.3) 

𝑉9& = 𝑉:& − 2ℜ�𝑍
∗
:9𝑆:9&�,				(𝑚, 𝑛) ∈ 𝐄, 𝑡 ∈ 𝐓,									(3.4) 

 

where 𝐝:9 is a vector whose elements correspond to the 𝑚𝑛th row of a [𝑁 + 1] × 𝑁 
binary matrix 𝐃 that maps the values of active and reactive power in nodes into power 
flows and voltages, while 𝐩𝐧& = [𝑃$&…	𝑃3&]

! and 𝐪𝐧& = [𝑄$&…	𝑄3&]
! are the 

vectors of active and reactive power of nodes. In 𝐃, each element in the 𝑚𝑛th row 
and 𝑛th column takes the value 1 if line (𝑚, 𝑛) is part of the path from the slack node 
0 to node 𝑛 and the value 0 otherwise. 

The expressions for the (net) active and reactive power in each node are as follows: 

 

𝑃9& = 𝐡9
!𝐩&,					𝑛 ∈ 𝐍, 𝑡 ∈ 𝐓,																													(3.5) 

𝑄9& = 𝐡9
!𝐪&,					𝑛 ∈ 𝐍, 𝑡 ∈ 𝐓,																												(3.6) 

 

where 𝐡9 is a vector, whose elements correspond to the 𝑛th column of a [𝐿 + 𝐺] × 𝑁 
binary matrix 𝐇 that indicates the belonging of each customer 𝑙 and PV facility 𝑔 to 
the corresponding node 𝑛, and 𝐩& and 𝐪& are vectors comprising respectively active 
and reactive power of both customers and solar facilities at time point 𝑡. 

For exposition simplicity, the investigation assumes a balanced distribution system. 
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3.3 Chance-constrained Problem Formulation 
3.3.1 Uncertainty Modeling 

Both customer consumption and PV production are random variables that take any 
value within specific ranges; hence, continuous probability distributions can describe 
them. The modeling of their corresponding active power values can be of the form: 

 

𝑝#& = �̅�#& + 𝜉#& ,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																		(3.7) 

𝑝7& = �̅�7& + 𝜉7& ,					𝑔 ∈ 𝐆, 𝑡 ∈ 𝐓,																													(3.8) 
 

where 𝜉#&, 𝜉7& ∈ ℝ are stochastic and represent the deviation of the customer response 
and the PV forecast error, respectively. 

Thus, for each time point 𝑡, a random vector 𝛏& ∈ ℝ3 that collects the resulting active 
power deviation and forecast error in the nodes can be determined. Also, it is possible 
to express the power flows in lines and nodal voltages in terms of 𝛏&. For the first case: 

 

𝑃:9& = 𝑃A:9& + 𝐝:9
!𝛏&,					(𝑚, 𝑛) ∈ 𝐄, 𝑡 ∈ 𝐓,																													(3.9) 

𝑄:9& = 𝑄A:9& + 𝐝:9
!𝚯&𝛏&,					(𝑚, 𝑛) ∈ 𝐄, 𝑡 ∈ 𝐓,																				(3.10) 

 

where 𝑃A:9& and 𝑄A:9& are computed using (3.2) and (3.3) with expected and forecast 
values, and 𝚯& is an 𝑁 × 𝑁 diagonal matrix with the tangents correspondingly relating 
the active and reactive nodal deviations or errors at time point 𝑡. 

Analogously, the uncertain nodal voltages are: 

 

𝑉9& = 𝑉A9& − 2𝐝9
!(𝐑𝐃 + 𝐗𝐃𝚯&)𝛏&,					𝑛 ∈ 𝐍, 𝑡 ∈ 𝐓,																(3.11) 

 

where 𝑉A9& is computed using (3.4) with expected and forecast values, 𝐝9 is a vector 
whose elements correspond to the 𝑛th column of 𝐃, and 𝐑 and 𝐗 are 𝑁 × 𝑁 diagonal 
matrices with the resistance and reactance values of lines, respectively. 
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3.3.2 Chance-Constrained Bi-Level Formulation 

The thesis presents a hierarchical optimization structure that comprises two levels. In 
the upper, the DSO determines the price signals under uncertainty, anticipating the 
customers’ response, while in the lower, each adjusts its consumption independently 
to reduce the electricity bill. The formulation of the chance-constrained bi-level model 
is as follows: 

 

max
Z$!

𝔼 Í��𝜆#&𝑝#&𝛥𝑡
[

#C$

%

&C$

−�𝜆&< Î�𝑝#&

[

#C$

−�𝑝7&

\

7C$

Ï𝛥𝑡
%

&C$

Ð																(3.12) 

s. t.		𝜆'() ≤ 𝜆#& ≤ 𝜆'*+,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																																		(3.13) 

								
1
𝑇�𝜆#&

%

&C$

≤ 𝜆4,					𝑙 ∈ 𝐋,																																																																							(3.14) 

								(3.1) − (3.6),																																																																																																				 

								ℙY𝑉'() ≤ 𝑉9& ≤ 𝑉'*+\ ≥ 1 − 𝜖8 ,					𝑛 ∈ 𝐍, 𝑡 ∈ 𝐓,																						(3.15) 

								ℙY𝑃:9&
2 + 𝑄:9&

2 ≤ 𝑆:9'*+
2\ ≥ 1 − 𝜖( ,					(𝑚, 𝑛) ∈ 𝐄, 𝑡 ∈ 𝐓,					(3.16) 

								�̅�#& ∈ arg	min?̅$!
©�𝜆#&�̅�#&𝛥𝑡
%

&C$

		® ,					𝑙 ∈ 𝐋,																																										(3.17) 

																			s. t.		(2.1) − (2.3)																																																																																		 
 

In the upper-level problem, the objective function (3.12) is maximized under the 
expected value over the probability distribution of uncertainty. The objective function 
represents the difference between revenue and cost (the profit) for the DSO by 
supplying electricity to customers. Each 𝜆#& is a decision price, and 𝜆&< is the LMP. At 
time point 𝑡, 𝜆&< is known from the balancing market clearing and forecasted for period 
𝑡 + 1 to 𝑇. Equation (3.13) defines a feasible region for the decision prices between 
a minimum 𝜆'() and a maximum 𝜆'*+ value. In (3.14), the mean of prices 𝜆#& over 
the time horizon 𝑇 does not surpass the regulated price 𝜆4, which implies that 
consumers do not incur financial losses beyond 𝜆4. The outer approximation set of 
CCs in (3.15) and (3.16) ensures that in the schedule of DR, technical constraints 
for magnitudes of squared nodal voltages (with linear inequalities) and complex power 
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flows in lines (with quadratic inequalities) do not violate their limits with probabilities 
1 − 𝜖8 and 1 − 𝜖(, where 𝜖8 and 𝜖( are the violation probabilities for voltages and 
power flows, respectively. Lastly, (3.17) represents the lower-level problems, which 
enforce the expected optimal consumption of customers given the decision variables 
𝜆#&. 

Therefore, control prices guarantee that power consumption and generation have a 
feasible power flow solution satisfying the constraints on voltages and power flows. 

3.4 Solution Methodology 
Due to (3.15) and (3.16), the resolution of the problem is computationally 
intractable. The section first provides second-order cone (SOC) reformulations for 
these CCs by assuming the DSO knows the probability density function of vectors 𝛏&, 
specifically that each 𝛏&~𝒩(𝟎, 𝚺&), where 𝚺& ∈ ℝ3×3 is diagonal. Reference [9], for 
instance, discusses several attractive properties that support the selection of the normal 
distribution. Furthermore, due to (3.17), tractability depends on reformulating the 
problem into a single-level one. Since lower-level problems are linear in the decision 
variables �̅�#&, and control prices 𝜆#& are parameters, their corresponding Karush-
Kuhn-Tucker (KKT) optimality conditions [66] can replace them, which are both 
necessary and sufficient for global optimality. Finally, the objective function includes 
bilinear products that produce nonlinearity; however, linearization is possible using 
duality theory [66]. 

3.4.1 Reformulation of the CCs 

1) Voltage CCs: Every single constraint in (3.15) with a limit for the magnitude of 
squared nodal voltage is a CC of the general form: 

 

ℙ Ò𝑎�	𝜆#&� + 𝐛�	𝜆#&�
!𝛏& ≤ 𝑐Õ ≥ 1 − 𝜖 ,																													(3.18) 

 

where 𝑎�	𝜆#&� ∈ ℝ and 𝐛�	𝜆#&� ∈ ℝ
3 denote affine functions of the decision variable 

𝜆#& and describe the nominal squared voltage and the influence of 𝛏& on the constraint, 
respectively, while 𝑐 is a constant representing the voltage limit. 

Equation (3.18) is convex if, in general, 𝛏& is an elliptical log-concave distribution 
function (which includes the considered normal). In particular, the left-hand side is a 
random variable 𝜉 whose distribution represents the variations in the corresponding 
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voltage, with mean 𝑎�	𝜆#&� and standard deviation Ö𝐛�	𝜆#&�
!𝚺&$ 2⁄ Ö

2
. Therefore, the 

CC is reformulated exactly into the following SOC constraint (see Appendix B): 

 

𝑎�	𝜆#&� ≤ 𝑐 − ΦB$(1 − 𝜖) Ö𝐛�	𝜆#&�
!𝚺&$ 2⁄ Ö

2
,																(3.19) 

 

where Φ is the cumulative distribution function of the standard normal distribution, 
and because 𝜖 < 1

2Ø ,  ΦB$(1 − 𝜖) > 0. 

In (3.19), the term 𝑎�	𝜆#&� ≤ 𝑐 represents the nominal constraint, that is, the 
constraint resulting when neglecting uncertainty. The second term ΦB$(1 −

𝜖)Ö𝐛�	𝜆#&�
!𝚺&$ 2⁄ Ö

2
 represents the adjustment of the nominal available capacity, 

necessary to ensure the system against errors and deviations. This term is always 
negative, which means it always leads to a reduction in the available capacity. This 
reduction can be interpreted as a security margin against uncertainty, that is, an 
uncertainty margin [9]. 

Based on the above reformulation, CCs of squared nodal voltage magnitudes in 
(3.15) recast as: 

 

𝑉A9& ≤ 𝑉'*+ − 2ΦB$(1 − 𝜖8)¦𝐝9
![𝐑𝐃 + 𝐗𝐃𝚯&]𝚺&$ 2⁄ ¦

2
,					𝑛 ∈ 𝐍, 𝑡 ∈ 𝐓,									(3.20) 

−𝑉A9& ≤ −𝑉'() − 2ΦB$(1 − 𝜖8)¦𝐝9
![𝐑𝐃 + 𝐗𝐃𝚯&]𝚺&$ 2⁄ ¦

2
,					𝑛 ∈ 𝐍, 𝑡

∈ 𝐓,																																																																																																												(3.21) 
 

2) Power Flow CCs: Every single constraint in (3.16) with a limit for the magnitude 
of complex power flow is a CC of the general form: 

 

ℙÚS𝑎$�	𝜆#&� + 𝐛$�	𝜆#&�
!𝛏&T

2
+ S𝑎2�	𝜆#&� + 𝐛2�	𝜆#&�

!𝛏&T
2
≤ 𝑐2Û ≥ 1 − 𝜖,						(3.22) 

 

where the squared random variables on the left-hand side 𝜉$ and 𝜉2 represent the 
operating points of the active and reactive power flows in the line contained in the 
feasible region 𝒮 ∈ ℝ2, while 𝑐 is a constant representing the apparent power limit. 
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From (3.22), 𝒮 is convex and can be inner approximated by the 𝐼-sided polygon 𝒫 
inscribed inside 𝒮, with 𝐼 even and selected in advance [65]. Then, the work defines 
the following formulation: 𝒫 = {𝐖𝐬 ≤ 𝟎}, where {𝐖𝐬 ≤ 𝟎} is a set of half-space 
linear constraints, 𝐖 is an 𝐼 × 3 matrix of coefficients, and 𝐬 ∈ ℝ> is the vector formed 
by each of the elements of (3.22). 

The following linear constraints are specified to find the coefficients of 𝐖: 

 

�𝜉2 − 𝜉2.� − 𝜂.�𝜉$ − 𝜉$.� ≤ 0,					𝑖 = 1,… , 𝐼 2Ø ,															(3.23) 

−�𝜉2 − 𝜉2.� + 𝜂.�𝜉$ − 𝜉$.� ≤ 0,					𝑖 = 𝐼
2Ø + 1,… , 𝐼,					(3.24) 

 

where 𝜂. is the slope of side 𝑖, while 𝜉$. and 𝜉2. are vertices of 𝒫, respectively defined 

as 𝜉$. = 𝑐 cos[(𝑖 − 1)𝜃] and 𝜉2. = 𝑐 sin[(𝑖 − 1)𝜃], with 𝜃 = 2𝜋
𝐼Ø  being the angle 

between two consecutive vertices. 

Substituting these definitions and rearranging conveniently, (3.23) and (3.24) result 
as: 

 

−𝜂.𝜉$ + 𝜉2 + (𝜂. cos[(𝑖 − 1)𝜃] − sin[(𝑖 − 1)𝜃])𝑐 ≤ 0,					𝑖 = 1,… , 𝐼 2Ø ,						(3.25) 

𝜂.𝜉$ − 𝜉2 + (sin[(𝑖 − 1)𝜃] − 𝜂. cos[(𝑖 − 1)𝜃])𝑐 ≤ 0,					𝑖 = 𝐼
2Ø + 1,… , 𝐼,			(3.26) 

 

which together imply the matrix product 𝐖𝐬, and from which the coefficients of 𝐖 
are derived with 𝜂. = (sin[(𝑖)𝜃] − sin[(𝑖 − 1)𝜃]) (cos[(𝑖)𝜃] − cos[(𝑖 − 1)𝜃])⁄ . 

By expressing as 𝑤.,$, 𝑤.,2, and 𝑤.,> the coefficients of any 𝑖th row of 𝐖, the following 
linear CC is generalized: 

 

ℙÒ𝑤.,$ S𝑎$�	𝜆#&� + 𝐛$�	𝜆#&�
!𝛏&T + 𝑤.,2 S𝑎2�	𝜆#&� + 𝐛2�	𝜆#&�

!𝛏&T + 𝑤.,>𝑐 ≤ 0Õ
≥ 1 − 𝜖,					𝑖 = 1,… , 𝐼,																																																																											(3.27) 

 

CCs in (3.27) can be converted into one with the same structure as (3.18) due to 𝛏& 
in both random variables. Thus, the following set of constraints for the half-space 
approximation of 𝒮 can replace the CCs of complex power flows in (3.16): 
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𝑤.,$𝑃A:9& + 𝑤.,2𝑄A:9&
≤ −𝑤.,>𝑆:9'*+ −ΦB$(1 − 𝜖()¦U𝑤.,$𝐝:9

! + 𝑤.,2𝐝:9
!𝚯&V𝚺&$ 2⁄ ¦

2
,					𝑖

= 1,… , 𝐼, (𝑚, 𝑛) ∈ 𝐄, 𝑡 ∈ 𝐓,																																																																	(3.28) 
 

3.4.2 Reformulation of the Lower-Level Problems 

Applying the KKT formulation to the lower-level problems gives the following 
expressions: 

	

𝛥𝑡𝜆#$ − 𝛽#&
'() + 𝛽#&

'*+ + 𝜓#-
, − 𝜓#-

- − 𝜀#𝛥𝑡 = 0,					𝑙 ∈ 𝑳,																				(3.29)	

𝛥𝑡𝜆#& − 𝛽#!
'() + 𝛽#!

'*+ − 𝜓#!
, + 𝜓#!.&

, + 𝜓#!
- − 𝜓#!.&

- − 𝜀#𝛥𝑡 = 0,					𝑙 ∈ 𝑳, 𝑡
= 2, . . . , 𝑇 − 1,																																																																															(3.30) 

𝛥𝑡𝜆#% − 𝛽#/
'() + 𝛽#/

'*+ − 𝜓#/
, + 𝜓#/

- − 𝜀#𝛥𝑡 = 0,					𝑙 ∈ 𝐋,																			(3.31) 

0 ≤ 𝛽#!
'() ⊥ �̅�#& − 𝑝#!

'() ≥ 0,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																									(3.32) 

0 ≤ 𝛽#!
'*+ ⊥ −�̅�#& + 𝑝#!

'*+ ≥ 0,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																					(3.33) 

0 ≤ 𝜓#!
, ⊥ �̅�#& − �̅�#&B$ + 𝑟#!

,𝛥𝑡 ≥ 0,					𝑙 ∈ 𝐋, 𝑡 = 2, . . . , 𝑇,																	(3.34) 

0 ≤ 𝜓#!
- ⊥ −�̅�#& + �̅�#&B$ + 𝑟#!

-𝛥𝑡 ≥ 0,					𝑙 ∈ 𝐋, 𝑡 = 2, . . . , 𝑇,														(3.35) 

0 ≤ 𝜀# ⊥��̅�#&𝛥𝑡
%

&C$

− 𝑒# ≥ 0,					𝑙 ∈ 𝐋,																																																				(3.36) 

 

which include in (3.29) − (3.31) the gradient of the Lagrange function concerning 
variables �̅�#& (different for cases 𝑡 = 1 and 𝑡 = 𝑇 due to ramp constraints), and the 
complementary-slackness conditions between the non-negative dual variables and the 
inequality constraints of the primal problem. 

Because of the nonlinearity of complementary-slackness conditions, the study uses the 
mixed-integer method of [67], resulting in the following set of linear constraints: 

 

0 ≤ 𝛽#!
'() ≤ 𝑀,𝛣#!

'(),					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																																						(3.37) 

0 ≤ �̅�#& − 𝑝#!
'() ≤ 𝑀`�1 − 𝛣#!

'()�,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																(3.38) 
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0 ≤ 𝛽#!
'*+ ≤ 𝑀,𝛣#!

'*+,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																																					(3.39) 

0 ≤ −�̅�#& + 𝑝#!
'*+ ≤ 𝑀`�1 − 𝛣#!

'*+�,					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																											(3.40) 

0 ≤ 𝜓#!
, ≤ 𝑀,𝛹#!

,,					𝑙 ∈ 𝐋, 𝑡 = 2, . . . , 𝑇,																																																	(3.41) 

0 ≤ �̅�#& − �̅�#&B$ + 𝑟#!
,𝛥𝑡 ≤ 𝑀`�1 − 𝛹#!

,�,					𝑙 ∈ 𝐋, 𝑡 = 2, . . . , 𝑇,								(3.42) 

0 ≤ 𝜓#!
- ≤ 𝑀,𝛹#!

-,					𝑙 ∈ 𝐋, 𝑡 = 2, . . . , 𝑇,																																																	(3.43) 

0 ≤ −�̅�#& + �̅�#&B$ + 𝑟#!
-𝛥𝑡 ≤ 𝑀`�1 − 𝛹#!

-�,					𝑙 ∈ 𝐋, 𝑡 = 2, . . . , 𝑇,					(3.44) 

0 ≤ 𝜀# ≤ 𝑀,𝛦# ,					𝑙 ∈ 𝐋,																																																																													(3.45) 

0 ≤��̅�#&𝛥𝑡
%

&C$

− 𝑒# ≤ 𝑀`(1 − 𝛦#),					𝑙 ∈ 𝐋,																																											(3.46) 

𝛣#!
'(), 𝛣#!

'*+ ∈ {0,1},					𝑙 ∈ 𝐋, 𝑡 ∈ 𝐓,																																																									(3.47) 

𝛹#!
,, 𝛹#!

- ∈ {0,1},					𝑙 ∈ 𝐋, 𝑡 = 2, . . . , 𝑇,																																																					(3.48) 

𝛦# ∈ {0,1},					𝑙 ∈ 𝐋,																																																																																					(3.49) 
 

where 𝑀` and 𝑀, are large enough positive constants valid as upper bounds for the 
primal and dual variables. 

3.4.3 Reformulation of the Objective Function 

Bilinear products 𝜆#&�̅�#&𝛥𝑡 in the objective function produce nonlinearity. However, 
based on the strong-duality property, lower-level problems (with the same form of 
bilinear products) and their corresponding dual can be interchangeable since the 
optimal objective function value is equal in the primal and dual problems. Using the 
strong-duality equality results in (3.50). Therefore, the chance-constrained bi-level 
problem converts to an equivalent MISOCP problem, where the globally optimal 
solution is obtained by applying the branch and bound algorithm [66]. 

 

max
Z$!

𝔼â�©��𝑝#!
'()𝛽#!

'() − 𝑝#!
'*+𝛽#!

'*+�
%

&C$

+��−𝑟#!
,𝛥𝑡𝜓#!

, − 𝑟#!
-𝛥𝑡𝜓#!

-�
%

&C2

+ 𝑒#𝜀#®
[

#C$

−�𝜆&< Î�𝑝#&

[

#C$

−�𝑝7&

\

7C$

Ï𝛥𝑡
%

&C$

ã																																																						(3.50) 
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s. t.		(3.13) − (3.14), (3.1) − (3.6), (3.20) − (3.21), (3.28), (3.29)
− (3.31), (3.37) − (3.49)																																																																																 

 

3.4.4 MPC-Based Implementation 

Due to the presence of uncertainty, the MPC [2] can be suitable for this decision-
making problem, as it enables the model (3.50) to achieve optimal prices for the 
current and future time points based on newly available information of the system 
states within the horizon 𝑇; in particular, information concerning to forecasts on PV 
facilities and prices 𝜆&< from the balancing market. A similar implementation is present 
in [54]. Hence, instead of 𝑡 = 1 in (3.50), 𝑡 could be 1,… , 𝑇. The MPC involves the 
steps outlined in Algorithm 2, where the look-ahead time decreases each day, being 
𝑇 the final time point at any 𝑡. 

 

Algorithm 2 Online DR Scheduling 
Input: Problem data, daily RPC of each customer 
1:    𝑡 = 1; 
2:    while 𝑡 <= 𝑇, do 
3:        Update the forecasts of available active power �̅�7!

*8 and 
           balancing market price 𝜆&<, 𝑡: 𝑇; 
4:        Solve (3.50); 
5:        Implement optimal solutions [𝜆#&…	𝜆#%]

!; 
6:        Save the current optimal values of prices 𝜆#& and the power 
           responses 𝑝#& and 𝑞#& of each customer; 
7:        𝑡 ← 𝑡 + 1;  
8:    end while 

 

3.5 Case Study 
This section presents a case study to demonstrate the benefits of the approach. First, 
a characterization stage using electricity data of residential and commercial Chilean 
end-users allows for determining the RPCs of these customers and their combinations. 
Then, the section shows an application example for DR scheduling and investigates 
how CCs impact the solution of the scheduling problem. In the algorithmic 
implementation, the work employs the toolbox YALMIP [68] on MATLAB 2022 with 
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the Gurobi optimization solver, running on a MacBook Air with a processor M1 and 
memory of 8 GB. 

3.5.1 System Setup 

The case study uses a modified version of the IEEE-37 node test feeder [69], replacing 
original spot loads with SM data of 125 end-users. Figure 3.2 shows the distribution 
system, which operates at 4.8	kV line-to-line nominal voltage. The data correspond to 
the three weeks of February 22 to March 13, 2020. In addition, two PV facilities are 
added to the distribution grid to emulate the renewable penetration at the DSO scale. 
Table 3.1 summarizes the allocation of consumers in the load nodes and the nodes for 
PV production. The test day considered is March 14, for which the study uses the 
LMP associated with the substation. The profiles of the PV generation are simulated 
based on historical weather data [70] at the geographical area of end-users. 

 

 
Figure 3.2. Modified IEEE-37 node test feeder considered in the case study. 
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Table 3.1. Number of Customers and PV Facilities in Nodes of the Test Feeder 

Load node Number of customers Generation node Number of PV facilities 

701 37 702 1 

712 1 709 1 

713 1   

718 1   

720 2   

722 4   

724 1   

725 1   

727 1   

728 3   

729 1   

730 2   

731 2   

732 1   

733 3   

734 1   

735 3   

736 1   

737 5   

738 5   

740 4   

741 43   

742 1   

744 1   



Chapter 3. Online Demand Response Scheduling 53 

The work also defines a feasible region of control prices between 40	$/MWh and 
80	$/MWh, with a regulated price of 70	$/MWh. The violation probabilities in CCs 
are 𝜖8 = 0.05 and 𝜖( = 0.01. Limits for nodal voltages are set to 1.05	pu and 0.95	pu, 
whereas for power flows, their calculation employs the line-to-line nominal voltage 
and ampacity of electrical conductors [71]. The upper bounds in the lower-level 
problems are 𝑀` = 100 and 𝑀, = 1000, while 𝐼 = 12 for polygon 𝒫. 

Finally, to construct vectors 𝛏&, 90 samples are drawn from normal distributions of 
nodal demand deviations and forecast errors. The corresponding standard deviation 
is assumed to be 3 % of the expected or forecast active power for the first and second 
hours, 6 % for hours three to five, 10 % for hours six to nine, 15 % for hours ten to 
14, and 20 % for the rest of future time points. The nodal expected or forecast value 
considers the aggregate average demand or the available PV generation. Power factors 
of 0.93 and 0.86 are assumed for residential and commercial end-users, respectively. 
Then, the computation of elements in 𝚯& comprises the average power factor for load 
nodes and the unit power factor for generation nodes. 

3.5.2 Customer Characterization and Modeling 

The application of the CFSFDP to the set of daily profiles allows the identification of 
three clusters through the plots of minimum distance 𝛿 as a function of local density 
𝜌 for each object and their products in decreasing order. Figure 3.3 illustrates the 
result and highlights the selected centers with colored and bigger dots. One (with the 
violet color) is remarkably different because of its higher neighborhood compared to 
the other two. 

 

 
Figure 3.3. Plots for identification of clusters: the decision graph and quantities 𝛾 in 

decreasing order (including a zoom to better distinguish the last two). 

0 2 4 6 8 10
Local density  i 104

0

1

2

3

4

5

M
in

im
um

 d
is

ta
nc

e 
 i

100 102

Daily profile

0

1

2

3

4

5

Q
ua

nt
ity

 
 i

105

0 5

2
4
6
8 104



Chapter 3. Online Demand Response Scheduling 54 

The daily profiles of the clusters are depicted in Figure 3.4, with cardinalities of 421, 
459, and 1740, respectively. Cluster 1 has profiles with a more uniform trend in 
consumption. Instead, the consumption in cluster 2 concentrates during working 
hours, which infers that this behavior includes mainly commercial establishments and 
businesses. Finally, cluster 3 exhibits a higher consumption in the afternoon and night. 
Specifically, cluster centers 1, 2, and 3 correspond to the violet, brown, and green dots 
in Figure 3.3. 

 

 

 
Figure 3.4. Daily consumption profiles of clusters, with cluster centers in black. 

 

Table 3.2 summarizes the RPCs and the combinations of these three daily patterns. 
Most customers use two RPCs during the period, mainly consumption patterns 1 and 
3. 

For the test day, the study assumes that consumers use the RPC with the highest 
probability for that day, which results in 26 customers using the RPC 1, 11 the RPC 
2, and 88 the RPC 3. Figure 3.5 depicts the customers’ aggregate average demand 
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from their corresponding RPC, the available PV generation profile, and the market 
prices for the test day. 

 

Table 3.2. RPCs of Customers and their Combinations 

RPC 1 2 3 

Number of customers 31 67 27 

Combination of RPCs 
(Number of customers of 
the combination) 

1 (1) 1-2 (3) 1-2-3 (27) 

2 (3) 1-3 (46)  

3 (27) 2-3 (18)  

 

 
Figure 3.5. Expected customers’ aggregate average demand, available PV 

generation, and LMP on March 14, 2020. 

 

3.5.3 DR Scheduling 

With the RPCs of customers, Algorithm 2 can deliver optimal control prices that 
maximize DSO’s profit in energy supply. For conciseness, the chapter presents the 
results for time point 𝑡 = 1, which is the most problematic since it implicates solving 
the scheduling problem considering all time points of the day with their corresponding 
uncertainties. 

Figure 3.6 illustrates the three control price signals to be broadcasted by the DSO 
according to the highest probability RPC on the test day. For the first, the lowest price 
of 64	$/MWh is uniform from 10 AM, comprising the higher PV production and the 
lower market prices. Therefore, customers with RPC 1 are encouraged to change their 
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consumption by shifting some activities to this period. A different situation 
characterizes the second control signal, with the lowest price of 40	$/MWh ranging 
from 3 AM to 8 AM, involving only the low market prices of the early morning. One 
possible reason could be that a coincidence in consumption with the rest of the end-
users can produce a high-demand period, leading to voltage violations beyond the 
acceptable limit. The third control signal presents the regulated price for the entire 
day. In general, customers with RPC 3 exhibit a higher consumption in the hours of 
higher PV production and lower market prices, which is of the DSO’s interest. In 
addition, the DSO expects this RPC for most consumers; thus, it maximizes its 
revenue by broadcasting this price. 

 

 
Figure 3.6. Control price signals to be broadcasted by the DSO according to the 

highest probability RPC of customers. 

 

Figure 3.7 depicts the expected consumption profiles based on the corresponding price 
signals. Compared to the cluster center in Figure 3.4, customers with RPC 1 slightly 
increase their consumption in the afternoon. Instead, end-users using the RPC 3 show 
a more significant consumption during this time. However, cost minimization for 
them is only possible by shedding loads due to the uniform price. The same happens 
with the second group of customers, for which shifting their loads to the early morning 
is more difficult due to their inherent behavior. 

Examination of the total net active and reactive power, shown in Figure 3.8, reveals 
that the DSO can control the customers’ consumption and purchase higher power at 
lower market prices (the scheduled active power peak matches the lowest LMP at 5 
PM). This finding confirms the effectiveness of the optimization model in scheduling 
DR. Interestingly, the reactive power exhibits some values that exceed the 

6 AM 12 PM 6 PM
Time of day

40

50

60

70

80

C
on

tro
l p

ric
e 

($
/M

W
h)

RPC 1
RPC 2
RPC 3



Chapter 3. Online Demand Response Scheduling 57 

corresponding active power values, influenced by the PV production and the higher 
consumption of low-power factor commercial end-users. 

 

 

 
Figure 3.7. Expected consumption profiles of customers, with the average in black. 

 

 
Figure 3.8. Net active and reactive power demand from the electric power system. 
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Similarly, Figure 3.9 illustrates the expected voltage magnitudes for the distribution 
nodes. By inspection, only voltage drops happen during the day. As is typical in 
distribution systems, the farther nodes from the substation node 0 experience higher 
drops, which is the case, for example, of nodes 741, 740, and 711, from 10 AM to 2 
PM. However, these voltage values are still above the minimum limit. In addition, 
voltage values from 3 PM are even lower, which is significant since uncertainty in load 
and generation is higher in this period. 

 

 
Figure 3.9. Voltage magnitudes in distribution nodes. 

 

3.5.4 Analysis of the Uncertainty Cost 

The uncertainty sources within the distribution system comprise the nodal-level load 
deviations and forecast errors of PV generation. In the following, this section examines 
the effect of uncertainty on nodal voltages. 

As the influence of these power fluctuations differs throughout the system, Figure 3.10 
investigates each nodal voltage by calculating the corresponding average uncertainty 
margin, which represents the decrease in available voltage caused by CCs, averaged 
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over the hours of the day. The higher uncertainty margins are necessary for nodes 
farther from the substation, associated with higher voltage drops. Specifically, nodes 
724 and 722 are the most influenced by deviations and errors of load and generation. 

 

 
Figure 3.10. Average uncertainty margins of voltage necessary to ensure the 

distribution system against uncertainty. 

 

Additionally, Table 3.3 indicates the hours with the highest and lowest uncertainty 
margins. According to this outcome, power fluctuations influence especially from 3 
PM, as expected, due to the higher uncertainty. 

Nodes 740 and 741 are the two most critical in the distribution system due to their 
great distance from the substation. Figure 3.11 depicts two examples with these nodes 
that compare the resulting uncertainty margins with the empirical margins obtained 
from the distribution of voltage deviations considering time point 𝑡 = 17 (5 PM), in 
which uncertainty has a high standard deviation and both nodes experience a 
significant voltage drop (as shown in Figure 3.9). As a result, the uncertainty margins 
in the study (based on the normal distribution), in red, match very closely to the 
empirical margins, in green. The most important outcome is that that difference be as 
minimal as possible, regardless of whether the normal distribution underestimates or 
overestimates the empirical margin. 

Furthermore, the investigation presents a comparison analysis with the deterministic 
formulation to assess the approach’s effectiveness concerning the profit for the DSO 
on the test day and the feasibility of the CCs in the solution. The deterministic 
formulation is applied, for instance, in [42]. For CCs, this formulation implies 
considering the nominal constraint, resulting in a mixed-integer linear programming 
(MILP) problem. 
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Table 3.3. Hours with the Highest and Lowest Uncertainty Margins of Voltage 

Node 
Hour of highest 

uncertainty 
margin 

Hour of lowest 
uncertainty 

margin 
Node 

Hour of highest 
uncertainty 

margin 

Hour of lowest 
uncertainty 

margin 

701 6 PM 1 AM 729 7 PM 2 AM 

702 6 PM 1 AM 728 11 PM 2 AM 

705 6 PM 1 AM 730 3 PM 2 AM 

712 3 PM 1 AM 709 3 PM 2 AM 

742 6 PM 1 AM 731 3 PM 2 AM 

713 11 PM 1 AM 708 10 PM 2 AM 

704 11 PM 1 AM 732 10 PM 2 AM 

714 6 PM 1 AM 733 10 PM 2 AM 

718 6 PM 1 AM 734 10 PM 2 AM 

720 5 PM 1 AM 710 3 PM 2 AM 

707 11 PM 1 AM 736 3 PM 1 AM 

724 11 PM 1 AM 735 3 PM 2 AM 

722 11 PM 1 AM 737 10 PM 2 AM 

706 5 PM 1 AM 738 10 PM 2 AM 

725 5 PM 1 AM 711 10 PM 2 AM 

703 10 PM 2 AM 740 10 PM 2 AM 

727 10 PM 2 AM 741 10 PM 2 AM 

744 11 PM 2 AM    

 

Considering the same critical nodes 740 and 741 for 𝑡 = 17, Figure 3.12 shows the 
expected values of nodal voltage obtained with the MILP and MISOCP problems, 
with the cumulative distribution function (CDF) of voltage deviations superimposed. 
Due to the uncertainty margins in the MISOCP problem, the expected nodal voltage 
increases to 21.54	[kV]2 in the first case and 21.49	[kV]2 in the second case. This 
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increase represents a reduction of the probability of constraint violation from around 
50 % in both cases with the MILP problem to less than the established 5 % with the 
proposed method. In particular, the expected value using the MILP problem for node 
741 coincides with the minimum voltage limit. 

 

 

 
Figure 3.11. Histogram of voltage deviations for nodes 740 and 741 at 5 PM, where 

uncertainty margins are computed using the normal distribution and empirically. 

 

On the other hand, Table 3.4 compares the DSO’s expected profit with the 
deterministic case when different acceptable violation probabilities are employed. All 
chance-constrained solutions with different values for 𝜖8 have a lower profit (or higher 
cost) than the MILP problem, which indicates that considering uncertainty increases 
the nominal cost of operation. However, the differences are negligible and tend to 
decrease with higher values of 𝜖8. In cases where 𝜖8 is smaller than 0.05, the algorithm 
cannot find a feasible solution. 
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Figure 3.12. Expected voltage values on nodes 740 and 741 at 5 PM computed with 

the MILP and MISOCP problems, where the CDF of voltage deviations is 
superimposed on the expected values. 

 

Table 3.4. DSO’s Expected Profit with the MILP and MISCOP problems using 
Different Violation Probabilities of Voltage 

 
MILP 

Violation probability 𝜖8 

 0.05 0.075 0.1 0.125 

Profit ($) 579.4 576.1 577.1 577.5 577.8 

Ratio regarding 
the deterministic 

1 0.9943 0.996 0.9967 0.9972 

 

Concerning the feasibility of CCs, Figure 3.13 illustrates the empirical probabilities of 
voltage violations for 720 new random samples of nodal load deviations and forecast 
errors obtained from a Monte Carlo simulation. The frequencies of voltage violations 
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with the MILP problem solution are much higher, where some constraints violate 
more than 50 % of cases, even with certainty in the available active power of PV 
facilities. This result highlights the need for an uncertainty-aware approach. All 
chance-constrained solutions have lower violation probabilities. Although there are 
always some constraints with an empirical probability of violation higher than the 
acceptable value, the difference is minor. 

 

 
Figure 3.13. Empirical probabilities of voltage violations for 720 new random 

samples of nodal active power deviations and errors on each hour with the MILP 
and MISOCP problems, using different values of 𝜖8. 

 

Finally, contrary to the voltage case, violations of power flows are only a few and below 
the adopted limit due to the loose power limitations that characterize the distribution 
lines of the test feeder. However, to show the effect of CCs, Figure 3.14 depicts the 
maximum uncertainty margins for each distribution line considering all time points. 
As a result, larger values are necessary for lines at the beginning of the grid, as they 
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are influenced directly by load deviations and forecast errors in the downstream nodes 
they supply. 

 

 
 Figure 3.14. Maximum uncertainty margins of lines (identified by the receiving 

nodes) necessary to ensure the distribution system against uncertainty. 

 

3.6 Conclusion 
The main idea of this chapter is to propose an online framework for scheduling 
customers’ DR to support the integration of PV generation into the distribution 
system. In particular, the DSO can use the proposed approach to obtain financial 
profits and maintain the reliable operation of the distribution grid. The approach uses 
a chance-constrained bi-level optimization model that delivers control price signals for 
different groups of customers. Furthermore, CCs enforce voltage and power flow 
limits with a predefined violation probability, and the uncertainty margin in their 
reformulations mitigates the effect of power deviations. 

The conducted case study demonstrates the suitability of the approach for energy 
management on the demand side under uncertainty. According to the three RPCs of 
consumers for the test day, the algorithm provides the corresponding control price 
signals. Concerning the uncertainty cost, results highlight that by using adequate 
violation probabilities, the DSO ensures the reliable operation of the distribution 
system with a profit value almost identical to the deterministic. Finally, although the 
normal distribution does not guarantee that the empirical probabilities of voltage 
violations are less than the violation probability, the differences are minor. Therefore, 
the approach can be applied in practical situations when the violation probability does 
not represent a hard limit.
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Chapter 4 

Online Demand Response and Photovoltaic Inverter 
Dispatch Scheduling Considering Uncertainty 

 

This chapter expands the previous online framework for the customized scheduling of 
customers’ demand response (DR) alongside the power dispatch of distribution-level 
photovoltaic (PV) generation facilities. The proposed model enables these energy 
resources to respond to the service required by the distribution system operator (DSO) 
by determining optimal control price signals for groups of customers and active and 
reactive power set points for PV inverters, which ensures the reliable operation of the 
distribution grid while maximizing the DSO’s profit. The approach also addresses 
uncertainty in the distribution system modeling by incorporating, in addition to the 
above, chance constraints (CCs) for the apparent power of PV inverters, for which the 
analytical reformulation derives computationally feasible convex constraints. Finally, 
the chapter presents a case study for scheduling residential and commercial Chilean 
end-users and PV facilities using the IEEE-37 node test distribution feeder and real-
world local market prices and daily profiles of customers. 

4.1 Motivation 
High penetration of PV generation can introduce voltage regulation problems in 
distribution systems, and traditional volt-var devices can be insufficient to adapt to the 
dynamics of PV generation to offer the desired voltage performance. An alternative 
solution takes advantage of the inverter’s control capability. The primary function of 
PV inverters is to maximize active power generation. However, since this active power 
output is time-varying, PV inverters do not always reach their capacity limit. 
Therefore, they can also be employed to either absorb or inject reactive power, which 
helps to regulate the local voltage [72]. 
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Recently, the implementation of optimization approaches that include computing the 
power set points for PV inverters under uncertainty has been developed based on 
forecasts of available generation and expected customers’ behavior. Important related 
works involve, for instance, [54], which presents an adaptive chance-constrained AC 
OPF formulation where the set points for the PV and battery systems are optimized 
while enforcing voltage regulation with uncertainty in both RESs and loads. Similarly, 
[73] allows the DSO to obtain an optimal dispatch plan for PV and battery systems 
using a distributionally robust chance-constrained model with an ambiguity set for 
uncertainties of PV production capability, end-user consumption, requested flexibility 
by the external grid operator, and squared voltage magnitude at the point of common 
coupling. Furthermore, [74] formulates a two-stage robust optimization model that, 
considering the uncertainty of PV generation, selects the critical subset of PV inverters 
to provide ancillary services to the grid and finds their optimal dispatching real and 
reactive power set points. Finally, accounting for uncertainties in demand and PV 
generation, [75] develops a reactive power control method that performs two tasks: 1) 
reducing the active power loss of the system by periodically dispatching the inverter’s 
reactive power set points, and 2) solving the overvoltage problem by applying a real-
time volt-var algorithm. 

The above studies focus on determining the optimal inverter’s power set points, 
mainly for local voltage regulation, while considering the uncertainty in PV 
production. Although most of them ([54], [73], and [75]) also include uncertainty in 
customer behavior, these investigations do not intend to control DR.  

This chapter expands the previous online framework proposed in Chapter 2 by 
exploiting the reactive power control the PV inverters can provide in the distribution 
grid. Thus, aiming at the DSO’s profit maximization, this framework schedules both 
customers’ DR through the dynamic price signals and PV facilities based on an 
optimal dispatch of inverters’ active and reactive power set points. The proposed 
algorithm also accounts for the uncertainty in the distribution-system modeling, 
including that related to the operation of PV facilities, for which the work uses the 
presented analytical reformulation (see Appendix B) to obtain computationally 
feasible convex constraints. Finally, the proposed model is tested in a case study using 
the IEEE-37 node test distribution feeder with local market prices and daily profiles 
of the residential and commercial Chilean end-users. 

The main contributions of the chapter are summarized below: 

1) An extension of the chance-constrained bi-level model to include determining 
optimal power set points for dispatchable inverters of PV facilities is proposed such 
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that squared nodal voltage, complex power flow in lines, and inverter capacity limits 
are satisfied with high probability. 

2) The framework is tested in a case study with the real-world market prices and daily 
profiles of Chilean residential and commercial end-users on the IEEE-37 node test 
distribution feeder. Results demonstrate how the presented framework enables 
optimal scheduling of flexible customers and PV facilities while considering both the 
previous uncertainty and uncertainty concerning the operation of PV facilities. 

The organization of this chapter is as follows: Section 4.2 defines the capability of the 
PV facility, which limits the injection or absorption of the inverter’s reactive power. 
Section 4.3 introduces the CC for PV production and develops the corresponding 
reformulation. The case study using the IEEE-37 node test distribution feeder is 
presented in Section 4.4 to test the proposed framework and analyze the uncertainty 
cost. Finally, Section 4.5 concludes the chapter. 

4.2 Capability Constraints for the PV Facility 
With the increasing penetration of distribution-level PV facilities, interest is moving 
toward using inverters’ capability to absorb or inject reactive power as needed. In 
addition to (3.1) that allows a flexible active power value for the PV production 
facility 𝑔 at time point 𝑡, the following operational constraint defines the inverter’s 
capability for also adjusting the reactive power output: 

 

�̅�7&
2 + 𝑞A7&

2 ≤ 𝑆7'*+
2,					𝑔 ∈ 𝐆, 𝑡 ∈ 𝐓,																	(4.1) 

 

where 𝑆7'*+ denotes the inverter’s rated apparent power of PV facility 𝑔.  

However, the recently emerged IEEE Standard 1547 [76], which encourages the 
inverter-level modulation of power values in response to local grid conditions, 
recommends injecting or absorbing reactive power for active power output levels 
greater than or equal to the minimum steady-state active power capability. Therefore, 
the convex region defined from this value in the complex plane entitles the reactive 
power production exclusively during daylight. 

4.3 Reformulation of CCs for the PV Facility 
Due to the stochastic nature of PV generation, the thesis formulates the following set 
of constraints for inverters’ power set points to be incorporated into the chance-
constrained bi-level model of Section 3.2.3: 
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ℙ Ò𝑝7&
2 + 𝑞7&

2 ≤ 𝑆7'*+
2Õ ≥ 1 − 𝜖= ,					𝑔 ∈ 𝐆, 𝑡 ∈ 𝐓,					(4.2) 

 

where 𝑞7& is the reactive power of PV facility 𝑔 at time point 𝑡 and 𝜖= the 
corresponding violation probability. 

Therefore, given the response profile classes (RPCs) of customers, the forecast of the 
available active power in PV facilities and the locational marginal price (LMP), CCs 
in (3.15), (3.16), and now (4.2) ensure that scheduling customers’ DR and inverters’ 
power set points satisfies the squared nodal voltage, complex power flow in lines, and 
inverter capacity limits with high probability (in this last case with probability 1 − 𝜖=). 

4.3.1 Reformulation of the CCs 

Every single constraint in (4.2) with a limit for the inverter capacity is a CC of the 
general form: 

 

ℙ ÚS𝑎$�	𝜆#&� + 𝜉7&T
2
+ U𝑎2�	𝜆#&�V

2 ≤ 𝑐2Û ≥ 1 − 𝜖,						(4.3)	

 

where the squared random variable 𝜉$ and the squared scalar variable 𝜉2 on the left-
hand side represent the operating points of the active and reactive power of PV 
production contained in the feasible region 𝒮 ∈ ℝ2, while 𝑐 is a constant representing 
the inverter’s apparent power limit. 

Since 𝒮 is convex, it can be inner approximated by the 𝐼-sided polygon 𝒫 inscribed 
inside 𝒮, as in the case of CCs for active and reactive power flows in Section 3.4. By 
expanding on this, the following linear CC is generalized: 

 

ℙÒ𝑤.,$ S𝑎$�	𝜆#&� + 𝜉7&T + 𝑤.,2𝑎2�	𝜆#&� + 𝑤.,>𝑐 ≤ 0Õ ≥ 1 − 𝜖,					∀𝑖: 𝑤.,$ ≥ 0			(4.4) 
 

CCs in (4.4) can finally be converted into one with the same structure as (3.18) with 
the random variable 𝜉7& of normal distribution. Thus, the following set of constraints 

for the half-space approximation of 𝒮 can replace the CCs of inverters’ active and 
reactive power set points in (4.2): 
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𝑤.,$�̅�7& + 𝑤.,2𝑞A7& ≤ −𝑤.,>𝑆7'*+ −ΦB$�1 − 𝜖=�Ö𝑤.,$𝜎7&Ö2
,					∀𝑖: 𝑤.,$ ≥ 0, 𝑔 ∈ 𝐆, 𝑡

∈ 𝐓,																																																																																																															(4.5) 
 
where 𝜎7& is the standard deviation of forecast errors for PV facility 𝑔 at time point 𝑡. 

4.4 Case Study 
This section presents a case study that expands the previous analysis in Section 3.5 to 
include the power dispatch of distribution-level PV generation facilities. First, the 
section performs a characterization stage using electricity data from SMs of 125 
residential and commercial Chilean end-users to determine the RPCs and their 
combinations. Second, an application example provides optimal control prices for 
customers and active and reactive power set points for PV inverters. Finally, the 
section analyzes the impact of CCs concerning inverter capacity limits in the 
optimization problem. 

The electricity data corresponds to the three weeks of February 14 to March 5, 2020; 
therefore, the test day uses the original LMP of March 6, 2020, associated with the 
substation of customers. Using the IEEE 37-node test distribution feeder, Table 4.1 
summarizes the allocation of consumers in load nodes and the nodes for the same two 
solar facilities, which in this chapter are located farther from the substation. For 
simplicity, in both inverters of PV facilities, 𝑆7'*+ = 350	kVA, whereas the minimum 
steady-state active power capability considers a value of 7 % of 𝑆7'*+. Lastly, the 
violation probabilities in CCs are 𝜖8 = 0.1, 𝜖( = 0.01, and 𝜖= = 0.01, while the rest 
of the parameters and variables remain the same as in Section 3.5. 

4.4.1 Customer Characterization and Modeling 

The application of the CFSFDP to the set of daily profiles allows the identification of 
three clusters through the corresponding plots. Figure 4.1 illustrates the result and 
highlights the selected centers with colored and bigger dots. One (with the violet color) 
is remarkably different because of its higher neighborhood compared to the other two. 

Figure 4.2 shows the corresponding daily profiles of clusters, with cardinalities of 1348, 
275, and 993, respectively. Cluster 1 involves profiles with a typical residential pattern 
of slightly higher consumption at the end of the day. Cluster 2 presents a pattern of 
lower consumption during daylight hours due to probably empty households on those 
(vacation) days. Conversely, cluster 3 exhibits a higher consumption in those hours, 
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with two notable peaks around 12 PM and 6 PM. Specifically, cluster centers 1, 2, and 
3 (in black) correspond to the violet, brown, and green dots in Figure 4.1. 

 

Table 4.1. Number of Customers and PV Facilities in Nodes of the Test Feeder 

Load node Number of customers Generation node Number of PV facilities 

701 38 707 1 

712 6 711 1 

713 6   

714 4   

718 6   

720 3   

722 6   

724 1   

728 3   

730 3   

731 2   

732 1   

733 3   

734 1   

735 3   

736 1   

737 4   

738 4   

740 2   

741 22   

742 6   
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Figure 4.1. Plots for identification of clusters: the decision graph and quantities 𝛾 in 

decreasing order (including a zoom to better distinguish the last two). 

 

 

 
Figure 4.2. Daily consumption profiles of clusters, with cluster centers in black. 
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Table 4.2 summarizes the RPCs and the combinations of these daily patterns. Again, 
most customers use two RPCs during the period, mainly consumption patterns 1 and 
3. 

 

Table 4.2. RPCs of Customers and their Combinations 

RPC 1 2 3 

Number of customers 21 76 28 

Combination of RPCs 
(Number of customers of 
the combination) 

1 (14) 1-2 (15) 1-2-3 (28) 

2 (3) 1-3 (59)  

3 (4) 2-3 (2)  

 

As in the previous analysis, it is assumed in this chapter that consumers use the RPC 
with the highest probability for the test day, which results in 64 customers using the 
RPC 1, 7 the RPC 2, and 54 the RPC 3. Figure 4.3 depicts the customers’ aggregate 
average demand from their corresponding RPC, the available PV generation profile, 
and the market prices for the test day. 

 

 
Figure 4.3. Expected customers’ aggregate average demand, available PV 

generation, and LMP on March 6, 2020. 
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4.4.2 DR Scheduling with Optimal Dispatch of PV Inverters 

Application of Algorithm 2 can include determining power set points for PV 
inverters. Considering time point 𝑡 = 1, Figures 4.4 and 4.5 illustrate the three control 
price signals to be broadcasted by the DSO and the expected consumption profiles of 
end-users, respectively. For customers using RPC 1, the maximum price at 10 PM 
and 11 PM encourages them to bring forward their intended activities. As Figure 4.5 
verifies, it is easier for this group to shift some activities to a closer period (one to three 
hours before 10 PM), which coincides with the lower market prices. With 80	$/MWh 
at the beginning and the end of the day, the second control price signal seeks that 
consumers with the second pattern carry out their activities mostly between 9 AM and 
9 PM, where they consume less, but the PV generation is high. Compared to the other 
two groups, these customers have a low influence since they represent only 5.6 % of 
the total. Finally, the last control signal aims to flatten the double-peak consumption 
profiles of end-users with RPC 3 through a price of approximately 66	$/MWh from 
5 PM and before 9 AM, which involves the hours with the lower market prices. 
According to the shapes in Figure 4.5 for this third group, their inherent flexibility 
allows these customers to have a peak consumption around 7 PM, coinciding with the 
lowest market price and thus contributing to a high expected profit for the DSO. 

 

 
Figure 4.4. Control price signals to be broadcasted by the DSO according to the 

highest probability RPC of customers. 

 

Figure 4.6 depicts the active and reactive power set points of PV inverters. With the 
connection of the PV facilities at the farther nodes 707 and 711, the active power 
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4.7 shows, voltage magnitudes in these nodes are generally closer to the nominal value 
of 4.8 kV (the same for their corresponding downstream nodes), even exceeding it in 
hours of high generation. For the reactive power, based on the recommendation given 
by IEEE Standard 1547, injections occur mainly during hours of lower active power 
production. 

 

 

 
Figure 4.5. Expected consumption profiles of customers, with the average in black. 

 

Figure 4.8 illustrates the maximum uncertainty margins and a comparison with the 
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voltages in Chapter 3, some constraints have slightly higher empirical probabilities, 
but the difference is minor. 

 

 
Figure 4.6. Active and reactive power set points for inverters of PV facilities at nodes 

707 and 711. 

 

 
Figure 4.7. Voltage magnitudes in distribution nodes 707 and 711. 

 

Finally, Table 4.3 summarizes the DSO’s expected profit for both situations, from 
which a remarkable difference between the two solutions results compared with the 
cases analyzed in Table 3.4. The lower profit in this case study is due to the inclusion 
of the uncertainty margin associated with the operation of PV facilities. 

4.5 Conclusion 
The main idea of this chapter is to expand the proposed framework for scheduling 
customers’ power responses to include the optimal dispatch of PV generation facilities. 
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Therefore, aiming at a profit maximization objective and ensuring a reliable operation 
of the distribution grid under uncertainty, the DSO determines optimal control prices 
for groups of customers and active and reactive power set points for PV inverters. In 
addition to CCs for voltages and power flows, the presented approach introduces and 
reformulates CCs for inverters’ capacity. 

 

 
Figure 4.8. Maximum uncertainty margins of inverters and empirical probabilities of 
apparent power violations (including both PV facilities) for 720 new random samples 

of active power errors each hour with the MILP and MISOCP problems. 

 

Table 4.3. DSO’s Expected Profit with the MILP and MISCOP problems 

 MILP MISCOP 

Profit ($) 152.9 93.4 

Ratio regarding the 
deterministic 

1 0.6106 

 

Results of the conducted case study highlight the suitability of the approach for 
management distribution-level energy resources by providing the optimal price signals 
considering the three RPCs of consumers for the test day and the optimal use of the 
PV inverters’ capability during daylight. Finally, apparent power violations close to 
the acceptable value ensure the secure scheduling of the distribution system exploiting 
inverters’ active and reactive power set points, although this results in a lower profit 
for the DSO.
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Chapter 5 

Conclusion and Outlook 

 

5.1 Summary 
This thesis proposes a methodology for demand response (DR) scheduling based on 
the customized online learning of customers’ behavior and investigates its application 
in the distribution system operation with uncertainty.  

In Chapter 2, the thesis proposes an online framework for DR characterization over 
time. For the distribution system operator (DSO), the approach allows obtaining and 
updating the response profile classes (RPCs) and the variability of customers, but also 
estimating the customer response to the price signal based on a known RPC. 

In Chapter 3, the thesis proposes an online framework for scheduling customers’ 
power responses to support integrating photovoltaic (PV) generation into the 
distribution system. The approach is essential for the DSO by providing customized 
price signals for DR management. The DSO can also ensure the reliable operation of 
the distribution grid by dealing with uncertainties in demand behavior and PV 
production using chance constraints (CCs) for squared nodal voltage and complex 
power flow. 

In Chapter 4, the thesis expands the previous online framework to include the optimal 
dispatch of PV facilities. Therefore, the DSO can determine control prices for groups 
of customers and active and reactive power set points for PV inverters while ensuring 
the reliable operation of the distribution grid by including, in addition to the above 
uncertainties, the corresponding to the operation of PV inverters. 

5.2 Conclusions 
The most important conclusions in the thesis are summarized below:  
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1) The application of an incremental methodology for the continuous processing of 
daily load profiles of customers can help to characterize their behavior over time. The 
presented online framework in Chapter 2 allows the DSO to obtain and update online 
mathematical models of customers. Therefore, the DSO can estimate the customers’ 
power response to price signals according to demand preferences and environmental 
factors. 

2) Customers’ individual preferences and environmental factors influence their energy 
demand, which produces deviations from expected behaviors. However, the approach 
in Chapter 2 contributes to modeling the underlying probability distribution of these 
random deviations since each daily deviation can be considered a realization of the 
corresponding random variable. Using the parameters of this empirical distribution 
overcomes the limitation of making distributional assumptions that can result in risky 
or more conservative costly solutions. Investigation into model stochasticity in demand 
is scarce in the technical literature. 

3) Traditionally, in both practice and technical literature, investigation of the active 
role of demand has little consideration. Under the concept of DR, however, the DSO 
can exploit the inherent flexibility from the demand side and contribute to integrating 
renewable production into the distribution grid for a more sustainable operation. The 
presented approach in Chapter 3 aims to that point by providing the (indirect) control 
of customers’ power responses through optimal time-varying price signals according 
to their RPCs and considering the operating conditions of the distribution grid. Thus, 
an optimal solution is delivered, founded on the customized analysis of customers. 

4) Generally, reformulating a chance-constrained programming problem into a 
tractable one is challenging. In most cases, guaranteeing both a feasible and optimal 
solution is unattainable. This thesis presents a methodology with a theoretical 
foundation but includes accepted assumptions necessary in practice. For example, the 
work uses single CCs and assumes the normal probability distribution, supported since 
the stochastic problem comprises many random variables with many realizations. The 
selection of the risk level, measured in CCs in terms of the violation probability, is also 
problematic. Higher security requirements (which imply more conservative violation 
probabilities) inherently increase the operational costs (or decrease the DSO’s profit 
in the context of the thesis). An acceptable level of risk is thus not a fixed value but 
depends on the tradeoff between profit and risk exposure. Chapters 3 and 4 introduce 
CCs with the corresponding analytical reformulation for nodal voltages, power flows 
in lines, and PV inverters’ capacity and analyze their interpretation in results. 
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5) With the increasing penetration of distribution-level PV facilities, interest is moving 
toward using inverters’ capability for absorbing or injecting reactive power. Optimal 
dispatch of active and reactive power can contribute to local voltage regulation. 
Chapter 4 presents a framework that schedules customers’ power responses through 
customized control price signals and PV inverters’ power set points while ensuring a 
reliable operation of the distribution grid by dealing with uncertainties in nodal 
voltages, power flows in lines, and available active powers of PV facilities. The 
approach provides an expected profit for the DSO; however, the DSO has the final 
decision concerning the tradeoff between the distribution system’s security and profit. 

5.3 Outlook 
The thesis’s results provide the following directions for future work: 

1) For online DR characterization, the impact of dimensionality on clustering needs 
to be explored in more depth. Furthermore, a suitable method to infer the daily RPC 
for estimating the expected response of customers is required, which is not necessarily 
the RPC with the highest probability. 

2) This thesis focuses on a balanced distribution system for online DR scheduling. 
However, the practical background of the investigation addresses unbalanced load 
with distributed PV integration into the distribution grid, where violations of voltage, 
power flow, and inverter capacity limits can be present. Therefore, future work 
requires analysis of large-scale unbalanced distribution grids with the corresponding 
challenge in convex approximations for CCs. 

3) It is significant to highlight the advantages of the online scheduling approach 
regarding balancing solution efficiency and global optimization. Using the model 
predictive control for online scheduling also requires further examination.





 

 

Appendix A 

Calculation of Incremental Validity Indices 

 

This study implements the iDB and iXB validity indices to monitor the performance 
of the online algorithm. First, the iDB index [32] results as follows: 
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which means the average of the similarity measures of each cluster 𝑘 with its most 
similar one. The 𝑑2 metric between the cluster centers indicates separation, whereas 
the expression in parenthesis shows their dispersions (compactness measure). 

A hard partition version of the iXB index [32] that defines the ratio of compactness 
to separation is as follows: 
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where 𝑁 is the total number of daily profiles.  

For each cluster 𝑘 that does not undergo splitting or merging, the new compactness is 
defined as: 
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where 𝑞 = 1 for the iDB index and 𝑞 = 2 for the iXB index. 

Equation (A. 3) separates the compactness value into the objects up to the previous 
day 𝑁#

$ and the effect of the new objects 𝑁#% added to the cluster 𝑘. Therefore, from 
𝜍0, it is possible to obtain both indices by applying (A. 1) and (A. 2), respectively.



 

 

Appendix B 

Analytical Reformulation of Chance Constraints 

 

For the solution to the chance-constrained bi-level optimization model in (3.12), CCs 
in (3.15), (3.16), and (4.2) for magnitudes of squared nodal voltages, complex power 
flows in lines and inverters’ capacity require reformulating into deterministic and 
tractable constraints. These constraints are single CCs of the general form expressed 
in (3.18). 

Constraint (3.18) can be represented equivalently as: 

 

ℙï
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where 𝜇e�	𝜆#&� = 𝑎�	𝜆#&� and 𝜎e�	𝜆#&� = Ö𝐛�	𝜆#&�
!𝚺&$ 2⁄ Ö

2
 are the mean and 

standard deviation of random variable 𝜉, and the scaled random variable 𝜉9 has zero 
mean and unit variance by construction [9]. 

Assuming 𝜉 as a normal random variable, 𝜉9 is distributed according to the standard 
normal distribution. Then, based on the definition of the inverse of the cumulative 
distribution function of the standard normal distribution Φ, it follows that: 

 

¼
𝑐 − 𝜇e�	𝜆#&�
𝜎e�	𝜆#&�

½ ≥ ΦB$(1 − 𝜖),																						(B. 2) 
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By substituting the corresponding mean and standard deviation of 𝜉 and rearranging 
conveniently, (B. 2) results in (3.19).
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