
Universidad de Concepción

Dirección de Postgrado

Facultad de Ingenieŕıa

Maǵıster en Ciencias de la Computación

INTERPOLACIÓN MORFOLÓGICA DE IMÁGENES EN

COLOR

(MORPHOLOGICAL INTERPOLATION OF COLOR

IMAGES)

ADRIÁN ADOLFO DEL PINO NAVARRETE

CONCEPCIÓN, CHILE

2014

Profesor Gúıa: Dr. Javier Vidal Valenzuela

Dpto. de Ing. Informática y Cs. de la Computación

Facultad de Ingenieŕıa

Universidad de Concepción

ii

Acknowledgments

I wish to thank Dr. Javier Vidal for his advice, Dr. John Atkinson for revising the

first version of this document, and my family for its support.

iii

To my parents

iv

Abstract

This research aimed to build a morphological method for color inter-frame interpola-

tion with better picture quality than other methods when the input images contain

complex connected components.

In theory, it is possible to build new color interpolation methods by using differ-

ent color morphological operators. However, none of these operators has emerged as

a standard. Consequently, another approach was taken to interpolate color images:

interpolating the shapes of the objects in the color images, and then coloring the

interpolated shapes.

The new color interpolation methods were compared to the linear, and the color

median of Iwanowski and Serra methods. Some images were interpolated with the

aforementioned methods, and the interpolated images were compared against the

ground truth. The new methods frequently obtained better interpolated images.

As a conclusion, it is possible to construct better morphologic interpolation meth-

ods for color images without using color morphological operators.

v

vi

Table of Contents

Acknowledgments iii

Abstract v

List of Tables xiii

List of Figures xv

List of Algorithms xxi

Chapter 1 Introduction 1

Chapter 2 Literature Review: Morphological Interpolation of Im-

ages 5

2.1 Morphological Interpolation for Binary Images 5

2.1.1 Morphology-based Three-dimensional Interpolation 5

2.1.2 Recursive Interpolation Technique based on Morphological Me-

dian Sets . 6

2.2 Interpolation of Partitions . 9

2.2.1 Interpolation of Partitions through Median Sets 10

2.2.2 Generalized Morphological Mosaic Interpolation 11

vii

2.2.3 Segmentation-based Morphological Interpolation of Partition

Sequences . 11

2.2.4 A Region-based Interpolation Method for Mosaic Images . . . 14

2.3 Morphological Interpolation for Grey-scale Images 18

2.3.1 Median of Images . 19

2.4 Color Median of Images . 20

Chapter 3 New Morphological Interpolation Methods for Color Im-

ages 23

3.1 Segmenting the Input Images to Obtain Color Mosaics 25

3.2 Matching the Regions of the Color Mosaics 29

3.3 Converting the Color Mosaics with Matched Regions into Grey-level

Mosaics . 30

3.4 Interpolating the Grey-level Mosaics 32

3.5 Coloring the Interpolated Mosaic . 34

3.5.1 Overlapping . 35

3.5.2 Deforming . 39

3.6 The Algorithm for Compression and Expansion 42

3.6.1 Compression and Expansion between the Borders and the Nucleus 43

3.6.2 Birthplaces . 51

Chapter 4 Comparisons of Color Interpolation Methods 55

4.1 Selecting Sequences of Images . 55

4.2 Statistical Analysis . 62

4.3 Results and Discussion . 63

4.4 Descriptive Analysis . 75

Chapter 5 Conclusions 79

Appendix A Images 81

A.1 Properties of Color . 81

viii

A.1.1 Color Constancy . 82

A.2 Digital Images . 83

A.2.1 Binary Images . 83

A.2.2 Grey-level Images . 83

A.2.3 Color Images . 84

A.2.4 Mosaic Images . 84

A.3 Color Models and Color Spaces . 86

A.3.1 RGB Color Model . 87

A.3.2 HSV Color Model . 88

A.3.3 CIELAB . 88

A.3.4 YIQ Color Space . 89

A.4 Basic Concepts: Neighborhood, Neighbors, Connected Pixels, and Con-

nected Component . 90

A.5 Convolution . 91

A.6 Image Gradient . 92

A.6.1 Scharr Operator . 95

A.6.2 Kroon Operator . 96

A.7 Distance . 96

A.7.1 Geodesic Distance . 97

A.7.2 Hausdorff Distance . 98

A.8 Homotopy . 98

A.9 Image Segmentation . 99

A.9.1 Interactive Segmentation . 104

A.10 Image Interpolation . 105

A.10.1 Grey-level Image Interpolation 106

A.10.2 Shape-based Interpolation . 110

A.11 Image Quality Assessment . 110

A.11.1 FSIMc . 111

ix

Appendix B Mathematical Morphology 115

B.1 Mathematical Basis . 115

B.2 Structuring Element . 116

B.3 Binary Operators . 118

B.4 Ultimate Eroded Set . 120

B.5 Hit and Miss Transform . 121

B.6 Thinning . 122

B.7 Shrinking . 123

B.8 Skeletonization . 123

B.9 Pruning . 128

B.10 MSP . 129

B.11 Interpolation of Sets . 129

B.11.1 Median Set . 129

B.11.2 Sequence of Interpolations through Median Sets 132

B.11.3 Interpolation Function . 132

B.11.4 Interpolations based on Hausdorff Distance 133

Appendix C Mathematical Morphology for Images 135

C.1 Grey-level Mathematical Morphology 135

C.1.1 Grey-level Watershed Transform 135

C.2 Color Mathematical Morphology . 138

C.2.1 Color Watershed . 139

Appendix D Implementing Existent Interpolation Methods for Color

Images 141

D.1 Implementing Linear Interpolation for Color Images 141

D.2 Implementing Color Median of Images 142

Appendix E Prewitt Operator 145

Appendix F Sobel Operator 147

x

Appendix G Mean Squared Error and Peak Signal to Noise Ratio 149

G.1 Mean Squared Error . 149

G.2 Peak Signal to Noise Ratio . 149

Appendix H Statistics 151

H.1 p-value . 151

H.2 One- and Two-tailed Tests . 151

H.3 Significance Level . 152

H.4 Statistical Power . 153

H.5 Skewness . 153

H.6 Normality . 155

H.6.1 Normal Probability Plot . 156

H.6.2 Shapiro-Wilk Test . 157

H.7 Paired Difference Tests . 157

H.7.1 t-Test for Correlated Samples 157

H.7.2 Wilcoxon Signed-rank Test . 158

H.7.3 Sign Test . 160

H.8 Rank Correlation . 161

H.8.1 Correlation Coefficient of Kendall 162

Appendix I Choosing an Interactive Segmentation Method 163

I.1 Measurement of Interactive Segmentation Methods 163

I.1.1 Accuracy . 163

I.1.2 Repeatability . 165

I.1.3 Efficiency . 165

I.2 Datasets for Evaluating Interactive Segmentation Methods 166

I.3 Comparison of Interactive Segmentation Methods 167

Appendix J Compression and Expansion between the Borders and

the Birthplace 169

xi

J.1 Compression and Expansion between the Outer Border and a Set of

Points . 172

J.2 Compression and Expansion between the Borders and Rings 177

J.3 Compression and Expansion between the Borders and an Artificial

Connected Component . 182

Bibliography 183

xii

List of Tables

4.1 Methods applied according to its name 70

4.2 Types of deforming applied to an interpolation according to its

name . 70

4.3 FSIMC calculated for several interpolation methods (part I) . . 71

4.4 FSIMC calculated for several interpolation methods (part II) . 73

4.5 Descriptive statistics of FSIMC for several interpolation methods 75

A.1 Categories of image segmentation methods 101

xiii

xiv

List of Figures

2.1 First matching criterion . 7

2.2 Interpolation by using the inclusion relationship property . . . 8

2.3 MSP points to calculate the point where X and Y are going to

be translated . 9

2.4 Partitions with a one-to-one correspondence between cells . . . 10

2.5 A moving ball . 14

2.6 Interpolation of Fig. 2.5 after the dead leave step 14

2.7 Interpolation of a sequence . 15

2.8 A mosaic divided into regions 16

2.9 Type 1 region and its artificial connected component 17

2.10 Type 2 region and its artificial connected component 17

2.11 Type 4 region and its artificial connected component 17

2.12 Type 6 region and its artificial connected component 18

2.13 Type 7 region and its artificial connected component 18

2.14 Type 8 region and its artificial connected component 18

2.15 Color median image generated from a couple of images 21

3.1 New interpolation method . 26

3.2 C1 Segmenting the input images 27

xv

3.3 Initial and final images of dogdance 27

3.4 Initial and final segmented images from dogdance 27

3.5 Initial image of minicooper, and its segmented image 28

3.6 C2 Matching the regions of color mosaics 29

3.7 Initial and final matched segmented images from dogdance . . 30

3.8 C3 Converting the color mosaics into grey-level mosaics 30

3.9 Initial and final grey-level mosaics from dogdance 32

3.10 C4 Interpolating the grey-level mosaics 32

3.11 Interpolated grey-level mosaic from dogdance 33

3.12 C5 Coloring the interpolated mosaic 34

3.13 Images before and after overlapping 38

3.14 Image interpolated with overlapping 38

3.15 A big and a small regions . 42

3.16 The small region overlaps the big one while the big region covers

the small one . 42

3.17 Interpolated image of the sequence called compact disc by using

skeletons and birthplaces . 44

3.18 A leg before and after tracing segments 46

3.19 A leg with adjacent and intersected segments, and with seg-

ments that leave empty areas 52

4.1 Initial and final images of the sequence called walkcircle 56

4.2 Initial and final images of the sequence called walkstraight . . 57

4.3 Initial and final images of the sequence called walkstraight error 57

4.4 Initial and final images of the sequence called army 57

4.5 Initial and final images of the sequence called basketball . . . 58

4.6 Initial and final images of the sequence called beanbags 58

4.7 Initial and final images of the sequence called dogdance 58

4.8 Initial and final images of the sequence called dumptruck . . . 59

4.9 Initial and final images of the sequence called hydrangea . . . 59

xvi

4.10 Initial and final images of the sequence called minicooper . . . 59

4.11 Initial and final images of the sequence called wooden 60

4.12 Initial and final images of the sequence called ceramic 60

4.13 Initial and final images of the sequence called compact disc . . 61

4.14 Initial and final images of the sequence called Santa 61

4.15 Initial and final images of the sequence called walkingVGA . . 61

4.16 Initial and final images of the sequence called walking5M . . . 62

4.17 Interpolation considering the dumptruck as a region 64

4.18 Interpolation considering the car, its shade and the enclosed

area as separate regions . 65

4.19 Interpolation considering only the car as a region 66

4.20 Interpolation considering the car, its shade and the area as a

region . 67

4.21 Interpolation considering the car and its shade, the enclosed

area, and the dumptruck as three separate regions 68

4.22 Comparison of grey-level interpolated mosaics 68

4.23 Table segmented in the wooden sequence 68

4.24 Table in wooden interpolated with overlapping and deforming 69

4.25 Average FSIMc per Interpolation Method 76

4.26 Segmentation of an image . 77

4.27 New interpolation method applying only deforming by using

birthplaces . 78

A.1 Binary image . 84

A.2 Grey-level image . 84

A.3 Color image . 85

A.4 Grey-level mosaic image . 85

A.5 Color mosaic image . 86

A.6 Common matrix to convert R′G′B′ into Y IQ 89

A.7 Neighbors of a pixel . 90

xvii

A.8 Example of convolution . 92

A.9 3 x 3 window . 93

A.10 Horizontal derivative kernel 93

A.11 Vertical derivative kernel . 93

A.12 Geodesic distance . 97

A.13 Hausdorff distance sample . 98

A.14 Homotopy tree of a set . 100

A.15 Ways to signal the ROI . 104

A.16 Typical artifacts of linear interpolation methods 106

A.17 Photograph section zoomed with nearest-neighbor interpolation

method . 107

A.18 Photograph section zoomed with bilinear interpolation method 108

A.19 Linear interpolation of the images 109

B.1 3x3 cross or diamond . 117

B.2 3x3 square . 117

B.3 5 x 5 cross . 117

B.4 5 x 5 diamond . 117

B.5 Dilation of a pixel . 118

B.6 Dilation of a rectangle . 119

B.7 Example of erosion . 120

B.8 Erosion of a rectangle . 120

B.9 Computing ultimate eroded set with the 3x3 cross 121

B.10 Computing ultimate eroded set with the 3x3 square 121

B.11 Composite structuring element for detecting upper left corners 122

B.12 Comparing shrinking with thinning 124

B.13 Overlapped disks and its skeleton 125

B.14 Different skeletons of a set . 128

B.15 Computing median set . 130

B.16 Median set from two input sets 131

xviii

B.17 Example of first Hausdorff geodesic interpolation 134

C.1 Watershed of an image . 136

D.1 Linear color interpolation program 142

D.2 Color median image generation program 143

D.3 calcularInfimoLuminosidad program 143

H.1 Negative and positive skew diagrams 153

J.1 Detail of a man in the grey-level mosaic obtained segmenting

the image basketball12.png . 171

J.2 Detail of a man in the interpolation of basketball12.png and

basketball14.png by using birthplaces 171

J.3 expanding or compressing Image by using birthplace 175

J.4 Segment between the outer border and the MSP 176

J.5 Segment between the outer border and the center 181

J.6 Matched segmentation of the initial and final images of the

sequence called beanbags . 181

J.7 Interpolated image of the sequence called beanbags by using

birthplaces and the linear interpolation 182

xix

xx

List of Algorithms

1 Overlapping algorithm . 37

2 Deforming algorithm . 41

3 expanding or compressing Image by using skeleton algorithm 48

4 expanding or compressing Image by using skeleton algorithm (contin-

ued) . 49

5 trace segments algorithm . 53

xxi

xxii

1
Introduction

Mathematical morphology is considered a powerful and useful framework to analyze

and process images[9, 68, 184]. It has been applied to many areas, such as image

interpolation.

Image interpolation has been classified as one- and two-image interpolation de-

pending on the number of images used as input (one and two images, respectively).

The latter interpolation is also called inter-image interpolation and inter-frame in-

terpolation.

Intermediate pictures are obtained by using two-image interpolation in applica-

tions such as X-ray computed tomography and magnetic resonance imaging. In these

examples, equally spaced images are taken by the machines (their mechanisms can-

not move in very small steps and, additionally, in the tomographs, to avoid excessive

radiation exposure) and the missing pictures are constructed by interpolation.

The techniques and methods for two-image interpolation can be classified into

grey-level and object-based [21].

Grey-level methods compute the value of an interpolated pixel by using the values

of the corresponding neighbor pixels in the original images [35, 215]. Other names

1

2

for these methods are scene-based and intensity-based. Unfortunately, none of these

names describes these methods accurately. “Scene-based” conveys the idea of meth-

ods operating on whole images, but they can operate on parts of them. “Grey-level”

and “intensity-based” convey the idea of methods operating only on grey-level im-

ages, but they can operate on binary and color images.

Some grey-level interpolation methods are nearest-neighbor, linear, splines and

polynomial [25]. The nearest-neighbor is the simplest, and the linear is the most

used. To compute the interpolated image between two images, the nearest-neighbor

method copies the input image that is near to the place of the interpolated image into

the interpolated image. The linear method (another name is cross-dissolve) obtains

new images by using weighted combinations of corresponding pixels [196]. In general,

they are fast and easy [215]. However, these methods suppose that a smooth curve

can model image data, so they make artifacts and blurred edges [35, 215].

Object-based methods use information of the objects in the images to guide the

interpolation process [21]. A crucial characteristic of objects is the shape; meth-

ods that use it are called shape-based ones [25]. Some shape-based methods employ

mathematical morphology since it provides a coherent framework to develop effective

algorithms (Serra, 1982, cited in [5]). For example, three methods that influenced

this work are described in these papers: “A region-based approach to interpolate

images” [29], “A region-based interpolation method for mosaic images” [210], and

“Morphological interpolation and color images” [85].

In theory, new color interpolation methods can be built by using different color

morphological operators. However, although many approaches have been proposed

to apply mathematical morphology to colors, none of them has emerged as a stan-

dard [9]. Consequently, an approach was proposed to interpolate color images that

does not need color morphological operators.

The general goal was to construct a color morphological interpolation method with

3

better picture quality than other methods when the input images contain complex

connected components.

The specific goals were to find an adequate color segmentation method for images

that contain complex connected components, to construct a new method for color

morphological interpolation that uses the segmented images as input, and to com-

pare it (with other methods).

The methodology considered the following steps: Implement an adequate seg-

mentation method for color images, construct a new method for color morphological

interpolation by using the segmented images and the mosaic interpolation algorithm

of Vidal et alii [210], and determine the picture quality of the interpolated images.

The rest of this thesis is organized as follows. Chapter 2 reviews the relevant

literature about morphological interpolation of images. Chapter 3 describes the pro-

posed color interpolation methods. Chapter 4 compares the new methods against the

linear, and color median of Iwanowski and Serra ones. Finally, chapter 5 shows the

conclusions.

4

2
Literature Review: Morphological Interpolation of

Images

Mathematical morphology provides a coherent framework to develop effective shape-

based interpolation algorithms (Serra, 1982, cited in [5]). Consequently, it has been

applied to binary, grey-level, and color images.

2.1 Morphological Interpolation for Binary Images

Although it is possible to interpolate binary images by extending the interpolation

of sets, the disadvantages of these methods are clear (see Sec. B.11). In practice, bi-

nary morphological interpolation methods processed the images by considering their

components. For example, the Morphology-based three-dimensional interpolation (see

Sec. 2.1.1) and the Recursive interpolation technique based on morphological median

sets (see Sec. 2.1.2).

2.1.1 Morphology-based Three-dimensional Interpolation

This method [111] distinguishes two types of components: objects and holes. It

computes the interpolated picture by subtracting the interpolated holes from the in-

terpolated objects. It matches the same class of components between images, and

5

6

if some component in an image cannot be paired, it creates the same class of com-

ponent in the other image. These components, with the size of a pixel, are located,

for objects, at the centroid of the objects and, for holes, at a point computed with

a simple formula that should avoid that a hole be located out of its corresponding

object. Finally, it aligns and interpolates the matched components.

2.1.2 Recursive Interpolation Technique based on Morphological Median

Sets

Another approach [209] considers the treatment of connected components (CC) be-

longing to each of the original slices. It distinguishes between CC belonging to the

foreground (grains) and those belonging to the background (holes). A component

that surrounds other components is called the outer component; and the surrounded

components are called the inner components. A filled component is a component

whose holes have been filled. This method considers a filled outer component as a

set and its filled inner components as subsets. This recursive method has three steps:

(1) extract the outer connected components, (2) match the filled connected compo-

nents between slices, and (3) interpolate.

The extraction step takes each foreground component that either overlaps (or cov-

ers) the border of the image or has a path to the image border along the background.

The matching step determines which foreground components are going to be in-

terpolated in the next step. This is accomplished by computing a proximity zone

around each filled component. To do this, it is computed the radius λ of each filled

component (see Fig. 2.1 (a)). The proximity zone is computed dilating λ the filled

component. If this proximity zone overlaps (or cover) a component in the other image

(see Fig. 2.1 (c)), the Euclidean distance between their MSPs is computed and stored.

Finally, pairs of components whose distance is minimal are stored as matched filled

components.

7

Figure 2.1: First matching criterion: In (a) there is a slice with one CC X indicating
its MSP and its radius λx; in (b) there is a second slice with a CC Y; and in (c) it
is shown the proximity zone of X. Since the proximity zone of X overlaps Y, then X
matches Y.

The inclusion relationship property suggests that the interpolations should satisfy

this condition [209, 207]

Interpolat(A1 \B1, A2 \B2) = Interpolat(A1, A2) \ Interpolat(B1, B2),

where “Interpolat” is some interpolation method; the sets A1 and B1 belong to a slice,

with B1 ⊆ A1; the sets A2 and B2 belong to another slice, with B2 ⊆ A2. It has been

shown that the application of this property improves the interpolation results [208].

An example that uses this property is shown in Fig. 2.2.

The interpolating step interpolates each pair of matched components and adds the

interpolated component to the interpolated slice. This step fills the matched compo-

nents, moves the matched filled components to a central position by using their MSPs

(see Fig. 2.3, taken from [209]), and interpolates them by using median sets. Then, it

computes the holes inside the matched components. If there are holes, it recursively

calls this algorithm with these holes, and computes the interpolated component –by

using the inclusion relationship property– as the median set “minus” the interpolated

holes, otherwise the median set is the interpolated component.

In some unusual cases, this method puts the inner component out of its container.

8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.2: Interpolation by using the inclusion relationship property: (a) A1 \ B1,
(b) Interpolat(A1 \ B1, A2 \ B2), (c) A2 \ B2, (d) A1, (e) Interpolat(A1, A2), (f) A2,
(g) B1, (h) Interpolat(B1, B2), (i) B2 (taken from [207]).

9

Figure 2.3: MSP points to calculate the point where X and Y are going to be trans-
lated

To avoid this violation of the homotopy, the interpolated inner component is relocated

and, if necessary, eroded [207].

2.2 Interpolation of Partitions

The extension of morphological interpolation from binary images to grey-level images

has led to mosaic interpolation [20, 207]. In other words, the interpolation of parti-

tions has been applied to interpolate grey-level images [20]. In mosaic interpolation,

to process the shapes of regions, the regions are usually transformed into binary im-

ages [210].

Four approaches are explained: the interpolation of partitions through median sets,

the generalized morphological mosaic interpolation, the segmentation-based morpho-

logical interpolation of partition sequences, and a region-based interpolation method

for mosaic images. The first one was indirectly applied in this work as part of the

the fourth one; the second one interpolates using geodesic distances; the third one

gives an overview of the problems and solutions found interpolating partitions, and

the fourth was applied in this work.

10

2.2.1 Interpolation of Partitions through Median Sets

Beucher [20] proposed interpolating partitions by using median sets. There is a short

explanation of this idea below.

Let T and T ′ be partitions of two same-sized images:

T = {Ci}, T ′ = {C ′i}

There must be a correspondence one-to-one between the cells of these partitions,

i.e.

∀Ci ∈ T,∃C ′i ∈ T ′ : Ci ∩ C ′i 6= φ

Let W = {Ci ∩ C ′i} be the set of all the components Ci ∩ C ′i. A median partition

M(T, T ′) can then be defined as

M(T, T ′) = {IZW (Ci ∩ C ′i)}

In Fig. 2.4 there are two partitions: one is delineated in black; the other, in red.

The intersection between cells, W , is painted in yellow.

Figure 2.4: Partitions with a one-to-one correspondence between cells: Black lines
delimit a partition T ; red lines, another T ′.

Two algorithms have been proposed to compute this median: One uses a skeleton

by influence zones (SKIZ) and gives a partition with one pixel borders, the other gives

a labeled partition without boundaries between the cells [20].

11

2.2.2 Generalized Morphological Mosaic Interpolation

Meyer [130] proposed an interpolation function between two intersecting sets by using

geodesic distances (see Sec. B.11.3); and extended it to mosaics whose regions have

a non-empty intersection.

Iwanowski [86] extended the mosaic method from Meyer. In effect, the improved

method can treat non-matching regions (regions without a counterpart —a region

with the same label— in the other image) and non-intersecting matching regions (re-

gions with the same label and empty intersection). In the first case, a counterpart

is created, i.e. a new pixel is obtained by eroding the region —and if necessary, by

thinning it— or by calculating its center of gravity —and if this pixel is out of the

region, the closest pixel belonging to the region is chosen. In the second case, it

applies affine transformations (translation, rotation, and scaling) before the interpo-

lation (described in [87]).

2.2.3 Segmentation-based Morphological Interpolation of Partition Se-

quences

Brémond and Marqués proposed a method with this name1 to interpolate sequences

of partitions [29].

Let It and It+p be two partitions corresponding to the segmentation of two images

at t and t + p respectively. The goal is to construct the partitions It+1, It+2, . . . ,

It+p−1 by using only It and It+p.

The method of Brémond and Marqués has four steps: region parametrization,

region ordering, region interpolation, and partition creation.

1This name is clearly redundant as the partitions are already segmented. Therefore, a better title
would be “Morphological Interpolation of Partition Sequences”. However, in the results section, they
say “...a region-based approach for image sequences interpolation”. Therefore better titles for this
article would be “Segmentation-based Morphological Interpolation of Image Sequences” or “Region-
based Morphological Interpolation of Image Sequences”. These titles refers to both the method and
its application area.

12

Region Parametrization

Let Rt(i) and Rt+p(i) be the regions with label i in It and It+p respectively. The

evolution of a region from Rt(i) to Rt+p(i) can be divided into regular motion and

shape deformation. If adjacent regions with the same type have a similar regular

motion, they are merged into the same meta-region.

Regular Motion Estimation

This method considers two types of regular motions: translation and zooming.

The translation of the center of mass G(i) gives an approximation of the region

movement ~T (i). However, it might not be useful for regions that fuse or split. The

zoom factor Z(i), due to the apparent enlarging or decreasing of a region caused by

the movement of the camera or the region, can be computed using the surface ratio

between the initial and final regions. However, it might give wrong values when there

exist occlusions.

It was proposed this classification for the possible situations for regions:

1. Foreground regions. Use both translation and zooming.

2. Background regions. Use only translation.

3. Merged or split regions. Stay motionless.

To classify a region, it estimates a motion error by performing each alternative

on Rt(i), obtaining R′t+p(i); compares each of them with Rt+p(i)
2 by computing a

function cost on the contours of the regions, and chooses the alternative with the

smallest error. The chosen alternative is the motion type of the region.

2In the article says Rt(i), but it should be compared with Rt+p(i). Otherwise, the best alternative
would always be stay motionless as in this case R′

t+p(i) is equal to Rt(i). So their contours are the
same. Therefore, their distance is zero. In other words, instead of computing the cost between Rt(i)
and R′

t+p(i), it should be computed the cost between Rt+p(i) and R′
t+p(i).

13

Merging on Meta-regions

Some regions belong to the same object. It is important to detect them because

this information is useful in the region ordering step.

It is considered that adjacent regions with the same motion type and a similar

motion (||~T (i)− ~T (j)|| < λ) belong to the same macro-region.

Shape Deformation

As the regular motion model cannot consider any motion different from transla-

tion and zooming, it is necessary another model. Using the regular model to compute

R′t+k(i) from Rt(i) and R′′t+k(i) from Rt+p(i) can give two different regions. The

idea is to compute the geodesic distance from Rt(i) to Rt+p(i) –after translation and

zooming, if required–, and threshold the difference. Two methods were created, one

separately computes the deformation for each region and the other simultaneously

compute the deformation for all the regions within each macro-region.

Region Ordering

The motion error estimation gives information about the physical depth of the re-

gions. While the estimated error is higher, the region is deeper. For example, in

Fig. 2.5 [29], a ball has no error since it has not been hidden by other objects. There-

fore, it is the shallowest. The same happens with some squares. However, the ball

overlaps some others, so their estimated errors are higher. Consequently, they are

deeper.

Region Interpolation

Regions are interpolated by using the parameters computed previously.

14

Figure 2.5: A moving ball

Partition Creation

The interpolated regions are placed down in the interpolated partition by following

a dead leave model. First, it lays down the deepest regions (the background), then

the upper ones, up to the shallowest. For example, the dead leave step was applied

to the interpolation of the regions of the initial and final images from Fig. 2.5. Its

result can be seen in Fig. 2.6 [29]. Note that some pixels were not covered.

Figure 2.6: Interpolation of Fig. 2.5 after the dead leave step

If the previous step leaves some pixels uncovered, the propagation step fills them

with their surrounding labels. This step considers the estimated propagation error:

it does not propagate regions that were interpolated correctly. The propagation error

is computed as the Hausdorff distance between R′t+k(i) and R′′t+k(i).

For example, the interpolation of the initial and final images from Fig. 2.5 can be

seen in Fig. 2.7 [29].

2.2.4 A Region-based Interpolation Method for Mosaic Images

Vidal et al. [210] extended their previous work for binary images to mosaic images. A

three-step algorithm was proposed whose steps differ from those used to interpolate

15

Figure 2.7: Interpolation of a sequence

binary images:

1. Separation of regions in each slice.

2. Matching and interpolation between regions.

3. Final adjustment.

In the first step, each region j belonging to a slice Si is stored as a binary image

(there is the same number of binary images as the number of regions in the slice Si)

in the vector element RSji ; in addition, the grey-level value of each region is stored in

a tree structure to preserve the inclusion relationship among regions [61]. The first

level of this tree stores all the regions directly and indirectly adjacent to the image

border; the next level stores all the regions inside, and directly or indirectly adjacent

to the regions in the previous level, and so on. An example is shown in Fig. 2.8: an

input mosaic contained in a slice (a) is separated (b), the relationship between its

regions, and the grey level of each of them is stored in (c), and their regions are stored

as binary images in (d), (e), (f), (g) and (h).

In the second step, the hierarchical level, the grey-level, and the proximity test

(see proximity zone in Sec. 2.1.2) are used to decide which regions from one slice

match regions from the other. First, regions with the same hierarchical level, grey

level and that pass the proximity test are matched. Second, regions belonging to con-

secutive levels with the same grey level and that pass the proximity test are matched.

After this computation, some regions might match various regions. In this case, only

the matched region with the minimal Euclidean distance between their MSP points

is kept. Finally, the (remaining) matched regions are interpolated by using median

sets. It is also possible that some regions do not match any other (called isolated

16

(a) Input mosaic (b) Structure (c) Region-based tree

(d) A region (e) A region (f) B region (g) C region (h) D region

Figure 2.8: A mosaic divided into regions

regions). In this case, for each isolated region, an artificial region is created in the

other slice. Usually, this artificial region is a point, but a new approach is used if this

region overlaps the border: The artificial region takes different shapes (see Sec. 2.2.4).

Finally, isolated regions are interpolated with their artificial regions by using median

sets.

The set of interpolated regions has two problems: (1) Their union does not neces-

sarily cover all the interpolated slice; and (2) some regions overlap. In the third step,

each point of the interpolated slice that belongs to no region or to various regions

is assigned to a region. To do this, it is computed a slice with all the interpolated

regions minus their overlapped parts, and then this image is flooded by using the

watershed transform.

Finally, the interpolated regions are labeled with the grey values of their original

regions.

17

Classification of Border Regions and their Artificial Connected Compo-

nents

The border regions were classified in several types (1, 2, 4, 6, 7, and 8). When these

border regions are not paired, artificial components are created in the other image.

The shapes of these regions and their artificial components are shown below.

If a (non-paired) component overlaps a border, it is interpolated with a segment

in that border (see Fig. 2.9).

Figure 2.9: Type 1 region and its artificial connected component

If a component overlaps two borders without interruption, it is interpolated with

a point in the corner (see Fig. 2.10).

Figure 2.10: Type 2 region and its artificial connected component

If a component extends over one, two or three borders, it is interpolated with

artificial lines in these borders (see Figs. 2.11, 2.12 and 2.13).

Figure 2.11: Type 4 region and its artificial connected component

If a component overlaps various borders with a gap in the middle, it is interpolated

with the thinning of the component (see Fig. 2.14).

18

Figure 2.12: Type 6 region and its artificial connected component

Figure 2.13: Type 7 region and its artificial connected component

2.3 Morphological Interpolation for Grey-scale Images

Brémond and Marqués [29] propose segmenting the images and interpolating their

partitions. In this approach, each original image is segmented into a set of regions

and, at the same time, the corresponding regions are labeled. Each region is char-

acterized by its contours and texture (the texture can be regular, such as polka

dots; stochastic, such as pebbles on a beach; or anywhere in between, such as tiger

stripes [118]). For each pair of regions, their contours and textures are interpolated

separately. On one hand, they proposed a general scheme to interpolate the contours

by using partitions (see Sec. 2.2.3) that is independent of the segmentation method

used. On the other hand, they did not explain how to interpolate the textures.

Another image interpolation method [20] uses the same approach. First, the water-

shed transform is applied to the images, then the interpolation of partitions through

median sets (see Sec. 2.2.1) is applied to the resulting mosaics. Unfortunately, the

Figure 2.14: Type 8 region and its artificial connected component

19

description of this method has left out some points about its functioning. For ex-

ample, are the images smoothed before the watershed transform, is the watershed

transform applied to the original images or to the image gradients, and how is the

image obtained after the mosaic interpolation.

There is also a method that interpolates images without segmenting them. It is

explained below.

2.3.1 Median of Images

Iwanowski and Serra [85] formulated the median of images, an extension of median

of sets (see Sec. B.11.1), as:

m(f, g) = sup{∀λ : inf [δλ(inf(f, g)), ελ(sup(f, g))]}, (2.1)

where f and g are images, λ = 1, 2, . . . , K integer values, inf and sup are infimum and

supremum, respectively, and δλ and ελ are dilation and erosion of size λ, respectively,

performed with a non-flat structuring element (see Sec. B.2).

This equation can be applied to grey-level and color images. The only difference

are the inf and sup operators. For grey-level images, numbers are compared; the

greatest number is the sup and the smaller is the inf . The comparison of colors is

explained in Sec. 2.4.

An algorithm to compute median of images, based on Eq. 2.1, taken from [85], is

described below.

Initially, three auxiliary images are defined:

z0 = m0 = inf(f, g)

w0 = sup(f, g)

Then, new values are computed iteratively until idempotency, i.e. mi+1 = mi:

20

zi = δ(zi−1)

wi = ε(wi−1)

mi = sup[inf(zi, wi),mi−1]

Consequently, the median of images f and g is

m(f, g) = m∞ = mi.

2.4 Color Median of Images

Iwanowski and Serra [85] were pioneers in morphological, color interpolation. First,

they propose a method that uses the median of images (see Sec. 2.3.1). This is an

automatic method useful when at least one image is textured and there is no need

to transform some object into another. The median image of color images can be

obtained, and the differences with the median image of grey-level images are the in-

fimum and supremum operators used. In addition, they suggest that constructing

these operators with the usual lexicographical ordering (conditional ordering) does

not consider the importance of the color components. Therefore, they propose using

that ordering in a comparative vector space. They suggest that this space should be

used only to compare vectors and that it can be created by using linear combinations

of the original space, such as the [luma] value. An example of the median image of

two color images is shown in Fig. 2.15. Second, they propose applying warping to

avoid that some important elements disappear before applying the interpolation. This

method is useful in general but requires human intervention to define some control

points.

21

(a) Image (b) Median image (c) Image

Figure 2.15: Color median image (b) generated from the images (a) and (c)

22

3
New Morphological Interpolation Methods for Color

Images

The general goal of this work is to construct1 a morphological interpolation method

with better picture quality than other methods when the input images contain com-

plex connected components, i.e. components with internal ones2.

In this work, it would have been very easy to interpolate using any color morpho-

logical operator. However, none of them has general acceptance [10]. In addition,

none of them was considered adequate. For example, component-wise operators ap-

plied to RGB images might change a color (hue) for another that does not exist in

the image [40]. Consequently, the component-wise approach on the RGB color model

was discarded because it does not comply with color constancy (see Sec. A.1.1).

Therefore, an approach that does not use color morphology was explored, i.e. an

approach that avoids using color morphological operators. This has been done before.

For example, if the colors of an image are ordered (they represent elevation on a map,

some biological characteristic on a medical image, or something similar), the image

1In the proposal of this thesis says “to design and program”.
2Vidal [207] considers that complex shapes includes those with inclusion relationship (“. . . formas

complejas (por ejemplo, en las que exista inclusión de formas)”).

23

24

can indeed be treated with the grey-scale methods. Also, Comer and Delp [40] sug-

gest processing two-color images with binary morphological operators. One color is

taken as the foreground, and the other, as the background. The binary morphological

operator is applied only to the foreground.

In this work, it is proposed to apply binary morphological operators to the shapes

in color images. For example, if an image shows —seen from above— a red ball and

a yellow box, on a brown table, to apply binary morphological operators to a disk,

a square, and a rectangle; not to apply color morphological operators to red, yellow,

and brown areas.

As it is mandatory to apply segmentation to obtain the shapes, the aforemen-

tioned idea leads to mosaics (each shape should be contained in a region of a mosaic).

However, there are regions everywhere in a mosaic image. Therefore, if a morpho-

logical operation is applied to a region, it might have the opposite effect on others.

For example, the binary dilation of a region implies the erosion of its adjacent regions.

To avoid these undesirable consequences, it is possible to apply constraints to these

operators (dilation and erosion). These constraints can be provided by a sequence of

two mosaics. On one hand, if a region in the first mosaic is larger in the second one,

apply dilation to the initial region but without surpassing the final region. On the

other hand, if a region in the first mosaic is smaller in the second one, apply erosion

to the initial mosaic but without eroding the final region. If these constraints are

replaced by a line midway both regions, and the operators are applied until stability,

it is the same as mosaic interpolation.

The question is how to apply mosaic interpolation to full-color natural and artifi-

cial images. An answer could be extending a method for grey-level image interpolation

to color images. In particular, the new methods proposed resemble an adaptation of

the Brémond and Marqués proposal (see Sec. 2.3). Their method includes these steps

approximately (some steps were split; others were merged): segmenting the images,

25

matching the regions, interpolating the regions, and finally, combining the interpo-

lated regions to form the interpolated image.

The interpolation methods developed in this work have these stages (see Fig. 3.1):

C1 Segmenting the input images to obtain color mosaics.

C2 Matching the regions of the color mosaics.

C3 Converting the color mosaics with matched regions into grey-level mosaics.

C4 Interpolating the grey-level mosaics.

C5 Coloring the interpolated mosaic.

3.1 Segmenting the Input Images to Obtain Color Mosaics

This process, C1 Segmenting images in the figure, receives as input the data flow

DF0 Couple of color images = {O1, O2}, the original images (see Fig. 3.2). This

process gives as output the data flow DF2 Couple of color mosaics = {M1, M2},
the color mosaics that represent the partitions of the original images.

The objective of this stage is to partition the original color images O1 and O2 into⋃n
j=1RO

j
1 and

⋃m
j=1RO

j
2, where ROj

i represents the color region j of a partition of

the image Oi. Although these partitions would be useful in the last step, C5 Color-

ing interpolated mosaic, only the color mosaics, M1 and M2, that represents the areas

covered by the regions of these partitions are passed to the next stage. For exam-

ple, the images shown in Fig. 3.3 were segmented. Their color mosaics are shown in

Fig. 3.4. Each color in these mosaics represents a region in the original color images.

Therefore, the orange regions represent part of the background and the big green

regions represent the dog.

It is expected that these color mosaics can be easily and correctly processed in

the following stages. So, it is ideal that the number of regions be as small as possible

26

Figure 3.1: New interpolation method

27

Figure 3.2: C1 Segmenting the input images

Figure 3.3: Initial (leftwards) and final (rightwards) images of dogdance.

Figure 3.4: Initial (leftwards) and final (rightwards) segmented images of dogdance.

28

but without including objects with different movements (translation, rotation, etc.)

or magnitude of movement in the same region. Hence, each region should include an

object or a group of objects moving conjointly and independently from others. For

example, a car or the parts of a car (tires, doors, windows, etc.) should be considered

as a region. If this movement does not only include translation or the occlusions

make impossible to compute the center correctly, segment this group into occluded

and non-occluded regions. For example, an older child overlaps a younger one in the

leftward image in Fig. 3.3. As it is impossible to compute the center of the younger

child, the part of her that was occluded in the initial image was segmented in the

initial segmented image (see Fig. 3.4).

Figure 3.5: Initial image of minicooper (left), and its segmented image (right)

Ideally, this process should segment each input image separately and automati-

cally. In practice, a user segments each original image interactively by using SegmentIt

(see Sec. C.2.1), and corrects the mosaic(s) with some flaws by comparing both mo-

saics and both original images. The user can repeat this cycle several times. In spite

of this, sometimes it is impossible to separate some objects. For example, segmenting

the image (a) gives (b) (see Fig. 3.5). In this case, the inclined white line in the

ground and part of the shorts of the man are in the same region.

At the same time, sometimes it is tricky to segment an image. For example, in

dumptruck the vehicles move while the background is still. The vehicles have shades,

and there are areas between the vehicles and their shades. These shades and these

areas are in the background. However, the best interpolation results were obtained

29

segmenting the Mercedes and its shape in a region, the enclosed area in another, and

the rest of the image in another (see the results and discussion chapter for details).

3.2 Matching the Regions of the Color Mosaics

This stage, C2 Matching regions in Fig. 3.6, has as input the data flow DF2

Couple of color mosaics = {M1, M2} with M1 =
⋃n
i=1RM

i
1 and M2 =

⋃m
j=1RM

j
2 ,

where RM i
1 and RM j

2 are the regions belonging to M1 and M2, respectively. This

process gives as result the color mosaics Q1 and Q2 that conform the output data

flow DF3 Couple of matched color mosaics.

Figure 3.6: C2 Matching the regions of color mosaics

Since the colors of the regions RM i
1 and RM j

2 corresponding to the same (part of

a) group of objects can be different, it is necessary to match them. As this problem

is beyond the scope of this research, the user puts identical color to all the regions

belonging to the same (part of a) group of objects in both mosaics (this process is

called matching). As a result, a region in M1 (M2) can match one or more regions in

M2 (M1). It is also possible that a region in M1 (M2) does not match any region in

M2 (M1).

For example, the mosaics in Fig. 3.4 were matched as it can be seen in Fig. 3.7.

All the regions of each mosaic have a different color. This helps to avoid interpolating

30

non-paired regions.

Figure 3.7: Initial and final matched segmented images from dogdance: Leftwards
and rightwards, respectively

3.3 Converting the Color Mosaics with Matched Regions into Grey-level

Mosaics

This process, C3 Converting into grey−level mosaics in the figure, receives as input

the data flow DF3 Couple of matched color mosaics = {Q1, Q2} (see Fig. 3.8). As

the interpolation algorithm uses the grey-level to match regions, this stage converts

the color mosaics Q1 and Q2 into the grey-level ones S1 and S2, respectively. The

latter conform the output data flow DF4 Couple of grey− level mosaics.

Figure 3.8: C3 Converting the color mosaics into grey-level mosaics

The color pixels were converted by computing their luma (Y ′) according to the

31

Rec. 601 [83]
601Y ′ = 0.299R′ + 0.587G′ + 0.114B′,

where R′, G′ and B′ are the components of the RGB color model.

It is unimportant the formula used to compute luma as the values themselves are

not processed. For example, images that use the Rec. 709 [84] can be processed; their

luma is
709Y ′ = 0.2126R′ + 0.7152G′ + 0.0722B′.

As there are more colors than grey-levels, any chosen method to compute luma

might convert pixels with different colors into pixels with the same grey-level (colli-

sions). This diminution in the number of (grey-level) regions could produce errors in

the next stage (C4 Interpolating grey-level mosaics).

An error is going to occur when two adjacent color regions are merged into one

grey-level region. In addition, an error is going to occur when two non-adjacent color

regions finish with the same grey-level and one of these regions finishes near the other

region in the other slice. In this case, two distinct objects are interpolated. For ex-

ample, imagine a person that walks so that his right foot in one image overlaps his

left foot in the other image. If these feet have the same grey-level, the next step will

interpolate them.

These errors can be detected through visual comparison of the grey-level mosaics

S1 and S2 with the color mosaics Q1 and Q2, respectively. If there are some errors,

it is necessary to change the colors of some of the color regions that collided. To do

so, repeat the stage that matches regions (see Sec. 3.2).

For example, the images in Fig. 3.7 were converted into Fig. 3.9. The feet of

the little child have the same grey-level in spite of their different colors in the color

mosaics. Fortunately, this collision does not cause errors. Although these feet seem

identical to the left foot of the older girl, they are different (the feet value is 76 and

32

the foot value, 75).

Figure 3.9: Initial and final grey-level mosaics from dogdance: Leftwards and right-
wards, respectively

3.4 Interpolating the Grey-level Mosaics

This process, C4 Interpolating grey − level mosaics in the figure, takes the input

data flow DF4 Couple of grey − level mosaics = {S1, S2}, and obtains the output

data flow DF5 Decomposed grey − level mosaics (see Fig. 3.10).

Figure 3.10: C4 Interpolating the grey-level mosaics

It was implemented by using a grey-level mosaic interpolation algorithm from Vi-

dal et al. [210] (this algorithm is explained in detail in Sec. 2.2.4). This algorithm

uses vectors of binary images RSi, where RSji represent each grey-level region j of the

slice Si with “1” and the remainder of this image is filled with “0”. It interpolates the

matched regions from S1 and S2 and its results are stored in RSk3 . As it is possible

33

that some of these regions overlap or that they leave some empty areas, they are

adjusted to avoid both conditions. The vectors RS1, RS2, and the adjusted vector

RS3 conform the output data flow DF5 Decomposed grey − level mosaics.

Although the interpolated image S3 (S3 =
⋃n
k=1RS

k
3) is not necessary for the next

step, it is very useful to discover where some errors originate in the interpolated color

image. For example, the interpolation of the images in Fig. 3.9 gives Fig. 3.11. Note

some conspicuous errors: the feet of the dog disappeared, and the head and the body

of the little girl seem to overlap the body of the older girl. It is not strange that the

feet of the dog disappeared in the interpolated color image.

Figure 3.11: Interpolated grey-level mosaic from dogdance

As this work bases so much in this algorithm, described in Vidal et al. works

that use mathematical morphology and consider structural aspects of binary [209]

and mosaic [210] images, this work might be considered its extension to color images.

34

3.5 Coloring the Interpolated Mosaic

This stage, C5 Coloring interpolated mosaic in the figure, constructs an interpo-

lated color image F by using the data flows DF0 Couple of color images = {O1,

O2} and DF5 Decomposed grey− level mosaics = {RS1, RS2, RS3} (see Fig. 3.12).

Figure 3.12: C5 Coloring the interpolated mosaic

Initially, it was proposed an algorithm that uses the regions in RSr1 and RSr2 to

interpolate the associated color regions in RO1 and RO2. A short description is shown

below (see Sec. 3.5.1 for details).

The regions in RSr1 , RSr2 , RO1 and RO2 are copied appropriately into RSM1,

RSM2, ROM1 and ROM2, respectively.

The regions in ROM1 and ROM2 are interpolated linearly where the three regions

in RSM1, RSM2, and RSr3 overlap. In this case, it is possible to apply linear inter-

polation as there are points in both ROM1 and ROM2 to interpolate each point. At

the same time, the nearest-neighbor should not be used as the linear interpolation is

a first-order approximation while the nearest-neighbor is a zero-order one[97].

The region in ROM1 (ROM2) is interpolated with the nearest-neighbor method

35

where the regions in RSr3 and RSM1 (RSr3 and RSM2) overlap but without overlap-

ping RSM2 (RSM1). In this case, using nearest-neighbor is the only option as there

is only one point in either ROM1 or ROM2 to interpolate each point.

Later, it was proposed an algorithm similar to the previous one but has a differ-

ence: it computes the deformation that the binary region in RSM1 (RSM2) must

have to match its interpolated binary region in RSr3 , and applies the same deforma-

tion to the color region in ROM1 (ROM2). If both regions exist, it applies either the

linear interpolation or the median image generation; otherwise the nearest-neighbor

one. It was named deforming (see Sec. 3.5.2).

Although these algorithms use slices as input, it is possible and advisable to modify

them to use regions instead. Thus, it is possible to execute one or another algorithm

on different matched regions of the same slices. If the objects change between the

matched regions, the deforming algorithm should be executed, else the overlapping

one. In fact, it was constructed an interpolation program following this approach.

3.5.1 Overlapping

The overlapping algorithm, as it is explained here, can replace the C5 Coloring the

interpolated mosaic process (see Fig. 3.12). In this algorithm (see Alg. 1), for each

interpolated binary image RSr3 :

1. If RSr1 (RSr2) exists, cut the original color region from O1 (O2) by using RSr1

(RSr2) as a mold and store it in RO1 (RO2). If RSr1 (RSr2) exists, copy the

original regions in RSr1 and RO1 (RSr2 and RO2) into RSM1 and ROM1 (RSM2

and ROM2) so that the MSP of the region in RSM1 (RSM2) coincide with the

MSP of the region in RSr3 . This step includes these sub-steps:

(a) The original binary image RSr1 (RSr2) is used to obtain the corresponding

color image RO1 (RO2). The region in the binary image RSr1 (RSr2) is

represented with “1” and the remainder of this slice, with “0”. Then, it was

36

made a point-to-point multiplication of (RSr1 , RS
r
1 , RS

r
1) [(RSr2 , RS

r
2 , RS

r
2)]

with the color slice O1 (O2). Hence, the color image obtained RO1 (RO2)

includes the color region and the remainder of this image finishes black (0,

0, 0).

(b) The regions in RSr1 and RO1 are copied into RSM1 and ROM1, respec-

tively, so that the MSP of the region in RSM1 coincide with the MSP of

the region in RSr3 . It was made moving a squared section that contains the

regions in RSr1 and RO1 in the same magnitude as the distances between

the MSPs of RSr1 and RSr3 . The regions in RSr2 and RO2 are copied into

RSM2 and ROM2 in the same way as RSr1 and RO1 were copied.

2. The interpolation is performed using two different methods. The linear inter-

polation method interpolates the part of the color regions in ROM1 and ROM2

where the interpolated region in RSr3 covers the regions in RSM1 and RSM2;

and the nearest-neighbor interpolation method interpolates the part of the color

region in ROM1 (ROM2) where the interpolated binary region in RSr3 covers

only the region in RSM1 (RSM2). For example, there is a red square in ROM1

and a green circle in ROM2. Only to facilitate this explanation, these objects

were put in an image (the square was put first and then, the circle) which is

shown at the left in Fig. 3.13. The interpolated region F is shown in the im-

age at the right in Fig. 3.13. F is completely included within the union of the

square and the circle. The points in which the circle and the square overlap were

interpolated linearly so they are brown. The points interpolated with nearest

neighbor were taken from the part of the circle outside of the square (in green)

and from the part of the square outside of the circle (in red).

An example of interpolation with overlapping considers O1, O2, RS1, RS2, and

RS3 shown in Figs. 3.3, 3.7, and 3.11, respectively3. The interpolated image F is

shown in Fig. 3.14. The background is blurred because part of it is occluded at the

3This algorithm receives the binary regions in RS1, RS2, and RS3 that conform the slices S1,
S2, and S3, respectively.

37

Algorithm 1 Overlapping algorithm

function overlapping(O1, O2:colorSlice; RS1, RS2, RS3:array of binaryImage)
F :colorSlice
for each image RSr3 do

if RSr1 exists then
RO1 ← (RSr1 , RSr1 , RSr1) *. O1; // (1a) Cut the original color region.
// (1b) Move the original regions
displacement MSP1← MSP of the region in RSr3 – MSP of the region
in RSr1 ;
square region← square region that includes the region in RSr1 ;
RSM1 ← square region displaced by displacement MSP1;
square region← square region that includes the region in RO1;
ROM1 ← square region displaced by displacement MSP1;

end if
if RSr2 exists then

RO2 ← (RSr2 , RSr2 , RSr2) *. O2; // (1a) Cut the original color region
// (1b) Move the original regions
displacement MSP2← MSP of the region in RSr3 – MSP of the region
in RSr2 ;
square region← square region that includes the region in RSr2 ;
RSM2 ← square region displaced by displacement MSP2;
square region← square region that includes the region in RO2;
ROM2 ← square region displaced by displacement MSP2;

end if
// (2) Interpolating the corresponding pixel(s) in ROM1 and/or ROM2

for each position p in the region in RSr3 do
if position p is in the regions in RSM1 and RSM2 then

pixel1 ← value of the position p of ROM1;
pixel2 ← value of the position p of ROM2;
position p of F ← linear interpolation (pixel1, pixel2) // pixel1 and
// pixel2 must be translated into a linear color model.

else if position p is in the region in RSM1 then
position p of F ← value of the position p in ROM1

else if position p is in the region in RSM2 then
position p of F ← value of the position p in ROM2

else
error

end if
end for

end for
return F

end function

38

Figure 3.13: Images before and after overlapping: Leftwards and rightwards, respec-
tively

right and left sides of the first and second images, respectively. Although it could be

applied the same solution as in the occlusions caused by objects, it is very difficult to

“segment”4 these areas.

Figure 3.14: Image interpolated with overlapping

4In fact, this is not a segmentation problem but an image registration one.

39

3.5.2 Deforming

The deforming algorithm replaces C5 Coloring interpolated mosaic (see Fig. 3.12).

In this algorithm (see Alg. 2), for each interpolated binary image RSr3 :

1. If RSr1 (RSr2) exists, cut the original color region from O1 (O2) by using RSr1

(RSr2) as a mold and store it in RO1 (RO2). If RSr1 (RSr2) exists, copy the

original regions in RSr1 and RO1 (RSr2 and RO2) into RSM1 and ROM1 (RSM2

and ROM2) so that the MSP of the region in RSM1 (RSM2) coincide with the

MSP of the region in RSr3 . This step includes these sub-steps:

(a) The original binary image RSr1 (RSr2) is used to obtain the corresponding

color image RO1 (RO2). The region in the binary image RSr1 (RSr2) is

represented with “1” and the remainder of this slice, with “0”. Then, it was

made a point-to-point multiplication of (RSr1 , RS
r
1 , RS

r
1) [(RSr2 , RS

r
2 , RS

r
2)]

with the color slice O1 (O2). Hence, the color image obtained RO1 (RO2)

includes the color region and the remainder of this image finishes black (0,

0, 0).

(b) The regions in RSr1 and RO1 are copied into RSM1 and ROM1, respec-

tively, so that the MSP of RSM1 coincide with the MSP of RSr3 . It was

made moving a squared section that contains the regions in RSr1 and RO1

in the same magnitude as the distances between the MSPs of RSr1 and

RSr3 . The regions in RSr2 and RO2 are copied into RSM2 and ROM2 in

the same way as RSr1 and RO1 were copied.

2. If RSr1 (RSr2) exists, deform the region in ROM1 (ROM2) to match the shape

of the region in RSr3 , and store the result in DS1 (DS2). This step requires

these sub-steps:

(a) It is computed the compression that equals the translated binary region in

RSM1 (RSM2) to its intersection with the interpolated binary region in

RSr3—i.e. the region in RSM1 ∩ the region in RSr3 (the region in RSM2 ∩
the region in RSr3)—, and this compression is applied to the corresponding

color region in ROM1 (ROM2); the result is stored in ES1 (ES2).

40

(b) It is computed the expansion that equals the intersection of the regions

in RSM1 and RSr3 (RSM2 and RSr3) to the region in RSr3 , and the same

expansion is applied to the color region in ES1 (ES2); the result is stored in

DS1 (DS2). The compression reduce the number of pixels; the expansion

multiplies the pixels. So, applying compression and then expansion creates

an overrepresentation of some pixels. Therefore, it makes sense to change

the order of application of these algorithms. In this case, the intersection

is replaced by the union.

3. Finally, if RSr1 and RSr2 exist, the color regions in DS1 and DS2 are congruent,

so they can be interpolated with any color interpolation method, such as the

linear and median methods explained in Secs. A.10.1 and 2.4, respectively; oth-

erwise the interpolated color region is equal to the unique resulting color region.

The result of the previous operation is added to F .

A central point in this method is the algorithm for compression and expansion

(expanding or compressing Image). This algorithm is used in the steps 2 (a) and 2

(b). It is based on the big region and the small region concepts. Suppose two paired

regions (these regions are in different slices). It is supposed that they are put in two

new slices. A region is put in a slice and the other region is put over it. In the other

slice, the regions are put changing places. The big region is the region that covers

the other region in a slice; and the small region is the region that overlaps the other

region without covering it in the other slice. For example, there is a magenta region

and a green one in Fig. 3.15. If these matched regions are put one over the other,

either the small region overlaps —then, does not cover— the big one or the big region

covers —then, does not overlap— the small one (see Fig. 3.16).

Although in the following sections only color regions are mentioned, the borders

of these regions are taken from the corresponding binary regions, as it is impossible

to know where color regions without labels finish. Accordingly, pixels are taken from

and put into color regions.

41

Algorithm 2 Deforming algorithm

function deforming(O1, O2:colorSlice; RS1, RS2, RS3:array of binaryImage)
F :colorSlice; RSM1, RSM2:binaryImage
DS1, DS2, ES1, ES2, RO1, RO2, ROM1, ROM2:colorImage
for each image RSr3 do

if RSr1 exists then // (1)
RO1 ← (RSr1 , RSr1 , RSr1) *. O1; // (1a) Cut the original color region
// (1b) Move the original regions
displacement MSP1← MSP of the region in RSr3 – MSP of the region
in RSr1 ;
square region← square region that includes the region in RSr1 ;
RSM1 ← square region displaced by displacement MSP1;
square region← square region that includes the region in RO1;
ROM1 ← square region displaced by displacement MSP1;

end if
if RSr2 exists then

RO2 ← (RSr2 , RSr2 , RSr2) *. O2; // (1a) Cut the original color region
// (1b) Move the original regions
displacement MSP2← MSP of the region in RSr3 – MSP of the region
in RSr2 ;
square region← square region that includes the region in RSr2 ;
RSM2 ← square region displaced by displacement MSP2;
square region← square region that includes the region in RO2;
ROM2 ← square region displaced by displacement MSP2;

end if
if RSr1 exists then // (2)

ES1 ← expanding or compressingImage (ROM1, RSM1, RSM1 ∩ RSr3 ,
“compress”);
DS1 ← expanding or compressingImage (ES1, RSM1 ∩ RSr3 , RSr3 ,
“expand”);

end if
if RSr2 exists then

ES2 ← expanding or compressingImage (ROM2, RSM2, RSM2 ∩ RSr3 ,
“compress”);
DS2 ← expanding or compressingImage (ES2, RSM2 ∩ RSr3 , RSr3 ,
“expand”);

end if
if RSr1 and RSr2 exist then // (3)

F ← F ∪ anyColorInterpolationMethod (DS1, DS2)
else if RSr1 exists then

F ← F ∪ DS1

else if RSr2 exists then F ← F ∪ DS2

end if
end for
return F

end function

42

Figure 3.15: A big and a small regions: Leftwards and rightwards, respectively

Figure 3.16: The small region overlaps the big one (leftward) while the big region
covers the small one (rightward)

3.6 The Algorithm for Compression and Expansion

This algorithm is able to compress and expand regions. In the compression, it dis-

tributes (copies) the pixels in the big region within the small one; while, in the

expansion, it stretches the pixels in the latter within the former5.

A region can be seen as a set of line segments. The fundamental idea to compress

and expand regions is to distribute pixels along line segments. Thus, in the compres-

sion, it distributes the pixels of each line segment belonging to the big region within

the part of this segment within the small one; while, in the expansion, it stretches

the latter pixels within the former ones.

The challenge is to define adequate line segments. As a big region encloses a small

one, it is clear that each segment have to begin in the border of the former. It is also

5The expansion, if the small region has only a pixel, creates a big region painted with this pixel.
Therefore, it seems fair to give more importance to the paired region, but this possibility was not
explored.

43

clear that each segment should finish within the small region. The question is where.

The approach used in this work suppose that the line segments finish in the nucleus

—the part of the skeleton of the big region inside the small one. However, under

some circumstances the nucleus can be replaced by a connected component called

birthplace (see Sec. 3.6.2).

3.6.1 Compression and Expansion between the Borders and the Nucleus

Every region has a skeleton. In this work, it was calculated in Matlab with bwmorph

operation “skel”. This operation uses lookup tables to remove iteratively pixels from

the borders but without allowing that the regions break apart6.

As it is deduced from Sec. B.8, there is an associated skeleton point along the

(interior) normal from each point in the border of a region. Consequently, there is a

line segment from each point in the borders to the skeleton.

Therefore, the line segments beginning in the big region and finishing in the skele-

ton could be used to compress and expand. In the compression, each (line) segment is

compacted in the part of it within the small region. In the expansion, the part of each

segment within the small region is extended in the whole segment. However, some

parts of the big region skeleton extend outside the small region. Thus, the segments

that finish in these parts might not pass through the small region. Consequently,

there are no pixels to stretch in the expansion, or place to distribute the pixels in

the compression. To solve this problem, it was proposed that these segments finish

at the nearest point inside the small region belonging to the skeleton, i.e. the nucleus.

In addition, several adjustments were needed since the borders could be imperfect

in discrete images. This has two consequences: the skeletons and the line segments

could be incorrect. In the case of the skeletons, spurious branches could start in the

6http://www.mathworks.com/help/images/ref/bwmorph.html and internal documentation from
Matlab2012a.

44

borders. In the case of the line segments, their gradient could not be normal to the

real border so the line segments do not finish in the right point of the skeleton. An

option to solve this problem is to use some skeletonization method that gives for each

point in the border the corresponding point in the skeleton.

In particular, the method based on skeletons get bad results with circles and

annuli because their skeletons are neither points nor circumferences, respectively,

and the segments swing significantly around the correct value —some segments have

too much gradient; some, too low. Hence better results are obtained on circles by

using Compression and Expansion between the Outer Border and a Set of Points (see

Sec. J.1) and on annulus by using Compression and Expansion between the Borders

and Rings (see Sec. J.2). For example, there are ring-shaped areas and a circle in

the compact disc images (see Fig. 4.13). Their interpolations using skeletons and

birthplaces are shown in Fig. 3.17.

(a) (b)

Figure 3.17: Interpolated image of the sequence called compact disc by using (a) skele-
tons and (b) birthplaces

This approach sometimes fails when the big region overlaps the borders. Here, the

color interpolation fails because it is impossible to compute an “adequate” skeleton

for the big region because the region represents an object that extends outside the

image. On one hand, there is a part of the skeleton outside the region. On the other

hand, “artificial” branches are added to the skeleton from the points where the region

45

intersects the image border. If this region has a hole, it is possible to get better results

by using Compression and Expansion between the Borders and Rings (see Sec. J.2)

since this method eliminates the artificial branches. However, it could also eliminate

correct branches. Another possibility —that was not proved— is erasing the artificial

branches.

In particular, this approach is unable to manage non-paired border regions with-

out holes adequately since the grey-level interpolation algorithm might process these

regions incorrectly. In addition, if it could process them correctly, it would give an in-

terpolated region whose outer border overlaps the big region nucleus. In this case, the

compression reduces the exterior region (the part of the big region that is outside the

small region) to the outer border, and it copies the rest of the big region in the small

one, what distorts the interpolated region. This problem can be avoided processing

the border regions with other methods, such as the Compression and Expansion be-

tween the Borders and an Artificial Connected Component method (see Sec. J.3).

This approach also can fail when a rough or turning border change much the gra-

dient, so that two consecutive (line) segments could left an empty area (see Fig. 3.18).

Particularly, where the border is shorter than the nucleus (each point in the border

originates only one segment towards the nucleus). For this reason, when two con-

secutive segments end in the nucleus, new segments are drawn between them (see

Fig. 3.18). If one or both segments finish elsewhere, no action is taken.

Following the aforementioned ideas, it was constructed the expanding or compres-

sing Image algorithm (see below, Alg. 3). This algorithm can compress or expand an

image. It has these steps:

(1) The compression and expansion are similar, so it is possible to unify them in

the same algorithm. This step follows this goal by filling the small and big regions.

Notice that in “expand” the final region is the big one, and in “compress” the final

region is the small one.

46

Figure 3.18: A leg before (leftward) and after (rightward) tracing segments

47

(2) It computes the portion of the skeleton of the big region inside the small re-

gion. This is the nucleus.

(3) It computes the external borders from the big region and from its holes, and

store them in bordes.

(4) First, it calculates the gradient of the big region by using convolution with

the 5x5 kernel proposed by Kroon (see Sec. A.6.2) —the convolution fills with zeros

the borders of the image that contains this region. Second, where the border of the

big region covers the border of the image, it replaces the previous gradient with the

normal to the image border.

(5) Color tracing between the borders of the big region and the nucleus.

(5.1) Only the borders of the region are useful. However, bordes contains borders

from the region and from its holes. Consequently, when a border belongs to a hole,

it finds the adjacent border of the region.

(5.2) For each point in the border of a region, it finds the segment to the skele-

ton or the opposite border, and stores it in camino. It also finds the segment from

the next point in the border to the skeleton or the opposite border, and stores it in

camino siguiente. Although line segments have two ends, it was considered that the

end on the first border is the beginning and that the other end is the end. If camino

ends in the nucleus,

(5.2.1) the pixels along camino are copied along the part of it inside the small

region in the compression and the pixels along camino inside the small region are

stretched along camino in the expansion. In addition, if camino siguiente ends in

the nucleus, it calls the trace segments procedure.

(5.2.2) otherwise, it finds the path within the big region to the nearest point

48

belonging to the nucleus, called camino al nucleo, and it does the compression and

expansion detailed in the previous step by using this auxiliary path. In this case, it

does not call the trace segments procedure since two consecutive paths usually do

not leave empty areas as they should finish in the same point of the nucleus.

Algorithm 3 expanding or compressing Image by using skeleton algorithm

function expanding or compressing Image(Rcolorinicial: colorImage;
Rinicial, Rfinal: binaryImage, operacion: string)

Rcolorfinal: colorRegion
Rbig, Rsmall, borde: binaryImage
bordes: array // See the description of bordes in the description of B in
// http://www.mathworks.com/help/images/ref/bwboundaries.html
camino, camino siguiente: line segment

// (1) These sentences allow that the expansion and the compression work in
// the same algorithm. The next instruction belongs to Matlab.
if strcmp (operacion, “expand”) == 1) then

Rsmall = Rinicial
Rbig = Rfinal

else
Rsmall = Rfinal
Rbig = Rinicial

end if

// (2) Finding the nucleus (area of Rbig skeleton inside of Rsmall).
esqueleto ← skeleton (Rbig)
nucleo ← esqueleto ∩ Rsmall

// (3) Finding the border(s) of the region
borde = bwperim (Rbig); // Matlab sentence that obtains the borders from
// the region.
bordes = bwboundaries (Rbig, 4, 'holes'); // Matlab sentence that obtains
// the external borders from the region and from its holes.

// (4) Calculating the vertical and horizontal components of the gradient of
// Rbig
[Gv,Gh] = GRADIENTE (Rbig, borde);

49

Algorithm 4 expanding or compressing Image by using skeleton algorithm (contin-
ued)

// (5) Color tracing between the borders of Rbig or Rsmall and the nucleus.
for each boundary P in bordes do

// (5.1)
if P belongs to the foreground then

circunvalacion ← P
else // Obtaining the internal boundary adjacent to P.

[x pixel del borde de un agujero, y pixel del borde de un agujero] ←
any pixel q adjacent to P and belonging to Rbig
circunvalacion = bwtraceboundary (borde, [x pixel del borde de un
agujero, y pixel del borde de un agujero], 'N', 4); // Matlab sentence
// that obtains the internal border from Rbig that includes the pixel q.

end if

// (5.2) Tracing of segments
for each pixel p in circunvalacion do

camino = buscarSegmento al Esqueleto o al Borde Opuesto (p, Rbig,
esqueleto, Gv, Gh);
camino siguiente = buscarSegmento al Esqueleto o al Borde Opuesto
(pixel after p in circunvalacion);
if camino ends in the nucleo then // (5.2.1) Trace camino

Rcolorfinal = ponerPixeles en la forma small o big (camino,
Rcolorinicial, Rcolorfinal, Rsmall, Rbig, operacion);
if camino siguiente ends in the nucleo then // Color tracing from

// the circunvalacion to the nucleo between camino and
// camino siguiente.
trace segments (camino, camino siguiente, Rcolorinicial,
Rcolorfinal, Rbig, Rsmall);

else // (5.2.2) Find the path within Rbig to the nearest point
// belonging to the nucleo, and draw this path.
camino al nucleo = Buscar camino al nucleo de la imagen (p,
nucleo);
Rcolorfinal = ponerPixeles en la forma small o big (camino al
nucleo, Rcolorinicial, Rcolorfinal, Rsmall, Rbig, operacion);

end if
end if

end for
end for
return Rcolorfinal

end function

50

Drawing Line Segments between Consecutive Ones

This algorithm traces (line) segments from a border to a nucleus between camino

and camino siguiente. However, tracing segments when it is unnecessary degrades

the performance and the image quality. For this reason, this algorithm (see below,

Alg. 5) only computes new segments after checking some conditions (the first two

steps). In spite of this, at times it redraws some pixels.

The steps of this algorithm are:

1. Check that the ends of the segments are neither adjacent nor finish in the same

point. As camino and camino siguiente begin in the border and are consec-

utive, the (1-norm) distance between their beginnings is one. Consequently, if

their ends finish in the nucleus at a distance lesser or equal to one, they cannot

leave empty areas between them. Therefore, only if the ends distance is greater

than one, they could left empty areas between them. For example, the colored

segments in the image (a) in Fig. 3.19 are adjacent. Therefore it is impossible

to trace segments between them. The distance between the ends of the blue

segment that is adjacent to the green one is 2; this shows that a distance be-

tween the ends greater than one is not sufficient to assure that two consecutive

segments are not adjacent.

2. Check that these segments do not intersect7. For example, in the image (b) in

Fig. 3.19 the green segment was traced first and the red one later.

3. Sometimes consecutive segments leave empty areas between them. For exam-

ple, the green and the red, and the red and the blue ones in the image (c) in

Fig. 3.19. As each segment is a part of a line, it tries to find the intersection

point, Interseccion, of the lines corresponding to these consecutive segments.

4. Find the shortest path with 1-norm distance between camino and camino

siguiente along the nucleus; store it in recorrido nucleo and its length in indice.

7Migeon uses the external normal direction on the border of the internal figure to get rid of these
intersections [132].

51

As the nucleus is a subset of a skeleton, it is possible that the nucleus is not

connected. In this case, there is no path along the nucleus between the segments.

5. If recorrido nucleo exists, for each pixel belonging to recorrido nucleo except

the first:

(a) Find the segment camino entre medio whose ends are Interseccion and

the pixel.

(b) In the compression, the pixels between the outer border of the big region

and the nucleus along camino entre medio are put between the outer bor-

der of the small region and the nucleus along camino entre medio. In the

expansion, the pixels along camino entre medio between the outer border

of the small region and the nucleus are put into camino entre medio be-

tween the outer border of the big region and the nucleus.

3.6.2 Birthplaces

Sometimes a skeleton does not represent the “ideal” shape correctly. For example,

this happens to circles and annuli. In the case of a circle, the skeleton should be a

point at the center. In the case of an annulus, the skeleton should be a ring midway

the borders of the ring. However, spurious branches start from the bordes. Some-

times, a skeleton does not represent the shape because part of the shape lies outside

of the image.

In these cases, a birthplace could take the place of the skeleton. A birthplace

can be a point, a line segment, two or three consecutive line segments, a ring, or

something more complex. However, only points and rings were implemented in this

work.

The idea is to replace the nucleus with a birthplace. The nucleus takes the part

of the skeleton of a big region that lies in a small one. Consequently, the birthplace is

52

(a) (b) (c)

Figure 3.19: A leg with adjacent segments (a), with intersected segments (b), and
with segments that leave empty areas (c)

53

Algorithm 5 trace segments algorithm

function trace segments(camino, camino siguiente: line segment,
Rcolorinicial: colorRegion; Rbig, Rsmall, nucleo: binaryImage, operacion:
string)

Rcolorfinal: colorRegion
camino entre medio: line segment
// (1) to avoid unnecessary complex calculus, it checks that their distance
// (1-norm) in the nucleus is greater than one.
if block distance between the ends of camino and camino siguiente > 1 then

// (2) to avoid redrawing some pixels, it verifies that the segments do not
// intersect.
if camino and camino siguiente do not intersect then

// (3) it tries to intersect the lines that contain these segments.
Find the intersection point (Interseccion) between the lines to which
camino and camino siguiente belong to.
if this intersection point exists then

// (4) it computes a path in the nucleus between the ends.
Find the shortest path with 1-norm distance between camino and
camino siguiente along nucleo; store it in recorrido nucleo and its
length in indice.
// (5) If this path exists, it computes new segments from the
// intersection to the points in the path and traces the part of these
// segments from the border to the path.
if this path exists then

// For each pixel in recorrido nucleo except the first
for i = 2:indice do

// Find the segment between the intersection and recorrido
// nucleo(i).
camino entre medio = Buscar camino (Interseccion,
recorrido nucleo(i))
// Trace segment along camino entre medio between the outer
// border of the small or big region and the nucleus.
Rcolorfinal = ponerPixeles en la forma small o big
(camino entre medio, Rcolorinicial, Rcolorfinal, Rbig,
Rsmall, operacion);

end for
end if

end if
end if

end if
return Rcolorfinal

end function

54

computed on the small region as computing it on the big region could leave it outside

the small region.

Considering that shrinking applied on a region without holes gives a point (MSP)

at or near the geometric center of the region, this method was chosen to compute

the birthplace. The compression and expansion between the outer border and a set

of points is explained in Sec. J.1. If a region has holes, shrinkage gives a ring. The

compression and expansion between the borders and rings is explained in Sec. J.2.

4
Comparisons of Color Interpolation Methods

Finally, this work compared the interpolation methods programmed before, i.e. the

new interpolation methods (see Chapter 3) and the existent ones (see Appendix D).

To do this comparison, the image quality of the interpolated images was assessed. Al-

though this comparison can be done subjectively or objectively [112], this work used

the latter approach since the former is more burdensome and expensive [180](see more

detail in Sec. A.11).

A method belonging to the full-reference class was used: the feature similarity

color index (FSIMC). It was chosen since it achieved the best overall performance in

an evaluation of algorithms belonging to its class [233]. The methods belonging to

this class compare a distorted image with a distortion-free one. The FSIMC method

evaluated the interpolated images by considering the second of three-consecutive im-

ages as the distortion-free image, and the different interpolations of the first and the

third, as the distorted one [70].

4.1 Selecting Sequences of Images

Image interpolation has two application areas: temporal and spatial (see Sec. A.10).

However, some sequences of images do not belong to any of them. Consequently, these

55

56

images should not be interpolated1. For example, the images taken from a moving

car belonging to the KITTI Vision Benchmark Suite [62]. Here, the images are taken

both at different times and at different places.

In this work, the images were selected only for convenience (convenience sam-

pling). Some sequences of three color images were taken from the Internet: walkcircle

(frame0001.tif, frame0002.tif, frame0003.tif; processed as PNG images), walkstraight

(frame0045.tif, frame0048.tif, frame0051.tif; processed as PNG images), and walk-

straight error (frame0040.tif, frame0045.tif, frame0050.tif; processed as PNG images)

from [186]; army (frame07.png, frame10.png, frame13.png), basketball(frame12.png,

frame13.png, frame14.png), beanbags (frame10.png, frame11.png, frame12.png), dog-

dance (frame07.png, frame10.png, frame13.png), dumptruck (frame07.png, frame10.

png, frame13.png), hydrangea (frame07.png, frame10.png, frame13.png), minicooper

(frame07.png, frame10.png, frame13.png), and wooden (frame07.png, frame10.png,

frame13.png) from a database for optical flow [13]. The initial and final images be-

longing to each sequence of images mentioned in this paragraph are shown below.

Figure 4.1: Initial (leftwards) and final (rightwards) images of the sequence called
walkcircle

1This kind of sequences of images should be processed by spatiotemporal interpolation methods.

57

Figure 4.2: Initial and final images of the sequence called walkstraight: Leftwards
and rightwards, respectively

Figure 4.3: Initial and final images of the sequence called walkstraight error: Left-
wards and rightwards, respectively. This sequence is inappropriate for interpolation
as there is too much change between the images. In the first image, the right leg and
shoe are almost completely overlapped by the left ones; in the last one, the former
are visible.

Figure 4.4: Initial and final images of the sequence called army: Leftwards and
rightwards, respectively

58

Figure 4.5: Initial and final images of the sequence called basketball: Leftwards and
rightwards, respectively

Figure 4.6: Initial and final images of the sequence called beanbags: Leftwards and
rightwards, respectively

Figure 4.7: Initial and final images of the sequence called dogdance: Leftwards and
rightwards, respectively

59

Figure 4.8: Initial and final images of the sequence called dumptruck: Leftwards and
rightwards, respectively

Figure 4.9: Initial and final images of the sequence called hydrangea: Leftwards and
rightwards, respectively

Figure 4.10: Initial and final images of the sequence called minicooper: Leftwards
and rightwards, respectively

60

Figure 4.11: Initial and final images of the sequence called wooden: Leftwards and
rightwards, respectively

Other sequences of images were homemade: ceramic (ceramic00188.jpg, ceramic

00189.jpg, ceramic00190.jpg), compact disc (CD169.jpg, CD170.jpg, CD171.jpg), San-

ta (santa505.jpg, santa506.jpg, santa507.jpg), walkingVGA (walking00124.jpg, walk-

ing00125.jpg, walking00126.jpg), and walking5M (walking5M411.png, walking5M412.

png, walking5M413.png). The initial and final images belonging to each sequence of

images mentioned in this paragraph are shown below.

Figure 4.12: Initial and final images of the sequence called ceramic: Leftwards and
rightwards, respectively

61

Figure 4.13: Initial and final images of the sequence called compact disc: Leftwards
and rightwards, respectively

Figure 4.14: Initial and final images of the sequence called Santa: Leftwards and
rightwards, respectively

Figure 4.15: Initial and final images of the sequence called walkingVGA: Leftwards
and rightwards, respectively

62

Figure 4.16: Initial and final images of the sequence called walking5M: Leftwards and
rightwards, respectively

4.2 Statistical Analysis

The objective is to compare the previous methods (linear, and median) with the new

ones. Comparing interpolation methods is a little complex since some methods func-

tion with some images better than with others. Therefore, it is necessary to apply

statistics to draw right conclusions. Specifically, to find if the new methods are bet-

ter than the older ones. In other words, testing if the means of the new methods are

greater than the means of the old ones.

It is necessary to choose a statistical test. This is a critical decision as it can

change the interpretation of data [100]. If several tests are available, it should be

chosen the test with the greatest power. Usually, parametric tests are more powerful

than non-parametric ones but also have stronger assumptions. If these assumptions

are not satisfied, it is better to use non-parametric tests [100].

As, in this work, the same images undergo different treatments, the samples can

63

be paired. In other words, two methods are applied to the same set of images, and

the (two) results for each image are paired. For paired samples, a paired difference

test (see Sec. H.7) should be applied. If a sample of differences comes from a normal

population with standard deviation unknown, a t-test for correlated samples is ap-

propriate [66]. Sometimes it is necessary to check normality (see Sec. H.6).

If there is no normality, it is compulsory to apply a non-parametric test, such as

the sign or the Wilcoxon signed-rank test. The former test has no assumptions; the

latter requires a symmetrical sample, i.e. a sample without skewness (see Sec. H.5).

All these tests require random samples. As the samples obtained are non-random,

these test cannot be applied. Even worse, there is no statistically justified method

for probability analysis and inference about the quality of the results obtained from

convenience samples [7]. For these reasons, the statistical analysis was discarded.

4.3 Results and Discussion

The interpolation methods are not suitable to interpolate the sets of images taken

when there is a forward or backward camera movement or a zooming. When a cam-

era moves forward or zooms, it seems as expanding the first images and taking away

picture-frame-like areas from the border of the next images. When a camera moves

backward, it seems as compressing the first images and adding picture-frame-like ar-

eas around the next images (see Fig. 4.13). These camera movements also produce

parallax errors so they should be tackled by methods designed to compensate for

parallax. For this reason, the compact disc sequence of images was excluded from the

analysis.

The same parallax problem, but to a lesser extent, occurs when a camera moves

up, down, right or left. In this case, it is expected that after “segmenting”2 the areas

that are added or took away, the interpolation methods could be applied without

2In fact, this is not a segmentation problem but an image registration one.

64

changes. Although this phenomenon affects the army and dogdance sequences (they

show a little horizontal movement), they were included in the analysis.

In the overlapping method, usually there were seams where the part interpolated

linearly met the part interpolated with nearest-neighbor. For example, when only

the dumptruck was interpolated (see Fig. 4.17), the interpolation of its rear wheels

showed a seam where the part interpolated linearly –all the truck except the lower

part of the rear wheels– met the part interpolated with nearest-neighbor –the lower

part of the rear wheels, over the blurred area.

In this method, when an object included in a region was occluded, sometimes the

interpolation was blurred. For example, in the chute that belongs to the dumptruck

(see Fig. 4.17). It is owed to the fact that the grey-level interpolation algorithm uses

the MSP to center the regions, but as part of the rear wheels are not visible in the

first image, the computed MSP did not coincide with the real MSP. Then, the moved

regions were not aligned.

Figure 4.17: Interpolation considering the dumptruck as a region

65

The interpolated images from the new methods depend on the segmentation of

the images. For example, several interpolations for the dumptruck images were made.

Only the Mercedes, its shade and the area enclosed by them were segmented. The

Mercedes always was part of a region. The shade and the area were part of the same

region as the Mercedes, or isolated regions, or part of the background. The rest of

the image was always considered background. Consequently, four partitions were ob-

tained.

The first partition considered the car, its shade and the enclosed area as separate

regions. This interpolation gave the worst result. It was caused by the inaccurate

segmentation of the car and the shade (this was inevitable as both areas are dark

where they met). This impeded to compute the center of these regions correctly, so

they were not well overlapped (see Fig. 4.18).

Figure 4.18: Interpolation considering the car, its shade and the enclosed area as
separate regions

The second partition considered only the car as a region. This interpolation gave a

much better result, but it was still bad. It was caused by the inaccurate segmentation

66

of the car and its shade. This impeded to compute the center of the car correctly, so

it was not well overlapped (see Fig. 4.19).

Figure 4.19: Interpolation considering only the car as a region

The third partition considered the car, its shade and the enclosed area as a region.

This interpolation got a better result. In this case, the center of the region was well

computed, so it was moved correctly (see Fig. 4.20).

The last partition considered the car and its shade as a region and the enclosed

area as another. This interpolation got the best result. The car and the shade had

the same interpolation as in the previous case. The area was better interpolated

(the strong contrast between the area and the other object allowed its accurate seg-

mentation). It was possible to appreciate the difference between the areas in both

interpolated images by applying zooming to them, but it was impossible to detect

the improvement by doing so (it is necessary the ground truth image or the original

images). Therefore, this interpolation is not shown.

It was tried to interpolate more regions of the dumptruck image with the new

67

Figure 4.20: Interpolation considering the car, its shade and the area as a region

methods. For example, in addition to the regions segmented in the last partition, it

was added the dumptruck. The result was worse than those of the two previous cases

(see the black areas around the regions in Fig. 4.21) because the grey-level interpo-

lation considered all these regions as a complex connected component when they are

not (the objects that they represent are independent). Consequently, it computed

the interpolation of this component, what assigned some parts of the dumptruck, the

Mercedes and its shade to the background and vice versa (see Fig. 4.22).

A table was segmented in the wooden sequence (see Fig. 4.23). Its interpolation

with the overlapping and deforming methods is shown in Fig. 4.24. The interpolation

of this table showed that the overlapping method did not consider the rotation of the

objects (the shade within the table had the same orientation of the shades below the

original tables). The deforming method was able to do a much better interpolation.

Although it also did not consider the rotation of the objects, the texture of the table

hid this.

68

Figure 4.21: Interpolation considering the car and its shade, the enclosed area, and
the dumptruck as three separate regions

Figure 4.22: Grey-level interpolated mosaics belonging to the the car, its shade, and
the enclosed area; to the dumptruck, and to all of them, respectively.

Figure 4.23: Table segmented in the wooden sequence

69

Figure 4.24: Table in wooden interpolated with overlapping and deforming; the rest
of the image was interpolated with overlapping

The results obtained from the different interpolations are summarized in a couple

of tables. When a sequence was segmented several times, only the best result was

included. These are the identifications (Id.), names, and descriptions of the different

interpolation methods used:

(a) linear: Linear interpolation applied to the original images.

(b) median: Median image generation for color images of Iwanowski and Serra

applied to the original images.

From (c) to (s), each couple of paired regions can be interpolated with either

overlapping or deforming. Moreover, there are three independent options to perform

the latter (eight combinations). Therefore, to interpolate two images, there are sev-

enteen possible combinations. The substrings in the name of the file describe which

combinations were applied to the original images (see tables 4.1 and 4.2).

Although it is possible and sometimes recommendable to apply “Birthplace” to

some regions and, at the same time, “Skeleton” to others, this variation was not im-

plemented (the same happens with “CE” and “EC”, and “linear” and “median”).

The results of FSIMC computed on the different sequences of images are shown

70

Table 4.1: Methods applied according to its name
Substring Methods applied
overlapping Overlapping processed at least a couple of paired regions.
Birthplace Deforming processed at least a couple of paired regions by

deforming between the borders and the birthplace.
Skeleton Deforming processed at least a couple of paired regions by

deforming between the borders and the skeleton.

Table 4.2: Types of deforming applied to an interpolation according to its name
Substring Type of deforming applied
CE It was applied compression, then expansion.
EC It was applied expansion, then compression.
linear The linear interpolation method was applied to paired

deformed regions.
median The color median of Iwanowski and Serra was applied

to paired deformed regions.

in tables 4.3 and 4.43. Sometimes the best result between the new methods was

obtained using exclusively either overlapping, such as in dumptruck, or deforming,

such as in army and wooden. In this case, the results showed from l, . . . , s correspond

either to c, or to d, . . . , k.

3It is almost sure that other segmentations would improve some of these results, but it is bur-
densome to test them (see Sec. 3.1). For example, by segmenting the shades of walking5M and
walkingVGA.

71

T
ab

le
4.

3:
F

S
IM

C
ca

lc
u
la

te
d

fo
r

se
ve

ra
l

in
te

rp
ol

at
io

n

m
et

h
o
d
s

(p
ar

t
I)

Id
.

In
te

rp
ol

at
io

n
m

et
h
o
d

army

basketball

beanbags

ceramic

dogdance

dumptruck

hydrangea

a
li
n
ea

r
0.

87
8

0.
92

4
0.

93
5

0.
92

7
0.

80
9

0.
93

0
0.

78
0

b
m

ed
ia

n
0.

93
1

0.
94

4
0
.9

4
1

0.
92

3
0.

80
2

0.
93

6
0.

78
3

c
ov

er
la

p
p
in

g
0.

91
3

0.
94

2
0.

93
7

0.
93

4
0.

81
1

0
.9

3
6

0.
79

1

d
B

ir
th

p
la

ce
C

E
li
n
ea

r
0.

92
8

0.
91

6
0.

88
9

0.
92

4
0.

78
0

0.
92

7
0.

78
8

e
B

ir
th

p
la

ce
C

E
m

ed
ia

n
0.

92
9

0.
92

9
0.

89
6

0.
91

6
0.

77
1

0.
92

6
0.

78
1

f
B

ir
th

p
la

ce
E

C
li
n
ea

r
0.

92
8

0.
91

5
0.

87
8

0.
92

0
0.

78
9

0.
92

7
0.

78
8

g
B

ir
th

p
la

ce
E

C
m

ed
ia

n
0.

92
9

0.
92

9
0.

88
1

0.
91

3
0.

77
8

0.
92

4
0.

78
1

h
S
ke

le
to

n
C

E
li
n
ea

r
0.

91
8

0.
91

4
0.

91
3

0.
89

6
0.

78
5

0.
92

8
0.

78
6

I
S
ke

le
to

n
C

E
m

ed
ia

n
0.

92
9

0.
94

4
0.

91
4

0.
91

4
0.

78
9

0.
92

6
0.

78
6

j
S
ke

le
to

n
E

C
li
n
ea

r
0.

92
3

0.
90

9
0.

91
0.

89
7

0.
78

5
0.

92
8

0.
78

5

k
S
ke

le
to

n
E

C
m

ed
ia

n
0
.9

3
3

0.
94

4
0.

91
1

0.
91

5
0.

79
1

0.
92

7
0.

78
6

l
ov

er
la

p
p
in

gB
ir

th
p
la

ce
C

E
li
n
ea

r
0.

92
8

0.
94

5
0.

93
8

0
.9

3
5

0.
81

6
0
.9

3
6

0.
79

2

m
ov

er
la

p
p
in

gB
ir

th
p
la

ce
C

E
m

ed
ia

n
0.

92
9

0.
95

1
0.

93
7

0
.9

3
5

0.
81

1
0
.9

3
6

0.
79

2

n
ov

er
la

p
p
in

gB
ir

th
p
la

ce
E

C
li
n
ea

r
0.

92
8

0.
94

5
0.

93
8

0
.9

3
5

0.
81

6
0
.9

3
6

0.
79

2

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

72
T

ab
le

4.
3

–
C

on
ti

n
u

ed
fr

om
pr

ev
io

u
s

pa
ge

Id
.

In
te

rp
ol

at
io

n
m

et
h
o
d

army

basketball

beanbags

ceramic

dogdance

dumptruck

hydrangea

o
ov

er
la

p
p
in

gB
ir

th
p
la

ce
E

C
m

ed
ia

n
0.

92
9

0.
95

1
0.

93
6

0
.9

3
5

0.
81

0
0
.9

3
6

0.
79

2

p
ov

er
la

p
p
in

gS
ke

le
to

n
C

E
li
n
ea

r
0.

91
8

0.
94

6
0.

93
6

0.
93

4
0
.8

1
7

0
.9

3
6

0.
79

2

q
ov

er
la

p
p
in

gS
ke

le
to

n
C

E
m

ed
ia

n
0.

92
9

0
.9

5
2

0.
93

6
0.

93
2

0.
81

2
0
.9

3
6

0
.7

9
3

r
ov

er
la

p
p
in

gS
ke

le
to

n
E

C
li
n
ea

r
0.

92
3

0.
94

4
0.

93
6

0.
93

4
0
.8

1
7

0
.9

3
6

0.
79

1

s
ov

er
la

p
p
in

gS
ke

le
to

n
E

C
m

ed
ia

n
0
.9

3
3

0
.9

5
2

0.
93

6
0.

93
2

0.
81

2
0
.9

3
6

0
.7

9
3

73

T
ab

le
4.

4:
F

S
IM

C
ca

lc
u
la

te
d

fo
r

se
ve

ra
l

in
te

rp
ol

at
io

n

m
et

h
o
d
s

(p
ar

t
II

)

Id
.

In
te

rp
ol

at
io

n
m

et
h
o
d

minicooper

Santa

walkcircle

walking5M

walkingVGA

walkstraight

walkstraight
error

wooden

a
li
n
ea

r
0.

88
2

0.
91

8
0.

94
5

0.
75

8
0.

82
0

0.
90

2
0.

89
5

0.
78

2

b
m

ed
ia

n
0.

89
2

0.
91

9
0.

95
2

0.
75

3
0.

82
7

0.
89

3
0.

88
0

0.
84

3

c
ov

er
la

p
p
in

g
0.

90
5

0
.9

2
1

0.
96

9
0.

78
8

0
.8

2
9

0.
93

8
0.

88
9

0.
85

5

d
B

ir
th

p
la

ce
C

E
li
n
ea

r
0.

88
9

0.
91

5
0.

92
3

0.
73

1
0.

78
9

0.
87

1
0.

84
6

0.
86

1

e
B

ir
th

p
la

ce
C

E
m

ed
ia

n
0.

89
1

0.
91

3
0.

92
4

0.
72

6
0.

78
9

0.
86

1
0.

83
8

0.
86

0

f
B

ir
th

p
la

ce
E

C
li
n
ea

r
0.

88
9

0.
91

4
0.

92
6

0.
73

2
0.

79
2

0.
86

9
0.

84
6

0.
86

1

g
B

ir
th

p
la

ce
E

C
m

ed
ia

n
0.

89
1

0.
91

2
0.

92
5

0.
73

0
0.

79
2

0.
85

8
0.

83
9

0.
86

0

h
S
ke

le
to

n
C

E
li
n
ea

r
0.

89
6

0.
89

9
0.

94
1

0.
74

7
0.

80
4

0.
89

0.
87

8
0.

85
2

I
S
ke

le
to

n
C

E
m

ed
ia

n
0.

90
0

0.
91

2
0.

94
1

0.
74

7
0.

81
3

0.
88

1
0.

86
3

0.
86

6

j
S
ke

le
to

n
E

C
li
n
ea

r
0.

89
6

0.
90

0
0.

94
4

0.
74

7
0.

81
7

0.
88

7
0.

87
6

0.
85

3

k
S
ke

le
to

n
E

C
m

ed
ia

n
0.

90
1

0.
91

6
0.

94
2

0.
74

9
0.

82
1

0.
87

7
0.

87
3

0
.8

6
7

l
ov

er
la

p
p
in

gB
ir

th
p
la

ce
C

E
li
n
ea

r
0.

90
9

0.
92

0
0.

96
9

0
.7

9
2

0
.8

2
9

0.
93

8
0.

92
1

0.
86

1

m
ov

er
la

p
p
in

gB
ir

th
p
la

ce
C

E
m

ed
ia

n
0.

90
9

0.
91

9
0.

96
8

0.
79

1
0
.8

2
9

0.
93

8
0.

92
1

0.
86

0

n
ov

er
la

p
p
in

gB
ir

th
p
la

ce
E

C
li
n
ea

r
0.

90
9

0.
92

0
0.

96
9

0.
79

1
0
.8

2
9

0.
93

8
0.

92
1

0.
86

1

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

74
T

ab
le

4.
4

–
C

on
ti

n
u

ed
fr

om
pr

ev
io

u
s

pa
ge

Id
.

In
te

rp
ol

at
io

n
m

et
h
o
d

minicooper

Santa

walkcircle

walking5M

walkingVGA

walkstraight

walkstraight
error

wooden

o
ov

er
la

p
p
in

gB
ir

th
p
la

ce
E

C
m

ed
ia

n
0.

90
9

0.
91

9
0.

96
8

0.
79

1
0
.8

2
9

0.
93

7
0
.9

2
2

0.
86

0

p
ov

er
la

p
p
in

gS
ke

le
to

n
C

E
li
n
ea

r
0
.9

1
0

0.
92

0
0.

96
9

0.
78

8
0
.8

2
9

0.
93

8
0.

92
1

0.
85

2

q
ov

er
la

p
p
in

gS
ke

le
to

n
C

E
m

ed
ia

n
0
.9

1
0

0.
92

0
0.

97
0

0.
78

8
0
.8

2
9

0.
93

8
0.

92
1

0.
86

6

r
ov

er
la

p
p
in

gS
ke

le
to

n
E

C
li
n
ea

r
0.

90
9

0.
92

0
0.

97
0

0.
78

7
0
.8

2
9

0.
93

8
0.

92
0

0.
85

3

s
ov

er
la

p
p
in

gS
ke

le
to

n
E

C
m

ed
ia

n
0
.9

1
0

0
.9

2
1

0
.9

7
1

0.
78

8
0
.8

2
9

0
.9

3
9

0.
92

1
0
.8

6
7

75

4.4 Descriptive Analysis

The average and standard deviation from the interpolation methods were computed

using tables 4.3 and 4.4. The results are shown in table 4.5.

Table 4.5: Descriptive statistics of FSIMC for several interpolation methods
Interpolation method Average Standard deviation

a linear 0.872 0.065
b median 0.881 0.064
c overlapping 0.891 0.060
d BirthplaceCElinear 0.865 0.064
e BirthplaceCEmedian 0.863 0.067
f BirthplaceEClinear 0.865 0.063
g BirthplaceECmedian 0.863 0.065
h SkeletonCElinear 0.870 0.060
I SkeletonCEmedian 0.875 0.063
j SkeletonEClinear 0.870 0.060
k SkeletonECmedian 0.877 0.062
l overlappingBirthplaceCElinear 0.895 0.060
m overlappingBirthplaceCEmedian 0.895 0.061
n overlappingBirthplaceEClinear 0.895 0.060
o overlappingBirthplaceECmedian 0.895 0.061
p overlappingSkeletonCElinear 0.894 0.060
q overlappingSkeletonCEmedian 0.895 0.061
r overlappingSkeletonEClinear 0.894 0.061
s overlappingSkeletonECmedian 0.896 0.061

The average FSIMC value has been plotted in Fig. 4.25.

Fig. 4.25 shows that the overlapping method is better than the methods of refer-

ence (linear and median). At the same time, the median is better than the linear.

This graph also shows that the new interpolation methods with deforming by

using the Birthplace and the Skeleton families of methods obtained worse results

than the overlapping method. The reasons that explain these poor results are the

distortions in static areas while trying to interpolate moving objects, and the grey

and black areas where this interpolation method was not able to do so. This is not

76

Figure 4.25: Average FSIMc per Interpolation Method

77

strange because the deforming algorithm should be applied to regions that change;

not to regions that are static or only are translated. For example, in Fig. 4.27 all the

regions were interpolated with deforming by using birthplaces and the segmentation

of Fig. 4.26. As an example of distortion, the area near the ball —especially in the

window— is deformed in the direction in which the ball moves (up and right). As an

example of grey areas, see over the hands of the person waiting for the ball.

Figure 4.26: Segmentation of an image

Other facts that can be extracted from the tables 4.3 and 4.4 are shown below:

First, the new interpolation method with overlapping usually got better results

than the linear one, and frequently outperformed the median one.

Second, the methods that can use both overlapping and deforming simultaneously

always outperformed the linear one, and generally outperformed the median one.

Third, in these methods, computing segments between the borders of the big

region and the birthplace gave similar results to computing segments between the

78

Figure 4.27: New interpolation method applying only deforming by using birthplaces

borders of the big region and the nucleus. In particular, the methods that use birth-

places were better for the ceramic, and walking5M images. In ceramic, there was a

ceramic jar that was moved forward; in walking5M there was a person that moved

backward. It was clear that these methods have to zoom the aforementioned shapes,

and the birthplace methods did it better.

For this reason, it is better to use other methods to process them. For example,

image registration can detect that two shapes are related and compute how much

zoom is needed to transform one into the other.

Fourth, in these methods, compressing and then expanding gave similar results to

expanding and then compressing.

5
Conclusions

As the most important conclusion, it was proved that it is possible to construct better

morphological interpolation methods for color images without using color morpholog-

ical operators. In fact, a general method was constructed with two optional methods:

overlapping and deforming.

The overlapping method is best suited for immobile matching regions (a set of

corresponding regions whose MSP does not move between the slices) that show ob-

jects that do not change in shape, place, orientation or size between the slices (the

regions can have different shapes; the objects can have different color attributes). For

example, when the corresponding immobile regions show a stationary background.

Additionally, it is usable when the mobile matching regions have the same shape,

orientation, and size, i.e. their shapes, orientations, and sizes do not change, and

they show the same static objects. For example, when the regions show a car moving

horizontally.

The deforming method is best suited when the object within the matching re-

gions changes its shape between the slices owed to rotation, enlarging, decreasing, or

zooming. It was expected that this method could manage object deformations, but

the set of images did not allow to prove this.

79

80

As the set of images was selected only for convenience, it is biased what impeded

to apply statistical analysis. As this set is infinite, a very profound understanding

of it is required to select a random sample. Alternatively, an “interpolation bench-

mark” should exist. Consequently, the results obtained comparing the interpolation

methods cannot be extrapolated to all the images.

This set of natural and artificial images allowed to prove the different methods

under different situations. However, the lack of complex connected components im-

peded to evaluate them in this case. In fact, this characteristic inherited from the

grey-level interpolation algorithm sometimes was detrimental when this algorithm

processed the images considering this kind of components when they did not exist.

This result suggests that the grey-level interpolation algorithm must fit the kind of

images to be processed.

The new interpolation method with overlapping overcame the linear, and median

image generation ones. The reason is obvious: this new interpolation method can

move objects while the other ones cannot.

In the methods that can use both overlapping and deforming simultaneously, com-

pressing and then expanding gave similar results to expanding and then compressing.

This result suggests to change these consecutive steps for another one that makes

both operations simultaneously. This should reduce the time used by these opera-

tions by a half.

The methods that use birthplaces zoomed objects better than those methods us-

ing nuclei. Therefore, the objects that change size should be zoomed before applying

the latter methods. After this improvement, it is expected that using nuclei would

obtain better results than using birthplaces.

A
Images

This chapter explains several concepts about images: properties, types, representa-

tions, and operations.

A.1 Properties of Color

The rays, to speak properly, are not colored; in them there is nothing else

than a certain power and disposition to stir up a sensation of this or that

color. (Newton, 1704, cited in [181])

As Newton suggested, light has no color but has some properties that human be-

ings can perceive. Color vision is a complex phenomenon that even nowadays is not

perfectly understood [8].

Colors can be described by hue, saturation, and lightness or brightness attributes.

Sharma [181] defined them:

Hue. Attribute of a visual sensation according to which an area appears

to be similar to one of the perceived colors: red, yellow, green, and blue,

or to a combination of two of them.

81

82

Brightness. Attribute of a visual sensation according to which an area

appears to emit more or less light.

Lightness. The brightness of an area judged relative to the brightness of a

similarly illuminated area that appears to be white or highly transmitting.

Saturation. Colorfulness of an area judged in proportion to its brightness.

A.1.1 Color Constancy

The color of an object is the same although the amount of illumination varies. This

effect is known as color constancy [181]. For example, a car has the same color in the

sun and shade sides, and on sunny or cloudy days. Technically, hue and saturation

are constants (hue is also invariant to viewing direction, object geometry, and high-

lights [63]).

On one hand, this property permits matching objects between images. If an ob-

ject in an image has the same hue than an object in another image, it is possible that

these objects are the same.

On the other hand, this property forbids some operations on images. For example,

some morphological ones on RGB images.

Finally, this property gives a reason to compute some operations on color models

different to RGB. For example, the linear interpolation since it is possible that inter-

polating two RGB pixels with the same hue gives another hue.

83

A.2 Digital Images

A digital image represents an image by using a set of bits. There are two main cate-

gories of digital images: vector and raster images [136].

A vector image represents an image by using mathematical equations such as lines,

circles, polygons, and others [136]. The computer draws these shapes on an output

device [30].

A raster image represents an image by using pixels [136]. This representation is

discrete both in its spatial coordinates and in its values [184]. The spatial coordinates

of an image are usually represented as a matrix with M rows and N columns [156, 139].

An image element, picture element, pixel, or pel is an element in this matrix [65]; the

value it takes is called image value [103]. The computer draws these pixels on an

output device.

As only raster images were used in this work, hereinafter only this kind of images

are treated. The (image) values allow to classify the images in binary, grey-level and

color.

A.2.1 Binary Images

A binary image is a digital image in which the points can have only two values (0

and 1). Usually, in a white support, these values are displayed as black and white,

respectively [189]. An example of binary images is shown in Fig. A.1.

A.2.2 Grey-level Images

A grey-scale image is a digital image in which the points can have values between 0

and 2n − 1, where n is an integer [139] equal to the number of bits that store each

value. In a white support, the points whose value is zero are displayed in black, the

84

Figure A.1: Binary image

points whose value is the highest, in white, and the points whose values are in-between,

in intermediate grey tones [189]. An example of grey-level images is shown in Fig. A.2.

Figure A.2: Grey-level image

A.2.3 Color Images

A color image is an image whose points map on a color space [52]. This representation

is explained in Sec. A.3. An example of color images is shown in Fig. A.3.

A.2.4 Mosaic Images

A partition is a division of a set into non-empty disjoint subsets [189]. A mosaic

image is a partition of an image [20]. Each part in a mosaic is called a facet, a tile,

a cell or a particle [20, 86, 130].

85

Figure A.3: Color image

The values within each part (in a mosaic) can be different; however, if each part

has pixels with the same value, there are two classes: grey-level and color mosaics.

Grey-level Mosaics

In grey-level mosaics, each tile has pixels with the same grey-value [210]. An example

of grey-level mosaics is shown in Fig. A.4.

Figure A.4: Grey-level mosaic image

Color Mosaics

In color mosaics, each tile has pixels with the same color. An example of color mosaics

is shown in Fig. A.5.

86

Figure A.5: Color mosaic image

A.3 Color Models and Color Spaces

A color model is an abstract mathematical model that permits representing colors

by using a tuple of numbers [135]. Most color models represent colors by using three

components; for example, RGB uses Red, Green and B lue components. A few color

models use four or more components; for example, CMYK [165].

Color models cannot represent a defined color because they are abstractions. They

need references in the real world, such as red, green and blue primary colors (hues)

in the RGB color model. They also need a scale. For example, it is not enough to

define the hues in the RGB color model; it is necessary to define their saturation.

Appropriate quantities of these primary colors are added to form a color (this char-

acteristic makes RGB an additive color model). A color model with references and

scale is a color space. Thus, different color spaces can be defined using the same color

model. For example, Adobe RGB and sRGB are based on the RGB color model [165].

It is impossible to reproduce some colors by mixing red, blue, and green colors.

The chosen primaries determine which colors can or cannot be reproduced. Gamut

is the colors that can be reproduced within a color space or by a particular device [165].

Consequently, color models are distinct from color spaces. In spite of this, some

authors use these terms indistinctly1.

1In this work, these concepts are used distinctly.

87

In uniform color spaces, same distances between coordinates gave similar perceived

color differences [103]. In other words, in this case the color space has perceptual uni-

formity. This is an important property in color spaces since it permits accurate linear

image interpolation.

The color models and color spaces used directly and indirectly in this work are

described below.

A.3.1 RGB Color Model

The tristimulus theory of vision states that any color can be matched by an additive

combination of the three primary colors [143]. The RGB color model is based on this

theory [72]. Thus, each color is a mixture of red, green, and blue components [103].

The RGB color model is well suited for hardware such as monitors and cam-

eras [65]. In the case of capturing devices, it is usual that three distinct filters are

used what determines a color space specific for each device [165]. In the case of CRTs,

the chromaticities of their phosphors determine their gamuts. Thus, two CRTs with

distinct phosphors cover different color spaces [55].

Unfortunately, the values captured by capturing devices are linear RGB intensi-

ties. These values are perceptually non-uniform. Therefore, they are transformed

into non-linear RGB values by using gamma correction. The new values are denoted

R′G′B′ [154]. Therefore, the RGB images in a computer are in fact R′G′B′ ones2.

Although the image processing literature does not discriminate between RGB and

R′G′B′ [154], this work does a distinction. When a properly weighted value of linear

RGB components is computed, relative luminance, Y , is obtained; when a properly

weighted value of R′G′B′ components is computed, luma, Y ′, is obtained [156]3. In

2In this work, linear RGB is mentioned only in this section and in Sec. A.3.4.
3To avoid confusions, the prime should always be present to denote luma [156].

88

this work, all RGB images are, implicitly, R′G′B′ ones. Hence, luma is used.

A.3.2 HSV Color Model

As humans describe colors by hue, saturation, and brightness, the RGB color model

is not appropriate to describe colors to them [65]. Therefore, the HSI, HSL, and HSV

color models were introduced to describe colors in a time when the colors were spec-

ified numerically instead of visually [88, 205]. In general, these color models should

not be used nowadays4.

All these models are obtained from the RGB color model by coordinate conver-

sion [154]. These models take hue, saturation, and “brightness” values to obtain RGB

values or vice versa.

The HSV (also called HSB) coordinates are hue, saturation, and value (bright-

ness). It is very intuitive and simple [103].

A.3.3 CIELAB

The International Commission on Illumination (Commission internationale de l'é-

clairage) recommended the CIELAB and CIELUV as approximately uniform color

spaces [103].

CIELAB coordinates are (L*, a*, b*); CIELUV coordinates are (L*, u*, and v*).

In both spaces, L* corresponds to lightness.

In this work, CIELAB was utilized to interpolate pixels.

4The descriptions and formulae of the HSI, HSL, and HSV models disregard the principles of
color science [156]. In addition, HSL and HSV are not useful for quantitative image analysis [74].

89

A.3.4 YIQ Color Space

The YIQ color space, also known as NTSC color space [2], is a device-dependent

color space developed for analog television and video systems [154, 125, 238, 121]. It

keeps up compatibility with previous monochromatic systems and saves transmission

bandwidth [78, 154, 121].

It has three components: luma, Y ′; in-phase, I; and quadrature, Q. Y ′ repre-

sents the achromatic information: it approximates the lightness, L*, but is different.

Only this component is used in monochrome systems. I and Q represent the chro-

matic information: I is an orange-cyan axis, and Q is a magenta-green axis [154, 156].

Gamma-corrected RGB, R′G′B′, is converted to Y IQ by using the formula [157]:


Y ′

I

Q

 =


0.29889531 0.58662247 0.11448223

0.59597799 −0.27417610 −0.32180189

0.21147017 −0.52261711 0.31114694



R′

G′

B′

 (A.1)

A common matrix that is almost equal to the matrix showed in Eq. A.1 but

rounded to three digits (the element in (3,3) does not follow this rule) is shown in

Fig. A.6 [?, 229, 79, 103, 45]5. FSIMC (see Sec. A.11.1) is an algorithm for comparing

two images; it uses this matrix to process each component (Y ′, I, Q) separately.

0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312


Figure A.6: Common matrix to convert R′G′B′ into Y IQ

In addition, there exist other matrices to convert R′G′B′ into YIQ [162, 55, 94,

78] [48, 26, 125, 82]. They are almost equal to the matrix showed in Fig. A.6, but

5This is the same matrix used by rgb2ntsc in Matlab [121].

90

the last digit of some elements is different.

The conversion from YIQ to R′G′B′ is done by using the inverse of the matrix

used to convert R′G′B′ into YIQ [55, 78].

A.4 Basic Concepts: Neighborhood, Neighbors, Connected Pixels, and

Connected Component

The neighborhood of a pixel is the region of pixels within a given radius around that

pixel [102].

A pixel p at coordinates (x,y) has two vertical and two horizontal neighbors whose

coordinates are (x+1,y), (x-1,y), (x,y+1), and (x,y-1). This set of neighbors is called

4-neighbors or four pixel neighborhood of p . Also, it has four diagonal neighbors

whose coordinates are (x+1,y+1), (x+1,y-1), (x-1,y+1), and (x-1,y-1). The set of all

the neighbors of p is called 8-neighbors or eight pixel neighborhood of p [148, 65]. For

example, the pixel labeled p has as 4-neighbors, the pixels labeled c, and it has as

8-neighbors, the pixels labeled C (see Fig. A.7).

c
c p c

c

a

C C C
C p C
C C C

b

Figure A.7: Neighbors of a pixel: (a) 4-neighbor and (b) 8-neighbor pixels of p

Two pixels x0, xn with the same value are 4-(8)connected if and only if there exists

a sequence of pixels x0, x1, . . . , xn, such each xi+1 is in the 4-(8-)neighbors of xi and

xi have the same value as x0 and xn, ∀i ∈ 0, 1, . . . , n− 1 [198].

A connected component is a set of all the pixels connected to each other [198]. A

91

formal definition can be seen in [120].

A.5 Convolution

Convolution is a mathematical operation that can be applied to continuous (integral

convolution) or discrete systems (discrete convolution) [115, 92].

The two-dimensional convolution is fundamental to extract information from im-

ages [145, 92]. It can be used at least in image filtering, image enhancement, image

restoration, and feature extraction. In this work, discrete convolution is used to com-

pute the image gradient (see Sec. A.6). The operation depends on a set of weighting

coefficients that can be stored in a matrix called convolution matrix, filter mask, or

convolution kernel [51, 92, 145].

Given a convolution kernel K, the procedure to compute 2D convolution on an

image I is [145]:

For each pixel P on the image I:

� place the center of K on P ,

� multiply each value of K with the value of the pixels under it,

� add all the products, and

� place the result into position P of the output image.

An example taken from [36]6 that shows this procedure to compute one pixel is

shown in Fig. A.8. The center of the kernel K is at (2,2). It is placed on the black

pixel in I.

It is possible to compute the convolution by putting the center of K out of the

image I what creates an output image greater than I [92]. In this work, this situation

6http://www.fch.vutbr.cz/lectures/imagesci/includes/harfa screenshots overview.inc.php

92

Figure A.8: Example of convolution

does not happen so it has been overlooked.

In addition, there is a problem to compute the convolution at, and near, the bor-

ders of I because part of the kernel lies out of I. Although, there is no perfect method

to solve this problem —except avoiding that objects of interest lie near the borders,

the solution is adding pixels next to the borders of I. These extra pixels can be ob-

tained copying the border pixels, copying the pixels of the opposite border, or writing

zeros there [89].

A.6 Image Gradient

For a two-variable function f , the gradient of f , denoted by ∇, is defined as ∇ =

(∂f/∂x, ∂f/∂y) [192]. This definition shows that the gradient for a two-variable func-

tion gives a two-dimension vector whose components are its partial derivatives.

Image gradients are often used for edge detection [157]. In this work, they are used

by FSIMC to compute the gradient magnitude (see Sec. A.11.1) and by SegmentIt to

segment (see Sec. C.2.1). Besides, in this work, image gradients are used to compute

perpendiculars (normals) to some edges in binary images.

The image gradient cannot be computed analytically, but the (discrete) deriva-

tives can be computed by convolution [82]. There are several kernels to compute the

convolution. A kernel construction method is explained that follows Hunt ideas [82].

Suppose a small 3 x 3 window within a picture, as shown in Fig. A.9. In this

93

case, the picture is represented as an array: the numbering of rows grows from top

to bottom, and the numbering of columns, from left to right. The value of the pixel

at (i, j) is ai,j. The distance between adjacent pixels is h.

ai−1,j−1 ai−1,j ai−1,j+1

ai,j−1 ai,j ai,j+1

ai+1,j−1 ai+1,j ai+1,j+1

Figure A.9: 3 x 3 window

The objective is to find the derivatives around the center of this window, i.e. ai,j.

The horizontal derivative can be approximated by 1
2h

(ai,j+1 − ai,j−1) (also known as

column gradient [157]) and the vertical derivative by 1
2h

(ai+1,j−ai−1,j) (also known as

row gradient [157]) [18, 82]. The coefficient 1
2h

is often omitted because it is needed

only the gradient direction or the approximate gradient magnitude. The terms or-

der in the difference determines the direction of the derivation: It comes from the

subtrahend to the minuend. Here, the horizontal derivative (column gradient) goes

rightwards, and the vertical derivative (row gradient), downwards.

The convolution kernels corresponding to the simplified differences are shown in

Figs. A.10 and A.11.

-1 0 1

Figure A.10: Horizontal derivative kernel

1
0

-1

Figure A.11: Vertical derivative kernel

This simple derivation considers only two pixels, so a single incorrect pixel changes

the derivative. In other words, the horizontal and vertical derivative approximations

94

are sensitive to noise. To improve the noise immunity, it can be used more pixels

within the 3 x 3 window [82].

Usually, image processing textbooks recommend the 3x3 kernel defined by [18]

1

2h(w + 2)


−1 0 1

−w 0 w

−1 0 1

 (A.2)

Some methods that consider the other pixels are the Prewitt (w=1), Sobel (w=2),

and Scharr (w=10/3) operators [18]. They provide differencing and smoothing simul-

taneously [26, 96]. Smoothing reduces noise what is an advantage considering that

derivatives augment noise [32]. These operators work on binary and grey-scale im-

ages, but also on the luma of color images.

Each gradient has a magnitude and an orientation. The magnitude and orienta-

tion can be computed with arrays. Accordingly, GC(j, k) is the column gradient and

GR(j, k) is the row gradient, at the row j and column k. In this case, rows grow

downwards, and columns grow from left to right [157].

The magnitude can be computed as

|G(j, k)| =
√
GC(j, k)2 +GR(j, k)2. (A.3)

It also can be computed with l1 or l∞ norm [26].

The orientation can be computed as the angle θ with respect to the row axis

using [157]

θ(j, k) = arctan{GC(j, k)

GR(j, k)
}. (A.4)

In addition, they can be computed with the usual Cartesian coordinates. Accord-

ingly, Gx(x, y) is the gradient in the x-direction, i.e. the horizontal derivative (it goes

rightwards) at the position (x, y); and Gy(x, y) is the gradient in the y-direction, i.e.

95

the vertical derivative (it goes upwards) at the position (x, y).

The magnitude can be computed as [17]

|G(x, y)| =
√
Gx(x, y)2 +Gy(x, y)2. (A.5)

The orientation angle φ can be computed as [17, 176]

φ(x, y) = arctan(
Gy(x, y)

Gx(x, y)
). (A.6)

Note that in the same point, Gx = GC and Gy = −GR.

A.6.1 Scharr Operator

The Scharr operator gives even more importance than the aforementioned operators

to the difference across the central pixel. These kernels give more accurate estimates

of gradient orientation than other operators, particularly the Sobel operator (see Ap-

pendix F) [95].

The Scharr kernels are shown in Figs. A.7 and A.8 [18]. Notice that Gx goes

rightwards, and Gy, upwards.

Gx =
3

32


−1 0 1

−10
3

0 10
3

−1 0 1

 (A.7)

Gy =
3

32


1 10

3
1

0 0 0

−1 −10
3
−1

 (A.8)

For the same reason given for the Prewitt operator, approximate Scharr masks

are frequently used.

96

In this work, the Scharr operator is used by FSIMC to compute the gradient mag-

nitude (see Sec. A.11.1).

A.6.2 Kroon Operator

Image gradients can also be computed with larger kernels. Larger kernels reduce

noise but increment the error in the edge location and the interference of objects in

the neighborhood [177]. In this work, gradients are not used to find edges since, in

binary images, the edges are the 1 pixels with at least one 0 neighbor; the gradients

are used to compute the direction of the normals along binary image borders, so it is

very important to choose an operator that gives accurate directions.

Kroon found the 5 x 5 sized derivative kernel with the minimal angle error [105]:

Gy =

0.0007 0.0052 0.0370 0.0052 0.0007

0.0037 0.1187 0.2589 0.1187 0.0037

0 0 0 0 0

-0.0037 -0.1187 -0.2589 -0.1187 -0.0037

-0.0007 -0.0052 -0.0370 -0.0052 -0.0007

(A.9)

Notice that Gy goes upwards. The kernel Gx is obtained rotating this kernel 90◦

(it goes rightwards).

A.7 Distance

Distance is a measure of the space between two points. The usual notion of distance is

the length of the line segment between two points in the space, the Euclidean distance.

In this work, the geodesic distance and the Hausdorff distance are also mentioned.

97

A.7.1 Geodesic Distance

The geodesic distances are constrained to follow the surface of the earth. The dis-

tance between cities is given as a geodesic one. This is the relevant distance to travel

between them as the Euclidean distance passes through the earth. For example, the

red line in Fig. A.12 shows the geodesic distance between Seattle and London.

Figure A.12: Geodesic distance (Lysenko, 2012)

The same notion is applied to images. When a path is constrained to remain

within a subset of an image, the relevant distance is a geodesic one. Formally, let A

a set. The geodesic distance dA(p, q) between two pixels p and q in A is the shortest

path(s) P = (p1, p2, . . . , pl) that joins p and q which is included in A. If L denotes

the function that computes the length of a path:

dA(p, q) = min{L(P)|p1 = p, pl = q, andP ⊆ A} [189] (A.10)

If there is no path between p and q, the distance can be considered infinite.

98

A.7.2 Hausdorff Distance

The Euclidean and the geodesic distances are distances between points. However, it

is possible to define distances between sets what the Hausdorff distance does. This

distance uses the concept of dilation that is explained in Sec. B.3. Let X and Y be

two sets. The Hausdorff distance is the minimum of the radius λ of the discs B such

that X dilated by Bλ contains Y and Y dilated by Bλ contains X:

dH(X, Y) = min{λ|X ⊆ δBλ
(Y), Y ⊆ δBλ

(X)} (A.11)

where Bλ denotes a disc of radius λ [189]. For example, there two lines X and Y in

Fig. A.13 . The dilation of Y with a disc of radius equal to the dotted line shown in

the bottom includes X. The dilation of X with a disc of radius equal to the dotted

line shown in the top includes Y . The Hausdorff distance is equal to the greater of

these radii.

Figure A.13: Hausdorff distance sample (Rocchini, 2007)

A.8 Homotopy

It is easier to understand this concept understanding first the concept of homotopy

tree —also known as the adjacency tree— since two images are homotopic when they

99

have the same homotopy tree [189]. Although homotopy trees can be applied to

bounded sets of the Euclidean plane IR2 [189], this work only applies them to dis-

crete 2-D binary images.

In a discrete 2-D binary image there are connected components belonging to the

foreground and to the background. Each of them is a node of the homotopy tree. In

this case, it is assumed that the pixels outside of the image are background pixels.

Hence, there exists a connected component, belonging to the background, denoted

Soutside, that embeds (a connected component C1 is embedded in another connected

component C2 if every 4-path from C1 to Soutside passes through C2) all the other

components. This component is the root of this tree. Each vertex of this tree repre-

sent both a relationship of embedding and of 4-adjacency. When a node represents a

connected component of the foreground (alternatively, a connected component of the

background), its children are connected components belonging to the background (al-

ternatively, to the foreground) that are both embedded and adjacent. Hence, Soutside

has as children the connected components belonging to the foreground that are ad-

jacent (and embedded) to itself [189].

An example of a set and its homotopy tree is shown in Fig. A.14. The root has as

children the connected components A, B, and C. The component A has as children

the connected components, belonging to the background, D and E. D has as child

the connected component, belonging to the foreground, G [207].

A.9 Image Segmentation

Image segmentation is a process that divides (partitions) an image into a set of

non-overlapping, connected image areas, called regions, such each region has similar

characteristics [43, 103, 189]. It is also possible to consider segmentation as labeling

each pixel of an image [183].

Two-label images have two distinct labels; multi-label images has several or many

100

Figure A.14: Homotopy tree of a set: The set (left) and its homotopy tree (right).

distinct labels. Usually, in two-label images, one label represent the foreground and

the other the background. In addition, usually, some labels represent objects and one

label represent the background what someones called figure-(back)ground segmenta-

tion [109].

Two or more regions might have the same label in an image. For example, two

regions labeled “tree”.

Image segmentation returns regions with and without interest for the user. Each

of the former regions is called a region of interest (ROI) [80]. Sometimes, a ROI is seg-

mented into many small regions; this phenomenon is called over-segmentation [133].

Image segmentation has several goals. For instance, the usual goal is that each of

the regions corresponds to a different object [42]. In other words, image segmentation

aims to partition an image into its constituent ROIs [232].

While some authors consider that image segmentation, also known as scene seg-

mentation, differs from figure-(back)ground segmentation, also known as object seg-

mentation [109], others consider that the latter is only a category within the for-

mer [219]. In this work, it is followed the second approach: what some called a figure

101

is a ROI and what they called (back)ground is not.

As there is not a general theory for image segmentation [144, 157, 121], many

strategies have been proposed to segment an image [43]. As a consequence, many

algorithms and techniques have been proposed [236]. They are so numerous that

choosing one has become a laborious and time-consuming task [126].

There are two fundamentally distinct strategies for image segmentation, i.e. edge-

based and region-based [12, 153]. Edge-based methods try to find the edges of the

regions by looking for significant contrast changes (the regions are defined implicitly

by the enclosing edges); region-based methods try to classify pixels by using some

property (the edges are defined implicitly by the borders of the regions) [12]. These

strategies can be applied either globally or locally (Bailey, 1991, cited in [12]). Global

methods operate on all the pixels of an image; local methods operate in the part being

segmented [12]. Local methods start with seeds belonging to either the edge or the

region, and extend them [12]. As a result, there are four categories of segmentation

methods; they are shown in table A.1.

Table A.1: Categories of image segmentation methods
Edge-based Region-based

Global processing Edge detection and linking Thresholding
Incremental processing Boundary tracking Region growing

Edge detection and linking: Edges are associated with the borders of objects. Edge

points are points belonging to edges. Unfortunately, edge points —due to noise— sel-

dom form closed connected boundaries. So, a linking process is usually required to

connect the edge points [225].

Boundary tracking: Starting from a (border) seed, new border points are searched

in the local neighborhood. If several points are available, one is chosen arbitrarily.

For example, in a grey-level image, it is possible to compute its gradient. A point

with a maximum gradient is chosen as seed. The adjacent pixel with a maximum

102

gradient is the next point in the border. From the adjacent pixel, the next maximum

gradient is sought. This process continues until the seed is found [223].

Thresholding: There are two options [228]:

1. Single level thresholding and

2. Multi level thresholding.

These methods are easier to explain for grey-level images. Single level thresholding :

If there are a set of light objects on a darker background, it is possible to separate

the objects by taking a unique grey value greater than the background values and

lesser than the values of the objects. Multi level thresholding : If there are objects

with distinct grey-levels on a darker background, they can be separated taking a set

of grey values [228].

Region growing: Starting from a (region) seed, new pixels are added to the region

until a termination condition is met [12]. An algorithm belonging to this category is

the watershed segmentation (Serra, 1982, cited in [158]).

As there exists no accepted taxonomy to classify image segmentation methods [121],

it was sought a classification useful to select a segmentation method for the original

images.

Image segmentation methods have been classified into manual, automatic, and

semi-automatic [237]7. In manual segmentation, the user traces contours with a

pointing device [158]. This is often a tedious, time-consuming and prohibitively ex-

pensive process [235, 39, 214]. Manual segmentation is used for creating ground truth

to evaluate the other categories of segmentation [197]. In automatic segmentation,

the user does not intervene. This segmentation type is unsatisfactory in many real sit-

uations [199, 232], in particular for multi-label segmentation [44]. In semi-automatic

segmentation, the user guides (directs) this process either by entering parameters or

7This paper and this work have different definitions of semi-automatic.

103

by giving guidelines.

There are three common types of guidelines: 1) Pieces (usually points) belonging

to the border (the algorithm completes the border); 2) Approximate contour of an

object (the algorithm moves that boundary to fit with the object border), and 3)

Seeds (the user labels some pixels belonging to the regions of interest, and the algo-

rithm labels all of them completely) [188].

Semi-automatic methods using guidelines8 allow to segment what an application

needs [188]. In particular, the segmentation can be improved if the user can give

further clues that are effectively integrated in the segmentation process (this is an

interactive segmentation) [232].

In this work, it was sought a method suitable for the images that are going to

be segmented. The set of images includes both natural and artificial images but ex-

cluding medical ones. These images are in full color, i.e. excluding grey-level ones.

Finally, these images contain one or more regions of interest. Each of these regions

might be an object, part of an object, or even a set of objects. Sometimes these

regions are somewhat arbitrary; partitioning, for example, an object in two regions.

Consequently, it is necessary an interactive, color, multi-region segmentation meth-

od.

Since there are many methods for color image segmentation [37, 22], choosing one

requires experience and depends on the application [203]. In this work, it was chosen

a color watershed method as it is based on mathematical morphology. As color wa-

tershed is based on grey-level watershed, the latter is described before.

The grey-level watershed transform was applied in the grey-level mosaic interpo-

lation method. The color watershed (see Sec. C.2.1) segmented the original images.

8Notice that this is called “supervised” in the reference.

104

A.9.1 Interactive Segmentation

Interactive segmentation is an iterative process in which the user signals the ROIs and

the system shows a proposed segmentation [77]. This interaction requires an adequate

user interface [147]. Some ways to signal the ROI [173] are shown in Fig. A.15. The

user indicates the ROI approximately, and the algorithm guesses it. The user can

give additional cues to continue improving the segmentation [173]. It is also possible

to use several signaling methods on the same image [230].

a b c

Figure A.15: Ways to signal the ROI: By using (a) a bounding rectangle, (b) scribbles,
and (c) Quick Selection Tool in Adobe Photoshop.

As there are many interactive segmentation methods, it is necessary to choose

one of them. It was tried to do this by researching recent evaluations that compare

methods objectively against a dataset (see Appendix I). Unfortunately, the program

corresponding to the best method was not available in the Internet.

As segmentation is not the main theme of this thesis, programming a method was

discarded. Instead, it was searched an interactive color multi-label program in the

Internet. At the end, only SegmentIt fulfilled the conditions and, at the same time,

can be installed. Thus, it was chosen (see Sec. C.2.1).

105

A.10 Image Interpolation

In the study of phenomena where is impossible or too expensive to measure some

variables as frequently as needed, the solution is to measure some points, and esti-

mate the unknown values. The interpolation fits some curve that passes by the known

points and uses this curve to compute the values of the unknown points [128].

The interpolation methods were first applied to astronomy and calendar com-

putation in ancient times. They have been recently extended to signal and image

processing [128].

Image interpolation applies interpolation to estimate the value of unknown pixels.

Image interpolation has two application areas: temporal and spatial interpolation.

Temporal interpolation computes the value of a fixed pixel by using images taken at

different times; spatial interpolation computes the value of a pixel by using the values

of different locations at the same time [81]. Temporal interpolation usually uses two

images (never one) while spatial interpolation uses one or two images.

Applications such as printing and digital photography employ spatial interpolation

to obtain a picture larger or smaller. Applications such as X-ray computed tomogra-

phy and magnetic resonance imaging use spatial interpolation to improve the spatial

resolution of a sequence of images.

An example of temporal interpolation is to add images in an old silent film to

match the modern frame rate of 24 frames per second.

The image interpolation methods can be classified into two categories: adaptive

and non-adaptive methods. Adaptive methods adjust their operations to image con-

tent, and non-adaptive methods process the whole image uniformly. Usually, adaptive

methods apply a few interpolation methods accordingly to the contents of original

images. The adaptive methods obtain better results but are more inefficient than

non-adaptive methods [3].

106

The image interpolation methods can also be classified as grey-level (scene-based

and intensity-based) and shape-based [25, 35]. This classification is used to explain

the different methods used in this work as it distinguishes between traditional and

newer methods.

A.10.1 Grey-level Image Interpolation

Maybe this is an inaccurate use of “grey-level” because these methods can be applied

to binary, grey-level, and color images. Consequently, the usual meaning of grey-level

is used in all this document except in this section.

Grey-level (image) interpolation methods compute the value of an interpolated

pixel by using the values of the corresponding neighbor pixels in the original im-

ages [35, 215]. In general, they are fast and easy [215]. However, these methods

suppose that a smooth curve can model image data [35], so they make artifacts (see

Fig. A.16 [106]) and blurred edges [35, 215]. Some methods of this kind are nearest-

neighbor, the simplest; linear, the most used; splines, and polynomial [25, 35].

Aliasing Blur Ringing

Figure A.16: Typical artifacts of linear interpolation methods

Nearest-neighbor Image Interpolation

In one-image interpolation, the nearest-neighbor (image) interpolation algorithm as-

signs to each interpolated pixel the value of the nearest pixel in the original im-

age [145]. It produces an interpolated image that looks like as a checkerboard (see

107

Fig. A.17 [207]).

In two-image interpolation, it is equivalent to copying the nearest original image

in the interpolated image.

Figure A.17: Photograph section zoomed with nearest-neighbor interpolation method

Linear Image Interpolation

In one-image interpolation, linear interpolation it is known as bilinear interpolation

(see Fig. A.18 [207]). Generally, it offers the best trade-off between quality and

processing time [226]. In two-image interpolation, this method (also known as cross-

dissolve) obtains new images by using weighted combinations of corresponding pix-

els [196]. It is efficient and simple, but it degrades significantly the interpolated

image [71]. In particular, for color images, the interpolated image loses both color

contrast and details [71]. For example, the linear interpolation of the images (a) and

(b) gives (c) (see Fig. A.19).

108

Figure A.18: Photograph section zoomed with bilinear interpolation method

Simultaneous Nearest-neighbor and Linear Image Interpolation

In image morphing, image warping and then color interpolation are performed [224].

There is an approach applied within image morphing that was applied in this work. It

has been proposed segmenting the warped images before the interpolation so that no

region cause self-occlusion. If a region is visible in both warped images, then these vis-

ible regions are interpolated linearly, otherwise the interpolated pixels are given only

by the visible region. This approach reduces the problems produced by occlusions but

causes artifacts, such as the region boundaries appear as seams in the final image [58].

In this work, objects that self-occlude were frequently segmented as it was sug-

gested above, before applying deformation. Also, in the overlapping method, it is used

something similar but instead of considering entire regions that appear in the original

images, part of them are considered. In each part of a region visible in both origi-

nal images, linear interpolation is applied, otherwise nearest-neighbor interpolation

is applied by using the original image in which the part is visible.

109

(a) (b)

(c)

Figure A.19: Linear interpolation (c) of the initial (a) and final (b) original images

110

A.10.2 Shape-based Interpolation

Shape-based interpolation methods interpolate by using shape features [25] instead

of grey-level values. In binary images, the former methods are necessary because

applying grey-level methods is almost the same as applying the nearest-neighbor

method [128].

A.11 Image Quality Assessment

In this work, the interpolated images were compared against their reference images

to know which interpolation method is better. This comparison required to choose a

method for image quality assessment. Consequently, the latter methods were studied.

Initially, human beings assessed the images (subjective assessment) [174]. Later,

images were assessed automatically —by using simple formulae or complex mathe-

matical models of the human visual system— getting similar results as humans do

(objective assessment) [182, 53].

This work used only objective assessment since the subjective assessment is more

burdensome and expensive than the objective one [180]. As different observers could

not agree about the quality of an image, multiple human comparisons are necessary to

assess each image. In contrast, comparing images objectively only requires a formula

implemented in a computer, and an operator that enters the images.

The objective (assessment) algorithms can be categorized by the presence or ab-

sence of an original (distortion-free) image: the full-reference algorithms have a ref-

erence; the no-reference algorithms have not, and the reduced-reference algorithms

have only part of it [217]. The full-reference algorithms are considered the best option

when there exists a reference image [31]. As, in this work, there are reference images,

the goal is to choose one of the latter algorithms.

111

In the full-reference class, there are methods such as mean squared error (MSE)

and peak signal to noise ratio (PSNR) [155]. The MSE is the simplest and most used

full-reference method [217], but it is inaccurate to measure perceptual image qual-

ity [33]. The PSNR is another metric frequently used, but it has a small correlation

with human perception [155]. As these metrics (see Appendix G) only use the image

intensities, they are unsuitable to assess color images.

In a recent comparison between eleven full-reference metrics over all publicly avail-

able image databases, FSIMC ranked first according to the rank-order correlations (see

Sec. H.8) of Kendall, and Spearman, and the linear correlation of Pearson [233]. For

this reason, this metric is used to compare images in this work.

A.11.1 FSIMc

The human visual system (HVS) considers salient low-level features, such as edges

and zero-crossings to interpret a scene (Marr, 1980; Marr and Hildreth, 1980, and

Morrone and Burr, 1998, cited in [234]). The comparison of these features can be

used to create accurate indexes for image quality assessment [234].

The Feature SIMilarity (FSIM) index allows to compare images (grey-level images

directly, and color images by using their luma) by considering their low-level features.

As salient features coincide with the points where the Fourier waves had congruent

phases, phase congruency (PC) is used as a primary feature in FSIM [234].

In addition, the HVS considers contrast information, but PC is contrast invariant.

Therefore, FSIM includes the gradient magnitude (GM) calculated with the Scharr

operator as a secondary feature [234]9.

FSIM first computes similarity measures for both PC and GM [234]. To compute

9It does not consider 1
2h . Probably, it does not impact notoriously because it appears in Eq. A.13

where gradients are divided.

112

the phase congruency similarity, SPC , it uses

SPC(x) =
2 PC1(x) PC2(x) + T1
PC2

1(x) + PC2
2(x) + T1

, (A.12)

where PC1 and PC2 are the PC of the images, and T1 is a positive constant to increase

the stability of SPC [234]. To compute the gradient similarity, SG, it uses

SG(x) =
2 G1(x) G2(x) + T2
G2

1(x) +G2
2(x) + T2

, (A.13)

where G1 and G2 are the GM of the images, and T2 is a positive constant [234].

Then, the similarity, SL, is [234]

SL(x) = SPC(x) SG(x). (A.14)

Finally, a single score, FSIM, is computed as

FSIM =
ΣSL(x) PCm(x)

ΣPCm(x)
, (A.15)

where PCm(x) = max(PC1(x), PC2(x)) [234].

Although FSIM performed well, it did not consider color information.

FSIMC improves FSIM by considering color information. FSIMC translatesR′G′B′

images to YIQ to get their chrominance and luma. On one hand, to compute chromi-

nance similarity, each channel (I, and Q) similarity is computed as

SI(x) =
2 I1(x) I2(x) + T2
I21 (x) + I22 (x) + T3

, (A.16)

SQ(x) =
2 Q1(x) Q2(x) + T4
Q2

1(x) +Q2
2(x) + T4

, (A.17)

where I1 and Q1, I2 and Q2 are the chromatic channels of the images, and T3 and T4

are positive constant [234].

113

Then, chrominance similarity, SC , is [234]

SC(x) = SI(x) SQ(x). (A.18)

On the other hand, SL(x) and PCm(x) are computed on luma (Y ′) [234].

Finally, a single score, FSIMC , is computed as

FSIMC =
ΣSL(x) [SC(x)]λ PCm(x)

ΣPCm(x)
, (A.19)

where λ > 0 is the parameter to adjust the importance of the chromatic compo-

nents [234].

114

B
Mathematical Morphology

Mathematical morphology is a theory to analyze and process digital images. Specif-

ically, mathematical morphology provides tools to analyze the shape and form of

objects in images [189]. Although mathematical morphology started using set theory,

later it was extended (generalized) to complete lattices [194, 67].

B.1 Mathematical Basis

A partial order is a binary relation ≤ over a set P which is reflexive, anti-symmetric,

and transitive. The set P with the relation ≤ is called a partially ordered set, also

known as poset [54].

If a partial order satisfies ∀x, y ∈ P , x ≤ y or y ≤ x, then ≤ is a total order. The

set P with the relation ≤ is called a totally ordered set [54].

Given a poset (P,≤), and M , M ⊆ P , an infimum, also known as the greatest

lower bound, of M is an element a, a ∈ P such that a ≤ z for every z ∈M but x′ ≤ a

for each x′ ∈ L with x′ ≤ z for every z ∈M [193].

Given a poset (P,≤), and M , M ⊆ P , a supremum, also known as the lowest

115

116

upper bound, of M is an element a, a ∈ P such that a ≥ z for every z ∈M but x′ ≥ a

for each x′ ∈ L with x′ ≥ z for every z ∈M [193].

A complete lattice is a partially ordered set P such that every subset of P has an

infimum and a supremum [15].

Multichannel images cannot be processed easily because lattices require an order,

but there is no universal natural order for spaces with dimensions greater than 1 [140].

This problem limited to color images is treated in Sec. C.2.

A mathematical morphology operator (method) processes an image, called the

active image, by using another image, called structuring element, as a probe or filter.

Its result depends on the structuring element used [184].

In this work, the morphological operators are almost always applied to binary

images. The only exception is the color median image generation.

Unless something different is clearly stated, this section treats about binary im-

ages and binary operations. Next sections explain succinctly grey-level and color

operations.

B.2 Structuring Element

A structuring element is a small set used by the morphological operators [189]. Struc-

turing elements have a crucial role in these operators: the different shapes and sizes

of the former change the results of the latter [92].

It is necessary to define the origin of each structuring element [189]. Sometimes

this pixel (point) is signaled with a circle [92], or a cross on it. Usually, the structur-

ing element center is assumed as the origin.

117

In a morphological operation, the structuring element is superimposed so that its

origin coincides with some point or pixel on the active image [189]. It is possible that

the structuring element fits or not (misses) there. This determines the result of the

operation. For example, a binary structuring element fits a binary image when there

is a “1” on each point of the active image under the structuring element [92].

Some elementary discrete structuring elements for 4- and 8-connected grids are

shown in Figs. B.1 and B.2, respectively [195]. They are approximations of a disk [189].

1
1 1 1

1

Figure B.1: 3x3 cross or diamond

1 1 1
1 1 1
1 1 1

Figure B.2: 3x3 square

Other examples of discrete structuring elements are shown in Figs. B.3 and B.4.

1
1

1 1 1 1 1
1
1

Figure B.3: 5 x 5 cross

1
1 1 1

1 1 1 1 1
1 1 1

1

Figure B.4: 5 x 5 diamond

If the previous discrete structuring elements are applied to two-dimensional im-

ages, they are called flat structuring elements because they have the same number of

dimensions as the images under study [189].

The structuring elements with weights associated with its points are called grey-

scale, non-flat or volumic structuring elements [189].

118

B.3 Binary Operators

In mathematical morphology, there are two basic morphological operators — dilation

and erosion — that build complex ones [189], for instance, closing and opening [184].

Binary Dilation

In very simple terms, binary dilation (⊕) of a set A by the structuring element B

leaves a set Y whose elements are the elements of X superimposed with B (the center

of B is placed on each point of X). Formally, A ⊕ B = {z|(Bs)z ∩ A 6= ∅}, where

Bs is the reflection, also called symmetric set, of B, Bs = {x ∈ E| − x ∈ B} [65].

This definition is slightly different from those of Serra [179], and Soille [189]. However,

they are equivalent when the structuring elements are symmetric. Another method to

compute binary dilation is by using Minkowski addition. Let A = (a1, a2, . . . , an) and

B = (b1, b2, . . . , bm). Then Y = A + B, where + represent the Minkowski sum [184].

See some examples below.

In Fig. B.5, there is only one pixel in the image at the left whose dilation creates

a set with the same shape as the structuring element in the image at the right. The

dilation was made with the 3x3 cross (Fig. B.1).

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(a)

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

(b)

Figure B.5: Dilation of a pixel: An image with a pixel (a) and its dilation (b) with
the 3x3 cross.

119

In Fig. B.6, there is a rectangle in the image at the left whose dilation creates a

new set with a different shape in the image at the right. The dilation was made with

the 3x3 cross (Fig. B.1).

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(a)

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0

(b)

Figure B.6: Dilation of a rectangle: An image with a small rectangle (a) and its
dilation (b) with the 3x3 cross.

Binary Erosion

Binary erosion () of a set A by the structuring element B leaves a set Y whose

elements are the elements of X in which B can be fit. This is equivalent to A	 B =

{z|(B)z ⊆ A} [65, 189]. Notice that Gonzalez [65], and Soille [189] agree on the bi-

nary erosion in spite of their disagree in the binary dilation. See some examples below.

There are some pixels in the left image in Fig. B.7. Its erosion with the 3x3 cross

(Fig. B.1) erases almost all of them (see the image at the right in Fig. B.7). Notice

that the element in the right bottom is preserved because the pixels out of the image

are assumed as “1” in the erosion.

120

1 1 1 1 1
0 0 0 0 0
1 1 1 1 0
0 1 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 1

(a)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

(b)

Figure B.7: Example of erosion: An image with some pixels (a) and its erosion (b)
with the 3x3 cross.

In Fig. B.8, there is a rectangle at the left image whose erosion with the 3x3 cross

(Fig. B.1) creates a small one (see the image at the right).

0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0

(a)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(b)

Figure B.8: Erosion of a rectangle: An image with a large rectangle (a) and its erosion
(b) with the 3x3 cross

B.4 Ultimate Eroded Set

Applying binary erosion to a binary image successively erases all connected compo-

nents sooner or later. The union of the disappearing connected components is the

ultimate eroded set [189]. See some examples in Figs. B.9 and B.10. The 3x3 cross

and the 3x3 square are shown in Figs. B.1 and B.2, respectively.

121

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0

Original set

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Eroded set

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Ultimate eroded set

Figure B.9: Computing ultimate eroded set with the 3x3 cross

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0

Original set

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Ultimate eroded set

Figure B.10: Computing ultimate eroded set with the 3x3 square

B.5 Hit and Miss Transform

The hit and miss transform allows to detect a certain configuration of pixels in a

position of an image. It is erroneously or inappropriately written as hit or miss trans-

form [46, 117, 189]1.

This transform uses a composite structuring element formed by two disjoint struc-

turing elements which have the same origin. One of them has to fit the object under

study (C), and the other has to miss it (D). For this reason, hit and miss is a proper

name for this transform [189]. It is possible to detect foreground or background pix-

els depending on who owns the origin. A composite structuring element that detects

upper left corners is shown below in Fig. B.11.

1The hit and miss transform name originates neither from the adjective hit-or-miss (US) nor from
the adjective hit-and-miss (UK) [159].

122

1 1
1

(C)

1 1 1
1
1

(D)

Figure B.11: Composite structuring element for detecting upper left corners: (C) For
the foreground and (D) for the background.

This transform is applied to images by using the formula

A�B = (A	 C) ∩ (Ac 	D),

where 	 is the erosion and Ac is the set complement of A [49].

B.6 Thinning

Thinning deletes pixels of an object without holes until minimally connected lines

remain halfway its borders, and deletes pixels of an object with holes until minimally

connected rings remain halfway between the external border of each hole and the

nearest external border belonging to the object or to another hole [157]2.

Thinning removes the border pixels that match the configuration given by a com-

posite structuring element. Thinning ⊗ is computed by using

X ⊗ T = X \ (X � T),

where X is a set, T is a composite structuring element, \ is set difference, and � is

the hit and miss transform [179].

Although this definition seems simple, there are many thinning algorithms [108].

2This definition extends that of Pratt to consider adjacent holes.

123

It is possible to apply thinning successively to a set what is called iterative thin-

ning. There are two ways of applying iterative thinning. First, examining the pixels

one after another, what is called sequential thinning. The result of this thinning

depends on the order in which the pixels are processed. Second, examining all the

pixels simultaneously, what is called parallel thinning. The result of this thinning in

an iteration, only depends on the result of the previous iteration [108].

B.7 Shrinking

Shrinking deletes pixels of an object without holes until a pixel remains at or near

the geometric center of the object, and deletes pixels of an object with holes until

connected rings remain halfway between the external border of each hole and the

nearest external border belonging to the object or to another hole3. Particularly, a

3x3 pixel object shrinks to a pixel in its center4; and a 2x2 pixel object shrinks —by

definition— to a pixel in the lower right corner [157].

According to the definitions of thinning and shrinking, there would be no differ-

ence when an object has holes. However, they might obtain different results since they

use distinct algorithms. For example, the results of applying thinning and shrinking

on the image (a) can be seen in the images (b) and (c) in Fig. B.12.

B.8 Skeletonization

Skeletonization, also known as Skeletonizing, reduces an object to a set of lines that

are called skeleton. The extension of skeletons from Euclidean sets to discrete sets is

complex what leads to skeletons that have different properties [189].

3This definition extends that of Pratt to consider adjacent holes.
4Pratt uses center of mass, but in a uniform density object, the center of mass coincides with

the geometric center or centroid.

124

(a) A circle with holes

(b) Applying shrinking (c) Applying thinning

Figure B.12: Comparing shrinking (b) with thinning (c) on the image (a)

125

Euclidean Skeletons

There are several formal definitions for Euclidean skeletons. These definitions give

similar thin lines and preserve the homotopy of the original set. Among them, maxi-

mal disks, grass-fire or wavefront propagation, distance function, minimal paths, and

openings [189]. The first two definitions are explained here.

A maximal disk, also known as maximum disk, is one of the disks contained in a

shape so that no another disk within the shape contains it [98, 179].

A skeleton is the set of centers of the maximal disks (balls) of a set [179]. Formally,

S(X) =
⋃
ρ>0

⋂
µ>0

[
(X 	 ρB) \ ((X 	 ρB) ◦ µB)

]
, (B.1)

where ρB is an open ball of radius ρ, and B is the closure of B (Lantuéjoul, 1977,

cited in [179]).

For example, a set of two overlapped disks has a skeleton formed by a line between

the centers of both disks (see Fig. B.13).

Figure B.13: Overlapped disks and its skeleton

126

Medial axis transformation reduces an object to a set of lines that are called me-

dial axis.

Medial axis is the set of centers of disks within a set X that overlap the borders

of X at various points [179]. In simpler words, the medial axis of an object P is

the set of points inside P having the same minimal distance to various borders of

P [149]. A method based on wave fronts was proposed to compute it [23]. Suppose a

simultaneous excitation on all the borders of an object. This excitation creates waves

that spread uniformly in all directions but without flowing through each other. The

medial axis is the set of points where various waves meet. Notice that waves that

meet outside the object are discarded. In addition, it was suggested visualizing the

contours (waves) as the front of a grass fire [23]. In this case, it is supposed that there

exist grass on an object. Then, the boundaries of the object are set on fire. The fire

spreads inwards from these points. Montanari (1968, cited in [98]) suggests that each

fire front propagates with a constant velocity along its normal direction. The medial

axis is the set of points where various fire fronts meet [38].

The medial axis has been called [23] or considered [98, 189] a skeleton. Precisely,

the medial axis is a subset of the skeleton, but the difference is minimal. However,

distinct morphological methods are used to compute them [179]. In this work, these

concepts are considered equivalent; they are called skeleton.

Discrete Skeletons

The extension of skeletons to discrete sets is not direct [189, 146] due to the fact that

most concepts applied to Euclidean skeletons do not have a discrete equivalent [189].

For example, a line cannot be infinitely thin; a disk cannot be represented precisely,

and a centered skeleton is placed approximately (notorious in thin shapes) [189].

Considering the constraints to apply skeletonization to discrete sets, these desir-

able properties of discrete skeletons have been proposed [146]:

127

1. Topology preservation: the Betti numbers5 of a set and its skeleton are the

same.

2. One-pixel-thickness: the skeleton should be as thin as possible6.

3. Medial position: the skeleton is midway the borders of the image.

4. Rotation invariance: if an image is rotated, its skeleton is the same but rotated.

5. Noise immunity: the skeleton should not change when there is noise.

6. Reconstructibility: the skeleton should allow to get the original set [189].

Unfortunately, it is impossible to fulfill all of them simultaneously. Therefore,

each method complies some of them [146].

There exist many types of skeletonizing algorithms, each of them with its own

characteristics [189, 146]. Some of them are maximal disks, homotopic sequential

thinnings, order independent homotopic thinning, discrete distance function, skele-

ton by influence zones (SKIZ), and openings [189]. Some notes about some of these

methods are shown below.

Maximal disks is a discretization of Eq. B.1. This is S(X) =
⋃∞
n=0 Sn, where

Sn(X) = (X 	 nB) \ ((X 	 nB) ◦ B), and B is the elementary ball [19, 49, 222].

A skeleton computed accordingly to this definition might be non-connected. Conse-

quently, this skeleton does not preserve homotopy [211]. In addition, it might have

lines wider than one pixel [222].

Homotopic sequential thinning applies sequential thinning with homotopic struc-

turing elements (they are structuring elements that do not break the connectivity of

a set [19]). This thinning produces a medial axis. These points and their minimal

5For two-dimensional images, the Betti numbers are the number of connected components and
the number of holes.

6To get this, it was suggested that the foreground would be considered 8-connected and the
background 4-connected [108].

128

distance to the borders allow to reconstruct the original set [189]. This thinning con-

serves topology and to some extent the shape of the object, but it is time-consuming,

noise-sensitive, and gives very rough skeletons [146].

The skeleton by influence zones (SKIZ) is a subset of the medial axis [179].

A skeleton is shown in Fig. B.14 (b). Notice that this skeleton seems strange; it

was expected a symmetric skeleton since the set is symmetrical.

A skeleton can be seen in Fig. B.14 (c). This is a parallel thinning that produces

thin medial curves [73]. Notice that this skeleton is symmetrical.

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0

(a)

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(b)

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(c)

Figure B.14: Different skeletons of a set: The set (a), and the skeletons computed in
Matlab with bwmorph operations “skel” (b), and “thin” (c).

B.9 Pruning

Pruning is a process that cuts spurious branches that appear in skeletonizing opera-

tions [150]. These branches can be located by finding points with only one neigh-

bor [184]. This can be done by using the hit and miss operator [119].

129

B.10 MSP

As a skeleton is thin, pruning it until stability finishes with “a single point or ringlike

structures” [49]. Particularly, pruning the skeleton of a filled region —a region whose

holes have been filled— finishes with a point. This point is called MSP [210].

In addition, it has been computed by shrinking [206]. This method is better be-

cause the position of this point is at or near the center of mass [157]. Notice that

the center of mass might lie outside the object what never happens with the MSPs

computed with the previous method.

B.11 Interpolation of Sets

Several morphological interpolation methods processed sets. For example, the median

set (see Sec. B.11.1), the sequence of interpolations through median sets of Beucher

(see Sec. B.11.2), the Interpolation function of Meyer (see Sec. B.11.3), and the In-

terpolations based on Hausdorff distance of Serra (see Sec. B.11.4).

The methods of Meyer and Beucher cannot interpolate when the sets do not in-

tersect; the methods of Serra have problems to interpolate distant sets7. In general,

interpolating distant sets is either impossible or almost unrealistic [87].

B.11.1 Median Set

Serra [178] defined the median set M of X and Y , being X ⊆ Y , as

M =
⋃
λ≥0

{(X ⊕ λB) ∩ (Y 	 λB)}, (B.2)

where B is the elementary structuring element [85]. An example of a step of the

application of this formula is shown in Fig. B.15. Here, the intersection of X ⊕ λB
7Meyer published before Beucher and Serra, but they had written separate technical reports

about the same theme of their articles in 1994 [178].

130

and Y 	 λB, that is a part of the median set M , equals X ⊕ λB.

(a) (b)

Figure B.15: Computing median set: (a) X and Y sets (taken from [207]). (b) A step
of median set computation (modified from [207]).

Observe that the median set of nested sets is calculated by dilating X and erod-

ing Y . While Beucher [20] proposed to compute median sets by using only dilation

operations.

The median set is halfway between the two original sets. If these sets are shapes,

the median set obtains a shape midway the original shapes. The median set is an

interpolation of these sets [178].

Median set can easily be extended to intersecting sets [85]. Suppose two sets P

and Q, P ∩Q 6= φ. Let X = P ∩Q, and Y = P ∪Q. Then it is possible to compute

the median set by using Eq. B.2. An example of a median set can be seen in Fig. B.16.

An algorithm to compute median sets is described below [85].

131

Figure B.16: Median set from two input sets: (a) an input set, (b) another input set
and (c) its median set.

Initially, three auxiliary sets are defined

Z0 = M0 = X ∩ Y

W0 = X ∪ Y

Then, new values are computed iteratively until idempotency by using

Zi = Zi−1 ⊕B

Wi = Wi−1 	B

Mi = (Zi ∩Wi) ∪Mi−1,

where B is the elementary structuring element.

Consequently, median set is

M(X, Y) = M∞ = Mi, (B.3)

where i : Mi+1 = Mi.

132

B.11.2 Sequence of Interpolations through Median Sets

Beucher [20] used median sets (see Sec. B.11.1) to interpolate sets. The idea is to

create a sequence of deformations from X to Y . Be K0 = X; Kn = Y with n a power

of 2, and M the median set between two sets. Then

Kn/2 = M(K0, Kn);

Kn/4 = M(K0, Kn/2);

K3n/4 = M(Kn/2, Kn);

Kn/8 = M(K0, Kn/4);

. . .

B.11.3 Interpolation Function

Meyer [130] proposes using geodesic distances (see Sec. A.7.1) to build an interpolation

function between a set U and a set V containing it. For any point x belonging to

V/U passes a shortest path between U and V C . Be d1 the geodesic distance between

x and V C . This distance can be computed eroding V in UC with the geodesic erosion

(εU(V) = ε(V)∪U). Be d2 the geodesic distance between x and U . This distance can

be computed dilating U in V with the geodesic dilation (δU(V) = δ(U) ∩ V). The

shortest path has a distance equal to d1(x) + d2(x). Hence, it is possible to define an

interpolation function as

V

Int
U

=


1 U

d1
d1+d2

V/U

−∞ V C

The interpolated sets between U and V are obtained by thresholding between 0

and 1 by using

V

Int
U

(α) =

{
x|

V

Int
U
≥ α

}
If the value of α is 0, it gives V ; if the value is 1, it gives U .

In the same paper, Meyer extended it to any two intersecting sets X and Y. To

do this, the set U is constructed as X ∩ Y . The set X becomes Y by, at the same

133

time, shrinking X until it becomes U and expanding U to become Y .

Thus, the interpolated set T is

T =
Y

Interpolation
X

(α) =
X

Int
U

(α) ∪
Y

Int
U

(1− α),

where α ∈ [0,1].

B.11.4 Interpolations based on Hausdorff Distance

Serra [178] used Hausdorff distance (see Sec. A.7.2) to create several types of interpo-

lations, such as the first Hausdorff geodesic and the second Hausdorff geodesic. The

first method is explained below.

First Hausdorff Geodesic Interpolation

The first Hausdorff geodesic interpolation considers that a pair X, Y at Hausdorff

distance ρ apart, admits this geodesic [178]:

{Zα = δαρ(X) ∩ δ(1−α)ρ(Y), α ∈ [0, 1]}

When α = 0, this interpolation gets X; when α = 1, this interpolation gets Y ;

when α takes an intermediate value and the sets X and Y are disjoint, this interpo-

lation is greater than both X and Y (a swelling).

An example is shown in Fig. B.17. Consider the sets X and Y , and the structur-

ing element shown in (a), (b), and (c), respectively. Multiples dilations —each area

enclosed by a red line— of the set X and Y are shown in (d) and (e), respectively.

Note that ρ = 11. Thus, to compute all the interpolations for this example, α = n/11,

with n=0, 1, . . . , 11. Finally, the interpolation with alpha = 4/11 is shown in (f).

134

(a) Set X (b) Set Y
(c) Structuring

element

(d) δαρ(X) (e) δ(1−α)ρ(Y)
(f) Interpolated
set (α = 4/11)

Figure B.17: Example of first Hausdorff geodesic interpolation

C
Mathematical Morphology for Images

C.1 Grey-level Mathematical Morphology

This section should refer to mathematical morphology applied to grey-level images.

However, in this work, grey-level operators were not used. However, the grey-level

watershed transform has been extended to color images.

C.1.1 Grey-level Watershed Transform

There are many concepts of physical geography used in mathematical morphology.

One of them is watershed. Unfortunately, watershed has two usages in mathe-

matical morphology: as drainage divide [103, 189], and as catchment or drainage

basin [65, 157, 179]. To avoid confusions, watershed is synonymous with drainage

divide in this document.

A grey-level image can be seen as a topographical map where high values represent

high altitudes, and low values represent low altitudes [65]. The watershed transform

obtains its drainage divide (watershed) [103].

There are two intuitive approaches to explain the watershed transform: One based

135

136

on raining and the other, on flooding. On one hand, if it rains, each drop after con-

tacting the surface slides by the steepest descent to the lowest point in the region

(regional minimum). However, in some points, a drop might slide to several regional

minima. These points are the watershed [189]. On the other hand, first suppose that

holes are pierced in each regional minimum, then the water table level rises, but water

can only enter by the holes. A dam is constructed where the water fronts originating

from several holes meet. When all the surface is underwater, the resulting set of dams

is the watershed [189, 103].

The watershed transform can be implemented with the flooding approach and

cannot be implemented with the raining approach [189].

The watershed transform (classical or regular watershed [49]) can be applied to

the original image, and to its gradient [103]. It produces over-segmentation on both

cases [166, 65, 184]. An example of over-segmentation is shown in Fig. C.1 .

Figure C.1: Watershed of an image: (a) An image and (b) its watershed (Alina N.
Moga and M. Gabbouj, taken from [157])

Several approaches have been used to solve this problem, among them: watershed

from markers and hierarchical watershed [166]. They are useful for interactive image

segmentation, and they have been used conjointly in SegmentIt [101].

137

Watershed from Markers

The flooding analogy helps to explain this approach easily. As each hole creates a

region, the idea is to make holes only in the regions of interest (objects, for example).

The user puts a marker in each region of interest, and the watershed transform drill

holes only in these markers [49, 101, 116].

A marker could be a connected component [65] or a set of disconnected points [116].

Markers could be defined by the user or computed automatically [189]. Many markers

might correspond to the same segment [189].

This method obtains good segmentations when it is known where the markers

should be placed [49].

Hierarchical Watershed Transform

Hierarchical or multiscale watershed transform creates a hierarchy of water basins. It

can be understood as an improvement of the watershed from markers approach. Start-

ing from the case in which each minimal region has a marker, the number of markers

is reduced one-by-one until only one marker stays, by taking first the markers be-

longing to the upstream basins (in Dougherty terms, those with lower dynamics) [49].

A “upstream basin” has its regional minima upper than another basin (downstream

basin). The basins constructed with this procedure form a hierarchy of basins: the

upstream basin is the child and the downstream basin is the father.

These hierarchies help to solve the over-segmentation problem [171]. To do that,

the adequate basins are selected from the hierarchy.

138

C.2 Color Mathematical Morphology

Mathematical morphology cannot be applied to colors directly. As mathematical

morphology requires an order relation, there is a problem because colors do not have

a universal natural order. A solution is to use a sub-(less than total) ordering, that

is to say, an incomplete ordering relation. There are four classes of sub-ordering:

marginal, reduced, partial, and conditional [16, 10, 231].

In the marginal ordering, each component is ordered independently of the other

components. Thus, morphological operators that use this ordering produce component-

wise operators. For example, the color dilation of

f(x, y) = [fR(x, y), fG(x, y), fB(x, y)]

by the structuring element

h(x, y) = [hR(x, y), hG(x, y), hB(x, y)]T

in RGB color space is defined as

(f ⊕c h)(x, y) = [(fR ⊕ hR)(x, y), (fG ⊕ hG)(x, y), (fB ⊕ hB)(x, y)]T ,

where the symbol ⊕c represents component-wise dilation and ⊕ represents grey-scale

dilation [40].

In the reduced ordering, each vector maps to a single scalar value; these values

order the vectors (Barnett, 1976, cited in [40]). Usually, the function that maps the

vectors computes the distance to a reference vector [140].

In the partial ordering1, pre-orders partition the vectors in groups of equivalence

(Titterington, 1978, cited in [9]). In simpler words, vectors are partitioned into smaller

groups [59]. Although the groups are ordered between them, there is no order within

the groups [154].

1This is distinct to the partial order relation [140] (see partial order in Sec. B.1).

139

In the conditional ordering, vectors are ordered by using a hierarchical order of its

components [114]. This ordering is usually called the lexicographical order. Different

priorities can be defined between the components. If all of them are considered, this

is a total order. In addition, the infimum and supremum are members of the initial

set of vectors [140]. However, it does not consider the vectorial nature of the color

input [59].

Although all these families of orders have been used, only a few orders have

emerged as suitable. All of them change a space to a new one in which it is pos-

sible to order the vectors [140].

However, the ambiguity of ordering vectors and the subjectivity of colors have

prevented the general acceptance of any color morphological operator [10].

C.2.1 Color Watershed

Color segmentation methods are essentially grey-level segmentation methods applied

to different color spaces [37]. For example, the watershed transform processes only

grey-level images [34, 47]; many techniques have extended it to color images [47].

Obviously, these techniques might produce different watersheds [47].

There is an interactive program that uses color watershed: SegmentIt. This pro-

gram allows both watershed from markers and hierarchical watershed. Furthermore,

it is possible to change from one approach to the other. In the hierarchical watershed,

the user chooses which partition should be split to obtain each region of interest. It

is also possible to merge regions. This program uses a weighted gradient to segment.

A weighted gradient is the ponderation of the gradients defined in each band of the

HSB (HSV) color model [101].

140

D
Implementing Existent Interpolation Methods for

Color Images

This chapter describes the implementation of the color interpolation methods that

were used in this work.

The color interpolation methods implemented are the linear, and the median of

Iwanowski and Serra.

D.1 Implementing Linear Interpolation for Color Images

The two-image method explained in Sec. A.10.1 was implemented [196]. The linear

interpolation method requires a perceptually uniform color model to get better re-

sults. Here, CIELAB was chosen. So, the RGB images are transformed into CIELAB

images, then each component is interpolated linearly, and finally, the result is con-

verted into RGB. The implementation in Matlab can be seen in Fig. D.1.

141

142

function sRGB3 = Linear interpolation(sRGB1, sRGB2)

C = makecform('srgb2lab');
lab1 = applycform(sRGB1, C);
lab2 = applycform(sRGB2, C);

lab3= lab1 / 2 + lab2 / 2;

C = makecform('lab2srgb');
sRGB3 = applycform(lab3, C);

Figure D.1: Linear color interpolation program (written in Matlab)

D.2 Implementing Color Median of Images

This is an adaptation of the median image generation method for color images of

Iwanowski and Serra explained in Sec. 2.4 [85]. In this adaptation (see Fig. D.2),

pixels were compared using lightness.

As in CIELAB, the first component, L*, is lightness, the RGB images are con-

verted into CIELAB ones within calcularInfimoLuminosidad, calcularSupremoLumi-

nosidad, dilatarColorLuminosidad, and erosionarColorLuminosidad.

The infimum is the image that results from a point-to-point operation that takes

the pixel with lower lightness from the input images. It is computed in calcularInfi-

moLuminosidad (see Fig. D.3).

The supremum is the image that results from a point-to-point operation that

takes the pixel with higher lightness from the input images. It is computed in calcu-

larSupremoLuminosidad.

In the dilation, computed in dilatarColorLuminosidad, the structuring element

is superimposed on each pixel of the input image; the pixel under the structuring

element with the highest lightness is put under the center of the structuring element

in the output image.

143

function M = computingColorMedianImage (X,Y)

if sum(sum(sum(X & Y))) ∼= 0
SE = strel('disk',1,8);
Z = calcularInfimoLuminosidad (X, Y);
W = calcularSupremoLuminosidad (X, Y);
Mant = W;
M = Z;
while ∼isequal(Mant, M)

Mant = repmat(M,1);
Z = dilatarColorLuminosidad (Z, SE);
W = erosionarColorLuminosidad (W, SE);
M = calcularSupremoLuminosidad (calcularInfimoLuminosidad (Z, W), M);

end
else

M = X;
display('Warning, the set intersection is empty');

end

Figure D.2: Color median image generation program (written in Matlab)

function M = calcularInfimoLuminosidad (sRGB1, sRGB2)

C = makecform('srgb2lab ');
lab1 = applycform(sRGB1, C);
lab2 = applycform(sRGB2, C);
[filas, columnas, dummy] = size(sRGB1);

for i = 1:filas
for j = 1:columnas

if (lab1(i,j,1) <= lab2(i,j,1))
M(i,j,1) = sRGB1(i,j,1); M(i,j,2) = sRGB1(i,j,2); M(i,j,3) = sRGB1(i,j,3);

else
M(i,j,1) = sRGB2(i,j,1); M(i,j,2) = sRGB2(i,j,2); M(i,j,3) = sRGB2(i,j,3);

end
end

end

Figure D.3: calcularInfimoLuminosidad program (written in Matlab)

144

In the erosion, computed in erosionarColorLuminosidad, the structuring element

is superimposed on each pixel of the input image; the pixel under the structuring

element with the lowest lightness is put under the center of the structuring element

in the output image.

E
Prewitt Operator

Extending the kernels in Figs. A.10 and A.11 to a 3x3 matrix leads to the Prewitt

kernel [160].

Two of the eight Prewitt masks are shown in Eqs. E.1 and E.2 [18]. Notice that

Gx goes rightwards, and Gy, upwards.

Gx =
1

6


−1 0 1

−1 0 1

−1 0 1

 (E.1)

Gy =
1

6


1 1 1

0 0 0

−1 −1 −1

 (E.2)

Many authors use approximate Prewitt masks as they are not interested in the

exact values of the derivatives. They are interested in the relative differences; for

example, to compute the gradient orientation, or to detect a border. Some authors

do not consider 1
2h

in Eq. A.2. Two of the eight approximate Prewitt masks are shown

in Eqs. E.3 and E.4 [234]. Notice that Gx goes rightwards, and Gy, upwards. Other

authors consider neither 1
2h

nor 1
w+2

in Eq. A.2. Thus, two of the eight approximate

145

146

Prewitt masks are shown in Eqs. E.5 and E.6 [2].

Gx =
1

3


−1 0 1

−1 0 1

−1 0 1

 (E.3)

Gy =
1

3


1 1 1

0 0 0

−1 −1 −1

 (E.4)

Gx =


−1 0 1

−1 0 1

−1 0 1

 (E.5)

Gy =


1 1 1

0 0 0

−1 −1 −1

 (E.6)

F
Sobel Operator

The Sobel operator gives more importance to the difference across the central pixel [82].

This operator is often better than the Prewitt operator [26] as it suppresses noise

better [50, 92].

Two Sobel kernels [18] are shown below. Notice that Gx goes rightwards, and Gy,

upwards.

Gx =
1

8


−1 0 1

−2 0 2

−1 0 1

 Gy =
1

8


1 2 1

0 0 0

−1 −2 −1


For the same reason given for the Prewitt operator, approximate Sobel masks are

frequently used. For example, two commonly used kernels are the matrices shown

above but without the fractions [151].

147

148

G
Mean Squared Error and Peak Signal to Noise Ratio

G.1 Mean Squared Error

MSE is computed as

MSE =
1

N

N∑
i=1

(xi − yi)2,

where x = {xi|i = 1, 2, . . . , N} and y = {yi|i = 1, 2, . . . , N} are two images to be

compared, xi and yi are their intensities in the pixel i, and N is the number of pixels

of these images [216].

G.2 Peak Signal to Noise Ratio

PSNR is computed as

PSNR = 10 log10
L2

MSE
,

where MSE is the mean squared error and L is the dynamic range of intensities (for

8 bits/pixel, L = 28 − 1 = 255) [216].

149

150

H
Statistics

This section explain some basic and advanced concepts about statistics.

H.1 p-value

The p− value is the probability that the results were obtained by chance. Formally,

the p − value is the probability that the test statistic obtains values as or more ex-

treme than the observed test statistic by assuming that H0 is true [28].

The smaller p− value, the stronger evidence against the null hypothesis [28].

H.2 One- and Two-tailed Tests

The way of computing the p − value depends on the alternate hypotheses and the

type of test [28]. For example,

This is the null hypothesis :

H0: m = 0.

151

152

These are alternative hypotheses :

H1: m 6= 0.

H1: m > 0.

H1: m < 0.

If the alternative hypotheses is H1: m 6= 0, the p − value is the probability of

getting a test statistic as high or higher than the observed test statistic or as low or

lower than the observed test statistic. This is a two-tailed test [28].

If H1: m > 0, the p− value is the probability of getting a test statistic as high or

higher than the observed test statistic. This is a right-tailed test [28].

If H1: m < 0, the p− value is the probability of getting a test statistic as low or

lower than the observed test statistic. This is a left-tailed test [28].

The right- and left-tailed tests are one-tailed tests [218].

H.3 Significance Level

The significance level is the maximum probability of arriving to a “wrong” conclusion

that someone tolerates (is willing to take). For example, a significance level of 1%

means that if you collect 1000 samples and perform a statistical test on each of them,

you will make the “wrong” conclusion ten times (1% of 1000 is 10). Here, wrong

means that the alternative hypotheses is accepted (it is believed to be true) when it

is false. This is a Type I error [175].

The significance level, α − level, usually is set to 0.10, 0.05, and 0.01. They are

called moderately significant, significant, and highly significant, respectively [175].

153

When a statistical test is performed, if the p−value is less than α−level, the result

is statistically significant [175]. Consequently, the null hypothesis can be rejected [168]

The significance level must be set before the experiments [221].

H.4 Statistical Power

The statistical power of a test is the probability of rejecting the null hypothesis when

that hypothesis is in fact wrong [138].

The error of not rejecting a false null hypothesis is called a type II error. The

probability of this type of error is beta. Therefore, the power is 1 minus beta [14].

H.5 Skewness

Skewness is defined as the opposite of symmetry; when there is skewness, the mean,

median and mode values are different [90]. The skew can be negative or positive (see

Fig. H.1). It is positive when more than half of the area under the curve is at the

right of the mode, and it is negative when more than half of the area below the curve

is at the left of the mode [90].

Figure H.1: Negative and positive skew diagrams (Hermans, 2008)

154

The main methods for measuring skewness are the methods of Karl Pearson, Bow-

ley, and Kelly [90].

There are many methods applicable to small samples [6]. The definition used here

is

Skewness = n2

(n−1)(n−2)
m3

s3
,

where m3, the sample third central moment, is

m3 = 1
n

∑n
i=1(xi − x)3,

and s, the sample standard deviation, is

s =
√

1
n−1

∑n
i=1(xi − x)2 [24]1.

The variance of skewness is

var(Skewness) = 6n(n−1)
(n−2)(n+1)(n+3)

[24, 104].

Then, the standard deviation of the skewness is

SD(Skewness) =
√

var(Skewness).

There exist a test statistic for skewness,

z1 = Skewness
SD(Skewness)

∼ N(0, 1) [24].

1taken from http : //www.xycoon.com/skewness small sample test 1.htm

155

H.6 Normality

A population or sample has normality when it follows the normal distribution [107].

There are many methods for appraising normality. They fall into one of three

categories [107]:

Descriptive statistics

Descriptive statistics can be used to judge if the data follows the normal distribu-

tion [161] as this distribution has some unique characteristics relatives to “cen-

tralization” and “dispersion” [69].

Among the descriptive statistics that appraise centralization are the mean, the

mode, and the median. In this distribution, all of them are equal [69].

Among the descriptive statistics that evaluate dispersion are the skewness and

the kurtosis [124]. In this distribution, skewness is 0 and kurtosis is 3 [170].

Some authors [107] suggests kurtosis must be close to 0, but they refer to excess

kurtosis.

If descriptive statistics for a sample are close to the expected values for a normal

distribution, a normal distribution can be assumed.

Statistical graphics

Graphs are more useful than descriptive statistics to appraise normality. His-

tograms, box plots, and (normal) probability plots are the most used graphs for

this. Others used sometimes are stem-and-leaf diagrams, dot plots, and Q-Q

plots [107].

The normal probability plot is a more specialized display to check normality

than histograms, box plots, stem-and-leaf diagrams, and dot plots [190]. For

this reason, the normal probability plot has been used in this work (this graph

is explained below).

Although it is possible to judge normality by using plots, it is subjective and

rather difficult to do this, so it is useful to apply a test of normality [60, 170].

156

Statistical tests

Apparently, this is the best choice to appraise normality.

The most used are the Shapiro-Wilk, Kolmogorov-Smirnov, and Chi-squared

tests [107].

It is crucial to be aware of the power of these tests, and their power depends

on the sample size [152]. These tests may suffer from low power, i.e. they may

fail to reject H0 when it is false (Wilcox, 2003, cited in [110]). If the sample is

small, a test of normality can be useless [76].

The hypotheses for the tests of normality are [170]

H0: The sample comes from a normal distribution.

H1: The sample comes from a non-normal distribution.

Remember that fail to reject H0 is not the same as accept H0. If the sample is

small, low power impedes rejecting H0. In this case, it has been advised to look

at the statistical graphics as well [110].

H.6.1 Normal Probability Plot

To construct this graph [212, 137], first rearrange the data set in ascending order.

Let x1, x2, . . . , xn the reordered data set. The subscript i represents the rank of the

particular data value. The estimated cumulative probability, Pi, for each value in the

reordered data set is

Pi =
i− 0.5

n
. (H.1)

The ordered observations xi are then plotted against Pi on a normal probability pa-

per [137]2. If this graph shows roughly a straight line, the data follows roughly a

2It is easy to find this kind of paper on the Internet.

157

normal distribution [190].

It is also possible to use a software package to plot this graphic.

H.6.2 Shapiro-Wilk Test

In the last years, this test has become the preferred one as it compares favorably

to a wide range of alternative tests [91]. The Shapiro-Wilk test is the most power-

ful normality test when it is compared with the Kolmogorov-Smirnov, Lilliefors, and

Anderson-Darling tests [163].

This test is suitable when the sample is small (less than 50); otherwise, it is too

exigent [164].

This test statistic is denoted by W and ranges from 0 to 1 [152]. The critical

values can be searched in a table; for example, in [123].

To compute this test by hand is burdensome [11].

H.7 Paired Difference Tests

If a sample of differences comes from a normal population with standard deviation

unknown, a t-test for correlated samples is appropriate [66]. Otherwise, it is compul-

sory to apply non-parametric tests, such as the sign and the Wilcoxon signed-rank

test. These tests are explained below.

H.7.1 t-Test for Correlated Samples

It is also called t-test for pairs, t-test for paired samples, t-test for matched samples,

and t-test for related samples t-test for dependent samples, repeated-measures t-test,

158

and within-subjects t [167, 134].

This test has these assumptions [204]:

1. The distribution of the population is normal.

2. The distribution of pairwise differences is normal, and the differences

are a random sample.

3. Cases must be independent of each other.

As it was not applied in this work, it is not described.

H.7.2 Wilcoxon Signed-rank Test

The Wilcoxon signed-rank test is used to test hypotheses about the median of a

population or the difference between paired measurements. The second use is more

frequent [93]; this section explains it.

The Wilcoxon signed-rank test is the non-parametric test appropriate to com-

pare two related samples [41]. This test is especially useful when the sample is small

(n < 30), and the differences are distributed strongly non-normal [187]. It requires

numerical data and a population (conformed by the differences in paired values) sym-

metrically distributed [64, 187, 213]. When the data are non-symmetrical or highly

skewed, it can be used the sign test [213].

The power efficiency of this test relative to the t-test for correlated samples is

95.5% when the assumptions of the latter test are met. Thus, the Wilcoxon signed-

rank test is an excellent alternative to the t-test for correlated samples [99].

These assumptions must be checked [1]

1. The differences are a random sample from a population of differences with

unknown median, M.

159

2. The differences are calculated on quantitative data having the interval property.

3. The population of differences has a continuous distribution and is symmetric.

It is computed following these steps [169, 129]:

1. This is the null hypothesis :

H0: m = 0.

2. Choose one of these alternative hypotheses :

(a) H1: m 6= 0

(b) H1: m > 0

(c) H1: m < 0.

3. Collect or choose a random sample of paired data.

4. Compute the difference for each pair of observations. Discard differences equal

to zero, and reduce the number of pairs, n, accordingly.

5. Rank the remaining pairs by assigning 1 to the smallest absolute difference, 2 to

the next one, . . . , n to the highest one. If there are some ties in the differences,

assign the mean of their ranks to each of them.

6. Calculate the rank sum for the negative differences, T−, and for the positive

ones, T+. Be T the lower value between T− and T+.

7. Find the p-value or, alternatively, T0.

To find the p-value,

(a) To test H1: m 6= 0, a two-tailed test, use T and n to compute the p-value.

(b) To test H1: m > 0, a one-sided test, use T+ and n to compute the p-value.

(c) To test H1: m < 0, use T− and n to compute the p-value.

Alternatively, use α and n to find the value T0 in a table of critical values of T .

160

8. Conclude.

If the p-value is less than α (alternatively, if T0 < T [T+ or T−]), reject H0

and conclude that the median difference is not zero, is greater, or less than zero

respectively, otherwise do not reject H0.

H.7.3 Sign Test

The sign test is used to test hypotheses about the median of a population or the

difference between paired measurements [169]. This section explains the latter.

This is a non-parametric test used to compare sample distributions from two pop-

ulations that are not independent [28]. This test can be used without taking care of

the distributions. However, this test is not very powerful [200].

It only requires numerical or ordinal data [200]. These measurements are replaced

by plus and minus signs, and then the signs are considered a sample from a binomial

population [56].

It is computed following these steps [169]:

1. This is the null hypothesis :

H0: m = 0.

2. Choose one of these alternative hypotheses :

(a) H1: m 6= 0

(b) H1: m > 0

(c) H1: m < 0.

3. Collect or choose a random sample of paired data.

4. Compute the number of times k that the difference for each pair of observations

is greater than zero. Discard differences equal to zero and reduce the number

of pairs, n, accordingly.

161

5. Find the p-value.

The p-value, aka P -value, is the probability that the found effect, or a more

extreme one, would occur if the null hypothesis were true [191].

The number k under the null hypothesis has a binomial distribution, with π =

1
2

[202] (the proportion of positive signs in the population is denoted π [220]).

(a) For H1: m < 0, it is necessary to compute p-value = P (x ≤ k) = P(x=0)

+ P(x=1) + . . . +P(x=k), where P(x=i) is the probability of x=i in the

binomial distribution. As computing this could be cumbersome, it is easier

to find P (x ≤ k) directly in a cumulative binomial distribution table [129].

(b) For H1: m > 0, it is necessary to compute p-value = P (x ≥ k) = 1 -

P (x ≤ k); find P (x ≤ k) as before.

(c) For H1: m 6= 0 it is necessary to compute p-value = 2P (x ≤ k) [7]; find

P (x ≤ k) as before.

6. Conclude.

If the p-value is less than α, reject H0 and conclude that the median difference

is not zero, is greater, or less than zero respectively, otherwise do not reject H0.

H.8 Rank Correlation

A ranking is an ordering of some elements, so an element is higher, at the same level,

or lower than another. Rank correlations try to establish a relationship between dif-

ferent rankings.

The rank correlations of Kendall and Spearman assume that the relationship be-

tween the two variables is monotonic (i.e. either increasing or decreasing), though

not necessarily linearly. The rank correlation coefficients range from -1 to + 1, where

-1 means perfect negative correlation and +1 means perfect positive correlation [113].

162

The correlation of Kendall has approximately the same power as the correlation of

Spearman [113], but it is more appropriate if there are tied ranks [75]. Consequently,

only the former is described.

H.8.1 Correlation Coefficient of Kendall

The correlation coefficient of Kendall is a non-parametric test computed on ranks [75].

It is subject to less stringent assumptions than the parametric correlation of Pear-

son [75]. It has good properties but high computation complexity (O(n2)) [227].

To compute this coefficient [131], for each pair of observations, assign +1 if the

pair is ordered (concordant), otherwise assign -1 (discordant). Compute the number

C of concordant pairs and the number D of discordant pairs. Compute K as C less

D. The coefficient known as tau of Kendall is

τ =
2K

n(n− 1)
(H.2)

The distribution of tau can be found in tables for small samples or approximated

through a normal distribution for large samples (n > 10) by using these parame-

ters [131]:

E[τ] = 0;V ar[τ] =
2(2n+ 5)

9n(n− 1)
. (H.3)

I
Choosing an Interactive Segmentation Method

This chapter explains how to choose an interactive segmentation method. However,

it has recommended a method whose program is not available in the Internet.

I.1 Measurement of Interactive Segmentation Methods

Some criteria are needed to appraise interactive segmentation methods. In the liter-

ature, three criteria have emerged as a standard for this: accuracy, repeatability, and

efficiency (Udupa and Herman, 2000, cited in [147]). These criteria are interdepen-

dent [201]; for example, improving accuracy usually implies losing efficiency.

I.1.1 Accuracy

Accuracy is the degree of agreement between a segmented image and its ground

truth [201]. It is possible to evaluate the accuracy by using human experts (subjec-

tive evaluation), or by using different distance measures between the ground truth

and the segmented image (objective evaluation). Accuracy is the most used evalua-

tion criterion [147].

In interactive methods, the user can improve the accuracy to a level that is always

163

164

satisfactory. This is not true when some limitations are imposed on him [147]. For

example, limiting the time to complete the segmentation [126].

Previous works have considered both boundary and object accuracy. Boundary ac-

curacy shows how well the boundary of the segmented region matches its ground truth.

Object accuracy shows how well the whole region matches its ground truth [127].

Large overlapped areas overcome small defects around the boundary when object

accuracy is evaluated [126]. In this work, object accuracy is more important than

boundary accuracy because we are interested in the entire region accuracy.

It has been proposed [173] appraising object accuracy by using the arithmetic

mean of the coefficient of Dice over all the image segments. This is

Dice− score =
1

N

N∑
i=1

Dice(Ei, GTi),

where Ei and GTi are the i-th of N segment for the machine segmented image and

the ground truth, respectively. The Dice coefficient is defined as

Dice(E1, E2) =
2|E1 ∩ E2|
|E1|+ |E2|

,

where E1 and E2 are two segments, and | | denotes the area of a segment.

Also, the binary Jaccard index, J , has been adapted to measure object accuracy.

This is

J =
|GO ∩MO|
|GO ∪MO|

,

where GO is the ground-truth object, and MO is the segmented object [126].

This index outperformed several commonly used measures (precision, recall, and

the Rand index) in a comparison between measured and perceived accuracy [126].

Notice that the Dice coefficient can be computed from the Jaccard index by using

165

this simple formula

D = 2J/(1 + J).

In addition, the Dice coefficient can be converted into the Jaccard index by using this

formula

J = D/(2−D).

However, there are no such formulae for the Dice-score. Thus, the Dice-score and

the Jaccard index cannot be compared. As the Jaccard index was tested against

perceived accuracy, it was chosen.

I.1.2 Repeatability

Repeatability, also known as precision, measures the similarity of different segmen-

tations obtained when a user has always pursued the same goal. In other words, a

user, trying to get identical ROIs, segments an image many times. The difference in

the results depends on the inputs given to the segmentation tool, such as where the

user traces scribbles or makes clicks. This is an intra-operator repeatability. It is also

possible to measure the inter-operator repeatability, but different users might differ in

what they consider the ideal segmentation [147]. The latter class of repeatability was

used in [126].

I.1.3 Efficiency

In this context, efficiency is to segment an image by using as few resources as possible.

Evaluating the efficiency of interactive segmentation methods is very subjective.

However, it is reasonable to say that a method of this kind is efficient when its compu-

tational part is fast, autonomous, and predictable, and when the human interactions

are few, quick, and simple [147].

Time is an important measure for interactive methods since they should give an

166

accurate segmentation faster than it would take to make it by hand [126].

I.2 Datasets for Evaluating Interactive Segmentation Methods

This work requires an interactive, multi-label segmentation method. Consequently, it

is necessary a multi-label dataset with the regions to segment signaled somehow (see

some methods of signaling in Fig. A.15). Unfortunately, only IcgBench1 fulfills these

conditions. However, the Berkeley Segmentation Dataset [122] (BSDS) has been used

anyway.

The publicly available IcgBench dataset could be used to evaluate methods that

use scribbles. This dataset gives 262 seed/ground truth pairs on 158 different natural

images [173]. This dataset contains 243 images; 85 images do not have a seed/ground

truth pair.

BSDS contains segmentations made by humans for images from a wide range of

natural scenes. It was proposed that segmentations could be evaluated by comparing

them to the segmentations made by multiple humans. As different human segmen-

tations of the same image are very consistent, this comparison is reliable [122]. As

different segmentations of the same image made by one human has lower variability

than those of distinct humans, the former could not be used as ground truth [197].

BSDS cannot be used to compare interactive segmentation methods automatically

since it is an unsupervised segmentation benchmark (it does not provide seeds) [173].

However, BSDS has been used to compare these methods by using user experi-

ments [126].

The publicly available MSRC 2 database was constructed to train and test object

recognition and segmentation methods. This database contains 591 photographs;

1www.gpu4vision.org
2http://research.microsoft.com/en-us/projects/objectclassrecognition/

167

they were segmented and classified in 21 classes (for example, building, grass, tree,

cow). The ground-truth images also contain pixels labeled as “void”. This class sig-

nals pixels that do not belong to any other class, and to allow for a rough and quick,

hand-made segmentation [185].

MSRC seems suitable for figure-ground segmentation but not for image segmen-

tation.

The publicly available GrabCut3 dataset specifies background, foreground, and

mixed area. The publicly available LHI 4 dataset specifies both a set of objects (fore-

ground) and their background.

Consequently, Grabcut and LHI can be used to evaluate only foreground and

background segmentations.

I.3 Comparison of Interactive Segmentation Methods

Comparison of accuracy between this class of methods has been made by using the

Jaccard index on the BSDS and the Dice-score on the IcgBench dataset. Other in-

dexes and datasets were not considered by the reasons given in the previous sections.

For this reason, some promising methods were not considered, such as Multi-label In-

teractive CRF (Conditional Random Fields) and Multi-label Interactive Higher Order

CRF [141].

Seeded Region Growing (SRG), Simple Interactive Object Extraction (SIOX), In-

teractive Graph Cuts (IGC), and Interactive Segmentation using Binary Partition

Trees (BPT) give a good coverage of the algorithmic approaches for interactive seg-

mentation. They were compared by using the Jaccard index on 100 distinct objects

selected from 96 images in the BSDS. In this evaluation, the users segmented each

3http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmen-
tation/grabcut.htm

4http://www.imageparsing.com/interactivesegmentation.html

168

object by marking the foreground and background areas with the mouse. The time

to segment each object was limited to 2 minutes, but the users could finish before.

BPT and IGC achieve similar accuracy. Both attained better accuracy than SRG

and SIOX [126]. IGC and SIOX are two-label [27, 57] while BPT and SRG are multi-

label [172, 4]. This comparison uses a two-label segmentation, so it is quite possible

that BPT and SRG cannot segment multiple labels as efficiently as segmenting only

two.

By using the Dice-score on the IcgBench dataset were compared Random For-

est, Graph cuts with α-expansion, and Partial Differential Equations (PDE). PDE

attained better accuracy than the other methods [142].

Unfortunately, the aforementioned evaluations cannot be compared between them.

Not only the datasets are different, also the accuracy measures. However, the first

comparison uses a better accuracy measure and has a better coverage of algorithmic

approaches. Consequently, the first comparison was considered to choose an algo-

rithm. Thus, BPT was chosen, but this program is not publicly available. The same

happens with the best algorithm in the other evaluation.

J
Compression and Expansion between the Borders

and the Birthplace

This approach, even with the improvement suggested below, cannot be used always.

It should be used only when the Compression and Expansion between the Borders and

the Skeleton fails. Its justification lies on replacing incorrect nucleus with birthplaces

and on replacing swinging line segments with stable ones.

Take a couple of convex regions without holes —a big and a small one. Line

segments are computed from each border point of the big region to the birthplace.

Imagine that these (line) segments also exist in the slice that contains the small re-

gion. Consequently, these segments go through the small region. For example, in

Fig. J.4, a point in the border of the big region is a, the birthplace is the point c, the

segment is ac and the part within the small region is bc. In the compression, each

segment is compacted in the part of it within the small region. In the expansion, the

part of each segment within the small region is extended to the whole segment.

If a region is not convex, some segments might not belong entirely to this region.

In this case, it would be better to trace the shortest curve within the region between

the birthplace and the border point. It can be obtained by computing the geodesic

distance with the birthplace as a seed.

169

170

As both the big and small regions could be no convex, the geodesic distance in the

big region can be computed by considering the small region as a seed. Consequently,

the path between each point in the external border and the birthplace would be the

union of two minimal paths: one from this border point to the small region, and the

other from the end of the first path to the birthplace. In the compression, each path

would be compacted in the part of it within the small region. In the expansion, the

part of each path within the small region would be extended in the whole path.

Nevertheless, as it was not available a routine to compute geodesic distances, they

were not used.

As a solution for the (line) segments that went out the processed region, each

part of these segments —that passed through the big region— was considered a new

segment. For example, in Fig. J.1, a region included the body of a man but excluded

his head, neck, arms, and left shoe. This region touched the border in the right foot.

The birthplace was defined (the real program would have computed a point) as the

intersection of this foot with the border of the image. So, some segments started in

the external border of the left leg (rightward in the image); passed through this leg,

the background, and the right leg, and finished in its right foot. However, following

this solution, there were new segments in the left and right legs. Then, each new

segment was processed by following the rules stated in the second paragraph. The

interpolation obtained can be seen in Fig. J.2. There, it was possible to see some

conspicuous segments pointing to the right foot. This solution is far from perfect:

the segments traced following this idea have no theoretical justification.

As birthplaces might take different shapes, the method for computing the com-

pression and the expansion changes. The methods proposed are described below.

They were integrated in the same algorithm (see Fig. J.3). The initial steps of this

algorithm are:

(1) The compression and expansion are similar, so it was possible to unify them in

171

Figure J.1: Detail of a man
in the grey-level mosaic obtained
segmenting the image basket-
ball12.png

Figure J.2: Detail of a man
in the interpolation of basket-
ball12.png and basketball14.png
by using birthplaces

172

the same algorithm. This step followed this goal by filling the small and big regions.

Notice that in “expand” the final region was the big one, and in “compress” the final

region was the small one.

(2) The birthplace was computed by shrinking the small region.

(3) Depending on the presence of holes in the small region, different steps were

taken to perform the compression or expansion. If there was no holes, it went to step

4; otherwise, to step 5.

The step (4) was described in Compression and Expansion between the Outer Bor-

der and a Set of Points (see Sec. J.1). The step (5) was described in Compression

and Expansion between the Borders and Rings (see Sec. J.2).

J.1 Compression and Expansion between the Outer Border and a Set of

Points

This method can compress and expand paired regions without holes. It should func-

tion well when an object without holes moves forward (or backward) or grows, such

as a balloon being filled.

It was supposed that the birthplace is a point (MSP) computed with shrinking on

the small region. Segments were computed from the border of the big region to the

MSP.

For example (see below, Fig. J.4), there was a point (a) in the border of the big

region, a point (b) in the border of the small region, and a point (c) that corresponded

to the MSP of the small region. In the compression, the pixels on ac were squeezed

on bc; and in the expansion, the pixels on bc were stretched on ac.

This method can manage regions with multiple MSPs (disjoint regions). For this,

173

expanding or compressing Image by using birthplace (Rcolorinicial: colorImage;
Rinicial, Rfinal: binaryImage, operacion:string): colorRegion {
Rbig, Rsmall, borde, borde imagen, centro, agujeros, agujeros rellenos,
punto de fuga: binaryImage
SE = 8; // 8-connected neighborhood
// See the description of bordes in the description of B in
// http://www.mathworks.com/help/images/ref/bwboundaries.html
bordes: array
camino, camino siguiente: line segment

// (1) These sentences allow that the expansion and the compression work in
// the same algorithm. The next instruction belongs to Matlab.
if strcmp (operacion, “expand”) == 1
Rsmall = Rinicial
Rbig = Rfinal

else
Rsmall = Rfinal
Rbig = Rinicial

end

// (2) Finding the birthplace
// This sentence belongs to Matlab. It obtains the birthplace
birthplace = bwmorph(Rsmall, 'shrink', Inf);

// (3) Deciding which method to apply
If numberofholes (Rsmall) == 0

// (4) There is no holes, so the birthplace is a set of points.
// (4.1) This Matlab sentence obtains the border from Rbig.
borde = bwperim (Rbig,SE);
// (4.2) This Matlab sentence obtains the points from the birthplace.
[row birthplace, col birthplace] = find(birthplace);
// (4.3) For each point in the border
For each pixel p in borde

// (4.3.1) Finding the segment between p and the (nearest) point in the
// birthplace
If nnz(birthplace)==1

camino = Buscar camino (row (p), col (p), row birthplace,
col birthplace);

else
camino mas corto al birthplace = buscar camino usando la forma
interna(row (p), col (p), row (p), col (p), SE);

174

camino = Buscar camino (row (p), col (p), camino mas corto al
birthplace (length(camino mas corto al birthplace)-1), camino mas
corto al birthplace (length(camino mas corto al birthplace)));

end
// (4.3.2) Drawing segment between the border of Rbig or Rsmall and
// the birthplace.
Rcolorfinal = ponerPixeles en la forma small o big (camino,
Rcolorinicial, Rcolorfinal, Rsmall, Rbig, operacion);

end
else

// (5) There are some holes, so the birthplace is a set of rings.
// (5.1) This sentence obtains the external borders from the region and from
// its holes.
bordes = bwboundaries (Rbig, 4, 'holes');
// (5.2) Finding the center of the area enclosed by the ring(s)
birthplace relleno = imfill (birthplace, 'holes');
centro = bwmorph(birthplace relleno, 'shrink ', Inf);
[fila centro, columna centro] = find (centro);
// (5.3) Extracting the most external border
circunvalacion = bordes {1, 1};
// (5.4) For each pixel p in circunvalacion
// The sentences belonging to this “for” cycle belong to Matlab
for indice pixel=1:length(circunvalacion)

// (5.4.1) Finding the segment between p and the (nearest) point in a
// center.
If nnz(centro) == 1

// The center has only one pixel
camino = Buscar camino (circunvalacion (indice pixel,1),
circunvalacion (indice pixel,2), fila centro(1), columna centro (1));

else
// Finding the shortest route to a center
camino mas corto al centro = buscar camino usando la forma interna
(circunvalacion (indice pixel,1), circunvalacion (indice pixel,2),
circunvalacion (indice pixel,1), circunvalacion (indice pixel,2), SE);
// Finding the segment to the nearest point in the center
camino = Buscar camino (circunvalacion (indice pixel,1),
circunvalacion (indice pixel,2), camino mas corto al centro (length

(camino mas corto al centro)-1), camino mas corto al centro (length
(camino mas corto al centro)));

end

175

// (5.4.2) Drawing segments between the border(s) and the filled ring(s).
Rcolorfinal = ponerPixeles en la forma small o big (camino,
Rcolorinicial, Rcolorfinal, Rsmall, Rbig, operacion);

end
// (6) Tracing segments between the ring(s) and the internal borders
// (6.1) Finding vanishing points (called punto de fuga).
agujeros rellenos = birthplace relleno & imcomplement(Rsmall);
punto de fuga = bwmorph(agujeros rellenos, 'shrink', Inf);
[fila puntos de fuga, columna puntos de fuga] = find (punto de fuga);

// (6.2) Finding perimeter(s) of the internal ring(s). This sentence belong
// to Matlab.
[bordes birthplace, L, numero de objetos, ∼] = bwboundaries(birthplace, 8,
’holes’);

// (6.3) For each internal ring
for index=numero de objetos+1:length(bordes birthplace)

// (6.3.1) Finding the vanishing point belonging to this ring.
for indice punto de fuga=1:nnz(punto de fuga)

if L(fila puntos de fuga (indice punto de fuga), columna puntos de
fuga (indice punto de fuga)) == index

fila punto de fuga=fila puntos de fuga(indice punto de fuga);
columna punto de fuga=columna puntos de fuga(indice punto de fuga);

end
end
// (6.3.2) Extracting the perimeter of this ring.
circunvalacion anillo=bordes birthplace{index};
// (6.3.3) For each pixel p in circunvalacion anillo
// The sentences belonging to this “for” cycle belong to Matlab
for indice pixel=1:length(circunvalacion anillo)

// (6.3.3.1) Finding the segment from p to this vanishing point
camino = Buscar camino (circunvalacion anillo (indice pixel,1),
circunvalacion anillo (indice pixel,2), fila punto de fuga,
columna punto de fuga);

// (6.3.3.2) Drawing along camino between p and a border
Rcolorfinal = ponerPixeles en la forma small o big (camino,
Rcolorinicial, Rcolorfinal, Rsmall, Rbig, operacion);

end
end

end
return (Rcolorfinal)
}

Figure J.3: expanding or compressing Image by using birthplace

176

Figure J.4: Segment between the outer border and the MSP

it finds, for each point of the border, the nearest point belonging to the birthplace

and computes the segment between these points.

Also, this method can be used to implement the Compression and Expansion be-

tween the Borders and an Artificial Connected Component (except those correspond-

ing to type 8 regions) by changing the borders and the birthplace. The birthplace

should be replaced by an artificial connected component. Replacing the border is a

little more complex (see Sec. J.3).

This method was implemented in the step (4) of the expanding or compress-

ing Image by using birthplace algorithm (see Fig. J.3). This step includes these sub-

steps:

(4.1) Obtaining the border of the big region.

(4.2) Computing the coordinates of each point belonging to the birthplace.

177

(4.3) For each point p in the border,

(4.3.1) Finding the (shortest) segment between p and the birthplace, and store it

in camino.

(4.3.2) Three cases were possible considering that these segments began in the bor-

ders of Rbig and finished in Rsmall: 1) camino did not reach Rsmall before leaving

Rbig —these pixels were discarded—; 2) camino reached Rsmall and without leaving

it reached the birthplace, and 3) camino reached Rsmall, and leaving and reentering

it, reached the birthplace —if camino did not leave Rbig before reentering Rsmall,

the results were erroneous. In the case 2, the pixels along camino were copied along

the part of it inside the small region in the compression and the pixels along camino

inside the small region were stretched along camino in the expansion. In the case 3,

it was applied the same procedure as in the case 2, but it was considered only the

part of camino between the beginning of it and the first time it leaved the big region.

J.2 Compression and Expansion between the Borders and Rings

This method can compress and expand paired regions with some holes. In this case,

each region has an external border and some internal ones.

If a region has a hole, shrinking (see Sec. B.7) creates a ring halfway its hole and

its outer border. It was supposed that an object starts growing from its ring. It

was very difficult to find examples in which this premise functions: maybe a (ring)

doughnut before and after leavening or frying it.

If a region has several holes, shrinking creates a ring for each hole, but some rings

may overlap.

According to this strategy, segments were traced 1) between the outer border of

a region and the perimeter of the filled rings; and then 2) between the rings and the

178

inner borders (of this region):

1) It seemed possible to compute segments from each point in the outer border of

the big region to the nearest point in the rings. However, this left many black areas

when the rings had rough borders. To avoid this problem, segments were computed

from the outer border of the big region to the “MSP of the filled rings” (center). The

pixels in each of these segments between the outer border of the big region and the

rings were squeezed between the outer border of the small region and the rings in

the compression; and the pixels between the outer border of the small region and the

rings were stretched between the outer border of the big region and the rings in the

expansion.

This part of the method was implemented in the step (5) of the expanding or

compressing Image by using birthplace algorithm (see Fig. J.3). This step includes

these sub-steps:

(5.1) The external borders from the big region and from its holes are computed;

(5.2) the regions enclosed by the rings are computed and stored in birthplace

relleno. Then, the centers of these regions are computed and stored in centro.

(5.3) The external border from the big region is separated and stored in circunva−
lacion.

(5.4) For each point p in circunvalacion,

(5.4.1) Finding the segment between p and the (nearest) point in centro, and store

it in camino.

(5.4.2) Three cases are possible considering that these segments begin in the bor-

ders of Rbig and finish in Rsmall: 1) camino does not reach Rsmall before leaving

179

Rbig —these pixels are discarded—; 2) camino reaches Rsmall and without leaving it

reaches birthplace relleno, and 3) camino reaches Rsmall, and leaving and reentering

it, reaches the birthplace relleno —if camino does not leave Rbig before reentering

Rsmall, the results are erroneous. In the case 2, only the pixels from camino between

its beginning and birthplace relleno are considered. In other words, it is considered

that camino finishes at birthplace relleno. The pixels along camino are copied along

the part of it inside the small region in the compression and the pixels along camino

inside the small region are stretched along camino in the expansion. In case 3, it

is applied the same procedure as in the case 2, but it is considered only the part of

camino between the beginning of it and the first time it leaves the big region.

2) Segments are computed from the rings to the “MSPs of the holes” (vanishing

points). The pixels of these segments between the inner border of the big region and

the ring are squeezed between the inner border of the small region and the ring in the

compression; and the pixels of these segments between the inner border of the small

region and the ring are stretched between the inner border of the big region and the

ring in the expansion.

This task is performed by the step (6) of the expanding or compressing Image by

using birthplace algorithm (see Fig. J.3). This step includes these sub-steps:

(6.1) Computing vanishing points as the centers of the holes, and store them in

punto de fuga.

(6.2) Finding perimeters of the rings. As this is difficult to compute, the perime-

ters of the holes adjacent to the rings were computed, they are called internal rings.

(6.3) For each internal ring,

(6.3.1) Finding the vanishing point associated to this ring.

180

(6.3.2) Extracting the perimeter of this ring, and store it in circunvalacion anillo.

(6.3.3) For each pixel p in circunvalacion anillo,

(6.3.3.1) Finding the segment between p and the vanishing point, and store it in

camino.

(6.3.3.2) Drawing along camino between p and a border. The border is the inter-

nal border of the small region in the compression and the internal border of the big

region in the expansion.

For example (see below, Fig. J.5), there is a point (a) in the outer border of the

big region, a point (b) in the outer border of the small region, a point (c) in the ring,

a point (d) in the inner border of the small region, a point (e) in the inner border

of the big region, and a point (f) that corresponds to the center and the vanishing

point simultaneously. In the compression, the pixels in ac and ce should be squeezed

in bc and cd, respectively; and in the expansion, the pixels on bc and cd should be

stretched on ac and ce, respectively.

Why not compress directly ae in bd, and expand bd in ae? Because it was sup-

posed that the regions start to grow from their ring and because the center and the

vanishing point does not necessarily coincide.

When an object and its hole grew too much, sometimes this strategy did not han-

dle them adequately. In addition, a small deficiency exists in the implementation of

this algorithm. Sometimes, there were black lines where the birthplace divides various

holes because segments were traced from the border of the holes surrounded by the

birthplaces instead of the birthplaces themselves. For example, the interpolation of

the images in Fig. 4.6 by using the segmentations shown in Fig. J.6 gave Fig. J.7.

181

Figure J.5: Segment between the outer border and the center

Figure J.6: Matched segmentation of the initial and final images of the sequence
called beanbags: Leftward and rightward, respectively

182

Figure J.7: Interpolated image of the sequence called beanbags by using birthplaces
and the linear interpolation

J.3 Compression and Expansion between the Borders and an Artificial

Connected Component

Although the two methods explained above can process conjointly any kind of regions,

when a original region is not paired, lies in the border of the image, and has no holes,

the birthplace could not be optimal. So, it was tried to use an artificial connected

component instead. It was not considered in the final version of the compression and

expansion algorithm as the grey-level interpolation algorithm sometimes gave incor-

rect grey-level interpolated images in this case.

Bibliography

[1] M.L. Abell, J.P. Braselton, and J.A. Rafter. Statistics with Mathematica: Text.
Statistics with Mathematica. Academic Press, 1999.

[2] T. Acharya and A.K. Ray. Image Processing: Principles and Applications.
Wiley-Interscience, 2005.

[3] K. Adamczyk and A. Walczak. Application of 2D Anisotropic Wavelet Edge
Extractors for Image Interpolation. Human–Computer Systems Interaction:
Backgrounds and Applications 2, pages 205–222, 2012.

[4] R. Adams and L. Bischof. Seeded region growing. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 16(6):641–647, 1994.

[5] A. Albu, J.M. Schwartz, D. Laurendeau, and C. Moisan. Integrating geometric
and biomechanical models of a liver tumour for cryosurgery simulation. Surgery
Simulation and Soft Tissue Modeling, pages 999–999, 2003.

[6] C. Alexander. Market Risk Analysis, Quantitative Methods in Finance. Wiley
Desktop Editions. Wiley, 2008.

[7] D.R. Anderson, D.J. Sweeney, and T.A. Williams. Statistics for Business and
Economics (Book Only). Thomson South-Western, 2008.

[8] E. Aptoula and S. Lefèvre. A basin morphology approach to colour image
segmentation by region merging. In Proceedings of the 8th Asian conference on
Computer vision-Volume Part I, pages 935–944. Springer-Verlag, 2007.

[9] E. Aptoula and S. Lefèvre. A comparative study on multivariate mathematical
morphology. Pattern Recognition, 40(11):2914–2929, 2007.

183

184

[10] Erchan Aptoula and Sébastien Lefèvre. 1 Morphological Texture Description
of Grey-Scale and Color Images. In Peter. W. Hawkes, editor, Advances in
Imaging and Electron Physics: Optics of Charged Particle Analyzers, volume
169. Elsevier Science, 2011.

[11] J.S. Armstrong. Principles of Forecasting: A Handbook for Researchers and
Practitioners. International Series in Operations Research & Management Sci-
ence. Springer, 2001.

[12] D.G. Bailey. Design for Embedded Image Processing on FPGAs. Wiley, 2011.

[13] Simon Baker, Daniel Scharstein, J.P. Lewis, Stefan Roth, Michael J. Black,
and Richard Szeliski. A database and evaluation methodology for optical flow.
International Journal of Computer Vision, 92(1):1–31, 2011.

[14] P.G. Barash, B.F. Cullen, R.K. Stoelting, M. Cahalan, and C. Stock. Clinical
Anesthesia. Wolters Kluwer Health, 2012.

[15] K. Barkaoui, A. Cavalcanti, and A. Cerone. Theoretical Aspects of Comput-
ing - ICTAC 2006: Third International Colloquium, Tunis, Tunisia, November
20-24, 2006 Proceedings. Lecture Notes in Computer Science / Theoretical
Computer Science and General Issues. Springer, 2006.

[16] V. Barnett. The ordering of multivariate data. Journal of the Royal Statistical
Society. Series A (General), 139(3):318–355, 1976.

[17] R.A. Beasley. Finding the best edge image. In Proceedings of the International
Conference on Image Processing, Computer Vision, and Pattern Recognition,
pages 504–510, 2011.

[18] A. Belyaev. On implicit image derivatives and their applications. Journal of
Computational Physics, 103:16–42, 1992.

[19] S. Beucher. Digital skeletons in Euclidean and geodesic spaces. Signal Process-
ing, 38(1):127–141, 1994.

[20] Serge Beucher. Sets, partitions and functions interpolations. In Proceedings of
the fourth international symposium on Mathematical morphology and its appli-
cations to image and signal processing, ISMM ’98, pages 307–314, Norwell, MA,
USA, 1998. Kluwer Academic Publishers.

[21] J. Beutel, Y.M. Kim, and S.C. Horii. Handbook of Medical Imaging, Volume 3:
Display and Pacs. Press Monographs. SPIE Optical Engineering Press, 2000.

[22] S. Bhattacharyya. A Brief Survey of Color Image Preprocessing and Segmenta-
tion Techniques. Journal of Pattern Recognition Research, 6(1):120–129, 2011.

185

[23] H. Blum et al. A transformation for extracting new descriptors of shape. Models
for the perception of speech and visual form, 19(5):362–380, 1967.

[24] E. Borghers and P. Wessa. Statistics - Econometrics - Forecasting, January
2013.

[25] A.G. Bors, L. Kechagias, and I. Pitas. Binary morphological shape-based inter-
polation applied to 3-D tooth reconstruction. Medical Imaging, IEEE Transac-
tions on, 21(2):100–108, 2002.

[26] A.C. Bovik. Handbook Of Image And Video Processing. Communications, Net-
working and Multimedia Series. Elsevier Academic Press, 2005.

[27] Y.Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary &
region segmentation of objects in ND images. In Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference on, volume 1, pages
105–112. IEEE, 2001.

[28] C.H. Brase and C.P. Brase. Understandable Statistics: Concepts and Methods.
Brooks/Cole, 2011.

[29] R. Brémond and F. Marqués. Segmentation-based morphological interpolation
of partition sequences. Mathematical Morphology and its Applications to Image
and Signal Processing, pages 369–376, 1996.

[30] B. Brundage. Photoshop Elements 10: The Missing Manual. O’Reilly Media,
2011.

[31] M. Carnec, P. Le Callet, and D. Barba. Objective quality assessment of color
images based on a generic perceptual reduced reference. Signal Processing:
Image Communication, 23(4):239–256, 2008.

[32] Y. Chan. Location Theory and Decision Analysis: Analytics of Spatial Infor-
mation Technology. SpringerLink : Bücher. Springer, 2011.

[33] S.S. Channappayya, The University of Texas at Austin. Electrical, and Com-
puter Engineering. Image Communication System Design Based on the Struc-
tural Similarity Index. The University of Texas at Austin, 2007.

[34] J. Chanussot and P. Lambert. Watershed approaches for color image segmen-
tation. In Proceedings of the IEEE Workshop on Nonlinear Signal and Image
Processing, pages 129–133, 1999.

[35] Vassilios Chatzis and Ioannis Pitas. Shape-Based Interpolation of Binary 3-
D Images using Morphological Skeletonization. In Proceedings of the IEEE
International Conference on Multimedia Computing and Systems - Volume 2,
volume 2 of ICMCS ’99, pages 939–943, Washington, DC, USA, 1999. IEEE
Computer Society.

186

[36] Fakulta Chemická. HARFA: Screenshots and Tutorials: Overview.

[37] H.D. Cheng, XH Jiang, Y. Sun, and J. Wang. Color image segmentation:
advances and prospects. Pattern recognition, 34(12):2259–2281, 2001.

[38] F. Chin, J. Snoeyink, and C. Wang. Finding the medial axis of a simple polygon
in linear time. Algorithms and Computations, pages 382–391, 1995.

[39] S.J. Chiu, X.T. Li, P. Nicholas, C.A. Toth, J.A. Izatt, and S. Farsiu. Automatic
segmentation of seven retinal layers in SDOCT images congruent with expert
manual segmentation. Optics express, 18(18):19413–19428, 2010.

[40] Mary L. Comer and Edward J. Delp. Morphological operations for color image
processing. J. Electron. Imaging, 8(3):279–289, July 1999.

[41] G.W. Corder and D.I. Foreman. Nonparametric Statistics for Non-Statisticians:
A Step-by-Step Approach. Wiley, 2011.

[42] D. Cremers, M. Rousson, and R. Deriche. A review of statistical approaches to
level set segmentation: integrating color, texture, motion and shape. Interna-
tional Journal of Computer Vision, 72(2):195–215, 2007.

[43] O. Dalmau and M. Rivera. A General Bayesian Markov Random Field Model
for Probabilistic Image Segmentation. In Proceedings of the 13th International
Workshop on Combinatorial Image Analysis, pages 149–161. Springer-Verlag,
2009.

[44] P. Das, O. Veksler, V. Zavadsky, and Y. Boykov. Semiautomatic segmentation
with compact shape prior. Image and Vision Computing, 27(1):206–219, 2009.

[45] V.V. Das and R. Vijaykumar. Information and Communication Technolo-
gies: International Conference, ICT 2010, Kochi, Kerala, India, September
7-9, 2010, Proceedings. Communications in Computer and Information Sci-
ence. Springer, 2010.

[46] E.R. Davies. Machine Vision: Theory, Algorithms, Practicalities. Signal Pro-
cessing and Its Applications. Elsevier Science, 2004.

[47] Marcos Cordeiro d’Ornellas and R. van Den Boomgaard. A Morphological
Multi-Scale Gradient for Color Image Segmentation. In John Goutsias, Luc
Vincent, and Dan S. Bloomberg, editors, Mathematical morphology and its ap-
plications to image and signal processing, volume 18 of Computational Imaging
and Vision, pages 199–206. Kluwer Academic Publishers, 2002. 10.1007/0-306-
47025-X 10.

[48] E.R. Dougherty. Electronic Imaging Technology. Spie Press Series. SPIE Optical
Engineering Press, 1999.

187

[49] E.R. Dougherty and R.A. Lotufo. Hands-on Morphological Image Processing,
volume 59. Society of Photo Optical, 2003.

[50] G. Dougherty. Digital Image Processing for Medical Applications. Cambridge
University Press, 2009.

[51] Stephen A. Drury. Image Interpretation in Geology. Taylor & Francis, 2004.

[52] E. DuBois. The Structure and Properties of Color Spaces and the Represen-
tation of Color Images. Synthesis Lectures on Image, Video, and Multimedia
Processing. Morgan & Claypool Publishers, 2010.

[53] D. Edwards and The University of Utah. Practical Sampling for Ray-based
Rendering. The University of Utah, 2008.

[54] J.C. Ferrando and V.G. Gregori. Matemática discreta 2a Ed. Reverté, 1995.

[55] J.D. Foley. Computer Graphics: Principles and Practice. Systems Programming
Series. Addison-Wesley, 1996.

[56] J.E. Freud and C.F.J. Williams. Dictionary/Outline of Basic Statistics. Dover
books on advanced mathematics. Dover, 1966.

[57] G. Friedland, K. Jantz, and R. Rojas. SIOX: Simple interactive object extrac-
tion in still images. In Multimedia, Seventh IEEE International Symposium on,
pages 253–260. IEEE, December 2005.

[58] T. Fu and H. Foroosh. Expression morphing from distant viewpoints. In Image
Processing, 2004. ICIP’04. 2004 International Conference on, volume 5, pages
3519–3522. IEEE, 2004.

[59] B. Furht. Encyclopedia of Multimedia. Springer Reference. Springer, 2008.

[60] W.P. Gardiner. Statistical Analysis Methods for Chemists: A Software Based
Approach. Royal Society of Chemistry, 1997.

[61] L. Garrido. Hierarchical region based processing of images and video sequences:
application to filtering, segmentation and information retrieval. PhD thesis,
Department of Signal theory and Communications - Universitat Politècnica de
Catalunya, April 2002.

[62] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361,
Providence, USA, June 2012. IEEE.

[63] Theo Gevers and Arnold W.M. Smeulders. Color based object recognition.
Pattern recognition, 32(3):453–464, 1999.

188

[64] T.A. Goh, R. Williamson, and G. Buqué. Advancing Maths for AQA 2nd
Edition. Heinemann Educational Books, 2004.

[65] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice
Hall Press, ISBN 0-201-18075-8, 2002.

[66] J. Gosling. Quicksmart Introductory Statistics. Quicksmart University Guides
Series. Pascal Press, 1995.

[67] John Goutsias and Henk J.A.M. Heijmans. Fundamenta morphologicae math-
ematicae. Fundamenta Informaticae, 41(1):1–31, 2000.

[68] John Goutsias, Luc Vincent, and Dan S Bloomberg. Mathematical morphology
and its applications to image and signal processing, volume 18. Springer, 2000.

[69] D. Green, M. Ervine, and S. White. Fundamentals of Perioperative Manage-
ment. Greenwich Medical Media, 2002.

[70] G.J. Grevera and J.K. Udupa. An objective comparison of 3-D image interpo-
lation methods. Medical Imaging, IEEE Transactions on, 17(4):642–652, 1998.

[71] M. Grundland, R. Vohra, G.P. Williams, and N.A. Dodgson. Cross dissolve
without cross fade: Preserving contrast, color and salience in image composit-
ing. In Computer graphics forum, volume 25, pages 577–586. Wiley Online
Library, 2006.

[72] S. Guha. Computer Graphics Through OpenGL: From Theory to Experiments.
Chapman & Hall/CRC computer graphics, geometric modeling, and animation
series. CRC Press, 2010.

[73] Z. Guo and R.W. Hall. Parallel thinning with two-subiteration algorithms.
Communications of the ACM, 32(3):359–373, 1989.

[74] A. Hanbury and J. Serra. Colour image analysis in 3d-polar coordinates. Pattern
Recognition, pages 124–131, 2003.

[75] Donncha Hanna and Martin Dempster. Psychology Statistics For Dummies.
Wiley, 2012.

[76] A. Hart. Making Sense of Statistics in Healthcare. Radcliffe Series. Radcliffe
Medical Press, 2001.

[77] Frank Heckel, Olaf Konrad, Horst Karl Hahn, and Heinz-Otto Peitgen. Interac-
tive 3D medical image segmentation with energy-minimizing implicit functions.
Computers & Graphics, 35(2):275–287, 2011.

[78] G. Helander, T.K. Landauer, and P.V. Prabhu. Handbook of Human-Computer
Interaction. Elsevier Science, 1997.

189

[79] Y.S. Ho and H.J. Kim. Advances in Multimedia Information Processing - PCM
2005: 6th Pacific Rim Conference on Multimedia, Jeju Island, Korea, November
11-13, 2005, Proceedings. Lecture Notes in Computer Science. Springer, 2005.

[80] A. Hornberg. Handbook of Machine Vision. John Wiley & Sons, 2007.

[81] M.C. Hung and Y.H. Wu. Mapping and visualizing the Great Salt Lake land-
scape dynamics using multi-temporal satellite images, 1972–1996. International
Journal of Remote Sensing, 26(9):1815–1834, 2005.

[82] K.A. Hunt. The Art of Image Processing With Java. A K Peters, 2010.

[83] Recommendation BT.601-7 ITU-R. Studio encoding parameters of digital tele-
vision for standard 4:3 and wide-screen 16:9 aspect ratios. Technical report,
International Telecommunication Union, March 2011.

[84] Recommendation BT.709-5 ITU-R. Parameter values for the HDTV standards
for production and international programme exchange. Technical report, Inter-
national Telecommunication Union, April 2002.

[85] M. Iwanowski and J. Serra. Morphological interpolation and color images. In
Image Analysis and Processing, 1999. Proceedings. International Conference on,
pages 50–55. IEEE, 1999.

[86] Marcin Iwanowski. Generalized Morphological Mosaic Interpolation and Its Ap-
plication to Computer-Aided Animations. In Wladyslaw Skarbek, editor, Com-
puter Analysis of Images and Patterns, volume 2124 of Lecture Notes in Com-
puter Science, pages 493–501. Springer Berlin / Heidelberg, 2001. 10.1007/3-
540-44692-3 60.

[87] Marcin Iwanowski and Jean Serra. The Morphological-Affine Object Deforma-
tion. In John Goutsias, Luc Vincent, and Dan S. Bloomberg, editors, Mathe-
matical Morphology and its Applications to Image and Signal Processing, vol-
ume 18 of Computational Imaging and Vision, pages 81–90. Kluwer Academic
Publishers, 2002. 10.1007/0-306-47025-X 10.

[88] K. Jack. Video Demystified: A Handbook for the Digital Engineer. Demystifying
technology series. Elsevier Science, 2007.

[89] B. Jähne. Digital Image Processing. Springer, 2005.

[90] T.R. Jain and A.S. Sandhu. Quantitative Methods. Vk Publications, 2009.

[91] M.E. James and University of Phoenix. An Empirical Investigation Into the Ex-
tent of Quality Management Practices in the Jamaican Manufacturing Industry.
University of Phoenix, 2009.

190

[92] S. Jayaraman, S. Esakkirajan, and T. Veerakumar. Digital Image Processing.
Tata Mc Graw Hill Education Private, 2009.

[93] Jessica M. Utts and Robert F. Heckard. Statistical Ideas And Methods.
Brooks/Cole, 2005.

[94] C.V. Jones. Visualization and Optimization. Operations Research/Computer
Science Interfaces Series. Springer, 1996.

[95] P. Kakar and N. Sudha. Exposing Postprocessed Copy–Paste Forgeries Through
Transform-Invariant Features. Information Forensics and Security, IEEE
Transactions on, 7(3):1018–1028, 2012.

[96] C. Kamath. Scientific Data Mining: A Practical Perspective. Society for In-
dustrial and Applied Mathematics, 2009.

[97] Arie Kaufman and Klaus Mueller. Overview of volume rendering. The visual-
ization handbook, pages 127–174, 2005.

[98] R. Kimmel, D. Shaked, N. Kiryati, and A.M. Bruckstein. Skeletonization via
distance maps and level sets. Computer Vision and Image Understanding,
62(3):382–391, 1995.

[99] R.E. Kirk. Statistics: An Introduction. Thomson/Wadsworth, 2007.

[100] C.M. Kitchen Ramirez. Nonparametric versus parametric tests of location in
biomedical research. American journal of ophthalmology, 147(4):571, 2009.

[101] B. Klava and N.S.T. Hirata. Interactive image segmentation with integrated use
of the markers and the hierarchical watershed approaches. In International Con-
ference on Computer Vision Theory and Applications-VISSAPP, pages 186–
193, 2009.

[102] A. Kopra. Writing Mental Ray Shaders: A Perceptual Introduction. Mental ray
handbooks. Springer, 2008.

[103] A. Koschan and M.A. Abidi. Digital Color Image Processing. Wiley-
Interscience, 2008.

[104] N.T. Kottegoda and R. Rosso. Applied Statistics for Civil and Environmental
Engineers. Wiley, 2009.

[105] D.J. Kroon. Numerical optimization of kernel based image derivatives. 2009.

[106] A.S. Krylov, A.V. Nasonov, and A.A. Chernomorets. Combined linear resam-
pling method with ringing control. In Proceedings of GraphiCon, volume 2009,
pages 163–165, 2009.

191

[107] C. Kufs. Stats with Cats: The Domesticated Guide to Statistics, Models, Graphs,
and Other Breeds of Data Analysis. Wheatmark, 2011.

[108] L. Lam, S.W. Lee, and C.Y. Suen. Thinning methodologies-a comprehen-
sive survey. IEEE Transactions on pattern analysis and machine intelligence,
14(9):869–885, 1992.

[109] D. Larlus, J. Verbeek, and F. Jurie. Category level object segmentation by
combining bag-of-words models with dirichlet processes and random fields. In-
ternational journal of computer vision, 88(2):238–253, 2010.

[110] J. Larson-Hall. A Guide to Doing Statistics in Second Language Research Using
SPSS. Second Language Acquisition Research. Routledge, 2010.

[111] Tong-Yee Lee and Wen-Hsiu Wang. Morphology-Based Three-Dimensional In-
terpolation. IEEE Transactions on Medical Imaging, 19(7):711–721, July 2000.

[112] T.M. Lehmann, C. Gonner, and K. Spitzer. Survey: Interpolation meth-
ods in medical image processing. Medical Imaging, IEEE Transactions on,
18(11):1049–1075, 1999.

[113] W.C. Leung. Statistics and Evidence Based Medicine for Exams. Petroc Press,
2001.

[114] O. Lezoray, C. Meurie, and A. Elmoataz. A graph approach to color mathe-
matical morphology. In Proceedings of the Fifth IEEE International Symposium
on Signal Processing and Information Technology, 2005., pages 856–861. IEEE,
2005.

[115] R.S. Llopis. Problemas Resueltos de Teoŕıa de Sistemas. Treballs d’Informàtica
i Tecnologia. Universitat Jaume I, 2002.

[116] R. Lotufo and W. Silva. Minimal set of markers for the watershed transform.
In Proceedings of ISMM, volume 2002, pages 359–368, 2002.

[117] Robert M. Lougheed, David L. McCubbrey, and Ramesh Jain. Applying Iconic
Processing in Machine Vision. Springer Series in Perception Engineering.
Springer, 1988.

[118] Jitendra Malik, Serge Belongie, Thomas Leung, and Jianbo Shi. Contour and
texture analysis for image segmentation. International Journal of Computer
Vision, 43(1):7–27, 2001.

[119] S. Marchand-Maillet and Y.M. Sharaiha. Binary Digital Image Processing: A
Discrete Approach. Electronics & Electrical. Elsevier Science, 1999.

192

[120] J.S. Marques, N.P. de la Blanca, and P. Pina. Pattern Recognition and Image
Analysis: Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June
7-9, 2005, Proceeding. Lecture Notes in Computer Science. Springer, 2005.

[121] O. Marques. Practical Image and Video Processing Using MATLAB. Wiley,
2011.

[122] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented
Natural Images and its Application to Evaluating Segmentation Algorithms
and Measuring Ecological Statistics. In Proc. 8th Int’l Conf. Computer Vision,
volume 2, pages 416–423, July 2001.

[123] R.L. Mason, R.F. Gunst, and J.L. Hess. Statistical Design and Analysis of
Experiments: With Applications to Engineering and Science. Wiley Series in
Probability and Statistics - Applied Probability and Statistics Section Series.
Wiley, 2003.

[124] R. Matignon. Neural Network Modeling Using Sas Enterprise Miner. Author-
House, 2005.

[125] J.J. McConnell. Computer Graphics: Theory Into Practice. Jones and Bartlett
Publishers, 2006.

[126] K. McGuinness and N.E. O’Connor. A comparative evaluation of interactive
segmentation algorithms. Pattern Recognition, 43(2):434–444, 2010.

[127] K. McGuinness and N.E. O’Connor. Toward automated evaluation of interactive
segmentation. Computer Vision and Image Understanding, 115(6):868–884,
2011.

[128] E. Meijering. A chronology of interpolation: From ancient astronomy to modern
signal and image processing. Proceedings of the IEEE, 90(3):319–342, 2002.

[129] William Mendenhall, Robert J. Beaver, and Barbara M. Beaver. Introduction
to Probability & Statistics. Available 2010 Titles Enhanced Web Assign Series.
Brooks/Cole, 2009.

[130] Fernand Meyer. A morphological interpolation method for mosaic images. In
Petros A. Maragos, Ronald W. Schafer, and Muhammad Akmal Butt, editors,
Mathematical morphology and its applications to image and signal processing,
volume 5 of Computational Imaging and Vision, pages 337–344. Kluwer Aca-
demic Publishers, 1996.

[131] P. Meylan, A.C. Favre, and A. Musy. Predictive Hydrology: A Frequency Anal-
ysis Approach. Taylor & Francis Group, 2012.

193

[132] B. Migeon, R. Charreyron, P. Deforge, and P. Marche. Improvement of
morphology-based interpolation. In Engineering in Medicine and Biology So-
ciety, 1998. Proceedings of the 20th Annual International Conference of the
IEEE, volume 2, pages 585–587. IEEE, 1998.

[133] A. Mishra. Active Segmentation: A New Approach. In C.W. Tyler, editor,
Computer Vision: From Surfaces to 3D Objects, pages 25–49. CRC Press, 2011.

[134] M.L. Mitchell and J.M. Jolley. Research Design Explained. Wadsworth/Cengage
Learning, 2012.

[135] M.K. Monaco. Color Space Analysis for Iris Recognition. ProQuest, 2007.

[136] S. Montabone. Beginning Digital Image Processing: Using Free Tools for Pho-
tographers. Apresspod Series. Apress, 2010.

[137] D.C. Montgomery and G.C. Runger. Applied Statistics and Probability for En-
gineers. John Wiley & Sons, 2010.

[138] K. Murphy, B. Myors, and A. Wolach. Statistical Power Analysis: A Simple
and General Model for Traditional and Modern Hypothesis Tests, Third Edition.
Taylor & Francis, 2011.

[139] S. Nagabhushana. Computer Vision And Image Processing. New Age Interna-
tional, 2006.

[140] L. Najman and H. Talbot. Mathematical Morphology. Wiley, 2013.

[141] T.V. Nguyen, N. Pham, T. Tran, and B. Le. Higher Order Conditional Ran-
dom Field for Multi-Label Interactive Image Segmentation. In Computing and
Communication Technologies, Research, Innovation, and Vision for the Future
(RIVF), 2012 IEEE RIVF International Conference on, pages 1–4. IEEE, 2012.

[142] C. Nieuwenhuis, E. Töppe, and D. Cremers. Space-varying color distribu-
tions for interactive multiregion segmentation: Discrete versus continuous ap-
proaches. In Energy Minimization Methods in Computer Vision and Pattern
Recognition, pages 177–190. Springer, 2011.

[143] A.M. Noll. Principles of Modern Communications Technology. Artech House
Telecommunications Library. Artech House, 2001.

[144] A. Obuchowicz, M. Hrebień, T. Nieczkowski, and A. Marciniak. Computational
intelligence techniques in image segmentation for cytopathology. Computational
intelligence in biomedicine and bioinformatics, pages 169–199, 2008.

[145] L. O’Gorman, M.J. Sammon, and M. Seul. Practical Algorithms for Image
Analysis with CD-ROM. Cambridge University Press, 2008.

194

[146] J. Ohser and K. Schladitz. 3D Images of Materials Structures: Processing and
Analysis. Wiley, 2009.

[147] S.D. Olabarriaga and Arnold W.M. Smeulders. Interaction in the segmentation
of medical images: A survey. Medical image analysis, 5(2):127–142, 2001.

[148] American Congress on Surveying, Mapping, A.C.S.M. Meeting, American So-
ciety for Photogrammetry, and Remote Sensing. Technical Papers, ... ACSM-
ASPRS Annual Convention. Technical papers. American Congress on Surveying
and Mapping, 1987.

[149] J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1998.

[150] K. Palágyi, J. Tschirren, and M. Sonka. Quantitative analysis of intrathoracic
airway trees: methods and validation. In Information Processing in Medical
Imaging, pages 222–233. Springer, 2003.

[151] S. Patnaik and Y.M. Yang. Soft Computing Techniques in Vision Science,
volume 395. Springer, 2012.

[152] C.Y.J. Peng. Data Analysis Using SAS. SAGE Publications, 2008.

[153] Martino Pesaresi and Jon Atli Benediktsson. Image segmentation based on
the derivative of the morphological profile. In J. Goutsias, L. Vincent, and D.S.
Bloomberg, editors, Mathematical morphology and its applications to image and
signal processing, volume 18 of Computational Imaging and Vision, pages 179–
188. Kluwer Academic Publishers, 2002. 10.1007/0-306-47025-X 10.

[154] K.N. Plataniotis and A.N. Venetsanopoulos. Color Image Processing and Ap-
plications. Digital Signal Processing. Springer, 2000.

[155] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Bat-
tisti. TID2008-a database for evaluation of full-reference visual quality assess-
ment metrics. Advances of Modern Radioelectronics, 10(10):30–45, 2009.

[156] C.A. Poynton. Digital Video and HDTV: Algorithms and Interfaces. Morgan
Kaufmann, 2003.

[157] W.K. Pratt. Digital Image Processing: PIKS Scientific Inside. Wiley-
Interscience publication. John Wiley & Sons, 2007.

[158] B. Preim and D. Bartz. Visualization in Medicine: Theory, Algorithms, and
Applications. The Morgan Kaufmann Series in Computer Graphics. Elsevier
Science, 2007.

[159] Cambridge University Press. Diccionario Bilingue Cambridge Spanish-English
Paperback Compact edition. Cambridge University Press, 2008.

195

[160] S. Qureshi. Embedded Image Processing on the TMS320C6000TM DSP: Exam-
ples in Code Composer StudioTM and MATLAB. Springer, 2005.

[161] K.M. Ramachandran and C.P. Tsokos. Mathematical Statistics with Applica-
tions. Elsevier Science, 2009.

[162] T.A. Ramstad, S.O. Aase, and J.H. Husøy. Subband Compression of Images:
Principles and Examples. Advances in image communication. Elsevier, 1995.

[163] Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons of Shapiro-
Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of
Statistical Modeling and Analytics Vol, 2(1):21–33, 2011.

[164] A. Rial Boubeta and J. Varela Mallou. Estad́ıstica práctica para la investigación
en ciencias de la salud. Catálogo General. Netbiblo, 2008.

[165] A. Rodney. Color Management for Photographers: Hands on Techniques for
Photoshop Users. Taylor & Francis, 2012.

[166] Jos B.T.M. Roerdink and Arnold Meijster. The watershed transform: Def-
initions, algorithms and parallelization strategies. Fundamenta Informaticae,
41(1-2):187–228, 2000.

[167] Rosenthal, James A. Statistics and Data Interpretation for Social Work.
Springer Series. Springer Publishing Company, 2011.

[168] A. Rubin. Statistics for Evidence-based Practice and Evaluation. Research,
Statistics, and Program Evaluation Series. BROOKS COLE Publishing Com-
pany, 2012.

[169] D. Rumsey-Johnson. Intermediate Statistics For Dummies. For Dummies. John
Wiley & Sons, 2007.

[170] D. Ruppert. Statistics and Finance: An Introduction. Springer Texts in Statis-
tics. Springer, 2004.

[171] Tomoya Sakai and Atsushi Imiya. Validation of Watershed Regions by Scale-
Space Statistics. In Xue-Cheng Tai, Knut Morken, Marius Lysaker, and Knut-
Andreas Lie, editors, Scale Space and Variational Methods in Computer Vision:
Second International Conference, SSVM 2009, June 1-5, 2009, volume 5567.
Springer-Verlag New York Inc, 2009.

[172] P. Salembier and L. Garrido. Binary partition tree as an efficient represen-
tation for image processing, segmentation, and information retrieval. Image
Processing, IEEE Transactions on, 9(4):561–576, 2000.

196

[173] Jakob Santner, Thomas Pock, and Horst Bischof. Interactive multi-label seg-
mentation. In Proceedings 10th Asian Conference on Computer Vision (ACCV),
Queenstown, New Zealand, pages 397–410. Springer, November 2010.

[174] Masaharu Sato, Dorin Gutu, and Yuukou Horita. A new image quality as-
sessment model based on the MPEG-7 descriptor. In Advances in Multimedia
Information Processing-PCM 2010, pages 159–170. Springer, 2010.

[175] S.D. Schlotzhauer. Elementary Statistics Using JMP. SAS Publishing, 2007.

[176] R.A. Schowengerdt. Remote Sensing: Models and Methods for Image Process-
ing. Elsevier Science, 2006.

[177] H.G. Senel. Image Gradient Estimation with Wide Support Kernels. In In-
formation and Automation for Sustainability, 2008. ICIAFS 2008. 4th Interna-
tional Conference on, pages 132–137. IEEE, 2008.

[178] Jean Serra. Hausdorff distances and interpolations. In Proceedings of the fourth
international symposium on Mathematical morphology and its applications to
image and signal processing, ISMM ’98, pages 107–114, Norwell, MA, USA,
1998. Kluwer Academic Publishers.

[179] J.P. Serra. Image Analysis and Mathematical Morphology. Academic Press
(London and New York), 1982.

[180] K. Seshadrinathan, T.N. Pappas, R.J. Safranek, Junqing Chen, Zhou Wang,
Hamid R. Sheikh, and Alan C. Bovik. Image quality assessment. In Al Bovik,
editor, The essential guide to image processing, chapter 21, pages 553–595.
Elsevier, 2009.

[181] G. Sharma. Digital Color Imaging Handbook. CRC Press, Boca Raton, FL,
2003.

[182] H.R. Sheikh, M.F. Sabir, and A.C. Bovik. A statistical evaluation of recent
full reference image quality assessment algorithms. Image Processing, IEEE
Transactions on, 15(11):3440–3451, 2006.

[183] R. Shekhar, V. Walimbe, and W. Plishker. Medical Image Processing. Handbook
of Signal Processing Systems, pages 213–242, 2010.

[184] F.Y. Shih. Image Processing and Mathematical Morphology: Fundamentals and
Applications. CRC Press, 2009.

[185] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint ap-
pearance, shape and context modeling for multi-class object recognition and
segmentation. Computer Vision–ECCV 2006, pages 1–15, 2006.

197

[186] Hedvig Sidenbladh. Probabilistic tracking and reconstruction of 3d human mo-
tion in monocular video sequences. PhD thesis, Dept. of Numerical Analysis
and Computer Science, 2001.

[187] J. Sim and C.C. Wright. Research in Health Care: Designs and Methods. Nelson
Thornes, 2000.

[188] A.K. Sinop and L. Grady. A seeded image segmentation framework unifying
graph cuts and random walker which yields a new algorithm. In Computer
Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8.
IEEE, 2007.

[189] P. Soille. Morphological Image Analysis: Principles and Applications. 2003.
Springer-Verlag, Berlin, 2003.

[190] M. Sternstein. Barron’s AP Statistics, 5th Ed. Barron’s AP Statistics. Barron’s
Educational Series, 2010.

[191] A. Stewart. Basic Statistics and Epidemiology: A Practical Guide. Radcliffe
Pub., 2010.

[192] Gilbert Strang. Calculus, volume 1. Wellesley-Cambridge Press, 1991.

[193] M. Studeny. On Probabilistic Conditional Independence Structures. Information
Science and Statistics. Springer-Verlag London Limited, 2005.

[194] Peter Sussner and Estevão Laureano Esmi. Constructive Morphological Neural
Networks: Some Theoretical Aspects and Experimental Results in Classifica-
tion. In Leonardo Franco, David A Elizondo, and José M Jerez, editors, Con-
structive Neural Networks, volume 258 of Studies in Computational Intelligence,
pages 123–144. Springer Berlin Heidelberg.

[195] M. Swiercz and Marcin Iwanowski. Image features based on morphological
class distribution functions and its application to binary pattern recognition.
Przeglad Elektrotechniczny, 88(2), February 2012.

[196] Takuma Terada, Takayuki Fukui, Takanori Igarashi, Keisuke Nakao, Akio
Kashimoto, and Yen-Wei Chen. Automatic Facial Image Manipulation Sys-
tem and Facial Texture Analysis. In Natural Computation, 2009. ICNC’09.
Fifth International Conference on, volume 6, pages 8–12. IEEE, 2009.

[197] K. Tingelhoff, K.W.G. Eichhorn, I. Wagner, M.E. Kunkel, A.I. Moral, M.E.
Rilk, F.M. Wahl, and F. Bootz. Analysis of manual segmentation in paranasal
CT images. European Archives of Oto-Rhino-Laryngology, 265(9):1061–1070,
2008.

198

[198] J. Toriwaki and H. Yoshida. Fundamentals of Three-dimensional Digital Image
Processing. Springer, 2009.

[199] F. Torres, R. Marfil, and A. Bandera. 3D Image Segmentation Using the
Bounded Irregular Pyramid. In Computer Analysis of Images and Patterns,
pages 979–986. Springer, 2009.

[200] J. Townend. Practical Statistics for Environmental and Biological Scientists.
Wiley, 2012.

[201] Jayaram K. Udupa, Vicki R. LaBlanc, Hilary Schmidt, Celina Imielinska,
Punam K. Saha, George J. Grevera, Ying Zhuge, L.M. Currie, Pat Molholt, and
Yinpeng Jin. A methodology for evaluating image segmentation algorithms.
In M. Sonka, The Society of Photo-Optical Instrumentation Engineers, J.M.
Fitzpatrick, and A.A.P. Medicine, editors, Medical Imaging: Image processing,
volume 4684 of Proceedings of SPIE, the International Society for Optical Engi-
neering, pages 266–277. International Society for Optics and Photonics, SPIE,
2002.

[202] G. van Belle, L.D. Fisher, P.J. Heagerty, and T. Lumley. Biostatistics: A
Methodology For the Health Sciences. Wiley Series in Probability and Statistics.
Wiley, 2004.

[203] Jaume Vergés Llah́ı. Color Constancy and Image Segmentation Techniques for
Applications to Mobile Robotics. PhD thesis, Departament d’Enginyeria de
Sistemes, Automàtica i Informàtica Industrial, 2005.

[204] J.P. Verma. Data Analysis in Management with SPSS Software. Springer, 2013.

[205] V. Vezhnevets, V. Sazonov, and A. Andreeva. A survey on pixel-based skin
color detection techniques. In Proc. Graphicon, volume 3, pages 85–92. Moscow,
Russia, 2003.

[206] Javier Vidal. Procesar.m algorithm. June 2006.

[207] Javier Vidal. Interpolación de formas en imágenes usando morfoloǵıa
matemática. PhD thesis, Facultad de Informática (Universidad Politécnica de
Madrid), September 2008.

[208] Javier Vidal, José Crespo, and Vı́ctor Maojo. Inclusion Relationships and Ho-
motopy Issues in Shape Interpolation for Binary Images. In Eric Andres, Guil-
laume Damiand, and Pascal Lienhardt, editors, Discrete Geometry for Com-
puter Imagery, volume 3429 of Lecture Notes in Computer Science, pages 206–
215. Springer Berlin / Heidelberg, 2005. 10.1007/978-3-540-31965-8 20.

199

[209] Javier Vidal, José Crespo, and Vı́ctor Maojo. Recursive Interpolation Technique
for Binary Images Based on Morphological Median Sets. In Christian Ronse,
Laurent Najman, and Etienne Decencière, editors, Mathematical Morphology:
40 Years On, volume 30 of Computational Imaging and Vision, pages 53–62.
Springer Netherlands, 2005. 10.1007/1-4020-3443-1 6.

[210] Javier Vidal, José Crespo, and Vı́ctor Maojo. A region-based interpolation
method for mosaic images. In Gerald Jean Francis Banon, Junior Barrera,
Ulisses de Mendonça Braga-Neto, and Nina Sumiko Tomita Hirata, editors,
Proceedings of the eight International Symposium on Mathematical Morphology,
volume 1, pages 201–212, São José dos Campos, October 10–13, 2007 2007.
Universidade de São Paulo (USP), Instituto Nacional de Pesquisas Espaciais
(INPE).

[211] L. Vincent. Efficient computation of various types of skeletons. Medical Imaging
V: Image Processing. Volume SPIE-1445, pages 297–311, 1991.

[212] G.G. Vining and S.M. Kowalski. Statistical Methods for Engineers. Cengage
Learning, 2010.

[213] Glenn A. Walker and Jack Shostak. Common Statistical Methods for Clinical
Research with SAS Examples,: Third Edition. SAS Institute Inc., 2010.

[214] H. Wang and P. Yushkevich. Guiding Automatic Segmentation with Multi-
ple Manual Segmentations. Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2012, pages 429–436, 2012.

[215] Wei-Jing Wang and Jia-Xin Chen. An Improved Interpolation of Medical Im-
ages. Journal of Henan University of Science & Technology (Natural Science),
3:008, 2006.

[216] Zhou Wang and Alan Conrad Bovik. Modern Image Quality Assessment. Syn-
thesis lectures on image, video, and multimedia processing. Morgan & Claypool
Publishers, 2006.

[217] Zhou Wang, Alan Conrad Bovik, Hamid R. Sheikh, and E.P. Simoncelli. Im-
age quality assessment: From error visibility to structural similarity. Image
Processing, IEEE Transactions on, 13(4):600–612, 2004.

[218] T.J. Watsham and K. Parramore. Quantitative Methods for Finance. Interna-
tional Thomson Business Press, 1997.

[219] D. Weiler, V. Willert, J. Eggert, and E. Korner. A probabilistic method for
motion pattern segmentation. In Neural Networks, 2007. IJCNN 2007. Inter-
national Joint Conference on, pages 1645–1650. IEEE, 2007.

200

[220] S.L. Weinberg and S.K. Abramowitz. Data Analysis for the Behavioral Sciences
Using Spss. University Press, 2002.

[221] D. Weisburd and C. Britt. Statistics in Criminal Justice. Springer, 2007.

[222] P.F. Whelan and D. Molloy. Machine Vision Algorithms in Java: Techniques
and Implementation. Springer, 2001.

[223] H.F. Wilkinson and F. Schut. Digital Image Analysis of Microbes: Imaging,
Morphometry, Fluorometry and Motility Techniques and Applications. Modern
Microbiological Methods. Wiley, 1998.

[224] G. Wolberg. Recent advances in image morphing. In Computer Graphics In-
ternational, 1996. Proceedings, pages 64–71. IEEE, 1996.

[225] Q. Wu, F. Merchant, and K. Castleman. Microscope Image Processing. Elsevier
Science, 2010.

[226] Q. Wu, F. Merchant, and K.R. Castleman. Microscope Image Processing. Aca-
demic Press. Elsevier/Academic Press, 2008.

[227] H. Xiong and W.B. Lee. Knowledge Science, Engineering and Management:
5th International Conference, KSEM 2011, Irvine, CA, USA, December 12-
14, 2011. Proceedings. Lecture Notes in Computer Science: Lecture Notes in
Artificial Intelligence. Springer, 2012.

[228] A. Yadav and P. Yadav. Digital Image Processing. Laxmi Publications Pvt
Limited, 2009.

[229] C.C. Yang and S.H. Kwok. Efficient gamut clipping for color image processing
using LHS and YIQ. Optical Engineering, 42(3):701–711, 2003.

[230] W. Yang, J. Cai, J. Zheng, and J. Luo. User-friendly interactive image seg-
mentation through unified combinatorial user inputs. Image Processing, IEEE
Transactions on, 19(9):2470–2479, 2010.

[231] Eugen Zaharescu. Analysis of Morphology-like Operators Used in Color Image
Contrast Enhancement. In Proc. of International Conference on Theory and
Applications of Mathematics and Informatics-ICTAMI, 2004.

[232] L. Zhang and Q. Ji. A Bayesian network model for automatic and interactive
image segmentation. Image Processing, IEEE Transactions on, 20(9):2582–
2593, 2011.

[233] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. A comprehensive evalu-
ation of full reference image quality assessment algorithms. In Image Processing
(ICIP), 2012 19th IEEE International Conference on. IEEE, 2012.

201

[234] Lin Zhang, Lei Zhang, Xuanquin Mou, and David Zhang. FSIM: A feature simi-
larity index for image quality assessment. Image Processing, IEEE Transactions
on, (8):2378–2386, August 2011.

[235] W. Zhang, P. Yan, and X. Li. Estimating patient-specific shape prior for medical
image segmentation. In Biomedical Imaging: From Nano to Macro, 2011 IEEE
International Symposium on, pages 1451–1454. IEEE, 2011.

[236] Y.J. Zhang. An overview of image and video segmentation in the last 40 years.
Advances in Image and Video Segmentation, pages 1–15, 2006.

[237] C. Zhou and C. Liu. Weakly Supervised Semi-automatic Semantic Segmenta-
tion of Natural Scene Images. Journal of Computational Information Systems,
8(18):7757–7763, 2012.

[238] R. Zhu and Y. Ma. Information Engineering and Applications: International
Conference on Information Engineering and Applications (IEA 2011). Lecture
Notes in Electrical Engineering. Springer, 2011.

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Literature Review: Morphological Interpolation of Images
	Morphological Interpolation for Binary Images
	Morphology-based Three-dimensional Interpolation
	Recursive Interpolation Technique based on Morphological Median Sets

	Interpolation of Partitions
	Interpolation of Partitions through Median Sets
	Generalized Morphological Mosaic Interpolation
	Segmentation-based Morphological Interpolation of Partition Sequences
	A Region-based Interpolation Method for Mosaic Images

	Morphological Interpolation for Grey-scale Images
	Median of Images

	Color Median of Images

	New Morphological Interpolation Methods for Color Images
	Segmenting the Input Images to Obtain Color Mosaics
	Matching the Regions of the Color Mosaics
	Converting the Color Mosaics with Matched Regions into Grey-level Mosaics
	Interpolating the Grey-level Mosaics
	Coloring the Interpolated Mosaic
	Overlapping
	Deforming

	The Algorithm for Compression and Expansion
	Compression and Expansion between the Borders and the Nucleus
	Birthplaces

	Comparisons of Color Interpolation Methods
	Selecting Sequences of Images
	Statistical Analysis
	Results and Discussion
	Descriptive Analysis

	Conclusions
	Images
	Properties of Color
	Color Constancy

	Digital Images
	Binary Images
	Grey-level Images
	Color Images
	Mosaic Images

	Color Models and Color Spaces
	RGB Color Model
	HSV Color Model
	CIELAB
	YIQ Color Space

	Basic Concepts: Neighborhood, Neighbors, Connected Pixels, and Connected Component
	Convolution
	Image Gradient
	Scharr Operator
	Kroon Operator

	Distance
	Geodesic Distance
	Hausdorff Distance

	Homotopy
	Image Segmentation
	Interactive Segmentation

	Image Interpolation
	Grey-level Image Interpolation
	Shape-based Interpolation

	Image Quality Assessment
	FSIMc

	Mathematical Morphology
	Mathematical Basis
	Structuring Element
	Binary Operators
	Ultimate Eroded Set
	Hit and Miss Transform
	Thinning
	Shrinking
	Skeletonization
	Pruning
	MSP
	Interpolation of Sets
	Median Set
	Sequence of Interpolations through Median Sets
	Interpolation Function
	Interpolations based on Hausdorff Distance

	Mathematical Morphology for Images
	Grey-level Mathematical Morphology
	Grey-level Watershed Transform

	Color Mathematical Morphology
	Color Watershed

	Implementing Existent Interpolation Methods for Color Images
	Implementing Linear Interpolation for Color Images
	Implementing Color Median of Images

	Prewitt Operator
	Sobel Operator
	Mean Squared Error and Peak Signal to Noise Ratio
	Mean Squared Error
	Peak Signal to Noise Ratio

	Statistics
	p-value
	One- and Two-tailed Tests
	Significance Level
	Statistical Power
	Skewness
	Normality
	Normal Probability Plot
	Shapiro-Wilk Test

	Paired Difference Tests
	t-Test for Correlated Samples
	Wilcoxon Signed-rank Test
	Sign Test

	Rank Correlation
	Correlation Coefficient of Kendall

	Choosing an Interactive Segmentation Method
	Measurement of Interactive Segmentation Methods
	Accuracy
	Repeatability
	Efficiency

	Datasets for Evaluating Interactive Segmentation Methods
	Comparison of Interactive Segmentation Methods

	Compression and Expansion between the Borders and the Birthplace
	Compression and Expansion between the Outer Border and a Set of Points
	Compression and Expansion between the Borders and Rings
	Compression and Expansion between the Borders and an Artificial Connected Component

	Bibliography

