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Concepción, Chile

Octubre, 2013



Acknowledgments

En primer lugar quisiera agradecer a la comisión evaluadora de este trabajo de

tesis, Nancy Hitschfeld y Leo Ferres. Igualmente, agradecer a Synopsys Inc. y al

Dr. Charles Chiang por su valioso aporte y orientación como experto en el área.
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Resumen

En la evolución constante de los procesos de manufactura de circuitos, la detección

de configuraciones conflictivas se ha convertido en una tarea crucial en el proceso de

diseño y producción. Estas configuraciones pueden provocar fallos en el circuito pues

son propensas a sufrir distorsiones en las etapas de fabricación, ya sea por efectos de

estrés de materiales, baja tolerancia a procesos de impresión como la fotolitograf́ıa,

entre otros. La investigación en torno a esta problemática ha dado lugar a diferentes

enfoques y técnicas que se utilizan para obtener soluciones eficaces que permitan a los

diseñadores, ya sea a evitar el uso de configuraciones conflictivas, como a corregirlas

o eliminarlas cuando aparecen en un diseño tras el uso de herramientas automati-

zadas. El problema de fondo es que estas técnicas, que suponen un coste adicional en

el proceso de diseño, no siempre son eficaces, sobre todo desde el punto de vista de

tiempos de ejecución.

El siguiente trabajo de tesis de magister ampĺıa el trabajo realizado para la ob-

tención de mi t́ıtulo profesional de Ingeniero Civil Informático. En dicho trabajo, se

extrae cierta información relevante de regiones rectangulares de un diseño o layout.

Esta información, llamada signature o firma de la región, es posteriormente utilizada

para decidir si una región contiene o no una cierta configuración que se desee elim-

inar. T́ıpicamente, estas configuraciones corresponden a patrones geométricos que,

dados los procesos de manufactura, tienen una alta probabilidad de dar origen a una

falla, conocida como hotspot. En otras palabras, un hotspot es una configuración de

componentes electrónicos que provoca un mal funcionamiento del circuito. De forma

adicional, este trabajo refina el trabajo anterior respecto a la estructura de datos

utilizada, redefine la signature para patrones que tengan una dimensión distinta a la

ventana de análisis, y realiza una evaluación exhaustiva de tiempo y calidad de los

resultados. El objetivo principal de este método es reducir los tiempos de ejecución

necesarios en las etapas de detección de hotspots al disminuir las porciones del diseño

que deben ser analizadas usando técnicas más complejas.
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Para ello se utilizan algoritmos que transforman representaciones geométricas ex-

presadas como reglas espaciales a representaciones expresadas como grafos dirigidos,

los que son finalmente utilizados para obtener representaciones vectoriales de dichas

representaciones geométricas. Estas representaciones vectoriales, denominadas la sig-

nature de un patrón geométrico, son almacenadas en estructuras indexadas para per-

mitir posteriores búsquedas en base a ı́ndices. El trabajo presenta evaluaciones exper-

imentales de diversas estructuras indexadas basadas en arboles binarios de búsqueda,

tablas hash, y combinaciones de ambos tipos. Los experimentos muestran tiempos

de ejecución que permiten disminuir los tiempos de ejecución que actualmente se re-

quieren para la detección de patrones en diseños de circuitos integrados, aśı como uso

de memoria que permiten la ejecución del proceso en computadores personales. Las

estructuras que utilizan una combinación de estructuras indexadas mostraron ser la

que ofrecen la mejor relación entre tiempos de ejecución y memoria requerida.
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Abstract

Due to the constant improvement of the circuit manufacturing technology, the de-

tection of conflictive configurations has become relevant, being an important part of

the design and production process. These conflictive configurations can lead to circuit

failures, which can be produced due to a series of factors that can generate distortions

at manufacturing stages. These factors can be, for example, the stress of materials,

low tolerance to printing processes as photolithography, among others. The investi-

gation around this problem has given rise to different approaches and techniques used

to obtain effective solutions, which allow the designers to avoid the use of conflictive

configurations, or correct or remove them when they appear in a design after the use

of automated tools. The background problem is that these techniques, which suppose

an additional cost to the design process, are not always efficient, mostly from time

point of view.

This Master’s thesis improves and extends the work done to obtain the professional

title of Ingeniero Civil Informático. It extracts some selected information, referred

as signatures, from rectangular regions of a circuit design or layout. These signatures

are then used to decide if a region contains or not a configuration that want to be

removed. Typically, these configurations correspond to geometric patterns that, due

to the manufacturing process used to build an IC, have a high probability to become

a failure, which is known as hotspots. In other words, a hotspot is an electronic com-

ponent configuration that causes a malfunction in the circuit. Additionally, this work

refines the previous work regarding the data structure used, redefines the signature

for patterns having different size with respect to the window of extraction, and makes

a comprehensive evaluation of time and quality of results. The principal objective of

this method is to reduce the time cost of the hotspot-detection process by filtering

out portions of the layout that need to be analyzed using more complex techniques.

To achieve this objective, some algorithms are used. These algorithms transform
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a spatial-rule representation of a geometric pattern into an oriented-graph represen-

tation, which are finally used to obtain a vectorial representation of the geometric

pattern. This vectorial representation, called the signature of the geometric pattern,

are stored in a indexed structure that allows later lookups based on indexes. This the-

sis work presents an empiric evaluation of various different indexed structures based

on binary-search trees, hash tables, and combinations of both types. The experiments

show execution times that allow to reduce the execution times currently needed to

detect geometric patterns in integrated circuit designs, as well as the memory required

allows to operate the process in personal computers. The data structures that use

a combination of indexed structures have shown to be the ones that offer the better

balance between execution times and memory used.
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Chapter 1

Introduction.

1.1 Background.

A typical integrated circuit or IC is built in a chip, creating layers of different

materials such as metal or polysilicon1. Geometrical patterns are then printed on

these layers using different printing techniques, giving rise to electrical components

whose interactions will define the circuit behavior. Designing a circuit requires to

have knowledge about the interaction between layers for a certain manufacturing

technology, as well as the limitations that these manufacturing processes impose.

The principal objective of a designer is to put as many electrical components

in the less area as possible, achieving a correct circuit behavior. A good example

of what is an IC is a microprocessor for which it is very important the amount of

information that can be processed and the processing speed of the microprocessor.

Because the enormous quantity of electrical and wire components needed to build an

IC, the schematization problem, known as layout problem, becomes relevant.

Current technology for nanoscale IC construction has certain problems inherent

in the manufacturing process that require special attention from designers. As going

through the circuit design process that involves determining which pattern will be

included in a design, in which layer and position they will be included, and do so trying

to make a design as compact as possible, designers have to prevent the appearance of

hotspots. The prevention can be achieved by detecting the occurrence of conflictive

patterns in a design, and correcting or removing them before the design goes to

production. This detection becomes critical below the 90 nanometers technology [13]

as a reason of printing problems that cause variation between a design and its physical

circuit, such as focus fixation or light exposure in the photolithography process. These

variations can lead to bridging between electrical components, and necking or line-end

1Also called Polycrystalline silicon.
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shortening in its dimensions when they are printed (see figure 1.1). These anomalies

cause the circuit to fail in contrast to some of the specifications under which the

circuit was designed, reason why they are known as yield detractors or hotspots.

Figure 1.1: Examples of manufacturing variations. [19]

(a)-(d) Bridging, (b)-(e) Necking, (c)-(f) Line-end shortening.

Design-rule checking (DRC) was introduced as a first attempt to help designers

to detect and avoid hotspot occurrences in designing stages. DRC is a major step

during physical verification signoff of the design, where the designer defines a set of

geometric restrictions and connectivity rules, known as Design Rules, that the circuit

must satisfy (see figure 1.2). These rules seek to ensure sufficient margins according

to the variability in the printing processes, reason why they are specific to a certain

manufacturing process and may not be generalizable.

Figure 1.2: Basic DRC checks. [4]

Width, spacing, and enclosure.

What is common is that, with the advance of manufacturing technology, the num-

ber of necessary rules, and its combinatorial explosion due to the significant increase
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of elements in a circuit, have increased the complexity of this technique. A standard

practice is to reduce the rule number relaxing the set. This means to pass over some

complex rules, which reduces the complexity of the verification process as expenses of

yield. This decision may cause that some potential hotspots be overlooked, especially

when the conflicting interactions are not local. For this reason, new complementary

techniques were introduced. Some of them take into account local interactions, while

others are capable of taking into account more global interactions.

These techniques suppose a high additional cost in the verification process, espe-

cially due to the dimensions of current designs and the density of components that the

new technologies allow, increasing the apparition of potential hotspots and, therefore,

the patterns that must be detected.

1.2 Motivation.

Semiconductor fabrication plants, commonly called fabs, usually use design rules

to represent process-hotspots and a typical design rule checker to detect such hotspots.

However, this representation has been found to be inadequate [6], so the last few years

there has been extensive work in the area of fast process simulation to aid DRC during

the physical design stages. For example, industry has been using lithography hotspot-

detection processes based on aerial image simulators [22, 16]. The problem is to find

new techniques that complement verification techniques that are currently used by

fabs, at a low computational cost, usually measure in terms of runtime.

A previous work in [3] defined signatures to pre-filter regions of a layout from a

hotspot-detection process. These signatures consist in some summarized information

of a portion of the layout. Once the signature is obtained and stored, it is then

used to decide if the portion of the layout contains or not a certain pattern to be

identified. This identification process is used to modify or remove these patterns

to avoid the occurrence of yield detractors or hotspots. The experiments shown in

[1] laid the theoretical basis on which it is asserted that the use of signatures is a

viable technique that allows this decision with a low rate of false positive. However,

the proposed method still had various limitations and improvements to be done. Of

particular interest are a more detailed signature extraction process and a study of
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different storage structures. Additionally, a rather simplistic limitation was the fact

that to obtain good results in terms of accuracy (i.e., low rate of false positive), the

pattern to be searched should match the size of the portions or windows upon the

signatures were extracted. This limitation means that the method was practically

unusable in production processes because it is really very difficult and unrealistic to

know the dimensions of a potential hotspot beforehand. Even more, the dimensions

of same patterns could vary as printing technologies do.

1.3 Hypothesis.

The hypothesis of this work is that it is possible to construct a signature that

characterizes a certain configuration of geometries (from now the pattern), and use

that signature to decide if this configuration is or is not contained in a certain area

of a circuit design. To use this signature in a realistic situation, it must allow the

decision even if the size of the pattern and the area of design are not exactly the

same. It also must allow the detection of patterns even if there are rotations between

the pattern and the design region.

1.4 Objectives.

The objectives of this thesis are:

1. Define a signature over configurations composed of rectangular geometries.

These configurations can be patterns or portions of layouts. The computa-

tion of these signature should consider time, and as a second priority, space

costs.

2. Design an indexing structure that stores signatures and the identification of

portions of a layout that match the signatures.

3. Design a search method over the indexing structure that use the signature of a

pattern as a search key.

4. Perform an experimental evaluation of the quality of the signature, the time

and space cost of the indexing structure and the time cost of the search process.
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1.5 Methodology.

The methodology followed by this work can be summarized in three basic steps

that aim to answer the following questions: How the hotspot detection is addressed

today? How can we contribute to improve the efficiency on the hotspot-detection

process?, and How can we evaluate our contribution?

The first step is to present a review of the problem, determining the principal

approaches in the state-of-the-art and their limitations. From this review, we can

determine some useful elements to be used in our work, delimiting the contribution.

From this first step, we chose approaches that result to be more similar to our previous

done work in [1]. The review include works found in abstracts, papers and patents

published in academic and commercial journals, bibliographic databases, and Internet

search engines.

The next step is to propose a signature-based preprocessing and searching to filter

out portions of a layout from hotspot-detection process. This includes to propose a

data model to represent layouts and patterns and to design an indexing structure.

The last step is to determine the data analysis to be performed and what the

evaluation criteria are. This step needs to set up the experimental evaluation to mea-

sure the evaluation criteria. Because a standard data analysis method has not been

established nor decided yet from companies engaged in the area of this investigation,

we use typical measurement form information retrieval and execution time criteria.

These evaluations were performed by using our own implementations because more

sophisticated analysis tools are typically distributed under paid licenses and need to

be calibrated to a certain production process.

1.6 Organization.

The organization of this document is as follows. Chapter 2 provides a brief review

of related works, presenting techniques for hotspots detection that are used today, and

resuming the contribution of this master thesis. Chapter 3 discusses the experimental

evaluation, its results and conclusions, while the final chapter closes the work with

general conclusions and future research directions.



Chapter 2

Related works.

In the literature we can distinguish four approaches for hotspots detection, each of

them with its advantages and disadvantages. These four approaches are the hotspot

detection using lithography simulation, the hotspot detection using pattern recogni-

tion, the hotspot detection using learning machine, and the hotspot detection using

graph-oriented techniques. In this chapter we present a brief review of these ap-

proaches.

2.1 Lithography simulation.

The real process of printing an IC involves more than only the design and the

wafer, which is the surface where the IC is printed. As was said before, an IC is

built layer by layer which are superposed obtaining a third-dimensional product from

bi-dimensional representations. These representations include geometric shapes and

are known as the design. Typically, the designs are constructed using CAD1 tools and

are used to build what is known as mask. A mask is used in the photolithographic

process to print the design on the wafer.

As we can see in [12], to build a layer it is necessary to deposit material over a sili-

con layer and then remove part of it. The deposition process typically used a method

called Chemical Vapor Deposition (CVD), while the removing process typically uses

etching substances, leaving exposed some areas of a layer. To do this etching process,

it is necessary to ensure that the areas that want to be maintained will not be etched

by the acid. This is achieved by reinforcing the materials using light, from which this

process receives the name of photolithography. A material known as photoresist is

used and some regions are exposed to light. The areas with incidence to light can

become resistant to the acid or soluble to it. In this way, geometrical shapes can

1CAD stands for Computer Aided Drafting

6
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be printed on a layer. The problem is that current dimensions of components are

smaller than the frequency of the light used in this process. Because of this reason,

the light should pass through a lens and mask that filter out the light exposition in

some regions of the layer.

The resolution of a process of optical lithography, i.e., the ability to project a clear

image of a small feature on the wafer, is limited by the wavelength of light and the

numerical aperture (NA) of the reducing lens used for light exposure [7, 8]. As the

minimum widths in Ultra Large Scale Integrated (ULSI) circuits reach resolutions

smaller than 90nm, the difficulty of achieving high fidelity printing circuits increases,

even when the NA significantly increases and the wavelength decreases [5].

The minimum width of the features that a projection system can print is given

approximately by the formula 2.1, where CD corresponds to the minimal width that

can be achieved while printing onto the wafer, k1 corresponds to a coefficient that

encapsulates different factors related to the photo-lithographic process (usually varies

between 0, 3 and 0, 4), NA corresponds to the NA of the lens view from the wafer,

and λ is the wavelength of the light.

CD = k1 ·
λ

NA
(2.1)

Formula 2.1: Critical dimension of the features printed by a projection system.

Currently, laser light with wavelength between 248 nm and 193 nm are used.

Photolithographic processes for low minimum widths require narrow margins for focus

and exposure, resulting in high optical proximity effects as deviations in the critical

dimensions of the prints [9]. These difficulties have led to the semiconductor industry

to use complex conditional rules and recommended rules for specifying geometric

constraints in the design stages [11], Resolution Enhancement Technology (RET)

techniques, Optical Proximity Correction (OPC) [9].

OPC is a photolithography enhancement technique commonly used to compensate

image errors due to diffraction or process effects. It is mainly used in the semicon-

ductor industry due to the limitations of light techniques to maintain a correct edge

placement, relative to the original design, into the etched image on the silicon wafer.
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These projected images appear with irregularities such as line widths that are nar-

rower or wider with respect to the design. The irregularities can be compensated by

changing the geometries on the mask used for imaging, and here is when OPC is used.

OPC corrects these errors by moving edges or adding extra polygons to the pattern

written on the mask or photomask. This may be driven by pre-computed look-up

tables based on width and spacing between features, known as rule based OPC, or

by using compact models to dynamically simulate the final pattern and thereby drive

the movement of edges, typically broken into sections to find the best solution, known

as model based OPC. The objective is to reproduce, as well as possible, the original

layout drawn by the designer in the silicon wafer. This is achieved through iterative

design modifications that are usually based on rules or models of the manufacturing

process used by the fab.

Some process models have incorporated analysis and correction tools such as com-

plete circuit simulators [14]. Although lithographic simulations generate accurate im-

ages of a design allowing robust verifications, these approaches have some limitations

that make them hard to use in the practice [6].

1. Lack of information about subsequent processes, making it impossible to accu-

rately model and calibrate some stages as OPC corrections. Moreover, simula-

tions based on lithographic images usually detect regions that could be easily

corrected by using masks-synthesis techniques, causing an over-estimation that

slows the process of routing.

2. High computational cost of some models that are difficult to incorporate during

physical designing stages, e.g., calculation of stress in metal components.

One approach that prevails today for hotspots detection is to predict them using a

rigorous simulation post-OPC2 along with customer-defined checks (see figure 2.1).

Thereby, the configurations that don’t meet the checks are marked or classified as

hotspots and are corrected in accordance to this classification. Unfortunately, a com-

plete simulation of an entire circuit design is computationally expensive, increasing

greatly the time a circuit passes from the design stages to the production stages.

2OPC stands for Optical Proximity Correction.
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Figure 2.1: Example of a lithographic simulation post-OPC for an 45 nm design. [20]

a, b, c and d are design views; A, B, C and D are lithographic simulations.

To overcome the cost of a full simulation, there are different techniques that aim to

break up the complexity of this process. The work presented in [15] extracts situations

of a design. A situation is a collection of shapes within a radius of extraction, which

are described based on corners and edges. This generates a collection of figures among

which may exist overlaps. These situations occur depending on some characteristics

of the geometry to be analyzed, and can be used to improve OPC corrections. Figure

2.2 shows an example of the extraction of situations based on borders and a predefined

radius. The radius could be expressed as Manhattan distance, Euclidean distance,

among others, and typically corresponds to the radius of optical influence of the

manufacturing tools. In the figure 2.2(a), the situations 110-116 are extracted from

the polygon 100, based on corners and a r-Manhattan radius of extraction, which

results in 2r× 2r square situations. Similarly, the figure 2.2(b) shows the situations

based on borders for the same polygon and the same radius. This result in situations

of 2r+x×2r+y, where x is the length and y the height of the border around which the

situation has been extracted. Interesting is to see that situations are described within

a radius, and, therefore, are part of a larger geometry with its own characteristics.

These situations are extracted in a hierarchical order, so that the design to be analyzed

can be conceived as a partition of cells. The process traverses through this hierarchy

of cells extracting a collection of geometries, where each cell instances can be seen as

a cell instance of the cell in the top level.
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Figure 2.2: Extraction of situations. [15]

(a) corner based y (b) edge based.

The drawback of this approach is to define the situations and run simulations on

each of them to make the necessary changes and then merge these situations to get

the entire design again, but with the changes done. To avoid performing unnecessary

simulations, the overlapping areas must be handled properly, and yet the separations

of a geometry can generate loss of information of the interactions between components

that are beyond the location of the partition.

2.2 Detection using pattern recognition.

In the literature, pattern recognition for hotspot detection can be addressed in

two ways. One of them is to represent patterns as Design Rules (DRC). The other

way is to represent patterns as spatial configurations, typically as images.

Although DRC was not introduced for hotspot detection but to prevent the appear-

ance of them, there are approaches that leverage the DRC characteristics to improve

the accuracy in the hotspots-detection processes. The main objective of design-rule

checking (DRC) is to achieve a high overall yield and reliability for the design. If

design rules are violated, the design may not be functional. To meet this goal of

improving yield, DRC has evolved from simple dimension measurement and boolean

checks, to more complex rules that modify existing features, insert new features, and

check the entire design for process limitations such as layer density. However, DRC

is a computationally very expensive task. Usually DRC checkers will be run on each
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sub-section of the ASIC3 to minimize the number of errors that are detected at the

top level. If DRC runs on a single CPU, customers may have to wait up to a week

to get the get the result for modern designs. Most design companies require DRC to

run in less than a day to achieve reasonable cycle times because the DRC be likely

run several times prior to the design completion. As complex conditional and recom-

mended rules are added to compensate some deficiencies, the number of needed rules

to represent a layout can result in an explosion of the rule libraries. Hence, depending

entirely on DRC to detect potential hotspots usually slows down the design process.

Even more, the systematic use of recommended rules can bring the density of a 90

nm design to the equivalent of a 130 nm design, wasting most of the benefit that a

90 nm design supposes. For this reason, the set of rules is usually relaxed and some

hotspots can appear. However, DRC can still be useful to detect hotspots converting

some topological characteristics of conflictive patterns into rules and then analyzing

and comparing DRC logs to identify potential hotspots [10, 15].

The work presented in [4] extracts topological characteristics of a certain pattern

and converts them into design rules. This extraction considers different orientations

of the pattern that include the four rotations (0◦, 90◦, 180◦, 270◦) and the mirroring

over X and Y axis, respectively. Once these critical topological features have been

extracted and converted into design rules, a DRC process is applied to find regions

of the design that fit the rules extracted. This occurs in two filtering stages, where

the first stage indicates potential regions, while the second stage verifies the exact

locations. To extract the topological relations of a pattern, they extend the repre-

sentation given in [2] to obtain a modified transitive closure graph or MTCG. The

original representation or TCG is used to represent compact configurations, using a

pair of restriction graphs Ch and Cv (horizontal and vertical restrictions, respectively),

to establish the geometric relationships. However, as we can see in figure 2.3, design

patterns cannot be in a compact form because the spacing between geometries. This

spacing should be considered as it is essential for the detection of hotspots because it

also represents topological characteristics of the pattern. To properly consider these

spaces in the TCG representation, the pattern is partitioned into boxes. As seen in

3ASIC stands for Application Specific Integrated Circuit
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figure 2.3, in the horizontal partition (Tiled pattern (H)), the horizontal edges of the

geometries contained in the pattern are projected until they intersect a vertical edge

of a geometry and such partition will correspond to a box (boxes a-d and A-E). The

same way occurs for the vertical partitioning of the pattern, reversing the orientation

of the projected geometries. So, a compact representation of the pattern is obtained,

where there exist block boxes provided by the pattern geometries (a-c boxes in figure

2.3(H)) and spacing boxes (A-E boxes in figure 2.3(H)).

Figure 2.3: Construction of a MTCG graph. [4]

After the pattern has been partitioned into tiled patterns, the MTCG graph is

built. Here, the vertexes represent block boxes (black dots in figure 2.3) or space

boxes (white dots in figure 2.3), and the directed edges represent topological rela-

tionships between these boxes. In a horizontal contraint graph, a directed edge is

added between adjacent boxes if the projection on the X-axis produces a superposi-

tion, starting from left to right. This is similar for vertical restrictions graph and the

Y -axis, from the bottom to the top of the pattern.

In the first topological features extraction, lengths and widths of blocks are ex-

tracted as well as distances between two adjacent boxes and diagonal relations be-

tween two convex corners. These features are then traduced to rules, e.g., width and

spacing rules shown in figure 1.2. Being written as design rules, these characteristics

are expressed as inequalities.

Once the topological features of a pattern are extracted and are written as design

rules, and because the representation of a pattern in MTCG is unique, the method

proceeds to the verification stage. Here the extracted design rules are compared to
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the DRC rules under which the design was built. The idea is to determine whether

any of these rules are violated. If this occurs, the location is verified in more details

to see if there exists a hotspot. Something similar occurs in [10], where all the lengths

of edges and the distances between geometries are extracted as topological features.

At this analysis stage, a searching graph is built. This graph stores all the locations

reported by a DRC comparison. Subsequently, the searching graph is traversed to

identify potential hotspots.

When patterns are represented as spatial relationships for hotspots detection, some

relevant information of conflictive patterns are usually stored in libraries. These

libraries are queried to find hotspots occurrences scanning the whole design using

pattern matching techniques. This means that these techniques have all the benefits

of current pattern matching algorithms. However, even using algorithms for fuzzy

geometries [6], they suffer of poor accuracy when previously unknown patterns have

to be detected. Moreover, the pattern libraries can be updated to include more

information about conflictive patterns as the system progresses, but as the library

grows, the run-time advantages of the method decreases.

In [6], a worm-like movement is used to analyze all possible windows within a

design. Each window is converted into a matrix of binary values, as shown in figure

2.4, where the value of each cell is 1 if the cell overlaps a geometry, and 0 otherwise.

This process occurs in two stages, the first stage with a low resolution grid, to filter

potential regions corresponding to conflicting patterns, and in a second stage with

a higher grid resolution, for a more accurate analysis of selected regions at the first

stage.

Figure 2.4: Binary matrix representation. [6]
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For the patterns to be detected, a similar procedure is followed, with some differ-

ences. To properly handle the sizes of the libraries, a new representation called range

patterns is introduced (see figure 2.5).

Figure 2.5: Range pattern Rocket. [6]

Unlike representing every possible conflicting pattern, establishing the absolute

dimensions of the geometries contained in it, a range pattern representation allows

grouping a set of patterns with similar geometries into a single pattern. This grouping

occurs through the definition of ranges in the dimension of their geometries. For

example, the range pattern in the figure 2.5 represents both the pattern for which the

length of the rectangle 1 is 90nm, and the pattern for which the length of the rectangle

is 91nm, and so on until 150nm. Without this compact representation, each of these

instances of a range pattern should be specified independently. Explicitly listing each

instance, which will be referred from now on as absolute patterns, leads us to obtain 60

different patterns from varying just one of their geometries. Thus, the representation

by compacting range patterns allows the decrease of memory requirements for libraries

in hotspots-detection processes. Additionally, due the characteristics of the process

used for handling range patterns, it is possible to decrease the number of runs required

to detect two absolute patterns if they belong to the same range pattern.

To perform the comparison of patterns, a range pattern should be represented in a

way similar to the design representation, i.e., as a matrix representation. To achieve

this, a range pattern is represented in what the authors call cutting-slice representa-

tion. For example, as shown in figure 2.6(d), to obtain the horizontal cutting-slice

representation of the pattern rocket, all the horizontal edges of the geometries are

projected obtaining a set of 2D matrixes. What characterizes these 2D matrixes is

that, in a 2D matrix, all rows (or columns in the vertical case) are equal. The set of
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2D matrixes is called cutting-slice and in a cutting-slice two adjacent slices are not

equal. In figure 2.6(d) we can see that S0, ..., S4 are horizontal slices and conform

the horizontal cutting-slice of the pattern rocket. The same occurs for the vertical

cutting-slice.

Figure 2.6: Cutting-slices of the rocket range pattern. [6]

Once the window is represented as a grid and the pattern as cutting-slices, both

are encoded as strings to perform the first detection stage. This step compares the

encoding to detect when a set of geometries within the window is similar to the

geometries contained in the pattern, even when the dimensions of these geometries

are not exactly the same. When a possible match is detected, the window is analyzed

in a second stage where the resolution of the grid is higher, and the process takes into

consideration additional information related to the dimensions of the geometries for

a more accurate detection.

2.3 Detection using machine learning techniques.

The techniques that use machine learning for hotspots detection, typically con-

struct a classification model for patterns. Such model catalogs a pattern as hotspots

based on the extraction of some features, and can use the classification model to
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predict whether future unknown patterns will give rise to hotspots in a certain manu-

facturing process. The work presented in [20] uses a machine-learning kernel (MLK)

based on the extraction of critical features for hotspot detection. This extraction

occurs in binary images that are representations of a layout. The authors propose

three critical features to generate a compact representation of a certain geometrical

configuration: the number of bounded rectangles (BR), T-shapes and L-shapes. This

compact representation is not affected by two-dimensional transformations such as

shifting, rotation or mirroring.

Figure 2.7: Critical features. [20]

(a) a 45nm design, (b)(c) two examples of critical features extraction.

The bounded rectangles represent the relative geometrical positioning between

adjacent components using an interval representation. For example, in figure 2.7(b)

we can see that BR1, BR2, BR3 and BR4 represent de relative positioning between

the components (black rectangles). Each BR is represented as a vector which codifies

the parameters (W,L, (X, Y ), D), where W and L are the width and the length of the

bounded rectangle respectively, (X, Y ) are the top-left coordinates of the rectangle,

and D corresponds to the orientation of the rectangle. D is 0 when the width of

the rectangle is measured along the X-axis, and 1 otherwise. On the other hand, T-

shapes and L-shapes correspond to the number of shapes with a T-form or an L-form,

respectively, that extend along both sides of the bounded rectangles. For example,

in 2.7(b), the zone denoted as A is a T-shape for BR1 and BR4, the zone denoted as

B is a L-shape for BR1, BR2, BR3 and BR4, while the zone denoted as C does not

correspond to a T-shape nor a L-shape for BR2 and BR3.

In the extraction step, the binary image is partitioned in a set of binary images.
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For each partition, a vector is obtained for each component within the partition. An

ordered collection of vectors establish the metrics for the whole partition, which are

then used as input for the MLK, iteratively creating a kernel to predict the presence

of hotspots in future designs (note that the training of the MLK must be supervised).

The MLK is based on an artificial neural network (ANN) whose objective is to mini-

mize the squared error between the network prediction and the supervised decision.

The work is used by the CALIBRE 4 design tool.

In [19], the authors propose a technique for hotspot detection that provides a full

layout, feature-centric analysis. This is achieved by determining a radius of analysis,

under which geometrical features are extracted (see figure 2.8). The work, which

extends the work presented in [18], uses the metric features extracted from the layout

not to decide whether a certain pattern is defective or not, but leaves the decision

to a recursively trained and validated kernel using techniques of machine learning.

This kernel, that could be based on an ANN or in a support vector machine (SVM),

extends the previous work to a hierarchical learning process. The extraction process

defines a radius of analysis, under which the geometries are fragmented to analyze

each fragment and its neighbor fragments, defining externally and internally facing

polygons.

Figure 2.8: Feature extraction. [19]

(a): Efective radious of analysis. (b): Fragmented geometries with externally and internally facing
polygons.

4CALIBRE is a lithographic simulation tool of Mentor Graphics. -http://www.mentor.com.
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The characterization of geometries is built based on corners information (concave

or convex), the distance between externally facing polygons, and the distance between

internally facing polygons (see figure 2.9). This information is used to build a uni-

dimensional vector that characterizes a fragment F . These vectors are then combined

using vector operators to define a final vector Vf that characterizes the whole region

of analysis. As well as the previous work, this vector Vf is invariant to rotation and

mirroring, and is used as input for the SVM or ANN kernel.

Figure 2.9: Geometrical metrics. [19]

(a): Corner bases information. (b): Distance between externally facing polygons. (c): Distance
between internally facing polygons.

The problem with the previous mentioned technique is that it take into account

very local relations between components. Most of similar techniques use a region of

analysis, so this problem could be overcome using larger regions, but this decision

could increase the runtime of the process. The work presented in [23] attempts to

overcome this limitation by taking into account the information of larger regions of

a design, improving the execution time by using a two-level classification. The main

idea of this classification is:

1. The first level uses a supervised trained classifier to separate parts of the design

with potential hotspots. This separation is performed using information around

a centric target location, e.g., geometries of the design in its vicinity. Since

these near geometries have a strong influence on candidate geometries, then

geometries very similar to a pattern, predefined as potential hotspots, will be

marked at this level and will pass to the second level of the classification for a

more detailed examination.
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2. The second level uses as well a previously trained classifier to examine the

peripheral information of the region marked as potential hotspot at the first

level. Thus, geometries that are not in close proximity, but still have non-

negligible effects on the internal geometries will be classified as hotspots as well.

This decision occurs because as they influence the current region, marked as

hotspots, it is desirable to remove them to not allow influencing other regions

of the design.

The classifiers are built using SVM, where the input vectors encode information

from regions that are represented by the density of geometries that they contain. The

figure 2.10 shows an example where a clip window centered at a candidate location is

pixelated, and pixel densities are computed (note that the process needs at least two

additional input parameters, i.e., region size and pixel size). An ordered list of density

values forms the output vector. As we can see, this feature encoding step should

not be confused with the actual pattern features such as convex/concave corners

or line-ends. The goal of this representation is not to identify those geometrical

features that may degrade the printability of a pattern. Instead, it aims to provide

a compact representation of layout patterns, enabling an efficient measurement of

pattern similarities for classification purposes. The SVM is the responsible to make

the decision after the supervised training.

Figure 2.10: Representation based on geometries density. [23]

The vector is [d1, ..., d16].

As we can see, most of the techniques that use machine learning for detecting

hotspots require to know the hotspots patterns beforehand to use them in the training
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steps. While current methods demonstrate high accuracy, unknown patterns are

classified as hotspots with a certain probability of certainty. The problem with these

strategies is that for many manufacturing factories, to not properly detect the hotspots

is not acceptable. This means long training and calibration steps, which can lead to

high occurrences of false-positive errors.

2.4 Graph-oriented detection.

As in [4], where graphs are used to represent conflictive patterns and then these

graphs are used to obtain design rules that can be used for hotspot detection, there

are other works that use graphs with similar objectives. An example is the work

presented by Kahng et al. in [5], where a hotspot filtering method derives a dual

graph from an image of the pattern. The work involves the use of a graph of a certain

region of the design, which reflects the variation of the critical dimensions of the

geometries contained in the region. The detection is not based on the existence of

patterns established as hotspots, but in the idea that any configuration of geometries

whose interactions generate a high variation in the critical dimension (CD) could lead

to the occurrence of a hotspot. This is similar to what occurs in the detection based

on design rules, except that in this work no conditions are explicitly specified by

designers. The analyzed regions are separated according to their complexity, because

the greater is the complexity of the geometries that they contain, the greater is the

possibility of the existence of a hotspot. Additionally, different types of variations in

critical dimensions are separated into two types:

1. CD variations induced by corners, where two orthogonal geometries connected

as a corner may vary as corner-rounding (see figure 2.11(a)).

2. CD variations induced by the proximity between geometries, where two very

close geometries can suffer necking or bridging (see figure 2.11(b)-(c)).
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Figure 2.11: CD variations induced by the interaction between geometries. [5]

The first stage of the process is to build a graph G for regions of the design that

reflects the CD variations induced by the geometries contained in the region. Given a

design region L, the design graph G = (V,Ec ∪Ep) consists of nodes V , corner edges

Ec, and proximity edges Ep.

1. For each horizontal and vertical geometry, a node v ∈ V is created.

2. For two orthogonal geometries connected, the corresponding nodes are con-

nected by an edge e ∈ Ec, where the weight of the edge is a constant.

3. A proximity edge e ∈ Ep is created between two nodes if the corresponding

geometries are adjacent and have the same orientation. The weight of the edge

reflects the separation between the geometries and the overlap of the width or

length projections.

Figure 2.12(a) shows an example of a region which contains 7 nodes representing

7 geometries, 4 corners (dotted lines) and 5 proximities (solid lines).

Figure 2.12: Graph and dual graph representation. [5]
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The second stage consists in the planarization of the graph and obtaining its dual

graph. Thus, the graphG = (V,Ec∪Ep) is converted to its dual GD = (V D, ED
c ∪E

D
p ).

The dual graph GD of a graph G is constructed by representing each face f of G with

a dual node n, which is the sum of the weights of the edges forming f . An edge e

that belongs to two faces f1 and f2 ∈ G is represented with a dual edge ed = {n1, n2}

in GD with the same weight of e. As the dual graph GD exists if G is planar, that

is, there are no edges that intersect, for each edge that does not fulfill the condition,

the less weighted edge is eliminated. Finally the detection of hotspots occurs in three

levels, by using a lookup table with weight values that are considered for potential CD

variations. The detection at the dual graph edges level detects the hotspots caused

by two close geometries or two geometries connected as corners. Face-level detection

finds hotspots produced by several close geometries. Finally, the merged-face level

detection finds hotspots produced by complex relationships between geometries. To

do so, once the dual graph GD is built, its nodes are sorted by their weights. Then, the

sorted nodes that share the same geometries are merged, which means to merge the

faces in G. This detection level is based on the idea that a hotspot is a combination

of various local “bad” geometric configurations. Assuming that the effect on the CD

variation is accumulative, this effect may by reflected by the weight of a dual node,

that is, the total weight that conforms the face in G. However, a hotspot can be

produced by more complex relationships between geometries that belong to different

faces. For this reason, the authors consider merging nodes of the dual graph and

running a detection on this merging.



Chapter 3

Signature-based indexing and searching.

Unlike previous work in process-hotspot detection that uses complex features in

the process of hotspot detection, we propose to pre-process layouts in order to extract

signatures that characterize windows within the layouts. The idea is to use these

signatures to filter out portions of the layout that could be excluded from the hotspot-

detection process, reducing the costs and efforts needed to detect the occurrence of

hotspots. The signature can be used as search criteria and, therefore, be organized in

an index structure. To illustrate the usefulness of the signature, we consider a pattern-

matching process where the signatures of a set of patterns can be used as search keys

of an index structure to return only possible layout’s windows that should be analyzed

in a hotspot-detection process.

This work presents a signature for 2D spatial configurations as a pair of vec-

tors of numbers representing changes between geometries and empty-spaces along the

horizontal and vertical slices of a configuration. As the signature should be general

enough to consider different possible patterns, we consider the representation of range

patterns as in [6], which enables a compactly representation of similar exact patterns.

Using this representation, a method extracts signatures from range patterns, and then

use these signatures as search criteria over the inverted index to retrieve candidate

windows that can match the patterns. The main difference with respect to our previ-

ous work is that the candidate searching can be done even if the layout’s windows from

where the signature are extracted are not of the same size of the pattern realization.

Here, a pattern realization is understood as a specific geometrical configuration in the

space that a range pattern specification can generate. Also, as additional contribu-

tion, a detailed analysis is executed for each element involved in the implementation

of the theoretical work (e.g., extraction method, data storing structure, and so on)

comparing different decisions.

23



24

In summary, the key contributions presented in this chapter are:

• Definition of a signature for configurations composed of non-overlapping rect-

angles.

• Implementation of algorithms for the extraction of the signature from layouts

by windows and from range patterns.

• Use of the signature with an indexing structure to efficiently search for candidate

windows that can match a hotspot pattern.

3.1 Signature.

As we have said, the filtering-out of layout portions is based on the use of a signa-

ture. What is a signature? In this work, a signature is a mapping from a geometric

configuration composed of non-overlapping rectangles to one or more numbers. Un-

like signatures characterizing single shapes such as those in [17] and [21], a signature

here has to characterize a set of shapes (rectangles). This set of shapes will repre-

sent a set of IC components that in a design appear as rectangular shapes. So, a

simple but effective signature that characterizes two-dimensional configurations com-

posed of non-overlapping rectangles located along or perpendicular to x− or y−axis

is introduced.

To formalize this signature, we first define the concepts of grid and slices of a

representation of two-dimensional configurations.

Definition 1 A N ×M regular grid representation of a configuration of rectangular

shapes (e.g. a set of IC components) is composed by N ×M of cells of the same size

in a two-dimensional space, such that there exist N horizontal units and for each of

these N units, there exist M cells along the horizontal axis.

The granularity of this representation is such that a cell of the grid overlaps a

rectangle (and have a value of 1), or it do not overlaps a rectangle at all (and have

a value of 0). Simplifying the concept, we can say that a regular grid representation
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of a configuration is a binary-cell matrix, where all the cells are squares of the same

size (i.e. the width and the height of each cell is the same), and correspond to the

design resolution (i.e. the minimum printable element).

Additionally to the regular grid representation, we have an irregular grid repre-

sentation. This irregular grid representation is based on grid slices, which are defined

as follows:

Definition 2 Horizontal(vertical) slice of a regular grid representation is a set of

contiguous horizontal(vertical) cells (rows or columns, respectively) of the regular grid

that are equal. Each slice contains a number of fragments that group equal cells in

the orthogonal axis (a fragment can be conceived as a sub-matrix where all the cells

have the same value).

With the previous defined concepts, we can define the last concept called cutting-

slice.

Definition 3 A cutting-slice is a set of horizontal or vertical slices {S0, . . . , Sn−1}

that meets the following specifications:

1. Adjacent slices are not equal, i.e. Si 6= Si+1, 0 ≤ i ≤ (n− 2)

2. Each slice Si is decomposed into fragments {Fi,0, . . . , Fi,m−1}, where Fi,j 6=

Fi,j+1, 0 ≤ j ≤ (m− 2)

Thus, the irregular grid representation is defined as the representation formed by

the pair of horizontal and vertical cutting-slices of a regular grid representation. Fig-

ure 3.1 shows and example of the different representations of a simple configuration.
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Figure 3.1: Regular and irregular grid representation.

In figure 3.1(a) we can see a regular representation of a 6×6 simple configuration.

There, all the cells are squares of the same size, and the size of the each cell is

the minimum size (length or width) of a shape. Figure 3.1(b) shows the irregular

representation of the same configuration. Here, we can notice that the 4th and 5th

columns in figure 3.1(a) are merged into the 3rd column in figure 3.1(b) because

both columns are equal. The same occurs to the 2nd to 5th rows in figure 3.1(a),

that are merged into the 2nd row in figure 3.1(b). Note that, if not all the rows from

the 2nd to 5th in figure 3.1(a) were merged into a single one row, we would have two

horizontal slices in the irregular grid representation that would be equal, and would

not satisfy the cutting-slice specifications.

Using the previous definitions, we can proceed to define the signature as it follows:

Definition 4 Given and N ×M grid representation of a two-dimensional configura-

tion of non-overlapping rectangles, the change-based signature (S+ ) is a tuple of the

form ([h0, . . . , hN ], [v0, . . . , vM ]), where hi (0 ≤ i ≤ N) is the number of changes

of values along the horizontal slice i and vj (0 ≤ j ≤M) is the number of changes of

values along the vertical slice j.

Here, a change of value ocurrs when, given a cell in a slice, the adjacent cell has

the opposite value (i.e., 0 to 1, or 1 to 0). For example, in the slice [1, 0, 1] we have

2 changes of values; 1 to 0 (0th to 1th position) and then 0 to 1 (1th to 2nd position).
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Notice that the definition of S+ applies to grid representation, and therefore, to

regular and irregular representations. In what follows, and unless the contrary is

explicitly stated, S+ will refer to the signature over irregular grid representations.

Using figure 3.1(b) as an example, we can see that its S+ is the tuple ([1, 1,

2], [1, 0, 1, 0]). Figure 3.1(c) and (d) shows us the horizontal and vertical slices,

respectively, each of them with its corresponding fragments. As an example, F0,0

corresponds to the fragment 0 of the 0th horizontal slice, which corresponds to a two-

cell block in the corresponding regular grid representation (the cell at (0,0) and the

cell at (0,1) in figure 3.1(a)).

It is important to note that S+ has the following properties:

• S+ is scale independent when extracted from an irregular grid representation.

It is easy to see that S+ will not change as we apply a continuous scaling over

the whole configuration, because equal rows or columns are represented by a

single slice. Even more, S+ will be the same for patterns that are similar but

differ in the distance and the width of rectangles. As an example, if the width

of the 1th vertical slice in figure 3.2(d) was wider, the vertical part of the S+

tuple would even be [1, 0, 1, 0].

• The number of changes along a slice is equivalent to the number of fragments

in the slice minus 1.

3.2 Design layout representation and signature extraction.

A design layout is a computational representation of a design, which specifies the

organization of electronic components of an IC. In Chapter 2, we have seen that,

for manufacturing purposes, what really matters is to produce a mask from a design.

From now, we will refer to this mask as the layout, or what the layout represents, i.e., a

set of geometrical elements. These representations are typically stored in the industry

as GDSII format files that are constructed using CAD tools and could represent a

chip area range from a few square millimeters to around 450 mm2 using from few

GBs up to 100GB of space.



28

In this work, and similarly to [6], a layout is represented by a N ×M regular grid

L, denoted by LN×M , where N and M depend on the granularity of the layout repre-

sentation, which is typically equal to the manufacturing grid size. This manufacturing

grid size depends on the manufacturing technology, and decreases each year until the

current 25nm technology. Each element L[i, j], with 0 ≤ i ≤ N and 0 ≤ j ≤ M is

associated with a spatial location in the manufacturing grid, such that L[i, j] = 1 if

there exists a rectangle that overlaps this location, and L[i, j] = 0, otherwise.

Figure 3.2 shows a simple example of a layout representation using the same

configuration used previously. Similar to what occurs in Chapter 3.1, the granularity

of the grid is such that each cell represents the minimum size of any unit in the layout,

so that a cell overlaps a rectangle or it does not overlap any rectangle at all.

Figure 3.2: Example of a layout representation

The N×M regular grid L representing a layout is pre-processed by windows in an

off-line process applied previously to the hotspot detection step. These windows are

then mapped to irregular grids to extract S+. A window corresponds to a rectangular

sub-portion of the layout and is defined as a N ′ ×M ′ sub-grid W of L, denoted by

WN ′×M ′, with 1 ≤ N ′ ≤ N and 1 ≤ M ′ ≤ M , and where rows (and columns) are

consecutive in L.

The signature extraction process starts with a window located at the top-left

corner of the layout grid. Without changing the window dimensions, the window

slides one-by-one position along the x−axis and then along the y−axis. Thus, given

a layout grid of size N ×M and a window size of N ′ ×M ′, the number of windows

in the layout is (N–N ′ + 1)× (M–M ′ + 1).

Windows are identified by using a correlative number following the window sliding.

There exists a direct mapping from this ID to the initial coordinates (top-left corner)

of the window in the layout. Given a layout LN×M , windows of size N ′ ×M ′, and

a number i representing the correlative window incremented by sliding the window
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horizontally and then vertically, coordinates for the top-left corner of the window are

(i/(M–M ′+1), i mod(M–M ′+1)). Conversely, given a coordinate pair (x, y) for the

top-left corner of a window, its ID i is (y × (M–M ′ + 1)) + x.

For each window, the horizontal and vertical slices are determined and S+ is

extracted from the irregular-grid representation of the window by using the following

algorithm.

Algorithm 1 Generates the S+ of a layout window.
Input layout : A layout in binary grid representation, x, y : (x, y) coordinates of the window, width : window’s

width, height : window’s height.

Output signature : The signature of the window as a pair of lists: (horizontal changes, vertical changes).

1: signature← empty pair

2: horizontal signature← empty list

3: for j = 0 to (height-1) do

4: equal next row ← TRUE

5: changes← 0

6: last value← layout[y + j][x]

7: for i = 0 to (width-1) do

8: if layout[y + j][x+ i] 6= last value then

9: changes← changes+1

10: last value← layout[y + j][x+ i]

11: if layout[y + j][x+ i] 6= layout[y + j + 1][x+ i] then

12: equal next row ← FALSE

13: if (not equal next row) ∨ (j = (height-1)) then

14: horizontal signature← Append changes

15: vertical signature← empty list

16: for i = 0 to (width-1) do

17: equal next column← TRUE

18: changes← 0

19: last value← layout[y][x+ i]

20: for j = 0 to (height-1) do

21: if layout[y + j][x+ i] 6= last value then

22: changes← changes+1

23: last value← layout[y + j][x+ i]

24: if layout[y + j][x+ i] 6= layout[y + j][x+ i+ 1] then

25: equal next column← FALSE

26: if (not equal next column) ∨ (i = (width-1)) then

27: vertical signature← Append changes

28: signature.first← horizontal signature

29: signature.second← vertical signature

30: return signature
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Let us consider the simple layout represented with a 8 × 8 regular grid shown in

figure 3.3.
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Figure 3.3: Example of a simple layout

Assume now a window size of 6×6, then the number of windows within the layout

is 9. Figures 3.4(a)-(c) show windows created along the three possible horizontal rows.

These windows are created using the movement explained previously.
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Figure 3.4: Example of window creation.

As figures 3.5(a)-(c) show, S+ for window 0 is ([0, 1, 2, 1], [2, 1, 1]), for window

1 is ([0, 2, 0], [1, 1, 1]) and for window 2 is ([0, 3, 0], [1, 1, 1, 1]). It is important to

notice that a large layout can be partitioned to make a distributed extraction of S+.

This is a domain decomposition processing of a layout. An important consideration

is that consecutive portions of the layout sent to different nodes should overlap to be

able to detect patterns located at their intersection.
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Figure 3.5: Example of signature extraction for different windows.

Suppose a layout of m × n, and a size of window extraction of i × j. Because,

for each cell in the horizontal orientation (except the last i− 1 cells) we calculate the

S+ for a window of width i (we must iterate over i cells horizontally), we have m× i

cell calculation in the horizontal orientation. Similarly, for each cell in the vertical

orientation (except the last j − 1 cells) we calculate the S+ for a window of height

j (we must iterate over j cells vertically). Assuming the checking changes on slices

has a constant time cost, the cost of the algorithm 1 is O(i×m)×O(j × n). Given

that i and j are constants clearly smaller than m and n, respectively, the cost of the

algorithm is O(m× n).

3.3 Pattern representation and signature extraction.

Patterns are two-dimensional configurations composed of non-overlapping rectan-

gles. As such, they can also be described as irregular grids. Patterns of the same size

can have small differences such that one could say that there exists a representative

pattern with several similar realizations that vary in the distance between rectan-

gles’ boundaries. To avoid to represent each particular occurrence of a representative

pattern (a realization), it is possible to compact geometric information of patterns

by using the specification of range patterns. As the work in [6] presents, a range

pattern is a configuration of two-dimensional non-overlapping rectangles with addi-

tional specifications about the horizontal and vertical distances between rectangles’s

boundaries as restrictions. The figures 3.6(a)-(c) illustrate the case of three different

realizations of a general pattern that is then codified as a range pattern. All of these

three realizations are composed of three rectangles with different distances between
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boundaries.
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Figure 3.6: Three different realizations of the same representative pattern.

It is possible to compress the specification of these three patterns by using a range

pattern specified as figure 3.7 shows.

Horizontal constraints Vertical constraints
1. R0.R− R0.L is 1 1. R0.T − R0.B = (4, 6)
2. R1.R− R1.L = (4, 6) 2. R1.T − R1.B is 1
3. R2.R− R2.L is 2 3. R2.T − R2.B is 5
4. R2.L−R0.R is 3 4. R1.B −R2.T is 0
5. R2.R− R1.R is 0 5. R0.B −R2.B is 0

Figure 3.7: A range pattern specification.

Ri.L: left boundary of Ri, Ri.R: right boundary, Ri.T : top boundary, Ri.B: bottom boundary.

Since a range pattern may have several realizations, it is not possible to extract

S+ from a range pattern directly. S+ uses the horizontal and vertical slices of a

realization of the pattern. Consequently, it is necessary to derive possible realiza-

tions from range patterns that have the same irregular grid representation, i.e., the

same horizontal and vertical slices. This is done by first mapping the range pattern

specification to horizontal and vertical range graphs independently (HRG and VRG,

respectively). These range graphs are then combined to derive possible irregular grid

representations.

A range graph is introduced in [6], and it is formally defined as follows:

Definition 5 A range graph G is a quadruple (V,E, ψ, ω) where V and E are finite

sets, ψ : E → {(v, w) ∈ V × V ; v 6= w} and ω : E → {(m,n) ∈ R× R;m ≤ n}.

The elements of V are vertexes, the elements of E are edges and the elements

of R are real numbers. G satisfies the condition that whenever there is an edge
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e = (v, w) ∈ E(G), with ω(e) = (m,n), there is also an edge ẽ ∈ E(G) where ẽ

= (w, v) and ω(ẽ) = (−n,−m). Here, m (n) is denoted as min(e) (max(e)) and is

called the lower (upper) bound of the edge e. The range of e is |ω(e)| = (n–m).

A range graph (V,E, ψ, ω) is called stable if and only if the following condition is

satisfied: for each edge e ∈ E(G), range of e is finite and minimized. A range of e is

finite if and only if |ω(e)| = (n–m) 6= ∞.

To understand the use of a range graph, we can say that in a range graph G:

• Its set of vertexes V are the boundaries of the rectangles in the same direction

of the range graph.

• Its set of edges E connects all the different boundaries.

• The lower and upper bounds of an edge e ∈ E specify the distance between the

corresponding boundaries of the edge e, taking as reference the left border or

the bottom border of the pattern.

Figure 3.8 shows an example of distances between rectangles’ boundaries. In

figure 3.8(a), the distance between R0.r and R1.l is 1, and the distance between

R0.b and R1.t is 1. In figure 3.8(b), the distance between R0.r and R1.l is -1, while

in figure 3.8(c), the distance between R0.b and R1.t is 0.
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Figure 3.8: Example of rectangles’ boundaries distances.

As we can see in the previous example, the distance between two rectangles’s

boundaries can lead us to different situations. One situation occurs when the first

rectangle’s boundary appears before the second rectangle’s boundary. The second one

occurs when the first rectangle’s boundary appears aligned with the second rectangle’s

boundary, and the third situation occurs when the first rectangle’s boundary appears
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after the second rectangle’s boundary. In the case that a restriction in the range

pattern allows one, two or three of these situations to occur, then one, two or three

slices will be produced for these rectangles’s boundaries interaction.

An edge e ∈ E(G) where ω(e) = (m,n) is called indefinite if and only if m 6=

n,m ≤ 0 and n ≥ 0. Otherwise, e is called definite. An indefinite edge e ∈ E(G)

with ω(e) = (m,n) contains a set of definite ranges:

1. Ifm < 0 and n > 0, then there are three definite ranges: {(m,−1), (0, 0), (1, n)}.

2. If m < 0 and n = 0, then there are two definite ranges: {(m,−1), (0, 0)}.

3. If m = 0 and n > 0, there are two definite ranges: {(0, 0), (1, n)}.

Definition 6 A stable range graph G = (V,E, ψ, ω) is called definite if and only if

each edge e ∈ E is definite.

As we have said, the specification of a range pattern is converted to two range

graph: one for the horizontal boundaries of the rectangles and another for the vertical

boundaries of the rectangles. Thus, each rectangle’s boundary ri becomes a vertex vi

in the corresponding range graph and an edge eij exists in the range graph between

any two vertexes vi and vj , where i 6= j, with the lower and upper bounds given in

the range pattern specification. If there is not a restriction, ω(eij) is set to (−∞,∞).

Figure 3.9 shows the horizontal and vertical range graphs from the specification

of the range pattern in figure 3.7. In this figure, edges in red denote edges that are

indefinite and that lead to multiple definite edges.
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Figure 3.9: Range graphs of the range pattern in Figure 3.7.

(a) horizontal range graph and (b) vertical range graph.

Since the distance relationship between two rectangles’s boundaries can be affected

by the distance relationships that they have with other edges, we need to update the

distance relationships between each pair of rectangles’s boundaries, i.e., the lower

and upper bounds of each edge of the graph. This update is done from the more

restrictive point of view, i.e., given three rectangles’s boundaries, that relationship

being the most restrictive will remains, while the second relationship will be updated

as the first relationship indicates. As an example, suppose the four restrictions in

figure 3.10.

1. R0.R−R0.L is 2
2. R1.R−R1.L is (1, 2)
3. R0.L− R1.R is 0
4. R0.R−R1.L is 3

Figure 3.10: Four distance restrictions.

The first restriction (R0.R − R0.L is 2) indicates that the width of R0 is 2. The

second restriction (R1.R−R1.L is (1, 2)) indicates that the width of R1 could be 1 or

2. The third restriction R0.L − R1.R is 0 indicates that the distance between R0.L

and R1.R is zero. In other words, just R0 finishes, R1 starts. The fourth restriction

(R0.R−R1.L is 3) indicates that the distance between the start of R0 and the end of

R1 is 3. This restriction affects the width of R1, limiting it to 1, not 1 or 2 anymore.

The algorithm that does this update is theAll-Pair Min-Range Path (APMRP)

algorithm. This algorithm runs over all of the rectangles’s boundaries (nodes of a
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range graph), updating all of its relationships with the others nodes (the edges’s

boundaries associated with that node) in a three-level nested loop, reason why the

cost of the APMRP algorithm is O(n3), being n the number of nodes (rectangles’s

boundaries) in the corresponding range graph. The APMRP algorithm works as fol-

lows:

Algorithm 2 APMRP algorithm.
Input A range graph G = (V, E,ψ, ω)

Output A range graph G′

1: for k = 0 to (|V | − 1) do

2: for i = 0 to (|V | − 1) do

3: for j = 0 to (|V | − 1) do

4: if (i 6= j) and (j 6= k) and (i 6= k) then

5: if (max(eik) <∞) and (max(ekj ) <∞) and {max(eik) +max(ekj) < max(eij )} then

6: max(eij )← max(eik) +max(ekj)

7: if (min(eik) > −∞) and (min(ekj) > −∞) and {min(eik) +min(ekj) > min(eij )} then

8: min(eij)← min(eik) +min(ekj)
return G

When applying the APMRP algorithm to a range graph G, the lower bounds of

some edges can increase and the upper bounds of some edges can decrease. If the

range of an edge e ∈ E(G) becomes negative or unbounded after the application of the

APMRP algorithm, it can be concluded that the specification for the range pattern

is invalid and needs to be revised. In all other cases, the APMRP algorithm finds

a stable range graph G′ for the given input range graph G. Also, it is not necessary

that a definite stable graph is obtained after the application of the APMRP algorithm.

Given an indefinite stable graph Gs, it is necessary to convert the indefinite edges of

Gs into definite ones to determine the unique topological orders of the rectangles’s

edges, because each topological order corresponds to a cutting-slice.

The Enumerate Definite Range-graphs (ENUM DRG) algorithm takes an

indefinite stable graph Gs and outputs all the definite range graphs contained in it.

This algorithm works as follows:

This algorithm runs over all the edges of a range graph. When it finds an indefinite

edge, it converts this indefinite edge into the 2 or 3 definite ones, depending on the

original edge’s boundaries, and then run the APMRP algorithm. As a range graph

is a complete graph, if n is the number of nodes in the graph, then n× (n− 1)/2 is
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Algorithm 3 ENUM DRG algorithm.
Input An indefinite range graph Gs = (V, E,ψ, ω)
Output All definite range graphs contained in Gs

1: Invoke APMRP(GS) to update the ranges of each edge in Gs

2: allEdgeDefinite← TRUE
3: for each edge e = (v, w) ∈ E(Gs) do

4: if e is indefinite then

5: for each definite range r = (min,max) of e do

6: ω(e(v, w))← (min,max)
7: ω(ẽ(w, v))← (−max,−min)
8: Invoke ENUM DRG on the modified Gs

9: allEdgeDefinite← FALSE

10: if allEdgeDefinite = FALSE then

11: Break
12: if allEdgeDefinite = TRUE then

13: Output definite range graph Gd

the number of edges in the graph. For this reason, the cost of the ENUM DRG is

O(n2)× O(n3), i.e., O(n5), being n the number of nodes of the range graph.

After the execution of the ENUM DRG algorithm, we obtain all the definite range

graphs contained in an indefinite range graph. Thus, the ENUM DRG algorithm is

invoked over the HRG and the VRG to obtain all the cutting-slices needed to represent

a range graph. The cutting-slices needed to represent a range graph can be derived

from the definite stable range graphs obtained using the ENUM DRG algorithm by

using the precedence and equivalence relations.

Given a definite edge e = (v, w) ∈ E(G), where ω(e) = (m,n), vertex v is said

to precede vertex w if and only if m > 0. Two vertexes are equal if and only if

m = n = 0. If vertex v precedes vertex w, then vertex v and vertex w are said

to satisfy the precedence relation Rp denoted vRpw. If vertex v equals vertex w,

then vertex v and vertex w are said to satisfy the equivalence relation denoted as

vRew. Since, a definite range graph is complete and contains only definite edges by

definition, it is easy to see that in a definite range graph Gd = (V,E, ψ, ω) any pair of

vertexes v and w ∈ V (G)(v 6= w) satisfies one of the following three conditions: (1)

vRpw; (2) wRpv; (3) vRew and wRev. Note that the topological order of the vertexes

can be derived according to the precedence and equivalence relation between vertexes.

Topological orders are specified by a sequence of sub lists sorted by coordinates along

an axis. Each sub list, called limit, is the list of boundaries that share the same

coordinate, i.e., satisfy the equivalence relation in the corresponding definite range

graph. Intuitively a limit defines the start or end interval of a slice in the corresponding
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axis and the equivalence relationship establishes that the edges of rectangles are the

same when projected onto the corresponding axis. For example, consider figure 3.11

and the horizontal topological order. This topological order is represented as a list

of sub lists of the form [[R0.l, R1.l], [R1.r], [R0.l, R2.l], [R2.r]], where Ri.l and Ri.r

indicate the left and right edges of a rectangle i, respectively. Each sub list (e.g.,

[R0.l, R1.l]) is a limit in the topological order.

R1

R
0

R2

Limit

[R0.l, R1.l] [R1.r] [R0.r,R2.l] [R2.r]

Figure 3.11: Example of an horizontal topological order.

As a definite range graph defines a topological order in which limits of slices can be

defined, and each topological order corresponds to a cutting-slice, we can derive S+

using both horizontal and vertical definite range graphs. In these graphs, each label

on an edge defines a possible range of distance between boundaries, where the range

is of the form (i, j) or (0, 0), with i and j being both positive or negative. By using

the previous mentioned algorithms, we extract definite vertical and horizontal range

graphs. But this is not enough since combinations of graphs may produce inconsis-

tent configuration, that is, configurations where rectangles overlap. As an example,

we can take the range graphs of figure 3.9. They derive 3 definite horizontal and 3

definite vertical graphs. The combination of these graphs produces initially 9 real-

izations, where one of them is inconsistent. Figure 3.12(a)-(b) shows the horizontal

and vertical topological orders that derive the corresponding inconsistent realization

shown in figure 3.12(c), where R0 and R1 overlap in the dotted area.
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Topological order:

[R0.l, R1.l], [R0.r], [R2.l], [R1.r, R2.r]
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Figure 3.12: Definite HRG and VRG that derive an incompatible realization.

(a) Definite HRG, (b) definite VRG and (c) inconsistent resulting configuration.

To overcome this situation, the algorithm GET SIG (see algorithm 3.3) combines

both topological orders and checks if the combination is consistent. If it is so, the

algorithm returns the S+ of the realization derived from the given topological orders.

For each edge, variables rectangle and type indicate the rectangle to which the edge

belongs and the type of the edge (i.e., left, right, top, or bottom). For example, for

limit L = [R1.r] and edge e = R1.r, e.rectangle = 1 and e.type is right. Finally,

rectangles are numerated as consecutive integers.
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Algorithm 4 Generates the S+ on two topological orders.
Input primary topological order: Topological order array, secondary topological order: Topological order array

Output S+ derived from the two topological orders

1: signature← empty pair

2: status← empty list

3: changes signature← empty list

4: open rectangles← 0

5: for all rectangle i in primary topological order do

6: status[i] ← 0

7: for all limit L in primary topological order do

8: for all edge e in L do

9: if (e.type = left) ∨ (e.type = bottom) then

10: status[e.rectangle]← 1

11: open rectangles← open rectangles+ 1

12: else if (e.type = right) ∨ (e.type = top) then

13: status[e.rectangle]← 0

14: open rectangles← open rectangles− 1

15: changes← 0

16: if open rectangles > 0 then

17: ortogonal open rectangles← 0

18: for all limit L′ in secondary topological order do

19: for all edge e′ in L′ do

20: if ((e′.type = bottom) ∨ (e′.type = left)) ∧ status[e′.rectangle] = 1 then

21: if (L′.index 6= 0) ∧ (L′.index 6= (|secondary topological order| − 1)) then

22: if |L′| > 1 then

23: sum← 0

24: for all edge e in L′ do

25: sum← sum+ status[e.rectangle]

26: if sum < 2 then

27: changes← changes+ 1

28: else

29: changes← changes+ 1

30: ortogonal open rectangles← ortogonal open rectangles+ 1

31: else if ((e′.type = top) ∨ (e′.type = right))∧ status[e′.rectangle] = 1 then

32: if (L′.index 6= 0) ∧ (L′.index 6= (|secondary topological order| − 1)) then

33: if |L′| > 0 then

34: sum← 0

35: for all edge e in L′ do

36: sum← sum+ status[e.rectangle]

37: if sum < 2 then

38: changes← changes+ 1

39: else

40: changes← changes+ 1

41: ortogonal open rectangles← ortogonal open rectangles− 1

42: if (ortogonal open rectangles > 1) ∧ (e′.index = (|L′| − 1)) then

43: return Error

44: changes signature← Append changes

45: else

46: if L.index 6= |primary topological order| − 1 then

47: changes signature← Append changes

48: signature.first← changes signature*

49: signature.second← GET SIG(secondary topological order, primary topological order)*

50: return signature

*(ocurrs only one time)
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The algorithm checks whether or not the combination of an horizontal (HTO) and

a vertical (VTO) topological order, derived from the horizontal and vertical range

graphs, is consistent. A combination of topological orders is said to be consistent

if their rectangles do not overlap in the space. If a combination is consistent, the

algorithm returns its S+, otherwise, it returns Error. The basic idea of the algorithm

is to check if rectangles overlap. To do so, the algorithm goes from left to right

checking the HTO and from bottom to top checking the VTO. HTO or VTO can be

either the primary or secondary topological order. If the algorithm finds a left edge

of a rectangle in going through the HTO, it means that the rectangles is open, that

is, the rectangle starts to appear as the algorithm goes over the list of limits in the

HTO. Similarly if the rectangle finds a bottom edge in going through the VTO, the

rectangle starts to appear as the algorithm goes over the list of limits in the VTO.

Rectangles are closed if their right or top edges are found when going through the

HTO or VTO, respectively. Then, rectangles overlap if by combining edges in the

limits of HTO and VTO, they are open at the same time.

The algorithm handles a status variable (i.e., open or closed) for each rectangle

that appears in a topological order. Note that if a rectangle appears in a vertical

topological order, it must appear in an horizontal topological order, and vice versa.

Initially all rectangles are closed (lines 5-6). For each limit L in the primary topologi-

cal order (line 7), the algorithm analyzes each edge (lines 8-14). If the edge is a left or

a bottom edge for HTO or VTO, respectively, the rectangle associated with the edge

is open. Otherwise, the rectangle is closed and it will not appear in the next limits of

the order. If there exist open rectangles in limit L of the primary topological order

(line 16), the algorithm checks now each edge e′ in each limit L′ of the secondary

topological order (lines 18-43). When analyzing the secondary topological order, the

algorithm counts the number of rectangles that are open. Two cases are possible:

1. If the edge is a left or bottom, then the rectangle is open and the counter of

open orthogonal rectangles is increased by 1 (lines 20-30).

2. If the edge is a right or top, then the rectangle is closed and the counter of

open orthogonal rectangles is decreased by 1. (lines 31-41)
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If after checking the edges of limit L′, there exist open rectangles, the combination

is not possible (line 42-43). This continues until all limits in HTO and VTO are

analyzed. If after checking the HTO as primary topological order and the VTO as

secondary topological order, there are no inconsistences, the algorithm proceeds to

check the VTO as primary topological order and the HTO as secondary topological

order (line 49). If there are no inconsistences in any of the two orientations (i.e.,

horizontally and vertically), then the algorithm returns the S+ of the pattern (line

50).

Let us suppose a range pattern definition with n rectangles. Both horizontal range

graph and vertical range graph will have 2× n nodes, because each rectangle has two

boundaries in each orientation (i.e., left and right boundary in the horizontal case, and

top and bottom in the vertical case). This means that the corresponding topological

orders will have 2 × n elements. In algorithm , lines 5 and 6 go over the primary

topological order, which means a cost O(2×n) = O(n). From line 7 and line 8, we go

over all the limits in the primary topological order. Each limit can contain at least 1

element, so the worst case is to have 2×n limits with 1 element in a topological order.

For each element in the limit (line 8) we iterate over each limit and element in the

secondary topological order (line 18 and line 19), which means 2×n nested iterations.

At this point, we have a cost O((2 × n) × (2 × n)) + O(n) = O(4 × n2) + O(n) =

O((4× n2) + n) = O(n2). If we assume that checking changes on slices has constant

time cost, the algorithm is cost On2 being n the number of rectangles in the pattern.

3.4 Signature-based searching.

Having patterns and layouts with their S+, it is possible to use S+ for selecting

candidate windows of the layout that can contain a certain pattern (e.g., a hotspot).

To do that, we use S+ as a search key in an inverted index. This inverted index is

composed of a dictionary of possible values of S+ found in the layout. For each entry

of the dictionary, there is a list where each element contains the ID of the window

that matches the entry in the dictionary. Note that this structure can be created for

a single layout or for several layouts if we consider to store not only the window’s ID

but also a layout’s ID.
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As an example, assume the range pattern of figure 3.7, which results in 8 different

irregular grid realizations. Two of them have the same S+ (see figure 3.13(f) and

(h)). The difference between these two realizations with the same S+ is the owner of

the top-left corner (i.e., R0 or R1).
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Figure 3.13: Different irregular grid realizations of range pattern in figure 3.7.

(f) and (h) have the same S+.

Figure 3.14 shows the inverted index for the layout in figure 3.3. This layout

contains 9 different windows (see figure 3.4), but 7 different S+. For the range pattern

in figure 3.7, there are 7 different S+, and for each of them, there are 8 possible

rotations, i.e., 0◦, 90◦, 180◦, 270◦ and their mirror realizations. In total, searching for

these 7 different S+ of the range pattern requires to search for 7 × 8 = 56 possible

rotations, which requires the efficient use of indexing structures.

S+ List of windows

([0, 1, 2, 1], [2, 1, 1]) [0]
([0, 2, 0], [1, 1, 1]) [1]
([0, 3, 0], [1, 1, 1, 1]) [2]
([1, 2, 1, 1], [2, 0, 2]) [3]
([2, 1, 1], [1, 0, 2]) [6]
([2, 0, 1], [0, 2, 1]) [4, 7]
([3, 0, 1], [0, 2, 1, 2]) [5, 8]

Figure 3.14: Inverted index for layout in Figure 3.3

Searching for candidate windows takes the time needed for finding the signature
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in the dictionary and then, traversing the list of windows with the same S+. For

efficiency, we can organize the dictionary with different types of structures such as a

binary search tree, hash tables, and another more sophisticated structure.

One of the limitations of this approach is that it assumes that the window used

to extract the signatures from the layout and the pattern are of the same size. If

this condition does not occur, it is impossible to assert that equal S+ implies an

equal rectangles configuration. As windows are processed before range patterns, and

range patterns represent typically a potential hotspot, we can say that one must know

the range patterns size before to the window extraction process, or, alternatively,

one must have different inverted index structures for different window sizes and use

the index that matches the range pattern size. The problem with this idea is that a

range pattern could lead to different realizations, each one with different possible size.

Even more, as range patterns represent a potential hotspot, and given that hotspot

occurrences are related to different manufacturing processes, it is almost impossible

to know beforehand what the size of a hotspot would be. Only when a fab specifies

a certain technology of manufacture, one could know how and why a hotspot could

appear, and consequently, specify a range pattern that could lead to potential hotspots.

There are two ways to address this limitation. The first one is to have windows

larger enough to certainly know that any range pattern realization would be contained

within a window. Then, a window segmentation procedure must be designed, because

as S+ is derived from an irregular grid representation, it is not necessary true that a

sub-portion of a window is represented by the same sub-portion of the slices of the

whole window.

Take as an example the simple window shown in figure 3.15. In figure 3.15(a) we

can see a window of 2×6 cells. Its irregular grid representation contains two horizontal

slices, the first one with two fragments and the second one with one fragment. The

horizontal S+ of this windows is [1, 0]. If we took a sub-window of 2 × 5 cells that

starts at the 0th cell of the window, we will have a sub-window like figure 3.15(b)

shows. This sub-window has an irregular grid representation that contains only one

horizontal slice with one fragment. The horizontal S+ of this sub-window is [0]. As

we can see, if we take a sub-window of a window, some slices can merge, and the
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fragments division can change because the eliminated portion of the original window.

This makes that the S+ calculation of a sub-window based on the original S+ is a

non-trivial task.
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Figure 3.15: Example of a window and a sub-window

(a) a window with its irregular representation, (b) a sub-window with its irregular representation.

The second way to resolve the uncertainty of the correct window size is to have

windows small enough to certainly know that no range pattern realization would be

smaller than the window size. Using this idea, two approaches to match range pattern

realizations could be used. The first one is to design a window-merging method to

produce a window of the same size of a range pattern realization. The second one is

to split the range pattern realization into portions that match the window size.

Using a window-merging method means that, every time that a pattern want

to be detected, the window-merging method must be invoked to create windows

that fit the pattern size. Even if the windows created by merging smaller windows

were stored, the impractical time-cost (and memory-cost if the windows created were

stored) makes this approach useless in practice. It makes more sense to split the

pattern into several sub-patterns that cover the entire original pattern. These sub-

patterns could be selected to fit the window size, and then use their S+ to retrieve

candidate windows.

Given that the computational representation of a range pattern in our work is a

range graph, we base the pattern splitting method in a range graph splitting method.

First, we need to explicit the different sizes of a pattern realization. This can be

achieved by traversing through the range graphs, converting the ranged-edges into

its absolute edges. Here, a ranged-edge is understood as an edge whose lower bound

and upper bound are different, while an absolute-edge is intended as an edge whose
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lower bound and upper bound are equal. We do this expliciting step because, as

range graphs can origin different realization, each one with different dimensions, the

splitting process could need different number of partitions for each realization. As

example, the edge with (1, 2) as lower and upper bounds is a ranged-edge, while the

edges with (1, 1) and (2, 2) as lower and upper bounds, respectively, are absolute-

edges. Note that, for a ranged-edge, it is not necessary to generate an edge for every

possible value between the corresponding lower and upper bounds, but just for those

that correspond to the regular grid granularity (i.e., the layout resolution).

Take as example an edge e, with lower and upper bounds of 100nm and 200nm,

respectively. Suppose a layout resolution of 50nm. We only need to explicit the edges

e1 with lower bound of 100 and upper bound of 100, the edge e2 with lower bound

of 150 and upper bound of 150, and finally the edge e3 with lower bound of 200 and

upper bound of 200. This reduction in the number of edges to explicit is based in

the fact that each grid cell represents the minimal printable element (50nm in this

example), and none intermediate value can be generated in the IC design. After

one ranged-edge is converted into its absolute-edges, the APMRP algorithm must be

invoked in order to update the nodes’s relations in the range graph.

Having the range graphs with only absolute-edges, it is possible to know the exact

distance between all pairs of graph nodes (i.e., rectangles’s boundaries). We can

traverse trough a range graph (i.e., horizontal or vertical range graph), counting the

number of cells that exists between the right border of the pattern and the current

position for the horizontal range graph, and the number of cells that exists between

the bottom border of the pattern and the current position for the vertical range graph.

When a number of cells equals to the size of the windows of extraction, all those nodes

that were not reached yet in corresponding range graph are set at the same position of

the last traversed node by setting all of its edges’s values as 0 for the lower and upper

bound. This means that, in a spatial configuration, all the rectangles’s boundaries

that are not reached are fixed in the window border. Then, another range graph

starts with all the traversed nodes at the same position of the current node (lower

and upper bounds fixed to 0), and the process starts again, until the last node of the

range graph is reached.
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Figure 3.16 shows a representation of the result of this process. There, figure

3.16(a) shows a pattern realization with its absolute graph. Figure 3.16(b), (c) and

(d) show the divisions of the pattern, basing on the division of the corresponding

absolute graph. Black nodes corresponds to nodes that were fixed.
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Figure 3.16: Example of the splitting process of a horizontal range graph.

(a) A range graph with its pattern size, (b) first split of the range graph, (c) second split of the
range graph, (d) third split of the range graph.

The same process is performed for both orientations: horizontal range graph and

vertical range graph. Then, a matrix of pairs of range graph partitions is processed to

obtain topological orders, whose are then used as input for the GET SIG algorithm.

Let’s say we obtain 3 different partitions from an absolute horizontal range graph:

HRG1, HRG2, and HRG3. Suppose we obtain 4 different partitions from an absolute

vertical range graph: V RG1, V RG2, V RG3, and V RG4. The matrix of pairs of range

graphs partitions is shown in table 3.1.

Having the matrix of pairs of range graph partitions, we can obtain the topological

orders for each matrix entry, and then use them as inputs for the GET SIG algorithm,

obtaining a set of S+ for a set of pattern partitions. Before we can use the set of

S+ to retrieve candidate windows, we must observe that, from the first partition, the
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HRG 1 with V RG 1 HRG 2 with V RG 1 HRG 3 with V RG 1
HRG 1 with V RG 2 HRG 2 with V RG 2 HRG 3 with V RG 2
HRG 1 with V RG 3 HRG 2 with V RG 3 HRG 3 with V RG 3
HRG 1 with V RG 4 HRG 2 with V RG 4 HRG 3 with V RG 4

Table 3.1: Matrix of pairs of range graph partitions.

rest of the partitions have a displacement fixed by the dimension of the partition.

With the first partition corresponding a window with ID i, a layout of width Lw and

being Ww the width of the windows of extraction, the ID of a partition in the (X, Y )

position in the matrix of pairs of range graph partitions is given by the formula:

ID = i+ (X × n) + (Y ×m× (Lw–Ww + 1)) (3.1)

Formula 3.1: ID of the window that contains a partition, with the window of ID i

as reference.

Suppose a pattern partition into sub-partition of n of width and m of height.

Table 3.2 shows the displacement taking as reference the window’s ID at the first

partition.

X=0 X=1 X=2

Y=0 i i+ n i+ (2 × n)
Y=1 i+ (m × (Lw–Ww + 1)) i+ n+ (m× (Lw–Ww + 1)) i+ (2× n) + (1 ×m× (Lw–Ww + 1))
Y=2 i+ (2×m× (Lw–Ww + 1)) i+ n+ (2 ×m× (Lw–Ww + 1)) i+ (2× n) + (2 ×m× (Lw–Ww + 1))
Y=3 i+ (3×m× (Lw–Ww + 1)) i+ n+ (3 ×m× (Lw–Ww + 1)) i+ (2× n) + (3 ×m× (Lw–Ww + 1))

Table 3.2: Matrix of partitions: IDs displacement.

The table 3.2 means that, if we find a window with ID i that matches the S+ of

the pair of HRG and VRG of the position (0, 0) of matrix of range graphs partitions

pairs, we must verify if the window with ID i+n matches the S+ of the pair of HRG

and VRG of the position (0, 1) of the matrix of range graphs partitions pairs, and

so on for the whole matrix. If one of the conditions is not satisfied, then the whole

set of partitions cannot contain the pattern from where the partitions are obtained.

By performing this procedure, we can split a pattern larger than the windows of

S+ extraction and use the S+ of its partitions to find if a set of adjacent windows

conform, as a group, the given pattern that was splitted.
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Experimental evaluation.

In this chapter, we describe the experiments that were executed in order to evalu-

ate the cost of the S+ extraction process and the quality of the signature to filter our

regions of a layout from. We also include an extensive evaluation of different indexing

structure and their effect in the time and space costs.

4.1 Dataset.

First of all, to execute any experiment we need to have a dataset. This dataset

must include a set of layouts, each of them with different characteristics in order to

test the performance of the process under different data inputs. These characteristics

correspond to different layout dimensions and different hotspot density. The same

must occur with a set of range patterns. We need to have different patterns, each

of them with different characteristics. These characteristics correspond to different

possible sizes of patterns, different number of geometric shapes within the patterns,

different ranges within rectangles, and different rectangles orientations.

Since each fab owns different IC designs that usually provide a competitive ad-

vantage in the market, it is very difficult to obtain a real design that match current

technology. Due to non-disclosure agreement with Synopsys Inc.1, we did not count

with real layouts and most of the free-access examples are very old, or correspond to

a reduced view of what an IC is. What it is possible to know is some of the standard

characteristics that a currently used IC has. Here we can mention that a typical

current IC design has area range from a few square millimeters to around 300 mm2,

while the manufacturing technology has gone under 60nm. If we take into account

the regular grid representation, where each cell corresponds to the minimal printable

1Synopsys Inc. has partially funded this thesis work.
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element (60nm), an IC design of 12mm of width and length will have a grid repre-

sentation of 200.000 × 200.000 cells. Also, we can mention that transistors within

an IC usually extend along the x-axis, and in less proportion, along the y-axis. This

produces that the geometries in a design also typically extend along the x-axis for

few nanometers, and less likely along the y-axis for less nanometers.

As the hotspot-detection process takes a high amount of computational resources,

fabs usually use cluster computing for its design processes. This means that an

IC design is partitioned in order to distribute the checking steps, e.g., the hotspot-

detection process. Each one of these partition can be intended as a unique input for

a node of the cluster, and it is processed in an isolated environment. In this work

we will focus on these partitions. Taking this into consideration, we have built a set

of layouts, whose characteristics are shown in the summary table 4.1. Each layout

contains a number of hotspots that cover a certain area of the layout. These hotspots

correspond to 7 hotspots patterns that will be presented later (see Chapter A). For

each pattern, 3 different realizations were inserted into the layouts.

Layout Regular grid dimensions Ocurrence of hotspots Hotspots area (%)
A1 4.000× 4.000 7.997 4,998
A2 8.000× 8.000 31.767 4,963
A3 14.000× 14.000 97.248 4,961
B1 4.000× 4.000 16.144 10,09
B2 8.000× 8.000 63.647 9,944
B3 14.000× 14.000 195.539 9,976
C1 4.000× 4.000 24.028 15,017
C2 8.000× 8.000 95.751 14,961
C3 14.000× 14.000 293.389 14,968
D1 4.000× 4.000 31.531 19,706
D2 8.000× 8.000 127.980 19,996
D3 14.000× 14.000 391.591 19,979

Table 4.1: Experimental layouts: summary table.

A similar limitation occurs with the hotspots. Each fab has its own manufacturing

process for its corresponding technology. Since a competitive advantage of an IC is

its reliability, fabs do not publicize sensible data such hotspot patterns. To use some

hotspot patterns that could be considered realistic, we refer to those hotspots used in

the literature. So, hotspots like those used in [4] (see figure 4.1) were converted into

range pattern representations like the one shown in [6].
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TuningInd1Ind2

Figure 4.1: Examples of experimental hotspots-patterns.

Each one of these hotspot patterns have different characteristics that are summa-

rized in the following table:

Pattern name # of rectangles Orientation # of S+

i 3 all 1
ind1 5 all 9
ind2 5 vertical 12
s 5 all 16

stair1 3 all 1
stair2 3 horizontal 6

tuningfork 4 all 10

Table 4.2: Experimental range patterns : summary table.

In the following sections we run the following types of experiments:

1. We analyze different hardware sensitive strategies for signature extraction. The

idea was to make use of the hierarchy of memory to reduce time cost.

2. We compare different indexing structure in terms of space cost and time of

construction.

3. We analyze the search cost over the indexing structure.

4. We evaluate the quality of filtering portion using the signature, in terms of

information retrieval measurements.

All of the experiments were implemented in the C++ programming language on

a Linux Platform of a server with 2 processors Intel Xeon QUAD core E5620 (2,40

GHZ / 12 MB cache L3) and 64 GB RAM.
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4.2 Memory hierarchy in the efficiency of signature extraction from lay-

outs.

One of the key aspects that a hotspot-detection process must achieve is to use the

computational resources efficiently. Any technique that aims to improve a hotspot-

detection process must follow the same objective. As IC designs are big data struc-

tures, and thus its previously defined regular grid representation are also a big data

structure, our designed process must be efficient in terms of time to process and

memory used. The trade-off of these two aspects requires that both, data structures

and data processing, should be aligned and well designed. In this work, these deci-

sions needed to calibrate the extraction process, were taken based on an empirical

comparison between different models under different circumstances.

First at all, it is important to see that each element of the S+ tuple, i.e. horizontal

signature and vertical signature, cannot have more elements that the height or width

of a window, respectively, because we cannot have more slices than rows or columns

in any representation (regular and irregular representation). Each element of the

horizontal(vertical) signature corresponds to the number of changes along a slice or a

row(column), so any of these elements cannot have a value greater than (Ww− 1) for

the horizontal signature and (Wh–1) for the vertical signature, where Ww corresponds

to the window width and Wh to the window height in slices or row/columns, respec-

tively. As windows sizes in the extraction process are typically small (from 5 to 15

regular grid cells), each element of a member of the S+ tuple (horizontal or vertical

signature) can be codified as an INT. With this in mind, we first probe a simple and

näıve extraction.

4.2.1 Layout preprocessing using a single scope.

The näıve extraction consists in calculating the irregular grid representation for

each window, moving windows as was stated in 3.2. To doing so, we must read each

window from the layout, what means that the layout must be in main memory. The

problem is that layouts are typically expensive to store in memory due its size. One

effective way to overcome this problem is to use what is defined as a scope. A scope

is a portion of the layout that can be stored in main memory and allows performing
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all the windows extraction in the horizontal direction. Then, the scope should move

the same as the window extraction process moves. Take as an example the layout of

8 × 8 cells used previously in our examples, and a window size of 6 × 6 like the one

shown in figure 4.2.
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Figure 4.2: Example of a layout and a window size.

For the window extraction process we can store all the regular grid representation

of the layout in main memory as a matrix, but it can overload the system memory.

To avoid that, we can load first a scope like the one shown in figure 4.3 and then

perform the window extraction process with the window movement along the x-axis.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

wi w

0

1

2

3

5

0 1 2 3 5

Figure 4.3: Example of a layout and its first scope.

When all the windows within the scope are extracted, we can perform a movement

of the scope in the y-axis and iterate again over the x-axis, like figure 4.4 shows.
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Figure 4.4: Example of a layout and its second scope.

After that, the operation repeats and we can move the scope to obtain the third

and last scope (see figure 4.5). Then, the windows are extracted along the x-axis

again.
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Figure 4.5: Example of a layout and its third scope.

The use of a scope allows performing the window extraction process without over-

loading the main memory of the system. Even more, the initial time required to

store the necessary data in main memory to start processing a layout is diminished.

It is important to notice that it is not necessary to load an entire scope each time,

excepting the first time. When the first scope moves to the second scope, we only

need to remove the first row of the scope and append a new row of the layout at

the end of the scope because the window extraction process moves one-cell at a time

along the y-axis. The same occurs until the last scope.

By performing the previous method of window extraction, we still have not im-

proved the execution time of the S+ extraction process, but we have reduced the

main memory necessary to process a layout. We perform an extraction process to

compare extraction time-rates between windows of 5 × 5, 7 × 7 and 10 × 10 over

all the test layouts shown in table 4.1. As figure 4.6(a) shows, for the test layout
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A1(4.000×4.000), the window extraction rate tends to be 83.500 windows per second

when the size of the window is 5 × 5 cells. In the same figure, we can see that the

window extraction rate tends to be 36.500 windows per second when the size of the

window is 7 × 7. In the other hand, the window extraction rate tends to be 13.500

windows per second when the size of the window is 10× 10. Figure 4.6(b)-(c) show

us that this tendencies are not affected by the layout size since figure 4.6(b) shows

the tendencies for the experimental layout A2(8.000× 8.000) and figure 4.6(c) shows

the tendencies for the experimental layout A3(14.000×14.000). The same tendencies

are obtained by performing the window extraction process over the other test layouts.

As we can see, a small change in the window dimensions can impact greatly on the

rate at which the windows are extracted from the layout.
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Figure 4.6: Näıve extraction rates

(a) - extraction rate over a 4.000× 4.000 layout, (b) - extraction rate over a 8.000× 8.000 layout,
and (c) - extraction rate over a 14.000× 14.000 layout.

4.2.2 Layout preprocessing using differentiated scopes.

Most of the matrix-oriented representations store rows (or parts of them) as con-

tiguous blocks in memory. This allows fetching a word into the cache, which is a
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small but fast memory hardware. If the data requested by the processor is already in

this cache, fetching the data into the processor’s registers to make operations will be

a fast process. On the other hand, if the data is not in the cache but in main memory,

fetching the data will take a longer time making the whole process expensive, time

wise. When a processor’s operation requests some data which is not in any of its

registers, it requests the data to the cache memory. If the data is not in the cache, it

has to be loaded from the main memory. As data is not loaded individually, a fixed

amount of data, i.e., a word, is fetched. Because fetching data from main memory

is more expensive compared to fetching it from the cache memory, it is desirable to

fetch the highest amount of useful data from main memory to the cache every time

and give it the more use possible before the next data-fetching. The problem with

the previously mentioned storage method, which most matrix-oriented representa-

tions use, is that when a column operation is performed, at least one fetch from main

memory must occur, because two cells in different rows do not belong to the same

word. This limitation set the fetching from main memory as a bottleneck in verti-

cal matrix operations, e.g., the vertical signature calculation. One way to overcome

this limitation is to load the scope into two different structures. One of them is a

horizontally-oriented matrix and the second one is a vertically oriented matrix (see

figure 4.7).
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Figure 4.7: One scope and its two scopes structures.

(a) a layout with a scope, (b) its horizontal scope structure, and (c) its vertical scope structure.

Using this two scope structures to represent the same scope, we can take advantage

of the cache performance in order to reduce the time associated with the window

extraction process. The same window extraction process presented before was tested

using these two scope structures, meaning a slightly increased use of main memory

(from 0, 8MB for the 4.000×4.000 layout, to 1, 8MB for the 14.000×14.000 layout),

but a notable increase in the window extraction rate as figure 4.8 shows. Note that,

for each scope movement along the y-axis, the vertical scope must displace a column

instead of a row. The experimental results show that the costs associated with this

operation are negligible compared to the improvements obtained in the whole process

by using this structure.
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Figure 4.8: Näıve extraction rates using two scope structures

(a) - extraction rate over a 4.000× 4.000 layout, (b) - extraction rate over a 8.000× 8.000 layout,
and (c) - extraction rate over a 14.000× 14.000 layout.

As we can see, using a simple structure that take advantage of the cache memory,

we obtain an improvement that goes from around 40% when using small windows

(5× 5), up to 140% when using medium size windows (10× 10). This difference can

be explained by the way that cache memory works. Cache memory usually has three

levels, i.e., L1, L2 and L3, being L1 the faster and L3 the slower of the three levels.

When the processor requests some data, it first tries to look for it in the first level

cache (L1). If the data is not there, it then tries to fetch it form the second level

(L2). If the data is not there, it then tries to fetch it form the third level cache (L3),

and if this fails, it goes up to the main memory to get the data. In other words, each

failed lookup increases the time that the processor needs to fetch in the correct level

of cache, or in the main memory. As a window must be processed in both orienta-

tions (i.e. horizontal and vertical) before the next window can be processed, a small

window size provokes constant exchanges between horizontal and vertical data. As

the cache memory is typically small compared to main memory, every time that the

processor requires some data, this data competes with another data to use the cache
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memory. Failed lookups in cache memory caused by constant exchanges of data, and

these constant exchanges itself can increase the operation of an algorithm for reasons

that are not restricted to the complexity of the calculation.

4.2.3 Layout preprocessing using pivots.

Until this point, we have only optimized the process by taking advantage of the

hardware and how it works. We can take into account the nature of the extraction

method to obtain a better performance.

It is easy to notice that two contiguous windows share a lot of common informa-

tion. In fact, if we have a window ofM×N , this window will share (100×(N−1)/N)%

with its horizontally neighbor windows, and (100× (M − 1)/M)% with its vertically

neighbor windows. For both formulas, and considering M and N bigger than 1, the

lowest value is 50% and tends to be 100% as the window size grows (see table 4.3).

100(M−1)
M

100(N−1)
N

limM→2
100(M−1)

M
= 50 limN→2

100(N−1)
N

= 50

limM→∞
100(M−1)

M
= 100 limN→∞

100(N−1)
N

= 100

(a) (b)

Table 4.3: Shared area between contiguous windows.

(a) shared area formula between horizontal neighbors and its limits, (b) shared area formula
between vertical neighbors and its limits.

Considering these characteristic between adjacent windows, we can reduce the

time cost of the extraction if we do not calculate S+ for every window but only that

part that is exclusive of a window and it is not shared with its previous neighbor. If

we can store previous calculated S+ and share this information within windows, we

can avoid the need to traverse an entire window for the corresponding S+ calculation.

Here we can state some observations:

• For the horizontal displacement, as the extraction window moves one-cell to the
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right of the scope each time, only the first and the last vertical slices of the

window could be affected. For the first vertical slice, its width may be reduced

by 1, or the entire slice may disappear in the case that its width is actually

1. For the last vertical slice, its width may be incremented by 1 in the case

that the new column has the same slice representation, or a new slice may be

appended to its left side (remember that two adjacent slices cannot be equals

by definition).

• For the vertical displacement, as the extraction window moves one-cell to the

bottom of the scope each time, only the first and the last horizontal slices of

the window could be affected. For the first horizontal slice, its width may be

reduce by 1, or the entire slice may disappear in the case that its width is

actually 1. For the last horizontal slice, its width may be incremented by 1 in

the case that the new row has the same slice representation, or a new slice may

be appended to its bottom side (remember that two adjacent slices cannot be

equals by definition).

These statements tell us that for calculating S+ of a window, it is possible to only

care about the peripheral slices of the previous window. If we use this idea to model

the window extraction process, we can not only improve the associated time cost by

reducing the data fetching but we also diminish the time cost by reducing the number

of processor operations needed. As the statement suggests, we need to focus on two

aspects about the peripheral slices, namely, the geometric structure of the slice, and

its width in the case of vertical slices or its height in the case of horizontal slices.

Given that the horizontal displacement of the extraction window goes from the

left to the right of the scope, moving one-cell a time, every first window of the scope

will act as pivot. We can use a structure like the one shown in figure 4.9 to store

the vertical signature and the vertical slices width of the first window of the scope as

a tuple. In this figure, the first element of the tuple stores the changes through the

vertical slices of the window as integers. The second element stores the width of each

vertical slice also as integers. V Ch1, ..., V Chn correspond to the changes through the

first vertical slice up to the nth vertical slice, while V w1, ..., V wn correspond to the

width of the first vertical slice up to the nth vertical slice.
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Figure 4.9: Horizontal pivot structure representation.

As the extraction window keeps moving to the right of the scope, we can obtain

the vertical S+ of the current window of the scope (excepting the first window of the

scope) with the following declarations:

1. If V w1 > 1, then V w1 decreases by 1 and V Ch1 remains the same. If V w1 = 1,

then V w1 and V Ch1 are eliminated.

2. If the last column of the window is equal to the penultimate column of the

window, then V wn increases by 1 and V Chn remains the same. If the last

column of the window is not equal to the penultimate column of the window,

then a 1 is appended to the second element of the pivot, and the geometry

changes along the new column is appended to the first element of the pivot

structure.

3. The vertical S+ of the current window corresponds to the first element of the

pivot structure. And the window can now be displaced to the right of the scope.

For the vertical displacement of the scope in the window extraction process we can

use a similar idea but with some differences. First we have to notice that, given the

nature of the scope’s vertical displacement, the first window of the scope will share

most of its area with the first window of the next scope (when the scope moves a

position to the bottom of the layout). Given that the scope does not moves a one-cell

to the bottom of the scope until all the windows of the scope were processed (all the

horizontal displacements within the scope were executed), we need to “remember” the

pivot of the first window of the current scope to use it with the first window of the next

scope. From this point of view, we can say that in the vertical scope displacement,

the pivots will work in the corresponding column of extraction windows. Due this
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operation model, we will need as many pivots as windows exist along the x-axis of

the scope. We can represent this pivots structure as figure 4.10 shows. In this figure,

there are j pivots because j windows are extracted horizontally along the layout’s

width. Each vertical pivot has a similar structure to the horizontal pivot structure.

Here HChi, with 1 ≤ i ≤ n, corresponds to the changes through the ith horizontal

slice, while Hhi, with 1 ≤ i ≤ n, corresponds to the height of the ith horizontal slice

of the window represented by the corresponding pivot in the vertical pivot structure.

l pivot

Horizon)*+ ,+-./, .2*ng/,

4 n

Horizon)*+ ,+-./, 2/-g2)

4

Figure 4.10: Vertical pivots structure representation.

Given that each window within a layout is identified by a correlative number

starting by 0, we can identify the corresponding window’s pivot in the vertical pivot

structure by using this window identificator. A window identified by the Wi identi-

ficator will use the (Wi MOD (Layouts′ width – Windows′ width+ 1)) pivot of the

vertical pivot structure. As the extraction scope keeps moving to the bottom of the

layout, we can obtain the horizontal S+ of the current window of the scope (excepting

for those in the first scope of the layout) with the following declarations:

1. If Hh1 > 1, then Hh1 decreases by 1 and HCh1 remains the same. If Hh1 = 1,

then Hh1 and HCh1 are eliminated.

2. If the last row of the window is equal to the penultimate row of the window,

then Hhn increases by 1 and HChn remains the same. If the last row of the

window is not equal to the penultimate row of the window, then a 1 is appended

to the second element of the pivot and the corresponding changes value through

the row is appended to the first element of the pivot structure.
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3. The horizontal S+ of the current window corresponds to the first element of the

pivot.

Using the horizontal and vertical pivots to calculate S+ of a window within a scope,

and representing this scope using two structures (i.e., horizontal scope structure and

vertical scope structure), we are not only taking advantage of the cache performance

but also of the extraction process nature. For these reasons, the time costs are

dramatically reduced as figure 4.11 shows. In the figure 4.11(a) we can see that the

windows extraction rate tends to be 222.100 windows per second when the size of the

window is 5 × 5 cells. In the same figure, we can see that the windows extraction

rate tends to be 175.300 windows per second when the size of the window is 7 × 7,

while the windows extraction rate tends to be 138.500 windows per second when the

size of the window is 10 × 10. The same tendencies are obtained by performing the

windows extraction process over the other test layouts.

0

50000

100000

150000

200000

250000

0 20 40 60 80 100 120 140

R
a

te
 (

w
in

d
o

w
s 

p
e

r 
se

co
n

d
)

Time (seconds)

5x5

7x7

10x10

(a)

0

50000

100000

150000

200000

250000

0 100 200 300 400 500

R
a

te
 (

w
in

d
o

w
s 

p
e

r 
se

co
n

d
)

Time (seconds)

5x5

7x7

10x10

0

50000

100000

150000

200000

250000

0 500 1000 1500

R
a

te
 (

w
in

d
o

w
s 

p
e

r 
se

co
n

d
)

Time (seconds)

5x5

7x7

10x10

(b) (c)

Figure 4.11: Smart extraction rates using two scope structures and pivots for S+

calculation.

(a) - extraction rate over a 4.000× 4.000 layout, (b) - extraction rate over a 8.000× 8.000 layout,
and (c) - extraction rate over a 14.000× 14.000 layout.

From what follows in this document, this last extraction method will be used in
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the next experiments.

4.3 Indexing structures.

The previous section shows different S+ extraction methods and how we can

improve its cost time associated. However, any extraction process is worthless if we

do nothing with the extracted data. We can use it immediately or we can store it

to use it later. This work aims to contribute with the hotspot-detection process, not

to be a hotspot-detection process by itself. From this perspective, all the useful data

obtained from the S+ extraction process must be stored to be used lately in any

process that can give it a use. In our case, this later process corresponds to a layout’s

area pre-filtering by using windows and its S+. To achieve this objective, a suitable

storage structure must be employed. This storage structure must meet the following

goals:

• Must group, at least, all those windows with the same S+.

• Must allow a direct access to any group based in the S+.

• Should use the less possible memory space.

In addition to the previous goals we can add some desirable characteristics:

• Each window group must be as homogeneous as possible, i.e., ideally should be

only composed by windows with the same S+.

• The access to any group must be computational cheap, time and memory wise.

• Should use the less possible memory space without compromising time costs to

access and retrieve data.

• The structure creation and population cost should be the smallest possible, time

wise.

As a layout can contain several different windows on it ((layout width - window width

+ 1)*(layout height - window height + 1) to be exact), and each window can be
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mapped to a specific S+, we can have several different S+ values within a layout.

If we want to group windows based on the corresponding S+ mapping, it is natural

to think in an indexed structure. In our case, there are a variety of data structures

that can fit the requirements of an indexed structure, but we can mention the most

used and accepted: Search trees and Hash tables. With both having advantages and

disadvantages, we tested the performance of various different implementations, mea-

suring time cost of creating and populating the structures, as well as the memory

usage in the process. Similar to the previous section, here we will show the extraction

time rates for each implementation, but now including the insertion of windows in

the structure. We will measure the memory usage as the structure is populated with

the objective of showing tendencies in both measurements.

4.3.1 Using a binary search tree.

The first implementation of our work is a self-balancing binary search tree. This

implementation was built using MAP 2 of the STL library3. Probably most com-

mon self-balancing trees are red-black trees and AVL trees. For both cases, the in-

sert/remove operation (insert is the most intensive operation in our work) are O(log

n) being n the number of nodes in the tree. Inserting/removing in a red-black tree

may violate the properties of a red-black tree. Restoring their properties requires a

small number of O(log n) or amortized O(1) of color changes and no more than three

tree rotations. Being an AVL tree a more rigidly balanced tree than red-black trees,

the retrieval operation is faster but the insertion and removal operations are slower

than in a red-black tree. For this reason, the MAP structure was implemented using a

red-black tree. In this red-black tree, each node of the tree represents one value of S+,

and points to a V ECTOR4 of INT which stores the IDs of the windows that were

mapped to the S+ represented by the corresponding node. Each entry corresponds to

the concatenation of the two elements in the corresponding S+ of a window, i.e., the

horizontal and vertical signature over the irregular grid representation of the window.

It is important to notice that for the red-black tree creation, strings must be

2http://www.cplusplus.com/reference/map/map/
3STL stands for Standard Template Library.
4http://www.cplusplus.com/reference/vector/vector/
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compared by the< (less-than) operator. The less-than operator does a lexicographical

comparison on the strings. This compares strings in the same way that they would be

listed in dictionary order. This means that the less-than operator iterates character-

by-character on the strings, comparing its corresponding ASCII values.

Figure 4.12(a) shows the extraction rates while the MAP structure is populated.

It also shows the memory used by the structure through time (see figure 4.12(b)-(c)).

Here, we can see two different memory measurements: used memory and reserved

memory. The used memory means how much memory is being effectively used by the

structure, while the reserved memory means how much memory is reserved for the

structure. This difference is caused by how some structures are implemented in the

STL library. Many data structures (e.g. V ECTORS) receive some memory space

when they are declared. When the data within the structure fills all the reserved space,

new space must be incorporated. This step usually doubles the previous reserved

memory space, so we can have structures with a certain reserved memory space, even

when the user data uses less memory space.
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Figure 4.12: MAP structure: Extraction and population, memory usage and reserved
memory over time.

(a) extraction and population rate, (b) memory usage, and (c) reserved memory over a
14.000× 14.000 layout.



67

As we can see in figure 4.12(a), as far as window size increases, the extraction rate

decreases. For the 14.000 × 14.000 layout shown in the figure, when the extraction

window size has a size of 5×5, the extraction-with-population rate tends to be 94.800

(100%) windows per second, but when the size of the window of extraction increases

to 7×7, the extraction-with-population rate tends to be 74.500 (78.58%) windows per

second. Even more, when the size of the window of extraction increases to 10 × 10,

the extraction-with-population rate tends to be 57.600 (60.76%) windows per second.

The downfall of the extraction rate is not only affected by the S+ calculation as we

saw in the previous chapter (larger windows take more time to extract its S+ ), but

also by the comparison needed to find the location of a S+-string within the MAP

structure. As larger windows tend to have longer S+-string representation due to

the increase in the number of slices, they usually require more time to compare its

S+-string representation. Figure 4.12(b) shows that a little increase of the window

size (from 5 × 5 to 7 × 7 and to 10 × 10) greatly impacts the memory used by the

MAP structure. As the size of the window of extraction increases, the number of

different values of S+ increases (it is less likely having two different configurations

with the same value of S+ ). This means that we will have more tree nodes in the

MAP structure, but less window identifiers in each node. Given that the identifiers

are only integers, but the tree nodes are a structure containing the value of S+,

and a set of pointers to the VECTOR structure containing the windows identifiers,

each tree node uses more memory than a window identifier (4bytes vs 64bytes in

our implementation). In conclusion, more tree nodes with less windows identifiers

mean anyways more memory usage by the whole structure. The same occurs in the

measurement of the reserved memory, but the tendencies with different window’s

size are more similar. If we compare the gradients of the tendencies between figure

4.12(b) and figure 4.12(c), we can say that larger windows’s sizes mean more reserved

memory for the MAP structure, but the impact in the trend of the increased memory

use is less.

It was previously mentioned, when the reserved memory of a structure is totally

filled, new memory need to be assigned. As MAP and VECTOR structures in STL

implementation use contiguous memory blocks, when new memory is assigned to a
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structure, it probably means a memory reallocation. Reallocating memory is a costly

task that should be avoided. From now, we will refer to the amount of elements within

a structure as the size of the structure, and the reserved memory space for elements

as the capacity of the structure. In our implementation, the default initial size is

zero (when a structure is declared), and the initial capacity is one. Inserting elements

increases size by one, but capacity is only affected when the size of the structure

reaches the structure capacity. In that case, the structure doubles its capacity and if

the contiguous memory cannot allocate the new assigned memory space, a reallocation

occurs. We can try to avoid unnecessary initial reallocations by altering the default

initial capacity to a larger one. If we set a vector’s default initial capacity equals

to MAX(layout width, layout height)/2 we obtain the following statistics shown in

figure 4.13
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Figure 4.13: MAP structure with initial reserved memory: Extraction and population,
memory usage and reserved memory over time.

(a) extraction and population rate, (b) memory usage, and (c) reserved memory over a
4.000× 4.000 layout.

Figure 4.13 shows the extraction rate and memory usage over a 4.000 × 4.000

layout. Figure 4.13(c) shows that, starting to populate the MAP structure with
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an initial reserved memory space will lead us to a high amount of reserved mem-

ory (up to 80GB) after a few minutes of processing. This enormous use of reserved

memory impedes us to process a 14.000 × 14.000 layout. Even more, if we compare

figure 4.12(a) with figure 4.13(a) we can notice that our assumption was wrong.

Start populating the MAP structure with a larger amount of reserved memory not

only uses an impractical amount of memory but also diminishes the extraction rate.

In our case, this downgrade of the extraction speed was determined by the memory

swapping needed to manage such big amount of memory space.

4.3.2 Using two binary search trees.

Our second implementation was a dual-MAP structure. This dual-MAP structure

aims to use the horizontal S+ and vertical S+ as search key, but separately. The

basic concepts are similar to the previous implementation: each MAP structure is

implemented as a red-black tree, and the entries are strings representations of the

corresponding S+ element (horizontal S+ or vertical S+ ) of a window. In this

implementation, each tree node of the first MAP structure (let’s call it the outter

MAP) groups all the windows with the same horizontal S+. A tree node of the

first MAP structure points to a second MAP structure (let’s call it the inner MAP),

that groups all the windows with the same vertical S+. In other words, the outter

MAP groups windows with the same horizontal S+, while the inner MAP groups

windows with the same vertical S+, and all of these groups share the same horizontal

S+. Similar to the previous implementation, each node of the inner MAP structure

corresponds to a VECTOR of windows ids. Figure 4.14 shows a visualization example

of this dual-MAP structure.
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Figure 4.14: Vertical pivots structure representation.

By using this structure to extract and store windows over a 14.000×14.000 layout,

we obtain the extraction rates, memory usage and reserved memory over time shown

in figure 4.15
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Figure 4.15: Dual-MAP structure: Extraction and population, memory usage and
reserved memory over time.

(a) extraction and population rate, (b) memory usage, and (c) reserved memory over a
14.000× 14.000 layout.

If we compare figure 4.15(a) with figure 4.12(a) we can conclude that using a
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dual-MAP structure improves the extraction-and-population rate by around a 11%

when the size of the window of extraction is of 5×5 (from 95.000 windows per second

up to 105.000 windows per second approximately), around a 4% when the size of the

window of extraction is of 7×7 (from 75.000 windows per second up to 77.900 windows

per second), and around a 1% when the size of the window of extraction is of 10× 10

(from 58.000 windows per second up to 58.600 windows per second). By comparing

figure 4.15(b)-(c) with figure 4.12(b)-(c), respectively, we can notice that using a

dual-MAP structure does differ much in space from using a simple-MAP structure.

The incremental tendencies keeps very similar, and the memory use remains almost

the same, except when the window size is of 10× 10, when the total memory use and

reserved memory increments in around 1GB of space. The extraction rate speed-up

is explained by the fact that each MAP structure in the second implementation (the

outter MAP for the horizontal S+ and the inner MAP for the vertical S+ ) has,

individually, less tree nodes stored compared with the MAP structure of the first

implementation. This occurs because the grouping capacity is greater than the first

implementation, because the S+ is separated between its two elements (horizontal and

vertical). Less nodes in each MAP structure means faster insertion times. From the

point of view of memory vs extraction time rates, if we try the same initial memory

reserve approach, we obtain similar results that in the previous implementation: a

small decrease in the extraction rate and a big increase in the memory usage.

4.3.3 Using has functions.

The two previous implementations use binary search trees as S+ storage struc-

ture. As we have said, hash tables are also a widely used indexing structure and it is

desirable to compare how these two kinds of structures behave in the window extrac-

tion process. Hash tables are associative structures that link a key with one or more

values. This work transforming the key into a hash. A hash is a value that identifies

the position (bucket) where the hash table locates the desired value. Hash tables

store information in pseudo-random positions, so the orderly access to its content is

quite slow. Compared with other data structures such as self-balanced binary trees,

hash tables have higher average search time, but the information is not sorted. As
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we can expect, hash tables depend highly on the selected hash function that maps

keys into hash values. If this hash function is not well designed, some buckets of the

hash table can be extremely saturated of entries due to hash collisions, while other

buckets can be very unused. This saturation of some buckets of the hash table is

known as value crowding, and its occurrence must be avoided. In our work, we tested

3 different hash functions, each one over 3 different table sizes.

First hash function.

The first hash function (hash1) was a very simple hash, whose pseudo-code is

presented in algorithm 5. In this algorithm, the horizontal and vertical S+ lists start

at the 1th position and the .position property returns the position of a list element.

Algorithm 5 Hash-1 algorithm.
Input The horizontal signature and the vertical signature as lists, and the hash table size

Output The hash as an integer

1: horizontal hash← 0

2: vertical hash← 0

3: for each value v in the horizontal signature do

4: horizontal hash← horizontal hash + (v * v.position)

5: for each value v in the vertical signature do

6: vertical hash← vertical hash + (v * v.position)

7: return (horizontal hash× vertical hash) MOD hash table size

Second hash function.

The second hash function (hash2) was a little more complex hash that uses two

prime numbers to distribute the hashes. Its pseudo-code is presented in the algorithm

6. In this algorithm, the MAX function returns the maximum value between two

parameters (e.g., MAX(2, 5) will return 5) and the .length property returns the

number of elements in a list. Similar to the first hash, the horizontal and vertical S+

lists start at the 1th position and the .position property returns the position of a list

element.
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Algorithm 6 Hash-1 algorithm.
Input The horizontal signature and the vertical signature as lists, and the hash table size

Output The hash as an integer

1: hash← 17

2: iterator ←MAX(horizontal signature.length, vertical signature.length)

3: for i=1..iterator do

4: if there exists horizontal signature [i] then

5: hash← (hash× 31) + horizontal signature[i]

6: if there exists vertical signature [i] then

7: hash← (hash× 31) + vertical signature[i]

8: return hash MOD hash table size

Third hash function.

The third and last hash function (hash3) is presented in the algorithm 7 and it

was a modification of the second hash function that includes a percentage of bucket

shifting. Similar to the second hash function, the MAX function returns the maxi-

mum value between two parameters (e.g., MAX(2, 5) will return 5) and the .length

property returns the number of elements in a list. The horizontal and vertical S+

lists start at the 1th position and the .position property returns the position of a list

element.

Algorithm 7 Hash-1 algorithm.
Input The horizontal signature and the vertical signature as lists, and the hash table size

Output The hash as an integer

1: hash← 17

2: iterator ←MAX(horizontal signature.length, vertical signature.length)

3: for i=1..iterator do

4: if there exists horizontal signature [i] then

5: hash← (hash× 31) + horizontal signature[i]

6: if there exists vertical signature [i] then

7: hash← (hash× 31) + vertical signature[i]

8: return (hash+hash/2) MOD hash table size

Given these three hash functions, we compare its behavior taking into account

three different variables: the layout (different layout sizes and different layout ge-

ometries), the size of the windows of extraction, and the size of the hash table. We

present the different results over a 14.000 × 14.000 layout, because the three hash

functions behaves very similar over the others layouts of the dataset.
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Comparing hash functions.

The first experiment was configured to use windows of extraction of 5× 5, being

the total number of windows of 195.888.016, and the size of the hash table was set

to 50% of the layout’s dimension (7.000 in this case). We first compare the windows-

per-bucket distribution on the hash table by using the three different hash functions.

A good hash function must avoid having buckets with very low windows stored, or

buckets with a high number of windows. The minimum windows per bucket using the

first hash function were 0 (0%). It means that there exist buckets that do not contain

any window. For the second and third hash functions, the minimum windows per

bucket were 105 (5.3e−5%) and 71 (3.6e−5%), respectively. The maximum windows

per bucket using the first hash function were 39.221.398 (20%). That means that

exist at least one bucket that contains 20% of the total of windows extracted from

the layout. The maximum windows per bucket using the second and the third were

11.899.996 (6%) and 11.902.009 (6%), respectively. To present a histogram of windows

per bucket, we set brackets with ranges of 1.961.069 windows per bucket (0-to-0, 1-

to-1.961.070, 1.961.071-to-3.922.140, and so on). By using these ranges, we obtain

the following histograms.
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Figure 4.16: Windows extraction over a 14.000 times14.000 layout: Windows per
bucket histogram using a hash table of 7.000 buckets.

(a) extraction histogram using hash1, (b) extraction histogram using hash2, and (c) extraction
histogram using hash3.

As we can see in figure 4.16(a), by using hash1 to populate the hash table, most

of the buckets are cataloged in the 0th bracket. That means that most of the buckets

have zero windows. Comparing figure 4.16(b) and figure 4.16(c), it is possible to

say that hash2 and hash3 behave very similar, cataloging most of the buckets in the

1st bracket. That means that both hash functions distribute windows along the hash

table, making most of the buckets to store from 1 to 1.961.070 windows. For all three

hash functions, the total calculation time (sum of computation time of all windows)

was of 98,7 seconds for hash1 function, 103,17 seconds for the hash2 function and

103,36 seconds for the hash3 function.

The second comparison was the number of different S+ within buckets. A good

hash function must avoid hash collisions. That means that a good hash function must

have only few different S+ within a bucket, being a perfect hash the one that can

have one S+ per bucket. The minimum S+ per bucket using the first hash function

where 0, while the maximum S+ per bucket using the same hash function were 3.293.

That means that using the hash1 function there exist buckets with no window (and
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therefore no S+ ), but also there exist buckets with a great number of collisions (3.293

different S+ are mapped to the same bucket). By using the hash2 function, we have a

minimum per bucket of 13 and a maximum S+ per bucket of 93. On the other hand,

using the hash3 function we have a minimum S+ per bucket of 17 and a maximum

S+ per bucket of 89. Similar to previous histograms, here we set brackets of ranges

of 164 S+ per bucket, obtaining the following histograms.
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Figure 4.17: Windows extraction over a 14.000 × 14.000 layout: Different S+ per
bucket histogram using a hash table of 7.000 buckets.

(a) extraction histogram using hash1, (b) extraction histogram using hash2, and (c) extraction
histogram using hash3.

As we can see in figure 4.17(a), by using the hash1 function we have many buckets

containing zero S+, while using hash2 and hash3 (figure 4.17(b) and figure 4.17(c)

respectively) we have most of the buckets containing from 1 to 165 different S+. At

this point, we can say that hash2 and hash3 behave very similar. The following figure

(see figure 4.18) shows a zoom of the histogram of the relation windows-per-bucket

without the bracket classification.
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Figure 4.18: Zoom of the histogram of windows per bucket for the three different
hash functions.

(a) zoom of the histogram using hash1, (b) zoom of the histogram using hash2, and (c) zoom of
the histogram using hash3.

As we can see, the distribution of the hash3 is more homogeneous than the dis-

tribution of the hash2. The hash1 function distributes windows crowding buckets of

low values.

The second experiment was configured to use the same size of windows of extrac-

tion (5× 5), but the size of the hash table was set to 100% of the layout’s dimension

(14.000 in this case), while the third experiment was configured to use a table size of

150% of the layout’s dimension (21.000 buckets in this case). The idea is to compare

how the three different hash functions behave with a bigger hash table. Results are

quite similar to the previous experiment, where hash1 has the worst distribution,

hash2 a normal distribution and the hash3 function has the better and more homo-

geneous distribution. Figure 4.19 shows the windows per bucket using a bracket

categorization of 1.961.069 and figure 4.20 shows the S+ per bucket using a bracket

categorization of 165 for the hash table of 14.000 buckets. For all three hash functions,

the total calculation time was of 99,27 seconds for hash1 function, 103,02 seconds for

the hash2 function and 102,72 seconds for the hash3 function.



78

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20

B
u

ck
e

ts
 (

lo
g

)

Bracket

(a)

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20

B
u

ck
e

ts
 (

lo
g

)

Bracket

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20

B
u

ck
e

ts
 (

lo
g

)

Bracket

(b) (c)

Figure 4.19: Windows extraction over a 14.000 times14.000 layout: Windows per
bucket histogram using a hash table of 14.000 buckets.

(a) extraction histogram using hash1, (b) extraction histogram using hash2, and (c) extraction
histogram using hash3.
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Figure 4.20: Windows extraction over a 14.000 times14.000 layout: Different S+ per
bucket histogram using a hash table of 14.000 buckets.

(a) extraction histogram using hash1, (b) extraction histogram using hash2, and (c) extraction
histogram using hash3.

Finally, the hash functions behavior remains the same when the buckets of the

hash table are incremented to 150% of the layout’s dimension (21.000 buckets in this

case). Even more, this behavior remains when the size of the window of extraction

are incremented to 7×7 and to 10×10. From all of the previous empirical results, the

hash3 function was used as the hash function in the hash table implementations that

will be presented below, because has a noticeable better distribution with a slightly

higher time cost of calculation.

4.3.4 Space cost using hash table.

Our first hash table implementation aims to deliver a simply but very fast structure

for window extraction. As we do not know all the possible uses of the windows

extraction that a user can achieve but only we are focusing on our own windows pre-

filtering process, it would be desirable to have a simply but fast structure. For this

case, we trust in the quality of the hash function. As we have seen in the previous
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experiments, the hash3 function behaves well, with a more homogeneous distribution

than hash1 and hash2 functions. However, it is far from being a perfect hash. This

implementation consists in a hash structure like the shown in figure 4.21.

HASH

? j

Figure 4.21: Simply hash structure representation.

Every bucket points to a vector, where windows’s ids are stored.

By using the hash3 as hash function, we obtain extraction time rates, memory

usage and reserved memory over time as figure 4.22 shows.
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Figure 4.22: Simply hash structure: Extraction and population, memory usage and
reserved memory over time.

(a) windows extraction rate, (b) memory usage over time, and (c) reserved memory over time.

As we can see in figure 4.22(a), using a simply hash structure we have a really fast

extraction method. Given that we have very similar extraction rates using this struc-

ture and the extraction rates without populating any structure (see figure 4.11(a)),

we can say that the insertion cost is negligible compared with the S+ calculation cost.

If we focus on the memory usage, we have a structure with a very low memory cost

that not exceeds the amount of 1,3GB of reserved memory.

Given the results of extraction rates and memory usage, it may not be necessary to

increase the initial reserved memory, but as our work is based on empirical results, it

is necessary to know the behavior of the structure under some different settings. With

this in mind, the same experiment was configured to start each bucket of the hash

table as a VECTOR with initial reserved memory of 100% of the layout dimension

(14.000 elements in this case). We obtain the extraction rates, memory usage and

reserved memory over time as the shown in figure 4.23.
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Figure 4.23: Simply hash structure with initial reserved memory: Extraction and
population, memory usage and reserved memory over time.

(a) windows extraction rate, (b) memory usage over time, and (c) reserved memory over time.

As we can see in figure 4.23(a), extraction rates are practically not affected by

incrementing the initial reserved memory of the table buckets. Figure 4.23(b) shows

us that, as expected, the user data in the structure remains the same, while figure

4.23(c) shows us that the total reserved memory increases by around 50% when the

size of the window of extraction is of 5× 5 (from 1,1GB up to 1,7GB), 17% when the

size of the window of extraction is of 7 × 7 (from 1,1GB up to 1,3GB), and 10,5%

when the size of the window of extraction is of 10× 10 (from 1GB up to 1,1GB). In

conclusion, similar to previous experiments, incrementing the initial reserved memory

does not provides any advantage in the extraction process. One of the problems with

this simply hash structure is that we rely entirely on the hash distribution. There

is no way to distinguish two windows that are stored in the same bucket but have

different S+ (e.g., if a S+ collision exists), because the only way to identify a window

is its hash value. For this reason, a combined structure was implemented using hash

table and binary search trees.
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4.3.5 Space cost using hash table plus binary search tree.

This structure aims to store windows in a set of binary search trees, to which

windows are addressed using a hash function. It is implemented by a hash table,

where each bucket of the table points to a red-black tree (MAP structure). Each

node of these MAPs points to a VECTOR where windows’s IDs are stored. The hash

map address a S+-string representation to a given MAP, and that MAP separates

all the different S+ that collide under the hash3 function. Each node of these MAPs

structure stores all the windows’s IDs of the windows with the same S+ in a VECTOR

structure. Figure 4.24 shows a representation of this implementation.
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Figure 4.24: Representation of a structure using a hash table and a binary search
tree.

The idea is to combine the good grouping of the MAP structure, but reducing the

number of the nodes of the trees (hence, reducing the insertion and querying times),

by addressing only few S+ to the tree instead of all of the S+ in the layout. The hash

table was configured to 100% of the layout’s dimension (14.000 buckets in this case)

and no initial reserved memory was used for the VECTORS. By using this structure,

we obtain the extraction rates shown in figure 4.25(a). Memory usage and reserved

memory over time are shown in figure 4.25(b) and (c), respectively.
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Figure 4.25: Hash table and binary search tree structure: Extraction and population,
memory usage and reserved memory over time.

(a) windows extraction rate, (b) memory usage over time, and (c) reserved memory over time.

As we can see, we have a slightly faster extraction rate than using a simple MAP

structure (see figure 4.12(a)), but a slightly slower extraction rate than using a double

MAP structure (see figure 4.15(a)). Memory usage over time is quite similar to the

memory usage over time when using a simple MAP structure (see figure 4.12(b)),

but is slightly less than the memory usage over time when using a double MAP

structure (see figure 4.15(b)). For this reasons, a last implementation was tested.

This implementation was a modification of the previous implementation, and aims

to exploit the faster extraction rate of the double MAP structure instead of a simple

MAP structure. A representation of this implementation is shown in figure 4.26.
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Figure 4.26: Representation of a structure using a hash table and two binary search
trees.

Using this structure to store windows in the windows extraction process allows us

to obtain extraction rates faster than any of the other structures. As figure 4.27(a)

shows, when the size of the window of extraction is of 5×5, we obtain a extraction rate

of around 113.000 windows per second. When the size of the window of extraction

is of 7 × 7, we obtain a extraction rate of around 88.500 windows per second, and

when the size of the window of extraction is of 10 × 10, we obtain a extraction rate

of around 64.400 windows per second. The downside of this structure is the reserved

use. Figure 4.27(c) show us that the reserved memory used by the structure when

the size of the window of extraction is of 10× 10 is significantly more than the other

structures.
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Figure 4.27: Hash table and dual binary search tree structure: Extraction and pop-
ulation, memory usage and reserved memory over time.

(a) windows extraction rate, (b) memory usage over time, and (c) reserved memory over time.

In this section we have compared several data structures to store the information

obtained from layouts in order to use it later. We use structures based on lists,

binary search trees and hash tables, each one with different parameters such as initial

reserved memory, number of buckets in the case of hash tables and more. The idea

was to test the sensibility of the windows extraction rate and the memory usage for

different data structures under different configurations. Due the results obtained,

we use the last structure, i.e., the hash table with dual binary search trees as the

structure to test the window-candidate retrieving quality of S+.

4.4 Searching patterns in the layout.

As is said in Chapter 3.4, when having a layout with their S+, and a pattern (e.g.,

a potential hotspot), it is possible to use S+ for selecting candidate windows of the

layout that can contain that pattern. We can use S+ as a search key in the inverted

index structure, which in our case is composed of a hash table and a dual-binary

search tree structure. In the hash table, each bucket points to a red-black tree. In
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this red-black tree, each node identifies one value of the horizontal S+, and points to

a second red-black tree. In this second red-black tree, each node identifies one value

of the vertical S+, and points to a list of windows’s IDs. These IDs identify all the

windows whose S+ is formed by the horizontal S+ and the vertical S+ indicated by

the red-black tree structure.

It is natural to think that the search process must retrieve all those windows

whose S+ coincides with the S+ of a given pattern. This is partly true, but some

circumstances are not fully covered. When one wants to identify the occurrence (or

possible occurrence) of a certain geometrical pattern (e.g., a realization of a certain

range pattern), one wants to be able to detect this geometrical pattern even when it

can appears in the layout in various rotations (i.e., 0◦, 90◦, 180◦ and 270◦), and even

when each of these rotations appears mirrored. For these reasons, any S+ lookup

must also looks for the previous mentioned spatial variations of this S+. This implies

that each S+ lookup must be seen as 8 different lookups.

Searching for candidate windows takes the time needed for extracting the S+ from

a range pattern, plus the time needed for finding the signature in the S+ indexing

structure and then, traversing the list of windows with the same signature. The

following section presents the experiments that check the quality of S+ as the search

key to retrieve candidate windows. We used classical measures of recall and precision

of information retrieval. Recall determines the number of relevant elements that are

retrieved versus the total number of relevant elements, and precision determines the

number of relevant elements that are retrieved versus the total number of retrieved

elements. In simply words, recall serves to measure the number of false negatives,

while precision serves to measure the number of false positives. Values close to 1 are

desirable for both measurements. In our case, recall must be 1, because all patterns’s

realizations, at least, must be detected.

Additionally, as Chapter 3.3 indicates, various algorithms must be performed to

extract S+ from a range pattern. We also present the time-cost measurements for

each algorithm. We show the results obtained using size of windows of extraction of

10 × 10, that is the same size of the patterns used to build the layouts dataset, and
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size of windows of 5× 5, which is a size smaller than the size of the patterns used to

build the layouts.

4.4.1 Searching with pattern and window of the same size.

When having a pattern realization of the same size of the windows of extraction,

the retrieving of candidate windows that can contain that pattern realization is very

simple. We must apply the algorithms presented in Chapter 3.3 and we obtain its S+.

Then, we can use that S+ and its variations (0◦, 90◦, 180◦, 270◦, and mirroring) to

search into the inverted index structure and retrieve all the windows that can contain

the same geometrical configuration. To do so, for each S+ variation we calculate its

hash value, and go through the hash table, then through the corresponding red-black

tree that groups windows by its horizontal S+ , and finally through the corresponding

red-black tree that groups windows by its vertical S+. We then have a list of windows

IDs that are candidates, i.e., can contain the given pattern realization. All the results

indicate that the recall is always 100%, this is, S+ does not miss relevant elements.

Figure 4.28 shows the precision of the candidate windows retrieved from three

layouts of 4.000 × 4.000 (15.928.081 windows), 8.000 × 8.000 (63.856.081 windows),

and 14.000×14.000 (195.748.081 windows), respectively. Relevant windows indicates

the number of windows that actually contains a realization of the given pattern, while

Retrieved windows indicates the number of windows retrieved by the filtering process

using S+.
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Figure 4.28: Precision for 7 different patterns in three different layouts.

(a) precision over a 4.000× 4.000 layout, (b) precision over a 8.000× 8.000 layout, and (c) precision
over a 14.000× 14.000 layout.

We can see that, the more complex is the pattern, the more precise is S+ to

detect its occurrence in a layout, with precision that goes from 0,35 to 0,95 in the

4.000 × 4.000 layout, 0,34 to 0,95 in the 8.000 × 8.000 layout, and 0,34 to 0,95 in

the 14.000× 14.000 layout. The table 4.4 shows the access time, in seconds, to the

corresponding candidate windows.

4.000× 4000 8.000× 8.000 14.000× 14.000
i 0,006666 0,029419 0,09443

ind1 0,00543 0,021374 0,067521
ind2 0,005721 0,020559 0,065822
s 0,006054 0,02133 0,065788

stair1 0,010377 0,046244 0,147539
stair2 0,007245 0,030893 0,097046

tuningfork 0,00612 0,025111 0,078211

Table 4.4: Accesing time cost table (in seconds).

As we can see, the hash with dual red-black search tree structure allows us to

retrieve candidate windows with very low time-costs. However, it is also important
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to know the cost time used by each algorithm. Table 4.7 shows the time cost,

in seconds, needed to run each algorithm over the 7 different patterns to retrieve

candidate windows in the three layouts (Remember that the APMRP algorithm is

invoked by the ENUM DRG algorithm, and thus, its time cost is part of the cost of

the ENUM DRG algorithm).

4.000× 4.000 8.000× 8.000 14.000× 14.000
APMRP 8,32092 8,56205 8,65908
ENUM DRG 9,0865 9,35278 9,45696
TOPOLOGICAL ORDERING 0,01308 0,013478 0,013503
GET SIG 0,6552 0,6392 0,6432

Table 4.5: Algorithms time cost table (in seconds).

We see that, even when the cost of some algorithms is O(n5), the execution time

cost is negligible.

4.4.2 Searching with pattern and window of different size.

When we want to detect a pattern whose dimensions are larger than the dimension

of the window of extraction, we can use a procedure like the one shown in Chapter

3.4. The algorithms performed are the same that the ones performed when the

pattern and the window of extraction have the same dimensions, but the partition

of a pattern into sub-patterns leads us to perform those algorithms more times. We

want to compare the time-cost for the execution of the different algorithms, and the

quality of S+ when retrieving candidate windows formed by a set of sub-windows

(Here, a set of sub-windows conforms a bigger window that is the candidate window

retrieved).

In this experiment, where we use a size of window of extraction of 5×5, the Recall

is always 100%. Figure 4.29 shows the precision of the candidate windows retrieved

from the same three layouts of 4.000 × 4.000 (15.928.081 windows), 8.000 × 8.000

(63.856.081), and 14.000 × 14.000 (195.748.081 windows), respectively. As in the

previous results, Relevant windows indicates the number of windows that actually

contains a realization of a given pattern, while Retrieved windows indicates the num-

ber of windows retrieved by the filtering process using S+.
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Figure 4.29: Precision for 7 different patterns in three different layouts with patterns
larger than the windows of extraction.

(a) precision over a 4.000× 4.000 layout, (b) precision over a 8.000× 8.000 layout, and (c) precision
over a 14.000× 14.000 layout.

We can see that, similar to the previous experiment, the more complex is the

pattern, the more precise is S+ to detect its occurrence in a layout, with precision

that goes from 0,56 to 0,98 in the 4.000×4.000 layout, 0,48 to 0,99 in the 8.000×8.000

layout, and 0,45 to 0,97 in the 14.000 × 14.000 layout. Focusing on the time cost of

the procedure, the table 4.6 shows the access time, in seconds, to the corresponding

candidate windows. We can note an noticeable increment in the time needed to

access to the corresponding candidate windows. This increase is produced by the fact

that we need to make a union between set of windows (one set for windows for each

partition of the pattern), checking if the restriction of the IDs shown in Section 3.4

is satisfied in each case.

Finally, table 4.7 shows the time cost, in seconds, needed to run each algorithm

over the 7 different patterns to retrieve candidate windows in the three layouts.

As we can see, the time cost associated with each algorithm increments, but it is

still acceptable for all of them. The experiments have shown that it is possible to use

S+ as signature for filtering out portions of the layout that do not contain a given
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4.000× 4000 8.000× 8.000 14.000× 14.000
i 0,081063 0,357756 0,148338

ind1 0,046838 0,184368 0,582424
ind2 0, 0,065270 0,234556 0,750960
s 0,634062 0,2233986 0,689027

stair1 0,123036 0,5482970 0,749312
stair2 0,072844 0,310611 0,975741

tuningfork 0,050546 0,310611 0,645968

Table 4.6: Accesing time cost table.

4.000× 4.000 8.000× 8.000 14.000× 14.000
APMRP 84,7887 87,2458 89,9095
ENUM DRG 117,1371 120,5698 121,912
TOPOLOGICAL ORDERING 0,1686 0,1737 0,1740
GET SIG 8,3380 8,1344 7,1853

Table 4.7: Algorithms time cost table.

pattern with a high quality measurement (recall and precision), while the time cost

allows the use of the method in practice.



Chapter 5

Conclusions and future research directions.

We can conclude that the objectives of the thesis work, indicated at the beginning

of this document are were achieved. A signature over rectangular configurations is

defined. Our experiments has proved that it is possible to define a process that

extracts this signature from an IC layout, requiering time and memory costs that

can improve the current hotspot detection processes. Various indexing structures are

introduced, each one with some advantages and disvantages. Empirically, we can

conclude that using an indexing structure based on binary-search trees and hash

tables has the better balance between time and memory costs. Also, a search method

over the indexing structure is introduced, in order to obtain candidate areas that can

contain certain geometrical pattern, even when the size of the candidate areas and the

geometrical pattern is not the same, or the candidate area contains the geometrical

pattern under rotations or mirroring.

The principal contribution of this thesis work is to define a process that can help

IC fabs to reduce the costs, time and memory wise, of the hotspot detection process,

allowing them to take advantage of the machine architecture that fabs use.

Future work can be focused on implement and optimize the signature extraction

process using distributed architectures, and/or taking advantage of more hardware

oriented optimizations. Even more, it is important to see that it is possible to benefit

from parallel or group search over the indexed structure that stores the signatures of

an IC design. However, for all the work and results obtained, we can conclude that

using a signature as a hotspot detection support process can be very beneficial for the

IC industry.
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Appendix A

Range patterns.

Name = i;
Dir = all;
RectNum = 3;
LeftBry R0.l, R2.l;
BottomBry R2.b;
R0.r - R0.l is 10;
R1.r - R1.l is (2, 4);
R1.l - R0.l is (3, 4);
R2.r - R2.l is 10;
R2.l - R0.l is 0;
R0.t - R0.b is (2, 3);
R1.t - R1.b is (4, 6);
R0.b - R1.t is 0;
R2.t - R2.b is (2, 3);
R1.b - R2.t is 0;

Figure A.1: Pattern: i

Name = stair2;
Dir = hor;
RectNum = 3;
LeftBry R0.l;
BottomBry R2.b;
R0.r - R0.l is (5, 7);
R1.r - R1.l is (5, 6);
R2.r - R2.l is (4, 5);
R1.l - R0.l is (2, 3);
R2.l - R1.l is (2, 3);
R0.t - R0.b is 2;
R1.t - R1.b is 2;
R2.t - R2.b is (2, 3);
R0.b - R1.t is 2;
R1.b - R2.t is (1, 2);

Figure A.2: Pattern: stair1

Name = stair1
Dir = all;
RectNum = 3;
LeftBry R0.l;
BottomBry R0.b, R1.b;
R0.r - R0.l is (2, 3);
R1.r - R1.l is (7, 8);
R2.r - R2.l is (4, 6);
R1.l - R0.r is 0;
R2.l - R0.r is 0;
R0.t - R0.b is 10;
R1.t - R1.b is (2, 3);
R2.t - R2.b is (5, 6);
R0.b - R1.b is 0;
R2.b - R1.t is 0;

Figure A.3: Pattern: stair1

Name = tuningfork;
Dir = all;
RectNum = 4;
LeftBry R0.l;
BottomBry R0.b, R1.b, R2.b;
R0.r - R0.l is (2, 3);
R1.r - R1.l is (5, 6);
R2.r - R2.l is 2;
R3.r - R3.l is (2, 3);
R1.l - R0.r is 0;
R2.l - R1.r is 0;
R3.l - R1.l is (1, 2);
R0.t - R0.b is (6, 7);
R1.t - R1.b is (2, 3);
R2.t - R2.b is (6, 7);
R3.t - R3.b is (5, 6);
R0.b - R1.b is 0;
R0.b - R2.b is 0;
R3.b - R1.t is (1, 3);

Figure A.4: Pattern: tuningfork

94
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Name = ind1;
Dir = all;
RectNum = 5;
LeftBry R0.l;
BottomBry R0.b;
R0.r - R0.l is (4, 5);
R1.r - R1.l is 2;
R2.r - R2.l is (4, 5);
R3.r - R3.l is (4, 5);
R4.r - R4.l is 2;
R0.r - R1.r is 0;
R2.l - R0.r is 1;
R3.r - R2.r is 0;
R3.l - R4.l is 0;
R0.t - R0.b is 2;
R1.t - R1.b is 8;
R2.t - R2.b is (2, 3);
R3.t - R3.b is 2;
R4.t - R4.b is (2, 3);
R1.b - R0.t is 0;
R0.t - R2.b is (0, 1);
R4.b - R3.t is 0;
R1.t - R4.t is 0;

Figure A.5: Pattern: ind1

Name = ind2;
Dir = ver;
RectNum = 5;
LeftBry R0.l;
BottomBry R0.b, R3.b;
R0.r - R0.l is 2;
R1.r - R1.l is 2;
R2.r - R2.l is 2;
R3.r - R3.l is 2;
R4.r - R4.l is 2;
R1.l - R0.r is 0;
R2.l - R1.r is 0;
R3.l - R0.r is 4;
R4.l - R3.r is 0;
R0.t - R0.b is (4, 5);
R1.t - R1.b is (4, 5);
R2.t - R2.b is (4, 5);
R3.t - R3.b is 4;
R4.t - R4.b is 5;
R0.t - R1.b is (2, 3);
R1.t - R2.b is (1, 2);
R0.b - R3.b is 0;
R3.t - R4.b is 2;

Figure A.6: Pattern: ind2

Name = s;
Dir = all;
RectNum = 5;
LeftBry R3.l;
BottomBry R0.b;
R0.r - R0.l is (5, 6);
R1.r - R1.l is 2;
R2.r - R2.l is 6;
R3.r - R3.l is 2;
R4.r - R4.l is (5, 6);
R1.l - R0.r is 0;
R2.r - R1.l is 0;
R2.l - R3.r is 0;
R3.r - R4.l is 0;
R0.t - R0.b is 2;
R1.t - R1.b is (5, 6);
R2.t - R2.b is 2;
R3.t - R3.b is (4, 5);
R4.t - R4.b is 2;
R0.t - R1.b is (1, 2);
R1.t - R2.t is 0;
R2.t - R3.b is 1;
R4.t - R3.t is (0, 1);

Figure A.7: Pattern: s
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