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Introducción

En esta tesis estudiamos una clase especial de superficies algebraicas proyecti-
vas complejas, llamadas Superficies Generalizadas de Büchi, abreviadas GBS.
Dado un entero n ≥ 3 y un conjunto de puntos distintos ordenados α := {[1 :
α0], . . . , [1 : αn]} ⊆ P1, la Superficie Generalizada de Büchi Sn(α) es la inter-
sección completa de las n−2 cuadricas diagonales del espacio proyectivo complejo
Pn:

x2i − βi2x22 − βi1x21 − βi0x20 = 0, (0.1)

donde 3 ≤ i ≤ n y

βi0 =
(α1 − αi)(α2 − αi)
(α0 − α1)(α0 − α2)

, βi1 = − (α0 − αi)(α2 − αi)
(α0 − α1)(α1 − α2)

, βi2 =
(α0 − αi)(α1 − αi)
(α0 − α2)(α1 − α2)

.

La motivación primitiva de este trabajo es el Problema de Büchi, un problema
de naturaleza aritmetica el cual su formulación geométrica es el punto de partida
para esta tesis. A continuación describimos el problema de Büchi.

Dado n ≥ 3 entero, una sucesión de números enteros {xi}ni=1 es una sucesión de
Büchi si cumple la relación:

(x2i − x2i−1)− (x2i−1 − x2i−2) = 2 para 3 ≤ i ≤ n. (0.2)

Para cualquier entero x, la sucesión de enteros consecutivos {xi = x+i}ni=1 es una
sucesión de Büchi. Este tipo de sucesiones son llamadas las soluciones triviales.
También se pueden obtener nuevas sucesiones de Büchi a partir de una sucesión
de Büchi dada por cambios de signo de cualquiera de sus elementos u ordenando
estos de forma inversa.

El problema de Büchi en su formulación aritmetica, pregunta si existe un entero
n > 0 tal que todas las soluciones enteras al sistema (0.2) sean triviales. Para
n ≥ 3 el sistema (0.2) define las superficies proyectivas Xn

1 en Pn, definida por
las n− 2 cuadricas:

x2i − 2x2i−1 + x2i−2 − 2x20 = 0. con 3 ≤ i ≤ n.

El problema de Büchi en su formulación geométrica, pregunta si existe un entero
n > 0 tal que todos los puntos racionales de Xn de la forma [1 : α1 : · · · : αn], con

1Note que Xn se corresponde con Sn(α), donde α = [∞, α1, . . . , αn] con αi enteros consecu-
tivos. Ver Remark 3.1.3.
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αi ∈ Z, pertenecen a las rectas xi = ±(x + i), con i ∈ {1, . . . , n} y x ∈ Z. Estas
rectas se llaman las rectas triviales de Xn. Debido a la fomulación geometrica
del problema, se estudia el conjunto Xn(Q) de puntos racionales de Xn. La
importancia de estudiar los puntos racionales es el hecho que si el problema de
Büchi tiene una respuesta positiva en un anillo, esto también es cierto en cualquier
subanillo (ver [18, 5]). Luego la pregunta natural (considerando la conjetura de
Bombieri [18, 9]) es si Xn(Q) está contenido en las rectas triviales para algún
n > 0.

Se sabe que para n ≤ 4 existen soluciones enteras no triviales para (0.2). Para una
descripcion explicita de sucesiones de Büchi de largo 3 y 4 se puede consultar [20]
y [6] respectivamente. Por otro lado, puesto que la superficie X3 es una cuadrica
con un punto racional y X4 es una superficie de del Pezzo, ambas racionales, los
conjuntos X3(Q) y X4(Q) son Zariski-densos en X3 y X4 respectivamente, esto
tambien lo cumple la superficie K3 X5 pero hace uso del hecho que X5 admite
una fibración eliptica definida sobre Q con grupo de secciones infinito [2, Prop.
5.3]. Para n ≥ 8, un teorema de Vojta (ver [23] y [18, §9]) implica, asumiendo
cierta la conjetura de Bombieri, que el problema de Büchi tiene una respuesta
positiva. Para un survey del problema de Büchi el lector puede recurrir a [18].

En el paper On Büchi’s K3 surface [2] los autores estudian la geometŕıa de
la superficie K3 de Büchi X5, la cual se corresponde con S5(α), donde α =
[∞,−2,−1, 0, 1, 2] de las GBS definidas en (0.1), esto se hace por medio de la
clasica correspondencia entre curvas hipereĺıpticas de genero 2 y superficies de
Kummer [11, §10.3.3]. Especificamente, reconstruyen la superficie S5(α) a partir
de la curva hipereĺıptica de genero 2 con ecuación y2 = (x+2)(x+1)x(x−1)(x−2).
Por otro lado, recuperar la curva a partir de la superficie S5(α) es sencillo y solo
se necesita conocer las rectas triviales de la superficie, a saber, cada recta trivial
L de S5(α) corta 6 otras rectas triviales, el cubrimiento doble de L ramificado a
lo largo de dichos puntos de intersección es la curva inicial.

Es esta última idea la que se logra generalizar en este trabajo, la cual se de-
sarrolla en el Caṕıtulo 3. Dada una GBS Sn(α), mediante el conocimiento de
sus rectas triviales se pueden recuperar, a menos de cambios de coordenadas, los
n+ 1 numeros complejos no ordenados que forman α. Viceversa, dados los n+ 1
numeros complejos que forman α podemos obtener una Sn(α). Cada GBS Sn(α)
contiene las 2n rectas triviales parametrizadas por t 7→ [±(t−α0) : · · · : ±(t−αn)].
Como mostrado en la Proposición 3.2.3 estas son las únicas rectas de la superficie
y la determinan completamente (ver Proposiciónes 3.1.5 y 3.2.2). Cada recta
corta exactamente n + 1 otras rectas a lo largo de un subconjunto de puntos
proyectivamente equivalentes a α (ver Proposición 3.2.5). En el caso de ser n
impar el grafo de intersección de las rectas es bipartito de tipo (2n−1, 2n−1) (ver
Proposición 3.2.6). Si n = 2g + 1, con g ≥ 1, cada GBS lleva asociada una
curva hipereliptica de genero g (ver Observación 3.3.1). El resultado es sutil-
mente mas profundo, pues en realidad se prueba que salvo proyectividades, existe
una biyección entre n + 1 puntos no ordenados de P1 y el conjunto de las GBS

Rodrigo Andrés Quezada Pinto. 2020
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(ver Teorema 3.2.1).

Por otro lado, en el Caṕıtulo 4 estudiamos el caso n = 2g + 1 impar. Acá rela-
cionamos la superficie S := S2g+1(α) con una curva hipereliptica C de genero g
de la siguiente manera. Construimos la superficie Y que se obtiene al cuocientar
S por el subgrupo G0 del grupo de automorfismos de S de los cambios de signo
de una cantidad par de coordenadas. El morfismo cuociente S → Y está definido
sobre Q, aśı que S(Q) se mapea en Y (Q). Por otro lado, consideramos la segunda
potencia simetrica C(2) de C y su involución hiperéliptica ı y mostramos que las
superficies C(2)/〈ı〉 e Y son isomorfas (ver Teorema 4.2.1 y Corolario 4.2.2) sobre
el campo Q(α0, α1, α2) que es Q para las superficies de Büchi. En este sentido seria
ideal sustituir el estudio de los puntos racionales de S con propiedades aritmeticas
de la curva C (ver Sección 4.3). Entre las propiedades estudiadas de Y , desta-
camos que Y es una superficie de tipo general si g ≥ 3 (ver Proposición 4.1.1),
no birracional a S (ver Proposición 4.1.2) y es la cubierta doble de P2 ramificada
a lo largo de la unión de 2g + 2 rectas tangentes a una cónica Γ (4.2), donde los
puntos de tangencia son las coordenadas del vector α (ver Proposición 4.1.3). En
la subsección 4.2.1 vemos algunos hechos básicos del grupo de Neron-Severi de
C(2), especificamente calculamos la matriz de intersección de las curvas Cp, ∆ y E
(ver Proposición 4.2.4), con el proposito de describir a futuro algunas propiedades
geométricas de la superficie Y .

Esta tesis esta organizada de la siguiente manera. En el caṕıtulo 1 se definen las
variedades algebraicas complejas afines y projectivas, y sus hechos básicos, tales
como, dimensión, suavidad, variedades normales, divisores y los morfismos entre
estas variedades. Se particularizan estos hechos en curvas y superficies, se destaca
en curvas, el Teorema de Riemann-Roch, formula de Riemann-Hurwitz, producto
simetrico. En el caso de superficies, destacamos el grupo de Neron-Severi, la
formula del genero y clasificación de Kodaira, entre otros hechos relaciónados que
no mencionamos aqúı. El caṕıtulo 2 estudiamos teoŕıa basica de Galois y curvas
hipereĺıpticas. En la sección de Galois principalmente se definen las extensiones
de campo (finita, normal, separable), grupo de Galois y Galois absoluto. En la
sección de curvas hipereĺıpticas, definimos el espacio proyectivo pesado complejo,
las curvas hipereĺıticas de genero g, involución hipereĺıptica y algunos hechos
sobre puntos racionales sobre curvas. En general los caṕıtulos 1 y 2 son los
preliminares necesarios para el desarrollo de este trabajo. Los caṕıtulos 3 y 4 son
de resultados, principalmente lo descrito en los últimos dos parrafos. Finalmente
hay un apéndice de algunos programas Magma utilizados en calculos necesarios.

Rodrigo Andrés Quezada Pinto. 2020



Introduction

In this thesis we study a class of special complex projective algebraic surfaces,
called Generalized Büchi Surfaces, GBS for short. Given an integer n ≥ 3 and a
set of distinct ordered points α := {[1 : α0], . . . , [1 : αn]} ⊆ P1, the Generalized
Büchi Surface Sn(α) is the complete intersection of the n − 2 diagonal quadrics
of the complex projective space Pn:

x2i − βi2x22 − βi1x21 − βi0x20 = 0, (0.1)

where 3 ≤ i ≤ n and

βi0 =
(α1 − αi)(α2 − αi)
(α0 − α1)(α0 − α2)

, βi1 = − (α0 − αi)(α2 − αi)
(α0 − α1)(α1 − α2)

, βi2 =
(α0 − αi)(α1 − αi)
(α0 − α2)(α1 − α2)

.

The primitive motivation for this work is the Büchi’s problem, a problem of
arithmetic nature whose geometric formulation is the starting point for this thesis.
In the next paragraph we describe the Büchi’s problem.

Let n ≥ 3 be an integer, a sequence of integer numbers {xi}ni=1 is a Büchi’s
sequence if it is satisfies the relation:

(x2i − x2i−1)− (x2i−1 − x2i−2) = 2 with 3 ≤ i ≤ n. (0.2)

For any integer x, the sequence of consecutive integers {xi = x+i}ni=1 is a Büchi’s
sequence. These types of sequences are called the trivial solutions. New Büchi’s
sequences can also be obtained from a given Büchi sequence by changes of signs
of any of its elements or reversing the order.

The Büchi’s problem in its arithmetic formulation, asks if there is an integer
n > 0 such that all integer solutions to the system (0.2) are trivial. For n ≥ 3
the system (0.2) defines the projective surface Xn

1 on Pn, which is complete
intersection of the n− 2 quadrics:

x2i − 2x2i−1 + x2i−2 − 2x20 = 0. with 3 ≤ i ≤ n.

The Büchi’s problem in its geometric formulation, asks if there is an integer n > 0
such that all rational points of Xn of the form [1 : α1 : · · · : αn], with αi ∈ Z,
belong to the lines xi = ±(x+ i), with i ∈ {1, . . . , n} and x ∈ Z. These lines are

1Note that Xn corresponds to Sn(α), where α = [∞, α1, . . . , αn] with αi consecutive integers.
See Remark 3.1.3.
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called the trivial lines of Xn. Due to the geometric formulation of the problem,
the set Xn(Q) of rational points of Xn must be studied. The importance of
studying rational points it is the fact that if the Büchi problem has a positive
answer in a ring, this too is true in any subring (see [18, 5]). Then the natural
question (considering Bombieri’s conjecture [18, 9]) is if Xn(Q) is contained in
the trivial lines for some n > 0.

It is known that for n ≤ 4 there are non-trivial integer solutions of (0.2). For
an explicit description of Büchi sequences of length 3 and 4 see [20] and [6]
respectively. On the other hand, since the surface X3 is a quadric with a rational
point and X4 is a del Pezzo surface, both rational surfaces, the sets X3(Q) and
X4(Q) are Zariski-dense in X3 and X4 respectively. It is possible to show that
also X5(Q) is Zarisky-dense in X5, but this makes use an elliptic fibration defined
over Q with infinite group of sections [2, Prop. 5.3]. For n ≥ 8, a theorem of
Vojta (see [23] and [18, §9]) implies, assuming the Bombieri’s conjecture, that the
Büchi’s problem has a positive answer. For a survey of Büchi problem the reader
can consult [18].

In the paper On Büchi’s K3 surface [2] the authors study the geometry of the
Büchi’s K3 surface X5, which corresponds with the GBS S5(α), defined in (0.1),
where α = [∞,−2,−1, 0, 1, 2]. This is done by means of the classic correspon-
dence between hyperelliptic curves of genus 2 and Kummer surfaces [11, §10.3.3].
Specifically, they reconstruct the surface S5(α) from the hyperelliptic curve of
genus 2 of equation y2 = (x + 2)(x + 1)x(x − 1)(x − 2). On the other hand,
recovering the curve from the surface S5(α) is simple and we just need to known
the trivial lines of the surface, namely, each trivial line L meets other 6 trivial
lines, the double cover of L branched along the intersection points is the initial
curve.

It is this last idea that is generalized in this work, which is developed in Chapter 3.
Given a GBS Sn(α), by knowing its trivial lines, the unordered n + 1 complex
entries of α can be recovered up to changes of coordinates. Viceversa, given the
n + 1 complex numbers that form α we can obtain Sn(α). Each GBS Sn(α)
contains the 2n trivial lines parametrized by t 7→ [±(t − α0) : · · · : ±(t − αn)].
These are the only lines of this surface (see Proposition 3.2.3) and determine it
completely (see Propositions 3.1.5 and 3.2.2). Each line meet exactly n+ 1 other
lines along a subset of points projectively equivalent to α (see Proposition 3.2.5).
In the case n odd the intersection graph of the lines is bipartite of type (2n−1, 2n−1)
(see Proposition 3.2.6). In n = 2g + 1, with g ≥ 1, each GBS has associated a
hyperelliptic curve of genus g (see Remark 3.3.1). The result is subtly deeper,
because in fact it is proven that there is a bijection between n + 1 unordered
points of P1 and the set of the GBS unless projectivities (see Theorem 3.2.1).

On the other hand, in Chapter 4 we study the case n = 2g+1 odd, here we relate
the surface S := S2g+1(α) with a hyperelliptic curve C of genus g as follows. We
build the surface Y which is quotient of S by the subgroup G0 of the automor-

Rodrigo Andrés Quezada Pinto. 2020
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phism group of S of the sign changes of an even number of coordinates. The
quotient morphism S → Y is defined over Q so that S(Q) is mapped on Y (Q).
On the other hand, we consider the second symmetrical power C(2) of C and
its hyperelliptical involution ı and we show that the surfaces C(2)/〈ı〉 and Y are
isomorphic (see Theorem 4.2.1 and Corollary 4.2.2) over the field Q(α0, α1, α2)
which is Q for the Büchi surfaces. In this sense it would be ideal to replace the
study of the rational points of S with arithmetic properties of the curve C (see
Section 4.3). Within the studied properties of Y , we highlight that Y is a general
type surface if g ≥ 3 (see Proposition 4.1.1), not birracional to S (see Proposi-
tion 4.1.2) and it is the double cover of P2 branched along the union of 2g+2 lines
tangent to a conic Γ (4.2), where the tangency points are the coordinates of the
vector α (see Proposition 4.1.3). In the subsection 4.2.1 we see some basic facts
of Neron-Severi group of C(2), specifically we calculate the intersection matrix of
the curves Cp, ∆ and E (see Proposition 4.2.4), whit the purpose of describing
some geometric properties of the surface Y .

This thesis is organized as follows. Chapter 1 defines affine and projective com-
plex algebraic varieties, and some basic facts, such as, dimension, smoothness,
normal varieties, divisors and morphisms between these varieties. For curves we
discuss the Riemann-Roch theorem, the Riemann-Hurwitz formula and symmet-
ric powers. For surfaces, we discuss the Neron-Severi group, the genus formula
and the Enriques-Kodaira classification, among other basic facts that we do not
mention here. In Chapter 2 we study basic Galois theory and hyperelliptic curves.
In the Galois section we define field extensions (finite, normal, separable), the Ga-
lois group and the absolute Galois group. In the section of hyperelliptic curves
we define the complex weighted projective space, the hyperelliptic involution and
some facts about rational points on curves. In general the chapters 1 and 2 are
the preliminary ones necessary for the development of this work. The chapters 3
and 4 contains new results, as described above. Finally there is an appendix of
some Magma programs used for the necessary calculations.

Rodrigo Andrés Quezada Pinto. 2020



1 Algebraic varieties

1.1 Affine and projective algebraic varieties

An affine algebraic variety X is the zero locus in Cn, for some n > 0, of a radical
ideal I ⊆ C[x1, . . . , xn]. Denote by I(X) the ideal I and by

C[X] := C[x1, . . . , xn]/I(X)

the coordinate ring of X. The variety X is irreducible if the ideal I(X) is prime.
In this case C[X] is an integral domain and its field of fractions is denoted by
C(X). A projective algebraic variety X is the zero locus in Pn of a homogeneous
radical ideal I ⊆ C[x0, . . . , xn]. The homogeneous coordinate ring of X is the
quotient C[x0, . . . , xn]/I, denoted by R(X). The topology which we endow affine
(projective) algebraic varieties is the Zariski topology, which is the coarsest topol-
ogy on Cn (Pn) such that all zero sets of polynomials (homogeneous polynomials)
are closed, all open sets will be considered in this topology unless otherwise in-
dicated. Observe that, given the projective variety X ⊆ Pn and the affine open
subset Ui ⊆ Pn, of points whose i-th coordinate does not vanish, the intersection
X∩Ui is an affine variety whose defining ideal is obtained by evaluating the poly-
nomials of the homogeneous ideal at xi = 1. This is called the i-th affine patch
of X. This process of passing from projective to affine can also be inverted and a
projective variety can be obtained by “gluing” n+ 1 affine varieties Xi ⊆ Ui such
that Xi ∩ Uj = Xj ∩ Ui for any i, j. More generally one can define an algebraic
variety to be obtained by gluing affine varieties. Here however we will stick to
affine or projective varieties, so that the word algebraic variety is to be intended
to refer to one of these two. Given an algebraic variety X and two open affine
subsets U, V ⊆ X it is possible to show that C(U) ' C(V ). It is then natural to
define the field C(X) as C(U) for an affine U ⊆ X.

Definition 1.1.1. The dimension of an algebraic variety X, denoted by dimX,
is the transcendence degree of the field C(X) over the base field C.

It is possible to show that the dimension of X is the number of inclusions in a
maximal chain of irreducible subvarieties X0 ( X1 ( · · · ( Xr = X. Varieties
of dimension one are called curves, varieties of dimension two are called surfaces
and more generally varieties of dimension n are called n-folds.

Given an irreducible affine algebraic variety X and a point p ∈ X one denotes by
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mp ⊆ C[X] the maximal ideal of functions which vanish at p. Denote by

OX,p := {f/g ∈ C(X) : g /∈ mp},

the localization of C[X] at mp. The above ring is a local ring with maximal
ideal mp := mpOX,p. Both mp and its square m2

p are complex vector spaces. The
tangent space of X at p is the dual vector space

TX,p := (mp/m
2
p)
∗.

Definition 1.1.2. A point p ∈ X is smooth if dimC TX,p = dimX and singular
otherwise. An affine algebraic variety X is smooth if each point of X is smooth.
More generally an algebraic variety is smooth if any affine patch is smooth.

We recall the following useful jacobian criterion for determining when a point of
an affine variety is smooth.

Proposition 1.1.3. Let X ⊆ Cn be an irreducible affine variety with defining
ideal I(X) = 〈f1, . . . , fk〉 and p ∈ X. Then

dimTX,p = n− rk


∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)
...

...
∂fk
∂x1

(p) . . . ∂fk
∂xn

(p)

 .

In particular X is smooth at p if and only if the the above jacobian matrix has
rank n− dimX.

Proof. Denote by m the maximal ideal of the local ring OCn,p, so that mp = m+I.
The homomorphism m→ (m+ I)/(m2 + I), obtained by composing the inclusion
with the projection onto the quotient, is surjective with kernel m2 + m ∩ I. It
follows that mp/m

2
p is isomorphic to m/m2 + m ∩ I. Observe that m = 〈x1 −

p1, . . . , xn − pn〉, where p1, . . . , pn are the coordinates of p ∈ X ⊆ Cn. Given a
function f ∈ m we have

f ≡
n∑
i=1

∂f

∂xi
(p)(xi − pi) (mod m2).

Thus m ∩ I, mod m2, is generated by
∑n

i=1
∂fj
∂xi

(p)(xi − pi), for 1 ≤ j ≤ k.

The jacobian criterion in the projective case is the following.

Corollary 1.1.4. Let X ⊆ Pn be a projective variety with homogeneous ideal
I(X) = 〈f1, . . . , fk〉, and p ∈ X. Then X is smooth at p if only if the rank of the
k × (n+ 1) Jacobian matrix is n− dimX.

Rodrigo Andrés Quezada Pinto. 2020
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Figure 1.1: Plane cubic of equation x22 − x31 − x21 = 0, singular at the origin.

The Proposition 1.1.3 provides a computational tool to describe the locus of singu-
lar points of an affine variety. For example if X is a hypersurface, or equivalently
if I(X) = 〈f〉 is a principal ideal, then the singular locus of X is cut out by the
equations f = ∂f/∂x1 = · · · = ∂f/∂xn = 0.

Recall that a domain R is integrally closed into its field of fractions Frac(R) if
given f/g ∈ Frac(R) such that (f/g)r + a1(f/g)r−1 + · · ·+ ar−1(f/g) + ar = 0 for
some a1, . . . , ar ∈ R then f/g ∈ R.

Definition 1.1.5. An affine variety is normal if its coordinate ring is integrally
closed into its fraction field. A variety is normal if any of its affine patches is
normal.

The condition of being normal is crucial for developing a theory of Weil divisors on
the algebraic variety, as we will see later. At the moment we recall two basic facts
about normal varieties: any smooth variety is normal and the singular locus of a
normal variety has codimension at least two. The second statement in particular
implies that a curve is normal if and only if it is smooth. For example in Fig. 1.1
the function t := x2/x1 ∈ C(X) is root of the polynomial t2 − x1 − 1, whose
coefficients are in C[X], but t /∈ C[X].

Given a normal algebraic variety X one defines the group of Weil divisors of
X, denoted by WDiv(X), to be the free abelian group generated by irreducible
subvarieties of X of codimension one. In particular a Weil divisor of X is a finite
sum n1D1 + · · · + nkDk, where all the ni are integers and the Di are irreducible
hypersurfaces, also called prime divisors. The set {D1, . . . , Dk} is the support
of the divisor D. To any rational function f ∈ C(X) one can associate a Weil
divisor in the following way. First of all assume that X is affine and let D be a
prime divisor. Define the local ring

OX,D := {a/b ∈ C(X) : b /∈ I(D)}.

Define ordD(a) as the length of the OX,D-module OX,D/〈a〉 and ordD(a/b) :=
ordD(a) − ordD(b). If the singular locus of X is of codimension at least 2, then
OX,D is a discrete valuation ring with valuation f 7→ ordD(f). For more general X
one can provide a similar valuation on any open affine chart which has non-empty
intersection with D. Then one defines

div(f) :=
∑
D

ordD(f) ·D.
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Divisors of the form div(f) are called principal divisors, they form a subgroup of
WDiv(X) denoted by PDiv(X). The quotient

Cl(X) :=
WDiv(X)

PDiv(X)

is the divisor class group of X. Two divisors D1 and D2 with the same class
are called linearly equivalent, denoted by D1 ∼ D2. There is another important
subgroup of the group of Weil divisors: the group of Cartier divisors, denoted
by CDiv(X). It consists of divisors which are locally principal, that is of those
D ∈ WDiv(X) such that for any p ∈ X there is a neighbourhood U of p where
D|U = div(f) for some f ∈ C(X). The quotient

Pic(X) :=
CDiv(X)

PDiv(X)

is the Picard group of X. It is possible to show that any Weil divisor is a Cartier
divisor if the variety X is locally factorial, that is for any p ∈ X the ring OX,p
is a unique factorization domain. The last condition holds for example if X is
smooth.

Let X be a normal variety of dimension n, let X0 ⊆ X be the subset of smooth
points of X and let w ∈ Ωn(X0) be a holomorphic n-form. Cover X0 with
open holomorphic charts and let (U,ϕ) be one of these charts with coordinates
z1, . . . , zn. Then w = fdz1 ∧ · · · ∧ dzn on U , with f holomorphic. Define div(w)
to be the closure in X of the Cartier divisor of X0 which on each such chart U
equals div(f).

Definition 1.1.6. A canonical divisor of a normal variety X of dimension n is
KX := div(w), where w ∈ Ωn(X0) is a meromorphic n-form.

Given two canonical divisors div(w), and div(w′) their difference is a principal
divisor because the rational function which represents div(w) in a chart is mul-
tiplied by the jacobian determinant of the coordinate change when passing from
one chart to the other, and the same holds for div(w′). It follows that there is a
unique canonical class [KX ] ∈ Cl(X).

Let X be a normal variety. A Weil divisor D :=
∑

i niDi is effective, denoted by
D ≥ 0, if ni ≥ 0 for any i. Given an open subset U ⊆ X the restricted divisor
D|U is the sum

∑
i ni(Di∩U), where Di∩U is to be intended 0 if the intersection

is empty. To any Weil divisor D on a normal variety X and structure sheaf OX
we can associate the following sheaf of OX-modules

OX(D)(U) := {f ∈ C(X)∗ : div(f) +D|U ≥ 0} ∪ {0}.

The Riemann-Roch space of D is the space of global sections of the sheaf OX(D).
The dimension of Riemann-Roch space of D is denoted by l(D).
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Theorem 1.1.7 (Adjunction formula). Let Y ⊆ X be a smooth subvariety of
a smooth variety X the following adjunction formula relates the two canonical
divisors:

KY = (KX + Y )|Y .

Proof. See [14, Prop. II.8.20]

To correctly compute the above restriction the divisor KX +Y can be substituted
with any linear equivalent divisor which do not have Y into its support.

1.1.1 Morphisms between algebraic varieties

Let X be an affine variety, and let U be an open subset of X. A regular function
on U is a map ϕ : U → C, with the following property: for every a ∈ U there
are polynomial functions f, g ∈ C[X] with f(x) 6= 0 and ϕ(x) = g(x)

f(x)
for all x in

an open subset Ua with a ∈ Ua ⊂ U . The set of all such regular functions on U
will be denoted by OX(U). The set OX(U) is a ring with pointwise addition and
multiplication, it is also a C-vector space since we can multiply a regular function
pointwise with a fixed scalar in C, i.e., OX(U) is a C-algebra.

The rings OX(U) of regular functions on open subsets U ⊂ X, together with the
usual restriction maps of functions, form a sheaf (see [13, Def. 3.16]) OX on X.
We call OX the sheaf of regular functions on X.

A ringed space is a topological space X together with a sheaf of rings on X.
An affine variety will always be considered as a ringed space together with its
sheaf of regular functions. An open subset U of a ringed space X will always
be considered as a ringed space with the structure sheaf being the restriction of
OX |U of sheaf (see [13, Def. 3.18]) OX .

Let f : X → Y be a map of ringed spaces. For any map ϕ : U → C, with U ⊂ Y
we denote the composition ϕ ◦ f : f−1(U)→ C by f ∗ϕ. It is called the pull-back
of ϕ by f . The map f is called a morphism (of ringed spaces) if it is continuous,
and if for all open subsets U ⊂ Y and ϕ ∈ OY (U) we have f ∗ϕ ∈ OX(f−1(U)).
So in this case pulling back by f yields C-algebra homomorphisms

f ∗ : OY (U)→ OX(f−1(U)), ϕ 7→ f ∗ϕ.

We say that f is an isomorphisms (of ringed spaces) if it has a two-sided inverse,
i.e., if it is bijective, and both f : X → Y and f−1 : Y → X are morphisms.
Morphisms and isomorphisms of (open subsets of) affine varieties are morphisms
(resp. isomorphisms) as ringed spaces. Observe that the composition and the
restriction of morphisms also are morphisms, further the morphisms satisfy the
“gluing property”, i.e., if f : X → Y is a map of ringed spaces and exists an open
cover {Uj : j ∈ J} of X such that all restrictions fUj

: Uj → Y are morphisms,
then f is a morphism (see [13, Lemma 4.6]).
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Proposition 1.1.8. Let U be an open subset of an affine variety X, and let
Y ⊂ An be another affine variety. Then the morphisms f : U → Y are exactly
the maps of the form

f = (ϕ1, . . . , ϕn) : U → Y, x 7→ (ϕ1(x), . . . , ϕn(x)),

whit ϕi ∈ OX(U) for all i = 1, . . . , n.. In particular the morphism from U to A1

are exactly the regular functions in OX(U).

Proof. See [13, Prop. 4.7]

Corollary 1.1.9. For any two affine varieties X and Y there is a one-to-one
correspondence

{morphisms X → Y } ↔ {C-algebra homomorphisms C[Y ]→ C[X]}

f 7→ f ∗

In particular, isomorphisms of affine varieties correspond exactly to C-algebra
isomorphisms in this way.

Proof. See [13, Cor. 4.8].

An example of bijective morphism which is not an isomorphism is the following.
Let X = V (x21 − x32) ⊂ A2 be the curve as in the Fig. 1.2. It has a singular
point at the origin. Now consider the map f : A1 → X, t 7→ (t3, t2) which is
a morphism. Its corresponding C-algebra homomorphism f ∗ : C[X] → C[A1] is
given by

C[x1, x2]/(x
2
1 − x32)→ C[t], x1 7→ t3, x2 7→ t2

which can be seen by composing f with the two coordinate functions of A2. Note
that f is bijective with inverse map

f−1 : X → A1, (x1, x2) 7→

{
x1
x2

if x2 6= 0

0 if x2 = 0,

but f−1 is not a morphism, since otherwise the map f ∗ above would have to be
an isomorphism as well, which is false since the lineal polynomial t is not in its
image. Therefore f is not an isomorphism.

The concept of morphism for projective varieties is analogous with some details
to considered (see [13, Ch. 7]). So as not to make this tedious exhibition, we will
only give the results that interest us.

LetX ⊂ Pn be a projective variety, and let f0, . . . , fm ∈ R(X) := C[x0, . . . , xn]/I(X)
be homogeneous elements of the same degree. Then on the open subset U :=
X\V (f0, . . . , fm) these elements define a morphism f : U → Pm, x 7→ [f0(x) :
· · · : fm(x)] (see [13, Lemma 7.5]).
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Figure 1.2: Isomorphisms 6= bijective morphisms.

Some examples of morphisms between projective varieties are: A : Pn → Pn, x 7→
Ax where A is an invertible matrix, in fact this is an automorphism of Pn. More-
over these are the only isomorphisms of Pn (see [13, Prop. 13.4]). For another
example, consider a = [0 : · · · : 1] ∈ Pn and V (xn) ∼= Pn−1, then the map
f : Pn\{a} → Pn−1, [x0 : · · · : xn] 7→ [x1 : · · · : xn−1] is a morphism. The obvious
geometric interpretation is that f is the projection from a to the lineal subspace
V (xn) ∼= Pn−1.

Let X and Y be irreducible varieties. A rational map, denoted by f : X Y
is a morphism f : U → Y from a non-empty open subset U ⊂ X to Y . We say
that two such rational maps f1 : U1 → Y and f2 : U2 → Y , with U1, U2 ⊂ X are
the same if f1 = f2 on a non empty open subset of U1 ∩ U2. The rational map f
is called dominant if its image contains a non-empty open U ⊂ Y . In this case,
if g : Y Z is another rational map, defined on a non-empty open V ⊂ Y , we
can construct the composition we can construct the composition g ◦ f : X Z
as a rational map since we have such a composition of ordinary morphisms on
the non-empty open subset f−1(U ∩ V ). The rational map f is called birational
if it is dominant, and if there is another dominant rational map g : Y X
with g ◦ f = idX and f ◦ g = idY . We say that X and Y are birational if there
is a birational map f : X Y between them. Observe that by definition two
irreducible varieties are birational if and only if they contains isomorphic non-
empty open subsets. In particular this implies that birational irreducible varieties
have the same dimension.

Let X be an irreducible variety. A rational map ϕ : X A1 = C is called a
rational function on X. In other words, a rational function on X is given by
a regular function ϕ ∈ OX(U) on some non-empty open subset U ⊂ X, with
two such regular functions defining the same rational function if and only if they
agree on a non-empty open subset. The set of all rational functions on X is a
field and will be denoted by C(X) and called the function field of X. If U ⊂ X
is a non-empty open subset of an irreducible variety X then C(U) ∼= C(X). An
isomorphism is given by:

C(U)→ C(X), ϕ ∈ OU(V ) 7→ ϕ ∈ OX(V ),
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whit inverse

C(X)→ C(U), ϕ ∈ OX(V ) 7→ ϕ|V ∩U ∈ OU(V ∩ U).

In particular, birational irreducible varieties have isomorphic function fields.

The following theorem summarize the above results.

Theorem 1.1.10. For any two varieties X, Y the following conditions are equiv-
alent

1. X and Y are birationally equivalent.

2. There are open subsets U ⊆ X and V ⊆ Y with U isomorphic to V .

3. C(X) ∼= C(Y ) as k-algebras.

Proof. See [14, pp. 26, Cor. 4.5].

In this work we need some basic definitions of the Graph theory, which we give
below. For more details it can be consult the book of R. Diestel, Graph theory [10,
Ch. 1, §1.1 and §1.6].

Definition 1.1.11. A graph is a pair Gr := (V,E) of sets such that E ⊆ [V ]2,
where [V ]2 denote the set of all 2-element subsets of V . Note that V ∩ E = ∅.
The elements of V are the vertices of the graph Gr, the elements of E are its
edges.

Definition 1.1.12. Let r ≥ 2 be an integer. A graph Gr = (V,E) is called
r-partite if V admits a partition into r classes such that every edge has its ends
in different classes: vertices in the same partition class must not be adjacent.
Instead of 2-partite one usually says bipartite.

Definition 1.1.13. A bipartite graph Gr = (V,E) is said to be of type (a, b) if
a and b are the cardinalities of the two classes of V .

1.2 Algebraic curves

In this work a curve C is a smooth projective algebraic variety over C of dimension
one. This section is based on the books [1], [12] and [14].

The basic facts about the divisors of a curve C are described in Section 1.1.

Given a divisor D, the complete linear series, or system |D| is the set of effective
divisors linearly equivalent to D. Given two meromorphic functions f and g,
we have that div(f) = div(g) if only if there is a non-zero constant λ such that
f = λg. Let L(D) be the Riemann-Roch space of D and l(D) its dimension (see
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Section 1.1). We then have an identification |D| = PL(D) obtained by associating
to each non-zero f ∈ L(D) the divisor div(f) + D. A complete linear series is
therefore a projective space.

Theorem 1.2.1 (Riemann-Roch). Let D be a divisor on a curve C of genus g.
Then

l(D)− l(KC −D) = degD + 1− g,
where KC is the canonical divisor of C.

Proposition 1.2.2. Let X and Y be connected Riemann surfaces and F : X → Y
a non-constant holomorphic map. For each point x, there is a unique integer
k = kx ≥ 1 such that we can find charts around x ∈ X and F (x) ∈ Y which F is
represented by the map z 7→ zk.

Proof. See [12, Ch. 4, §4.1, Prop. 5].

Proposition 1.2.3. Let F : X → Y be a non-constant holomorphic map between
connected Riemann surfaces. Let R ⊂ X be the set of points x where kx > 1

1. R is a discrete subset of X.

2. If F is proper, then the image ∆ = F (R) is discrete in Y .

3. If F is proper, then for any y ∈ Y the pre-image F−1(y) is a finite subset
of X.

Proof. See [12, Ch. 4, §4.1, Prop. 6].

We call the points of the set R the ramifications points of F and the points of ∆
branch points. For x ∈ X we call the integer kx the multiplicity of F at x.

Proposition 1.2.4. Let F : X → Y be a proper non-constant holomorphic map
between connected Riemann surfaces. Then the integer

d(y) :=
∑

x∈F−1(y)

kx

does not depend on y ∈ F (X).

Proof. See [12, Ch. 4, §4.1, Prop. 7].

We call the number d(y) the degree of F and the sum RF :=
∑

x∈X(kx − 1) the
total ramification index of F .

Theorem 1.2.5 (Riemann-Hurwitz formula). Let F : X → Y be a non-constant
holomorphic map of degree d between connected compact Riemann surfaces and
X. Then the genus g(X) of X and the genus g(Y ) of Y are related by

2g(X)− 2 = d(2g(Y )− 2) +RF .
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Proof. See [12, Ch. 7, §7.2, Prop. 19].

Definition 1.2.6 (Symmetric product). Let C be a Riemann surface, the d-th
symmetric product C(d) of C is the quotient of the d-fold product Cd = C×· · ·×C
of C with itself d times by the action of the symmetric group Sd on d letters

Proposition 1.2.7. If C is a Riemann surface, then C(d) is a complex manifold
of complex dimension d.

Proof. See [12, Ch. 12, §12.2.3, Prop. 40].

Proposition 1.2.8. (P1)(2) ' P2.

Proof. The morphism P1 × P1 → P2 defined by ([x0 : x1], [y0 : y1]) 7→ [x0y0 :
x0y1 + x1y0 : x1y1] has degree two and factorizes through (P1)(2). Since the
latter surface is smooth by Proposition 1.2.7, the above map induces the claimed
isomorphism.

1.3 Algebraic surfaces

This section is devoted to recall some basic facts about algebraic surfaces.

Let X be a smooth projective algebraic surface. Given two curves C1, C2 ⊆ X
and a point p ∈ C1 ∩ C2 the intersection multiplicity mp of C1 and C2 at p is
the dimension of the complex vector space OX,p/〈f1, f2〉, where fi ∈ OX,p locally
defines Ci near p. Then one defined the intersection number

C1 · C2 :=
∑

p∈C1∩C2

mp.

It is possible to show that the above pairing does not vary if one substitute the
curve Ci with a linearly equivalent one. The proof makes use of the fact that the
intersection number is the degree of the restriction of one curve (seen as divisor)
to the other (seen as a subvariety), in formulas

C1 · C2 = deg(C1|C2).

Moreover the intersection number is clearly Z-linear on each factor, so that it
descends to a bilinear pairing

Cl(X)× Cl(X)→ Z, ([D1], [D2]) 7→ D1 ·D2.

Denote by Cl0(X) ⊆ Cl(X) the subgroup consisting of classes [D] such that
D ·D′ = 0 for any Weil divisor D′. The quotient

N1(X) :=
Cl(X)

Cl0(X)
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is the Néron-Severi group of X which is known to be finitely generated, free
abelian [17, Prop. 1.1.14]. Its dimension %(X) is the Picard number of X. A
divisor D is nef if D · C ≥ 0 for any curve C. It is possible to show that any
ample divisor is nef and that the class of a nef divisor is limit of ample classes.
Moreover the subset of nef classes of N1(X), denoted by Nef(X), form a convex
cone of maximal dimension. The Generalized inequality of Hodge type [17, Thm.
1.6.1] states that given two nef divisors D1 and D2 the following inequality holds:

(D1 ·D2)
2 ≥ D2

1D
2
2.

As a consequence of the above inequality and the fact that the nef cone is full
dimensional, the signature of the intersection form on N1(X) is (1, %− 1), where
% is the Picard number of X. This is called the Hodge index theorem. The below
picture displays, when %(X) = 3, the cone of classes [D] with D2 = 0. The
self-intersection is positive in the interior of the cone and negative outside.

Figure 1.3: The light cone of N1(X)

Recall that if C is a smooth projective curve of genus g := g(C), then the degree
of a canonical divisor of C is deg(KC) = 2g − 2. If C ⊆ X is a smooth curve on
a smooth projective surface X then, by the adjunction formula, we have that

2g − 2 = deg(KC) = deg((KX + C)|C) = (KX + C) · C. (1.1)

The above is also know as the genus formula [4, Ch. I, Thm. 6.4].

Let X be a smooth projective surface with structure sheafOX . Recall that for any
divisor D of X the sheaf cohomology groups H i(X,OX(D)) are finite dimensional
and vanish for all but i ∈ {0, 1, 2}. Thus the following Euler characteristic of the
sheaf OX(D) is well defined

χ(OX(D)) :=
2∑
i=0

(−1)ihi(X,OX(D)).

The Riemann-Roch theorem provides a formula for the above Euler characteristic
in terms of a canonical divisor of X and the topological Euler characteristic e(X)
of X:

χ(OX(D)) =
D2 −D ·KX

2
+
K2
X + e(X)

12
. (1.2)
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1.3.1 Smooth algebraic surfaces according to their Kodaira
dimension

Definition 1.3.1. Given a normal algebraic variety X, a Weil divisor D ∈
WDiv(X) and a basis f0, . . . , fn for the space of global sections of the sheaf
OX(D) one can define the rational map φD : X → Pn by p 7→ [f0(p) : · · · : fn(p)],
whose indeterminacy is the common zero locus of the fi. The Iitaka dimension
of D is [17, Definition 2.1.3]:

κ(X,D) := max
n∈N
{dimφnD(X)}.

Assuming X to be smooth its Kodaira dimension κ(X) := κ(X,KX) is the Iitaka
dimension of a canonical divisor of X.

Observe that κ(X) ≤ dimX and when the equality hods X is said to be of
general type. On the other hand, if the sheaf OX(nKX) has no global sections
for any integer n > 0, then one conventionally puts k(X) = −∞. Smooth
algebraic curves are classified according to their Kodaira dimension [5, Ex. VII.2]
summarized in the following table

Genus of the curve 0 1 ≥ 2

Kodaira dimension −∞ 0 1

Table 1.1: Kodaira dimension for smooth algebraic curves.

In particular the only curve of negative Kodaira dimension is P1. The situation
for surfaces is more subtle. First of all one observes that, due to a criterion of
Castelnuovo, if a smooth algebraic surface X contains a smooth rational curve E
with E2 = −1 then there exists a birational morphism π : X → Y , with Y smooth,
such that p = π(E) is a point and π induces an isomorphism X \ E → Y \ {p}.
Such a curve E is called a (−1)-curve, the morphism π is the contraction of E or
the blow-up of p ∈ Y . One can show that the Picard rank of Y is one less than
that of X, so that only a finite number of (−1)-curve can be contracted. What
is fundamental is that, due to the formula

KX = π∗KY + E

one deduces that the Kodaira dimension of X equals that of Y . A surface without
(−1)-curves is minimal and the Enriques-Kodaira classification of smooth projec-
tive surfaces describes the minimal surfaces according to their Kodaira dimension.
See [4, 5] for a complete discussion of the subject.

• Kodaira dimension −∞. Here the minimal models are ruled surfaces, that
is surfaces which admit a surjective morphism X → C to a smooth curve C
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and whose fibers are smooth rational curves. In case C is a rational curve
the surface X is rational as well. This class of surfaces contains the del
Pezzo surfaces, whose anticanonical class is ample. Del Pezzo surfaces are
blow-ups of P2 at 0 ≤ r ≤ 8 points in general position or P1 × P1.

• Kodaira dimension 0. The minimal models are K3 surfaces: simply con-
nected surfaces with trivial canonical class, Enriques surfaces, Abelian and
hyperelliptic surfaces. Here we have specified something more only for K3
surfaces because we will meet them in this work. An example of K3 sur-
face is a smooth hypersurface of degree a0 + a1 + a2 + a3 of the weighted
projective space P(a0, a1, a2, a3).

• Kodaira dimension 1. The minimal models are surfaces which admit a
morphism with connected fibers X → C, where C is a smooth curve and
the general fiber is a smooth genus one curve.

• Kodaira dimension 2. These are called surfaces of general type. Their
minimal models have a nef canonical divisor KX such that K2

X > 0. For
each such minimal surface X there exists a positive integer n ≤ 6 such
that the map φnKX

: X → X ′ is a birational morphism which contracts
only a finite number of (−2)-curves of X, i.e. smooth rational curves with
self-intersection −2. The surface X ′ is the canonical model of X and its
singularities are du Val singularities [15, §7.5].
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2 Rational points

2.1 Basic Galois theory

This section is based on the book of D. Cox, Galois theory [7].

Let (k,+, ·) be a field, for short k, denote by k∗ the multiplicative group (k\{0}, ·).
Let 1 ∈ k be the multiplicative unity. The characteristic of k is the number
char(k) = p if p is the smallest positive integer such that 1 ·p = 0 and char(k) = 0
otherwise. If k is a field with char(k) = p > 0, then p is a prime number.

Definition 2.1.1. A field extension is an inclusion of a field k in other field K.
We denote this extension by K/k.

We observe that K is a k-vector space.

Definition 2.1.2. The degree of the extension K/k, is defined as the dimension
dimkKof K as a k-vector space and it is denoted by [K : k]. If dimkK is finite
we say that K/k is a finite extension.

Lemma 2.1.3. A field extension L/K has degree [L : K] = 1 if only if K = L.

Proof. If [L : K] = 1, then any nonzero element of L, say 1 ∈ L, is a basis. Thus
L = {a · 1 : a ∈ K} = K. The reciprocal is obvious.

An example of field extension of degree infinite is R/Q, since R it is uncountable.

Theorem 2.1.4 (Tower law). If K/F and F/k are fields extensions of finite
degree then [K : F ][F : k] = [K : k].

Proof. See [7, Thm. 4.3.8].

Let K/k be a field extension, u1, . . . , un ∈ K and x a independent variable. De-
note by k(u1, . . . , un) the smallest subfield of K that contains k and the elements
u1, . . . , un. Given u ∈ K, the map vu : k[x] → K defined by P (x) → P (u) is a
homomorphism of rings. As K is an integral domain then the kernel of vu is a
prime ideal. Moreover, since k[x] is a principal ideal domain, ker vu is either triv-
ial or generated by an irreducible monic polynomial. Denote by k[u] the image
of vu. We observe that k(u) is the field of fractions of k[u], that is it consists of
the fractions a/b ∈ K such that a, b ∈ k[u], with b 6= 0.
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Definition 2.1.5. Let K/k be a field extension and u ∈ K. The element u is:

• transcendental if the kernel of vu is trivial;

• algebraic if the kernel of vu is non trivial.

If u is algebraic the kernel of vu is generated by an irreducible monic polynomial
Pu(x). We call this polynomial the minimal polynomial of u over k.

An alternative definition, equivalent of course, for the minimal polynomial is
given in [7, Lemma 4.1.3], that we can also take as a definition.

Definition 2.1.6. If u ∈ K is algebraic over k, then there is a unique nonconstant
monic polynomial Pu ∈ k[x] with the following two properties.

1. u is a root of Pu, i.e., Pu(u) = 0.

2. If f ∈ k[x] is any polynomial with u as a root, then f is a multiple of Pu.

Definition 2.1.7. A field extension K/k is simple if there exists u ∈ K such
that K = k(u).

Theorem 2.1.8. Let k(u)/k be a simple field extension, where u is algebraic over
k. Then the following are true.

1. k[u] is isomorphic to k[x]/〈Pu(x)〉.

2. k[u] = k(u).

3. [k(u) : k] = degPu(x).

Proof. Consider the homomorphism of rings vu : k[x]→ k(u), defined by P (x) 7→
P (u) and let k[u] be its image, so by the first isomorphism theorem and the
fact that the kernel of vu, equal to the ideal〈Pu(x)〉, is a prime ideal, k[u] ∼=
k[x]/〈Pu(x)〉 is a field, then k[u] = k(u). This proves (1) and (2).

To show (3) the procedure is the following. Suppose degPu(x) = n. Now we will
show that 1, u, . . . , un−1 form a basis of k(u) over k. Since k[u] = k(u), every
element of k(u) is of the form g(u) for some g ∈ k[x]. Dividing g by Pu gives

g = qPu + a0 + a1x+ · · ·+ an−1x
n−1

where q ∈ k[x] and a0, . . . , an−1 ∈ k, and evaluating this at x = u yields

g(u) = a0 + a1u+ · · ·+ an−1u
n−1,

since u is a root of Pu. Thus the set U := {1, u, . . . , un−1} span k(u) over k. To
show linear independence of U , suppose that

a0 + a1u+ · · ·+ an−1u
n−1 = 0
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where a0, . . . , an−1 ∈ k. Then u is a root of a0 + a1x + · · · + an−1x
n−1 ∈ k[x],

which is the zero polynomial, since its degree is less than the degPu(x). Hence
ai = 0 for each i. Then by Definition 2.1.2 [k(u) : k] = n.

Definition 2.1.9. A field extension K/k is algebraic if every element of K is
algebraic over k.

We observe that a finite extension K/k is algebraic, since if u ∈ K, so the set
{1, u, . . . , um} is linearly dependent for some m > 0, then there are bi ∈ k such
that bmu

m + · · ·+ b1u+ b0 = 0, hence u is algebraic over k. The reciprocal is not
true, a counterexample is the extension Q/Q, this is by definition algebraic, but
its degree is infinite.

Proposition 2.1.10. Let K/k be a field extension and F the set of the elements
of K that are algebraic over k. Then F is a subfield of K.

Proof. Let a, b be elements of F , with b 6= 0. We have to prove that a ±
b, ab, ab−1 ∈ F . Consider the inclusions k ⊆ k(a) ⊆ k(a, b). The first and
second extensions are finite because a is algebraic over k and b is algebraic over
k(a). Then by the tower law the extension k(a, b)/k is finite, so each u ∈ k(a, b)
is algebraic over k. In particular k(a, b) ⊆ F and then a± b, ab, ab−1 ∈ F .

Proposition 2.1.11. Let K/k be a field extension. Then the following are equiv-
alent.

1. K/k is finite.

2. K/k is algebraic and finitely generated.

Proof. (1)⇒ (2). If K/k is finite, then K = k(u1, . . . , un), where {u1, . . . , un} is
a basis of K over k. Then the extension K/k is finitely generated and algebraic.

(2)⇒ (1). If K/k is algebraic and finitely generated, then K = k(u1, . . . , un) for
some ui algebraic over k. Define Ki := k(u1, . . . , ui), then k = K0 ⊆ K1 ⊆ · · · ⊆
Kn = K. Where each extension Ki−1 ⊆ Ki = Ki−1(ui) is algebraic, so Ki/Ki−1
is finite and then K/k is finite by Tower law.

Definition 2.1.12. Let K/k be a field extension.

1. The extension K/k is normal if every irreducible polynomial in k[x] that
has a root in K has all its roots in K.

2. One says that K is a splitting field of a polynomial f ∈ k[x] if K is the
smallest field that contains every roots of f .

An example of extension no normal is Q( 3
√

2)/Q, since the polynomial x3 − 2 ∈
Q[x] is irreducible but not all its roots are in Q( 3

√
2).

The following theorem can be seen in [7, Thm. 5.2.4].
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Theorem 2.1.13. Let K/k be a field extension. Then the following are equiva-
lent.

1. The extension K/k is finite and normal.

2. K is the splitting field of a polynomial f ∈ k[x].

Proof. (1) ⇒ (2). Let K/k be a normal and finite extension. Then K =
k(u1, . . . , un) for some ui ∈ K. Let gi(x) ∈ k[x] be the minimal polynomial
of ui over k. We observe that each gi(x) is irreducible and has the root ui ∈ K.
Then by the normality of the extension, gi(x) has all its roots in K and hence K
is the splitting field of the polynomial g1(x) · · · gn(x).

(2)⇒ (1), see [7, Thm. 5.1.5 and Prop. 5.2.1].

Definition 2.1.14. Let K/k be a field extension, the Galois group of the exten-
sion K/k is the following subgroup of Aut(K).

Gal(K/k) := {σ ∈ Aut(K) : σ(a) = a, for each a ∈ k}.

Lemma 2.1.15. Let u ∈ K and p(x) =
∑n

i=0 aix
i be a polynomial with coeffi-

cients in k. If u is a root of p ∈ k[x]. Then for each σ ∈ Gal(K/k) the element
σ(u) ∈ K is a root of p.

Proof. Since σ is a homomorphism that fixed the elements of k and u is a root
of p, we have the following identities

0 = σ(0) = σ
( n∑
i=0

aiu
i
)

=
n∑
i=0

σ(ai)σ(u)i =
n∑
i=0

aiσ(u)i,

Hence the element σ(u) is a root of p.

A similar argument shows that if K = k(α1, . . . , αn), then σ ∈ Gal(K/k) is
uniquely determined by its values on α1, . . . , αn. Further the previous lemma is
true for the minimal polynomial Pu(x) of u over k, defined before.

Definition 2.1.16. Let k be a field, a polynomial f ∈ k[x] is separable if it is
nonconstants and its roots in a splitting field are all distinct.

Definition 2.1.17. Let K/k be an algebraic extension.

1. α ∈ K is separable over k if its minimal polynomial over k is separable.

2. K/k is a separable extension if every α ∈ K is separable over F .

Theorem 2.1.18. If K is the splitting field of a separable polynomial in k[x],
then |Gal(K/k)| = [K : k].
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Proof. See [7, Thm. 6.2.1]

Definition 2.1.19. Let K/k be a field extension and H a subgroup of the Galois
group Gal(K/k), the fixed subfield of K for H is defined by

KH := {u ∈ K : σ(u) = u for each σ ∈ H}.

Theorem 2.1.20. Let K/k be a finite extension. Then the following are equiva-
lent:

1. K is the splitting field of a separable polynomial in k[x].

2. k is the fixed field of Gal(K/k) acting on K.

3. K/k is a normal separable extension.

Proof. See [7, Thm. 7.1.1]

Definition 2.1.21. A field extension K/k is Galois if it is a finite extension
satisfying any of the equivalent conditions of Theorem 2.1.20

Theorem 2.1.22. Let K/k be a finite extension. Then:

1. |Gal(K/k)| divides [K : k].

2. |Gal(K/k)| ≤ [K : k].

3. K/k is Galois if and only if |Gal(K/k)| = [K : k].

Proof. See [7, Thm. 7.1.5]

Definition 2.1.23. Let K be a field and K be the separable algebraic closure of
K. The absolute Galois group of K is the group Gal(K/K). In other words, it
is the group of all automorphism of the separable algebraic closure of K that fix
K.

We observe that if K is algebraically closed then Gal(K/K) is trivial.

Proposition 2.1.24. If σ ∈ Gal(k/k) and σ(K) = K, then K/k is Galois.

Proof. If α ∈ K \ k and P (x) be its minimal polynomial. Then the surjection
k[x]→ k[α], defined by x 7→ α, induces an isomorphism φα : k[x]/〈P (x)〉 → k(α).
Given another root β of P (x) one shows that the isomorphism φβ ◦ φ−1α : k(α)→
k(β) lifts to an element σ ∈ Gal(k/k). Since by hypothesis σ(K) = K, the
restriction σ|K is an element of Gal(K/k). It follows that the fixed field of
Gal(K/k) is k and thus the extension K/k is Galois.
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2.2 Hyperelliptic curves

This section is based in the books [11, §5.2.1], [21] and [8].

2.2.1 Weighted projective spaces

Let a := (a0, . . . , an) be an (n + 1)-tuple of positive integers. We say that a is
well-formed if the greatest common divisor of any n entries of a of them is 1.

Definition 2.2.1. Let a be a well-formed (n+1)-tuple of positive integers. Define
the action of C∗ on Cn+1\{0} by λ · (x0, . . . , xn) = (λa0x0, . . . , λ

anxn) and denote
by ∼a the corresponding equivalence relation on Cn+1\{0}. The quotient space

P(a0, . . . , an) := (Cn+1\{0})/ ∼a

is the weighted projective space with weights (a0, . . . , an).

If a = (a0, . . . , an) = (1, . . . , 1) we obtain that P(a) is the usual projective space
Pn. The reason for considering only well formed (n+1)-tuples of positive integers
is to avoid repetitions, like e.g. P(1, 2, 2) ' P(1, 1, 1) via the map [x0 : x1 : x2] 7→
[x20 : x1 : x2].

Denote by [x0 : · · · : xn] the class of the element (x0, . . . , xn) ∈ Cn+1\{0}. We
sometimes will use the notation P(a) for P(a0, . . . , an). The coordinate ring of
P(a) is the graded ring C[x0, . . . , xn] with the grading deg(xi) = ai, for any i ∈
{0, . . . , n}. A homogeneous polynomial f is a linear combination, with complex
coefficients, of monomials of the same degree. This degree is called the degree of
the polynomial f . In particular a homogeneous polynomial of degree d has the
form

f =
∑

a0i0+···+anin=d

bi0···inx
i0
0 · · ·xinn

with coefficients bi0···in ∈ C and non-negative exponents. For any 0 ≤ i ≤ n
denote by

Ui(a) := {[x0 : · · · : xi : · · · : xn] : xi 6= 0}

the i-th standard affine patch of P(a). Observe that Pn(a) =
⋃n
i=0 Ui(a). The

intersection
⋂n
i=0 Ui(a) can be described as follows. It is the affine algebraic

variety whose coordinate ring is C[x±10 , . . . , x±1n ]0, the subring of homogeneous
Laurent polynomials of degree 0. Since a subgroup of a free abelian group if free
abelian we have an exact sequence

0 // Zn P // Zn+1 ·a // Z // 0,
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where P is given by an (n+ 1)× n matrix with integer coefficients whose image
is the kernel of the scalar product with a. The above exact sequence provides us
with an isomorphism

C[u±11 , . . . , u±nn ]→ C[x±10 , . . . , x±1n ]0 ui 7→ xP (ei).

In particular the above map induces an isomorphism
⋂n
i=0 Ui(a)→ (C∗)n, showing

that P(a) has dimension n and it is birational to Pn. In general one has to compute
the matrix P to move to torus coordinates. In the following lemma we consider
the special case when one of the coordinates of a is equal to 1. In this case we
get local coordinates in a simple form.

Lemma 2.2.2. If a0 = 1 then the isomorphism is

C[u±11 , . . . , u±nn ]→ C[x±10 , . . . , x±1n ]0 ui 7→ xi/x
ai
0 .

Moreover the corresponding isomorphism of algebraic varieties extends to an iso-
morphism

ϕ0 : U0(a)→ Cn [x0 : · · · : xn] 7→
( x1
xa10

, . . . ,
xn
xan0

)
.

Proof. It suffice to show that the inverse of ϕ0 is ν0 : (x1, . . . , xn) 7→ [1 : x1 : · · · :
xn]. Indeed ϕ0 ◦ ν0 is clearly the identity and (ν0 ◦ ϕ0)([x0 : · · · : xn]) = [1 :
x1/x

a1
0 : · · · : xn/x

an
0 ] = [x0 : · · · : xn], where the last equality is obtained by

acting with λ = x0 and recalling that a0 = 1 by hypothesis.

Remark 2.2.3. In this work appear weighted projective spaces of the form P(a),
where a is the (n + 1)-tuple (1, . . . , 1, an). In this case the affine patches Ui(a)
are isomorphic to Cn for i ∈ {0, . . . , n − 1} and covers all P(a) except for the
point [0 : · · · : 0 : 1] which is the only singular one. To see this observe that
the coordinate ring of the affine chart Un(a) is isomorphic to the invariant ring
C[x0, . . . , xn−1]0, where each variable has degree [1] ∈ Z/anZ. This ring is gen-
erated by the monomials of degree an and in particular it has a singularity at
x0 = · · · = xn−1 = 0. For example, when n = 2 and a3 = k we have

C[x0, x1]0 ' C[xk0, x
k−1
0 x1, . . . , x

k
1] ' C[z0, . . . , zk]/〈zizj−zi+1zj−1 : 0 ≤ i < j ≤ k〉,

where the last is the coordinate ring of the affine cone over the rational nor-
mal curve of degree k. The minimal resolution of this singularity has a unique
irreducible exceptional curve E with E2 = −k.

Next we define what is an hyperelliptic curve and the properties that we use in
this work.
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2.2.2 Hyperelliptic curve

Definition 2.2.4. A hyperelliptic curve of genus g ≥ 2 over a field K not of
characteristic 2 is the subvariety of P(1, 1, g + 1) defined by an equation of the
form w2 = F (u, v), where F ∈ K[u, v] is a homogeneous polynomial of degree
2g+ 2 and is not divisible by the square of a homogeneous polynomial of positive
degree.

The standard affine patches of C are the intersections of C with the affine patches
of P(1, 1, g + 1), i.e., C ∩ {[1 : v : w] ⊂ P(1, 1, g + 1)} and C ∩ {[u : 1 : w] ⊂
P(1, 1, g + 1)}, they are affine plane curves with equations

w2 = F (1, v) and w2 = F (u, 1)

respectively.

Is usual think the curve C how the hyperelliptic curve defined by w2 = f(v),
where f(v) = F (1, v), but will always consider C as a curve in its corresponding
weighted projective space P(1, 1, g + 1).

Let

F (u, v) = α2g+2v
2g+2 + α2g+1v

2g+1u+ · · ·+ α1vu
2g+1 + α0u

2g+2 (2.1)

be the homogeneous polynomial of degree 2g + 2, where the αi ∈ C are its
coefficient. We have that f(v) = F (1, v) can have degree 2g+ 1 or degree 2g+ 2,
so we can reconstruct F (u, v) from f(v).

The points [u : v : w] ∈ C such that u 6= 0 are of the form [1 : v : w], where
w2 = f(v) which corresponds with the affine point (v, w). The remains points of
C are called points at infinity. Which are obtained by setting u = 0 and v = 1
in the equation w2 = F (u, v) (see Equation (2.1)), i.e., w2 = α2g+2. If α2g+2 = 0,
which means that degf = 2g + 1, then there is one such point, namely [0 : 1 : 0].
If α2g+2 6= 0, i.e., degf is 2g + 2, then there are two points at infinity, namely
[0 : 1 : s] and [0 : 1 : −s]. Note that the point [0 : 0 : 1] is never a point on
an hyperelliptic curve C. Recall that the point [0 : 0 : 1] is a singular point in
P(1, 1, g + 1).

2.2.3 Hyperelliptic involution

Consider the map defined on the curve C

π : C → P1, [u : v : w] 7→ [u : v]

and note that the map π is well defined since the point [0 : 0 : 1] /∈ C and is a
surjective morphism. The morphism π is clearly of degree two.

Rodrigo Andrés Quezada Pinto. 2020



2 Rational points 28

In fact, an alternative way of defining a hyperelliptic curve of genus g is: A
nonsingular projective curve C of genus g > 1 that admits a degree two map
π : C → P1.

Every hyperelliptic curve C has a no-trivial automorphism, that we denote by ı
and is defined as

ı : C → C, [u : v : w] 7→ [u : v : −w].

The map ı is an involution of the curve C, where its fixed points are the 2g + 2
points [u : v : 0], with [u : v] ∈ P1 a root of the homogeneous polynomial F (u, v).

Definition 2.2.5. The automorphism ı and the fixed points of C under ı defined
above are called, the hyperelliptic involution of C and the Weirstrass points of C
respectively.

2.2.4 Rational points of the hyperelliptic curve C

The rational points of the hyperelliptic curve C are the points of the set:

C(Q) = {[u : v : w] ∈ P(1, 1, g + 1)(Q) : w2 = F (u, v)}.

Example 2.2.6.

1. The curve C defined by the equation y2 = x5 + 1, has genus g = 2 and its
projective form is y2 = x5z + z6, its point at infinity is ∞ = [1 : 0 : 0] and
some rational points of C are [0 : 1 : 1], [0 : −1 : 1], [−1 : 0 : 1], also ∞.
One can asked if these are all the rational points of C. But in general this
question is not easy.

2. In Chapter 4 of this work we will see that the curve C defined by the
equation

C : y2 =
4∏

i=−4

(x− i)

has exactly 10 rational points (see Theorem 4.3.2).

From the paper [21] we extract some important results for the topic of rational
points of curves.

Theorem 2.2.7 (Faltings). If C is a smooth, projective and absolutely irreducible
curve over Q of genus g ≥ 2, then C(Q) is finite.

Theorem 2.2.8. Let C be a smooth, projective and geometrically irreducible
curve over Q, of genus g and with Jacobian variety J . Assume that the rank r of
J(Q) is strictly less than g. Then C(Q) is finite.
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More precisely, let p be an odd prime of good reduction for C. Then

#C(Q) ≤ #C̄(Fp) + 2g − 2 +

⌊
2g − 2

p− 2

⌋
.

Using the fact that r < g another bound for the rational points of C is

#C(Q) ≤ #C̄(Fp) + 2r +

⌊
2r

p− 2

⌋
,

where C̄ is the reduction of C modulo the prime p of good reduction.
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3 Generalized Büchi surfaces

In this chapter we study a special class of complex projective algebraic surfaces
in Pn, with n ≥ 3 integer, which are complete intersection of diagonals quadrics.
These surfaces are called Generalized Büchi Surfaces, GBS for short. In Sec-
tion 3.1 we define the GBS and its lines, also we state Theorem 3.1.4 which
describes basic aspects of a GBS (smoothness, irreducibility, type of surface) and
its configuration of lines, paying special attention to the case of an odd n. In the
same section we show the smoothness and irreducibility of the GBS. Section 3.2
is dedicated to study of the lines of the GBS, also we state Theorem 3.2.1, which
gives a bijection between n + 1 unordered points of P1 and the GBS modulo
projectivities. If n is odd the bijection is between the moduli space of genus
1
2
(n − 1) curves and the GBS modulo projectivities. Finally in Section 3.3 we

prove Theorems 3.1.4 and 3.2.1.

3.1 Definition, smoothness and irreducibility

Definition 3.1.1. Let n ≥ 3 be an integer, and let α0, . . . , αn be n + 1 distinct
complex numbers. Let α := {[1 : α0], . . . , [1 : αn]} ⊆ P1 be an ordered set of
cardinality n + 1. The Generalized Büchi surface, GBS for short, Sn(α) is the
zero locus in Pn of the n− 2 diagonal quadrics of equations

x2i − βi2x22 − βi1x21 − βi0x20 = 0,

where i ∈ {3, . . . , n} and

βi0 =
(α1 − αi)(α2 − αi)
(α0 − α1)(α0 − α2)

, βi1 = − (α0 − αi)(α2 − αi)
(α0 − α1)(α1 − α2)

, βi2 =
(α0 − αi)(α1 − αi)
(α0 − α2)(α1 − α2)

.

Definition 3.1.2. For any choice of signs the image of the morphism A1 → Pn
defined by

t 7→ [±(t− α0) : · · · : ±(t− αn)] (3.1)

is a line of Sn(α). There are 2n such lines which are named the trivial lines of
Sn(α).

Remark 3.1.3. Observe that if we send one of the n + 1 points, say α0 to
∞ the above lines seem to collapse to a point. A way to compute the correct
limit positions for the lines is to use the action of the general projective linear
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group. More specifically, by applying a projectivity one maps the above lines
to t 7→ [± 1

α0
(t − α0) : · · · : ±(t − αn)]. Then, as α0 goes to ∞ the set of lines

goes to t 7→ [1 : ±(t − α1) : · · · : ±(t − αn)]. The three coefficient βi0, β
i
1, β

i
2 go,

respectively, to

βi0 = (α1 − αi)(α2 − αi), βi1 = −α2 − αi
α1 − α2

, βi2 =
α1 − αi
α1 − α2

,

where the first one takes this form because βi0 is replaced with α2
0β

i
0 after applying

the projecivity.

Theorem 3.1.4. Sn(α) is a smooth irreducible surface which is rational for n =
4, K3 for n = 5 and of general type for n ≥ 6. The only lines in Sn(α) are the
trivial lines. The group of sign changes acts transitively on the set of lines of
Sn(α) and each such line meet exactly other n + 1 lines along a subset of points
which is projectively equivalent to α. Moreover if n is odd then the intersection
graph of the lines is bipartite of type (2n−1, 2n−1).

Proposition 3.1.5. Sn(α) is the zero locus of the ideal generated by the quadrics
which vanish along the trivial lines.

Proof. We call L the set of the trivial lines of Sn(α). First we show that the
quadratic part I(L)2 of the ideal I(L) is generated by the following homogeneous
polynomials

Qi−2 := x2i − βi2x22 − βi1x21 − βi0x20,
with βi0, β

i
1, β

i
2 as in Definition 3.1.1 and i ∈ {3, . . . , n}. Let 〈Q1, ...,Qn−2〉 be the

linear span of the above quadratic polynomials. The inclusion 〈Q1, ...,Qn−2〉 ⊆
I(L)2 is clear because each polynomial Qi vanishes at L. We now prove the
opposite inclusion. First of all let σk : Pn → Pn be the involution which exchanges
the sign of the coordinate xk. Observe that p ∈ L if and only if σk(p) ∈ L for
any 0 ≤ k ≤ n by Definition 3.1.2. Now assume that all the coordinates of p ∈ L
are non-zero. Given Q ∈ I(L)2 we have

Q = x2k + xklk + gk, lk, gk ∈ C[x0, ..., x̂k, ..., xn].

Since Q(p) = Q(σk(p)) = 0, we deduce that lk(p) = 0. Since this holds for any
such general p ∈ L and L is not degenerate, i.e. it is not contained in a linear
subspace, we conclude that lk vanishes identically. Repeating the argument for
each k, we have that Q is a degree two diagonal homogeneous polynomial, let us
say Q =

∑n
i=0Cix

2
i . Then

Q−
n−2∑
i=1

CiQi = γ0x
2
0 + γ1x

2
1 + γ2x

2
2 ∈ I(L)2.

By evaluating the above polynomial at any line of L one gets a linear combination
of the following three polynomials (t − α0)

2, (t − α1)
2, (t − α2)

2 of C[t]. Since
these polynomials are linearly independent we conclude that γ0 = γ1 = γ2 =
0. Therefore Q ∈ 〈Q1, ...,Qn−2〉. In conclusion I(L)2 = 〈Q1, ...,Qn−2〉 and so
Sn(α) = V(〈I(L)2〉).
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Corollary 3.1.6. Let α be an ordered (n + 1)-tuple of distinct points of P1 and
let α′ be a permutation of α. Then Sn(α) is projectively equivalent to Sn(α′).

Proof. Let σ ∈ Sn+1 be the permutation such that α′i = ασ(i). Let φ ∈ PGL(n+
1,C) be the projectivity defined by φ([x0 : · · · : xn]) = [xσ(0) : · · · : xσ(n)]. Then
φ(Sn(α′)) = Sn(α).

Proposition 3.1.7. Sn(α) is an irreducible smooth surface in Pn.

Proof. We have that Sn(α) is the complete intersection of the n − 2 diagonal
quadrics Qi in Pn, that is

Q1 = · · · = Qn−2 = 0.

Thus Sn(α) is a surface in Pn.

To prove the smoothness of Sn(α) we will use the jacobian criterion (see Corol-

lary 1.1.4). The (n− 2)× (n + 1) Jacobian matrix
(∂Qi−2

∂xl

)
i,l

, for i ∈ {3, ..., n}
and l ∈ {0, ..., n}, is

2


−β3

0x0 −β3
1x1 −β3

2x2 x3
...

...
...

. . .

−βi0x0 −βi1x1 −βi2x2 xi
...

...
...

. . .

−βn0 x0 −βn1 x1 −βn2 x2 xn

 . (3.2)

We thus have to show that the above Jacobian matrix has maximal rank. First of
all we claim that a point of a General Büchi surface has at most two coordinates
equal to zero. Indeed assume that three coordinates are zero. From the equations
of a General Büchi surface, given in Definition 3.1.1, it immediately follows that
these coordinates cannot be x0, x1, x2, otherwise all the coordinates would vanish.
Similarly it cannot be that two of the three vanishing coordinates are among the
first three. Suppose now that only one of the vanishing coordinates is among the
first three, let us say x0, and the remaining two are xi, xj. Then

βi1x
2
1 + βi2x

2
2 = 0 and βj1x

2
1 + βj2x

2
2 = 0.

Since the determinant of the 2× 2 matrix is (see Magma Program 4.3)∣∣∣∣βi1 βi2
βj1 βj2

∣∣∣∣ =
(αi − αj)(α0 − αj)(α0 − αi)
(α1 − α2)(α0 − α2)(α0 − α1)

6= 0,

the only solution of the above equations is x1 = x2 = 0, so that again the first
three variables would vanish giving a contradiction. Finally if none of the three
vanishing variables xi, xj, xk is among the first three then

βi0x
2
0 +βi1x

2
1 +βi2x

2
2 = 0, βj0x

2
0 +βj1x

2
1 +βj2x

2
2 = 0 and βk0x

2
0 +βk1x

2
1 +βk2x

2
2 = 0.
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Since the determinant of the 3× 3 matrix is (see Magma Program 4.3)∣∣∣∣∣∣
βi0 βi1 βi2
βj0 βj1 βj2
βk0 βk1 βk2

∣∣∣∣∣∣ =
(αj − αk)(αi − αk)(αi − αj)
(α1 − α2)(α0 − α2)(α0 − α1)

6= 0,

the only solution of the above equations is again x0 = x1 = x2 = 0, a contradic-
tion. The claim is proved. As a consequence of the claim one can always find
n − 2 columns of the above Jacobian matrix whose determinant is non-zero, so
that the matrix has maximal rank.

Now we will show the irreducibility of Sn(α). We have that for each integer n ≥ 4
the surface Sn(α) ⊂ Pn is the double cover of Sn−1(α) ⊂ Pn−1 with covering map

Sn(α)→ Sn−1(α), [x0 : · · · : xn] 7→ [x0 : · · · : xn−1],

where the branch divisor B is the curve of Sn−1(α) ⊂ Pn−1 given by the equations

βn2 x
2
2 + βn1 x

2
1 + βn0 x

2
0 = Qn−3 = · · · = Q1 = 0.

In order to prove that Sn(α) is irreducible it suffice to show that a Zariski open
subset of Sn(α) is irreducible or equivalently that the covering is non-trivial in
the neighbourhood of some point P ∈ B. To check this it is enough to show that
B has a smooth point. Let P ∈ B be a point such that x3 · · · xn−1 6= 0 (just take
a point [x0 : x1 : x2] on the conic βn2 x

2
2 + βn1 x

2
1 + βn0 x

2
0 = 0 with x0x1x2 6= 0 which

lies outside the union of the conics βi2x
2
2 + βi1x

2
1 + βi0x

2
0 = 0 for any i < n). Now

apply the jacobian criterion to B in the point P , we have that the (n − 2) × n
Jacobian matrix is

2



−β3
0x0 −β3

1x1 −β3
2x2 x3

...
...

...
. . .

−βi0x0 −βi1x1 −βi2x2 xi
...

...
...

. . .

−βn−10 x0 −βn−11 x1 −βn−12 x2 xn−1
−βn0 x0 −βn1 x1 −βn2 x2 0 · · · 0


. (3.3)

Observe that the above matrix has maximal rank. Indeed the first n − 3 rows
are linearly independent because the same holds for the first n−3 rows of matrix
(3.2). Moreover the last row is not in the row space of the first n− 3 due to the
condition x3 · · ·xn−1 6= 0. One concludes that B is smooth at P .

3.2 Lines

The previous section shows that there is a morphism

(P1)n+1 \ diagonals→ GBS α 7→ Sn(α),
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which maps an (n + 1)-tuple of distinct points to the corresponding General
Büchi surface. In this section we show that two projectively equivalent unordered
(n + 1)-tuples α, α′ gives projectively equivalent General Büchi surfaces Sn(α)
and Sn(α′). As a consequence the above morphism descends to a morphism

Φn : M0,n+1/Sn+1 → GBSn := GBS/PGL(n+ 1,C),

where M0,n+1 is the quotient of (P1)n+1 \ diagonals by the natural action of
PGL(2,C).

Theorem 3.2.1. For any positive integer n > 3 the morphism Φn is a bijection.
In particular if n is odd the map Φn gives a bijection from the moduli space of
genus 1

2
(n− 1) curves to GBSn.

We begin by describing the lines of a General Büchi surface and will show how
these determine the surface up to projectivities. This will be the main step in
establishing Theorem 3.2.1.

Proposition 3.2.2. Let α and α′ be two projectively equivalent ordered (n+ 1)-
tuples of distinct points of P1. Then the surfaces Sn(α) and Sn(α′) are projectively
equivalent.

Proof. We claim that the corresponding unions of lines L, L′ of Pn, given as in
Definition 3.1.2, are projectively equivalent. Recall that projectivities of P1 are
Möbius transformations and the group of Möbius transformations is generated
by the maps

z 7→ z + u, z 7→ uz and z 7→ 1

z
,

where z is the complex coordinate and u ∈ C. The first transformation maps L
to the union of lines parametrized by t 7→ [±(t − u − α0) : · · · : ±(t − u − αn)].
The change of coordinates t 7→ t + u in the parametrization shows that L stays
unchanged. The second transformation maps L to the union of lines parametrized
by t 7→ [±(t− uα0) : · · · : ±(t− uαn)]. The change of coordinates t 7→ ut in the
parametrization shows that L stays unchanged. Finally the third transformation
maps L to the union of lines parametrized by

t 7→
[
±
(
t− 1

α0

)
: · · · : ±

(
t− 1

αn

)]
.

Then reparameterizing the lines via t 7→ t−1 we get

t 7→
[
±
(1

t
− 1

α0

)
: · · · : ±

(1

t
− 1

αn

)]
=
[
± (t− α0)

α0

: · · · : ±(t− αn)

αn

]
.

Then the projectivity Pn → Pn, [x0 : · · · : xn] 7→ [α0x0 : · · · : αnxn] maps this set
of lines back to L. So the claim is proved. By Proposition 3.1.5

Sn(α) = V(I(L)2) and Sn(α′) = V(I(L′)2).

The statement follows.
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Proposition 3.2.3. Let n ≥ 4 be an integer. The only lines of Sn(α) are the 2n

trivial lines.

Proof. The proof is by induction on n. The case n = 4 is a consequence of the
fact that S4(α) ⊂ P4 is a del Pezzo surface of degree four which thus contains
exactly 24 = 16 lines [16], the trivial ones. Now we assume that statement holds
for n ≤ k and we prove it for n = k + 1. Since Sk+1(α) is a double cover of
Sk(α) and the covering map [x0 : · · · : xk+1] 7→ [x0 : · · · : xk] is lineal, each line
of Sk+1(α) is mapped to a line of Sk(α). By induction hypothesis Sk(α) contains
exactly 2k lines, so that Sk+1(α) contains at most 2k+1 lines. Since we know
Sk+1(α) to contain 2k+1 trivial lines the statement follows.

Proposition 3.2.4. Each line of Sn(α) meets exactly n + 1 other lines along a
subset of points which is projectively equivalent to α.

Proof. Since the lines of Sn(α) form one orbit with respect to the group of sign
changes, it suffice to prove the statement for the line L parametrized by t 7→
[t − α0 : · · · : t − αn]. Let L′ be another trivial line parametrized by u 7→
[ε0(u − α0) : · · · : εn(u − αn)], where εi ∈ {−1, 1} for any i. Then L ∩ L′ is non
empty if and only if the following matrix has rank one for some values of t, u ∈ P1(

t− α0 . . . t− αn
ε0(u− α0) . . . εn(u− αn)

)
.

Assume now that the intersection is non-empty and let i, j be two indices such that
εi = εj. The corresponding 2×2 minor is εi(t−αi)(u−αj)− εi(t−αj)(u−αi) =
εi(t − u)(αi − αj), so we deduce u = t. Applying this substitution, all the
2 × 2 minors with εi = εj vanish, while each minor with εi = −εj is equal to
εj(t−αi)(t−αj)−εi(t−αj)(t−αi) = 2εj(t−αi)(t−αj). Thus in this last case we
conclude t ∈ {αi, αj}. Assume t = αi, then the i-th column of the above matrix
is the zero vector and, from the above discussion, we conclude that εj = εk for
any j, k different from i. The intersection point is [αi − α0 : · · · : αi − αn]. This
proves that L intersects exactly n+ 1 trivial lines. By applying the morphism

L→ P1 [z0 : · · · : zn] 7→ [z0 − z1 : α1z0 − α0z1],

to the above intersection point we get [1 : αi], which proves the second statement.

Corollary 3.2.5. Two lines of Sn(α) intersect if and only if they have only one
coordinate with a different sign.

Proposition 3.2.6. Let n ≥ 5 be an odd integer, then the intersection graph of
the lines of Sn(α) is bipartite of type (2n−1, 2n−1).

Proof. Denote by [n+ 1] the set {0, . . . , n}. For each subset P ⊂ [n+ 1], denote
by σP the automorphism of Sn(α) that changes the sign of all the variables with
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indices in P , we observe that σP = σ[n+1]\P . Then each line of Sn(α) can de
identified with a subset P of [n + 1]. Also we note that the complement of P is
identified with the same line. Let us denote by P the power set of [n+ 1] and let

Pi := {P ∈ P : |P| ≡ i (mod 2)}.

The partition P = P0 ∪ P1 induces a partition L = L0 ∪ L1 of the set of lines of
Sn(α) because P ∈ Pi if and only if [n+ 1] \P ∈ Pi, being n odd. A consequence
of Corollary 3.2.5, is that given P ,P ′ ∈ P distinct subsets, the corresponding
lines, say LP and LP ′ intersect if and only if the automorphism σP ◦ σP ′ is the
sign change of a single variable, equivalently if, up to relabelling and taking
complements, P ′ ⊂ P and |P \P ′| = 1. From this it follows that LP and LP ′ can
not belong to L0 or L1 at the same time, since in both cases the lines LP and
LP ′ have opposite signs in at least two coordinates. This shows that the graph is
bipartite.

To show that the graph is of type (2n−1, 2n−1), we observe that the identity

0 = (1− 1)n+1 =
n+1∑
i=0

(
n+ 1

i

)
(−1)i

implies that |P0| = |P1|. Since the total number of lines is 2n we are done.

Proposition 3.2.7. Let n > 5 be an integer and let Z be a surface isomorphic to
a General Büchi surface Sn(α). Then Z is projectively equivalent to Sn(α) and
in particular the two surfaces have the same configuration of lines.

Proof. By the adjunction formula a canonical divisor of Sn(α) is K = (n− 5)H,
where H is a hyperplane section. Since Sn(α) is a complete intersection, its
Picard group is torsion-free by [9, Thm. 1.8, pag. 49] or [3, Thm. B] and the
same holds for Z. In particular there is a unique divisor class [D] on Z such that
KZ := (n − 5)D is a canonical divisor. An isomorphism f : Sn(α) → Z maps
[K] to [KZ ] and thus, by the above unicity, must map [D] to [H]. It follows that
f ∗(D) is linearly equivalent to H, so that there exists a rational function h on
Sn(α) with div(h) = f ∗(D)−H. The following map

H0(Z,D)→ H0(Sn(α), H) γ 7→ h · (γ ◦ f)

is linear so it induces a projectivity between Z and Sn(α).

3.3 Proof of Theorem 3.1.4 and Theorem 3.2.1

Proof of Theorem 3.1.4. The surface Sn(α) is smooth irreducible by Proposi-
tions 3.1.5 and 3.1.7. Let n := |α| − 1. Since Sn(α) is a complete intersection
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of n− 2 quadrics of Pn a canonical divisor can be computed by applying several
times the adjunction formula:

KSn(α) = (n− 5)H.

It follows that Sn(α) is a del Pezzo surface when n = 4 and in particular it is
rational. When n = 5 it is a K3 surface and it is of general type for n > 5 (see
Section 1.3). The only lines in Sn(α) are the trivial lines by Proposition 3.2.3.
The group of sign changes acts transitively on the set of lines of Sn(α) and each
trivial line meets exactly other n + 1 trivial lines along a subset of points which
is projectively equivalent to α, by Proposition 3.2.4. Finally the statement about
the configuration of the lines in the case n odd is by Proposition 3.2.6.

Proof of Theorem 3.2.1. Observe that Φn is well-defined by Proposition 3.2.2 and
Corollary 3.1.6. Moreover it is surjective by definition. We now show that Φn

is injective. Let α, α′ be two ordered n-tuples such that Φn(α) = Φn(α′), that
is Sn(α) is projectively equivalent to Sn(α′). In particular the union of lines of
the two surfaces are projectively equivalent and thus α and α′ are projectively
equivalent by Proposition 3.2.4.

When n is odd the moduli space M0,n+1/Sn+1 of unordered (n + 1)-tuples of
points of P1 is isomorphic to the moduli space of hyperelliptic curves of genus
1
2
(n − 1), the isomorphism being given by taking the double cover of P1 at the
n+ 1 points. This competes the proof of the theorem.

Remark 3.3.1. Summarizing we have that from a Generalized Büchi surface
S ⊆ Pn we can recover an unordered (n + 1)-tuple of points {α0, . . . , αn} of P1,
which are the intersection points of a given line L of S with the other lines of S.
When n = 2g+ 1 is odd one associates to S the genus g hyperelliptic curve C, of
affine equation

y2 = (x− α0) · · · (x− α2g+1). (3.1)

This is the double cover of L branched along the 2g + 2 points.

On the other hand, let g ≥ 1 be an integer and let C be a genus g hyperelliptic
curve with affine equation as define before in (3.1). Consider the set 2g + 2
Weierstraß points, α0, . . . , α2g+1, and built the trivial lines with these points.
Proceeding as in the Proposition 3.1.5 we get a Generalized Büchi surface S2g+1(α)
in P2g+1. By reordering the Weierstraß points we get another, possibly distinct,
Generalized Büchi surface which anyway is projectively equivalent to S2g+1(α) by
Corollary 3.1.6.
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4 Hyperelliptic curves and GBS

In this chapter we study General Büchi Surfaces S2g+1(α) ⊂ P2g+1, with g ≥ 2
integer and its relation with a hyperelliptic curve C of genus g. In Section 4.1 we
will study the surface Y that is obtained by taking quotient of S2g+1(α) by the
subgroup G0 of the automorphism group of S2g+1(α) of the sign changes of an
even number of coordinates. In general we will see basic aspect of the geometry
of Y and highlight Proposition 4.1.3, which shows that Y is the double cover
of P2 branched along the union of 2g + 2 lines tangent to a conic Γ, where the
tangency points are the coordinates of the vector α (seen in the previous chapter).
In Section 4.2, given a hyperelliptic curve C of genus g ≥ 2, we study the second
symmetric power C(2) of C and the natural quotient of C(2), induced by the
hyperelliptic involution ı of C. The main result of this section is Theorem 4.2.1,
which describes the geometry of the surface C(2)/〈ı〉 and has as a consequence
Corollary 4.2.2, which shows that the surfaces Y and C(2)/〈ı〉 are isomorphic. In
Subsection 4.2.1 we observe some basic facts over the Neron-Severi group of the
surface C(2). Finally in Section 4.3 we make an observation on the rational points
over Y .

4.1 The quotient by the group of even sign changes

Let g ≥ 2 be an integer and let S := S2g+1(α) ⊆ P2g+1 be a General Büchi
surface. The automorphisms group of S contains the subgroup G of coordinates
sign changes. Let

G0 := G ∩ SL(2g + 2,C)

be the subgroup whose elements contains an even number of sign changes. Ob-
serve that, being 2g + 1 an odd number, the subgroup G0 is proper and in par-
ticular it has index two in G. Denote by

Y2g+1(α) := S/G0

the corresponding quotient. Whenever it will be clear from the context we will
denote by Y the surface Y2g+1(α).

Proposition 4.1.1. The surface Y is isomorphic to the following hypersurface
of degree 2g + 2 of P(1, 1, 1, g + 1):

w2 = z0z1z2

2g+1∏
i=3

(βi2z2 + βi1z1 + βi0z0), (4.1)
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where the coefficients are as in Definition 3.1.1. In particular Y has
(
2g+2
2

)
ordi-

nary double points of type A1 and it is a surface of general type for g ≥ 3.

Proof. First of all observe that the invariant ring C[x0, . . . , x2g+1]
G0 is gener-

ated by the monomials x20, ..., x
2
2g+1, x0 · · ·x2g+1. Indeed, these monomials are

invariant, the first 2g + 2 monomials generate C[x0, . . . , x2g+1]
G and the mor-

phism S/G0 → S/G is of degree two between normal varieties. The above
invariant monomials define Y as a subvariety of the weighted projective space
P(1, . . . , 1, g + 1) of dimension 2g + 2, whose equation is w2 = z0 · · · z2g+1. The
quadratic polynomial x2i − βi2x

2
2 − βi1x

2
1 − βi0x

2
0, appearing among the defining

equations of S, becomes zi − βi2z2 − βi1z1 − βi0z0 in the new variables. This gives
the claimed equation for Y in P(1, 1, 1, g + 1).

From the equation one deduces that Y is a double covering of P2 branched along
the union of 2g + 2 lines. In particular Y is singular at each intersection point
of two such lines and the singularity is an ordinary double point of type A1. To
compute a canonical divisor KY for Y we apply the adjunction formula together
with the observation that, being Y a normal surface, its canonical divisor is
the closure of a canonical divisor of the smooth locus. First of all we recall
that a canonical divisor of the weighted projective space P(a0, . . . , an) is KP =
−(a0 + · · ·+ an)H, where H is degree 1 divisor [8, Thm. 8.2.3]. In particular a
canonical divisor of P(1, 1, 1, g + 1) is (−g − 4)H. Thus we get

KY = KP + Y |Y ∼ (−g − 4)H + (2g + 2)H|Y = (g − 2)H|Y .

The statement follows.

Proposition 4.1.2. The surfaces Y and S are birational if and only if g = 2.

Proof. If g = 2 then both Y and S are K3 surfaces and the statement is classically
known to be true, see e.g. [11, Thm. 10.3.16].

Assume now g > 2. Denote by KS and e(S) a canonical divisor and the Eu-
ler characteristic of the surface S, respectively. Since S ⊆ P2g+1 is a complete
intersection of 2g − 1 quadrics then by [19, Exa. 2.3] we have

K2
S = 4(g − 2)222g−1 e(S) = (2g2 − 5g + 5)22g−1.

Replacing these values in the formula (1.2), with D = 0, and using h1(S,OS) =
0 [9, Thm. 1.5 (iii)a] one deduces

h0(S,KS) = h2(S,OS) = χ(OS)− 1 = (2g2 − 7g + 7)22g−3 − 1,

where the first equality is by Serre’s duality.

On the other side, consider the surface Y ⊆ P := P(1, 1, 1, g+1). The fundamental
sequence of Y is

0 // OP(−Y ) // OP // OY // 0.
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Taking tensor product with OP(KP + Y ), passing to the long exact sequence in
cohomology and recalling that KY ∼ KP + Y |Y , we get

H0(P, KP) // H0(P, KP + Y ) // H0(Y,KY ) // H1(P, KP).

Since KP has degree −g − 4 < 0 we have H0(P, KP) = 0. Moreover by Batyrev-
Borisov vanishing [8, Thm. 9.2.7] we have H1(P, KP) = 0. It follows that
h0(Y,KY ) = h0(P, KP + Y ), where the last number equals the number of mono-
mials of degree 2g + 2− (g + 4) = g − 2 in P(1, 1, 1, g + 1). Thus we conclude

h0(Y,KY ) =

(
g

2

)
=
g(g − 1)

2
.

Then, it is a brief calculation to see that h0(Y,KY ) < h0(S,KS) if g > 2. Re-
calling, by Proposition 4.1.1, that the only singularities of Y are du Val singu-
larities, then, if π : Ỹ → Y is the minimal resolution of Y one has KỸ = π∗KY

by [15, Thm. 7.5.1]. As a consequence pg(Ỹ ) = h0(Ỹ ,KỸ ) = h0(Y,KY ) be-
cause any birational morphisms between smooth surfaces is a composition of
smooth blow-ups [5] and pg is invariant for smooth blow-ups. Therefore, since
pg(S) > pg(Ỹ ) the two surfaces cannot be birational.

Proposition 4.1.3. The quotient surface Y is isomorphic to the double cover
of P2 branched along the union of 2g + 2 lines tangent to a conic Γ, where the
tangency points are projectively equivalent to the set of points {α0, . . . , α2g+1} in
P1.

Figure 4.1: Sketch conic Γ and tangency points for g = 4.

Proof. To show that the 2g + 2 lines are tangent to a conic Γ we prove that the
points corresponding to these lines, in the dual projective plane, lies on a conic Γ∗.
The first three points, corresponding to z0 z1 and z2, are the fundamental points
so that Γ∗ must have equation c1x0x1 + c2x0x1 + c3x1x2 = 0. By evaluating
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at the point [βi0 : βi1 : βi2], where the βik are given in Definition 3.1.1, an easy
computation gives the following equation for Γ∗:

(α0 − α1)
2x0x1 + (α0 − α2)

2x0x2 + (α1 − α2)
2x1x2 = 0.

The equation of the dual conic Γ is obtained by taking the inverse of the symmetric
defining matrix of Γ∗. To better display the equation we introduce the notation
αij := αi − αj.

α4
12z

2
0 − 2α2

02α
2
12z0z1 − 2α2

01α
2
12z0z2 + α4

02z
2
1 − 2α2

01α
2
02z1z2 + α4

01z
2
2 = 0. (4.2)

A tedious but elementary calculation shows that the conic Γ is tangent to the
line βi0z0 + βi1z1 + βi2z2 = 0 at the point pi := [(α0−αi)2 : (α1−αi)2 : (α2−αi)2].
By applying the isomorphism φ : P2 → P2 defined by [z0 : z1 : z2] 7→ [f0 : f1 : f2],
where

f0 := (α1 − α2)z0 − (α0 − α2)z1 + (α0 − α1)z2

f1 := (α2
1 − α2

2)z0 − (α2
0 − α2

2)z1 + (α2
0 − α2

1)z2

f2 := α1α2(α1 − α2)z0 − α0α2(α0 − α2)z1 + α0α1(α0 − α1)z2,

(4.3)

we see that pi is mapped to [1 : 2αi : α2
i ]. Projecting on the first two coordinates

and eventually dividing by 2 one proves the statement.

Remark 4.1.4. Observe that each trivial line of S is mapped to Γ by the quotient
map S → S/G. Indeed the map is defined by [x0 : · · · : x2g+1] 7→ [x20 : · · · : x22g+1]
and using the equations of S one expresses all the coordinates as functions of the
first three. Thus the parametrized line t 7→ [±(t−α0) : · · · : ±(t−α2g+1)] is sent
to the parametrized conic t 7→ [(t − α0)

2 : (t − α1)
2 : (t − α2)

2], whose equation
is (4.2). By replacing this parametrization into (4.1) we deduce that the double
cover Y = S/G0 → S/G is trivial over Γ since the curve has the following two
preimages of parametric equation

t 7→

[
(t− α0)

2 : (t− α1)
2 : (t− α2)

2 : ±
2g+1∏
i=0

(t− αi)

]
.

In particular if we denote by Γ0,Γ1 ⊆ Y the above two curves, corresponding
respectively to the sign + and −, then the trivial lines of S mapped to Γ0 are
exactly those with an even number of negative signs.

4.2 Symmetric product of an hyperelliptic curve

Let C be an hyperelliptic curve of genus g ≥ 2 and let ı be the hyperelliptic
involution. Let N be the subgroup of Aut(C × C) generated by the action of ı
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on each factor. Observe that N is isomorphic to the Klein group (Z/2Z×Z/2Z).
Denote by H the subgroup of Aut(C × C) generated by the involution (p, q) 7→
(q, p). A direct calculation shows that H is in the normalizer of N so that NH
is a group which contains N as a normal subgroup. Let

C(2) := (C × C)/H

be the second symmetric power of C with itself, let C × C → C(2) be the quo-
tient map and let p + q be the image of (p, q). Observe that H conmutes with
the subgroup of N generated by the involution which acts on both factors. As a
consequence this involution descends to C(2) acting as p + q 7→ ı(p) + ı(q). We
denote by C(2)/〈ı〉 the corresponding quotient surface. Recalling that the sym-
metric product of P1 with itself is P2 we summarize the above construction in the
following commutative diagram

C × C /H //

π/N
��

C(2) /ı //

π(2)

��

C(2)/〈ı〉

π
(2)
ı
��

P1 × P1 /H // P2 P2

(4.1)

where π(2) is the degree 4 morphism induced by π. Observe that π(2) is not a
quotient morphism by a group action. Moreover it factorizes as the composition
of the two displayed degree two morphisms.

The aim of this section is to prove the following.

Theorem 4.2.1. Let C be a hyperelliptic curve of genus g ≥ 2 with hyperelliptic
involution ı and let α0, . . . , α2g+1 ∈ P1 be the images of the Weierstraß points of
C. Then

π(2)
ı : C(2)/〈ı〉 → P2

is a double cover branched along the union of the 2g + 2 lines of equations z2 −
αiz1 + α2

i z0 = 0, which are images of the curves {p} × C, where p varies along
the Weierstraß points of C.

Proof. We describe the morphisms of (4.1) in an invariant affine chart of C ×C.
An affine equation of the curve C is y2 = f(x), where

f(x) =

2g+1∏
i=1

(x− αi).

The cartesian product C × C is {(x, u, y, v) ∈ C4 : y2 = f(x) and v2 = f(u)}.
The generators of the group N act by exchanging the signs of y and v respectively,
while the generator of H maps (x, u, y, v) to (u, x, v, y). We can use invariant
theory, see e.g. [22], to explicitly compute the quotient morphisms in (4.2.1).
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This is done in Program 4.1. Thus the morphisms are

(x, u, y, v)

π

��

// (x+ u, xu, y + v, yv)

π(2)

��

// (x+ u, xu, yv)

π
(2)
ı

��
(x, u) // (x+ u, xu) (x+ u, xu).

(4.2)

From the above description of π
(2)
ı we see that it ramifies along the curves with

yv = 0. By the equation of C×C these are the images of the curves {p}×C, where
p is a Weierstraß point. These are the lines of parametric equation t 7→ (αi+t, αit),
whose homogeneous cartesian equation is z2 − αiz1 + α2

i z0 = 0.

As an immediate consequence we are able to show that the surface C(2)/〈ı〉 is
isomorphic to the surface Y defined in Section 4.1.

Corollary 4.2.2. With the same notation of Theorem 4.2.1, let α := (α0, . . . ,
α2g+1) and let f0, f1, f2 be the three linear polynomials defined in (4.3). The
automorphism of P(1, 1, 1, g + 1), defined by [z0, z1, z2, z3] 7→ [f0, f1, f2, z3], maps
Y2g+1(α) to C(2)/〈ı〉.

Proof. By the proof of Theorem 4.2.1 a defining equation for C(2)/〈ı〉 in the
weighted projective space P(1, 1, 1, g + 1) is the following

w2 =

2g+1∏
i=1

(z2 − αiz1 + α2
i z0). (4.3)

A direct calculation proves the statement.

Remark 4.2.3. The 2g+ 2 lines which form the branch divisor of the morphism
π
(2)
ı are tangent to the conic ΓC of equation

4z0z2 − z21 = 0.

The line of equation z2 − αiz1 + α2
i z0 = 0 is tangent to the above conic at the

point [1 : 2αi : α2
i ]. The restriction of π

(2)
ı to the plane defined by the first three

coordinates, that is the morphism [z0 : z1 : z2] 7→ [f0 : f1 : f2], maps the conic Γ
of equation (4.2) to ΓC . Thus the given isomorphism

Y2g+1(α) ' C(2)/〈ı〉

is defined over the field Q(α0, α1, α2) and in particular if the vector α has at least
three rational entries then one can produce such an isomorphism defined over the
rationals, allowing one to identify the rational points of both surfaces.
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4.2.1 The Néron-Severi group of C(2)

Here we recall some basic facts about the Nerón-Severi group of the surface C(2).
First of all we define three curves on the surface via the surjection C×C → C(2).
The first curve, named Cp is the image of C × {p}, or equivalently of {p} × C.
The second one, ∆ is the image of the diagonal and the third E is the image of
the graph of the hyperelliptic involution.

Proposition 4.2.4. The intersection matrix of the three curves Cp, ∆ and E is1 2 1

2 4− 4g 2g + 2

1 2g + 2 1− g

 .

In particular 4Cp −∆− 2E ≡ 0.

Lemma 4.2.5. The curves E and Cp intersect transversely.

Proof. Consider the morphism C × C → C(2). In an affine chart we have that
C × C = {(x, u, y, v) : y2 = f(x) and v2 = f(u)} and the above morphism is

(x, u, y, v) 7→ (x+ u, xu, y + v, yv).

The graph of the hyperelliptic involution is the following curve of C × C

Ẽ = {(x, u, y, v) : y2 = f(x), x = u, v = −y}.

Since Γı is a local complete intersection, its tangent space at (x, u, y, v) ∈ C ×C
is the left kernel of the following matrix, whose rows are the gradients of the
hypersurfaces which define the curve−f ′(x) 0 2y 0

1 −1 0 0

0 0 1 1

 .

The kernel is generated by the vector (2y 2y f ′(x) − f ′(x)). In the same affine
chart we have the curve

C × {p} = {(x, u, y, v) : y2 = f(x), u = u0, v = v0}

whose tangent space at (x, u, y, v) ∈ C × C is the left kernel of the matrix−f ′(x) 0 2y 0

0 1 0 0

0 0 0 1

 .

The kernel is generated by the vector (2y 0 f ′(x) 0). The two generators are
linearly independent unless y = 0 and f ′(x) = 0. But in this case one would
deduce that both f(x) and f ′(x) vanish at the same point, a contradiction since
f(x) by hypothesis has distinct roots. This show that Γı intersects transversely
C×{p} in C×C. Since the intersection points lie outside the ramification divisor
of the covering C × C → C(2), we conclude that E meets Cp transversely.
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Lemma 4.2.6. The curve E and ∆ intersect transversely as well as Cp and Cq
for p 6= q.

Proof. It suffice to show that the images of the curves E and ∆ via the map
C(2) → C(2)/〈ı〉 intersect transversely. Both curves are mapped to the unique
conic ΓC ⊆ P2 which is tangent to all the branch lines of the double covering
C(2)/〈ı〉 → P2. Thus locally, over one of these tangency points, we can assume
ΓC to be defined by y = x2 and the tangent line by y = 0. The double covering
has local equation z2 = y and so the images of E and ∆ have local equations
z − x = 0 and z + x = 0, so that they meet transversely. A similar argument
proves the second transversality.

Lemma 4.2.7. E · Cp = 1 and E ·∆ = 2g + 2.

Proof. By Lemma 4.2.5 and Lemma 4.2.6 it is enough to show that E ∩ Cp has
cardinality 1 and E ∩ ∆ has cardinality 2g + 2. The first equality follows by
observing that the equation q+ i(q) = p+ q has p+ i(p) as unique solution. The
second equality follows by observing that the equation q+ i(q) = 2p has solution
only when q = i(q), that is when q is one of the 2g+2 Weierstraß points of C.

Proof of Prop. 4.2.4. LetK := KC(2) be a canonical divisor of C(2). SinceKC×C =
π∗1KC+π∗2KC ≡ (2g−2)({p}×C)+(2g−2)(C×{p}), by the ramification formula
KC×C ∼ π∗K + π∗(1

2
∆) we deduce

K ≡ (2g − 2)Cp −
1

2
∆. (4.4)

The curves Cp and Cq are numerically equivalent and they intersect transversally
at p + q, so that C2

p = Cp · Cq = 1. Then by the genus formula (1.1) we deduce
Cp ·K = 2g−3, so that ∆·Cp = 2 by (4.4). Now, by applying the genus formula to
the curve ∆ and using the last intersection product, we deduce that ∆2 = 4−4g.
By Lemmas 4.2.7, 4.2.5, 4.2.6 and the genus formula applied to the curve E we
deduce that E2 = 1. So the statement follows.

Remark 4.2.8. Some possible expectations that would complement this work
would be to describe the geometry of the double covering

C(2) → Y.

It is not difficult to see that the 2g + 2 lines tangent to the conic Γ, which form
the branch divisor of the double covering Y → P2, have as preimages in C(2) the
2g+2 curves of the form Cp, where p ∈ C is a Weierstraß point. The preimages of
these lines in the covering S → Y are the 2g + 2 curves, each of which is defined
by the vanishing of a coordinate variable of the ambient vector space.

In particular we want to say something about the following:
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• The preimages in C(2) of the two curves Γ0,Γ1 ⊂ Y which are preimages of
the conic Γ (see Remark 4.1.4).

• The intersection matrix of the curves we know in Y .

• The Néron-Severi group of Y .

These problems will remain as pending problems in this work.

4.3 Rational points

Let us denote by F : C × C → C(2)/〈ı〉 the degree four quotient map. In affine
coordinates, according to Diagram 4.2, the map F is

(x, u, y, v) 7→ (xu, x+ u, yv).

Given a point (p, q) ∈ C × C we denote by Q(p, q) the extension of the rationals
obtained by adding the affine coordinates of the points p and q. Thus if p = (x, y)
and q = (u, v) then Q(p, q) := Q(x, u, y, v). We say that a point of C(2)/〈ı〉 is
rational if all of its coordinates are rational numbers.

Observe that if F (p, q) is a rational point of C(2)/〈ı〉 then xu, x + u, yv are all
rational numbers so that Q(x, u, y, v) = Q(x, y).

Proposition 4.3.1. Let (p, q) ∈ C×C be such that its image via F is a rational
point of C(2)/〈ı〉 then the field extension Q(p, q)/Q is Galois and its Galois group
is one of the following: 〈Id〉, Z/2Z, (Z/2Z)2.

Proof. First of all recall the equalities Q(p, q) := Q(x, u, y, v) = Q(x, y), where
the second is by the hypothesis. The degree of the extension is a divisor of 4
by applying the tower law to Q ⊆ Q(x) ⊆ Q(x, y) and recalling that y2 = f(x),
where f has rational coefficients.

To prove that Q(p, q)/Q is Galois, by Proposition 2.1.24 it suffice to show that any
automorphism σ of the absolute Galois group Gal(Q/Q) maps the field Q(p, q)
to itself. Indeed by Lemma 2.1.15 we have that σ preserves the set {x, u}. On
other side, applying σ to the equation y2 = f(x), and recalling that f has rational
coefficients we get

σ(y)2 = σ(f(x)) = f(σ(x)) ∈ {f(x), f(u)}.

Thus σ(y) ∈ {−y, y,−v, v} and analogously we have σ(v) ∈ {−y, y,−v, v}. This
shows that the extension Q(p, q)/Q is Galois. Since its degree is a divisor of 4,
the only possibilities for the Galois group are 〈Id〉, Z/2Z, (Z/2Z)2 and Z/4Z. We
now show that the last one cannot realize concluding the proof. Indeed if this
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were the case, then the Galois group would contain an order four element which
should act as

x 7→ u, u 7→ x, y 7→ v, v 7→ −y

so that yv would not be invariant, a contradiction.

We observe that in the case the Galois group of Q(p, q)/Q is trivial, then both p
and q are rational points of C. We show in the following proposition that when
g = 4 we know all such points.

Theorem 4.3.2. If C is the hyperelliptic curve y2 =
∏4

i=−4(x− i) then the only
rational points of C are the Weierstraß points.

Proof. By [21, pp. 15] if p is a prime of good reduction of C then

#C(Q) ≤ #C(Fp) + 2r +

⌊
2r

p− 2

⌋
,

where C is the reduction of C modulo p and r is the rank of the group JC(Q)
of rational points on the Jacobian variety. The Magma program 4.2 compute
the discriminant of C which is 2623185874, thus the prime p = 13 is of good
reduction for C, also compute the numbers #C(F13) = 10 and r = 0. Since
C(Q) contains the nine Weierstraß points together with the point at infinity, the
statement follows.
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In this Magma program we compute the subrings of invariants used in Section 4.2,
specifically when building the diagram (4.2).

Program 4.1

> Q:= Rationals();

> U := Matrix(Q,2,2,[0,1,1,0]);

> M := DiagonalJoin(U,U);

> G1 := MatrixGroup<4, Q | M>;

> R1 := InvariantRing(G1);

> FundamentalInvariants(R1);

[

x1 + x2,

x3 + x4,

x1^2 + x2^2,

x1*x3 + x2*x4,

x3^2 + x4^2

]

> I := IdentityMatrix(Q,2);

> N := DiagonalJoin(I,-I);

> G2 := MatrixGroup<4,Q | M,N>;

> R2 := InvariantRing(G2);

> FundamentalInvariants(R2);

[

x1 + x2,

x1^2 + x2^2,

x3^2 + x4^2,

x3*x4,

x1*x3^2 + x2*x4^2

]
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In this Magma program we define the hyperelliptic curve C of affine equation

y2 =
4∏

i=−4

(x− i).

Compute its discriminant for deduce that the prime p = 13 is the good reduction,
later compute the number of points of the set C(F13) and also the rank r of the
group JC(Q). This data is used in Theorem 4.3.2.

Program 4.2

> R<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(&*[x-i : i in [-4..4]]);

> a := Discriminant(C);

> a;

1675693213808209968850639257600000000

> Factorization(Numerator(a));

[ <2, 62>, <3, 18>, <5, 8>, <7, 4> ]

> #Points(ChangeRing(C,GF(13)));

10

> JC := Jacobian(C);

> RankBounds(JC);

0 0
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In this Magma program we compute the determinants of the associated matrices
to the following systems of equations

βi1x
2
1 + βi2x

2
2 = 0

βj1x
2
1 + βj2x

2
2 = 0.

βi0x
2
0 + βi1x

2
1 + βi2x

2
2 = 0

βj0x
2
0 + βj1x

2
1 + βj2x

2
2 = 0

βk0x
2
0 + βk1x

2
1 + βk2x

2
2 = 0.

These results are used in Proposition 3.1.7.

Program 4.3

> R<a0,a1,a2,ai,aj,ak> := FunctionField(Rationals(),6);

> b0i := (a1-ai)*(a2-ai)/((a0-a1)*(a0-a2));

> b1i := -(a0-ai)*(a2-ai)/((a0-a1)*(a1-a2));

> b2i := (a0-ai)*(a1-ai)/((a0-a2)*(a1-a2));

> b0j := (a1-aj)*(a2-aj)/((a0-a1)*(a0-a2));

> b1j := -(a0-aj)*(a2-aj)/((a0-a1)*(a1-a2));

> b2j := (a0-aj)*(a1-aj)/((a0-a2)*(a1-a2));

> b0k := (a1-ak)*(a2-ak)/((a0-a1)*(a0-a2));

> b1k := -(a0-ak)*(a2-ak)/((a0-a1)*(a1-a2));

> b2k := (a0-ak)*(a1-ak)/((a0-a2)*(a1-a2));

>

> M2 := Matrix(2,2,[b1i,b2i,b1j,b2j]);

> Factorization(Numerator(Determinant(M2)));

[

<ai - aj, 1>,

<a0 - aj, 1>,

<a0 - ai, 1>

]

> Factorization(Denominator(Determinant(M2)));

[

<a1 - a2, 1>,

<a0 - a2, 1>,

<a0 - a1, 1>

]

> M3 := Matrix(3,3,[b0i,b1i,b2i,b0j,b1j,b2j,b0k,b1k,b2k]);

> Factorization(Numerator(Determinant(M3)));

[

<aj - ak, 1>,

<ai - ak, 1>,

<ai - aj, 1>

]

> Factorization(Denominator(Determinant(M3)));

[

<a1 - a2, 1>,

<a0 - a2, 1>,

<a0 - a1, 1>

]
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