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Resumen

En este trabajo mostramos la importancia de calcular la pérdida de masa en
colisiones estelares, en el contexto de formación de semillas de agujeros negros
supermasivos, en cúmulos estelares densos primordiales de Población III. El
proceso de creación de la semilla puede ser acentuado por la acreción, como
modelos recientes de formacion de semillas de agujeros negros en cúmulos de
Población III han mostrado. Esto podría explicar la presencia de agujeros negros
supermasivos a alto redshift, z > 6. Sin embargo, en este contexto, la pérdida de
masa durante colisiones no ha sido considerado y podría jugar un rol importante
en la formación de la semilla. Estudiamos el efecto de la pérdida de masa, debido
a colisiones de protoestrellas, en la formación y evolución de un objeto masivo
en un cúmulo primordial denso, usando el código AMUSE. Consideramos tanto
perdidas de masa constante por colisión como también modelos analíticos basados
en la estructura estelar de los componentes de la colisión, en 6 modelos de acreción
distintos. En escenarios con pérdida de masa constante por colisión variamos
el porcentaje de masa perdida por colisión en cada simulación, y realizamos 5
simulaciones por cada caso y por cada modelo de acreción, y también cuando
usamos modelos analíticos. Nuestros cálculos indican que la pérdida de masa
puede afectar significativamente la masa final de la posible semilla de agujero
negro. Considerando una pérdida de masa constante del 5 % por cada colisión, es
posible perder entre 60-80% de la masa total obtenida al no considerar pérdida
de masa. Si usamos ahora los modelos analíticos para la pérdida de masa, la
masa del objeto central final es reducida entre 15-40%, dependiendo el modelo
de acreción que consideremos. En total, obtenemos masas finales del orden de
104M�, que sigue siendo suficiente masivo para ser una semilla de agujero negro
supermasivo, mostrando que el modelo de colisiones en cúmulos primordiales es
exitoso explicando la formación de estos objetos, aún si se considera la pérdida de
masa.

Keywords – Población III, agujeros negros, pérdida de masa



iii

Abstract

In this work we show the importance of mass loss calculations when considering
the formation of supermassive black hole (SMBH) seeds, in runaway collision
scenarios in dense Population III primordial clusters. The seed creation process
can be further enhanced by accretion, as recent models of SMBH seed formation
in Population III star clusters have shown. This may explain the presence of
supermassive black holes already at high redshift, z > 6. However, in this context,
mass loss during collisions has not been considered and could play an important
role for the formation of the SMBH seed. We study the effect of mass loss, due to
collisions of protostars, in the formation and evolution of a massive object in a
dense primordial cluster, using the AMUSE framework. We consider both constant
mass loss fractions as well as analytic models based on the stellar structure of
the colliding stars, and study 6 different accretion models. In constant mass loss
scenarios we vary the mass lost during a collision in our simulations, and perform
5 simulations for each accretion scenario, and also when using analytic models.
Our calculations indicate that mass loss can significantly affect the final mass
of the possible SMBH seed. Considering a constant mass loss of 5% for every
collision, the most massive object can lose between 60-80% of the total mass that
is obtained if mass loss were not considered. Using instead analytical prescriptions
for mass loss, the mass of the final object is reduced by 15-40%, depending on
the accretion model for the cluster we study. Altogether, we obtain masses of the
order of 104M�, which are still massive enough to be SMBH seeds, implying that
the runaway collision model can be successful even when considering mass loss.

Keywords – Population III, black holes, mass loss
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Chapter 1

Supermassive black holes at high

redshift and the local Universe

Modern astronomy is still trying to explain how the Universe evolved during
its early stages. One of the subjects of particular interest is to understand the
formation of the first black holes, and their evolution to the present day. On the
observational side, studying these early times presents a difficult task due to our
technological limitations, but the new generations of telescopes will prove to be
useful tools, and will help to confirm or disprove the models that theoreticians
have been developing on the matter since a long time.

The models of early black hole formation ought to predict the Supermassive Black
Holes (SMBH) we see today. Due to the fact that black holes from the early
universe have had more than 12 Gyr time to grow, it is no surprise that SMBHs
exist in the local Universe. For example a SMBH with a mass of 4× 1010M� was
found at the center of Holmberg 15A, a galaxy 216 Mpc away in the Abell 15
galaxy cluster (Mehrgan et al., 2019). Also, the Milky Way itself has a SMBH at
its center, with a mass of 4× 106M� at a distance of R0 = 7.9 kpc (Boehle et al.,
2016). The most distant quasar known to date is ULAS J1342+0928, which hosts
the oldest known supermassive black hole, with a mass of 8× 108M� at a redshift
of z = 7.54 (Bañados et al., 2018). This quasar is situated at a cosmic age of
just 690 Myr after the Big Bang, at times when conditions in the Universe were
changing rapidly. The second most distant quasar known is ULAS J1120+0641
at a redshift of 7.085, which is 0.77 billion years after the Big Bang (Mortlock
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Figure 1.1: Adopted from B. Venemans Research website1. Redshift distribution
of all z > 5.6 quasars known until December 2017. Discoveries of various groups of
∼ 120 quasars are shown in the hashed histogram. In the last few years, the Max
Planck Institute for Astrophysics group, led by F. Walter and B. Venemans has
discovered an additional 125 quasars in various optical and near-infrared surveys,
shown in the red histogram, more than doubling the number of quasars at z > 5.6.

et al., 2011), and the number of distant quasars detected is still continuously
increasing, Figure 1.1 shows the quasar distribution as a function of the redshift to
all quasars known until December 2017. Explaining the existence of these objects
provides a significant challenge to our cosmological model; if we consider the
Eddington accretion rate, which is the maximum rate at which a black hole can
accrete gas in spherical symmetry, initial seed masses of order 104M� are required
to reach final masses of 109M�, when realistic spin parameters and accretion
disk models are taken into account (Shapiro, 2005). The only solutions are very
massive seeds or extended periods of super-Eddington accretion, which can persist
in non-spherically symmetric circumstances where the Eddington rate can be
breached. Or potentially combinations of both during the formation and early
growth of massive black holes (Mayer et al., 2013).

It is now widely accepted that SMBHs which exist at the centre of several nearby

1http://www.mpia.de/home/venemans/research.html
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Figure 1.2: Relation between the mass of the central SMBH MBH and the bulge
mass Mbulge of the host galaxy, for the 35 early-type galaxies with dynamical
measurements of the bulge stellar mass in the sample of McConnell and Ma (2013),
divided in brightest cluster galaxies (BCG; green) and non-BCG (red). The SMBH
masses are measured using the dynamics of stars (stars) or gas (circles). The error
bars indicate 68 percent confidence intervals. The black, dotted line represents
the best-fitting power-law relation. Adopted from McConnell and Ma (2013).

massive galaxies, and are believed to exist in many high-redshift galaxies, are the
engines of AGNs. Accurate mass measurements of the central SMBH masses in
the local Universe led to scaling relations between the mass of the central object
and other galactic quantities. Two of these quantities, i.e., the most important
ones, being the stellar velocity dispersion and the stellar bulge mass. In particular,
a tight scaling relation has been found between the SMBH mass MBH and bulge
mass Mbulge, the so-called Magorrian relation (Magorrian et al., 1998),

MBH

109M�
= 0.49+0.06

−0.05

(
Mbulge

1011M�

)1.17±0.08

.
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Figure 1.3: M− σ relation for the sample of galaxies listed in McConnell and
Ma (2013). Brightest cluster galaxies (BCGs) that are also the central galaxies of
their clusters are plotted in green, other elliptical and S0 galaxies are plotted in
red, and late-type spiral galaxies are plotted in blue. The black hole masses are
measured using the dynamics of masers (triangles), stars (stars), or gas (circles).
Error bars indicate 68% confidence intervals. Adopted from McConnell and Ma
(2013).

Observational data supporting this relation is shown in Figure 1.2, from McConnell
and Ma (2013), who compiled a sample of 72 black holes and their host galaxies,
and presented revised scaling relations. Another well restrained scaling relation
is the one between the SMBH mass and the effective velocity dispersion σ, the
so-called M-σ relation,

MBH

109M�
= 0.310+0.037

−0.033

( σ

200 km s−1

)4.38±0.29
.

McConnell and Ma (2013) also presented the M− σ relation for their compilation
of 72 dynamical black hole measurements, shown in Figure 1.3.
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The above relations are consistent with a scenario in which SMBHs and their
host galaxies may co-evolve; SMBHs grow through gas accretion and mergers
and feed back part of their accretion energy to the host galaxy. Although, there
are alternative explanations for the origin of the scaling relations, which do not
require co-evolution. For example, the Magorrian relation could be partly or fully
caused by the hierarchical assembly of SMBH and stellar mass through galaxy
merging.

Despite the enormous advances in BH physics and astrophysics, we still do not
know for certain how these objects have formed in the first place. This is a
fundamental question that has been addressed several times through the years.

In our investigation, presented in this thesis, we explore the effect of mass loss
during stellar collisions. It is the continuation of our investigation into a SMBH
formation scenario, which uses runaway collisions between Population III (Pop.
III) stars to form the seeds of the future SMBHs. In our case study Pop. III
stars are located in dense stellar clusters. The different formation scenarios of
SMBHs are described in Chapter 2, the importance of the mass loss in runaway
scenarios, and also our approach to find an analytical prescription are described
in Chapter 3, the numerical methods used for our simulations are described in
Chapter 4, including our setup and the coding of our mass loss prescription. The
main results are presented in Chapter 5. We summarize our work and give the
main conclusions in Chapter 6.
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Chapter 2

Formation mechanisms of

supermassive black holes

The three main pathways for the formation of SMBHs are: i) stellar remnants in
the context of massive Pop. III stars, ii) the collapse of a protogalactic gas cloud
into a massive black hole or a massive star, that later collapses into a black hole,
and iii) seed black holes forming in dense stellar clusters via dynamical processes
(Rees, 1984; Woods et al., 2018). A diagram showing the different paths for the
formation of massive black holes in the early Universe is presented in Figure 2.1.

2.1 Direct Collapse scenario

One of the most promising explanations for massive seed formation is the direct
collapse model, as it can potentially produce the most massive objects. This
scenario involves the collapse of a gas cloud into one massive object. The idea for
the formation of a massive black hole directly via the gas dynamical processes was
conceived in the pioneering work of Martin Rees (Rees, 1984). The expectation is
that gas in a low spin halo collapses and forms a rotationally supported compact
disk, which later may lead to the formation of a massive black hole (Loeb and Rasio,
1994). In order for the gas to rapidly collapse, the fundamental requirement is
that the cloud efficiently transports angular momentum and avoids fragmentation.
For the purpose of creating a massive object of 104 − 106 M�, large inflows (0.1
M�/yr) of gas need to be brought into the halo centre within a short time scale
of about 1 Myr. Keeping the gas warm will help to obtain such large inflow rates,
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Figure 2.1: Flow chart illustrating the different pathways that terminate with
the formation of a seed BH. The path in the left represents the collapse of the first
generation of stars which emerged from gas with the abundances expected after
recombination (z ∼ 0). On the right, the other possible path requires the presence
of few metals (z < zcrit ) in a gas cloud that will form a disc as it cools, and then
a star cluster may be formed, which will experience a runaway collision process
producing a massive star or black hole. Alternatively, if the star formation is
suppressed, a strong inflow of gas is expected at the center of the cloud originating
a super massive star or an IMBH. Adopted from Volonteri (2010).
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and depending on the time evolution of mass inflow rates, the central object may
form a supermassive star or directly collapse into a massive black hole.

If accretion is regulated by the self-gravity of the gas, the mass inflow rate of
collapsing gas Ṁ is related to its thermodynamical properties in the following
way:

Ṁ ∼ c3s
G
∼ 0.1M�/yr

(
T

8000K

)3/2

, (2.1)

where cs is the sound speed and T is the gas temperature. This expression can be
obtained by dividing the Jeans mass by the free-fall time of the gas. The higher
the temperature the larger the mass inflow rate. Therefore, the thermodynamical
requirement for getting large inflows is that gas should not cool down to lower
temperatures, otherwise it will fragment and form ordinary stars. The cooling
ability of the gas is determined by its chemical composition. In primordial gas,
molecular hydrogen cooling can bring the gas temperature down to ∼ 200 K and
induces star formation. In the absence of molecular hydrogen, primordial gas
remains in the atomic phase, cools mainly via atomic line radiation and the gas
temperature remains around 8000 K.

The potential birthplaces for massive black holes are primordial halos deprived of
H2 cooling. The prerequisites for the formation of massive black holes in atomic
cooling halos are that they should be metal-free and the formation of molecular
hydrogen remains suppressed. Numerical simulations have shown that this can
be achieved when a strong radiation background photodissociates the molecular
hydrogen, therefore preventing strong fragmentation of the gas cloud (Bromm
and Loeb, 2003; Wise et al., 2008; Latif et al., 2013).

Trace amount of H2 can be formed via gas phase reactions where a residual fraction
of electrons from the recombination epoch acts as a catalyst. The main pathway
for the formation of H2 is the following:

H + e− → H− + γ (2.2)

H + H− → H2 + e−. (2.3)

The H2 can be dissociated either directly or indirectly by UV radiation. The low
energy photons with 0.75 eV can photo-detach H− which is the main channel
for the formation of H2. The photons with energy between 11.2 - 13.6 eV photo-
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dissociate molecular hydrogen via the so called Solomon process, a two-step photo-
dissociation process. These processes are described by the following reactions:

H− + hν → H + e− (2.4)

H2 + hν → H + H. (2.5)

The competition between the formation and dissociation timescales defines the
critical value of the UV flux (parametrized by J21), above which the formation of
H2 remains quenched. This value is described through the strength of the radiation
background at 13.6 eV. This flux is normalized such that J21 = 1 corresponds to a
radiative background of 10−21erg/s/cm3/Hz/sr. The first numerical investigations
suggested a critical value of J21 ∼ 100 to prevent the formation of molecular
hydrogen (Shang et al., 2010), while updated chemical networks and more realistic
models for the radiation background (see e.g. Sugimura et al., 2014; Agarwal and
Khochfar, 2014) have led to much larger critical values of the order of 104 to
105 when applied in cosmological simulations (Latif et al., 2014, 2015). In their
study, Latif et al. (2015) computed the critical value the J21 flux for spectra of
Pop II stars through three-dimensional cosmological simulations and one zone
models, varying the radiation spectra. Their findings show that the value of weakly
depends on the adopted radiation spectra in the range between Trad = 2× 104 and
105 K. For three simulated haloes of a few times 107M�, J21 varies from 2× 104

to 5× 104. The impact of X-ray ionization is almost negligible. The differences
between the one-zone and 3D simulations come from the inability of one-zone
models to simulate shocks and hydrodynamical effects. This is resumed in Figure
2.2. In the end, the need for large values of J21 provides a problem for the direct
collapse scenario (Dijkstra et al., 2014).

In addition to molecular hydrogen line cooling, fragmentation can also be induced
via metals or dust grains (Omukai et al., 2008). In the case of metal line cooling, a
metallicity of 10−3 Z� can already increase the cooling and trigger fragmentation
within cosmological simulations (Bovino et al., 2014), while even lower metallicities
of 10−5 Z� are sufficient when dust cooling is considered (Schneider et al., 2006;
Dopcke et al., 2013; Bovino et al., 2016). The need to both have very strong
radiation backgrounds, while keeping the gas metal free, leads to a strong need of
fine-tuning, which at best can be satisfied under very rare conditions (eg, Agarwal
et al., 2017). Recently, Suazo et al. (2019) studied the formation of SMBH seeds in
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Figure 2.2: Estimates of the critical value of the UV flux required for the
direct collapse scenario in a 107M� gas cloud. One zone and 3D models of
a representative halo are presented, including variations from three different
simulated haloes (green triangles). Also there is a red cross showing the results of
including an X-Ray background, which makes little difference. 3D simulations and
one-zone calculations differ by about two orders of magnitude due to the inability
of one-zone models to simulate shocks, collapse dynamics and hydrodynamical
effects. Adopted from Latif et al. (2015).



2.2. Black holes from the First Stars 11

this context, forming a single massive object of ∼ 105M� when the UV background
of J21 is set to 10000, while when considering a UV background of J21 = 10, there
is fragmentation and the formation of various less massive seeds. These fragments
have masses of 103 − 104M�, and even though less massive, they were still prone
to merge into a more massive object.

2.2 Black holes from the First Stars

The first generation of stars, the Population III stars, were made from metal-free
primordial gas in dark matter haloes. This gas was mainly composed of hydrogen
and helium. The main cooling mechanism here is molecular hydrogen cooling.
This cooling is less efficient than in the present Universe where metals and dust
are present. The temperature of the gas in the star forming regions of the early
Universe was about 300 K, whereas the molecular clouds of the present day
Universe have a temperature of about 10 K. Due to these high temperatures, the
thermal pressure, and therefore, the Jeans mass of the gas clouds, were enhanced
by a factor of about 100. Today the typical stellar mass is 1M�, so we could
expect that in the early universe the typical stellar mass was 100M�. It has long
been thought that the first stars lived short lives, with only one massive star
forming in each dark matter halo. Those dark matter minihalos possessed masses
around 105 − 106M� at redshift z ∼ 20− 25.

As mentioned in the previous chapter, there are massive quasars with masses
around 109M� at redshifts of z = 6 or above, which provide indirect support
for the existence of supermassive stars in the early Universe. Stellar evolution
calculations with very high accretion rates suggest that stars could be stable up
to several 105M�, before the general relativistic instability (Chandrasekhar, 1964)
leads to the collapse into a black hole of the same mass (Hosokawa and Omukai,
2009; Woods et al., 2018).

Another important process occurring in protostars is the mass accretion, which is
expected to be very high in the early Universe , and plays a huge role in determining
the mass of a protostar. According to Hosokawa and Omukai (2009), the formation
of massive stars by accretion requires an accretion rate of Ṁ > 10−4M� yr−1 to
overcome the radiation pressure from the forming star, in order to keep accreting
mass once the star has ignited hydrogen in the core.
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Figure 2.3: Resultant mass distributions of Pop III.1 (left) and III.2D (right)
stars for the different redshifts. The different colours represent different redshift
ranges. The black solid lines show the total distributions over all redshifts for
each population whereas the dotted lines show the sum of them. Adopted from
Hirano et al. (2015).

Hirano et al. (2015) performed a large set of cosmological simulations of early
structure formation and followed the formation and evolution of 1540 star-forming
gas clouds to derive the mass distribution of primordial stars. The star formation
in their cosmological simulations is characterized by two distinct populations, the
so-called Population III.1 stars and primordial stars formed under the influence
of far-ultraviolet radiation (Population III.2D stars). These results are shown in
Figure 2.3.

Today many researchers in this field agree that genuine Pop. III stars formed in
binary stellar systems or systems of a higher order, and that they had a wide
range of masses. The mass scale depends on physical processes such as radiative
feedback, the level of turbulence in the halo gas and accretion disk, properties of
the dark matter, or the larger scale environment of the star forming halo. Since
low-mass Pop. III stars must have survived until the present days, they should
be detectable in stellar archeological surveys in the Milky Way and neighboring
satellite galaxies, which would help to put constraints in the low-mass end of the
Pop. III IMF.

Theoretical limits, from including general relativistic instabilities in the stellar
structure equations, predict an upper mass limit of several 105M� for primordial
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stars. Indeed, these stars could be the seeds for the observed very massive quasars,
when able to maintain high accretion rates close to the Eddington limit down to
z > 6.

2.3 Runaway collisions in stellar clusters

The alternative pathway of black hole formation through stellar clusters has been
investigated to a lesser degree in the context of early Universe black hole formation.
In these star clusters, a very massive star (VMS) may form through repeated
stellar collisions and mergers which may collapse directly to an intermediate mass
black hole (IMBH) if the star becomes massive enough.

The galaxies formed in the early Universe were much more dense than those
we observe in the local Universe, therefore it is likely that the first star clusters
which formed were also significantly denser compared to those observed nearby.
In our local neighbourhood, the most extreme systems can reach stellar densities
of 105M�/pc3 (Espinoza et al., 2009). As these densities are very high, stellar
collisions and mergers are expected to be recurring.

The core collapse and relaxation timescales, besides the main sequence lifetime of
massive stars , are very short compared to the age of the Universe when these
primordial systems formed. Consequently, at these high stellar densities, it is
expected that the mass of the most massive star to form in the cluster is not set
by the fragmentation properties of the gas, but rather by the number of mergers
and collisions between high mass stars, building a VMS in a dynamical process.

The dynamical process for forming an IMBH seed from collisional runaway proceeds
as follows:

• A dense primordial star cluster forms in a metal enriched gas cloud in the
early Universe with total mass Mc, radius Rc, total number of stars N, and
stellar density n. This star cluster will have a given stellar IMF, virial ratio
Q, which determines whether the initial velocities of the star cluster are
dynamically cold, hot, or virialized, a binary fraction b, a fractal degree D, as
well as a degree of mass segregation S. In the absence of gas, direct N-body
experiments show that the star cluster will become spherical rather quickly
(Katz et al., 2015) and the shape of the cluster in the initial conditions
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weakly affects the final outcome.

• Once the star cluster has formed, the massive stars sink to the center of the
cluster due to dynamical friction. This increases the collision probability
of stars in the cluster, as the cross sections of these stars are much larger
than their lower mass counterparts. Once a collision or merger has occurred,
the cross section of the newly formed star increases thus enhancing the
probability for a future collision or merger. This process is clearly unstable
as the star with the largest cross section is most likely to dominate all
subsequent collisions or mergers in the cluster.

• After the collision timescale in the cluster becomes larger than the main
sequence lifetime of the VMS, the star cluster will continue to evolve normally
without many more stellar collisions or mergers. The VMS then evolves
off the main sequence and depending on its mass and metallicity, it may
directly collapse to an IMBH with minimal mass loss (Heger et al., 2003).

This is a simple SMBH seed forming mechanism. Furthermore, the conditions
needed to initiate the process of collisional runaway have been observed in the
local Universe (stellar densities high enough that lead to stellar interactions). For
this reason, collisional runaway remains being explored, as this scenario could be
the dominant seeding mechanism for high redshift SMBHs.

Analytical models by Devecchi and Volonteri (2009) consider the case where
metal enriched birth clouds form at the centers of atomic cooling haloes at high
redshift. In this model, they assumed that Pop. III star formation occurs in the
low mass mini-haloes which merge to form the more massive object, therefore
setting the global metallicity of the halo above the critical value needed for efficient
fragmentation. They assume that a gaseous disk forms and that the Toomre
parameter, a criterion for the stability of differentially rotating disks (Toomre,
1964), is sufficiently high so that the disk does not fragment efficiently. This
allows a massive star cluster to form in the center of the disk which may undergo
collisional runaway. They predict black hole masses of 100− 1000M� forming in
these stellar clusters. Katz et al. (2015) attempted a different approach where
they aimed to form the birth clouds of high redshift Population II star clusters
from first principles, using star cluster initial conditions constrained from high
resolution cosmological simulations. They presented complete studies which tested
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Figure 2.4: (Left) Probability of forming a VMS (top) and maximum mass of a
VMS (bottom) as a function of cluster mass. (Right) Probability of forming a
VMS (top) and maximum mass of a VMS (bottom) as a function of initial central
density. Both the probability of forming a VMS and that mass to which a VMS
grows to are extremely sensitive to the cluster mass and initial central density.
Data points represent results from simulations while solid lines represent linear
fits to the data. All data was taken from Katz et al. (2015).

the multitude of star cluster parameters which may affect the growth of a VMS.

In Figure 2.4, we use the results from Katz et al. (2015) and show how the
probability of forming a VMS in a given cluster as well as the mass of a VMS
changes as a function of initial central density and mass. As the mass and initial
central density are increased, both the probability of forming a very massive star
and the maximum mass a very massive star can increase considerably. These
models showed the subsequent formation of a ∼ 1000M� black hole.

The properties of high redshift star clusters are still highly unconstrained. This
is being addressed via a combination of cosmological and N -body simulations to
sample multiple haloes and constrain the properties of primordial star clusters in
the work of Sakurai et al. (2017), which also showed the formation of black holes
in the first stellar clusters with 400 − 1900 M�. Reinoso et al. (2018) studied
collisions in massive Pop. III clusters, showing there could be resulting black hole
masses of up to 600M�. The resulting evolution of one of their simulations is
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Figure 2.5: Top panel: mass evolution of the runaway star (Mmax(t)/Mini) in a
cluster with N = 5000 stars. Each of these stars has an initial mass ofMstar = 2M�
and an initial radius of Rstar = 200R�. Middle panel: the number of collisions
(Ncol) as function of the crossing time of the cluster is shown. The red line is the
best Gaussian fit. Bottom panel: the mass growth rate dM/dt in Mini T

−1
cr is

shown. Adopted from Reinoso et al. (2018).

shown in Figure 2.5, to illustrate how runaway-collisions occur in dense clusters.

Boekholt et al. (2018) were the first to explore the formation of massive black hole
seeds from a dense stellar cluster, where gas-phase effects like accretion as well as
the resulting enhanced protostellar radii were taken into account, considering the
interaction between stellar-dynamical and gas-dynamical processes. The initially
low mass Pop. III protostars gain mass by accreting from the gas reservoir.
Since the accretion rate may vary with cluster environment and cluster evolution,
they defined 6 different accretion models, in which accretion depends on the
gas availability and position of the protostar. The models are further described
in section 4.4 and summarized in table 4.1. The black hole masses evolution
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Figure 2.6: Time evolution of the maximum mass in the system, for six different
accretion models and standard set of parameters. Except for model 5, all models
efficiently convert at least half of the initial gas mass into one single massive
object. Adopted from Boekholt et al. (2018).

for a standard set of parameters is shown in Figure 2.6. They concluded that
accretion-induced collisions in dense Pop. III protostellar systems, in the presence
of a sufficiently large gas reservoir, are a viable mechanism for explaining the
formation of the first massive black hole seeds. Stellar collisions in primordial star
clusters can give rise to the formation of massive objects of 104 − 105M� for all
the models considered. These topics certainly deserves further exploration and
provide a promising channel for the formation of supermassive black hole seeds.

The latter investigation warranted follow up studies, to improve on the realism of
the implementation and to include additional physics previously not considered.
One important aspect not taken into account was the mass that might get lost
whenever two protostars collide, which is the main focus of our study here.
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Chapter 3

The importance of mass loss in

collision driven scenarios

Mass loss in star collisions potentially plays a huge role in the formation of massive
objects in primordial clusters. Collisions of stars have been explored already to a
considerable extent, previous works include Dale and Davies (2006), that shows
parabolic encounters between low- and high-mass stars and between two high-mass
stars with small periastrons, which resulted in mergers on time-scales of a few
tens of stellar free-fall times (a few tens of hours). Such mergers of unevolved
low mass stars with evolved high-mass stars result in little mass loss; this means
between 2-4% of the total mass.

Gaburov et al. (2008) studied mixing in massive stellar mergers, presenting a
computationally inexpensive method in which they approximated the merger
process, including shock heating, hydrodynamic mixing and mass loss, which was
estimated through energy conservation arguments. They found that mass loss is
reduced in collisions involving stars of significantly different mass, as less kinetic
energy is redirected into the ejecta. Additionally, mass loss was larger in collisions
with evolved stars, due to their weakly bound envelopes . Table 3.1 resumes the
mass loss in the simulations of Gaburov et al. (2008) work. It is worth noting that
the highest mass loss they obtained was 8.9%. Glebbeek and Pols (2008) modelled
central collisions between low mass stars, using a prescription by Lombardi et al.
(2002) for collisions between main sequence stars, obtaining mass losses of a few
percent.
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Table 3.1: Results of simulations on massive stellar mergers by Gaburov et al.
(2008). The model name of the simulations is given in the first column. The
masses of the primary and the secondary stars are shown in the second and the
third column respectively. The evolutionary state of the parent stars is given in
the fourth column: TAMS, HAMS, and ZAMS stand for turn-off age, half-age
and zero-age main sequence respectively. The fifth column shows the number of
SPH particles in the simulations, and the sixth column the mass loss percentage
in each simulation. All the data was taken from Gaburov et al. (2008).

Model M1 M2 Evolutionary state N Mass loss (%)
T88 80 8 TAMS 880k 1.9
H88 80 8 HAMS 880k 0.8
T48 40 8 TAMS 480k 5
H48 40 8 HAMS 480k 2.1
T28 20 8 TAMS 280k 8.9
H28 20 8 HAMS 280k 4.7
Z28 20 8 ZAMS 280k 4.5
T18 10 8 TAMS 180k 8.7
H18 10 8 HAMS 180k 6.8
Z18 10 8 ZAMS 180k 6.4

Glebbeek et al. (2009) used results from direct N -Body simulations, and calculated
how massive a VMS can become if mass loss due to collisions and stellar winds are
taken into account. At solar metallicity, they demonstrate that a star which would
grow to over 1000M� due to collisional runaway when only the N-body dynamics
are considered, may actually only become a star of 100M� at the end of its life
due to the significant amount of mass loss when stellar evolution is considered.
Figure 3.1, shows the growth of the same VMS in a simulations with and without
stellar evolutionary processes from Glebbeek et al. (2009). While the N-body only
run conserves all mass which takes part in the collision, by the end of its life time,
the VMS which has formed in the run with stellar evolution has lost the majority
of its mass due to stellar winds. Even with a considerable amount of mergers,
collisional runaway is very unlikely to produce a massive black hole when the
cluster is at solar metallicity, due to the heavy mass loss from stellar winds. While
stellar winds may prevent the formation of IMBHs in high metallicity clusters at
low redshift, the gas at high redshift has a composition much closer to primordial.

At lower metallicities (i.e. at Z=0.001 rather than Z=0.02) the mass loss rates
are significantly lower, therefore the VMS can retain much of its mass. The
simulations show that VMSs with masses over 260M� can form at this metallicity,
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Figure 3.1: Comparing the growth of a VMS due to collisional runaway with
and without stellar evolution at solar metallicity. Without stellar evolution (black
line) , the direct N -body experiment predicts that this star will grow from an
initial mass of 92.4M� to a final mass of 1118.9M�. When stellar evolution, stellar
winds and mass loss due to the collision are included (red line), the VMS cannot
maintain a large mass and ends up having a final remnant black hole mass of
13.9M�. The data was taken from Glebbeek et al. (2009).
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which suggests that even in the presence of stellar winds, collisional runaway
is still a viable process for forming IMBHs at high redshift. Direct N -body
simulations generally assume a sticky sphere approach such that if the radii of
two stars overlap, then the stars are considered to have merged. However, smooth
particle hydro-dynamics simulations which have studied the mergers of stars
demonstrate that not all mass which enters the collision is actually retained by
the final merger remnant (Dale and Davies, 2006; Trac et al., 2007; Glebbeek
et al., 2013). Depending on the orientation of the collision, for example, whether
it is a grazing merger or head on collision, different amounts of mass can be lost
from the system into the surrounding interstellar medium (Dale and Davies, 2006;
Trac et al., 2007). As mentioned before, the amount of mass lost in the collision
also depends on the types of stars which were involved in the process (Glebbeek
and Pols, 2008). For low metallicity clusters, this effect may be more important
than mass loss due to stellar winds (Katz et al., 2015).

In addition to the mass loss during the merger, kinetic energy may be transferred
into the envelope of the collision remnant which can cause the cross section to swell
by a factor of 100 for some fixed time scale (Dale and Davies, 2006). While this
may enhance the probability of future collisions, if too much energy is provided to
the envelope after it has been expanded, it can be completely driven off resulting
in mass loss which would act against the formation of a VMS (Dale and Davies,
2006).

3.1 Approximations to estimate mass loss

Our aim is to find a realistic prescription for the mass loss fraction. Lombardi
et al. (2002) presented simulations of stellar collisions using SPH, providing the
following prescription to fit the mass ejected by the collision:

φ = C1
q

(1 + q)2
R1,0.86 +R2,0.86

R1,0.5 +R2,0.5

, (3.1)

where φ is the fraction of mass ejected, C1 = 0.1574, q is the mass ratio M2/M1,
and Rn,0.5, Rn,0.86 are the radii containing 50 and 86 percent of mass of the parent
star n (1 or 2). Glebbeek and Pols (2008) found that when the stellar structures
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are more equal, the mass-loss could also be modelled using the simpler prescription

φ = C2
q

(1 + q)2
(3.2)

with C2 = 0.3.

From Schleicher et al. (2013) we get a mass-radius relationship for accreting
primordial protostars:

1000R�
R

=
1000

260(M/M�)1/2
+

1.04yr−1(t− tini(M))

M/M�
. (3.3)

If the timescale for accretion is much larger than the timescale for protostellar
contraction, i.e. tacc � tKH the first term on the right-hand side of the equation
dominates and we have

1000R�
Rn

=
1000

260(Mn/M�)1/2
. (3.4)

Then we can rearrange terms to get the following

Rn = 260

(
Mn

M�

)1/2

R�. (3.5)

Finally we introduce the decimal percentage i of the mass, to calculate the radius
which contains that mass

Rn,i = 260

(
i ∗Mn

M�

)1/2

R�. (3.6)

Now we can determine the quantities

Rn,0.5 = 260

(
0.5 ∗Mn

M�

)1/2

R�, (3.7)

Rn,0.86 = 260

(
0.86 ∗Mn

M�

)1/2

R�. (3.8)

Similarly we analyze the case when tKH dominates, then Equation 3.3 becomes

1000R�
Rn

=
1.04yr−1(t− tini(Mn))

M/M�
. (3.9)
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Rearranging terms
Rn =

Mn

1.04× 10−3M�

1

tKH/yr
R�. (3.10)

We can introduce the decimal percentaje i to obtain

Rn,i =
i ∗Mn

1.04× 10−3M�

1

tKH/yr
R�. (3.11)

And finally calculate the values

Rn,0.5 =
0.5 ∗Mn

1.04× 10−3M�

1

tKH/yr
R�, (3.12)

Rn,0.86 =
0.86 ∗Mn

1.04× 10−3M�

1

tKH/yr
R�. (3.13)

The relevant timescales are given as:

tacc =
M

Ṁ
, tKH =

GM2

RL
,

where we assumed L to be the Eddington luminosity, LEdd = 3.8×104L�(M/M�).
We can now evaluate in each encounter the final resulting mass as follows

Mt = (M1 +M2) ∗ (1− φ), (3.14)

where φ is given by equation 3.1. In order to determine φ, first we have to evaluate
which is the timescale that dominates for each colliding star, then we can use
equations 3.7, 3.8, 3.12, and 3.13 to obtain a final mass formula that will depend
solely on the mass of the parent stars. Depending on the combination of timescales
which dominate the parent star we obtain three cases:

• When tacc dominates for both protostars

Mt = (M1 +M2) ∗
(

1− 0.2059× q

(1 + q)2

)
. (3.15)

• When tKH dominates for both protostars

Mt = (M1 +M2) ∗
(

1− 0.27× q

(1 + q)2

)
. (3.16)
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Figure 3.2: Dependence of f on the mass ratio q, for the Equations 3.15 and
3.16, labeled with the respective timescale that each equation represents, and also
compared with the mass loss values by Gaburov et al. (2008) in Table 3.1. For all
possible q values, the value of f never gets below 0.9.

• When tacc dominates for one protostar, and tKH dominates for the other one

Mt = (M1 +M2) ∗

(
1− 0.157q

(1 + q)2
· 826(M2/tKH2) + 241.11M

1/2
1

480.76(M2/tKH2) + 183.84M
1/2
1

)
. (3.17)

We note that when the same timescale dominates, the mass loss depends solely
on the mass ratio of the components, and when the two stars are dominated by
different timescales, the result will depend also on the Kelvin-Helmholtz timescale
of the parent star which is dominated by this timescale.

Now we describe the final mass of the collision product as follows:

Mt = (M1 +M2) ∗ f(M1,M2, R1, R2), (3.18)

where f is a function that regulates the mass loss effect, and is defined by
f = (1− φ). Due to the nature the obtained equations for the final mass, these
equations will have a defined domain for the values that f can reach. We show
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this domain for Equations 3.15 and 3.16, also comparing them with the values
from Table 3.1, in Figure 3.2. It can be seen that the value of f does not get
below 0.9, even for Gaburov et al. (2008) results, which had the larger amounts of
mass loss in the investigations we studied (e.g. Dale and Davies (2006), Glebbeek
and Pols (2008)). Consequently, we decide that when applying mass loss to our
simulations we would not wander too far from these results, considering a range
of f from 0.85 to 0.99, enough to cover extreme and conservative cases of mass
loss in a hypothetical constant mass loss scenario.
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Chapter 4

Numerical Methods

In order to model our astrophysical system, which consists of Pop. III protostars
embedded in their natal gas cloud, we consider a variety of physical processes
that play a role. These are gravitational N -body dynamics, gravitational coupling
between the stars and the gas, stellar growth in mass and size due to gas accretion,
and stellar collisions. We adopt the ’sticky-sphere’ approximation to treat collisions
between protostars: whenever the distance between two protostars is less than
the sum of their radii, we replace the two protostars by a single object at the
center of mass, with a new mass, and new radius determined by a mass-radius
parametrization further described in Section 4.4.

To determine the value of the mass of this new single object, we have to account
for the mass loss in the collision. This mass loss fraction should take into account
the most important parameters of a collision process. As stated in the previous
chapter, the final mass of the collision product will be described as follows:

Mt = (M1 +M2) ∗ f(M1,M2, R1, R2) , (4.1)

where f describes the mass fraction that is kept during the collision, which we
can assume here to depend mostly on the stellar mass and the stellar structure.
It is conceivable that also the collision velocity may play a relevant role as well
as the difference in the dynamics between two-body and three-body mergers,
but these need to be explored in more detail via hydrodynamical simulations.
It has however been shown in simulations by Gaburov et al. (2010) that the
hydrodynamics of 3-body collisions (a binary and a third star) are well-described
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with the sticky-sphere approximation plus additional mass loss in at least 75% of
all cases. We assume here that the mass being ejected during the merger will be
ejected at high velocities, and consequently escape from the gravitational potential.
It is therefore not being returned to the gas reservoir.

The literature on stellar mergers tells us that in a collision the mass loss depends
on the stellar evolutionary stage (weakly bound envelopes in older stars leads to
higher mass loss), mass and collision parameters, and the final product retains
between 90% and 100 % of the total mass (Dale and Davies, 2006; Gaburov et al.,
2008; Glebbeek and Pols, 2008). In our simulations, we will first assume constant
values for the mass loss, and see how a constant mass loss fraction in every collision
affects the final mass of the most massive object formed in the cluster. If the
final object is massive enough, i.e. reaching at least 1000 M�, we expect that it
will evolve into a massive black hole at the end of its lifetime. So far, simulations
of stellar mergers have focused on collisions between main-sequence stars and
evolved stellar objects, while collisions between protostars have been explored to a
lesser degree in the context of the formation of massive stars (see e.g. Baumgardt
and Klessen, 2011). To our knowledge, mass loss in protostellar collisions has
not been studied in the context of SMBH seed formation. The latter would be
important to better understand the implications of such mergers in scenarios as
the ones considered here. In the absence of further information, and in addition to
constant mass loss scenarios, we adopt the parametrizations derived by Lombardi
et al. (2002) and Glebbeek and Pols (2008) for the mass loss, combining them
with approximate protostellar models from Schleicher et al. (2013) (see Sec. 3.1).

4.1 The AMUSE code

We used the Astrophysical Multi-purpose Software Environment (AMUSE,
Portegies Zwart and McMillan, 2018; Portegies Zwart et al., 2009, 2013; Pelupessy
et al., 2013), which was designed for performing multi-physics simulations as
required for this study. AMUSE has been developed at the Leiden Observatory
under the supervision of Simon Portegies Zwart. The Leiden Observatory is part
of the Leiden University in the Netherlands, while the funding is provided by a
NOVA grant. AMUSE is free to download 1 and to use and provides a very simple

1http://www.amusecode.org
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python interface to existing codes, handling unit conversions so the user can focus
more on the coupling strategies for performing multi-physics simulations. AMUSE
has the flexibility to introduce a mass-radius parametrization for accreting Pop.
III protostars, and to couple it to existing N -body codes. Also, there is currently
an AMUSE github that is frequently being debugged by the community2.

AMUSE contains a variety of codes written in different languages such as C, C++,
and Fortran. These codes are usually free source codes such as ATHENA or MESA
and are referred to as community codes. AMUSE provides a PYTHON interface
where the community codes are loaded and initialized giving them the initial
conditions with generic functions such as code.add_particles(stars) and then run
with functions such as code.evolve_model(t_end). AMUSE provides a simple
way to run simulations combining different codes hiding the complexity of the
numerical implementations.

We assume that the protostars and the gas are distributed equally, following a
Plummer distribution. The protostars will gain mass by accreting from the gas,
and their radii are completely determined by the mass and accretion rate, at
every time step in our simulation. The star-star gravitational interactions are
modelled using the N -body code ph4 (4th order Hermite integrator algorithm in
combination with the time-symmetric integration scheme of Hut et al. (1995)),
and gravitational dynamics of the gas cloud are included by using an analytical
background potential. This potential is coupled to the stars using the BRIDGE
method (Fujii et al., 2007), so that the stars experience the gravitational force
from each other as well as from the gas.

4.2 The Hermite integration scheme

The Hermite integrator scheme is based on a predictor-corrector scenario, this
means, that we will use an extrapolation of the equations of motion to get a
predicted position and velocity at some time, then we will use this information to
get the new accelerations, then correct the predicted values using interpolation,
based on finite differences terms. We can use polynomial adjustment in the
gravitational forces evolution over time, because the force acting on each particle
changes smoothly.

2https://github.com/amusecode/amuse
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This algorithm is considered fourth-order, because the predictor considers the
contributions of the third order polynomial, then, after obtaining the accelerations,
adds a fourth-order corrector term.

Each particle has its own time (ti), timestep (∆ti), position (ri,0) and velocity
(vi,0) at time ti, as well as acceleration (ai,0) and time derivative of acceleration
(ȧi,0) calculated at time ti. The mathematical formulation of the main steps of
the integration are the following: first we predict the position and velocities of all
the particles,

ri,pred = ri,0 + vi,0∆ti +
1

2!
ai,0∆t

2
i +

1

3!
ȧi,0∆t

3
i (4.2)

vi,pred = vi,0 + ai,0∆ti +
1

2!
ȧi,0∆t

2
i . (4.3)

Using the predicted positions and velocities from equations 4.2 and 4.3, we evaluate
the acceleration and its time derivative for a particle i according to the following:

ai =
N∑
j 6=i

Gmj
rij

(r2i,j + ε2)
3
2

, (4.4)

ȧi =
N∑
j 6=i

Gmj

[
vij

(r2i,j + ε2)
3
2

+
3(vi,j · ri,j)ri
(r2i,j + ε2)

5
2

]
, (4.5)

where

rij =rj,pred − ri,pred, (4.6)

vij =vj,pred − vi,pred, (4.7)

and ε is a softening parameter. The corrector is based on the third order Hermite
interpolation constructed using a and ȧ at times ti and ti + ∆ti. The third order
Hermite interpolation polynomials for the acceleration terms are expressed as:

ai =ai,0 + ∆tiȧi,0 +
∆t2i
2!

a
(2)
i,0 +

∆t3i
3!

a
(3)
i,0 (4.8)

ȧi =ȧi,0 + ∆tia
(2)
i,0 +

∆t2i
2!

a
(3)
i,0 , (4.9)

where ai,0 and ȧi,0 are the acceleration and its derivative calculated at time ti. We
do not know the second and third acceleration derivatives a(2)

i,0 and a
(3)
i,0 . However,

we can use Equations 4.4 and 4.5 to calculate ai and ȧi, in order to replace them
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in equations 4.8 and 4.9. Then it is easy to show that:

a
(2)
i,0 =

−6(ai,0 − ai)−∆ti,0(4ȧi,0 + 2ȧi)

∆t2i,0
(4.10)

a
(3)
i,0 =

−12(ai,0 − ai)− 6∆ti,0(ȧi,0 + ȧi)

∆t3i,0
. (4.11)

where ai and ȧi are the acceleration and its derivative at the time ti + ∆ti. The
correction formulae for the position and velocity are expressed now as:

ri =ri,pred +
∆t4i
4!

a
(2)
i,0 +

∆t5i
5!

a
(3)
i,0 , (4.12)

vi =vi,pred +
∆t3i
3!

a
(2)
i,0 +

∆t4i
4!

a
(3)
i,0 . (4.13)

Finally, it is necessary to calculate the next time-step for the i particle (∆ti,1) and
time t using the following formulas:

ti,1 =ti,0 + ∆ti,0 (4.14)

∆ti,1 =

√√√√η
|ai||a(2)

i |+ |ȧi|2

|ȧi||a(3)
i |+ |a

(2)
i |2

(4.15)

where η is a parameter that controls accuracy, ai and ȧi are already known, a(3)
i

has the same value as a(3)
i,0 , due the third-order interpolation; and a

(2)
i is given by:

a
(2)
i =a

(2)
i,0 + ∆ti,0a

(3)
i,0 (4.16)

In many applications, allowing the time step to change in time can offer a
great saving in computational cost, but variable-size time steps usually imply
a substantial degradation in energy conservation. Hut et al. (1995) present an
algorithm for choosing time steps in such a way as to guarantee time symmetry
in any integration scheme, thus allowing vastly improved energy conservation for
orbital calculations with variable time steps. The ph4 code in AMUSE applies
this algorith to a high order integrator as it is the Hermite scheme.
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4.3 The Bridge scheme

The Bridge integrator (Fujii et al., 2007) provides a symplectic mapping for the
gravitational evolution in cases were the dynamics of a system can be split into
different regimes. The compound nature of the Bridge integrator makes it an ideal
target for inclusion within AMUSE, and a generalized Bridge-type gravitational
integrator has been implemented in AMUSE. The Bridge formulation can be
derived from an Hamiltonian splitting argument; consider the Hamiltonian:

H =
∑

i∈A∪B

p2i
2mi

+
∑

i 6=j∈A∪B

Gmimj

‖ri − rj‖
. (4.17)

This can be divided into three parts:

H =
∑
i∈A

p2i
2mi

+
∑

i 6=j∈A

Gmimj

‖ri − rj‖
+
∑
i∈B

p2i
2mi

+
∑

i 6=j∈B

Gmimj

‖ri − rj‖
+

∑
i∈A,j∈B

Gmimj

‖ri − rj‖

(4.18)

H = HA +HB +H int
A,B (4.19)

with HA and HB the Hamiltonians of subsystems A and B respectively and the
cross terms are collected in H int. Now the idea behind the Bridge method becomes
more clear, we can perform a time evolution of the system A using a fast tree
method and a more accurate time evolution of the system B using a direct method,
whereas the interaction is treated as pure momentum kicks. In AMUSE these
momentum kicks are computed with a Leapfrog scheme and we can use different
codes for treating systems A and B.

4.4 Numerical Setup

The parameters that specify the initial conditions in the simulations are the total
gas mass, Mg; the cut-off radius of the gas cloud, Rg; the number of protostars,
N ; and the average accretion rate, ṁ. We begin our simulations considering the 6
different accretion scenarios defined in Boekholt et al. (2018), which are based on:

• Finite or infinite gas reservoir, where the second resembles a system that is
constantly being fed fresh gas, contrary to the finite gas reservoir models,
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Figure 4.1: Time evolution of the mass of the central object, for six different
accretion models. All models, except for number 5, efficiently convert gas mass
into one massive object. Here no mass loss is assumed during the collisions.

where we remove the accreted gas from the reservoir, thereby depleting the
reservoir. Once it is fully depleted, the accretion rates are set to zero.

• Position dependent accretion rates, that set the accretion rate proportional
to the local gas density. In this way the protostars in the core accrete at a
higher rate than protostars in the halo.

• Time dependent accretion rates, where we further assume the accretion rate
to be proportional to the remaining gas reservoir. We start with the same
initial rates, which are decreased as gas is depleted from the reservoir.

The 6 different models are summarized in Table 4.1. Figure 4.1 shows the efficiency
of the models on converting the gas mass into one massive object.

We also consider the standard set of parameters used in Boekholt et al. (2018),
which are: Mg = 105M�, Rg = 0.1 pc, N = 256, ṁ = 0.03M�yr−1, and mass-
radius parametrized tracks based on detailed calculations by Hosokawa et al.
(2012), which depend on the accretion rate of the protostar. These tracks are
shown in Figure 4.2.

Thus, the radius of a protostar is completely determined by its mass and accretion
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Figure 4.2: Parametrizations of the mass–radius evolution of accreting Pop.
III protostars based on Hosokawa et al. (2012). The different colors represent
different parametrizations for different accretion rates. Adopted from Boekholt
et al. (2018).
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Table 4.1: Different accretion models studied.

Model Gas Position dependent Time dependent
reservoir accretion model accretion model

1 Infinite No No
2 Infinite Yes No
3 Finite No No
4 Finite Yes No
5 Finite No Yes
6 Finite Yes Yes

rate. At every time-step in the simulation, we keep track of these two quantities
and update the radius of the protostar. For values of the accretion rate in between
the parametrized mass– radius tracks, we use interpolation between the two nearest
tracks in log-space.

The initial mass of the protostars is set to m0 = 0.1M� (We note that the mass of
the protostar subsequently starts to evolve quickly due to the accretion recipes as
well as mergers). This choice of parameter values reflects that we are particularly
interested in very massive Pop. III protostar clusters and the formation of very
massive objects. We also varied the factor f between 0.85 - 1.00 in steps of 0.01.
In order to have good statistics we performed 5 simulations for each value of f
per model through models 1, 2, 3, 4 and 6, and 3 simulations for model 5.

As we work with a constant mass loss, we have to consider that in the case of
a collision of a very massive object with a light one, the sum of their masses
multiplied by a constant factor smaller than 1 could give a final mass smaller
than the mass of the most massive collision component. We decided to perform
two types of simulations, one that allows for a decrease in the total mass after a
collision and also one that just allows for the mass to increase. In the second case,
if the mass of the collision product is less than the previous mass, we decided
to set the collision product mass equal to the mass of the most massive collision
component.

We determine if a simulation is finished by keeping track of the average collision
rate

νav(t) =
Ncol(t)

tlast collision
(4.20)
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and an upper limit of the current collision rate,

ν(t) =
1

t− tlast collision
. (4.21)

If the ratio of ν/νav < 0.015 we stop the simulation. This criterion was chosen to
make sure that most of the collisions have occurred.

4.5 Code adaptation

In this section we describe the modifications made to the collisions code
in order to adapt it to our requirements, i.e, including mass loss in stellar
collisions. The function that regulates the collisional behavior of the star is
called handle_encounter, and we have to modify it differently depending on the
mass loss scenario that we want.

For constant mass loss

For constant mass loss, our main task is to add a function that changes depending
on how much mass we want the stars to lose in each collision. First we sort the
index of the stars, so the higher mass star has the primary index. The mass loss
input for this function is a factor k, which is going to multiply the sum of the
masses of the parent stars. In the case that this product is less than the mass
of the less massive stars, we adopt the mass of the more massive star to the new
star. These implementations can be coded as follows:

1 def handle_encounter(stars , index1 , index2 , mr_mode ,k):

2 # Make a CoM particle

3 p = Particle ()

4

5 p.index = stars[index1 ]. index + "_" + stars[index2 ]. index

6 index_primary = index1

7 index_secondary = index2

8 if stars[index2 ].mass > stars[index1 ].mass:

9 index_primary = index2

10 index_secondary = index1

11

12 p.mass = (stars[index1 ].mass + stars[index2 ].mass)*k



36 4.5. Code adaptation

13 if p.mass < stars[index_primary ].mass:

14 p.mass = stars[index_primary ].mass

For the analytic prescription

Now, we want to code the analytic prescription described in Section 3.1, specifically
Equations 3.15, 3.16, and 3.17. We start by sorting the index as in the previous
modification. Then we calculate the accretion timescale and Kevin-Helmholtz
scale for each of the parent stars. Depending on which timescale dominates for
each star we will have four scenarios, each one with a different formula for the
final mass. The coding is as follows:

1

2 def handle_encounter(stars , index1 , index2 , mr_mode):

3 # Make a CoM particle

4 p = Particle ()

5

6 p.index = stars[index1 ]. index + "_" + stars[index2 ]. index

7 index_primary = index1

8 index_secondary = index2

9 if stars[index2 ].mass > stars[index1 ].mass:

10 index_primary = index2

11 index_secondary = index1

12

13 mdot1 = stars[index1 ].mdot

14 mdot2 = stars[index2 ].mdot

15 M1=stars[index1 ].mass.value_in(units.MSun)

16 R1=stars[index1 ]. radius

17 R2=stars[index2 ]. radius

18 M2=stars[index2 ].mass.value_in(units.MSun)

19 L1=3.8e4*M1|units.LSun

20 L2=3.8e4*M2|units.LSun

21 g=constants.G

22

23 tacc1=stars[index1 ].mass/mdot1

24 tacc2=stars[index2 ].mass/mdot2

25 tkh1=g*stars[index1 ].mass **2/( R1*L1)

26 tkh2=g*stars[index2 ].mass **2/( R2*L2)

27 q =stars[index_secondary ].mass/stars[index_primary ].mass

28

29 if tacc1 <tkh1:
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30 if tacc2 <tkh2:

31 p.mass = (stars[index1 ].mass+stars[index2 ].mass)

*(1 -0.27*q/(1+q)**2)

32 else:

33 p.mass = (stars[index1 ].mass+stars[index2 ].mass)

*(1 -0.157*(q/(1+q)**2) *(826.92* M1/tkh1 +241.11* M2 **(0.5))

/(480.76* M1/tkh1 +183.84* M2 **(0.5)))

34 else:

35 if tacc2 <tkh2:

36 p.mass = (stars[index1 ].mass+stars[index2 ].mass)

*(1 -0.157*(q/(1+q)**2) *(826.92* M2/tkh2 +241.11* M1 **(0.5))

/(480.76* M2/tkh2 +183.84* M1 **(0.5)))

37 else:

38 p.mass = (stars[index1 ].mass+stars[index2 ].mass)

*(1 -0.2059*q/(1+q)**2)

After the coding is done, we run the simulations. As they are not expensive,
because of the number of particles, we can run them on a standard computer. For
the same reason we ran as many as we could to have better results. We have six
different accretion models, fifteen different values given to the mass loss factor
f , and we ran each scenario five times for statistical purposes, except model five
which was ran three times per f value. We did this twice, considering scenarios
when the mass of the most massive object could also decrease. In addition, we
ran five simulations for each accretion model for the analytical prescription. This
adds up for a total of 870 simulations we completed successfully.
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Chapter 5

Main Results

The main goal of our simulations is to better understand how the mass of the
central object in the cluster changes when mass loss is considered. In the first
simulations, we considered constant values for the factor f that regulates mass
loss during collisions, and studied how the cluster evolves.

The simulations start with a cluster of single protostars. As the system evolves,
different collision products will form due to collisions between the protostars. Also,
dynamical encounters among protostars can eject them from the cluster. Thus
we define four categories to which a protostar in the simulation can be part of:
i) single protostar: which are part of the cluster but are not part of a collision
product, ii) the most massive collision product, iii) a less massive collision product,
and iv) an escaper: which are stars that are far away from the cluster with positive
energy. All the results and methods are described in Alister Seguel et al. (2020).

5.1 Simulations considering constant mass loss

5.1.1 Restricted scenario where mass is only allowed to

increase

We first present the results obtained when performing simulations where the mass
is only allowed to increase after a collision. In Table 5.1 we show an overview of
the results of all the simulations, for all the models studied, in these constant mass
loss simulations. The mass loss is described by the value of f , which represents
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Table 5.1: Average final masses of the most massive object, obtained in
simulations for constant mass loss, where 100f is the mass percentage retained per
collision. For each model the table shows the average final mass after a simulation,
the percentage this mass represents in comparison to the total mass obtained
without mass loss, and the σ error for the mass.

Model 1 Model 2 Model 3
100f Mass (M�) % σ Mass (M�) % σ Mass (M�) % σ

85 22009 20 2773 32290 23 11543 6627 8 1545
86 23731 21 2880 29803 21 6309 7021 9 982
87 23059 20 3406 31503 23 5217 7456 9 969
88 25666 23 1779 32230 23 7701 9209 11 1401
89 25428 23 1779 35371 25 6411 9826 12 1035
90 28942 26 3107 36110 26 2848 11274 14 1885
91 32182 29 2534 41123 30 15663 11586 14 1490
92 29457 26 2536 35436 25 7196 12674 16 1187
93 35107 31 2051 40799 29 2753 13496 17 1711
94 34242 31 4554 45533 33 9741 15921 20 1994
95 37147 33 3169 52715 38 8233 16082 20 1085
96 45838 41 3014 55783 40 5746 17400 22 2013
97 45031 40 5176 52618 38 7082 22053 28 1171
98 59486 54 2912 66223 48 13031 27167 34 1328
99 81334 73 6440 95491 69 5054 39667 50 2165
100 109992 100 8822 136457 100 16177 77962 100 5392

Model 4 Model 5 Model 6
100f Mass (M�) % σ Mass (M�) % σ Mass (M�) % σ

85 14840 17 1736 2178 16 161 12862 18 1510
86 14927 17 2495 2642 20 370 13652 19 2504
87 15027 17 1867 3479 26 550 16112 23 3814
88 15810 18 2341 3332 25 131 17559 25 975
89 16099 19 2016 3943 30 107 17791 25 1034
90 17651 20 1131 3429 26 1387 16561 24 2048
91 19384 22 1669 4439 34 426 18374 26 2725
92 19912 23 1362 4186 32 520 18982 27 1885
93 21854 25 2613 5157 39 242 21958 32 1311
94 23655 27 1813 5092 39 1095 20362 29 1650
95 26838 31 3160 6621 51 464 24351 35 3623
96 28448 33 837 8287 64 670 25074 36 3173
97 32457 38 1224 7515 58 127 28820 42 3246
98 38402 45 1601 8971 69 845 32367 47 2203
99 51641 60 1089 11760 90 1262 45806 66 1125
100 84671 100 4570 12925 100 2214 68615 100 3477
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Figure 5.1: Fraction of stars over time corresponding to four categories: escapers
(red); stars that have collided with and are part of the most massive star in the
system (green, ‘Massive object’); stars that are part of other collision products
(orange, ‘Collision prod.’); and single stars (blue), for different models, and different
values for the fraction of mass conserved after a collision f . The general trend
for the models is that the fraction of stars being part of the most massive object
decreases when f decreases. Adopted from Alister Seguel et al. (2020).

the fraction of mass that remains after a collision. The table shows the value of
the average final mass for the most massive object at the end of the simulation
from multiple random realisations, the percentage that the mass represents in
comparison to the final mass when no mass loss is considered, and the standard
deviation σ for the mass, considering a set of five simulations for every model,
except for model five with just three simulations.

We also present the time evolution of the fraction of protostars belonging to each
of the previously defined categories in Figure 5.1 in a single simulation, for the
position independent models (1, 3 and 5), which are representative for the different
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kind of behaviours seen on our models. When f = 1 (i.e. there is no mass loss),
the majority of protostars end up in the final most massive object for models 1
and 3, while most of the stars do not undergo merger events in model 5. In the
first models, as a result of gas accretion, the protostars are growing in radius,
because protostellar mass and accretion rates are also increasing, thus getting a
larger cross-section, resulting in a high collision probability in this environment.
As we decrease the value of f , the fraction of objects that become part of the most
massive object decreases, but the number of protostars that escape, or take part
in a less massive collision product increases, as a result of the lower gravitational
potential at the center of the cluster, due to less mass in that area. In model 5,
because of the uniform accretion, the central object in this model is less massive,
and due to the time-dependent accretion, the protostellar radii shrink again as
the cluster runs out of gas. We observe that most of the stars remain single, and
we see a higher fraction of escapers than in the other models; as we decrease f ,
the fraction of single stars becomes higher while the other fractions decrease.

Figures 5.2, 5.3, and 5.4, present the collision rate (bottom panels) in a single
simulation, and correlate it with the total star and gas mass (top panels), the
fraction of stars belonging to the four categories defined earlier (second panels), and
the radius of the most massive protostar and the average radius of all the remaining
protostars (third panels), where the average radius is the number averaged radius
of all stars except the most massive one, for the three position independent models
1, 3, and 5, using f = 0.9, 0.96 and 1. In every model the collision rate starts
to increase rapidly on a timescale of the order of 104 years after the simulation
has begun, which is short compared to the total duration of the simulation. This
timescale corresponds to the time it takes for the protostars to gain mass and
obtain a larger radius, and also for the total stellar mass to be comparable to
the gas mass. After reaching its peak, the collision rate decreases steadily and
a small amount of objects starts to escape. The protostars grow rapidly and
make the system stellar-mass dominated, producing dynamical encounters and
collisions. For model 1 we find that the stars have a tendency to form a massive
central object, with a low rate of escapers through the simulation, and as model 3
presents an equally efficient way to form a massive object, the rate of escapers is
higher, especially at later times. Model 5 forms an object of moderate mass of
∼ 4000M�, and presents a steady escape rate.
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Figure 5.2: Correlation of the time evolution of the collision and escape rate
(bottom panel) with: total star and gas mass (top panel), fraction of stars belonging
to the same four categories as in Fig. 5.1 (second panel), and maximum stellar
radius and average stellar radius of the remaining stars (third panel), for three
different and representative values of the retained mass fraction f . Adopted from
Alister Seguel et al. (2020).
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Figure 5.3: Same as Fig. 5.2 for model 3. Adopted from Alister Seguel et al.
(2020).
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Figure 5.4: Same as Fig. 5.2 for model 5. Adopted from Alister Seguel et al.
(2020).



5.1. Simulations considering constant mass loss 45

86 88 90 92 94 96 98 100
f [%]

0

20000

40000

60000

80000

100000

120000

140000

160000

Fi
na

l m
as

s (
M

)

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

Figure 5.5: Final mass of the most massive object at the end of each simulation,
as a function of the retained mass fraction f , for each model described. The bar
at each point simulated represents the σ error considering 5 simulations for each
f per model. Adopted from Alister Seguel et al. (2020).

The comparison between the scenarios with different values of f is clear. A lower
value of f corresponds to a lower value in the total stellar mass of the system,
and a lower fraction of the number of stars that form the most massive object in
the cluster, also increasing the number of objects that escape. The average radius
of the stars does not seem to be affected, but it is clear that the radius of the
most massive object also decreases with f . The biggest difference is between f
values of 0.96 and 1. For 0.9 and 0.96, while there are differences, they are more
subtle and not as important, which suggests that between this range of higher
mass loss the simulations evolve in a similar way, so changing the value of f is
not as fundamental in this regime.

Now, to understand the effect on the final mass of the central object, we show the
final mass as a function of f in Figure 5.5, for all the simulations we performed
in a scenario where the mass is restricted to only grow. We find that for models
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1 and 2 the behaviour of the curve changes abruptly when f reaches a value of
∼ 0.96, for models 3, 4 and 6 there is also a sudden change of behaviour around
the same value, but not as steep as the first one, while model 5 does not present
this abrupt change. It is easy to see that there is a steep dependence on f in
the interval f = [0.96− 1.00], where the mass of the final object changes steeply
with the precise value of f , so that even a small mass loss fraction is still relevant,
obtaining values of almost one third of the mass obtained in simulations where
mass loss is not considered. On the other hand, in the range f = [0.85, 0.96],
changes in the value of f do not lead to a big change in the final mass obtained.
This suggests that when considering a constant mass loss per collision, there is a
breaking point where the mass loss fraction is a deciding factor in the resulting
final mass of the most massive object. For high values of f , the growth of the
mass is dominated by collisions, and for lower values, it is dominated by accretion,
explaining why at these lower values a change in mass loss is not as relevant.
Here, as mass has a direct effect on the cross section and gravitational potential of
the protostars, there would not be as many collision as if f where higher (which
represent more massive stars), thus explaining the change of behaviour. It also
explains why model 5 is not as affected with the f changes, as this model is the
most conservative and few collisions take place.

Another point to consider when reaching values of f of ∼ 0.96, is that the typical
masses of the protostars, around the final stages when they collide, are between
500− 1000M�, while the central object has a mass of the order of several 105M�,
therefore the mass loss is comparable to the mass gain during the collision, reducing
the net effect. Considering the accretion rate, mass increases by about 300M� in
0.01 Myr, so for this range of values of f the mass loss during collisions with the
massive object becomes comparable to the mass that has previously been accreted.
This adds up to the previously stated circumstances where for lower values of f
the growth of the mass is not dictated by collisions, but by the accretion rate of
the protostars.

5.1.2 Unrestricted scenario where mass is also allowed to

decrease

Our second scenario for constant mass loss is one where the total mass of colliding
objects is allowed to decrease after a collision. We performed the same type
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Figure 5.6: Time evolution of the mass of the central object, for six different
accretion models considering a 10% mass loss per collision. On the left we show
a restricted model (a) which only allows mass to increase, and on the right an
unrestricted model which allows mass to decrease after a collision. All models,
except for number 5, efficiently convert gas mass into one massive object. Adopted
from Alister Seguel et al. (2020).

of simulations as in the previous case, and then decided to compare both of
them directly. Our first comparison was between the efficiency of the models to
produce a massive object on a given timescale, for a given value of f . We used
a value of 0.9 (i.e. a mass loss of 10% per collision), as this represents a lower
limit in the literature, and it is a considerable amount of mass loss in any case.
Figure 5.6 shows the growth of the most massive object for a restricted and an
unrestricted scenario, demonstrating that when allowing for the mass to decrease
after a collision, the efficiency to create a massive object decreases. Considering
that sooner or later the central object would collide with low mass objects, this
decrease was to be expected. Despite this, the unrestricted model still is able to
create very massive objects on the given timescale. This mass is not the total
mass of the central object obtained at the end of the simulation, but gives us
insight on what we could expect, given the initial efficiency to create a massive
object, and that the number of collisions over time has already reached its peak.

Now we can show the how the value of f affects the final mass of the central
object in this scenario, and how this value differs from the previous case. For that,
we compare the final mass obtained in the restricted and unrestricted scenarios
as a function of f , for each model separately, in Figure 5.7. The first thing to
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note is that they follow the same global behaviour, there is a step dependence on
the f value in the f interval [0.96-1], while for lower f values a change in f does
not affect significantly the final mass obtained. Naturally, when f approaches 1
the mass we are going to obtain is the same as if we do not consider mass loss
at all in the simulations, regardless of the kind of scenario we are in, restricted
or unrestricted, so it is to be expected that both types of simulations behave the
same at high f values. Contrasting the mass difference for these high values of f
between the models we note that it is almost negligible, for all the models. In
particular, we note that in models 1 and 3 there is very little difference between
restricted and unrestricted case, across all the values of f tested, while in models
2, 4 and 6 the difference between these scenarios is more notorious for values of f
lower than 0.96. Model 3 exhibits a more erratic behaviour at higher f values,
but the masses obtained for both models are in the same range.

These results tells us that in the range where changes in f are crucial (i.e. f in
the range 0.96-1), the results do not sensitively depend on the type of scenario,
restricted or unrestricted. As for lower values of f , there are distinguishable
differences, particularly for position dependent accretion models, where the mass
in the unrestricted case can be as half as much of the restricted one as that in
this regime. This could be explained by the fact that the unfrequent collisions
may even remove some of the gas that has been accreted before.

5.2 Simulations considering the analytical

prescriptions

Lastly, we performed simulations using the mass loss parametrizations from
Glebbeek and Pols (2008) (Equation 3.2), and Lombardi et al. (2002) (Equation
3.1) combined with the Schleicher et al. (2013) mass-radius relationship (Equation
3.3). Equation 3.2 presented us a simple prescription for mass loss, where the f
domain is limited, as shown in Figure 5.8, where is clear that in this prescription
the mass loss per collisions will never exceed an 8%. Equations 3.15, 3.16, and
3.17 presented us four different cases for mass loss depending on the parent star.
For each model we performed five simulations using these parametrizations, while
for model five we just performed three. The final mass averages obtained after
these simulations are given by Table 5.2, where we also show the projected f value
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Figure 5.7: Comparison of models where the mass of the most massive object
can only increase (black line) after a collision, and models that allow a decreasing
mass (red). Each point in each plot has a bar representing the σ error considering
5 simulations for each retained mass fraction f per model. Adopted from
Alister Seguel et al. (2020).



50 5.2. Simulations considering the analytical prescriptions

0.0 0.2 0.4 0.6 0.8 1.0
q

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
f

Glebbeek et al. (2008)

Figure 5.8: Dependence of f on the mass ratio q, for the Equation 3.2 from
Glebbeek and Pols (2008). For all possible q values, the value of f never gets
below 0.92

that would have corresponded to that final mass in a constant mass per collision
scenario, the mass percentage of the final mass in relation to a scenario without
mass loss, and the σ error per model and prescription.

The average final masses obtained are compared with the final masses of a constant
mass loss restricted scenario. It shows that we can consider the prescriptions
to be equivalent to a certain constant mass loss scenario. Fig. 5.9 shows the
results we get for both prescriptions used, compared with the result we previously
had in the constant mass loss scenario, for each accretion model separately. In
general, the trend is that the prescriptions can be compared to a constant mass
loss configuration where f ∼ 0.99, nonetheless, the exact value depends on the
accretion model we consider. We also note that the parametrization using the
Schleicher et al. (2013) protostellar models gives slightly higher values for the
final mass than the simpler prescription by Glebbeek and Pols (2008), and the
dispersion between them depends also on the accretion model we consider. In
most of the simulations, the central object will collide with objects much less
massive, making the mass ratio q smaller, thus giving lower values for the mass
loss. This explains why for the parametrizations used the final mass obtained can
be compared with a high f constant mass loss scenario, as in both cases the mass
loss are low.
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Table 5.2: Overview of the results of the simulations using the mass loss
prescriptions by Glebbeek and Pols (2008), and Lombardi et al. (2002) combined
with Schleicher et al. (2013) mass-radius relationship for protostars. We including
the average final mass, projected f value which corresponds to that final mass in
a constant mass loss scenario, percentage of the total mass compared to a scenario
without mass loss, and the standard deviation σ for each set of simulations.

Glebbeek Lombardi - Schleicher
Model Mass (M�) f % σ Mass (M�) f % σ

1 78003 98.84 74 3148 89151 99.33 85 6041
2 96714 99.03 70 13035 109889 99.35 80 6465
3 42214 99.06 54 6361 51240 99.30 65 3195
4 55610 99.12 65 2370 63185 99.34 74 2356
5 7683 97.11 59 1678 8737 97.83 67 920
6 46980 99.5 68 3135 55595 99.42 81 2752

In general, for all the mass loss scenarios studied, constant mass loss and mass loss
dictated by prescriptions, we can obtain masses of the order of 104M� and higher,
except for model five for specific, extreme f values. These results are compatible
with the mass that SMBH seed need to grow into the high redshift SMBHs we see
today.

As the parametrizations used are modeled after collision of main sequence stars, a
possibility to consider is that they underestimate the real mass loss between a
collision of protostars, considering that fundamental properties, such larger cross
sections, or weakly bounded envelops, that could affect the merging between two
of these objects. Further studies in protostar collisions will provide more detailed
answers.
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Figure 5.9: Results of simulations using the mass loss prescriptions by Glebbeek
and Pols (2008), and Lombardi et al. (2002) combined with Schleicher et al. (2013)
mass-radius relationship for protostars. These results are compared with the
restricted constant mass loss scenario. The dashed line in each plot represents
the simpler prescription given by Equation 3.2, meanwhile the dash-dotted line
represents the results of the more complex parametrization given by Equation
3.1 .Each line represents the mean of final mass for 5 simulations. Adopted from
Alister Seguel et al. (2020).
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Chapter 6

Summary and Conclusions

We have presented a study of how the mass loss during collisions can affect the
final mass during the formation of SMBH seeds, formed through collisions and
accretion, in a dense, primordial Pop. III protostellar cluster. We take into account
standard cluster parameters as introduced by Boekholt et al. (2018), which ensure
the production of massive black hole seeds. We investigated the effect of mass
loss by a constant fraction of the told mass per collision. We perform a series of
simulations using the AMUSE framework, which included N -body dynamics, an
analytical gas potential, different accretion models, mass-radius parametrizations,
and stellar collisions.

Investigations on mass loss in collisions of stars provide information how much
mass loss we could expect between certain kind of stars, but protostellar collisions
have not been explored yet.

In our work, we first present the time evolution of the stellar components of the
cluster for our representative accretion models in Figure 5.1, which shows that
for higher mass loss, the fraction of stars which become part of the most massive
object decreases, while the single stars and escaper fraction gets larger, due to
the fact that the cluster gravitational potential becomes smaller when mass loss
increases. Our results can be summarized as follows:

• We present the results of our first simulations in Figure 5.5 , which shows
the dependence of the final mass of the most massive object with the factor
f that describes mass loss. We can clearly see two distinct behaviors, for
higher values of f the mass depends steeply on its value, while for lower
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values the final mass does not change much with f , this can be explained
because at the higher end of the plot the growth of the mass is dominated
by collisions, and accretion dominates for the lower end.

• When comparing the previous scenario with scenarios that allow for a
decrease, in Figure 5.7 we see that the differences between scenarios are
more significant for lower values of f , while for higher values there is not
much difference. This shows that in the range where changes in f are
important, whether or not we allow for the mass of an object to decrease
after a collision is not really relevant. In this context, a constant mass loss
of 5% represents a final mass between 60-80% lower (50% for model 5) than
the mass we would get if we did not consider mass loss in our models.

• Also, comparing the results of the constant mass loss simulations with more
complex mass loss parametrizations by Lombardi et al. (2002) and Glebbeek
and Pols (2008), using the Schleicher et al. (2013) mass-radius relationships
for primordial protostars gives us different results. The obtained results tell
us that these analytical models are equivalent to scenarios of constant mass
loss of ∼1% per collision. However, this low mass loss percentage can have
a great impact on the final mass of the object, that could lose between 15
to 40% of its mass depending on the accretion model we study.

6.1 Discussion

Our investigation gave insight on the effect of mass loss during collisions, in the
formation of a possibly SMBH seed. We used simplified models for the mass loss
and analytical models in the literature by Lombardi et al. (2002) and Glebbeek
and Pols (2008). These models are limited, first, in the sense that a constant
fraction of mass loss for every collisions is not the most realistic approach, as
mass loss is affected by the properties of the stars themselves, such as the relative
velocity at the moment of the collision, and the position of the stars relative to
another, or their masses and evolutionary stage, so a constant mass loss scenario
is very simplified. The analytical prescriptions that we used were shown to work
well for main-sequence stars, but they could potentially underestimate the mass
loss in protostars, as the properties between these two kind of stars are different.
Despite these limitations, we were able to get final masses of the order of 104M�,
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which can be considered massive enough to be SMBH seeds, even in the most
extreme scenarios. We can conclude that mass loss plays an important role on the
final mass of the object formed, but despite this, the runaway collision model we
explored is still a strong candidate for explaining the SMBHs we see nowadays.

There is still ongoing research on the formation and evolution of primordial dense
clusters. Our cluster model was simplified, as we did not assume any initial mass
function, and it adopts the Plummer sphere distribution for the stars, and for the
gas. In order to obtain the most accurate results it is also important to improve
the current models. An initial mass function may trigger a mass segregation that
would favour the formation of more massive objects, but lead to more ejected
stars, particularly if they are not as massive.

The mass loss in collisions of primordial protostars has not been studied, and
given the influence of mass loss in the context of the formation of SMBH seeds,
it is important to explore this in more detail in the future, via hydrodynamical
simulations, considering also three-body mergers and different relative velocities,
with the aim to derive approximate relations that can subsequently be employed
in accurate N -body models. Despite not knowing some characteristics of the
primordial stars clusters, there is ongoing research dedicated to better understand
the early evolution of the first star clusters and the formation of massive objects
in their center. The runaway collision scenario is promising for the formation
of very massive objects, and new models will shed more light on the formation
processes of SMBHs.
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