Universidad de Concepción
Dirección de Postgrado
Facultad de Ciencias Físicas y Matemáticas -Programa de Magíster en Matemática

El problema de Büchi para números p-ádicos (Büchi's problem for p-adic numbers)

MARIANELA ISABEL CASTILLO FERNÁNDEZ CONCEPCION-CHILE 2011

Introduction

Motivated by a mathematical logic problem, J.R. Büchi proposed the following problem in the early 1970's.
Problem (Büchi's problem). $\mathbf{B}^{2}(\mathbb{Z})$. Does there exist a positive integer M such that any sequence of M integer squares, with second difference constant equal to the constant sequence $(2)_{n}$, is of the form $\left((x+n)^{2}\right)_{n}$, where $n=$ $1, \ldots, M$, for some integer x ?

Büchi's problem is open. However, in 2001, P. Vojta showed that it would have a positive answer if Bombieri's conjecture were true for surfaces.

In [12], Pheidas and Vidaux proposed a generalization of Büchi's problem to any unitary commutative ring and to higher powers.
Definition. Let $k \geq 0$ be an integer. A sequence of elements of a unitary commutative ring A of characteristic 0 is called a k-Büchi sequence in A if the sequence of its k-th powers has k-th difference constant equal to $(k!)_{n}$. Every sequence whose sequence of k-th powers is of the form $\left((x+n)^{k}\right)_{n}$ for some x in A will be referred to as trivial k-Büchi sequence.

Note that a trivial k-Büchi sequence is a Büchi sequence. Büchi's problem is generalized as follows.
Problem. $\mathbf{B}^{k}(A)$. Let $k \geq 2$ be an integer and A a unitary commutative ring of characteristic 0 . Does there exists an integer M such that every k-Büchi sequence in A of length M is trivial?

Observe that if $\mathbf{B}^{k}(A)$ has a positive answer, then for any subring B of $A, \mathbf{B}^{k}(B)$ has a positive answer. In this thesis, we are interested in those rings for which Büchi's problem has a negative answer in a non-trivial way (intuitively, rings with not too many k-powers). For example, if $A=\overline{\mathbb{Q}}$ is the field of algebraic numbers, every sequence of the form

$$
\left(x_{1}, x_{2}, x_{3}=\sqrt{2+2 x_{2}^{2}-x_{1}^{2}}, \ldots, x_{M}=\sqrt{2+2 x_{M-1}^{2}-x_{M-2}^{2}}, \ldots\right)
$$

is a 2-Büchi sequence (which, in general, is non-trivial). With a similar idea, one sees easily that $\mathbf{B}^{k}(\overline{\mathbb{Q}})$ has a negative answer for every $k \geq 2$. The sequence

$$
\left(\sqrt[k]{n^{k}+1}\right)_{n \geq 0}
$$

being a non-trivial k-Büchi sequence of infinite length, we see that $\mathbf{B}^{k}(\overline{\mathbb{Z}} \cap \mathbb{R})$ has a negative answer for every $k \geq 2$. In both examples above, the negative answer to Büchi's problem is due to the existence of an infinite non-trivial Büchi sequence.

In their survey [11] on Büchi's problem, Pasten, Pheidas and Vidaux posed the problem of finding rings for which Büchi's problem had a negative answer without having non-trivial sequences of infinite length. They distinguish two kinds of rings in which Büchi's problem can have a negative answer (in characteristic 0):

- Type 1: Rings for which there exists an infinite non-trivial Büchi sequence.
- Type 2: Rings for which there exist non-trivial Büchi sequences of any finite length, but there is no infinite one.

In [1], J. Browkin proved that for $k=2$, the field of p-adic numbers \mathbb{Q}_{p} is of type 1 and the ring of p-adic integers \mathbb{Z}_{p} is of type 2 . This Thesis is an attempt to generalize Browkin's result to higher powers. Before we state our main results, let us introduce the notion of an Hensley sequence:

Definition (Hensley sequences). Let $k \geq 0$ be an integer. A sequence (a_{n}) of elements of a unitary commutative ring A of characteristic 0 , whose k-th powers are of the form

$$
(a+n)^{k}+b_{k-2} n^{k-2}+\cdots+b_{1} n+b_{0}
$$

for some $a, b_{k-2}, \ldots, b_{0} \in A$, is called k-Hensley sequence. If

$$
b_{0}=\cdots=b_{k-2}=0
$$

then $\left(a_{n}\right)$ is called a trivial k-Hensley sequence.
Problem (Hensley's formulation of Büchis's problem). $\mathbf{H F}^{k}(A)$. Let $k \geq 2$ be an integer and A a unitary commutative ring of characteristic 0. Does there exist an integer $M \geq k+1$ such that every k-Hensley sequence in A of length M is a trivial sequence?

