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Abstract

A main goal for understanding how the brain works is the description of the net-

work of brain connections or the human brain connectome. The basic elements of the

connectome are regions of gray matter (GM) formed by neuronal brain bodies (somas)

and the connections (axons) between them formed by the white matter (WM) neuronal

fibers. Currently, diffusion-weighted Magnetic Resonance Imaging (dMRI) techniques

with High Angular Resolution Diffusion Imaging (HARDI) have improved the quality of

tractography datasets concerning Diffusion Tensor Imaging (DTI). Tractography data

are complex and contain noise and artifacts, so they require computational methods

capable of processing them efficiently and extract useful information.

Therefore, this thesis proposes the development and implementation of several

methods to process the brain tractography data and through them provide analysis

tools for study the brain structural connectivity. Among them, we contributed to the

improvement of a clustering of white matter fibers, to the labeling of the superficial

white matter bundles, to the development of a method for the parcellation of the corti-

cal surface from short and long segmented bundles for a group of subjects, and to the

development of complementary methods to carry out the individual parcellation.

We collaborated in the development of an efficient clustering of white matter fibers

that was evaluated in terms of quality and execution time against other state-of-the-

art methods, giving as a result 8.6 times more speed than the most efficient method.

Moreover, we created a method which performs intra-subject labeling of superficial

white matter fibers in 3.6 min, and two inter-subject labeling methods. One is based on

matching and obtains good correspondence but little reproducibility with an execution

time of 96 s. The other one focused on clustering that obtains good correspondence

and reproducibility among subjects achieving a short execution time of 9 s for a sub-

ject. On the other hand, a method for cortical surface parcellation which creates parcel

atlases was developed. Then, two generated parcellations were compared with state-

of-the-art methods, finding a degree of similarity with dMRI, functional, anatomical, and

IX



multi-modal atlases. The best comparison was between our parcellation composed of

185 sub-parcels and another dMRI-based parcellation, obtaining 130 parcels in com-

mon for a Dice coefficient ≥0.5. The parcellation composed of 160 parcels achieves

a reproducibility across subjects of ≈0.74, based on the average Dice’s coefficient be-

tween subject’s connectivity matrices, rather than ≈0.73 obtained for a macroanatom-

ical parcellation of 150 parcels. In addition, two complementary methods were devel-

oped to perform individual cortical parcellations, one based on clustering and the other

based on the geodesic distance, the latter obtains a parcellation of 350 parcels in 18 s

for the atlas-based mode and 82 s for the whole cortex mode. Moreover, it obtains bet-

ter reproducibility against two state-of-the-art methods with a difference of 0.024 and

0.043 according to the Dice coefficient.

This thesis contributes to the development of efficient computational methods for

the study of brain connectivity that can be applied to high-quality and large databases,

capable of dealing with the noise present in the tractographies. In addition, thanks to

this research, these methods can be used by neuroscientists, neuroanatomists, and

neurologists to study and develop new studies of brain connectivity and to obtain more

answers about the structure of the brain and its connectivity.
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Chapter 1

Introduction

1.1. Motivation

The human brain is highly complex and its complete functioning has not been deci-

phered at present. Its study dates back to ancient Egypt, and although there has always

been a desire to understand how it works and its anatomical structure, its anatomy has

not been known until recently, especially concerning the connectivity of white matter

(WM) and its structure [103]. Thanks to the study of the different brain areas based

on different modalities it is possible to better understand how it works, as well as the

multiple associated pathologies. Brain structure and function are strongly linked.

To understand how the brain works, it is necessary to know the network of brain

connections or the human brain connectome. The basic elements of the connectome

are a composition of bodies of brain neurons (nodes) and the connections (edges) that

exist between them, formed by the neuronal fibers of white matter (WM) [118, 59, 13].

Currently, different techniques are known to be able to non-invasivelly observe the

brain. One of them is Magnetic Resonance Imaging (MRI), through which it has been

possible to obtain high-resolution images to study different areas of the brain. This

technique has different modalities, one of which is known as diffusion Magnetic Res-

onance Imaging (dMRI) [90]. This allows us to characterize the diffusion process of

water molecules [6, 75]. Thanks to this, the trajectories of the fibers that form the

main bundles connecting the different areas of the brain can be obtained [101] and,

by means of tractography algorithms, they can be reconstructed in 3D [92]. Thus, the

structure of the brain can be studied in vivo and in a non-invasive way [91, 129, 53].

1
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However, results based on dMRI tractography have to be analyzed carefully be-

cause of the limitations of this modality. Analysis of the results of tractography algo-

rithms contain noise due to the artifacts in the tractography which may lead to differ-

ences in connectivity profiles in studies with populations of subjects [15]. Despite the

fact that tractography algorithms generate valid bundles for the study of brain connec-

tivity, the large number of streamlines or fibers that pass through the voxels have the

spatial limitation of the size of the voxels, thus generating a number of false positives

and negatives. One of the challenges to be achieved in the coming years will be to

reduce these false positives and improve the resolution of the white matter tracts [82].

Moreover, the high variability of white matter fibers between subjects highly difficults

the study of the brain connectivity as tractography results generate complex datasets

of at least 1 million fibers, especially when superficial white matter fibers are taken into

account.

The study of the human connectome is a key and growing area of research [121].

It is also the intersection of the following fields: Biology, Electronic Engineering, Com-

puter Science, Physics, and Neuroscience. In particular, Computer Science is a very

important discipline because it provides efficient and robust methods that can work

with large datasets in a reasonable time. In addition, these methods are able to deal

with the noise produced in the tractographies, as well as handle the high variability that

exists among subjects. Handling tractography data is not a trivial task since it is more

complex than it seems beforehand because it requires the manipulation of many for-

mats, the data contains noise, and it is necessary to apply transformations on the data.

From that point of view, further validation of the results through diffusion tractography is

needed and should be contrasted with anatomy, functional Magnetic Resonance Imag-

ing, and post-mortem studies. This work focuses on methods to analyze tractography

data in order to obtain the best information about connections and to contribute to the

understanding of the human connectome.

In this thesis, we propose efficient algorithms and methods for the study of brain

connectivity capable of working with large sets of fibers generated by tractography



3

algorithms. Therefore, we contributed to the development of a white matter fiber clus-

tering method to deal with tractography data. Currently, there are many fiber clustering

methods [42, 43, 55, 106]. However, not all of them perform such a thorough valida-

tion as the one we propose in this work. Fiber clustering does not validate whether

the fibers are true or not since it seeks to represent the white matter bundles that are

present in the subjects in order to later perform brain connectivity analyses and stud-

ies. Moreover, we developed a method that performs the labeling of superficial white

matter bundles. There exists extensive knowledge about long association and projec-

tion fibers, used to identify functional regions through their connectivity, but superficial

white matter bundles are less studied in the state of the art, due to the fact that fiber

bundles have a great variability among subjects [49, 106] and have a small size, which

makes labeling and identifying them a complex tasks. Therefore, by means of the intra-

and inter-subject methods developed, we have been able to identify the inter-subject

bundles with a high degree of reproducibility and give them an automatic name since

they are not described in detail in the anatomy. Finally, in this thesis, three methods of

parcellation are proposed, the main one being based on a fiber-bundle atlas of white

matter, and two secondary methods based on clustering and brain topology. A corti-

cal parcellation is a method to subdivide the cerebral cortex into parcels [141]. There

exist parcellations based on different modalities, such as anatomical, diffusion-based

information, functional magnetic resonance imaging, and multimodal. As there are

currently many different types of parcellations, there is no consensus on which parcel-

lation is better than another, or which is the best method to carry out a parcellation. For

this reason, we have developed a method of parcellation based on an atlas of white

matter fibers which can help in the study and deciphering of the human connectome.

In addition, as a proof of concept, we have carried out an individual parcellation based

on fiber clustering to deal with the limitation found when using a fiber bundle atlas. By

using the whole tractography, the number of parcels obtained is larger since all the

brain fibers are used and not just a set of fibers that form the atlas. Finally, we have

developed a method of individual parcellation based on the topology of the mesh. This

method is able to carry out the cortical parcellation in an efficient time and with a good

homogeneity in the obtained parcels, being highly competitive with the methods of the
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state of the art based on macroanatomy.

To conclude, this research is likely to be of high interest to neuroscientists, neu-

roanatomists, and neurologists, as high-quality pre-processing methods and software

can be used to study brain connectivity. Thanks to this work it will be possible to de-

velop modern clinical studies by analyzing new databases and thus be able to obtain

answers regarding brain functions and structure.
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1.2. Contributions

This section presents the main contributions of the thesis. They all deal with the

developments of methods for the study of brain connectivity. These contributions are

listed below:

Fiber clustering algorithms in neuroanatomy research generate data that allow

the study of the structure of white matter. The first contribution of this thesis is the

collaboration to the development of an automated fiber clustering method called

FFClust, which identifies white matter bundles from large tractography datasets.

The first version of this work was developed in another thesis [125]. The main

goal is to develop an efficient clustering to group fibers into compact and regular

clusters, representing the whole-brain WM structure. Resulting clusters describe

the whole set of main white matter fascicles present on an individual brain. In in-

dividuals, the clusters can be used to study the local connectivity in pathological

brains, while at population level, the processing and analysis of reproducible bun-

dles, and other post-processing algorithms can be carried out to study the brain

connectivity and create new white matter bundle atlases. A special interest is its

use for the study of short association bundles and their segmentation, as well as

of subdivisions of long anatomical bundles. The proposed method is about 8.6

times faster than the state-of-the-art method, which enables a fast processing

and visualization of main white matter fiber clusters.

My contributions to this work are the collaboration in the following tasks: writing

the first draft, reviewing all versions and subsequent drafts, study and review of

the literature in fiber clustering, creating schemes and most images of the pa-

per, changing concurrency by parallelism in steps 1 and 4, parallelizing step 2

mapping which had no parallelism, implementation of the entire code, giving an

improvement of at least 2.5 times faster than its previous version, input/output

optimization and format change, testing and error search and implementation of

the two codes of the centroid calculation, re-execution of tests with 50 subjects
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(before they were made with only one subject), use of the mean and the stan-

dard deviation in all the graphics, addition to the comparison with the state-of-

the-art methods of QuickBundlesX (QBX ) [43] and Guevara [55], implementation

of maximum distance in QuickBundles (QB) [42] and QBX (which requires exe-

cution times of more than one day) for distance tests with all methods, runtime

tests of QB and QBX with maximum distance (hours of tests), implementation

of inter-cluster distances (not existing), addition of the Davies-Bouldin (DB) index

[9] and comparison with all methods, qualitative analysis using segmentation to

demonstrate that the clusters obtained have biological significance, addition of

Guevara’s method to all qualitative analysis, the comparison of the most similar

clusters and the execution time between the methods.This paper was accepted

in the journal NeuroImage [127].

The following contributions are a direct result of this thesis work.

Fiber clustering methods have been used to automatically group similar fibers

into clusters. However, due to inter-subject variability and artifacts, the resulting

clusters are difficult to process for finding common connections across subjects,

especially for superficial white matter. The second contribution of this thesis is an

automatic labeling method of short association bundles on a group of subjects.

The method is based on an intra-subject fiber clustering that generates compact

fiber clusters. After that, taking the Desikan-Killiany atlas [31] as a reference, the

clusters are labeled based on the cortical connectivity of the fibers, and named

according to their relative position along one axis. The labels provide useful infor-

mation for the visualization and analysis of individual connections, which is very

difficult without any additional information. Finally, we compared and applied two

different strategies for the labeling of inter-subject bundles: one of them based on

a famous state-of-the-art clustering algorithm, and the other based on a match-

ing algorithm. The performance of both implementations is compared in terms

of reproducibility and inter-subject bundle distance. The obtained clusters could

be used for performing manual or automatic connectivity analysis in individuals

or across subjects. The resulting work is published in the journal Biomedical
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Engineering Online [126].

The third contribution of this thesis, and also the most important one, is a method

to create fine-grained parcellations of the cortical surface from an anatomical

atlas. Connectivity information is obtained from an atlas of white matter bun-

dles, instead of the whole tractography. This atlas is composed of a deep white

matter fiber atlas and two superficial white matter atlases. Thus, a direct cor-

respondence is obtained between the bundles and the cortical regions among

subjects, being able to get a good representation of the human brain connec-

tome, since the bundles obtained are based on bundle atlases that contain the

most reproducible short and long connections found on a population of subjects.

Furthermore, the method produces another output containing the probabilistic

representation of the preliminary sub-parcels. In this way, the information could

be used with segmented bundles of each individual and thus create individual

parcellations adapted to each subject that should lead to increased consistency

in structural connectome across subjects. This work has been published in the

journal Frontiers in Neuroinformatics [79].

The fourth contribution is a complementary method to the parcellation method

and performs the complete cortical parcellation of an individual taking into ac-

count the connectivity information of the white matter fibers. Our goal is to per-

form a good quality individual cortical parcellation to be used for a group-wise

parcellation in the future. The output is the complete labeling of cortical mesh

vertices, representing the different cortex sub-parcels, with strong connections to

other sub-parcels. We used brain network metrics to evaluate the method on a

set of subjects. These metrics comply with segregation and functional integration,

as well as with the definition of small-world. The result of this work was published

at the IEEE CHILEAN Conference on Electrical, Electronics Engineering, Infor-

mation and Communication Technologies (CHILECON) [80].

Finally, the last contribution of this thesis is a parallel method for the complete

parcellation of the cortical surface, based on the geodesic distance. The method

has two modes of use, the first subdivides each anatomical parcel given by the
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Desikan-Killiany atlas. The second mode of use performs the complete cortical

division of a subject. The proposed method will be available to the community to

perform the evaluation of data-driven cortical parcellations. As an example, we

compared GeoSP parcellation with Desikan-Killiany and Destrieux atlases in 50

subjects, obtaining more homogeneous parcels for GeoSP and minor differences

in structural connectivity reproducibility across subjects. The resulting paper was

published at the 42nd Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC) [81].
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1.3. Structure of the thesis

The thesis is organized as follows:

In Chapter 2, we expose the research carried out in the thesis, that is, the hy-

potheses, general and specific goals, as well as the methodology, available re-

sources, and database used in the experiments conducted.

In Chapter 3, we introduce the method of clustering of white matter fibers. More-

over, we show the results of the comparison with other methods of the state of

the art, as well as a qualitative analysis and the execution times of the steps of

the method.

On the other hand, we present the automatic labeling of superficial white matter

bundles. In addition, we use two methods to perform inter-subject clustering and

compare the results obtained by both methods.

Chapter 4 contains methods for the parcellation of the cerebral cortex. The first

and main method uses an atlas of white matter bundles capable of generating

atlases of parcels with different granularities based on the Desikan-Killiany atlas.

Afterward, we carried out a reproducibility analysis among the atlases generated

by our method and a comparison with the most relevant parcellation atlases of

the state of theart based on macroanatomy, multimodal, diffusion, and functional

Magnetic Resonance Imaging.

Moreover, in this chapter, we present two complementary methods for cortical

surface parcellation, these methods are:

1. An individual cortical surface parcellation made with fiber clustering, which

was evaluated with different network metrics and a qualitative analysis for

each subject.

2. A cortical surface parcellation for an individual based on the geodesic dis-

tance. The results show more reproducibility than two atlases based on the

macroanatomy of the state of the art.
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The final conclusions and future work are presented in Chapter 5.

Appendix A lists the publications obtained in the thesis and other research results.

Appendix B contains the supplementary material related to the method for the

parcellation of the cerebral cortex based on the atlas of white matter fibers.

Finally, Appendix C contains the summary of the thesis in Spanish, specifically,

the introduction, the methodology, the most relevant results, and conclusions.



Chapter 2

Research conducted

In this chapter, we present the hypotheses formulated for the development of the

different algorithms and methods covered by the thesis. Next, we will focus on the main

and specific goals, as on the methodology. Finally, the characteristics of the database

used for all the experiments carried out in the thesis are described.

2.1. Research hypotheses

To carry out the thesis, research hypotheses were formulated for the development

of methods for the study of brain connectivity. These are:

1. It is possible to improve the computation time in the task of clustering brain white

matter fibers with respect to other existing algorithms by designing and imple-

menting parallel clustering algorithms while maintaining the quality in the clusters.

2. It is possible to produce an automatic method for the labeling of superficial white

matter fibers thanks to the use of intra-subject clustering and the connectivity of

the clusters with the cerebral cortex, providing information for the visualization

and analysis of the individual connections.

3. It is possible to develop a hybrid cortical parcellation method, from segmented

bundles using two SWM fiber bundle atlases and a DWM bundle atlas, with a

good correspondence between subjects.

4. It is possible to develop other individual parcellations based on clustering or on

the topology of the brain.

11
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2.2. Main goal

This thesis focuses on the development of algorithms and methods to analyze and

study brain anatomical connectivity using dMRI data, and thus cooperate to the decod-

ing of the human brain connectome.

2.3. Specific goals

The following specific objectives are proposed to address the thesis work:

G1: To improve an efficient method for the clustering of fibers.

G2: To evaluate the fiber clustering by performing qualitative and quantitative

analysis and comparisons with other existing algorithms.

G3: To design and implement a method for automatic labeling of superficial white

matter bundles.

G4: To perform the evaluation of the labeling by intra- and inter-subject clustering.

G5: To create a method for the generation of atlases of parcels for the population

of subjects studied.

G6: To evaluate the parcellation method with reproducibility metrics and to make

the comparison with other atlases of parcels of the state of the art.

G7: To generate a method of individual cortical parcellation based on white matter

connectivity information from a tractography dataset and to perform the evaluation

of the individual parcellation method with brain network connectivity metrics.

G8: To create a method to perform individual cortex parcellation taking into ac-

count the topology and to evaluate the reproducibility of the generated method

with other atlases based on macroanatomy.
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2.4. Methodology

To achieve the specific goals of this thesis, the following tasks must be completed:

T1: Review and study of the state of the art of white matter fiber clustering meth-

ods, automatic labeling of superficial white matter fibers, and cortical surface

parcellation based on different modalities (G1, G3, G5, G7, G8).

T2: Collaboration in the implementation of a fast and efficient fiber clustering

method. To achieve this, a clustering algorithm will be used to reduce the num-

ber of input elements from the white matter fibers. On the other hand, a fiber

segmentation algorithm will be adapted for reassigning small clusters to larger

clusters. Finally, the clusters will be mixed, thus reducing the number of clusters

generated (G1).

T3: Qualitative evaluation of the fiber clustering method with state-of-the-art al-

gorithms. We will analyze the clusters with different configurations. In addition,

images of anatomically significant clusters will be extracted, checking that the

method presents better quality and cluster delimitation (G2).

T4: Quantitative evaluation to measure the execution time of the fiber clustering

method, as well as the intra- and inter-cluster distances (G2).

T5: Design and implementation of the intra-subject superficial white matter bun-

dle labeling method. First, clustering will be applied to the subject’s tractography,

and then will be filtered for short bundles. The fibers will be intersected with the

mesh and, finally, the clusters will be labeled, based on an atlas (G3).

T6: Design and implementation of the inter-subject superficial white matter la-

beling method. More specifically, a group of subjects will be labeled, maintain-

ing correspondence among them. To achieve this, a matching algorithm and a

clustering algorithm will be used to search for the correspondence of clusters of

different subjects (G3).
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T7: Evaluation of the method of intra-subject labeling. First, the correspondence

of bundles will be found across subjects. Moreover, the distances of the bundle

centroids between pairs of subjects will be measured (G4).

T8: Evaluation of the inter-subject labeling methods to measure the reproducibil-

ity of the clusters with different thresholds among the subjects (G4).

T9: Fusion of a white matter atlas by means of two short fiber atlases and one

long fiber atlas. Moreover, the anatomical information will be generated from the

cortical segmentation to rule out badly segmented fibers for each of the subjects

in the ARCHI database. Then, the BrainVisa software pipeline will be used to

perform the conversion between the obtained mesh spaces (G5).

T10: Design, implementation, and evaluation of the white matter fiber segmen-

tation algorithm optimized to obtain stable fiber bundles present in most subjects

(G5).

T11: Design and implementation of a method to generate atlases of parcels in

different granularities and thus obtain a representative parcellation for a group

of subjects. This method will take into account the overlaps that occur among

the different sub-parcels of the different subjects. In addition, it will obtain the

probabilities of the underlying connections to generate the sub-parcels. Finally,

a post-processing of the sub-parcels will be applied in order to obtain a better

definition of them (G5).

T12: Evaluation of the cortical parcellation method through analysis of brain con-

nectivity and reproducibility of the different generated atlases. Then, two atlases

of the method will also be compared with other state-of-the-art atlases based on

MRI modalities, looking for common sub-parcels and functionalities (whenever

possible). On the other hand, an analysis of cross-validation will be performed

and network compute metrics will be used for the study of brain connectivity. (G6).

T13: Design and implementation of a method to carry out the individual parcel-

lation of the cerebral cortex. Then, fiber clustering will be applied to the whole

tractography. Finally, the algorithm of individual parcellation will be used and a
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post-processing will be performed to the sub-parcels. Moreover, brain connec-

tivity metrics will be used for the evaluation. Finally, a qualitative analysis will be

performed with the result of the parcellation for the subjects (G7).

T14: Design and implementation of a parallel cortical parcellation method based

on the brain topology which will take into account the gyri and sulci. Furthermore,

a qualitative analysis will be carried out and the execution time of the cortical

parcellation method will be measured. Finally, the reproducibility with other state-

of-the-art methods will be evaluated (G8).

2.5. Available resources and database

The Medical Image Analysis group of the Electrical Engineering Department of the

Universidad de Concepción has the adequate computing resources required by the

developments and subscriptions to the main journals. For the development of this

thesis, the Linux platform was used, specifically Ubuntu 18.04 LTS, mainly using the

following programming languages: Python, C, and C++.

Thanks to Neurospin (CEA-Saclay, France), the center for the study of the brain,

it is possible to work on this project with a high-quality MRI database called ARCHI,

based on a HARDI model.

The ARCHI [113] database contains anatomical MRI, HARDI and fMRI data ac-

quired with special acquisition sequences from a 3T MRI scanner (with a total of 12

hours of acquisition per subject) with a 12 channel antenna (Siemens, Erlangen). The

MRI protocol included the acquisition of T1 image datasets using a MPRAGE sequence

[10] (160 slices; TH = 1.10 mm; TE/TR = 2.98/2300 ms; TI = 900 ms; FA = 9 angle of

deviation; matrix = 256×240; RBW = 240 Hz/pixel; voxel size = 1×1×1 mm), a B0

field map, and a HARDI SS-EPI sequence [84] single-shell dataset along 60 optimized

broadcast directions (DW), b = 1500 s/mm2 , (70 cuts; TH = 1.7 mm, TE = 93 ms; TR

= 14,000 ms; FA = 90; matrix = 128×128; RBW = 1502 Hz/pixel; echospacing ES =

0.75 ms; partial Fourier factor PF = 6/8; GRAPPA = 2 [48]; total scan time = 16 min and

46 s). The database has the transformation matrices to convert the data between T1,
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T2 (diffusion space) and Talairach spaces. The meshes of each hemisphere can also

be found.

The main artifacts such as noise, susceptibility effects, geometric distortions, and

eddy currents have been corrected. Further, defective slices were removed. The ana-

lytic Q-ball model was also computed [30]. Whole-brain streamline deterministic trac-

tography was calculated [101], using a T1-based brain propagation mask [52], with one

seed per voxel at T1 resolution, a maximum curvature angle of 30◦ and tracking step

of 0.2 mm.

Special attention must be given to the propagation mask, by the use of a low FA

threshold and a visual inspection of the mask, to prevent the remotion of superficial

white matter voxels. More details about tractography parameters for the reconstruction

of superficial white matter bundles and their reproducibility can be found in [49].

Resulting tractography datasets contain about one million fibers per subject. These

calculations were performed using Brainvisa/Connectomist software1 [33]. In addition,

cortical surfaces were calculated with FreeSurfer2. As a post-processing step, all the

fibers were resampled using 21 equidistant points, as showed in other works [55, 53].

1http://brainvisa.info/web/index.html
2https://surfer.nmr.mgh.harvard.edu/



Chapter 3

Clustering and labeling of white matter fibers

This chapter presents in Section 3.1 an efficient clustering method to deal with

the white matter fiber bundles from large tractography datasets and represent the main

structure of white matter fibers. The other method presented in this chapter, specifically

in Section 3.2, is an automatic method for labeling superficial white matter bundles.

Due to the high variability in the fibers of the superficial white matter among subjects, it

is a complicated task to carry out the labeling of the white matter bundles. To achieve

this goal we have applied two strategies, one focused on a matching algorithm and

the other based on a popular state-of-the-art clustering method. These methods are

presented in Section 3.2.3.

3.1. White matter fiber clustering

In this section, we present a new clustering of white matter fibers. This cluster-

ing, FFClust, efficiently groups large datasets from tractography. The resulting clusters

describe the white matter bundles of an individual and thus study the structural connec-

tivity in brains with pathologies. First, we expose the related work of white matter fiber

clustering. Then, we describe the method, which is composed of four steps. The re-

sults are shown in the next section, performing a quantitative and qualitative analysis in

comparison with other state-of-the-art methods. Finally, a discussion of the proposed

work is made.

3.1.1. Related work

Diffusion Magnetic Resonance Imaging (dMRI) is an in-vivo and non-invasive tech-

nique that estimates the structure of white matter (WM) through the measurement of

water molecules diffusion [6, 74]. The main trajectories of WM can be reconstructed

17
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using tractography algorithms based on local orientation fields estimated from dMRI.

The generated datasets consist of a 3D representation of the main WM fiber tracts [7].

Streamline deterministic tractography follows the preferred direction of water diffusion

in each voxel to reconstruct trajectories or lines represented by a sequence of point co-

ordinates in 3D space. These lines are called “streamlines” or simply “fibers”, though

they do not represent real neural fibers but an estimation of the main trajectory of WM

fascicles.

Tractography datasets contain fibers belonging to well known anatomical bundles,

and also a set of bundles, mostly short association bundles, which have not yet com-

pletely described. They also have noisy fibers and artifacts, coming from dMRI intrinsic

limitations and uncertainty, producing an incomplete reconstruction of the fibers [82].

The application of clustering methods has helped to develop methods for the study of

deep white matter bundles (DWM), in particular, the construction of deep white matter

bundle atlases [95, 53]. More recently, the study of superficial white matter (SWM) or

short association fiber has been carried out, with the study of reproducibility of these

bundles and the construction of two SWM bundle atlases [50, 106].

In general, there are two main strategies to study the brain connections given by

tractograms. One is the segmentation based on anatomical Regions Of Interest (ROI)

of the brain, which takes into account information on the morphology of the folding pat-

terns of the cerebral cortex or other grey matter structures [19, 18], to extract fibers

connecting two regions. The second strategy is the clustering of fibers used to obtain

bundles of similar fibers, considering their shape and position [97, 55]. Both strate-

gies can be combined resulting in a hybrid approach that can improve the definition of

anatomical bundles, since more information is included in the analysis [93].

Typically, exploratory clustering methods find a great amount of bundles that char-

acterize the structure of the white matter in its totality by using representatives such as

clusters and centroids [42, 43, 55].

The method proposed by Guevara et al. [55] consists of several processing steps

to subsequently subdivide the fibers into groups based on different criteria, like brain
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masks, voxel connectivity, fiber length and point-wise fiber distance. This method ob-

tains compact and thin clusters that can be represented by a centroid. Another impor-

tant work that performs clustering with large tractographies is QuickBundles (QB) [42].

This is an unsupervised clustering algorithm that groups the fibers into clusters, with-

out recalculating the clusters, like classical methods such as K-means. The algorithm

uses a distance threshold to define whether a new fiber will be assigned to the closest

cluster or will start a new cluster. It is based on the Minimum average Direct-Flip (MDF)

fiber distance, although other fiber distance measures can be used. The clustering re-

sults of this method depend on the initial permutation of input fibers. This algorithm is

very fast, taking about 30 minutes for a set of one million fibers.

Using a clustering method aids to process the tractography data, to subsequently

apply other analyses on the resulting clusters. Example of analyses are the construc-

tion of WM bundle atlases [95, 53, 50, 106, 142]. Another application is the segmen-

tation of bundles, also called virtual dissection, that seeks to label the anatomical bun-

dles, already described by anatomists. Clustering-based segmentation methods use

a fiber similarity or distance measures to group similar fibers along with anatomical

information to identify known bundles. The algorithms embed anatomical knowledge

commonly in the form of a bundle atlas or model [95, 53, 107, 65, 140, 44], or use

a ROI atlas to guide the identification of anatomical bundles [130, 78, 21]. Recently,

methods using Deep Learning have been proposed for the segmentation of anatomical

fascicles with promising results [57, 56, 132]. Other applications are the study of repro-

ducibility of white matter bundles [50, 49], the creation of diffusion-based cortex parcel-

lations [89, 80] and the study of the human brain connectome [145]. Furthermore, the

segmentation of anatomical bundles have been extensively applied to perform clinical

studies. These methods in general compare features extracted from the bundles, such

as mean FA (Fractional Anisotropy) or other diffusion-based indices, bundle volume or

bundle shape descriptors. For example, studies have been carried out to study bipolar

disorder [110], schizophrenia and autism spectrum disorder [68], parkinson [25] and

major depressive disorder [136]. Also, white matter fiber tracts can be identified in

patients with brain tumors for neurosurgical planning [94, 44].
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The size increment of tractography datasets from new high quality MRI databases,

and various analysis that can take advantage of clustering results, has imposed the

challenge to develop high quality and optimized fiber clustering methods.

This work proposes a new method for the clustering of large tractography datasets.

The main goal is to develop an efficient clustering to group fibers into compact and

regular clusters, representing the whole brain WM structure. The representation must

be of good quality, i.e., the clusters must be compact along all the fibers, so that several

analyses can be performed, using as input the resulting clusters or cluster centroids. A

special interest is its use for the study of short association bundles and their segmen-

tation, as well as of subdivisions of long anatomical bundles.

3.1.2. Our approach

The proposed approach consists of four steps. The first step reduces data dimen-

sionality by applying a partitioning clustering algorithm on fiber points instead of whole

fibers. The second step groups fibers sharing the same cluster points into preliminary

streamline clusters. Next, small preliminary streamline clusters are reassigned to larger

clusters based on their direct or flipped distance. The last step builds compact clus-

ters by merging candidate clusters based on a maximum Euclidean distance threshold

using a graph representation of candidate cluster centroids. All the steps of the algo-

rithm are executed in parallel. The experimental evaluation and comparison with the

state of the art shows that the proposed method is effective in the creation of compact

clusters, with a low intra-cluster distance, while keeping an inter-cluster distance not

excessively large, and it provides high performance. The proposed method is about

8.6 times faster than the state-of-the-art method, which enables a fast processing and

visualization of main white matter fiber clusters.

Let Ts be a tractography dataset of an individual subject consisting of a collection of

fibers or streamlines, where each fiber is formed by 21 points in IR3. The streamlines

on a dataset are loaded into the main memory following the order of points calculated

during the tracking. Hence, two orientations are possible: direct, or reverse (flipped),
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which must be considered in the streamline analysis. In this work, the similarity be-

tween fibers is defined by the maximum Euclidean distance between corresponding

points (dME) [55, 53, 50, 106]. It is a restrictive distance, since any relevant local dif-

ference between the fibers, on the fiber extremities and along all their shape, will be

successfully captured.

We denote a fiber in direct order as a with 21 points in IR3, that is each ai ∈ a

is a 3D point, with coordinates x, y and z. In addition, we denote the fiber flipped

representation as aF , which contains 21 points in IR3 in reverse order, that is, the first

3D point in aF is the last in a, and so on. We denote dE(ai, bi) as the Euclidean distance

between corresponding points ai and bi of fibers a and b. We assume a direct (dE), as

the maximum distance between any of the 21 points in fibers a and b, in direct order,

and a flipped Euclidean distance (dEF ) with one fiber in inverse order. We consider the

minimum of distances dE and dEF , denoted as dME, to measure the distance between

streamlines a and b, as defined in Eq.3.1.

dE(ai, bi) = ||ai − bi|| =
√

(aix − bix)2 + (aiy − biy)2 + (aiz − biz)2

dE(a, b) = maxi∈21(dE(ai, bi))

dEF = dE(a, bF ) = dE(aF , b)

dME = min(dE(a, b), dEF (a, b)) (3.1)

Hence, distance dME calculates the maximum Euclidean distance between corre-

sponding points, taking into account the two possible fiber orientations.

Our approach aims at improving the final clusters quality and the algorithm time

complexity. A special interest is to keep a good similarity between fibers along all the

fiber shape, in particular, on the extremities of the fibers. This feature is crucial for

the study of superficial white matter, where short association fibers connect small gray

matter regions, and a difference in the fiber end points for a group of fibers must lead to

different clusters. To achieve this goal, the algorithm is based on a partition clustering

applied separately to a subset of points along the fibers in parallel. Then, fibers with
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points sharing the same cluster points are merged. This strategy is more efficient

than using the complete fiber data representation which requires more expensive fiber

distance computation.

The algorithm proceeds in the following four steps: (1) building point clusters, (2)

generating preliminary streamline clusters, (3) reassigning small preliminary stream-

line clusters and (4) merging candidate streamline clusters. Figure 3.1 displays the

complete workflow.

STEP 1: Building point clusters

This step aims at reducing the dimensionality of the input data by applying a par-

tition clustering on a subset of streamline points. Applying the clustering locally on a

subset of fiber points reduces the number of dimensions of the input elements and

then the number of pairwise distance computations needed to form clusters. Distance

computations are performed on three dimensions fiber points instead of fibers formed

by 21 points, where each point has three dimensions. The method uses a subset of

five points, including the two ending points (1, 21), the central point (11) and two inter-

mediate points (4, 18). The decision of using these points is given because it has been

shown that this sampling strategy is efficient and significant to estimate the maximum

distance between fibers [72] and hence, to discriminate fiber differences.

The Minibatch K-means [114] (MK) was chosen as a partition algorithm because

it is known to provide good quality, and low time and space complexity. Moreover,

given that the clustering algorithm is applied on each streamline point independently,

the number of clusters do not need to be the same in all streamline points. In fact,

the proposed algorithm uses different numbers of clusters for streamline ending points

and central points. We denote the number of clusters for ending points as Kpo, and

the number of clusters for intermediate and central points as Kpc. We apply the elbow

method to find out the best number of clusters on each point [70].

Figure 3.1-(a) illustrates with an example this STEP, using the five streamline points

1, 4, 11, 18, and 21. The intermediate and central points of the clusters are shown

as pc and the ending points as po. The central and intermediate point clusters are
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identified by the membership labels C, B, G, D, and H; and the ending points clusters

by the labels A, F, E and I.

STEP 2: Generating preliminary streamline clusters

This step builds preliminary streamline clusters by grouping streamlines based on

the membership labels of point clusters obtained in the previous step. A preliminary

streamline cluster will contain all the fibers which points share the same point cluster

labels. The method uses a dictionary data structure in which the key is the set of

membership labels where each streamline point belongs to, and the value contains all

fiber IDs that share the same set of point cluster membership labels. A preliminary

streamline cluster contains all fiber IDs stored in the value associated to a key in the

dictionary.

Figure 3.1-(b) shows two streamline preliminary clusters, one is formed by stream-

lines (p, q) and the other by streamlines (r, s). As seen in Figure 3.1-(a), points 1, 4,

11, 18 and 21 of fibers p and q belong to the same point clusters, then such streamline

cluster is defined by the corresponding point cluster labels (A,B,C,D,E). In the same

way the streamlines (r, s) formed a second preliminary streamline cluster identified by

the point cluster labels (F,G,C,H, I).

STEP 3: Reassigning small preliminary streamline clusters

This step reassigns small preliminary streamline clusters that could be separated

from large clusters in the previous steps. A small cluster is reassigned to the nearest

large cluster, given a maximum distance threshold. In addition, with this processing,

small noisy clusters are identified and discarded.

In order to do this, we first divide the preliminary clusters in two sets based on

their number of streamlines. A set SL contains all preliminary clusters with number of

streamlines equal or greater than 6, and set SS contains all preliminary clusters with 5

or fewer streamlines. Centroids for each preliminary cluster in both sets are computed

as the arithmetic mean of each streamline point. Then, a preliminary cluster in set SS

is reassigned to the closest preliminary cluster in set SL, only if the distance between
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their centroids is below the threshold dRmax, that is, if dME(a, b) < dRmax (see Eq. 3.1).

Otherwise, corresponding clusters are not reassigned.

At the end of this step, if there still are preliminary clusters in set SS containing

one or two streamlines, these are considered noise and eliminated by default. Figure

3.1-(c) shows preliminary streamline cluster set separation (Figure 3.1-(c).3.1.), cen-

troid computation (Figure 3.1-(c).3.2.), reassignment, not reassignment and elimination

cases (Figure 3.1-(c).3.3). At the end of this step we obtain candidate clusters.

STEP 4: Merging candidate streamline clusters

This is a global refining step that aims to merge candidate clusters which still might

be close based on a maximum distance parameter dMmax, in particular, clusters with

flipped streamlines. This step first makes candidate cluster groups, where each group

consists of clusters that share the same central point membership label obtained dur-

ing the STEP 1. This makes groups that are close only by the central point. This

processing is done only to avoid the pairwise comparison among all cluster centroids,

however, this processing adds no error to the merging computation.

Then candidate cluster centroids in each group are merged based on the maxi-

mum distance parameter dMmax. If candidate cluster centroids are below dMmax for

a maximum Euclidean direct or flipped distance, then such clusters are merged. To

avoid the computation of all possible configurations of multiple candidate clusters that

can be merged we formulate the problem using a graph representation and approxi-

mate the solution using a graph algorithm. The graph representation considers that

each candidate cluster centroid is a vertex, u, in an undirected graph, G(u, v), and

there is an edge, e, between two vertices, u and v, only if the cluster centroids they

represent are below a maximum Euclidean distance threshold dMmax, that is, only if

dME(u, v) < dMmax. Figure 3.1-(d) shows an example where there are six candidate

cluster centroids (c1, c2, c3, c4, c5, c6) represented with corresponding vertices (v1, v2,

v3, v4, v5, v6). In this case, there are four edges (e1, e2, e3, e4), which exist only because

the distance threshold is satisfied. Then, a graph algorithm is applied to find groups of

centroids, where each group contains all of its centroids close to each other. In a graph
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representation this is called a clique, where each group consists of vertices where all

pair of vertices are connected by an edge. Specifically, the proposed method aims at

finding maximal cliques, which are cliques that cannot grow by adding another vertex.

Figure 3.1-(d) shows three maximal cliques, one is formed by vertices (v1, v4, v6), an-

other is formed by vertices (v2, v3) and the other has vertex (v5). Next, the method sorts

all maximal cliques by decreasing size and merges all candidate clusters represented

in cliques having at least two vertices, which clusters have not been previously merged.

Note that a clique of size one means that the centroid is not close to any other centroid

and then no merge should be performed. Given that a vertex in a clique represents a

cluster centroid, and that the graph representation does not include the actual distance

values among centroids, merging largest cliques first aims at joining more clusters that

are close to each other based on the given threshold dRmax.

Figure 3.1-(d) shows that candidate clusters represented by the centroids c1, c4 and

c6 are merged into the final green cluster, candidate clusters represented by the cen-

troids c2 and c3 are merged into the final red cluster and candidate cluster represented

by the centroid c5 becomes the final orange cluster.

3.1.3. Experimental results

This section describes the experimental evaluation and the results obtained in terms

of clustering quality and performance of the method. It also performs a comparison

analysis with the state-of-the-art techniques including the methods: Guevara [55],

QuickBundles [42], and QuickBundlesX [43]. In addition, it presents the results ob-

tained for the segmentation of bundles based on a recent SWM atlas [50]. All results

are obtained by using 50 subjects.

The method proposed by Guevara et al. [55] consists of several processing steps

to subsequently subdivide the fibers into groups based on different criteria, like brain

masks, fiber length, voxel-based connectivity, and point-wise fiber distance. The method

provides high-quality clusters, but it has about 13 configuration parameters and it is

time consuming. QuickBundles [42] (QB) is a clustering method specialized in group-

ing white matter fibers from tractography datasets quickly and with good quality. This
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(a) STEP 1: Building point clusters.

(b) STEP 2: Generating preliminary streamline clusters.

(c) STEP 3: Reassigning small preliminary streamline clusters.

(d) STEP 4: Merging candidate streamline clusters.

Figure 3.1: FFClust. (a) STEP 1: Building point clusters. MK is applied on the marked
points. (b) STEP 2: Generating preliminary streamline clusters. Fibers sharing the
same label form a cluster. (c) STEP 3: Reassigning small preliminary streamline clus-
ters. Clusters are separated into large and small (3.1.). Centroids are calculated (3.2.).
Reassignment (3.3.). Case 1: dME < dRmax, clusters are joined in a candidate. Case 2:
dME ≥ dRmax and clusters with sizes greater than one fiber. Case 3: dME ≥ dRmax and
one cluster with a fiber. (d) STEP 4: Merging candidate streamline clusters. Centroids
are vertices, close vertices are edges based on dMmax. Maximal cliques are found to
merge candidate clusters.
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unsupervised clustering algorithm groups the fibers into clusters, without recalculating

the clusters, like classical methods such as K-means. The algorithm uses a distance

threshold to define whether a new fiber will be assigned to the closest cluster or will

start a new cluster. The algorithm has a single parameter, which is the Minimum av-

erage Direct-Flip distance (MDF) between two pairs of fibers [42], although other fiber

distance measures can be used. It is one of the fastest methods that exist today, with

runtime O(N2), being N the size of the dataset. QuickBundlesX [43] optimizes the

QuickBundles algorithm using a tree data structure.

FFClust method was implemented in Python version 3.6 and in C language using

compiler g++ version 7.4.0. The method supports sequential and parallel execution

using OpenMP. All experiments were executed in a machine consisting of a 12-core

Intel Core i7-8700K CPU with 3.70GHz,680, and 32GB of RAM, using Ubuntu 18.04.2

LTS with kernel 4.15.0-51 (64 bits).

The experiments were performed using deterministic tractography datasets from the

ARCHI database [113], with one million of streamlines. To compare execution times,

we use tractography datasets with resampled subjects from 330,000 to 2,729,000

streamlines.

Parameter configuration for quantitative analysis

The method has three configurable parameters. First, the number of clusters (Kpc
and Kpo) for each of the five streamline points on which the MK algorithm is applied

(STEP 1). Second, the maximum Euclidean distance threshold (dRmax) for the reas-

signment of small to large preliminary clusters (STEP 3). Third, the maximum Eu-

clidean distance threshold (dMmax) for merging candidate clusters into final clusters in

the last step (STEP 4).

Finding the number of fiber point clusters

First, the number of clusters for applying MK in STEP 1 is determined using the

Elbow method [70]. To do this, the MK algorithm is executed for each of the

five streamline points of a subject of one million fibers of a subject of the ARCHI



28

database with 50, 150, 200, 250, 300, 350, 400 and 450 clusters. Figure 3.2 dis-

plays the total intra-cluster variation or total within-cluster sum of squares (WCSS)

for different number of clusters for the five streamline points. The elbow method

shows the total WCSS as a function of the number of clusters. As the number of

clusters increases the WCSS decreases, which indicates that clusters get more

compact. The idea of the elbow method is to choose a number of clusters where

the WCSS does not decrease much when using more clusters.

Figure 3.2 shows that a good number of clusters for the intermediate and central

points (Kpc) is between 150 and 200, and for the ending points (Kpo) is between

150 and 300. Finding the best values for the parameters dRmax and dMmax were

considered using intra-cluster maximum distance.

Kpc

Kpo

1

Figure 3.2: Elbow method showing the optimal number of clusters K. The x-axis shows
the number of clusters, y-axis shows the inertia. K’s optimal values are located at the
elbow of the line.

Best configuration

The best parameter configuration for the proposed method consists of the number

of clusters for the intermediate and central pointsKpc = 200 and the ending points
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Kpo = 300 (STEP 1), and the value of 6 mm for the threshold distances dRmax in

STEP 3, and dMmax in STEP 4.

Comparison with the state-of-the-art methods

This section provides a quality comparison with the state-of-the-art methods includ-

ing Guevara [55], QuickBundles [42], and QuickBundlesX [43]. QuickBundlesX is the

successor of QuickBundles, and it performs clustering on streamlines by building a tree

at different levels, with different distance thresholds. The experimental evaluation con-

siders both the default and best parameter configurations for all methods. Specifically,

QBmdf6 refers to using QuickBundles using MDF distance of 6 mm; QBmdf10 using

MDF distance with 10 mm; QBXmdf6 using QuickBundlesX with distance 6 mm; and

QBXmdf10, using QuickBundlesX with distance 10 mm. Finally, Guevara refers to the

method proposed in [55], which uses a maximum Euclidean distance of 10 mm.

The first evaluation, showed in Figure 3.3, considers the quality of the clustering

approaches, by computing the intra-cluster, inter-cluster maximum Euclidean distances

and the cluster sizes obtained by all the alternatives. The comparison includes the error

bars using 50 subjects, with tractography datasets of 1,045,676 fibers in average.

Figure 3.3-(top) shows the number of clusters with corresponding intra-cluster dis-

tance, Figure 3.3-(middle) shows the number of clusters with inter-cluster distance,

and Figure 3.3-(bottom) shows the number of clusters with cluster sizes. As observed,

FFClust provides clusters with small intra-cluster distance, where all clusters have dis-

tances below 60 mm. QuickBundles with MDF of 6 mm also provides clusters with

small intra-cluster distance. All other methods produce considerable more clusters

with intra-cluster distance greater than 45 mm. Note that the intra-cluster distance is

measured with the maximum Euclidean distance between the corresponding points.

This distance is more restrictive that MDF distance, based on the mean Euclidean dis-

tance, and employed by QB. Furthermore, the distance threshold used to compare and

fuse the clusters in all the analyzed methods (QB, Guevara and FFClust) is applied to

the cluster centroids. Hence, the distance between the fibers of the clusters can be

higher than the threshold.
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On the other hand, as seen in Figure 3.3-(middle), the inter-cluster distance of FF-

Clust is similar to the inter-cluster distance of QBmdf6 and QBXmdf6. The other meth-

ods have more clusters with a greater inter-cluster distance than FFClust, but as men-

tioned, they also have greater intra-cluster distances. Also, Figure 3.3-(bottom) shows

that FFClust and Guevara generates smaller clusters than the other methods, how-

ever, they are also able to find large clusters. The maximum cluster size is about 8, 000

for FFClust and 9, 000 for Guevara. In contrast QBmdf10, QBXmd6, and QBXmdf10

have clusters of sizes over 15, 000. Note that Figure 3.3 shows the results in logarithmic

scale.

Both FFClust and Guevara methods eliminate fibers, but QB and QBX do not. The

Guevara method eliminates 37%, and FFClust eliminates 13% of the total number of

fibers. Note that FFClust eliminates only small clusters containing 1 or 2 fibers.

Another experimental evaluation was performed to consider QuickBundles and Quick-

BundlesX using maximum Euclidean distance instead of the MDF. However, both meth-

ods become time consuming, taking days to complete on a dataset of 100,000 fibers.

Experiments showed the quality of clusters, considering the same measures, i.e., intra-

cluster and inter-cluster distances, and cluster sizes, are similar to FFClust ’s.

A third quality clustering evaluation uses the Davies–Bouldin (DB) index [137]. The

DB index is defined as the average similarity between each cluster with its most similar

cluster, where similarity refers to the ratio of intra-cluster and inter-cluster distances.

The DB index is computed by Equation 3.2, where n is the number of clusters; αi and

αj are the average distances between all elements of cluster i and j respectively; ci
and cj are the centroids of cluster i and j; and d(ci, cj) is the average distance between

both centroids. A DB index has normalized values between 0 and 1, where a value

closer to zero indicates a better separation between the clusters.

DB =
1

n

n∑
i=1

max
i 6=j

(
αi + αj

d(ci, cj)

)
(3.2)

Figure 3.4 displays the DB index for all methods, which shows that QBmdf6 pro-

vides the best score, and FFClust is the second best method. Then, closely follows
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Figure 3.3: Method comparison with intra-cluster, inter-cluster maximum distances,
and cluster sizes. Error bars are computed by using 50 subjects with approximately
one million fibers. Top figure shows intra-cluster maximum distance, middle figure
shows inter-cluster maximum distance, and bottom figure shows cluster sizes.
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the Guevara method. The figure also shows that QB provides better DB score than

QBX.

Figure 3.4: Davies-Bouldin index for each method. X-axis contains each method. FF-
Clust (dRmax = 6mm and dMmax = 6mm). Y-axis shows the DB index, the closer to zero
the better value.

Qualitative analysis using segmentation

This section describes a qualitative analysis based on the segmentation of bun-

dles using an atlas of superficial white matter bundles [50]. This analysis compares

the segmentation results obtained by the state-of-the-art methods. The segmentation

method selects and labels the closer cluster to each atlas bundle, based on a maximum

Euclidean distance threshold [72, 128].

Figure 3.5 shows the segmentation comparison with the SWM atlas [50], obtain-

ing the closest clusters for each method using the four atlas bundles connecting the

postcentral (PoC) and precentral (PrC) gyri. To obtain the closest clusters, the strategy

uses a segmentation threshold distance of 6 mm, and then if a method does not find all
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bundles, it is increased to 8 mm. The Guevara and FFClust methods are able to iden-

tify the four bundles with a threshold distance of 6 mm, and QB alternatives are able

to identify the four bundles using the segmentation threshold of 8 mm. Figure 3.5 also

shows an error percentage on the bottom right of each image. This error measures

the percentage of fibers that are out of the correct regions. Since there is no ground

truth, this is not a real measure of quality but provides an insight into the fibers that are

included in the clusters but differ from the main fiber shape, with fibers that connect

surrounding cortical regions. The Guevara method achieves the best streamline end-

point error (5.4%) and the second best is achieved by FFClust (6.2%), and QBmdf6

follows with 6.5%.

Figure 3.5: Segmentation comparison with bundles of a SWM atlas [50] connecting
the postcentral (PoC) and precentral (PrC) gyri. Top image show the Guevara, FFClust
(dRmax = 6mm and dMmax = 6mm), and QBmdf6 methods. The circular image dis-
plays a zoom for QBmdf6, to better show the pink cluster, that is under the red one.
Bottom image show QBXmdf6, QBmdf10, and QBXmdf10 methods. The criterion for
segmentation was a greedy approach with heuristics to the nearest bundle.
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Figure 3.6 shows the segmentation comparison with the SWM bundle atlas [53]

for the corticospinal tract (CST), the inferior fronto-occipital fasciculus (IFO), and the

inferior longitudal fasciculus (IL). We can observe that all the methods are able to re-

group the fibers belonging to these long bundles, with a variable number of clusters,

depending on the threshold and the method itself.

Comparison with QuickBundles by qualitative analysis

This section evaluates the final clusters obtained in FFClust, QBmdf6, QBmdf10,

and Guevara using a visual inspection to observe the quality of the final clusters. QBX

is not considered because both the DB index and the segmentation evaluation show

that QB achieves better quality than QBX.

The evaluation considered five cases: thinner clusters (50 thinnest clusters that

present between 2 and 5 fibers), thicker clusters (50 clusters with the most fibers),

short fiber clusters (200 short fiber clusters, between 30 and 60 mm), long fiber clus-

ters (50 clusters with the longest fibers, starting at 80 mm), the least homogeneous

clusters, i.e., clusters with the largest maximum intra-cluster distance, and the most

similar clusters (94 clusters with the most similar ones among them). The following is

a detailed description of each of the cases:

1. Thinner clusters. The thinnest clusters are those with the least number of

streamlines. We considered such clusters are those having between 2 and 5

streamlines. Figure 3.7 shows the results of FFClust, QBmdf6, QBmdf10, and

Guevara with the 50 thinner clusters. Visual inspection shows that the meth-

ods provide similar clusters, however QB and Guevara clusters seem to be more

scattered than clusters obtained by FFClust.

2. Thicker clusters. The thickest clusters are those having the largest sizes, that

is, clusters with the largest number of streamlines. We consider the 50 thickest

clusters for visual inspection. Figure 3.8 shows the results for both algorithms.

We provide each of the three views of the brain (coronal, axial and sagittal). We

note that FFClust, QBmdf6 and Guevara obtain clusters that look uniform. As for
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Figure 3.6: Segmentation comparison based on a DWM bundle atlas [53] for the corti-
cospinal tract (CST), the inferior fronto-occipital fasciculus (IFO), and the inferior longi-
tudal fasciculus (IL). The first two columns show the CST. The third and fourth columns
show the IFO, and the last two columns show the IL. The first row shows the DWM
atlas bundles. The following rows show the bundles obtained by the different methods
used in the comparison of long fiber segmentation for the mentioned bundles.

QBmdf10, we see that the clusters have less homogeneous and scattered ending

points.

3. Short fiber clusters. We visualize short fiber clusters having fibers of length up
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Figure 3.7: Thinner cluster comparison. In the comparison we show FFClust with
Kpc = 200, Kpo = 300, dRmax = 6 mm, dMmax = 6 mm, together with QB with MDF =
6 mm, MDF = 10 mm, and Guevara max_cdist = 10 mm.

Figure 3.8: Thicker cluster comparison. The comparison shows FFClust with Kpc =
200, Kpo = 300, dRmax = 6 mm, dMmax = 6 mm, together with QB with MDF = 6 mm,
MDF = 10 mm, and Guevara with max_cdist = 10 mm. Display of coronal, axial and
sagittal views.

to 60 mm. Figure 3.9 shows the comparison of short fibers for the three algo-

rithms. We observe that the quality of QBmdf6, FFClust and Guevara are very

similar, but we see some clusters with more scattered ending points for QB. Again

QBmdf10 presents clusters too wide with frizzy ending points. Short fibers are
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usually analyzed based on the regions they connect [49]. Hence, having end-

points from different streamlines close to each other in a cluster will help to min-

imize the number of streamlines connecting neighboring regions. However, this

does not ensure that all the cluster streamlines will land on the same anatomical

structure.

Figure 3.9: Comparison of short fiber clusters. The comparison contains the 200 thick-
est clusters with fiber lengths between 30mm and 60mm. It shows FFClust with Kpc =
200, Kpo = 300, dRmax = 6 mm, dMmax = 6 mm, together with QB with MDF = 6 mm,
MDF = 10 mm, and Guevara max_cdist = 10 mm. Display of coronal, axial and sagittal
views.

4. Long fiber clusters. We denote long fiber clusters those clusters with fibers

of length greater than 80 mm. To facilitate visual inspection we present the 50

longest clusters. Figure 3.10 shows the comparison between FFClust, QBmdf6,

QBmdf10, and Guevara for coronal, axial and sagittal views. As in the previous

experiments, we observe that the clusters generated by FFClust, QBmdf6 and

Guevara are very similar and compact, whereas clusters for QBmdf10 have frizzy

ending point.
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Figure 3.10: Comparison of long fiber clusters. In the comparison appears the 50
thickest clusters with fibers longer than 60 mm long. We show FFClust with Kpc = 200,
Kpo = 300, dRmax = 6 mm, dMmax = 6 mm, together with QB with MDF = 6 mm, and
MDF = 10 mm, and Guevara max_cdist = 10 mm. Display of coronal, axial and sagittal
views.

5. Clusters with largest maximum intra-cluster distance. This experiment stud-

ies the final clusters that have a maximum intra-cluster distance over 40 mm. FF-

Clust obtains three clusters over this maximum distance, shown in Figure 3.11-

(left). QBmdf6 obtains about 15 clusters over 50 mm, shown in Figure 3.11-

(middle left).

QBmdf10 and Guevara obtain about 140 over 50 mm, hence we display only

the clusters with maximum intra-cluster distance over 70 mm (see Figures 3.11-

(middle right) and Figure 3.11-(right)).

Figure 3.11 shows that FFClust has only a few clusters with small number of

streamlines and atypical forms. We suggest that they are noise in the tractogra-

phy. Some clusters found in QB with intra-cluster distance were probably divided

into several small clusters by FFClust. FFClust only discards small and isolated
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clusters, that are dissimilar to all the other large clusters. This is performed in its

third step, which tries to reassign the small clusters (with five or fewer streamlines)

to the largest clusters. All small clusters, with one or two streamlines that are not

reassigned to a large cluster are eliminated. It should be noted that none of the

compared methods were designed to eliminate erroneous clusters of medium or

large size. Further analyzes with additional information are required to perform

this kind of filtering.

Figure 3.11: Images of clusters with greater intra-cluster distance. Clusters with large
intra-cluster distance, FFClust with dRmax = 6 mm and dMmax = 6 mm are shown with
distance > 40 mm, QB with MDF = 6 mm with distance > 50 mm, QB with MDF =
10 mm with distance > 70 mm, and in Guevara with max_cdist = 10 mm.

6. The most similar clusters. We also analyze the most similar clusters, i.e., those

that most resemble each other for FFClust, QBmdf6, QBmdf10, and Guevara.

To identify similar clusters, we used the 100 bundles of a SWM atlas [50] as

a reference. Those bundles where found to be the short association bundles

most stable across subjects [50]. We identified the clusters that most resemble

them, using a maximum threshold of 6 mm, obtaining 94 bundles for the four

configurations. Figure 3.12 shows the results of FFClust, QBmdf6, QBmdf10,

and Guevara with the 94 most similar clusters. Those clusters appear very similar

for all the methods.

Runtime comparison

This section evaluates the execution time of FFClust with state-of-the-art methods.

FFClust-seq denotes the sequential version of FFClust, where the complete algorithm

is executed using only one thread. FFClust-par denotes the parallel implementation
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Figure 3.12: Comparison of most similar clusters. In the comparison appears the 94
most similar clusters taking as a reference a SWM atlas [50]. We apply FFClust with
dRmax = 6 mm and dMmax = 6 mm, together with QB with MDF = 6 mm, and MDF =
10 mm, and Guevara max_cdist = 10 mm. Display of coronal, axial and sagittal views.

of FFClust, where each of the steps of the algorithm is executed using five threads in

the first step and 12 in the other steps. The methods used for comparison are: Quick-

Bundles with MDF of 6 mm (QBmdf6), with MDF of 10 mm (QBmdf10), QuickBundlesX

with MDF of 6 mm and 10 mm (QBX ). However, we did not include the Guevara [55]

method for this experiment because its execution times are longer than two hours for

any dataset, far exceeding the execution times of algorithms such as QB and FFClust,

which were designed to be efficient. The evaluation was performed using subjects from

the ARCHI database with a number of streamlines varying from 330,000 to 2,729,000.

Table 3.1 shows the execution times in seconds for all considered methods. Fig-

ure 3.13 shows the execution times in logarithmic scale of the methods. FFClust-seq

and FFClust-par provide the best execution times. It is at least an order of magnitude

faster than QuickBundles. Also, we can see the trend of the QB algorithm, where the

execution time increases when MDF is set to 6 mm, instead of using the QB default
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value of 10 mm. In addition, the speed up of FFClust-par has been calculated accord-

ing to the number of fibers used. The speed up equation is given by SN = T1/TN ,

where TN is the parallel time, T1 is the time in a processor and SN is the speed up

algorithmic. Table 3.2 shows the speed up for each number of fibers.

Total fibers FFClust-par FFClust-seq QBmdf6 QBmdf10 QBX
time (s) time (s) time (s) time (s) time (s)

330K 9.92 28.13 334.03 108.77 32.24
659K 24.61 70.09 3,594.02 1,031.37 217.41
955K 45.96 119.84 8,032.76 2,318.02 399.61

1296K 76.82 181.08 13,404.17 4,186.45 604.14
1634K 94.75 250.13 21,813.78 7,253.64 850.67
1945K 125.91 317.59 30,394.23 10,002.94 1,125.90
2338K 193.58 460.76 50,946.22 14,312.24 1,540.61
2729K 264.30 623.13 71,243.69 19,861.15 2,194.00

Table 3.1: Execution times in seconds for FFClust-par, FFClust-seq, QBmdf6, QB-
mdf10 and QBX, varying the number of streamlines in the range of 330,000 and
2,729,000.

Figure 3.13: Execution times for FFClust-par, FFClust-seq, QBmdf6, QBmdf10, and
QBX. The streamlines range is from 330,000 to 2,729,000.
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Speed up 2.84 2.85 2.61 2.36 2.64 2.52 2.38 2.36
Total fibers 330K 659K 955K 1296K 1634K 1945K 2338K 2729K

Table 3.2: Speed up for FFClust-par, varying the number of streamlines in the range of
330K and 2,729K.

Execution time complexity

FFClust ’s time complexity is made up of four stages, these are:

1. The time complexity of the STEP 1: Building point clusters is based on MK. Its

upper bound is O(tKDN), where N is the number of elements, D is the dimen-

sionality of the elements, K is the number of clusters and t is the number of

iterations or until convergence. FFClust sequential implementation executes the

MK algorithm on five streamline points, as FFClust uses five points. FFClust

parallel implementation executes MK on each streamline point in parallel.

2. The STEP 2: Generating preliminary streamline clusters of the algorithm builds

a dictionary data structure to map the clusters of points to streamline clusters. It

is the fastest step of all and its complexity is O(N). This step is also parallelized

in the FFClust parallel implementation.

3. The time complexity of the STEP 3: Reassigning small preliminary streamline

clusters is O(|Ss| × |Sl|), where both |Ss| << N and |Sl| << N because they are

centroids not fibers. The parallel version of this step is described by Vazquez et.

al [128] and it is included in FFClust parallel implementation.

4. Finally, last STEP 4: Merging candidate streamline clusters time complexity is

determined by the maximal clique algorithm. Although the problem is NP-hard,

when using parameterized complexity in sparse graphs, algorithms can be near

linear [37]. This step is also parallelized in the FFClust parallel implementation.

3.1.4. Discussion

We propose FFClust, a new fast clustering algorithm for large whole-brain tractog-

raphy datasets of the brain’s white matter. We compare our clustering results with the



43

state-of-the-art clustering using the QuickBundlesX (QBX ) [43], QuickBundles (QB)

[42] and Guevara [55] methods.

After tuning the parameters of all methods, our experimental evaluation shows that

FFClust identifies homogeneous clusters with a moderate maximum intra-cluster Eu-

clidean distance and still it is able to find large clusters. Using the DB index as a metric

of clustering quality, we found that QB, using MDF of 6 mm, is the best and FFClust

is the second best, whereas using QB with the default distance MDF of 10 mm its DB

index is less competitive. Based on the DB index, QBX does not improve the quality of

QB.

We also compare the resulting clusters using as reference bundles connecting the

postcentral (PoC) and precentral (PrC) gyri of a superficial WM bundle atlas. The re-

sults show that only the Guevara method and FFClust are able to find all bundles with

a small error, i.e., with fewer fibers connecting surrounding regions. On the other hand,

QB and QBX are able to identify the bundles, but with higher error. This analysis was

performed to evaluate the potential applications of FFClust. It was designed to create

compact clusters, with the purpose to be used in applications like bundle segmenta-

tion [53, 72, 128] and inter-subject analyses for the creation of WM bundle atlases

[53, 106, 50, 142] and connectivity-based parcellations [89, 80]. However, for some

applications, bigger clusters would be more suitable. For example, if the main goal is

the segmentation of large anatomical bundles, large clusters would be more useful, or

easier to handle. On the other hand, if the clusters will be used for the study of short as-

sociation bundles, small clusters are more suitable, since large clusters could connect

neighboring anatomical regions. Another application is the diffusion-based parcella-

tion, where, the size of the clusters depends on the size desired for the final parcels

(or the number of parcels). Hence, the utility of each method must be evaluated by the

user, in function of the particular requirements of the analysis to be performed.

Another advantage of FFClust, in comparison with the state-of-the-art methods, is

the improvement in execution time. FFClust is at least an order of magnitude faster

than QB. For instance, with a subject of 1 million of fibers, the sequential version of

FFClust takes 1.99 minutes and its parallel implementation takes 45 seconds. QB, on
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the other hand, takes 2.2 hours using its best quality configuration (MDF of 6 mm).

Also, at the expense of decreasing quality for some applications, using QB with its

default value for MDF of 10 mm still takes 38 minutes, and its optimized version, QBX

takes 6.6 minutes, which makes FFClust parallel implementation at least 50.4 times

faster than QB and 8.6 times faster than QBX.

In summary, in addition to its reduced computation time, FFClust presents the ad-

vantage of producing good quality clusters, with a compact shape and without frizzy

ending points. This feature will enable a more detailed study of brain connectivity,

in particular, short association fibers, and could enable the development of diffusion-

weighted parcellations. We notice that FFClust provides similar results to the Guevara

method. In particular, they achieve a similar DB index score, and both are able to

identify all bundles in the segmentation application. Moreover, both provide the lowest

error percentages in the quality of such identified bundles. However, FFClust is more

simple than the Guevara method, requires fewer parameters and it is faster. Then, we

suggest that FFClust can be used in similar applications where the Guevara has been

successfully used [53, 50].
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3.2. Labeling of superficial white matter bundles

This section describes a method of labeling of superficial white matter bundles on

a group of subjects. First of all, we discuss the related work on fiber labeling. Then,

we explain the method based on intra-subject clustering. In addition, we present two

algorithms to perform the inter-subject labeling. One is based on clustering and the

other is based on matching. Then, we present the experimental results for the intra- and

inter-subject methods. Finally, we discuss the fiber labeling, the methods developed,

and the results.

3.2.1. Related work

The preferred technique to non-invasively study structural brain connections is dif-

fusion weighted Magnetic Resonance Imaging (dMRI), based on the measurement of

water molecules movement [74, 6]. Diffusion tractography estimates the main white

matter (WM) tracts, obtaining a set of 3D paths, called streamlines or fibers [7]. Trac-

tography datasets contain a large number of streamlines, some of which represent the

trajectory of known WM bundles, with anatomical meaning. Such bundles have been

described in the literature by neuroanatomists [17], and have been validated with other

techniques like post-mortem dissections [85]. However, these datasets also include

artifacts or false positives, some of which can occur systematically across subjects

[82]. Hence, tractography datasets can be analyzed to extract or segment known WM

bundles, which requires the inclusion of anatomical information in the processing. One

strategy can be the manual delineation of regions of interest (ROIs) in the cortex, and

the extraction of fibers connecting a pair of cortical regions for a specific bundle. This

analysis has been recently used to study short association bundles [18]. The bundle

segmentation can be performed automatically by applying an atlas of gray matter and

WM ROIs, and then using anatomical descriptions of the bundles to segment fibers

connecting or passing through specific ROIs [131].

Automatic methods based on ROIs allow an easy modification or addition of bundle

extraction rules, but do not include an analysis based on the trajectories of the fibers

as a whole. Another strategy is based on clustering to group fibers with similar shape
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and position, commonly based on a fiber pairwise distance measure that considers the

Euclidean distances between the corresponding points (or closest points) of the two

fibers. To extract anatomical bundles, some methods use a clustering algorithm and

an atlas embedding anatomical bundle information [95, 94, 44]. Also, other simpler

algorithms have been implemented to extract bundles based on a multi-subject bundle

atlas [53, 72, 128]. Several atlases have been created to represent main deep white

matter (DWM) bundles, which have been well described by anatomists and are very

stable across subjects [95, 53, 107], i.e., present high similarity and can be found in

all the subjects on medium- to high-quality databases. However, there exist several

WM fiber bundles still unknown or not sufficiently described, because of their higher

inter-subject variability and fewer reproducibility [49]. This is the case of short asso-

ciation bundles, where only a few works have been focused on their description for

the whole-brain [50, 106]. Short association fibers are placed immediately underneath

the gray matter of the cortex and connect adjacent or close gyri. They can present

different sizes, where the shortest ones are the nearest to the cortex and present the

typical U-shape, due to their closeness to the walls of the convolution depression [86].

Their description is still incomplete [49], however, post-mortem dissections have been

used to validate the largest and reproducible bundles [18, 66]. Superficial white mat-

ter (SWM) fibers can be studied using exploratory fiber clustering methods that aim to

detect fiber tracts without having any reference to the start or end of WM fibers [93].

This type of algorithm, applied to a whole-brain tractography dataset, generates a set

of fiber clusters representing the main WM connections in the analyzed brain. In the

case of the works in [50, 106], superficial white matter bundle atlases were obtained

using different methods based on fiber clustering and the addition of anatomical infor-

mation. Also, a recent work found a great amount of SWM bundles [142], but those

were not labeled, requiring a posterior analysis for their study. Hence, existing meth-

ods have been focused on finding reproducible bundles across subjects, but not on

the development of an automatic labeling of individual or inter-subject SWM clusters.

Whole-brain fiber clustering methods, applied to individuals or to a population of sub-

jects, do not return directly the identification of the obtained clusters, e.g., information

about the anatomical areas connected by the fibers and their relative position in the
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cortex. Such identification or labeling could be very useful for the study of the hu-

man brain connectome in individuals and different populations. The labeled clusters

could then be used to perform detailed analyses of known bundles, i.e., subdivisions of

the main bundles, and also of unknown fascicles, such as short association bundles.

Furthermore, multi-subject analyses could be applied to create new bundle atlases.

Superficial white matter bundles are more variable across subjects and more sus-

ceptible to noise than deep white matter bundles, due to their smaller size and location

in the brain, which presents partial volume effect. Hence special attention must be

given to the diffusion local model and tractography methods. Due to the improvement

of imaging quality, i.e., more signal-to-noise ratio, higher resolution, better distortion

correction methods, between others, have allowed a better reconstruction of short as-

sociation bundles. The most stable bundles can be reconstructed using deterministic

tractography, with adapted parameters, in particular, a larger number of streamlines

and a low fractional anisotropy (FA) threshold or an adapted propagation mask, to pre-

vent the removal of voxels in the superficial white matter [49].

We propose a method that automatically labels the clusters of a subject obtained

from an intra-subject clustering, based on the regions connected by the clusters. This

information is based on a cortical surface mesh, labeled with the Desikan-Killiany at-

las (35 gyri per hemisphere). Direct correspondence between subjects is obtained for

the connected anatomical regions. Furthermore, within each region, the clusters on

individuals are labeled following and ordering criterion. Moreover, we apply two strate-

gies for inter-subject cluster labeling. First, a matching method is implemented based

on the Hungarian algorithm to find correspondence between bundles across subjects

and subsequently apply a labeling that gives the same names to bundles identified in

several subjects. Also, a clustering algorithm is applied to group similar bundles on a

set of subjects and perform the labeling across them. While the matching algorithm

finds the best matching for single bundles, the clustering may group similar bundles

on some subjects and identify similar bundles (or groups of bundles) across subjects.

Both inter-subject implementations are fast, taking, respectively, about 96 and 9 s, over
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20 subjects. The performance of both implementations was compared in terms of re-

producibility and inter-subject bundle distance.

3.2.2. Methods for intra- and inter-subject labeling

Automatic labeling of SWM bundles

To perform the automatic labeling of bundles of superficial white matter, a method

consisting of four stages (see Figure 3.14) was developed, these are: (1) fiber cluster-

ing, (2) cluster filtering, (3) fiber intersection and (4) cluster labeling.

Stage 1: Fiber clustering

This first stage performs an automatic clustering of a whole-brain tractography

dataset, which returns a set of clusters of similar fibers (see Figure 3.14-(1)). The

clustering method [125] is an improved version of an algorithm proposed in [109]. To

apply the clustering, fibers must be first resampled with 21 equidistant points, as in

[55, 53]. The method consists of 4 steps: (1) Building clusters on a subset of fiber

points, where mini batch K-means is applied in parallel on a subset of fiber points,

obtaining groups of points; (2) Generating preliminary clusters, which groups fibers

sharing the point cluster labels from the previous step; (3) Defining candidate clusters

by reassigning small preliminary clusters: reassigns small clusters to larger clusters

based on a maximum distance threshold between clusters; (4) Computing final clus-

ters by merging close candidate clusters: merges close clusters that share the central

label obtained from step 1, according to a criterion of maximum Euclidean distance be-

tween clusters. Finally, a representative fiber of each cluster is selected, as its centroid,

and resampled with 21 equidistant points.

Stage 2: Cluster filtering

The second stage automatically filters out the small and long fiber clusters (see Fig.

3.14-(2)). Clusters are denoted as Ci, with i = 1, ..., n the index of the cluster. The filter

receives a minimum size of the cluster minnf (Ci) (number of fibers), to remove small

fibers, and a minimum minlen(Ci) and maximum cluster length maxlen(Ci) to only keep
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Figure 3.14: Schematics of the labeling method. Stage 1: Fiber clustering. Performs
the clustering of the entire tractography. Stage 2: Cluster filtering. Filters out the
small clusters and only keep the short bundles, obtained in the previous stage. Stage
3: Fiber intersection. Calculates the fiber bundle intersection with the cortical mesh.
Stage 4: Cluster labeling. Renames the clusters based on the two connected regions
of the cortex and their position.

short fibers within a reasonable range. The length of each cluster is measured using

the Euclidean distance between two adjacent points of the cluster’s centroid.
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Stage 3: Fiber intersection

This step automatically calculates the intersection of the fibers with the cortical

mesh, based on the algorithm proposed in [115] (see Fig. 3.14-(3)). The method first

performs a subdivision of 3D space into 1.5 mm size cells, which speeds up searches

in the mesh. Next, each fiber endpoint is projected one point backward and two points

forward to extend the search along the fiber trajectory on ending points and avoid

missing intersections. All cells that include these points and their neighboring cells are

selected. Finally, the intersection point of each fiber extremity with the cortical mesh

triangles is determined using Möller-Trumbore equation [87], based on the analysis of

the triangles contained in the selected cells. The intersection algorithm is given by

Equation 3.3:

O + tD = (1− u− v)V0 + uV1 + vV2 (3.3)

where (u, v) are the exact coordinates of the intersection with the mesh triangle,

V0, V1 and V2 are the vertices of a triangle, t is the direction, D is the normalized ray

trajectory, and O is the ray from the point of origin.

Finally, for each hemisphere, the indexes of the start (Triinit) and end triangles

(Triend) where the fiber intersects the mesh are obtained, as well as the coordinates of

the two exact points of the initial (Pointinit) and final (Pointend) intersection.

Stage 4: Cluster labeling

This stage performs an automatic labeling of all the clusters based on the cortical

regions they connect, by using a cortical ROI atlas. For testing, we use the Desikan-

Killiany atlas [31], consisting of 35 regions (gyri) per hemisphere. We use the cortical

meshes, containing a list of vertices and triangles, and a labeling file, containing the

cortical region label of each mesh vertex.

4.1. Fiber labeling. First, for each cluster, each fiber is labeled according to the

triangle of the mesh that the fiber intersects, based on the region labels of the

triangle vertices. The labeling of each triangle is defined as the most repeated

label between its three vertices (see Fig. 3.14-(4.1.)).



51

4.2. Fiber alignment. Next, the fibers require to be aligned, since, in a tractog-

raphy dataset, there is no unique direction and fibers can be stored in direct or

inverse direction. Since after the clustering the fibers are grouped on compact

clusters, these can be aligned so that the starting and ending points have the

same orientation in a cluster (see Figure 3.14-(4.2.)). Hence, the fibers of a clus-

ter are oriented based on the cluster centroid. To perform the alignment, we verify

if the fibers are inverted with respect to the centroid. We denote fi as the fiber i of

the bundle, with i = 1, ..., n, and the centroid of the bundle as cj, with j = 1, ...,m.

Then, the Euclidean distance (dE) is calculated between the first point of the fiber

(fi1) and both endpoints of the centroid (ci1 to cj21). If dE(fi1, cj1) > dE(fi1, cj21),

the fiber is inverted by flipping its fiber points.

Figure 3.15: Fiber bundle alignment with respect to its corresponding bundle centroid.
The Euclidean distance (dE) is calculated between the first point of the fiber (fi1) and
both end points of the centroid (ci1 to cj21). If dE(fi1, cj1) > dE(fi1, cj21), the fiber is
reversed.

4.3. Bundle labeling. Next, each cluster (or bundle) is labeled according to the

most connected regions. For each bundle, the labels of both bundle extremities,

i.e., the beginning and end of each bundle, are processed separately. The most

common label (mcl) for bundle start (mclinit) and end (mclend) is determined and

used to name each bundle, with format mclinit-mclend (see Figure 3.14-(4.3.)). For

instance, a bundle connecting the postcentral and precentral anatomical regions

will have the label PoC-PrC. Note that several bundles may connect the same pair

of anatomical regions (gyri), as each cluster extremity only intersects a portion of

a gyrus. Then, an order is assigned to each pair of bundles defined by the index

of the regions in the cortical region label file. For example, PrC has index 24 and



52

PoC has index 22, then, the bundle is named as PoC-PrC. Subsequently, bundles

with inverted names are flipped. For example, all the bundles labeled with PrC-

PoC are inverted and named as PoC-PrC. Finally, as several bundles may have

the same name, but connecting different specific sub-regions of the gyri. These

are labeled with an extra index, indicating the relative position according to an

axis in the brain in MNI space. The intersection points of all the bundle centroids

in a gyrus are sorted based on a spatial coordinate (x, y, or z), in ascending or

descending order. By default the order is ascending according to y axis, i.e., from

the bottom-up.

Inter-subject labeling

In this section, two methods are presented to obtain automatic group-wise bundle

labels of superficial white matter bundles, among the subjects of a population. Intra-

subject labeling, presented in the previous section, labeled the bundles of a subject

based on the connected brain regions individually, and an order based on the coordi-

nates, producing a certain similarity between the subjects’ bundles. However, this was

not the main objective of the intra-subject labeling method and the correspondence be-

tween subjects can be improved by applying inter-subject methods. The methods used

to perform this processing are a matching algorithm and a clustering algorithm. To ap-

ply these methods, the tractography datasets need to be in a common space. All sub-

jects were aligned to Talairach space using the affine transformation of the database,

and then a rigid transformation to MNI space. Both methods use a maximum distance

threshold to define the similarity of bundles across subjects. The inter-subject labeling

renames all the bundles according to the correspondence found in the analyzed group

of subjects. The part of the name related to the connected cortical regions is kept, but

the index is assigned again to all the bundles. Bundles found similar in several subjects

will have the same label.
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Matching algorithm for inter-subject labeling

The aim of this step is to apply a matching [88] for finding a correspondence be-

tween similar bundles in the different subjects. Bipartite matching algorithms find cor-

respondence between pairs of elements from two distinct sets. These algorithms are

based on graph theory to find connections in two sets of vertices, where vertices in one

set must match with vertices in the other set [134].

A well-known algorithm for a bipartite matching problem is the Hungarian algorithm,

that solves the minimum weight matching, i.e., the minimum distance between vertices

from the two sets, A and B [40]. Being V the number of vertices from the two sets, the

algorithm receives a matrix M , containing the distances between the vertices from the

two sets. In our application, V is the total number of bundles from a pair of subjects and

matrix M contains the distances between the bundle centroids from the two subjects,

being one set represented in the rows, and the other in the columns. The original

algorithm performs a perfect matching, i.e., each vertex (or bundle) in set A is matched

with a vertex in set B, which requires an equal number of vertices in both sets and

produces a square matrix M . Our problem presents a different number of vertices in

each set, as different number of bundles are found in each subject. Hence, we used

an adapted algorithm that performs the analysis over non-squared matrices and leaves

unmatched the most dissimilar elements.

More formally, each element M [i, j] in matrix M represents the distance between

bundle i of set A (subject A) and bundle j of set B (subject B), being the cost of

matching between the two vertices. The result is an assignment of the elements of set

A with setB by using the minimum assignment cost. The distance used is the minimum

average direct-flip distance (MDF) between two pairs of fibers [42] (Equation 3.4), a

distance commonly used for tractography fiber comparison. This distance calculates

the mean Euclidean distance between corresponding points of a pair of centroids or

fibers. To be used, fibers are resampled with a defined number of K equidistant points

(21 in our case). Since fibers can be ordered in memory in opposite directions, the

distance must be calculated with fibers in both directions (direct and flipped order), and

then the minimum value must be selected, which will correspond to the correct order.



54

ddirect(a, b) = d(a, b) =
1

K

K∑
i=1

|ai − bi|

dflipped(a, b) = d(a, bF ) = d(aF , b)

MDF (a, b) = min(ddirect(a, b), dflipped(a, b)) (3.4)

The Hungarian algorithm has a complexity of O(V 3), however, as we perform the

analysis separately for each pair of anatomical regions, the analyzed datasets are small

with low execution time.

The matching algorithm applied to inter-subject bundle labeling first performs a bun-

dle pre-processing. For each subject, previously labeled bundles with the intra-subject

labeling, are separated into different groups depending on the pair of anatomical re-

gions they connect. Then, for each region a map is created, whose key is the subject

and the value is a list of the bundles that belong to the subject and region. For in-

stance, for region PoC-PrC the bundles for Subject001, will be stored in the key-value

pair: Subject001: [bundle0, bundle1, ..., bundleN]. Next, the algorithm consists of four

steps:

Step 1. Once the maps of all the regions are obtained, the bundles of each

region are processed sequentially. First, the subjects are ordered from highest

to lowest, based on the number of bundles they contain. For each bundle, its

centroid is calculated using the mean of the streamline point coordinates.

Step 2. The analysis begins with the first subject on the list as a reference subject.

This subject is compared with each of the following subjects using the Hungarian

algorithm, receiving as input the distance matrix. This returns a matching based

on the distance of one bundle centroid with another. The Hungarian algorithm

receives as input the matrix of distances, which are calculated using the MDF

distance (Equation 3.4) between all the bundle centroid pairs of all subjects. For

each bundle, the algorithm returns the bundle that best matches it, according

to the solution of the minimization problem. However, the distance between a
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pair of bundles could be higher, hence, the method evaluates all the distances

between the matched bundle centroids and only keeps the pairs of bundles in

which distances do not exceed the established maximum distance threshold. This

avoids the assignment of distant bundles, leaving them unassigned. Bundles that

match each other are labeled with the same indexes, based on the label of the

reference subject. For example, for two corresponding bundles, they would be

called PoC-PrC_0 even if they are from different subjects.

Step 3. Two cases can happen with unassigned bundles: (i) Bundles of the

reference subject. They are not similar to any other bundle in the dataset and

they are labeled with a new index. (ii) Bundles of the remaining subjects. The

bundles are stored. In the iteration in which the subject is taken as a reference,

comparisons are made again with the rest of the subjects.

Step 4. Repeat Step 2 with the unassigned bundles of the following subjects,

taking as reference the next subject in the list with unassigned bundles.

Figure 3.16 shows an example scheme of the algorithm for three subjects and the

bundles connecting PoC-PrC regions. Each circle corresponds to a bundle. First, the

subjects are ordered from highest to lowest number of bundles (see Figure 3.16-(1.)).

Second, Subject001 that is being compared with the rest is the reference. This step re-

ceives a distance matrix between two subjects’ bundles (see Table 3.3), and then, the

bundles of Subject001 and Subject002 are matched using the Hungarian algorithm.

In the example, it matches only the first two bundles, leaving an unassigned bundle in

Subject002, which will be saved for later comparison (see Figure 3.16-(2.)). Third, Sub-

ject001 continues to be compared with the remaining subjects, in this case, with Sub-

ject003, which leads to the matching of bundles 1 and 2. In Subject003 there remains

an unassigned bundle (see Figure 3.16-(3.)). Finally, once Subject001 is compared

with all subjects, the reference subject becomes the next one, in this case, Subject002.

Then, unassigned bundles are compared, for example, Subject002 is compared with

Subject003 and the two unassigned bundles are matched (see Figure 3.16-(4.)). The

bundle with the highest reproducibility in the example is the 1, since it is present in all
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subjects, and would be named as PoC-PrC_1, according to the label of the first refer-

ence subject of the bundle. We used the implementation of the Hungarian algorithm

available at scipy library1.

Subject002_b0 Subject002_b1 Subject002_b2

Subject001_b0 8 mm 5 mm 7 mm
Subject001_b1 5 mm 9 mm 10 mm
Subject001_b2 12 mm 13 mm 14 mm
Subject001_b3 18 mm 19 mm 17 mm

Table 3.3: Example of distance matrix between subjects’ bundles. Step 2 uses the
Hungarian algorithm which receives as input the distance matrix (in mm) between the
PoC-PrC bundles for two subjects. This returns a matching based on the distance of
one bundle centroid with another.

Clustering algorithm for inter-subject labeling

Clustering is an unsupervised classification method, which groups similar elements

into subsets called clusters. Each cluster is made up of elements that have similar

characteristics, however, the elements of each cluster are different from each other

[138].

The clustering method used to group the clusters is a well-known fiber clustering

algorithm called QuickBundles (QB)2 [42]. Before applying QB, we apply the same

bundle pre-processing as for the matching, to create a map for each pair of regions,

with the bundles of each subject. Next, the QB algorithm is performed sequentially to

each pair of regions. For each pair of regions and all the subjects, the centroids of all

clusters are calculated. The algorithm is applied to the complete set of clusters, i.e.,

from all subjects for the pair of regions. Once the inter-subject clusters are obtained, all

intra-subject clusters belonging to the same inter-subject cluster are labeled with the

same label. If several clusters of the same subject belong to the same inter-subject

cluster, they are merged.

Figure 3.17 shows an example scheme for QB application to three subjects on
1https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assign-

ment.html
2https://dipy.org/documentation/1.0.0./examples_built/segment_quickbundles/
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Figure 3.16: Schematics of the Hungarian algorithm for inter-subject labeling of bun-
dles connecting PoC-PrC regions. First, the bundles are ordered from highest to lowest
number of bundles. Second, the reference subject, Subject001, is compared to Sub-
ject002, leaving unassigned bundles. Third, it continues comparing to the rest of the
subjects. Finally, the reference passes to the next subject with unassigned bundles,
Subject002 and these are compared with the rest of the subjects. This process is
repeated until all subjects are analyzed.

the PoC-PrC regions. First, it starts with the computation of all the cluster centroids.

Unlike matching, in this case, it is not necessary that the clusters are ordered (see

Figure 3.17-(1.)). Second, the QB method is applied to all clusters, generating inter-

subject clusters. Bundles within inter-subject clusters are labeled with the same name

(see Figure 3.17-(2.)). Finally, the clusters of a subject that are in the same inter-subject
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clusters are merged (see Figure 3.17-(3.)). The clusters with the highest reproducibility

are 0 and 3 since they appear in all subjects, whose tags would be: PoC-PrC_0 and

PoC-PrC_3. In addition, there may be some loose cluster, which will be individually

labeled with another index.

Figure 3.17: Schematics of the QB algorithm for labeling inter-subject bundles for PoC-
PrC regions. First, the cluster centroids are computed. Second, QB is applied to all
the intra-subject clusters, to obtain inter-subject clusters. Bundles belonging to an inter-
subject cluster are labeled using the same name. Finally, clusters of the same subject
that belong to the same inter-subject cluster are merged.
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3.2.3. Experimental results

The experiments were executed on a computer with 4-core Intel Core i5-8250U

CPU running at 1.60 GHz, 6MB of cache and 8GB of RAM, using Ubuntu 18.04.2 LTS

with kernel 4.15.0-64 (64 bits). The programming language used to develop almost all

stages is Python 3.6.

Twenty subjects were used for analysis, tractographies, cortical meshes and labels

according to the Desikan-Killiany atlas. The intra-subject labeling was applied to all

the subjects. First, the results for intra-subject labeling performed on four subjects are

shown and analyzed. Next, the two inter-subject labeling methods, matching and clus-

tering, were applied to the 20 subjects, using a set of distance thresholds, ranging from

a conservative value of 10 mm to a moderate value of 21 mm. We use the minimum

average direct-flip (MDF) distance (Equation 3.4). It is defined as the mean Euclidean

distance between corresponding points of two centroids. We use centroids resampled

with 21 equidistant points. Since centroids (or fibers) can be ordered in memory in

opposite directions, the distance must be calculated with centroids in both directions

(direct and flipped order), and then the minimum value must be selected, what will cor-

respond to the correct order. The distance threshold defines the degree of similarity

considered between bundle centroids. The smaller, the more restrictive the analysis

will be.

The reproducibility of the bundles was evaluated by counting the number of subjects

that had each inter-subject bundle. The quality of the labeling was evaluated using a

distance measure between bundles across subjects (MDF). Also, heatmaps are shown

to have an insight on the reproducibility and variability in terms of the number of fibers

of the most reproducible bundles, for a restrictive distance threshold of 12 mm. Finally,

some examples of bundles are displayed for a visual inspection of the results. Hungar-

ian algorithm led to a high correspondence, but low reproducibility for all the thresholds,

with 96 seconds of execution time. QuickBundles led to better correspondence and re-

producibility with short execution time, of only 9 s. Hence, the whole processing for the

inter-subject labeling over 20 subjects takes on average 1.17 h. In the following, we

detail the results.
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Intra-subject labeling

The intra-subject labeling was applied to the 20 subjects. The input data are the

tractography datasets of each subject and a cortical mesh where each vertex is la-

beled with the corresponding gyri (according to Desikan-Killiany atlas). The method

consists of four stages (see Figure 3.14). First, a fiber clustering (stage 1), is applied

to the whole-brain tractography dataset, which returns a set of clusters of similar fibers.

Secondly, a cluster filtering (stage 2) is performed, where small and long fiber clusters

are discarded, keeping only fibers on a reasonable range for short association fibers.

Next, a fiber intersection (stage 3) is executed, to determine the intersection of the

fibers with the cortical mesh. Finally, a cluster labeling (stage 4) is applied, that la-

bels each cluster according to the two most connected cortical regions, and an index

indicating its relative order in the region.

The fiber clustering (stage 1) led to about 43,000 clusters per subject. For fiber

filtering (stage 2), a filter with a minimum cluster size of minnf = 10 fibers is used

to discard small clusters. Also, a minimum cluster length of minlen = 30 mm and a

maximum cluster length of maxlen = 80 mm were employed to discard clusters that are

too short or too long, leading to an average of 1100 clusters per subject. The filtering

values are similar to those previously used [50, 106]. After applying fiber intersection

and cluster labeling stages (stage 3 and 4), the clusters of each subject were labeled

according to the pair of anatomical regions connected by each bundle, and the position

based on ascending order of y-axis on MNI space (default configuration), i.e., from the

bottom-up.

An example of the relative ordering for intra-subject bundle labeling is presented

in Figure 3.18. We can appreciate that bundles connecting postcentral (PoC) and

precentral (PrC) regions are ordered according to y-axis in ascending order (from the

bottom-up). Bundles are ordered according to the PoC parcel since it is indexed before

in the Desikan-Killiany atlas.

Even though the method performs only an intra-subject analysis, a degree of cor-

respondence between the four first subjects can be found, according to their relative
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Figure 3.18: Bundles connecting right PoC and PrC regions. Example of bundle label-
ing according to the relative position of the bundles connecting PoC and PrC regions
for Subject001.

position index. Because of inter-subject variability, the correspondence is not perfect,

nor do they all have the same number of bundles. Figure 3.19 displays the first five

bundles of the four subjects, which connect the left PrC gyri with the supra-marginal

(SM) gyri.

A quantitative evaluation of the bundle correspondence among subjects is displayed

in Figure 3.20, where the distance (MDF) between the bundle centroids of each pair of

subjects for the five bundles connecting PrC and SM gyri (PrC_SM_0 to PrC_SM_4) is

represented with a color scale in mm. Bundles show a relatively good correspondence

among them, with distances between centroids ranging from 7 to 36 mm, with an aver-

age of about 20 mm. Note that distances of 20-30 mm have been previously used for

inter-subject analyses of superficial white matter [50, 106].

Finally, the average execution times for each stage of the intra-subject labeling are:

192 s for stage 1, 10.23 s for stage 2, 11 s for stage 3 and 2.49 s for stage 4, taking on

average a total time of 3.6 min.
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Figure 3.19: Correspondence of intra-subject bundle labels across subjects. Com-
parison of the first five bundles from four subjects (001-004), connecting PrC and SM
gyri.

Inter-subject labeling

The inter-subject labeling was applied to 20 subjects from the ARCHI database

[113]. A comparison has been made between the two implemented methods, match-

ing with the Hungarian algorithm [40] and clustering with QuickBundles (QB) algo-

rithm [42]. Both algorithms work with an input parameter, a distance threshold, using

the minimum average direct-flip (MDF) distance [42] from one centroid to another. This

distance threshold defines the minimum degree of similarity between bundles. In ad-

dition, tests have been carried out with four different distance thresholds. The first
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Figure 3.20: Bundle centroid distances between pairs of subjects for intra-subject la-
beling of four subjects. Each cell in the matrix contains five divisions. Each division
represents a bundle connecting PrC and SM gyri (PrC_SM_0 to PrC_SM_4). The
color scale represents the distances (in mm) between bundle centroids for all the pairs
of subjects. The black divisions represent the absence of bundles connecting the gyri.

threshold of 10 mm is very conservative, being the default threshold of QB for intra-

subject clustering. We also used a 12 mm threshold, which is still conservative and

aims to find similar bundles across subjects. Two other moderate thresholds were

used: 18 mm and 21 mm, which are adequate considering that distances of 20-30 mm

have been previously used for SWM inter-subject analyses [50, 106].

The reproducibility of the methods was evaluated by counting the number of sub-

jects in which each bundle was found. Figure 3.21 shows the reproducibility of the
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bundles for both methods and the four thresholds. Table 3.4 lists three reproducibil-

ity indices for the two inter-subject labeling methods, separated by hemisphere: the

maximum number of subjects for the bundles within the 20 most reproducible bundles,

and the number of bundles with reproducibility greater than or equal to 50% and 75%.

As expected, for both algorithms, the higher the distance threshold, the greater the

reproducibility. As can be seen, the method that shows the highest reproducibility is

QB, presenting 94 bundles with more than 50% of reproducibility for a distance thresh-

old of 21 mm, which is a good number, based on previous studies [50, 106]. On the

other hand, the Hungarian algorithm only found 34 bundles with more than 50% of

reproducibility for the same threshold. Furthermore, the Hungarian algorithm found

no bundles present in all subjects, while QB found 19 for 21 mm threshold. As the

Hungarian algorithm tries to match 1-1 the bundles, leads to less reproducibility than

QB.

Figure 3.21: Reproducibility of bundles with inter-subject labeling for the two methods.
The number of subjects is shown on the x-axis while the y-axis shows the number of
clusters in each range.

Figure 3.22 shows inter-subject labeling quality for both methods with the four tested

distance thresholds. The quality is evaluated using the inter-cluster distance (MDF),

calculated per each bundle as the average distance between all the pairs of bundle
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Method Max # Bundles ≥ 50% # Bundles ≥ 75%
Hungarian12_left 7 0 0
Hungarian12_right 6 0 0
QB12_left 19 12 3
QB12_right 14 14 0
Hungarian18_left 13 3 0
Hungarian18_right 11 3 0
QB18_left 20 41 9
QB18_right 19 42 6
Hungarian21_left 13 22 0
Hungarian21_right 13 12 0
QB21_left 20 49 10
QB21_right 20 45 9

Table 3.4: Reproducibility values between for the two inter-subject labeling methods.
The left column identifies the method (Hungarian or QB), hemisphere (left or right),
and the thresholds (12 mm, 18 mm or 21 mm). The second column lists the maximum
number of subjects for the bundles within the 20 most reproducible bundles. Columns
three and four show the number of bundles with reproducibility greater than or equal to
50% and 75%, respectively.

centroids from the subjects where the bundle was labeled. Thus, the clusters clas-

sified with the same label are measured together, the closer the clusters are in all

the subjects, the better the quality of the method. As expected, for both algorithms,

the lower the distance threshold, the higher the quality. It can be seen that the most

accurate algorithm is the Hungarian with a 10 mm threshold, at expenses of a low re-

producibility, as shown above. The QB algorithm has a lower quality than Hungarian

because it groups clusters of the same subject and merges them, thus increasing the

inter-cluster distance. However, the merging of close clusters leads to a final better

reproducibility, while keeping a moderate intra-cluster distance across subjects, with

values inferior to 30 mm, and an average of about 15 mm.

To have an insight of the reproducibility and variability of the most reproducible

bundles in all subjects for the two labeling methods, we created heatmaps (Figures

3.23, 3.24, 3.25 and 3.26). The heatmaps were created separately for the 20 bundles

of the left and right hemispheres with the highest reproducibility in the 20 subjects, for
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Figure 3.22: Inter-cluster bundle distance for both inter-subject labeling method. X-
axis represents the inter-cluster distance measured in mm. Y-axis shows the number
of clusters in each range.

a 12 mm threshold. Figures 3.23 and 3.24 display the heatmaps for the Hungarian

algorithm, for left and right hemispheres, respectively, while Figures 3.25 and 3.26

show the heatmaps for the QB clustering algorithm. The bundles appear in descending

order along the y-axis, according to the reproducibility between subjects, which appear

along the x-axis. Empty (white) boxes indicate that a bundle does not exist in a certain

subject. The colors represent the normalized number of fibers of each bundle (0-1),

the darker, more fibers.

It can be seen that, as in Figure 3.21, the method with the highest reproducibility is

QB. The number of fibers seems to be more homogeneous for QB, with a tendency of a

low normalized number of fibers. This does not mean that the bundles have few fibers,

but that their number is of a given value for most of the subjects, with very high values

for a few subjects. The bundle with the highest reproducibility is lh_PoC-SM_2 which

was found in 19 subjects, followed by lh_IP-SP_0 and lh_Tr-RMF_0, both found in 18

subjects. Reproducibility using matching is poorer, whose most reproducible bundle,

lh_IP-SP_69, appears in only seven subjects.

Finally, some examples of bundles with high, medium, and low reproducibility are
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Figure 3.23: Reproducibility heatmap for Hungarian algorithm with threshold 12 mm,
for the left hemisphere. On the x-axis are the subjects, on the y-axis are the 20 most
reproducible bundles. The greater the number of fibers, the darker the color of the box
on the heatmap that is normalized between 0 and 1.

Figure 3.24: Reproducibility heatmap for Hungarian algorithm with threshold 12 mm,
for the right hemisphere. X-axis displays the subjects used, the 20 most reproducible
bundles are shown on the y-axis. The darker boxes indicate a higher concentration of
fibers in the bundle. These values are normalized between 0 and 1.
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Figure 3.25: Reproducibility heatmap for QB with threshold 12 mm, for the left hemi-
sphere. X-axis shows the subjects, while the y-axis shows the 20 most reproducible
bundles among subjects in the left hemisphere. Darker boxes show bundles with more
fibers in them. White boxes show the absence of the bundle in the determined subject.
The heat bar shows the values of normalized fibers between 0 and 1.

displayed for a visual inspection of the results. Figure 3.27 shows the bundle lh_PoC-

SM_2, belonging to the left hemisphere and classified by the QB clustering method with

12 mm threshold. This is the bundle with the highest reproducibility with this restrictive

threshold, being present in 19 out of the 20 subjects, with the exception of Subject008,

achieving a 95% of reproducibility. It can be seen how bundles connect approximately

the same cortical regions in different subjects and have a similar main shape. Also, it

can be seen that the number of fibers is very variable among subjects, which is usual

in SWM bundles.

Figure 3.28 shows the bundle lh_PoC-PrC_0, of the left hemisphere and classified

by the QB method with 12 mm of threshold. It appeared in 11 out of the 20 subjects,

that is, a 55% of reproducibility. This is a small bundle connecting the PoC and PrC

gyri.

Lastly, Figure 3.29 shows for the left hemisphere the cluster lh_RMF-SF_7, clas-

sified by the QB method using a threshold of 12 mm. This is the least reproducible
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Figure 3.26: Reproducibility heatmap for QB with threshold 12 mm, for the right hemi-
sphere. X-axis displays the subjects, and on the y-axis appears the 20 most repro-
ducible bundles. The lighter the color of the box, the fewer fibers it contains. If the box
is white, it indicates the absence of the bundle in the subject. The fiber values appear
normalized between 0 and 1 in the heat bar.

cluster of the heatmap of Figure 3.25, appearing in 9 out of the 20 subjects, reaching

only 45% of reproducibility. However, it can be seen that the bundles connect the same

area in all subjects, slightly varying the position and the number of fibers.

3.2.4. Discussion

In the last two decades, a great number of methods have been proposed for the

analysis of tractography datasets. Most of the works have been focused on the study of

deep white matter bundles, such as the arcuate fasciculus or the inferior fronto-occipital

fasciculus. These bundles are in general larger and more stable across subjects, and

have been described by neuroanatomists several decades ago. The methods have

been focused on the study of these bundles, the creation of WM bundle atlases and

the segmentation of WM bundles. Most of the studies have been developed with a

combination of ROI-based and clustering-based methods, and the important guidance

of neuroanatomy experts. In general, the applications analyze the segmented bundles
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Figure 3.27: Bundle lh_PoC-SM_2, with the highest reproducibility in all subjects. The
results show good reproducibility among subjects, appearing in 19 of the 20 subjects
for the QB method with a 12 mm threshold.

across subjects and different populations of patients.
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Figure 3.28: Bundle PoC-PrC_0, with medium reproducibility. The PoC-PrC_0 bundle
appears in 11 out of 20 subjects, achieving 55% of reproducibility, for the QB algorithm
with a 12 mm threshold.

Figure 3.29: Bundle lh_RMF-SF_7, with low reproducibility. The bundle appears in
nine out of 20 subjects using the QB clustering algorithm with a 12 mm threshold.

The methods have evolved with the increasing quality of the data. Tractography

datasets have increased their size and complexity due to a higher resolution and bet-

ter image quality, being able to provide a better representation of fiber crossing and

small bundles. These advances are also associated with improved algorithms along

all the processing pipeline, including artifacts and distortion corrections, diffusion lo-

cal modeling, and fiber tracking. Furthermore, the use of more accurate tractography

propagation masks (e.g., based on T1 images [52]) has helped to achieve a better



72

reconstruction of small and superficial white matter fibers.

Hence, in the last decade, due to the better quality of dMRI images and processing

algorithms, it has been possible to start studying the short association WM bundles.

A first whole-brain study used an atlas of gray and white matter to extract short fibers

connecting adjacent gyri [144]. Other works combined a hierarchical fiber clustering

and cortical parcellation information to extract reproducible short association bundles

[50]. A recent study reported a great number of short association bundles, but without

a labeling [142]. These works were mostly focused on the creation of SWM atlases.

Hence, there is still a need for methods, open to the research community for the study

of short association bundles in new databases.

The proposed methods provide an automatic labeling of SMW bundles. First, an

efficient individual labeling was implemented. It generates compact clusters and labels

them according to a cortical parcellation based on mesh information, for a high-quality

ROI-based labeling. Furthermore, the bundles connecting each pair of anatomical

regions (gyri) are ordered following an axis orientation. The resulting clusters could

be used for fast and easy exploration of short association bundles in individual brains.

Without a labeling, its exploration is very complex, since about one thousand clusters

are produced for the whole-brain.

Subsequently, an inter-subject method has been added, to obtain a correspondence

between the clusters (or bundles) across subjects. We tested two methods, a match-

ing, based on the Hungarian algorithm, and a clustering method, based on the QB

algorithm. Even though we used available implementations of both methods, we have

adapted them to the processing of labeled intra-subject clusters from different subjects

to generate automatically labeled inter-subject clusters.

Since there is a high inter-subject variability in tractography datasets, especially

for short association bundles, the applied processing extracts the main fiber connec-

tions by using first an intra-subject clustering. It has also the advantage to remove

noisy fibers, that are not grouped into the main clusters. Furthermore, the inter-subject

analysis, along with a common labeling for clusters which are similar for most of the
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subjects, performs an identification of non-reproducible fibers at the group level.

The results show a better reproducibility across subjects for the QB clustering

method versus the Hungarian algorithm. Hungarian algorithm finds a good correspon-

dence between subjects, with low inter-cluster distance, but at expenses of inferior

reproducibility. Due to inter-subject variability, and the absence of bundles in some

subjects, the one-to-one matching strategy seems not to be directly applicable to this

kind of problem. On the other side, the clustering groups similar bundles on subjects

and do not impose the existence of clusters in all the subjects. Indeed previous inter-

subject analyses based on clustering have included a reproducibility constraint, e.g.,

a minimum number of subjects present in the clusters. Hence, an advantage of the

proposed labeling is that this reproducibility information is easily extracted from the

inter-subject labels, which is not the case for classic algorithms. Furthermore, even

though the main goal of this work is not a study of the reproducibility of SWM bundles,

the results of our inter-subject clustering strategy are competitive with state-of-the-art

methods, with 94 reproducible bundles for a moderate MDF distance of 21 mm, com-

pared to about 100 hundred bundles obtained for atlases proposed in [50, 106], created

with a maximum Euclidean distance of 30 mm.

Note that several factors impact the results, including the quality of the tractography

datasets, and the registration strategy. It has been shown that using non-linear registra-

tion increases the number of SWM identified [106]. In our experiments we used affine

registration to Talairach space, however, other registration algorithms can be applied

without problem. Furthermore, false positives are very likely to increase the variability

across subjects and affect the results. Bundle variability may also be due to the inher-

ent variability of the cortical folding patterns [83]. Since U-fibers are directly under the

cortical sulci, present a smaller size, and connect small regions of the cortex, they are

more sensitive to differences in the cortex anatomy than deep white matter bundles.

Finally, we highlight some advantages of the proposed methods. First, it is efficient,

taking about 3.6 min for an intra-subject analysis and about 9 s to perform the inter-

subject clustering. That is, for the whole inter-subject labeling processing, it takes about

1.17 h on average. This time is reasonable for an inter-subject analysis. Furthermore,
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the algorithms are scalable and can be applied to larger tractography datasets and

databases.

Inter-subject labeling can be used to discover patterns of connections in different

groups of healthy subjects and patients. The inter-subject clusters can be used to

create WM bundle atlases, which require the inspection of experts in anatomy. Note

that the clusters from tractography can contain artifacts and false positives [82]. In

fact, false-positives can be highly reproducible, hence these will be also labeled by the

proposed methods. The inter-subject labeling was not conceived to identify bundles

with an anatomical meaning or to discard false-positives. The objective is to identify

and label all the reproducible bundles. These bundles can be used as input to other

analyses that include anatomical knowledge, in order to validate the bundles. The pro-

posed algorithm can also contribute to the analysis of tractography datasets for the

improvement of tractography methods, through the incorporation of anatomical infor-

mation and filtering. Finally, other applications include the study of brain connectomes

and methods for diffusion-based cortical parcellations.



Chapter 4

Cortical surface parcellation

In this chapter, we present three methods to perform the cortical surface parcella-

tion. The main parcellation method is presented in Section 4.1 and it generates the

parcellation of the cortical surface by using an atlas of white matter bundles. It creates

atlases of parcels with different granularities based on the Desikan-Killiany atlas as

a delimiter of the anatomical parcels. The second parcellation method is presented

in Section 4.2 and is a complementary method to perform the cortical surface par-

cellation of a subject made with clustering of fibers. Finally, Section 4.3 contains a

complementary individual cerebral cortex parcellation based on the morphology of the

cortical surface.

4.1. Cortical surface parcellation based on a fiber-bundle atlas

In this section, we present a hybrid method to create fine-grained parcellations of

the cortical surface, from a coarse-grained parcellation according to an anatomical at-

las, based on cortico-cortical connectivity. The connectivity information is obtained

from segmented superficial and deep white matter bundles, according to bundle at-

lases, instead of the whole tractography. First, we present the state of the art of par-

cellations to date. The following is a description of the proposed method for the parcel-

lation of the cerebral cortex. In the experimental section, we carry out reproducibility

tests and a comparison with other parcellations based on different MRI modalities, such

as macroanatomy, structural, functional, diffusion, and multimodal. Finally, we discuss

on the cortical parcellation method and the obtained results.

75
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4.1.1. Related work

The human connectome is of special interest to understand the brain structure and

function [121]. The structural connectome is composed of two basic elements, the

somas (nodes) and the axons (edges) that exist between them, formed by white mat-

ter (WM) tracts [118, 59, 13]. Magnetic Resonance Imaging (MRI) provides in-vivo

techniques to study the human brain. MRI modalities include diffusion-weighted MRI

(dMRI) that estimates the WM tracts of the brain [90],structural MRI (sMRI) which fo-

cuses on brain anatomy [11] and functional MRI (fMRI) that estimates brain function

[124, 61]. dMRI allows researchers and clinicians to study non-invasively and in-vivo

how white matter is organized in the brain giving details of its connectivity and struc-

ture [75]. It is based on measurements of the movement of hydrogen atoms present in

water molecules of biological tissues.Tractography algorithms reconstruct an estimate

of the main WM tracts of the entire brain based on dMRI information [7, 143]. The

generated datasets represent an estimation of the main WM pathways, in the format

of 3D polylines, also called fibers, even though they do not represent real neural fibers

[92, 101]. This technique is indirect, and relies on models and inference, but allows

a whole-brain exploration of WM structure in living humans, on large populations of

subjects.

The structural networks of the human cerebral cortex have not yet been compre-

hensively mapped [118, 58, 121]. The brain’s structural and functional systems have

features of complex networks, such as “small-world” topology, highly connected hubs

and modularity, at the whole human brain scale [13]. The study of brain connectiv-

ity, taking into account its function and structure, can be performed based on a cor-

tex parcellation, which is the cortical division of the brain into macroscopic regions

[28]. A parcellation may be based on resting-state fMRI (rs-fMRI) [111], anatomical

structure [32], dMRI [76] or cytoarchitecture. Architectonic and other template-based

atlases have been created [31, 123], but may not reflect the individual variations in re-

gional functional boundaries. Data-driven parcellations can overcome this limitation by

a better definition of individual cortical regions [117]. Parcellation atlases can be con-

structed using information from multiple modalities, and several scales. For example,
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for a given population, information from cortical folding, myelin content, resting-state,

and task-based fMRI was integrated to create a functionally relevant parcellation [46].

However, individual variability and the limitations of each modality make the application

of those methods very difficult. Here, we focus on the development of a method for the

tractography-based parcellation (TBP) of the cortical surface. The method could be

posteriorly integrated to multimodal parcellation frameworks [99].

Connectivity-based methods use tractography information to find regions with com-

mon connectivity patterns between the cortical voxels, or cortical surface mesh ver-

tices, that compose each region. All the methods have to deal with the high inter-

subject variability, especially in the brain cortex and superficial white matter (SWM).

Hence, to reduce the complexity of the problem, some methods have been focused

or tested on a few brain regions, or have used an anatomical parcellation for initial

regions [4, 69, 54, 105, 100, 77]. In general, the similarity between the connectiv-

ity profiles of the voxels (or vertices) is estimated using some similarity measure and

then, a method is applied to regroup elements with common connectivity patterns.

Some methods have been proposed to perform an analysis over the whole-brain cortex

[76, 98, 89, 29, 96]. This kind of approach, in general, calculates the whole connectivity

profile of each seed node (image voxels or mesh vertices) followed by the computation

of a connectivity matrix and clustering of the nodes. A group of methods performs a

tractography-based parcellation of the cortex using only connectivity information given

by the fiber extremities [98, 76, 77], while other group embeds fiber shape informa-

tion into the analysis [89, 29, 96]. Also, for inter-subject analysis, it is necessary to

find the correspondence between subjects. One strategy is to create the parcellation

taking into account the main connections present in the population of subjects [112].

Another approach is to detect individual connectivity patterns, or even parcels, from the

tractography of each subject and then find consistent parcels among the population of

subjects [89, 76, 77]. Furthermore, due to the high complexity and the huge size of

connectivity data, all the methods use a dimension reduction criterion. The difficulties

mentioned above, between others, make the parcellation of the human brain cortex a

complicated and unachieved task. In the following, we briefly describe some methods

to provide an insight into the complexity of the solution implementation.
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An interesting approach of whole-brain TBP is based on hierarchical clustering [89].

The method selects GM/WM interface voxels as seeds and generates probabilistic trac-

tography from them. For each seed voxel a tractogram is obtained (visitation map). Hi-

erarchical clustering is applied over the tractograms using a noncentered variant of the

Pearson’s correlation coefficient as a similarity measure. The resulting dendrogram is

post-processed to reduce the number of branchings. Next, a leaf-matching is iteratively

applied to the two tractograms with the highest similarity, to find correspondence across

subjects. Even though the method is promising, the different parameters were difficult

to adjust and no perfect match was found. [76] apply a watershed to the connectivity

profiles averaged from all the subjects of a gyrus (patch) in order to split the cortical

surface into catchment basins [104]. A set of regions of interest strongly connected to

the gyrus across subjects is then identified, and a joint patch connectivity matrix across

subjects is calculated. Finally, to construct the final cortex parcellation, each gyrus is

clustered using the classical k-medoids algorithm applied to the distance matrix. The

method removes a large part of the connectivity data by filtering, however, a good re-

producibility among subjects was obtained. Another interesting example is the work

proposed by [96]. The method first calculates connectivity matrices from cortical ver-

tices and subcortical voxels to the rest of the brain, based on probabilistic tractography.

Then, creates an average matrix across the subjects and applies independent compo-

nent analysis (ICA) to provide a group-average connectivity matrix. The dimensionality

of this matrix is incrementally reduced in tractography space using principal component

analysis (PCA) on subsets of the matrix. A post-processing is applied to obtain a hard

parcellation of the cortex, without a straightforward mapping to tractography and gray

matter, due to the high cortical and connectivity variability between subjects.

A different strategy for creating a parcellation is to use a hybrid method involving the

use of bundles segmented from a bundle atlas. The first proof of concept used a subset

of bundles manually selected from a multi-subject SWM bundles atlas [50]. This work

processed 10 subjects, using fix parameters manually tuned for all the processing. It

segmented the bundles for each subject and calculated the intersection regions of the

bundles with the cortex. In case of overlapping between two regions, the parcel label of

the smaller parcel prevailed over the bigger one. This very preliminary work showed the
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potential advantage of using labeled bundles for the cortical parcellation, with relatively

good correspondence in some regions of the brain. This method was next improved

by the use of a graph representation of the overlapping between regions [115]. This

first attempt tuned the parameters in one subject and subsequently applied them to

four other subjects, giving some correspondence across the subjects. However, since

no inter-subject analysis is performed for the merging of the connecting regions, the

method is not applicable to a large group of subjects.

Hence, extending this idea, we propose a new hybrid method for the structural

connectivity-based parcellation of the cortical surface based on segmented bundles.

Unlike most of the methods proposed in the literature, which use full tractography, we

use fibers labeled into bundles, according to short and long bundle atlases. The ad-

vantage is that the correspondence of connecting regions is given in advance for the

different subjects in a database. Furthermore, the generation of parcels from seg-

mented bundles could give a better representation of the main regions or nodes of

the human brain connectome, since these were identified as the main short and long

connections of the brain, represented in the atlases of bundles. Then, the resulting

parcellation will represent a subdivision of the cortex into the regions that connect the

most probable bundles. The method still has the difficulty to clearly define the nodes

(cortex parcels), knowing that the bundles from tractography are very variable across

subjects and may not exist in several subjects. This poses a big but interesting chal-

lenge. The key point of the proposed work is the automatic analysis of the density

and variability of the connecting regions among subjects over the cortical mesh so that

the most probable ones are selected, merged and homogenized. The overlapping is

solved using a graph representation of the intersected regions taking into account the

degree of overlapping of their density centers, across subjects.

The method was applied to a group of 79 subjects from a HARDI database. Sev-

eral quantitative and qualitative evaluations were performed. Twenty parcellations were

generated, based on different sets of the three parameters of the method, and com-

pared to evaluate the similarity between them. Furthermore, a reproducibility analysis

was also performed, based on the similarity of connectivity matrices across subjects,
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constructed with the whole tractography.

A comparison with a macroanatomical parcellation using Dice’s coefficient between

subject’s connectivity matrices was performed, showing a slightly better reproducibility

in a resultant parcellation generated with the proposed method. Moreover, other com-

parisons are made with state-of-the-art parcellations based on different MRI modali-

ties, finding a degree of similarity with dMRI, functional, anatomical, and multimodal

atlases. The higher similarity was found for our parcellation composed of 185 sub-

parcels with another parcellation containing 239 parcels, based on dMRI data from the

same database, but created with a totally different approach. This comparison led to

130 parcels in common based on a Dice’s coefficient ≥ 0.5 and 75 parcels in common

with a Dice coefficient ≥ 0.6. Finally, complementary analyses were performed that are

included in the appendix B.

4.1.2. Our approach

We propose a hybrid method for the creation of fine-grained parcellations of the

cortical surface, from a coarse-grained parcellation according to an anatomical atlas,

based on structural connectivity information, given by segmented bundles for a popu-

lation of subjects. The bundle segmentation is based on atlas bundles from three dif-

ferent atlases. The parcellation method receives as input the tractography and labeled

mesh of each subject, the fused bundle atlas with selected superficial and deep white

matter bundles. The method returns an average parcellation atlas for the input dataset,

which consists of a subdivision of the anatomical parcels (gyri) of Desikan-Killiany at-

las, based on the most stable connectivity-based sub-parcels across the subjects. The

data consists of the labels associated with each cortical mesh vertex. Note that the

used cortical meshes, based on Freesurfer processing output, contain the same num-

ber of triangles and vertices in all the subjects. For all the subjects, corresponding

triangles will represent the same anatomical region, but with local differences, accord-

ing to the morphology of each subject. To create the final parcellation, the method uses

the probability and density information of the sub-parcels from all the subjects. Hence,
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an intermediate output of the method is the probabilistic representation of each sub-

parcel. Figure 4.1 shows a schematic of the parcellation method. The selection of the

final bundle atlas is performed as a pre-processing stage (A). Next, the method is com-

posed of six steps: (B) fiber bundle segmentation, (C) extraction of meshes and labels,

(D) intersection of the fibers with the mesh, (E) fiber filtering, (F) cortex parcellation,

and (G) sub-parcel post-processing.

Pre-processing: Fusion of atlases

This pre-processing aims to create a fused atlas of white matter bundles, containing

the main WM connections across subjects and, consequently, to create a more com-

plete parcellation of the cortex (see Figure 4.1-(A)). We used two atlases of superficial

white matter (SWM) and one atlas of deep white matter (DWM). The first SWM atlas,

swm_atlas_1, is composed of 50 bundles in both hemispheres, with a total of 7,857

fibers [50]. The second SWM atlas swm_atlas_2, has 44,345 fibers and is made up

of 44 bundles in the left hemisphere and 49 bundles in the right hemisphere [106].

Finally, the DWM atlas contains 18 bundles per hemisphere, corresponding to 11,755

fibers [53]. Those atlases were created using the ARCHI database, representing the

most reproducible bundles across subjects (see Figure B.2 of the appendix B).

The bundles from both SWM atlases are labeled following the same naming con-

vention, based on the anatomical regions of Desikan-Killiany atlas [31]. The name

contains lh or rh to denote the left or right hemisphere, followed by the name of the two

regions connected by the bundle, according to the abbreviation of the region (see Table

B.3). Finally, a correlative number is added to indicate the index, as many bundles can

connect the same two anatomical regions in an atlas. For example, a bundle connect-

ing the postcentral and precentral gyri of the left hemisphere is called: lh_PoC-PrC_0,

where 0 is the index given by the atlas. swm_atlas_1 contains only bundles connect-

ing two different anatomical regions (gyri), while swm_atlas_2 also contains bundles

connecting different areas of an anatomical region. On the other side, the DWM atlas

labels the bundles according to an abbreviation of their anatomical name, followed by

LEFT or RIGHT to denote the hemisphere.
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Figure 4.1: Schematic of the parcellation method. (A) Pre-processing: Fusion of
atlases. The bundles of a long and two short WM bundle atlases are fused into a final
fiber bundle atlas. (B) Step 1: Fiber bundle segmentation. Classifies a subject’s
fibers with respect to the bundle atlas. (C) Step 2: Extraction of meshes and la-
bels. By using FreeSurfer and then BrainVISA software, the cortical meshes and their
corresponding labels, according to Desikan-Killiany atlas, are obtained. (D) Step 3:
Intersection of the fibers with the mesh. This step obtains the initial and final trian-
gles intersected by each fiber bundle. (E) Step 4: Fiber filtering. This algorithm first
obtains the label of each intersected triangle, then removes misclassified fibers and
then performs a fiber alignment according to the corresponding atlas bundle. (F) Step
5: Cortex parcellation. The objective is to subdivide each region (anatomical parcel)
into sub-parcels. (G) Step 6: Sub-parcel post-processing. To get more homoge-
neous parcels, the small connected components are eliminated, followed by a closing
of the parcels over the cortex.
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To fuse the atlases, we first analyzed the bundles that are very similar in both SWM

atlases, connecting the same regions. In general, in the case of a big similarity be-

tween bundles from both atlases, we selected the most compact bundle. After a visual

comparison of both atlases, the bundles of swm_atlas_1 are better defined in their

ends, and therefore are more suitable for performing a cortical parcellation. Some bun-

dles with high similarity in both SWM atlases are shown in Figure B.1. Hence, all the

bundles of the swm_atlas_1 were selected (see the first row of Figure B.2). Next, 27

bundles in the left hemisphere and 34 in the right hemisphere for swm_atlas_2 were

selected, as shown in the second row of Figure B.2. Most of the selected bundles of

swm_atlas_2 connect different areas within an anatomical region.

Respecting the DWM atlas, we first discarded the Corticospinal Tract, Fornix and

Thalamix Radiations, as those bundles do not represent cortico-cortical connections.

Also, we discarded the Corpus Callosum as it is a very large bundle that would not

be very informative for the definition of subdivisions of the anatomical regions. The

selected bundles are: Arcuate fasciculus, with its anterior and posterior portions (AR,

AR_ANT, AR_POST ), Cingulum (CG), Inferior Fronto-Occipital (IFO), Inferior Longitu-

dinal (IL) and Uncinate (UN) bundles (see the third row of Figure B.2). These bundles

cover the cortical regions that the two SWM atlases do not cover, achieving a complete

coverage of the cortex. The fused atlas is in MNI space and contains a total of 179

bundles, distributed in 86 bundles in the left hemisphere (see Table B.1) and 93 bun-

dles in the right hemisphere (see Table B.2), as we see in Figure B.3 (first row). Finally,

the centroid of each atlas bundle is calculated as the mean of the corresponding points

of all the fibers in a bundle, to later align the segmented fibers.

STEP 1: Fiber bundle segmentation

This step performs the segmentation of white matter bundles for each subject (see

4.1-(B)). Segmenting the fibers gives direct correspondence of the bundles and the

connected cortical regions across the subjects. The segmentation algorithm [128] is a

parallel version of the algorithm proposed in [53]. It classifies the fibers of a subject’s

tractography based on a multi-subject WM bundle atlas. It calculates the maximum
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Euclidean distance between corresponding points of each subject fiber and each at-

las fiber. A subject’s fiber is labeled with the closest bundle if the distance does not

exceed the maximum threshold defined for the bundle. The algorithm returns the sub-

ject’s fibers that were correctly classified, labeled with the corresponding bundle name.

Figure B.3 shows the final atlas of white matter bundles as well as a subject segmented

with the atlas.

To perform the segmentation, the tractography datasets are resampled with 21

equidistant points, since it is a sufficient number to perform an analysis of the sim-

ilarity between fibers, as used in others works [55, 53]. Before the calculation, the

tractographies are transformed to the MNI space.

This algorithm receives as input the tractography of a subject, resampled with 21

equidistant points in MNI space, the fused bundle atlas, and the distance thresholds

to be used for each bundle, defined for each original atlas [50, 106, 53]. It returns the

segmented bundles for each subject, according to the labeling of the atlas bundles.

STEP 2: Extraction of meshes and labels

This step aims to obtain the meshes of the cortical surface and the labels of the

anatomical regions given by the Desikan-Killiany atlas, as in Figure 4.1-(C). First,

FreeSurfer software [39] is employed to calculate the cortical surfaces for each sub-

ject. By using this software, a direct correspondence between the cortical surface

mesh of the subjects is obtained, since the number of vertices is the same for all of

them, changing only their 3D coordinates in the mesh according to the individual mor-

phology. For the labeling of the cortical surface, FreeSurfer uses the Desikan-Killiany

(DK) atlas, which consists of 35 regions per hemisphere [31]. Each region in the atlas

(see Table B.3) has associated a label (integer number). Hence, the labeling consists

in assigning to each vertex of the mesh, the label of the region that corresponds to

it. Next, BrainVISA software [24] was used to apply the pipeline that converts the for-

mats and transforms the mesh to the subject’s T1 space. It provides the mesh file with

81,924 vertices per subject and a file with the vertex labels. This step receives as input

the NIFTI T1 image of each subject. The output is the cortical mesh and the labels
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according to DK atlas, associated with each subject.

STEP 3: Intersection of the fibers with the mesh

This step calculates the intersection of the fibers with the cortical mesh [115]. The

Möller-Trumbore algorithm [87] is used to determine whether the end of a fiber inter-

sects a mesh triangle. For each end of the fiber, the algorithm selects the nearest

triangle. Finally, only those fibers whose intersections at both ends were correctly

identified are used. The algorithm returns the set of initial and final intersection points

for each fiber. Figure 4.1-(D) illustrates a bundle and its intersection points over the

cortical mesh. In this step, the algorithm receives as input the cortical mesh and the

segmented fiber bundles of each subject in T1 space. It returns for each subject and

each bundle, the indices of the intersected triangles by each fiber of the bundle, at both

bundle ends.

STEP 4: Fiber filtering

This step filters out the fibers that do not connect the anatomical regions that should

be connected, following the definition of the bundle to which they belong (see Figure

4.1-(E)). The algorithm receives as input the fiber intersection information (intersected

triangles) and the label (cortical region) of each mesh vertex. This step returns as out-

put the filtered fibers, i.e. those that intersect exactly within the corresponding anatom-

ical parcel (gyri) so that all fibers that do not belong to that anatomical parcel are

removed. Specifically, the filtering algorithm consists of three sub-steps.

Sub-step 1: Obtaining the fiber labels. First, for each bundle, the labels (accord-

ing to the Desikan-Killiany atlas) of the triangles intersected by the start and end fiber

points of each fiber are obtained. Next, the names of the two regions connected by

each bundle are extracted from the bundle names. For example, for bundle PoC-PrC,

the initial region is PoC (postcentral) and the final region is PrC (precentral) (see Figure

4.2-(A)).
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Sub-step 2: Removing of misclassified fibers. Each fiber is analyzed and those

in which the intersected triangle label does not correspond to the initial or final bundle

regions are removed (see Figure 4.2-(B)). This processing removes the fibers that were

misclassified by the fiber bundle segmentation method.

Sub-step 3: Fiber alignment. The fibers on a whole-brain tractography dataset

have different orientations and are stored in the direction they were tracked. Hence, on

average, half of the fibers are stored in the inverse direction. In these cases, the fiber

points are swapped to align the fibers according to the atlas bundles, using the bundle

centroids (see Figure 4.2-(C)). Finally, the filtered fibers for each bundle are obtained

(see Figure 4.2-(D)).

Figure 4.2: WM fiber filtering for a bundle. (A) Sub-step 1: Obtaining the fiber labels.
The labels of the triangle vertices that are intersected by the start and end of each fiber
are obtained. (B) Sub-step 2: Removing of misclassified fibers. Fibers that were
misclassified by respect to the bundle anatomical definition are discarded. (C) Sub-
step 3: Fiber alignment. The fibers that are stored in the inverse direction, by respect
to the atlas bundle centroid, are inversed. (D) Filtered final fibers for a bundle.
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STEP 5: Cortex parcellation

This is the main step of the method. It creates a fine-grained cortex parcellation,

from a coarse-grained anatomical parcellation, based on the connectivity of segmented

white matter bundles. The sub-parcels are probabilistic but a final hard parcellation is

obtained with the most probable label for each triangle of the mesh. This algorithm

receives as input for each subject the filtered fibers of the previous step (STEP 4), the

intersection information (STEP 3), and the labeled cortical mesh (cortical mesh and

vertex labels according to DK atlas). It returns as output the mesh vertex labels for

the new parcel subdivisions. As mentioned above, it also generates the probabilistic

representation of each sub-parcel, that is used to generate the final parcellation. The

step can be subdivided into four sub-steps (see Figure 4.3). Next, we explain each one

of the sub-steps.

Sub-step 5.1: Creating preliminary sub-parcels. This sub-step creates prelim-

inary sub-parcels based on the fiber bundle intersection information of each triangle.

Each bundle in the atlas will define two preliminary sub-parcels, corresponding to the

two extremities of the bundle. Sub-parcel names were defined following the bundle

names. Also, a label is internally associated to identify each sub-parcel. Figure 4.3-(A)

shows an example of the two preliminary sub-parcels created for bundle PrC-PoC_3

of a subject. Each anatomical parcel, given by Desikan-Killiany atlas, is formed by

several preliminary sub-parcels, which overlap each other, representing all the bundles

that connect the region.

Sub-step 5.2: Calculating probability maps. This sub-step computes the proba-

bility of each sub-parcel in each triangle across the subjects. With this information, the

probability maps for all the sub-parcels over the mesh are inferred, and the most prob-

able sub-parcels for each triangle are also obtained. Let us denote ti with i = 1, ..., n

a triangle of the mesh, and consider the neighborhood of ti as all the triangles that

share a vertex or and edge with ti. For each triangle, we count the number of times a

sub-parcel appears in the neighborhood Ni, with i = 1, ..., n. To achieve this, for each

triangle ti, a list is created with the labels of the sub-parcels that intersect the triangle or
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Figure 4.3: Schematics of cortex parcellation (STEP 5) sub-steps. (A) Sub-step 5.1:
Creating preliminary sub-parcels. Preliminary sub-parcels are created based on the
fiber bundle intersection and the labels of each triangle. (B) Sub-step 5.2: Calculating
probability maps. The probability of each sub-parcel label in each triangle across the
subjects is calculated. (C) Sub-step 5.3: Processing preliminary sub-parcels. This
step deals with the preliminary sub-parcel overlapping. (D) Sub-step 5.4: Merging of
candidate sub-parcels. This sub-step groups the sub-parcels to be merged.
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its neighborhood. A label is added for each bundle fiber intersection, for each subject.

Figure 4.3-(B) shows an example for a triangle t1 and its neighborhood. For instance,

t1 has associated the list of sub-parcel labels that intersect the triangle and its neighbor

triangles, for all the subjects. Each label has also associated the number of times the

sub-parcel appears in the neighborhood (Ni). We also calculate Σ equal to the sum of

all the counts Ni. To obtain the probability of each label in each triangle, the value Ni is

divided by Σ. Finally, for each triangle, the list of probabilities is sorted in descending

order.

Sub-step 5.3: Processing preliminary sub-parcels. The purpose of this step is

to solve the overlapping that exists between the preliminary sub-parcels within each

anatomical parcel of the cortex.

First, small preliminary sub-parcels are eliminated. We denote a preliminary sub-

parcel as SPi, with i = 1, ..., n the label of the sub-parcel, and size_thr the threshold

used to eliminate the smaller sub-parcels. The size is measured in terms of the number

of triangles of the sub-parcel, as the areas of the mesh triangle are very homogeneous.

The criterion of elimination size_thr is defined in terms of the percentage of triangles

of the sub-parcel by respect to the corresponding anatomical region. After this pro-

cessing, we get a set of candidate sub-parcels and recalculate the probability maps

according to the reduced set of sub-parcels (see Figure 4.3-(C) top image).

The sub-parcels are highly overlapped, but if we look at their intersection density,

we can observe that the overlapping can occur in regions with low density, or in a

region of high density for one sub-parcel, but for low density for another sub-parcel.

Indeed, the fiber intersection density is not homogeneous across the mesh surface for

most of the sub-parcels. In fact, in most of the cases, only a portion of the sub-parcels

presents a high density. Since a merging of the sub-parcels is required to obtain a hard

parcellation, we calculate the density center of each sub-parcel to perform a better

analysis. The density center is defined as the area where the highest concentration

of fibers exists for each triangle. We denote the sub-parcel as SPi with i = 1, ..., n

the label of each sub-parcel, and the density center as dc(SPi). Each triangle of a

sub-parcel has associated a list with the probability of each sub-parcel present in the
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triangle. Then, the density centers are defined using a minimum probability threshold

of dc_thr (density center threshold) for dc(SPi). A sub-parcel can have several density

centers spread over the sub-parcel. Some examples of parcel density centers are

shown in Figure 4.3-(C) bottom left image. The left column displays three sub-parcels

corresponding to the precentral anatomical parcel. In the middle column, we represent

each sub-parcel SPi as a circle of the same color and mark each density center with

another filled circle inside. The third column shows the regions for dc(SPi) > dc_thr,

corresponding to the density center of each sub-parcel.

Once the density centers have been calculated, we compute the intersection among

them, for the candidate sub-parcels. The objective is to check if there is a significant

overlap between the candidate sub-parcels to merge them. Given all the pairs of sub-

parcels, we denote the density center of the first sub-parcel as dc(SPi) and the second

sub-parcel as dc(SPj), being i and j the labels of each sub-parcel, with i, j = 1, ..., n

and i <> j. The intersection between each pair of sub-parcels is calculated based on

the intersection of their density centers (triangles), following equation 4.1:

idc(SPi, SPj) =
dc(SPi) ∩ dc(SPj)

min(dc(SPi), dc(SPj))
(4.1)

To define a significant intersection, we use a threshold idc_thr (intersection of den-

sity centers threshold), where idc ≥ idc_thr will define the sub-parcels that are candi-

dates to merge. Figure 4.3-(C) bottom right image, illustrates an example of sub-parcel

intersection analysis. The first column shows a case where three sub-parcels intersect

between them, considering the intersection of the three pairs of sub-parcels. The sec-

ond column shows the opposite case, where do not exist important overlaps between

the sub-parcels, and thus they are not candidates to merge. Once all the candidate

sub-parcels have been obtained, the next processing performs the merging of them.

Sub-step 5.4: Merging of candidate sub-parcels. In this step, the overlapping

between sub-parcels is analyzed using a graph representation of the sub-parcels and

their intersection, to merge the parcels that are significantly intersected with each other.

More specifically, the objective is to find the groups of sub-parcels that are all inter-

sected with each other within each group. This problem can be solved using a graph
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representation of the sub-parcel intersections and a maximal clique algorithm.

Let G = (V,E) be an undirected graph, where each vertex v ∈ V represents a can-

didate sub-parcel. For each pair of candidate sub-parcels v1 and v2 in G, we create an

edge between them e = (v1, v2) ∈ E if the probability that the intersection of the density

centers, idc(SPi, SPj) (Eq. 4.1) is superior to the threshold idc_thr. Hence, the graph

will contain only the relevant intersections between sub-parcels, i.e., where the density

centers present a minimum percentage of overlapping. Once G is created, the idea is

to obtain the vertices in the graph that are all connected with each other. Therefore,

we use the graph algorithm called clique [67] that aims to find subsets of vertices that

are adjacent (connected), and merge them in a single sub-parcel. We use a clique

variant called maximal clique, which finds a clique with the largest possible number

of vertices. The problem of finding maximal cliques is computational expensive (NP-

hard) [135, 116], however, for sparse graphs the complexity is less [37]. After having

calculated all the maximal cliques that are in G, these are sorted by size (number of

vertices), in descending order. Following this order, the candidate sub-parcels of each

maximal clique are merged to get the biggest number of fusions. This processing leads

to the final sub-parcels, composed of merged candidate sub-parcels, candidate sub-

parcels that were not merged, and the sub-parcels that were not candidates to merge

(not included in the graph).

Figure 4.3-(D) shows an example of merging for three candidate sub-parcels of the

precentral anatomical parcel. In the first column, the candidate sub-parcels, denoted

by SPi, are displayed. In the second column is included the graph representation of

the intersections, in which each sub-parcel SPi is a vertex vi. If the idc (see Eq. 4.1)

between a pair of sub-parcels is superior to the threshold idc_thr, an edge is created

between both vertices. The graph G and the maximal clique are also graphically rep-

resented. The third column shows the final sub-parcel, resulting from the merging of

the three sub-parcels.

Finally, the probability maps for each triangle are recalculated. Also, the most prob-

able label is determined, with the purpose of obtaining a hard parcellation (see Figure

4.1-(F)).
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STEP 6: Sub-parcel post-processing

The last step of the parcellation method deals with post-processing sub-parcels,

to better define the final sub-parcels and the hard parcellation. It receives as input

the mesh vertex labels of the parcel subdivision from the previous step. The post-

processing is composed of three morphological operations performed over the cortical

mesh.

Removing small connected components. The sub-parcels obtained in the previous

step may be formed by more than one connected component. Some small components

are in fact groups of a few triangles isolated from the main component. Hence, these

small components are removed using a graph representation of each sub-parcel. The

connected components of a graph can be easily calculated [119], and then ordered

by size in descending order. Next, the largest connected component is kept. For

each small connected component, the second most probable label in the list containing

the probability map of the corresponding triangles is selected. The neighborhood of

each connected component is then analyzed to verify if there exists a match between

the second label of the triangle and its neighborhood. In most cases this value is

appropriate, but if this is not the case, the label is removed. Figure B.5 shows an

example of this processing for the supramarginal (SM ) parcel, with three sub-parcels.

Sub-parcel opening. For each sub-parcel, the morphological operation called opening

[60] is applied over the mesh, in order to eliminate isolated triangles that are scattered

throughout the mesh. This operation is the result of the application of erosion + dilation

operations. Hence, these two operations were sequentially applied.

Figure B.6 shows an example of results after applying the post-processing, with

size_thr = 0.1, dc_thr = 0.1 and idc_thr = 0.1. This hard parcellation or parcellation

result, consists of 85 sub-parcels in the left hemisphere and 72 sub-parcels in the right

hemisphere.
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Parcellation method parameter settings

This section provides the parcellation method configuration parameters. The par-

cellation method has three configurable parameters for generating a hard parcellation:

size_thr, dc_thr and idc_thr. Note that all the parameters are adapted to the anatomi-

cal region and sub-parcel size, as are defined as percentages. The parameters are:

Minimum preliminary sub-parcel size threshold (size_thr)

This parameter is used to eliminate small preliminary sub-parcels that do not ex-

ceed a certain size, concerning the average size of the sub-parcels of an anatom-

ical parcel. We visually evaluated the results with different values of size_thr,

between 0.05 and 0.40. Big values, greater than 0.25, eliminate big preliminary

sub-parcels, and therefore, leave uncovered some regions in the cortex. On the

other hand, values inferior to 0.1 remove only very small preliminary sub-parcels.

Thus, we selected a conservative value of size_thr = 0.10, which will only elimi-

nate small sub-parcels, with a size inferior to the 10% of the average sub-parcel

size on a region.

Figure B.4 shows an example of Removing of small preliminary sub-parcels sub-

step, belonging to Step 5 of the parcellation method for the precentral anatomical

parcel (PrC), using size_thr = 0.10 and size_thr = 0.30.

Preliminary sub-parcel density center threshold (dc_thr)

This parameter determines the size of the density center (dc) of a preliminary sub-

parcel. It defines the minimum percentage of probability of the sub-parcel in a

triangle used to consider the triangle as part of the density center, and potentially

be considered for the intersection analysis. We varied its value between 0.10 and

0.30. The higher the chosen value, the smaller the density centers are, and fewer

intersections will be found when determining the intersection of the sub-parcels.
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Intersection of density centers threshold (idc_thr)

This parameter defines the minimum intersection between the density centers of

two sub-parcels to be considered overlapped, and hence, candidates to merge.

This parameter is varied from 0.10 to 0.40. The lower the idc_thr, the more likely

it is that sub-parcels will merge.

4.1.3. Experimental results

We implemented Steps 2 and 4 in C++11, which are also parallelized with OpenMP.

The rest of the steps were performed in the Python programming language version

3.6. We executed our experiments on a computer with 12-core Intel Core i7-8700K

CPU 3.70GHz, 12MB of shared L3 cache and 32GB of RAM, using Ubuntu 18.04.2

LTS with kernel 4.15.0-51 (64 bits). For the tests, we used the tractography datasets

of the 79 subjects of the ARCHI database. We used the same database for the atlas

creation and the parcellation creation to guarantee the best results.

Table 4.1 shows 20 parcellations (atlases) generated with the proposed method, re-

sulting from different sets of parameters, with varying density center threshold (dc_thr =

0.10, 0.15, 0.20, 0.25, 0.30) and intersection of density centers threshold (idc_thr = 0.10,

0.20, 0.30, 0.40), and a fixed value of size_thr = 0.10. The atlases are identified by a

number. Also, the table lists the number of sub-parcels in the left hemisphere (# SP

lh) and right hemisphere (# SP rh) obtained for each atlas. As dc_thr and idc_thr in-

crease, the number of sub-parcels in both hemispheres increases, as more restrictive

values are used to define a significant sub-parcel intersection, leading to an inferior

number of merges.

A first observation is the asymmetry in the number of sub-parcels between both

hemispheres, with more sub-parcels in the left hemisphere for all the parcellations.

A similar result was found in the parcellation created by [76], based on the same

database, with 126 parcels for the left hemisphere and 113 parcels for the right hemi-

sphere. This could be due to a higher variability found in the left hemisphere, in the

number of fibers across subjects. To have an insight on how much variability there is
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atlas name dc_thr idc_thr # SP lh # SP rh

atlas 1 0.10 0.10 85 72
atlas 2 0.10 0.20 92 80
atlas 3 0.10 0.30 96 79
atlas 4 0.10 0.40 108 82
atlas 5 0.15 0.10 86 74
atlas 6 0.15 0.20 96 80
atlas 7 0.15 0.30 110 83
atlas 8 0.15 0.40 119 94
atlas 9 0.20 0.10 90 79
atlas 10 0.20 0.20 105 83
atlas 11 0.20 0.30 119 96
atlas 12 0.20 0.40 126 102
atlas 13 0.25 0.10 101 84
atlas 14 0.25 0.20 117 93
atlas 15 0.25 0.30 127 106
atlas 16 0.25 0.40 128 111
atlas 17 0.30 0.10 115 91
atlas 18 0.30 0.20 120 107
atlas 19 0.30 0.30 128 111
atlas 20 0.30 0.40 130 111

Table 4.1: Parameters used and the number of sub-parcels obtained per hemisphere
for each configuration of parameters for the cortex parcellation method. The first col-
umn shows the name given to each atlas (parcellation result), based on a correlative
number. The second and third columns list the different values for the density center
(dc_thr) and the intersection of the density center (idc_thr) thresholds, for each gen-
erated atlas. Columns four and five list the number of sub-parcels obtained for the left
(#SP lh) and right (# SP rh) hemispheres, respectively.

with respect to the population average, we calculated the coefficient of variation (CV)

of the number of fibers in both hemispheres across subjects. CV measures the ratio

between the standard deviation (σ) and the mean (µ), i.e., CV = σ/µ. The resulting

CV for the left hemisphere is 0.23, while for the right hemisphere is 0.21. One possible

cause of the asymmetry in the number of sub-parcels may be that the higher variabil-

ity in the number of fibers in the left hemisphere could produce a higher variability of
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connections in the cortex, resulting in smaller parcels.

In the following subsections, we first perform a reproducibility analysis of the con-

nectivity for the generated parcellations across subjects. Then, a comparison of the

generated atlases is performed based on the similarity of their sub-parcels. Finally, a

comparison is carried out with some state-of-the-art parcellations based on different

modalities.

Reproducibility analysis

To test the consistency of the generated parcellations across the subjects, a repro-

ducibilty analysis was performed [5]. For this purpose, for each subject, its tractog-

raphy is taken and intersected with its mesh by means of the obtained parcellation.

Afterwards, a binary connectivity matrix of size n ∗ n is created, where n is the total

number of sub-parcels belonging to the resulting parcellation. If there is a connection

between two sub-parcels, it is indicated with a one, otherwise it is indicated with a zero.

All this procedure is shown in Figure 4.4. Finally, the Dice coefficient [34] is used to

measure the similarity of the binary connectivity matrices across subjects for each ob-

tained parcellation. The Dice coefficient measures the similarity between two sets (Eq.

4.2):

DSC =
2|A ∩B|
|A|+ |B|

(4.2)

where |A| and |B| are the number of elements of sets A and B, respectively, and

DSC is the Dice coefficient. DSC ranges between 0 and 1, the closer to 1, the greater

the similarity between the two sets.

To compute the Dice coefficient between two connectivity matrices, the bctpy1

Python library was used, which is an adaptation of the Matlab Brain Connectivity Tool-

box for Python [108]. For each generated parcellation, DSC was calculated between

the connectivity matrices of each pair of subjects and then averaged (see Figure 4.5).

1https://github.com/aestrivex/bctpy
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Figure 4.4: Brain connectivity analysis. First, the tractography of each subject is inter-
sected with the subject’s cortical mesh, using the generated cortical parcellation. Then,
a square connectivity matrix n∗n is created, where n is the total number of sub-parcels
in the parcellation. The matrix contains a 1 where there exists a connection between
the pair of corresponding sub-parcels and zero in other case.

A cross-validation analysis was also performed an included in section B.7 of the ap-

pendix B.

The results show that there is no great variability between the generated atlases

in terms of the similarity between the connectivity matrices obtained for the different

subjects. In general, the similarity decreases with the number of sub-parcels, which

is expected due to the relatively bigger effect of noise and inter-subject variability but

is still good for a high number of parcels. Hence, the atlases with the least number

of sub-parcels have the highest similarity between the subjects, which are atlas 1 and

atlas 5.

Additionally, we performed some tests based on network analysis [23, 13], provided

in the appendix B. Section B.5 describes the graph construction, while section B.6

contains the network metrics calculation. These metrics are highly sensitive to the

number of sub-parcels. For example, the results show a better small-world ω coefficient
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Figure 4.5: Average Dice coefficient for each parcellation (atlas) configuration, given
by Table 4.1. The Dice coefficient was calculated between the connectivity matrices of
each pair of subjects and then averaged. The results show a slight variability between
the generated atlases. Due to the inter-subject variability, the similarity is smaller with
a larger number of parcels.

for atlas 1 and atlas 5. We selected the atlas 5 as a candidate for comparison with

other state-of-the-art methods, due to its high reproducibility, and as an example of

atlas with a small number of sub-parcels. Table B.4 contains a complete description of

the number of sub-parcels of atlas 5.

We have applied another criterion to select a parcellation, based on the atlas that

is most similar to the remaining generated atlases. This atlas is in some way the most

homogeneous atlas among all the atlases generated by the parcellation method. To

select the atlas, we compared between them all the sub-parcels from the 20 gener-

ated atlases, by the construction of a similarity matrix. For each pair of atlases, we

used the Dice coefficient to compare all the sub-parcels between the two atlases. To

obtain the final result between two atlases, the Dice coefficient of all sub-parcels was
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averaged, representing the degree of similarity between the two atlases. The closer

the coefficient is to one, the more similar are the two atlases. Figure 4.7-left illustrates

the similarity matrix for the 20 atlases. Finally, we selected the most reproducible atlas

among the others, presenting the higher Dice coefficient on average, resulting to be

the atlas 13. Table B.4 (fourth and fifth columns) illustrates the number of sub-parcels

per hemisphere in atlas 13. Table B.5 shows a detailed description of the number of

sub-parcels per hemisphere that have in common the generated atlases. Furthermore,

Figure 4.7-right illustrates the sub-parcels that atlas 13 has in common with the others

atlases, based on a Dice coefficient >= 0.6 (47 sub-parcels in the left hemisphere and

41 sub-parcels in the right hemisphere).

As mentioned above, we selected atlas 5 for comparisons with state-of-the-art at-

lases because it is an example of an atlas with a low number of sub-parcels, and high

reproducibility. On the other hand, atlas 13 was selected as the most similar atlas to

the remaining generated atlases. Atlas 5 contains 160 sub-parcels, while atlas 13 con-

tains 185 sub-parcels. Table B.4 of the appendix B lists the differences between atlas

5 and atlas 13 in terms of the number of sub-parcels per each DK atlas region. About

70% of the sub-parcels are similar. The differences, in general, refer to a subdivision

of the sub-parcels.

Finally, we have selected an example to illustrate the biological significance of a

pair of sub-parcels obtained by our parcellations. For this purpose, we have taken the

sub-parcels of atlas 13 that better match the most common definitions of Broca’s [2]

and Wernicke’s [45] areas, related to language processing. As illustrated in Figure 4.6,

these regions seem to correspond to the Broca’s (in red) and Wernicke’s (in green)

areas. Besides, we illustrate the fibers connecting both sub-parcels, which correspond

to the arcuate fasciculus, in agreement with the literature [20]. In fact, this fascicle is

present in the fused bundle atlas used to create the parcellations, and the segmen-

tation of this bundle is very stable across subjects. Hence, its connections define the

described sub-parcels, also present in atlas 5. Further studies are required to validate

in detail the biological significance of diffusion-based parcellations.
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Figure 4.6: Example of two sub-parcels of atlas 13 with biological relevance. These
sub-parcels follow the most common definitions of the Broca’s [2] (in red) and Wer-
nicke’s [45] (in green) areas, related to language processing. Also, the fibers connect-
ing these sub-parcels are illustrated in blue, which correspond to the arcuate fasciculus
[20].

Comparison with state-of-the-art parcellations

This section provides a comparison between atlas 5 and atlas 13, generated by

our parcellation, with other state-of-the-art parcellations based on different modalities.

For the comparisons we used Destrieux atlas [32], based on macroanatomy with 150

parcels, and Lefranc parcellation [76], based on dMRI, containing 239 parcels. Based

on a multimodal approach, we used Brainnetome atlas [38], which is composed of

210 cortical parcels and 36 sub-cortical parcels and Glasser ’s atlas [46], which con-

tains 360 parcels, 180 per hemisphere. In addition, based on functional MRI, we used

PrAGMATiC atlas [64], which has 320 parcels, Schaefer ’s atlases [111], consisting of

several parcellations varying from 100 to 1,000 parcels, and Yeo’s atlas [139], which

is formed by 7 or 17 networks. All the atlases are in MNI space, and are available in

image format, by the exception of Lefranc that is available as a labeled mesh.

Hence, to be able to compare the parcellations in image format with our atlases, we

first performed a mapping of the atlases to a cortical mesh. For each atlas, we labeled
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Figure 4.7: A comparison between the twenty atlases generated with the proposed
method, based on different sets of the three parameters of the method. (A) Matrix ob-
tained from the pairwise comparison of the sub-parcels of the different atlases, based
on the average Dice coefficient (the closer to one, the more similar). The atlas most
similar to the other atlases, i.e., the atlas with the higher mean Dice coefficient, is atlas
13. (B) A visualization of the sub-parcels of atlas 13 that are in common with all the
other parcellations, based on a Dice coefficient ≥ 0.6. The first column shows the left
hemisphere with 47 sub-parcels in common, while the second column illustrates the 41
sub-parcels in common for the right hemisphere.

a cortical mesh in MNI space, by assigning to each mesh vertex the label of the closest

voxel in the image atlas. Then, we compared our atlases with the other parcellations, by

evaluating the similarity of each sub-parcel of atlas 5 and atlas 13 with each parcel of

the other atlases, using the Dice coefficient over the mesh triangle labels. In this case,

Dice’s coefficient will evaluate the degree of overlap between a pair of parcels, ranging

from 0, for a total dissimilarity, to 1, for a complete similarity. Moreover, to identify the

sub-parcels in atlas 5 and atlas 13, we named them based on the anatomical regions

connected by these sub-parcels, based on Desikan-Killiany atlas. For example, the

parcel lh_RMF-CMF-SF_0 connects RMF with CMF and SF regions. The number (_0)

denotes the index of the sub-parcel, which depends on the number of sub-parcels in an

atlas with the same connections. Prefixes lh or rh refer to the left or right hemisphere.

For more details, Table B.3 in the appendix B lists the names of anatomical regions of

Desikan-Killiany atlas. To perform the tests, both atlases, atlas 5 and atlas 13, were

applied to one subject in MNI space as a representative subject (Subject 001 from the
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ARCHI database). The same subject was used for all the tests. Any other subject

transformed to MNI space could be used, because there is a correspondence between

the mesh triangles of all the subjects, which have the same triangle indexes.

Tables 4.2 and 4.3 contain the results of the comparison between atlas 5 and atlas

13 with the other atlases. For each state-of-the-art parcellation, the total number of

parcels or networks that it contains, as well as the number of parcels similar to atlas 5

and atlas 13, between different ranges of Dice coefficient, are indicated. In the table,

the minimum Dice value considered is 0.5, while similarity values superior to 0.9 were

not found.

Parcellation name ≥ 0.5 and < 0.6 ≥ 0.6 and < 0.7 ≥ 0.7 and < 0.8 ≥ 0.8 and < 0.9

Brainnetome (210 parcels) 37 parcels 21 parcels 4 parcels 0 parcels
Destrieux (150 parcels) 26 parcels 8 parcels 2 parcels 1 parcel
Glasser (360 parcels) 31 parcels 7 parcels 2 parcels 0 parcels
Lefranc (239 parcels) 47 parcels 32 parcels 26 parcels 16 parcels
PrAGMATiC (320 parcels) 33 parcels 13 parcels 2 parcels 0 parcels
Schaefer (100 parcels) 26 parcels 9 parcels 2 parcels 0 parcels
Schaefer (200 parcels) 37 parcels 15 parcels 4 parcels 0 parcels
Yeo (7 networks) 0 parcels 0 parcels 0 parcels 0 parcels
Yeo (17 networks) 4 parcels 0 parcels 1 parcel 0 parcels

Table 4.2: Number of similar parcels found between atlas 5 and parcellations based on
different MRI modalities. For each parcellation, the total number of parcels or networks
that compose it is listed, as well as the number of similar parcels based on Dice’s
coefficient. This coefficient ranges from 0 to 1, with 1 being total similarity. The number
of similar parcels is divided into four groups, according to Dice’s coefficient value.

Destrieux atlas was generated using 12 datasets and algorithms that classified

each vertex in a computer-assisted manual manner and divided the cerebral cortex into

75 parcels per hemisphere, giving a total of 150 parcels. The comparison of Destrieux

and atlas 5, obtained 37 similar parcels with Dice >= 0.5 in the two hemispheres. The

most similar parcel is in the right hemisphere, corresponding to G_cuneus, located in

the occipital lobe (cuneus) and corresponding to rh_Cu-Li-MOF_0 of atlas 5. In the left

hemisphere we have the parcels S_suborbital and G&S_subcentral corresponding to

the frontal (suborbital sulcus) and parietal (subcentral gyrus) lobes. In atlas 5 these
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Parcellation name ≥ 0.5 and < 0.6 ≥ 0.6 and < 0.7 ≥ 0.7 and < 0.8 ≥ 0.8 and < 0.9

Brainnetome (210 parcels) 40 parcels 26 parcels 5 parcels 0 parcels
Destrieux (150 parcels) 33 parcels 8 parcels 4 parcels 0 parcels
Glasser (360 parcels) 40 parcels 14 parcels 0 parcels 0 parcels
Lefranc (239 parcels) 55 parcels 35 parcels 27 parcels 13 parcels
PrAGMATiC (320 parcels) 43 parcels 19 parcels 3 parcels 0 parcels
Schaefer (100 parcels) 24 parcels 10 parcels 2 parcels 0 parcels
Schaefer (200 parcels) 31 parcels 22 parcels 4 parcels 0 parcels
Yeo (7 networks) 0 parcels 0 parcels 0 parcels 0 parcels
Yeo (17 networks) 4 parcels 0 parcels 0 parcels 0 parcels

Table 4.3: Amount of parcels in common between atlas 13 and other parcellations
based on the Dice coefficient. The first column lists the names for each parcellation
and the number of parcels or networks that compose them. The other columns detail
the total number of parcels in common for each Dice interval. This coefficient ranges
between 0 and 1, being 1 the biggest similarity achieved.

parcels correspond to the sub-parcels lh_MOF-LOF-LO_0 and PoC-Ins-SM_0 respec-

tively. The comparison between Destrieux and atlas 13 obtains 45 similar parcels with

Dice >= 0.5 between both hemispheres. We highlight from the left hemisphere, the

parcel S_suborbital of Destrieux, which has its equivalent in atlas 13 of the sub-parcel

lh_MOF-IC-PrCu_0, located in the frontal lobe (suborbital sulcus). In the right hemi-

sphere, the parcels G_cuneus and G&S_subcentral of Destrieux are similar to the

sub-parcels rh_Cu-Li_0 and rh_PoC-SM_0 of atlas 13, and are located in the occipital

(cuneus) and parietal (subcentral gyrus) lobes respectively.

With respect to the comparative with Lefranc, this parcellation has in common with

our method, that was based on the same database (ARCHI) and uses the regions

of Desikan-Killiany atlas as input. Furthermore, the method uses the whole dMRI

tractography as input. Lefranc algorithm compresses the connectivity profiles of each

gyrus, taking into account the inter-subject variability, and considering inter-subject

high-density connectivity areas extracted using a surface-based watershed algorithm.

Finally, it applies a clustering algorithm over the reduced connectivity profiles to obtain

a group-wise parcellation, which consists of 239 parcels (126 in the left hemisphere

and 113 in the right hemisphere). In the comparison made between Lefranc and atlas
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5, we found 121 similar parcels with Dice >= 0.5. The most relevant parcel in the

left hemisphere is lh.caudalmiddlefrontal.1 which corresponds to the CMF-PrC-RMF_1

sub-parcel in atlas 5, located in the frontal lobe (caudal middle frontal gyrus). The most

similar parcels in the right hemisphere are rh.inferiorparietal.3 and rh.precuneus.2,

both belonging to the parietal lobe, specifically, the inferior parietal cortex and pre-

cuneus cortex. They correspond in atlas 5 to the sub-parcels IP-IT-MT_0 and PrCu-

CAC-PoCi-SF_0 respectively. Respecting Lefranc and atlas 13, they have 130 parcels

in common. The most similar parcels in the left hemisphere are lh.supramarginal.2

and lh.postcentral.3. Both parcels are located in the parietal lobe, namely in the supra-

marginal and postcentral gyri. The equivalent sub-parcels in atlas 13 are lh_SM-PrC_0

and lh_PoC-Ins-SM_0. In the right hemisphere, we found rh.inferiorparietal.2 parcel,

which is located in the parietal lobe (inferior parietal cortex) and is similar to sub-parcel

rh_IP-SM-PrC_0 in atlas 13.

Brainnetome atlas relies on a multimodal approach. Multimodal information con-

sists of diffusion MRI, functional MRI, and structural MRI data. This parcellation was

based on 80 subjects of the Human Connectome Project (HCP) database and contains

210 cortical parcels (105 per hemisphere) and 36 subcortical parcels. This atlas has in

common with atlas 5 and atlas 13 that uses dMRI, but employs probabilistic rather than

deterministic tractography. Furthermore, both methods use the Desikan-Killiany atlas

as input information. Atlas 5 and Brainnetome have 62 parcels in common. We can

highlight parcel A9_46d_L (left hemisphere) located in the frontal lobe (middle frontal

gyrus), which is linked to atlas 5 sub-parcel called lh_RMF-CMF-SF_0, and is related

to inhibition, social cognition, and word generation. In the right hemisphere, parcel

msOccG_R of Brainnetome, located in the occipital lobe (lateral occipital cortex), is

similar to sub-parcel rh_SP-LO-MT_0 of atlas 5, related to spatial ability, shape vision,

motion vision and inhibition. Also, we have parcel A23c_R that is similar to sub-parcel

rh_PoCi-CAC-PrCu-RAC_0, located in the limbic lobe (cingulate gyrus), which is re-

lated to emotions, reward, and pain. Moreover, between atlas 13 and Brainnetome

there are 71 parcels in common. The three most similar parcels correspond to the left

hemisphere. Brainnetome parcel A9_46d_L corresponds in atlas 13 to the sub-parcel

lh_RMF-CMF-SF_0 (middle frontal gyrus) and is related to inhibition, social cognition
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and word generation. Parcel A40rv_L is linked to sub-parcel lh_SM-PrC_0 in Atlas

13 and is located in the parietal lobe (inferior parietal) and has functions related to

audition, pain, grasping and discrimination. Finally, parcel A8dl_L corresponds to sub-

parcel lh_CMF-Op_0 of atlas 13, is located in the frontal lobe (superior frontal gyrus)

and is related to emotion, cognition and memory.

Glasser atlas is also based on a multimodal approach. This parcellation is based

on functional connectivity (resting-state), microstructural architecture, functional spe-

cialization (task-fMRI), and topography information. In addition, it uses data from 449

subjects of the HCP database and generates a final parcellation which consists of 360

parcels (180 per hemisphere). We found 40 parcels in common with atlas 5. In the

left hemisphere, sub-parcel lh_Or-LOF-Ins-LO_0 of atlas 5 corresponds to parcel L_-

a47r_ROI located in the frontal lobe (Orbital and Polar Frontal Cortex) of Glasser and

is linked to relational-match, gambling, working memory, language (story and math)

and faces-shapes recognition. Continuing in the same hemisphere, another relevant

Glasser parcel is L_POS1_ROI, located in the parietal lobe (Posterior Cingulate Cor-

tex), which is similar to sub-parcel lh_PrCu-PH-En_0 and is related to language (story

and math) and scene selection. As for the right hemisphere, R_V3A_ROI parcel which

is located in the occipital lobe (Dorsal Stream Visual Cortex) is equivalent to rh_SP-

LO-MT_0 sub-parcel of atlas 5, which is related to retinotopic areas, gambling, and

emotion. The comparison between Glasser and atlas 13 led to 54 parcels in common.

The most similar parcels in the left hemisphere for Glasser are L_TPOJ1_ROI and

L_11l_ROI, which are linked to the sub-parcels lh_Ban-MT_0 and LOF-LO_0 of atlas

13. The former is located in the Temporo-parieto-occipital junction, area associated

with faces-shapes recognition, language (story and math), audition, visual concepts,

and gambling. LOF-LO_0 parcel is in the frontal lobe (Orbital and Polar Frontal Cortex)

and has the functionalities of memory and faces-shapes recognition. Regarding the

right hemisphere, R_V3A_ROI parcel of Glasser has its equivalent in the sub-parcel

rh_IP-IT_0 of atlas 13, located in the occipital lobe (Dorsal Stream Visual Cortex) and

is related to gambling, emotion and retinotopic areas.
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PrAGMATiC atlas is the result of using fMRI and ROI-based methods in a prob-

abilistic and Bayesian generative model approach. The model was applied using 12

subjects, and the resulting atlas, containing 320 parcels, represents the distribution of

semantically selective functional areas in the human cerebral cortex. The comparison

made between PrAGMATiC and atlas 5 found 48 common parcels. We highlight in the

left hemisphere parcel IPFC_L8 of PrAGMATiC located in the frontal lobe (inferior pre-

frontal cortex), which is similar to sub-parcel lh_Tr-Ins-SF-IT_0 of atlas 5 and is related

to the violence, emotions, social, and abstract skills. Continuing in the same hemi-

sphere, we have the parcel IPFC_L12 located in the frontal lobe, similar to sub-parcel

lh_LOF-ST-TEM-LO_0 of atlas 5, related to abstract, tactile and numeric skills. On the

other hand, in the right hemisphere, parcel LTC_R3 of PrAGMATiC is equivalent to sub-

parcel rh_Ban-IP_0 of atlas 5 located in the temporal lobe (lateral temporal cortex) and

is related to violence, social and emotion skills. PrAGMATiC has 65 parcels in com-

mon with atlas 13. The LTC parcel in the left hemisphere is the most similar, located in

the temporal lobe (lateral temporal) and equivalent to sub-parcel lh_Ban-MT_0 of atlas

13, with associated functionalities such as violence, emotional and communal skills. In

the right hemisphere we highlight the parcels LTC_R3 and SPFC_R15, located in the

temporal (lateral temporal) and frontal (superior prefrontal) lobes. The former has the

functionalities of violence, social, and emotional concepts, while the latter is associated

with mental, emotional, and violent concepts.

Schaefer is a parcellation based on resting-state fMRI from a database of 1,489

subjects, which uses a gradient-weighted Markov Random Field (gwMRF) model to

generate the final parcellations, with 100, 200, 400, 600, 800 and 1,000 parcels. To

compare Schaefer atlas with our results, we chose the parcellations of 100 and 200

parcels because they are the most similar in number of parcels to atlas 5 (160 sub-

parcels) and atlas 13 (185 sub-parcels). Therefore, starting with Schaefer parcellation

with 100 parcels, we found 37 parcels in common with atlas 5. In the left hemisphere,

parcel DefaultB_IPL_1 of Schaefer is similar to sub-parcel lh_IP-IT-MT_0 of our atlas

and is located in the temporal lobe, while in the right hemisphere, parcel ContB_IPL_1

is equivalent to sub-parcel rh_SM-PrC-SP_0 and is located in the frontal lobe. Both
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parcels are associated to language skills (story and math). We also highlight sub-

parcel rh_RMF-LOF-SF-LO_0 of atlas 5, which corresponds to parcel ContB_PFCl_1

of Schaefer located in the parietal lobe, and is related to the working memory.

On the other hand, the Schaefer parcellation of 200 parcels, has in common a to-

tal of 56 parcels with atlas 5. In the left hemisphere, parcel Temp_Par_1 (temporal

lobe) from Schaefer is similar to sub-parcel lh_Ban-IT-MT_0 of our atlas, which has

associated language functionality (story and math). For the right hemisphere, parcel

TempPar_3 (temporal lobe) of Schaefer is similar to rh_Ban-IP_0 sub-parcel of at-

las 5, which is related to language (story and math), and VisCent_ExStr_3 parcel is

similar to rh_LO-Or-MT-RMF_0 sub-parcel, which is located in the occipital lobe and

is associated to visual areas and relational skills (matching and fixation). Moreover,

the comparison between Schaefer parcellation atlas 13 found 57 similar parcels. In

the left hemisphere the most similar is the parcel LimbicA_TempPole_1 located in the

temporal lobe that is related to the sub-parcel lh_TEM-LOF-MOF-LO_0 of the atlas

13 and has as associated functionality the language (story and math). For the right

hemisphere, TempPar_3 (temporal lobe) parcels is equivalent to sub-parcel rh_Ban-

IP_0 of atlas 13, asociated to language functionalities (story and math), and parcel

VisCent_ExStr_3 (occipital lobe) is similar to LO1-LO0-MT_1 sub-parcel, associated

to relational skills functionalities (matching and fixation).

Yeo atlas was based on fMRI data from 1,000 subjects. The comparison with this

atlas leads to less similar parcels, since the sub-parcels of atlas 5 and atlas 13 are

generally smaller than the 17 networks of Yeo atlas. Five parcels were found in com-

mon between Yeo atlas and atlas 5, and four parcels between Yeo atlas and atlas 13.

We highlight sub-parcel lh_LO1-LO0-ST-MT_1 from atlas 5 located in the left occipital

lobe, which is related to V1c region of Yeo atlas and is associated to the visual area

and central vision.

Figure 4.8 illustrates the parcels found similar between atlas 5 and other parcella-

tions, mainly based on functional information (Brainnetome, Schaefer and Glasser ),

considering a Dice coefficient ≥ 0.6. Figure 4.9 shows the common parcels between

atlas 13 and Destrieux, Lefranc and Brainnetome parcellations, with a Dice coefficient
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≥ 0.6. For more information on comparisons see section B.9 of the appendix B.

The evaluation of the differences between the atlases based on dMRI (Lefranc,

Brainnetome, and our parcellations) is a difficult task. The coarse anatomical regions

in which the atlases were based is the main difference. Lefranc and our parcellations

present a high dependency on the anatomical regions of Desikan-Killiany atlas (35

per hemisphere), while Brainnetome uses DK atlas but with several regions combined

(20 cortical and 4 subcortical regions per hemisphere). Hence, we can compare the

granularity of the DK regions for the different atlases, where a higher difference ex-

ists for Brainnetome in the combined regions. Table B.6 of the appendix B lists the

number of subdivisions of DK anatomical regions for all the atlases. In some cases,

Brainnetome parcels cannot be matched with DK standard regions. In the table, an

asterisk is used to indicate the DK anatomical parcels where Brainnetome performs

a different subdivision of the regions and only an approximate number of subdivisions

is provided. Another big difference is that Brainnetome has equivalent parcels in both

hemispheres, while Lefranc and our parcellations are asymmetric, presenting more

sub-parcels in the left hemisphere. This is due to the different approaches used, where

the method that created Brainnetome used, in addition to stability across the popula-

tion, the interhemispheric anatomical homology. Another difference is the number of

total parcels, where Lefranc has 239, Brainnetome 210, atlas 13 185, and atlas 5 160

cortical sub-parcels. Hence, depending on the application, the total granularity could

be determinant for the atlas selection. Furthermore, Lefranc presents subdivisions in

almost all the DK atlas regions, which is not the case for the other atlases. This could

be produced by the watershed algorithm applied to the cortical surface, which may

be more sensitive to local connectivity density variations. Also, this atlas presents a

high granularity in some regions, such as the Fusiform, Lateral occipital (left), Middle

temporal, Pars orbitalis, Pericalcarine, and Transverse temporal. Brainnetome, on his

side, presents more subdivisions for the Inferior temporal, Superior frontal, and Insula

regions. Finally, the four atlases present higher subdivisions for the Superior tempo-

ral, Superior frontal, Precentral, Postcentral, and Inferior temporal gyri. Furthermore,

Brainnetome is the only atlas that has subcortical parcels (18 per hemisphere).



109

Figure 4.8: Parcels in common between atlas 5 parcellation and some parcellations
based on different MRI modalities, with Dice coefficient ≥ 0.6. Both hemispheres are
shown for each parcellation with the inflated mesh. First and second rows: comparison
with Brainnetome (210 cortical parcels) [38], 13 similar parcels were found in the left
hemisphere and 12 in the right hemisphere. Third and fourth rows: comparison with
Schaefer parcellation (200 parcels) [111], with 9 similar parcels in the left hemisphere
and 10 in the right hemisphere. Fifth and sixth rows: comparison with Glasser parcel-
lation (360 parcels) [46], with 5 similar parcels in the left hemisphere and 4 in the right
hemisphere. This gives a total of 25, 19, and 9 parcels in common, respectively.
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Figure 4.9: Common parcels between atlas 13 parcellation and some parcellations
from the state of the art with Dice coefficient ≥ 0.6. Both hemispheres are shown
for each parcellation with the inflated mesh. First and second rows: comparison with
Destrieux atlas (150 parcels) [32], with 7 parcels in common in the left hemisphere
and 5 in the right hemisphere. Third and fourth rows: comparison with Lefranc atlas
(239 parcels) [76], with 40 common parcels in the left hemisphere and the 35 parcels in
the right hemisphere. Fifth and sixth rows: comparison with Brainnetome (210 cortical
parcels) [38], with 19 parcels in common in the left hemisphere and 12 parcels in the
right hemisphere. This gives a total of 12, 75, and 31 similar parcels, respectively.
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Figure 4.10: Comparison of the sub-parcels obtained by the different atlases based
on dMRI for the postcentral (PoC) anatomical parcel. From left to right the atlases
are: atlas 5 (four subdivisions), atlas 13 (six subdivisions), Lefranc (five subdivisions)
and Brainnetome (four subdivisions). The sub-parcels were enumerated following the
best correspondence between atlases. It can be observed that sub-parcels iii, v, and
vi of atlas 13 are a subdivision of sub-parcel iii of atlas 5. Also sub-parcels i and
iv are similar in all the atlases. Furthermore, sub-parcels v in atlas 13, Lefranc and
Brainnetome are very similar.

Making a comparison between the atlases based on dMRI modality, we found sim-

ilarities and differences in the number of subdivisions per anatomical parcel and per

hemisphere. Figure 4.10 shows a visual comparison between atlas 5, atlas 13, Lefranc,

and Brainnetome for the postcentral anatomical parcel. The sub-parcels found were

enumerated according to their correspondence between the different atlases. Sub-

parcels i and iv are similar for all the atlases. In addition, sub-parcel iii of atlas 5 is

divided into sub-parcels iii, v, and vi of atlas 13. On the other hand, there is a high

similarity between sub-parcels v in atlas 13, Lefranc, and Brainnetome.

Finally, we compared the connectivity matrices obtained for atlas 5 (160 sub-parcels)

and Destrieux atlas (150 parcels), which is based on macroanatomy. First, the con-

nectivity matrices of each subject for both atlases were calculated (79 subjects). Then,

the matrices were binarized and the Dice coefficient was calculated between each pair

of subjects and posteriorly averaged for each atlas, to compare the reproducibility of

the connectivity matrices generated by both atlases. Figure 4.11 shows the results of

the Dice coefficient for both parcellations. As shown, atlas 5 parcellation is a little more

reproducible (≈ 0.01) than Destrieux atlas, despite having 10 more parcels. In general,
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the higher the number of parcels, the lower the value of inter-subject reproducibility

using Dice’s coefficient, as subdividing the cortex into a larger number of sub-parcels

will lead to more variable connectivity, due to inter-subject variability. With the obtained

result, it seems that the boundaries of the sub-parcels produce a better agreement with

the underlying connections.

Figure 4.11: Dice coefficient for connectivity reproducibility for atlas 5 parcellation and
Destrieux atlas. Dice’s coefficient is in the range 0 to 1, the closer to 1 the more
reproducibility between subjects. Atlas 5 composed of 160 sub-parcels is slightly better
in terms of reproducibility than the Destrieux parcellation consisting of 150 parcels.

4.1.4. Discussion

We propose a new hybrid method for the creation of fine-grained parcellations of the

cortical surface from a coarse-grained anatomical parcellation, based on the connec-

tivity given by a fiber-bundle atlas. Since the bundles have a correspondence between

subjects, a direct match is obtained between the regions intersected by the extremities

of the bundles across subjects. However, due to the overlap of cortical bundle inter-

sections, inter-subject variability, and tractography limitations, several processing steps
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are applied to find consistent parcels among subjects.

The main analysis uses the probability of each sub-parcel along with the fiber den-

sity over the cortex to detect reproducible regions. Also, the overlapping between re-

gions is solved using a graph representation of sub-parcel density center intersections.

The method has the advantage of being conceptually simple, despite the complex-

ity of its implementation, with few parameters that represent characteristics that are

also easy to understand. Therefore, parameter variation has an understandable ef-

fect on the final parcellation, in particular, in the number of sub-parcels. Results are

very promising, showing an expected behavior of the method for a wide range of pa-

rameters and a high similarity between the generated atlases. Even though the final

number of sub-parcels per hemisphere depends on the parameter configuration, there

is a high dependence on the maximum number of sub-parcels with the used bundle at-

las. This is the reason why the atlas swm_atlas_1 [50] was chosen first, as it contained

much more compact bundles at its extremities, leading to more candidate sub-parcels.

Furthermore, the optimal number of sub-parcels and the method itself will depend on

the subsequent analysis to be performed. If the objective is to analyze and compare

structural connectomes, it seems convenient to use connectivity-based parcellations

created from tractography data.

In general, our method leads to good inter-subject correspondence in all the cre-

ated parcellations, given by a relatively high average Dice coefficient for connectivity

matrices. The comparison with Destrieux atlas showed a slightly better reproducibil-

ity for atlas 5, despite having 10 more sub-parcels. In any case, the contribution of

this work is a method for the creation of a fine-grained parcellation from an anatomical

coarse parcellation, based on a bundle-atlas that can be used for further analyses.

The comparisons between atlas 5 and atlas 13 with some atlases based on differ-

ent MRI modalities found a set of similar parcels, with a Dice coefficient greater than

or equal to 0.5. The comparison with parcellations based on fMRI gave some insights

on the functions related to some sub-parcels obtained for our atlases, which in turn

are associated with specific structural connections. Even though the objective of the

present work is to propose a diffusion-based parcellation, the comparison shows that
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good correspondence is found between several sub-parcels of our atlases and parcels

from other modalities. For comparison, the size of the parcels is crucial. For example,

for Yeo atlas with 7 networks, no similar parcels were found due to the higher size of the

networks. On the other hand, ≈ 51% of the parcels in Lefranc atlas (with 239 parcels),

based on dMRI, have a similar sub-parcel in atlas 5 (with 160 sub-parcels). The com-

parison between Lefranc atlas and atlas 13 achieves ≈ 54% of common parcels (130

sub-parcels) being the most similar parcellation. This result is interesting since the

proposed method is based on the same database than Lefranc atlas, but with a totally

different approach. Despite the different number of parcels, two other parcellations

have more than 30% of similarity with our atlases, which are Brainnetome and Schae-

fer with 100 parcels. Of course, we are not considering a perfect match between the

parcels. Further analyses could be performed, in particular, to compare the different

state-of-the-art parcellations, but are out of the scope of this work.

A limitation of the method may be the use of the fused fiber atlas, composed of SWM

and DWM bundles, to generate the input data, instead of using the whole-brain trac-

tography. However, all the diffusion-based methods perform at some stage a filtering of

the data, since it is necessary to keep only the reproducible regions or connections. A

concrete limitation is the maximum number of sub-parcels that could be created, which

depends on the final atlas bundles. We found a total number of sub-parcels ranging

from 157 to 241, which is around the number of parcels obtained by the state-of-the-art

methods based on tractography, with 15-250 parcels for [89], 239 parcels for [76] and

50-300 parcels for [96]. To reach a higher number of parcels it would be necessary to

add more bundles or subdivide the current bundles. Another limitation of the method

is the use of Desikan-Killiany atlas to define the coarse granularity of the sub-parcels,

instead of generating a parcellation without such limits. Also, the whole method is

difficult to reproduce due to the use of different platforms and methods, which is not

infrequent in this kind of analysis. For that reason, we have created a code repository2

with the necessary codes and files to apply all the processing, including the fused bun-

dle atlas, and the segmentation, intersection and parcellation codes, among others.

Furthermore, the resulting data will be available to the public in a data repository.

2https://github.com/andvazva/Parcellation
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On the other hand, the use of the fused fiber bundle atlas is an advantage, since it

allows a direct correspondence between subjects, avoiding the search for such corre-

spondence at the end of the process employing clustering algorithms. Other positive

aspect is the low execution time, where the segmentation algorithm is capable of seg-

menting a subject of 1,500,000 fibers in less than 20 seconds and the cortical parcella-

tion algorithm performs the subdivision of the anatomical DK parcels in approximately

10 minutes. Furthermore, this algorithm has only three configurable parameters that

allow the generation of parcellations with a smaller or larger number of sub-parcels.

In any case, the limitations of diffusion MRI should always be considered when an-

alyzing results based on dMRI tractography. This technique is used to non invasivelly

reconstruct the major white matter tracts of the brain. Tractography algorithms are able

to generate valid bundles, however, due to the limited spatial resolution of the voxels

and the large amounts of fiber pathways that can pass through them, false positives

and false negatives are also generated. In fact a non negligible number of false posi-

tive bundles is produced, some of them reproducible across subjects. One of the next

challenges of tractography will be to control these false positives and improve the spa-

tial reconstruction of existing WM tracts [82]. Therefore, special care must be taken

when interpreting the results given by tractography algorithms in a study [15]. The

differences in connectivity profiles can be produced due to artifacts in the tractogra-

phy. Hence, the parcellations based on diffusion tractography are only valid when the

differences in connectivity profiles reflect true anatomical differences [15]. We have

shown one example of biological significance, for the Broca’s and Wernicke’s areas,

but further studies need to be performed to validate the diffusion-based parcellations.
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4.2. Cortical surface parcellation based on intra-subject white matter fiber clus-

tering

In this section, we present a hybrid method to perform the cortical parcellation of

an individual based on the information provided by the connectivity of the white matter

fibers. The first section shows the work related to the parcellation of the cortex. The

proposed method consists of five steps, which perform the complete labeling of cortical

mesh vertices, representing the different cortex sub-parcels, with strong connections

to other sub-parcels. In the experimental results, we evaluated the method with brain

connectivity metrics. Finally, we present the discussion of the method and the results

obtained. This is a preliminary implementation and requires future improvements and

validations.

4.2.1. Related work

Advances in brain imaging have allowed the study of the structure and connectivity

of white matter (WM), a research area that is constantly growing. One of the most

used techniques to understand the anatomical connectivity of the brain is the diffusion-

weighted Magnetic Resonance Imaging (dMRI). It is a non-invasive and in-vivo tech-

nique, based on measurements of the movement of hydrogen molecules present in

water [74]. Tractography algorithms use dMRI information to estimate the main tra-

jectories of the WM tracts [92]. When applied to the whole-brain, resulting datasets

contain a large amount of 3D polylines, called fibers, that represent the main brain WM

connectivity.

Understanding how the brain works requires a detailed description of the network

of connections that form it [118]. A cortical parcellation represents a way to divide

the brain cortex into macroscopic regions, according to their structure or functioning, in

order to study brain connectivity [28]. The best known parcellation is Brodmann’s atlas,

based on post-mortem cytoarchitecture study, focused on the size, density, shape and

distribution of cell bodies in cortical layers [3]. In contrast, in-vivo techniques based on

MRI, enable the development of other parcellations, based on anatomical structures

[32], functional MRI (fMRI) [111] or a multi-modal approach [46]. Performing a cortical
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parcellation is a difficult task due to the high variability that exists between subjects in

terms of white matter and gray matter, as well as the disadvantages of each imaging

modality.

The most common approaches to estimate brain connectivity are diffusion trac-

tography, structural covariance, resting-state functional connectivity and meta-analytic

connectivity modeling [36]. Diffusion tractography provides information about structural

connectivity, but has the limitations of not being able to delimit the beginnings and ter-

minations of fiber bundles [35] and produce false positives due to the large number of

fibers that cross between the WM tracts. In addition, short association fiber connec-

tions can be lost due to the limited resolution of the tractographic methods [82]. Two

strategies can be used to perform diffusion-based cortical parcellations. One approach

first determines corresponding connections across subjects and then creates a parcel-

lation according to the main connections in all the subjects. For example, a fiber bundle

atlas of superficial WM connections was used to segment bundles in a group of sub-

jects and get some consistent parcels for the 10 analyzed subjects [51]. The difficulty

here is to detect a representative set of the common connections for a population of

subjects and create the final parcels. The second approach detects robust individual

parcels from the whole tractography dataset, and then manages to find and delineate

consistent parcels across subjects [76].

In this work, we propose a new hybrid method of individual cortical parcellation

based on WM connectivity and intra-subject fiber clustering, with automatic parcel la-

beling. Our goal is to perform a good quality individual cortical parcellation to be used

for a group-wise parcellation in the future. We applied the method to a group of subjects

and evaluated several measures of brain connectivity. We demonstrate that the result-

ing networks for each subject comply with the integration and functional segregation

as well as with the small-world definition.

4.2.2. Our approach

We perform the parcellation of the cortex with a hybrid method based on WM con-

nectivity given by fiber clusters, leading to an automatic labeling of cortical regions. In
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the following, we explain the whole method (see Figure 4.12), which is composed of

five steps: (1) fiber clustering, (2) intersection with the mesh, (3) WM fiber filtering, (4)

parcellation of the cortex and (5) sub-parcel post-processing.

(a) Step 1: Fiber clustering.

(b) Step 2: Intersection
with the mesh. (c) Step 3: WM fiber filtering.

(d) Step 4: Parcellation of the cortex.
(e) Step 5: Sub-parcel post-processing.

Figure 4.12: Parcellation method. Step 1: Fiber clustering. First, the whole tractogra-
phy is resampled with 21 points and transformed to T1 space. Next, a fiber clustering
is applied to obtain compact clusters. Step 2: Intersection with the mesh. The in-
tersection of the fiber clusters with the cortical mesh is calculated. Step 3: WM fiber
filtering. The fibers of each cluster are labeled according to an anatomical parcellation.
Fibers that do not correspond to the most common connections are filtered out. Also,
inverted fibers are realigned. Step 4: Parcellation of the cortex. Preliminary sub-
parcels, from each cluster extremity are created. Next, small preliminary sub-parcels
are removed. Finally, the overlap among sub-parcels is solved, by assigning each tri-
angle to the most connected sub-parcel. Step 5: Sub-parcel post-processing. The
main connected component of each sub-parcel is kept, in order to remove small iso-
lated areas. Next, an erosion followed by a dilation (opening operation) are applied to
eliminate some imperfections in the perimeter of the sub-parcels.
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STEP 1: Fiber clustering

We apply an intra-subject clustering to all the fibers of the whole-brain tractography

dataset. The objective is to create clusters with similar fibers, according to their position

and shape, which we call fiber bundles.

First, the tractography obtained from the database is preprocessed (see Figure

4.12(a)1.1). Fibers are resampled with 21 equidistant points, a number of points big

enough to represent all the brain fibers. Next, the tractography datasets are trans-

formed from T2 to T1 space. Finally, an intra-subject clustering algorithm is applied,

which is composed of three main steps [109]. Figure 4.12(a)1.2 shows an example of

the results after applying the clustering to a tractography dataset.

STEP 2: Intersection with the mesh

This step determines the intersection of the fiber clusters with the cortical mesh

[115], and was modified to perform the intersection over the whole tractography. Figure

4.12(b) shows an example of intersection points of the fibers with the mesh.

STEP 3: WM fiber filtering

This step aims to label the clusters that intersect with the mesh and filter them to

delimit anatomical cortical regions (brain circonvolutions). To perform the filtering, we

carry out three sub-steps (see Figure 4.12(c)):

1. Obtaining the most common connections: First, the fibers of each cluster

are labeled according to the Desikan-Killiany cortical atlas labels [31]. For that,

we use the mesh vertex labeling information given by FreeSurfer (see Figure

4.12(c)3.1). Next, the most common connection, at the beginning and the end

of each cluster, are determined. Figure 4.133.1 shows an example for different

clusters connecting the Superior-Parietal (SP) and PreCentral (PrC) parcels.

2. Removing of uncommon fibers: The next sub-step aims to remove the fibers

that do not correspond to the most common connections, in order to keep only
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Figure 4.13: Example of WM Fiber filtering for a cluster. Sub-step 3.1: Obtaining the
most common connections. In this case, the most common connections are SP and
PrC. Sub-step 3.2: Removing of uncommon fibers. The fiber labeled with the IP parcel
is removed since it does not belong to SP. Sub-step 3.3: Alignment of fibers. Fibers
that are inverted according to the most common connections, are swapped.

the fibers corresponding to the anatomical parcels given by the Desikan-Killiany

cortical atlas. See Figure 4.133.2 for an example.

3. Alignment of fibers: Finally, a fiber alignment is applied, where fibers that are

inverted by respect to the most common connections are swapped, as shown in

Figure 4.133.3.

Once the aforementioned sub-steps have been carried out, white matter fiber clus-

ters are filtered, getting a better delimitation between bundles.

STEP 4: Parcellation of the cortex

This step creates sub-parcels from the preliminary sub-parcels defined by the inter-

section of each cluster. It solves the conflicts between the overlaps of the preliminary

sub-parcels. The creation of the sub-parcels is done in three sub-steps:

1. Creation of preliminary sub-parcels from clusters: Each fiber cluster will de-

fine two preliminary sub-parcels, one from each extremity of the cluster. The set
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of preliminary sub-parcels is created by constructing a list of the triangles inter-

secting each cluster extremity. For the example in Figure 4.12(d)4.1, if the cluster

goes from PrC parcel to PostCentral (PoC) parcel, in the PrC anatomical parcel

a sub-parcel is created with the start triangles of the cluster, that is, the triangles

that are in PrC and a sub-parcel is also created for the end triangles that belong

to the PoC anatomical parcel. Note that a triangle can be intersected by several

cluster extremities.

2. Removing of small preliminary sub-parcels: Preliminary sub-parcels, that are

too small, with a size 10% smaller than the average size of the preliminary sub-

parcels within an anatomical parcel, are removed (see Figure 4.12(d)4.2). We

denote as SPi a sub-parcel, where i = 1, ..., n is the index of the sub-parcel,

and sizethr is the threshold for the elimination of small sub-parcels. Then, if

sizethr(SPi) < 0.10 the sub-parcel is removed. With this step a big amount of

isolated triangles and noisy preliminary sub-parcels are removed.

3. Conflict resolution due to preliminary sub-parcel overlap: Some preliminary

sub-parcels present an overlapping within an anatomical region. To solve this

problem, the conflicting triangles (belonging to several preliminary sub-parcels)

are analyzed, and assigned to the sub-parcel with the higher number of intersect-

ing fibers (see Figure 4.12(d)4.3).

At the end of this step, the existing conflicts between preliminary sub-parcels dis-

appear, thus obtaining a set of sub-parcels corresponding to each anatomical parcel

(circonvolution).

STEP 5: Sub-parcel post-processing: This is the last step of the cortical parcellation

method, that aims to perform a refinement of the sub-parcels, in order to get more

uniform areas. It consists of three sub-steps:

1. Elimination of connected components: Within an anatomical parcel, a graph is

created for each sub-parcel and then, the connected components of each graph
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are calculated. The largest connected component of each sub-parcel is kept,

leading to the removal of small isolated areas (see Figure 4.12(e)5.1).

2. Erosion: The edges of each sub-parcel are eroded over the mesh, to finish the

removal of some peaks or protrusions that deform the sub-parcel perimeter (see

Figure 4.12(e)5.2).

3. Dilation: Finally, the sub-parcels are expanded, filling the gaps left by erosion,

resulting in smooth, uniform and well-defined sub-parcels (see Figure 4.12(e)5.3).

The morphological operation of erosion + dilation corresponds to an opening,

which is an operation for noise elimination.

After carrying out the post-processing, we obtain the complete parcellation of the

cortical mesh. It is defined by the subdivision of the cortex into sub-parcels, given by a

label for each mesh vertex.

4.2.3. Experimental results

We calculated the cortical parcellation of five subjects from the ARCHI database,

using their complete clustered tractographies. To evaluate the quality of the connec-

tions among parcels, we generated a connectivity map for each subject, from the re-

sulting parcellation, and evaluated it using network graph metrics.

A connectivity map is built up by the tractography of each subject and the mesh

parcellated into sub-parcels, performing the following steps:

1. The intersection of the complete tractography with the parcellated mesh is calcu-

lated.

2. A square matrix n ∗ n is created with n equal to the total number of sub-parcels,

initialized to 0.

3. For each fiber in the tractography, connecting two sub-parcels, a 1 is added to the

cells corresponding to both sub-parcels in the connectivity matrix.
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Hence, a connectivity map was calculated for each subject, from its individual par-

cellation and tractography. In the following subsections we use these connectivity maps

with brain connectivity metrics and also perform a qualitative analysis of the parcella-

tions obtained from the five subjects.

Measures of brain connectivity

There are many metrics for the evaluation of the characteristics of brain networks

[23]. The properties we choose to analyze them are functional segregation (Clustering

Coefficient), functional integration (Characteristic Path Length) and Small-Worldness

[108]. These properties have been shown to be present in the brains of the higher

vertebrates [122]:

1. Functional segregation: It is the presence of strongly interconnected groups or

clusters in the brain. The metric used to measure this property is the Clustering

Coefficient [133]. A value closer to 0 denotes a random network, however, a

complex-network shows higher clustering coefficient values. Equation 4.3 defines

the clustering coefficient for undirected graphs:

Ci =
2Ni

ki(ki − 1)
(4.3)

where Ni is the amount of links in the neighborhood of i, ki is the degree of a

particular node i and Ci is the clustering coefficient for node i.

The equation 4.4 measures the average clustering coefficient for the entire net-

work:

C =
1

n

∑
i∈G

Ci (4.4)

where G is the graph of the undirected network, n is the total number of nodes in

the network and C is the average clustering coefficient.

2. Functional integration: It is the ability to easily distribute information across the

different specialized regions of the brain. The better the information is distributed,
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the higher is the functional integration. The measure used to measure this prop-

erty is the Path Length, specifically the Characteristic Path Length [133] that av-

erages the shortest path length between each pair of nodes (sub-parcels) in the

network. Equation 4.5 describes the characteristic path length for an undirected

graph:

L =
1

n(n− 1)

∑
i,j∈G,i 6=j

dij (4.5)

where G is the graph of the whole undirected network, n is the total number of

nodes in the network, dij between nodes i and j is the smallest distance between

them and L is the characteristic path length.

3. Small-Worldness: This metric is very relevant, since it combines the two previous

ones. A brain network must have good functional segregation, keeping functional

integration a little lower, that is, strongly interconnected internal regions, and in

turn, a good amount of links to other regions [108]. The σ coefficient is used

to measure the small-world property, which is the ratio between the clustering

coefficient and its equivalent random network divided by the path length and its

corresponding random network. Equation 4.6 details the sigma coefficient:

σ =
C
Cr

L
Lr

(4.6)

where C is the clustering coefficient, Cr is the clustering coefficient for the equiv-

alent random network, L is the path length, Lr is the path length of its equivalent

random network, and σ is the coefficient that measures the small-worldness. A

network is considered small-world if C � Cr and L ≈ Lr, then σ > 1.

To evaluate the network we used the bctpy toolbox3 for Python, that provides func-

tions to calculate the Clustering Coefficient and the Characteristic Path Length metrics.

Moreover, to calculate the Small-World metric, we transformed our matrices into graphs

and used the networkx library for Python [63]. Figure 4.14 displays the metrics for the

3https://github.com/aestrivex/bctpy
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Figure 4.14: Measures of brain connectivity obtained for the five subjects: Clustering
Coefficient, Characteristic Path Length and Small-Worldness. On the x-axis the five
subjects are shown and on the y-axis the coefficients for the different metrics appear.

five subjects. A high Clustering Coefficient, while maintaining a lower Characteristic

Path Length, and therefore a Small-Worldness > 1 was obtained for all the subjects.

These results demonstrate that the connectivity maps obtained for each subject,

created by our parcellation method, are considered small-world networks, and there-

fore, maintain the properties of segregation and functional integration of the brain. In

addition, as seen in Figure 4.14, the results are very similar among the five subjects.

Qualitative Analysis

In this subsection we show the different views of the cerebral cortex of a subject, as

well as the different individual parcellations for five subjects in the database.

Figure 4.15 shows the coronal, axial, right and left sagittal views, resulting from the

individual parcellation of subject 001, consisting of 430 sub-parcels for the whole brain,

with 209 in the left hemisphere and 221 in the right hemisphere. Finally, Figure 4.16
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Figure 4.15: Individual parcellation for subject 001. Coronal, axial, right and left sagittal
views are displayed. The parcellation subdivides the cortex into 430 sub-parcels, 209
in the left hemisphere and 221 in the right hemisphere.

displays the parcellation results for the five subjects. An average of 400 sub-parcels

was obtained for the whole cortex, with approximately 200 sub-parcels in average per

hemisphere.

4.2.4. Discussion

We developed a hybrid method that performs the complete parcellation of the cere-

bral cortex of an individual, based on the connectivity information of the white matter

fibers from a whole-brain tractography dataset. The fiber clustering helps to define

compact connections and filter out outliers. The method provides good quality results

in the connectivity maps of the five analyzed subjects, evaluated by network graph

metrics. Resulting networks show a high Clustering Coefficient, low Characteristic

Path Length and Small-World property. These properties indicate good integration and

functional segregation of the brain [108].
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Figure 4.16: Individual cortex parcellation for five subjects (right sagittal views). The
average of sub-parcels obtained for a hemisphere is 200, with 400 sub-parcels on
average of the entire cerebral cortex.
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4.3. Cortical surface parcellation based on geodesic distance

In this section, we present a method that performs the parcellation of the cerebral

cortex for an individual based on the information of the brain’s topology, that is, taking

into account the geodesic distance over the cortical surface. In the first section, we

describe the works related to this types of parcellations, based on the structure. After

that, we present the developed method. In the experimental results section, we carried

out the comparison with two state-of-the-art atlases based on macroanatomy. Finally,

we include a discussion of the proposed method and the obtained results.

4.3.1. Related work

Magnetic Resonance Imaging (MRI) allows the study of the brain in a non-invasive

and in-vivo way. In particular, structural MRI (sMRI) gives an anatomical differentia-

tion of main brain tissues, enabling the automatic segmentation of them. The cortical

surface can be extracted by softwares like FreeSurfer4 [27, 47] or BrainVISA5 [12].

A cortex parcellation, i.e., a subdivision of the cortex into several parcels or re-

gions [141], can be performed based on different criteria, mostly based on anatomical,

functional or diffusion-based information. This is a very complicated task due to the re-

strictions of each modality and the high inter-subject variability that exists, in particular,

in white matter (WM) and gray matter (GM).

When studying the human connectome, brain region definition takes an important

role in the study of brain connectivity and function [118]. Anatomical parcellation meth-

ods take into account the macroscopical anatomy, like the gyri and sulci [32, 14]. For

example, Cachia et al. used a geodesic distance to label the cortex mesh vertices,

using two nested Voronoï diagrams and labeled sulci [14]. Other method uses a sta-

tistical surface-based atlas, which includes information of the cortex curvature and the

manual labeling of 35 regions of interest (ROIs) per hemisphere [31].

In order to evaluate diffusion-based [117] or functional-based [26] parcellations of

4https://surfer.nmr.mgh.harvard.edu/fswiki
5http://brainvisa.info/web/index.html
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the cortical surface, these can be compared to a geodesic parcellation which is based

on the geodesical properties of the mesh. However, this calculation can be time-

consuming. Therefore, in this work, we propose a parallel method for the complete

parcellation of the cortical surface, based on the geodesic distance. The goal is to

create a fast individual cortical parcellation, available to the community for parcellation

comparisons. The algorithm can be applied to subdivide each anatomical parcel given

by Desikan-Killiany (DK ) atlas, or to perform the cortical parcellation of the entire brain,

depending on the method to be evaluated.

4.3.2. Our approach

The method implemented is called GeoSP, and performs the cortical parcellation

based on a geodesic distance over the surface. The algorithm has two different modes.

The default mode is based on the DK atlas to delimit the anatomical parcels and per-

forms a geodesic subdivision of each anatomical parcel. Note that other atlases could

also be used. The second mode creates a cortical parcellation for the entire brain. For

the first mode, the method receives for each anatomical parcel (35 in total) a value k,

used to divide each anatomical parcel into the specified k sub-parcels (for both hemi-

spheres), i.e. an anatomical parcel with k = 2 will be divided into two sub-parcels.

On the other hand, the second mode receives a unique k value, which will be used to

divide each brain hemisphere into k sub-parcels, based on a geodesic distance, with-

out using any other cortical parcellation. The method can be subdivided into two main

steps: (1) a pre-processing that creates a graph representation of the mesh, and (2)

K-means clustering based on geodesic distance over the mesh [41].

1) Pre-processing

Each anatomical parcel (for default mode) or each hemisphere (for the second

mode) is represented with an undirected graph. The graph G = (V,E) directly rep-

resents the mesh structure, formed by the vertices V and the edges E that join them.

For the default mode, that performs the subdivision of each anatomical parcel given

by the DK atlas, the labels of each region are used to identify each parcel. Finally,

Euclidean distance (dE) is calculated between each pair of vertices to create weighted
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Algorithm 1 Parallel_kmeans
1: groups← [] {list of sub-parcels containing the indexes of the vertices}
2: if k > 1 then {number of clusters}
3: centers← initialize() {initializing centroids}
4: centers_old← centers
5: converge← FALSE
6: i← 0
7: while i ≤ nIter and !converge {iterations and criterion for convergence}
8: groups← calc_groups() {calculating groups}
9: centers← comp_centroids() {computing centroids}

10: converge← stop_critery()
11: centers_old← centers
12: i← i+ 1
13: end while
14: else
15: groups← [all_indices] {all the indices for one anatomic parcel}
16: end if
17: return groups {returns the list whose elements are the sub-parcel groups(indices))}

graphs.

2) K-means clustering

To subdivide an anatomical parcel or a hemisphere into k sub-parcels, a K-means

clustering is applied. The algorithm consists of the following sub-steps: (a) initializing

centroids, (b) (re)calculating groups and (c) (re)computing centroids. The algorithm

uses a parallel implementation and its pseudocode is shown in Algorithm 1. For default

mode, the method launches the K-means algorithm in parallel for each anatomical

parcel given by DK atlas, while for the second mode, it launches a single thread per

hemisphere. To exploit the capabilities of parallelism, it is launched in the sub-step of

(re)computing centroids.

1. Initializing centroids. To perform this sub-step, K-means++ algorithm [73] is

used to select the initial centroids. It has a low time complexity of O(logk).

First, the method receives k, the number of sub-parcels (clusters) to divide each

anatomical parcel (or each hemisphere). For each anatomical parcel, there may

be different k. Also, k can be randomly set. Although the selection of starting cen-

troids takes additional time, by using K-means++ the convergence of K-means
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Figure 4.17: Euclidean distance versus geodesic distance. By using the Euclidean dis-
tance between two points, a straight line is obtained (orange path). While the geodesic
distance considers the shortest path across the gyri and sulci of the mesh (blue path).

occurs quickly with reduced computation time. This leads to initial centroids bet-

ter distributed than random selection across the anatomical parcels.

2. (Re)Calculating groups. In this sub-step, clusters are (re)calculated by assign-

ing each vertex to the closest centroid. To achieve this, the single-source shortest

path problem (SSSP ) is used, which looks for the shortest path from a vertex v

(centroid) to the rest of the vertices of the graph G. To calculate the distance

between vertices, instead of the Euclidean distance, the geodesic distance is

used. Then, based on an implementation of the Dijkstra algorithm with Fibonacci

heaps [22], the SSSP is calculated for all the centroids, that is, the shortest path

from each centroid to all other vertices. This algorithm runs with low complex-

ity (O(|E| + |V |log|V |)). Finally, for each graph vertex, the distances obtained to

the different centroids are compared, and each vertex is assigned to the centroid

with the smallest geodesic distance. Figure 4.17 illustrates the Euclidean and

geodesic distances for two vertices over the mesh. The path between two points

for Euclidean distance is a straight line while the path for the geodesic distance is

a route along the surface of the mesh, taking into account the gyri and the sulci.

3. (Re)Computing centroids. This is the last sub-step of the algorithm, in which

the centroids of the clusters must be (re)calculated. First, the all-pairs shortest
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paths problem has to be solved, that is, for each pair of vertices, the shortest path

has to be calculated. This is done with the Floyd–Warshall algorithm [102], which

runs in O(|V |3). Although the temporal complexity of this step is high, it is still

a polynomial running time (cubic) depending on the size of the input. The result

obtained is a new centroid, which is the vertex closest to all other vertices in the

cluster.

Sub-steps (b) and (c) are executed until the convergence criterion is reached. For

this, the centroids of the current iteration are compared with the previous one. The

algorithm stops if the distance is less than 2 mm or a maximum of 20 iterations is

reached.

4.3.3. Experimental results

First, Figure 4.18 displays the results for one subject with 140 sub-parcels and

350 sub-parcels, for both modes of the method. To obtain 140 sub-parcels using the

DK atlas, we divide each anatomical parcel into k = 2 sub-parcels. Since DK atlas

has 35 anatomical parcels per hemisphere, with k = 2, we obtain 70 sub-parcels per

hemisphere, leading to a total of 140 sub-parcels for the whole brain. Following the

same procedure, to obtain 350 sub-parcels we divide each anatomical parcel into 5

sub-parcels, which generates 175 sub-parcels per hemisphere. It can be seen that

the method generates homogeneous parcels both for the entire cortex and for the DK

atlas-based parcellation.

Then, to illustrate an example of use, we calculated the reproducibility of struc-

tural connectivity across subjects for three different parcellations: GeoSP, DK and

Destrieux. Figure 4.19 displays the scheme of processing performed to obtain the re-

producibility analysis for a parcellation. For each subject, we used the tractography

dataset in T1 space to calculate the structural connectivity matrix, based on each par-

cellation. To construct a matrix, the intersection of the fibers with the cortical mesh is

determined and the labels of the pair of parcels connected by each fiber are used to

add a count in the corresponding cell of the matrix. Next, the matrx is binarized and
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Figure 4.18: Parcellation of the cortical mesh obtained in one subject for modes based
on DK atlas and for the entire cortex. Right sagittal, coronal, axial and left sagittal
views. First and second rows: parcellation based on DK atlas subdivided into 140
(first row) and 350 (second row) sub-parcels, with execution times of 42.9s and 18.1s
respectively. Third and fourth rows: parcellation for the entire cortex into 140 (first
row) and 350 (second row) sub-parcels, with execution times of 75.4s and 82.25s,
respectively.

converted into a graph to use network metrics. One of these metrics is the Dice coeffi-

cient and was calculated between each pair of subjects, for each method. Figure 4.20

shows a boxplot of the reproducibility among the 50 subjects between GeoSP and the
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other anatomical atlases. The reproducibility is slightly higher for GeoSP in both cases,

with a difference of 0.024 between GeoSP and DK (70 parcels) and of 0.043 for GeoSP

and Destrieux (150 parcels).

Figure 4.19: Brain connectivity analysis scheme. First, the tractography of each subject
in T1 space is intersected with the cortical mesh, which is parcellated based on an
atlas. Then, a connectivity matrix is created containing for each cell, corresponding
to a pair of sub-parcels, the total number of connections between them. The matrix
is then binarized, indicating with a 1 if the sub-parcels are connected and with a 0 if
there is no connectivity between them. The connectivity matrix is finally converted to a
network graph to analyze network metrics as the Dice coefficient.

Finally, the execution time for both modes was compared. Figure 4.21 displays the

execution times according to the number of sub-parcels in which the cortex is subdi-

vided. For mode one, based on DK parcellation, the execution time decreases with

the number of parcels. This is because the greater the number of sub-parcels, and

being delimited by the anatomical parcels of the atlas, the algorithm has to perform

fewer computations when recomputing the centroids. On the other hand, for the entire

cortex, with a greater number of sub-parcels, more time is needed to subdivide the

cortex. This is due to the size of the graphs (one for each hemisphere), where the

recalculation of centroids becomes very expensive since it is necessary to recalculate

all the shortest paths between all the pairs.
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Figure 4.20: Comparison of the structural connectivity reproducibility between GeoSP
and the two atlases, with equal number of parcels. X-axis shows the different atlases
used. Y-axis contains the Dice coefficient, the closer to one, the greater the repro-
ducibility. The rhombus indicates the mean and the black line the median for each
atlas. Results show a difference of 0.024 between GeoSP and DK atlas, and 0.043
between GeoSP and Destrieux atlas.

4.3.4. Discussion

We propose a parallel method to perform a parcellation of the cortical surface mesh

based on geodesic distance, in order to consider gyri and sulci topology. This method

is called GeoSP, represents the mesh with a graph and performs a K-means clustering

in parallel. It has two modes of use, by default, it performs the geodesic cortical par-

cellation based on the boundaries of the anatomical parcels provided by the Desikan-

Killiany atlas. The other mode performs the complete parcellation of the cortex.

The algorithm was tested in 50 subjects. Results show homogeneous sub-parcels

for both modes and different number of sub-parcels. Structural connectivity repro-

ducibility between GeoSP and two anatomical atlases is very similar and slightly higher

for GeoSP. This may be due to the higher homogeneity of the parcels with GeoSP.

Moreover, the greater the number of parcels, the less reproducibility will be obtained.

Hence, this test shows that special attention should be given to the indices to be used

in comparisons between parcellations. In any case, we provide a fast and configurable
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Figure 4.21: Execution time (seconds) for each mode, depending on the number of
sub-parcels. As expected, the subdivision into sub-parcels according to the delimitation
given by the Desikan-Killiany atlas is less expensive than subdividing the entire cortex.

parcellation method based on geodesic distance, available to the community, to per-

form the comparison and evaluation of data-driven parcellations, like those based on

diffusion or functional MRI.



Chapter 5

Conclusions and future work

In this chapter, we present the conclusions of all the work carried out in the thesis.

In addition, we show the future lines of research that would be interesting to explore.

5.1. Conclusions

The developments of this thesis are related to the computational neuroscience area,

specifically to algorithms and methods for the study of brain connectivity based on

dMRI. We have developed efficient algorithms that can deal with the noise present

in the diffusion tractography. These artifacts are produced by tractography algorithms,

generating valid bundles that are taken into account when using the white matter fibers.

In addition, the high variability of fibers (more than a million) among subjects generates

a high complexity when dealing with these massive 3D datasets. Therefore, when us-

ing diffusion tractography, additional validation is needed, such as contrasting with the

anatomy and obtaining a biological meaning, using post-mortem studies or applying

other MRI techniques like functional MRI.

We hope that this research will be of benefit to neuroscientists in the area since

modern studies can be developed by analyzing new databases and contributing to the

decoding of the human connectome.

The conclusions of the works presented are set out below:

Clustering and labeling of white matter fibers. We present FFClust which is

an efficient algorithm for clustering of white matter fibers. It is at least an order

of magnitude faster than QuickBundles, which is one of the most widely used

algorithms for streamline clustering. For example, a subject with approximately 1

million fibers is processed by the sequential version of FFClust in 1.99 min, and its

137
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parallel implementation in 45 s, while QB takes 2.2 h using its best configuration.

However, using the Davies-Bouldin (DB) index to measure cluster quality, QB

achieves the best result, followed by FFClust, while QBX does not improve the

quality of QB.

Thanks to this method, new brain connectivity studies can be carried out, in par-

ticular on fibers of the superficial white matter (SWM). Furthermore, FFClust and

the Guevara’s method achieve similar Davies-Bouldin index values and can iden-

tify all bundles when applying segmentation. They also have the lowest percent-

age errors when identifying selected bundles. However, FFClust is faster and

simpler than the Guevara’s method.

On the other hand, we implemented a fast method for the automatic labeling of

white matter fiber bundles, specifically for the SWM, based on an intra-subject

clustering and the connectivity of the clusters with the cortical mesh, based on

an anatomical ROI atlas. The algorithm also adds a label associated with the

relative position of the bundles. Results for intra-subject labeling show a degree

of correspondence between subjects, which is further improved with inter-subject

labeling. A complete intra-subject labeling is executed on an average time of 3.5

minutes for a tractography dataset of about one million fibers. This enables a

fast and easy exploration, visualization, and analysis of labeled short association

bundles in individuals, which is very difficult without any additional information.

Besides, we developed an inter-subject labeling by using two methods. One

approach is matching, in particular, the Hungarian algorithm, and the other is

clustering, employing QuickBundles algorithm. The results show a better repro-

ducibility across subjects for the clustering method versus the matching algorithm

while keeping a moderate inter-cluster distance, indicating a good quality of the

clusters. Furthermore, the algorithm is scalable and the whole processing for the

inter-subject labeling executes at a reasonable time, of about 1.17 h for 20 sub-

jects. The obtained clusters could be used to perform group-wise connectivity

studies, such as the creation of WM bundle atlases, and the development of new
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methods for the analysis of brain connectome.

Cortical surface parcellation. The proposed method creates a fine-grained par-

cellation of the cortical surface, consisting of the subdivision of coarse anatomi-

cal parcels, from a diffusion-based fiber bundle atlas. The generated parcellation

depends on three configurable parameters that generate a parcellation with a

smaller or larger number of sub-parcels. Furthermore, an intermediate output

of the method is the probabilistic representation of the preliminary sub-parcels,

associated to the two connections of each bundle.

As a final conclusion, this method can create a fine-grained cortical parcellation

based on structural connectivity, from coarse anatomical parcels, leading to sub-

parcels with high consistency in connectivity profiles across a population of sub-

jects, and a degree of correspondence with state-of-the-art parcellations based

on different MRI modalities.

Furthermore, we have developed a method to perform individual cortical parcella-

tions, based on the information of the connectivity of the white matter fibers. Fiber

clustering helps to define more compact connections and therefore regions, in ad-

dition to filtering outliers. The results show good quality in the analyzed subjects,

in particular, in the connectivity maps. These were evaluated with brain network

metrics, such as clustering coefficient, path length, and small-worldness. These

metrics indicate good functional integration and segregation of the brain. How-

ever, there is no consensus in the community about the validity of these metrics.

Further improvements and validations are required.

Finally, we present a parallel method, called GeoSP, which creates an individual

parcellation of the cortical mesh based on geodesic distance, thus considering

the brain topology, i.e., the gyri and sulci. The method represents the mesh by

means of a network and has two modes of use. By default, it performs the par-

cellation based on the boundaries of the Desikan-Killiany atlas. The other mode

performs the division for the complete cortex. The results show homogeneous

sub-parcels. Execution times for the atlas-based mode are 18 s and 82 s for
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the full cortex mode. Furthermore, compared to two macroanatomical atlases,

GeoSP has fewer differences in structural connectivity reproducibility among sub-

jects, probably due to a higher homogeneity of the sub-parcels. However, this

does not mean that the parcellation has biological meaning or that is better than

the others. Further analyses need to be performed. The method is available for

making comparisons between parcellations, whether based on dMRI or fMRI.

5.2. Future work

In this section, we present the future lines of research that could be carried out

based on the work of this thesis. We present these ideas for each of the contributions

made:

Clustering and labeling of white matter fibers. Since FFClust has four steps,

as future work we propose to improve the execution times for the slower stages.

This could be useful for integrating the clustering algorithm with visualization ap-

plications to enable the quick exploration and other post-processing analyses of

the structure of the white matter for one or multiple subjects. Then, we suggest

that FFClust can be used in similar applications where the Guevara has been

successfully used [53, 50].

Regarding the labeling of SWM bundles, future work could be focused on the

application of the method in high-quality databases, such as the Human Con-

nectome Project (HCP) database, for the creation of a SWM atlas and diffusion-

based cortical parcellations. In addition, other algorithms could be used to gen-

erate better labeling of the SWM bundles.

Cortical surface parcellation. The cortical parcellation based on a fiber-bundle

atlas could use a new bundle atlas, based on a larger database, like the HCP

database and probabilistic tractography. Also, the bundles could be obtained

from an inter-subject fiber clustering from the same database, which could lead

to a better representation of WM bundle connections of the population of sub-

jects. However, the post-processing of candidate sub-parcels would probably be
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more complicated due to a larger amount of bundles and a higher sub-parcel

overlapping. Also, functional information could be used to create a parcellation

by using multimodal parcellation frameworks [99]. Furthermore, another line to

explore is the inclusion of some atlas bundles based on known functional areas.

Finally, the probabilistic information of the preliminary sub-parcels could be used,

in combination with individual segmented bundles, to create individual parcella-

tions, adapted to each subject. Its effect will be small changes on the boundaries

of the sub-parcels of each subject, due to individual differences in the segmented

bundles. Adapted parcellations should lead to increased consistency in structural

connectome across subjects.

Regarding cortical surface parcellation based on clustering, as future work, we

could explore the implementation of a multi-subject version of this parcellation

method and test it in different databases, such as the Human Connectome Project.

Hence, we could obtain an atlas (or model) of cortical parcels with similar con-

nectivity profiles across a population of healthy subjects. Also, other information

could be integrated, such as fibers segmented with a bundle atlas [128], or data

from other modalities, like fMRI.

Finally, as future lines of research with respect to the geodesic parcellation, the

execution time of the proposed method for both modes of operation could be im-

proved. On the other hand, other anatomical atlases could be used as a basis for

drawing the boundaries between anatomical parcels instead of Desikan-Killiany

atlas.
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Appendix B

Supplementary material for parcellation

B.1. Comparison of superficial white matter bundles for both SWM atlases

Figure B.1 shows similar bundles between the two superficial white matter (SWM)

atlases, swm_atlas_1 [50] and swm_atlas_2 [106]. Three bundles of the left hemi-

sphere (CMF-Op_0, CMF-PrC_0 and RMF-SF_0) and three bundles of the right hemi-

sphere (IP-LO_0, PrC-SM_0, Tr-Ins_0) with high similarity, were taken as examples for

comparison between both atlases.

Figure B.1: Some examples of bundles with high similarity between both SWM atlases.
First row: swm_atlas_1, second row: swm_atlas_2.

145



146

Figure B.2 displays the superficial white matter and deep white matter (DWM) bun-

dles used to create the final fused white matter atlas.

Figure B.2: Bundles of the SWM and DWM atlases used for the creation of the fused
final atlas. First row: swm_atlas_1 [50], composed of 50 bundles in each hemisphere.
Second row: swm_atlas_2 [106], with 27 bundles in the left hemisphere and 34 in
the right hemisphere, after selecting the bundles that complement swm_atlas_1. Third
row: DWM atlas [53], composed of 9 bundles per hemisphere. Right sagittal, coronal,
axial and left sagittal views.
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B.2. Fiber bundle segmentation

Figure B.3 shows in the first row the final fused atlas of white matter bundles. The

bottom row contains a segmented subject with the final atlas.

Figure B.3: Example of bundle segmentation. The first row shows the final fused
atlas of white matter bundles used by the proposed method. The second row shows
a segmented subject, based on the atlas. Coronal, axial, left sagittal and right sagittal
views.
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B.3. Parameter configuration for parcellation creation

In this section, an example of the parameter size_thr is shown. Figure B.4 illustrates

the Removing of small preliminary sub-parcels sub-step, belonging to Step 5 of the

parcellation method for the precentral anatomical parcel (PrC), by using size_thr =

0.10 and size_thr = 0.30.

Figure B.4: Example of size threshold for the removing of small preliminary sub-parcels
(size_thr), for the precentral (PrC) anatomical parcel. Left: size_thr = 0.1, Right:
size_thr = 0.3. A small size_thr will prevent the removal of relatively big sub-parcels,
which could leave uncovered regions in the cortex.
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B.4. Parcel post-processing

This section shows the results of parcel post-processing (Step 6). Figure B.5 gives

an example of Removing small connected components sub-step, belonging to Step 6

of the proposed method (Sub-parcel post-processing). Finally, Figure B.6 illustrates

the final hard parcellation from atlas 1 after applying removing small connected com-

ponents, erosion and dilation.

Figure B.5: Removing small connected components (Step 6). The image on the left
shows the SM anatomical parcel, divided into three sub-parcels with small connected
components among them. Each connected component is represented with a color
but internally is modeled as a graph. The image on the right shows the SM anatomical
parcel after applying the removal of the small connected components, resulting in more
uniform sub-parcels.
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Figure B.6: Results for Parcel post-processing (Step 6) stages. The first column shows
the hard parcellation after applying the removal of the small connected components.
The second column shows the result after applying erosion to the sub-parcels and the
third column is the result of applying dilation. This is the final hard parcellation obtained,
for size_thr = 0.1, dc_thr = 0.1 and idc_thr = 0.1, consisting of 85 sub-parcels in the
left hemisphere and 72 sub-parcels in the right hemisphere. For all the columns the
axial, coronal, and left sagittal views are displayed.
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B.5. Brain graph construction

We performed some tests, based on graph network analysis. For that, the con-

nectivity matrix of each of the 79 subjects was calculated for each cortical parcellation

result. Each matrix was obtained using the generated parcellation, given by the sub-

parcel labels, applied to the subject’s cortical mesh, and the whole tractography of the

subject. The constructed connectivity matrices are binary, denoting the existence or

absence of a connection between the pair of sub-parcels, given by at least one fiber.

Complex networks in graph theory are modeled as a graph G formed by nodes

v ∈ V and linked by edges e ∈ E, such that G = (V,E). Hence, each matrix was

converted to a graph, for analyzing it using network graph metrics. Although using

binary undirected graphs is a simplification of reality in terms of brain networks [8], in

neuroimaging it is an accepted technique because the signal-to-noise ratio is limited in

the data [1].

Figure B.7 shows the connectivity matrices for three subjects using atlas 5. Three

matrices are displayed for each subject: binary, count (not binarized), and the loga-

rithm count. Note that different values were tested to set the minimum number of fibers

used to define the existence of a connection, leading to non-significant differences in

the comparisons detailed below. As an example, Figure B.8 shows the sub-parcels and

connections obtained in atlas 5, for the precentral (PrC) and postcentral (PoC) gyri, as-

sociated with the main motor area and the primary somatosensory cortex, respectively

[16].
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Figure B.7: Connectivity matrices for three subjects, using atlas 5. The matrices are
squared and have a dimension equal to the number of sub-parcels of the atlas. The
first row represents the binary matrices, which indicate the presence or absence of
a connection between the sub-parcels. The second row displays the count matrices,
which contain the number of fibers connecting each pair of sub-parcels, normalized
between 0 and 1. Finally, the third row displays the logarithmic count matrices, which
contain the logarithm of the non-normalized count matrix. A high similarity can be seen
between the different subjects.



153

Figure B.8: Example of structural connectivity between different cortical regions of the
precentral (PrC) and postcentral (PoC) sub-parcels, according to atlas 5, based on
parameter configuration given by Table 4.1. Upper row: subdivision into sub-parcels of
the precentral anatomical parcel, and the connections between these sub-parcels with
other sub-parcels of PoC and SM (supramarginal) regions. Lower row: subdivision
into sub-parcels of the postcentral anatomical parcel, and the connections between
these sub-parcels with other sub-parcels of the CMF (caudal middle frontal), SM and
SF (superior frontal) regions.
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B.6. Brain network metrics

To conduct the study on the characteristics of a brain network, there is a wide range

of metrics [23, 13]. Three features, representatives of the parcellation problem were

selected: functional segregation, functional integration, and small-worldness [108]. To

perform the calculations, we used the bctpy library1, which is an adaptation of the Mat-

lab Brain Connectivity Toolbox for Python [108]. Specifically, bctpy was used to calcu-

late the clustering coefficient C (functional segregation) and path length L (functional

integration) metrics. In addition, to evaluate the metric of small-world (ω coefficient), the

networkx Python library [120, 63, 62] was employed. Supplementary material contains

a description of each one of these metrics.

Clustering coefficient

This measure of functional segregation in the brain is defined as the existence of

large highly connected groups of nodes or clusters in brain regions [133]. It is a mea-

sure of the completeness of a node’s neighborhood. The metric can be calculated for

the entire network, as the average clustering coefficient. This metric ranges from 0 to

1. A low clustering coefficient defines a random network, while a complex network has

a high clustering coefficient [13]. For undirected graphs, the clustering coefficient is

defined by Equation 4.3.

Equation 4.4 describes the average clustering coefficient that measures the whole

network.

Figure B.9 (top left) shows a box plot for the average clustering coefficient C, ob-

tained for each parcellation configuration (atlas), given by Table 4.1. Each box repre-

sents a generated parcellation. The median is displayed as a line inside the box, and

the mean appears as a rhombus. The lines known as mustaches indicate the variability

outside the lower quartile and the upper quartile. Finally, the red dots indicate the out-

liers in the data. Following the definition of the clustering coefficient, a complex network

must have a high clustering coefficient, so in our chart, the generated parcellations that

best meet the definition are atlas 1 and atlas 5. Besides, they are the ones that show
1https://github.com/aestrivex/bctpy
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less variability. Note that a larger number of sub-parcels will give a lower value of C,

which is congruent with the literature.

Path length

It is the most used measure for functional integration and measures the number of

edges that exist to get from one node to another in the network. In other words, it is the

easiness to distribute information among the different regions of the brain. The path

length, also called average shortest path length or characteristic path length [133], is

calculated based on the shortest path length of each pair of nodes that make up the

network. Lattice networks have long average path length, unlike complex networks or

random networks that have short average path length [13]. For undirected graphs, the

characteristic path length is defined by Equation 4.5.

Figure B.9 (top right) shows the box plots obtained for the characteristic path length

L, for each parcellation configuration (atlas). We can observe that the characteristic

path length is proportionally lower than the respective average clustering coefficient,

which complies with the characteristic that a complex network must have a small aver-

age shortest path length.

Small-worldness

All natural networks comply with the small-world topology showing their specific

functionality by moving away from randomness. The small-world metric combines a

high clustering coefficient (functional segregation) while keeping a low characteristic

path length (functional integration), which links all the nodes in the network [13]. In

other words, all nodes are locally strongly interconnected, and they are linked to other

regions through a few links.

Small-worldness can be quantified with the coefficient called ω [120]. It is calculated

comparing the clustering coefficient of the analyzed network (C) to an equivalent lattice

network (Cl), and its path length (L) to an equivalent random network (Lr), as described

in Equation B.1.
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ω =
Lr

L
− C

Cl

(B.1)

When using the clustering coefficient of a lattice network, this metric is less sensitive

to the fluctuations than the clustering coefficient of a random network. The ω coefficient

ranges from -1 to 1 regardless of the size of the network. The closer the value of ω

coefficient is to zero, the network is considered closer to small-world property, that is,

L ≈ Lr and C ≈ Cl [120].

Figure B.9 (bottom) shows the ω coefficient for the different parcellation configura-

tions (atlas). This coefficient has to be as close as possible to zero, to present the

property of a small-world network. All parcellations comply with this property.

Best parcellation configuration according to brain network metrics

Taking into account the previous results, the configuration of parameters that achieve

the best results, according to the small-world ω coefficient, are atlas 1 and atlas 5. As

shown, atlas 1 and atlas 5 have the value of ω coefficient closest to zero, presenting

the best small-world network property. This is mainly due to the parameters dc_thr

(density center threshold) and idc_thr (intersection of density centers threshold) since

as we increase these two thresholds, fewer intersections are considered significant and

fewer sub-parcels are merged. As known, fewer sub-parcels will lead to smaller path

lengths, better complying with functional integration and a small shortest path length.

Given that the size of the network (number of sub-parcels) is extremely determinant

in small-world values, the previous results only allow us to conclude that all networks

tested have properties characteristic to small-world networks, being better for networks

with fewer nodes. However, obtaining a large number of sub-parcels could be a desired

feature, for example, for the analysis of small functional areas.
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Figure B.9: Metrics of brain networks. (A) Average clustering coefficient C for all par-
cellation (atlas) configurations, given by Table 4.1. Atlas 1 and atlas 5 achieve the best
results for the clustering coefficient, being also those that have less variability. (B) Path
length L for all parcellation (atlas) configurations, given by Table 4.1. For all atlases, the
average shortest path length is small, complying with the complex network definition.
(C) Small-world ω coefficient for all parcellation (atlas) configurations, given by Table
4.1. Atlas 5 appears to be slightly better, since the closer to zero, the more it complies
with the property of small-world.
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B.7. Cross-validation analysis

To test the dependence of the proposed method on the input data, we applied

the method to the ARCHI database using k-fold cross-validation [71]. We created

eight different datasets, composed of 69 subjects for the parcellation creation (atlas

datasets), and the 10 remaining subjects for testing (testing datasets). The parameters

used are those for atlas 5, i.e., dc_thr = 0.15 and idc_thr = 0.10. For more details,

Table B.7 lists the subjects used for each dataset.

The cortical parcellation method was applied to the eight atlas datasets. Next,

each created parcellation was applied to the 10 subjects of the corresponding testing

dataset and the connectivity matrix of each subject was calculated according to the

corresponding parcellation. Finally, the different graph network metrics were calculated

for each subject (average Dice coefficient, average clustering coefficient, path length,

small-world ω coefficient), and averaged for each testing dataset. In general, a high

similarity between the metrics for the different parcellations was found. The average

Dice coefficient presented an average between 0.70 and 0.76, which indicates a good

similarity of the connectivity matrix between subjects for all the parcellations, even

though some testing datasets lead to better results.

To evaluate the influence of the testing dataset on the average Dice coefficient,

we calculated the connectivity matrix and Dice coefficient for the whole dataset (79

subjects), separately for each one of the eight atlases generated. We found a higher

similarity between subjects, with an average Dice coefficient varying between 0.72 and

0.74. Finally, the other metrics also showed high similarity, with an average clustering

coefficient between 0.76 and 0.77, an average path length between 0.50 and 0.54, and

small-world ω coefficient between -0.04 and -0.08. Hence, all networks comply with

the small-world property.

Figures B.10 and B.11 show the metrics of Dice similarity, clustering coefficient,

path length and small-world ω coefficient applied to the testing datasets (Figure B.10)

and the whole dataset (B.11) for the eight atlases created, according to Table B.7.
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Figure B.10: (A) Cross-validation analysis: Dice coefficient for the 10 subjects of the
testing datasets, for each generated atlas, according to Table B.7. Results show high
similarity between subjects for all the atlases, even though some variability is found
between the testing datasets. (B) Cross-validation analysis: Dice coefficient for all
subjects using each generated atlas, according to Table B.7. A lower variability be-
tween subjects was found between the different atlases when using the 79 subjects.



160

Figure B.11: Cross-validation analysis: network metrics obtained for the 10 subjects of
the testing datasets, for each generated atlas, according to Table B.7. (A) Clustering
coefficient. (B) Path length. (C) Small-world ω coefficient. In all the cases, results show
a low variability between the different testing datasets. Also, an ω coefficient very close
to zero was found for all the datasets, complying with the small-world property.
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B.8. From Desikan-Killiany atlas to a finer granularity, example for atlas 5

Figure B.12 illustrates the result of the parcellation obtained for atlas 5 as well as

Desikan-Killiany atlas. The first two rows contain the Desikan-Killiany parcellation,

composed of 35 parcels per hemisphere. Rows three and four show the resulting par-

cellation for atlas 5, that subdivides the Desikan-Killiany atlas, based on white matter

fiber connectivity. The parcellation contains 160 sub-parcels, 86 sub-parcels in the left

hemisphere and 74 sub-parcels in the right hemisphere. For more details, see Table

B.4, which illustrates the number of sub-parcels obtained for each anatomical region in

atlas 5, for each hemisphere.
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Figure B.12: Desikan-Killiany atlas and atlas 5, obtained using the parameter config-
uration given by Table 4.1. The first and second rows show the Desikan-Killiany atlas,
which is formed by 70 parcels, 35 in each hemisphere. Rows three and four illustrate
atlas 5 parcellation which is composed of 160 sub-parcels, 86 sub-parcels in the left
hemisphere and 74 sub-parcels in the right hemisphere. Columns one and two show
both parcellations with the inflated surface, while columns three and four show the pial
surface.
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B.9. Comparisons with state-of-the-art parcellations based on different MRI modal-

ities

Figure B.13 shows the comparisons performed between atlas 5 and Schaefer (100

parcels), PrAGMATiC (320 parcels) and Yeo (7 or 17 networks) parcellations. More-

over, Figure B.14 illustrates the comparisons between atlas 13 and Glasser (360

parcels), PrAGMATiC and Schaefer (200 parcels) parcellations. Only parcels with a

Dice’s coefficient ≥ 0.6 are shown.
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Figure B.13: Parcels in common between atlas 5 and state-of-the-art parcellations
based on different MRI modalities, with a Dice coefficient ≥ 0.6. Comparisons are
shown for Schaefer (100 parcels), PrAGMATiC and Yeo atlases. All the meshes are
inflated. Schaefer has 11 parcels in common with atlas 5, 5 in the left hemisphere and
6 in the right hemisphere. PrAGMATiC has 15 similar parcels with atlas 5, 9 in the left
hemisphere and 6 in the right hemisphere. Finally, Yeo atlas with 17 networks has one
parcel in common with atlas 5 in the left hemisphere.
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Figure B.14: Common parcels between atlas 13 and state-of-the-art parcellations
based on different MRI modalities, with a Dice coefficient ≥ 0.6. Comparisons are
shown for Glasser, PrAGMATiC and Schaefer atlases. All the meshes are inflated.
Glasser has 14 parcels in common with atlas 13, 8 in the left hemisphere and 6 in the
right hemisphere. On the other hand, PrAGMATiC has 22 similar parcels with atlas
13, 12 parcels in the left hemisphere and 10 parcels in the right hemisphere. Finally,
Schaefer parcellation (200 parcels) has 26 common parcels, 12 the left hemisphere
and 14 in the right hemisphere.
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B.10. Complementary Tables

Tables B.1 and B.2 list the bundles of the final fused atlas for the left and right

hemispheres, respectively. The left hemisphere is composed of 50 bundles of swm_-

atlas_1, 27 bundles of swm_atlas_2 and nine of DWM atlas. On the other hand, the

right hemisphere contains 50 bundles of swm_atlas_1, 34 bundles of swm_atlas_2 and

nine of DWM atlas.

Table B.3 contains the 35 regions (gyri) and abbreviations of the Desikan-Killiany

atlas [31].

Table B.4 lists for each hemisphere the number of sub-parcels obtained for atlas 5

and atlas 13, respectively, for each anatomical region (gyrus) after applying the parcel-

lation method. On the other hand, Table B.5 shows the sub-parcels that atlas 13 has in

common with the other atlases generated by the method, for a Dice coefficient ≥ 0.6.

Table B.6 illustrates the comparison between atlas 5, atlas 13, Lefranc and Brain-

netome on the number of parcels per anatomical parcel, based on Desikan-Killiany

(DK) atlas. All the atlases use DK atlas as a coarse anatomical parcellation, but Brain-

tomme is based on some regions of this atlas that are combined. Therefore in some

cases, Braintomme parcels cannot be perfectly matched as subdivisions of DK stan-

dard regions. The * is used to indicate the DK anatomical parcels where Brainnetome

performs a different subdivision of the regions and only an approximate number of

subdivisions is provided. In the following, we briefly describe these cases.

The Pars Opercularis and the Pars Triangularis DK atlas regions correspond to

the Inferior Frontal Gyrus (IFG) in Brainnetome, that is divided into six parcels. Three

parcels correspond approximately to the Pars Opercularis and the other three parcels

to the Pars Triangularis.

The Orbital Gyrus (OrG) in Brainnetome is subdivided into six parcels, that cor-

respond to the Pars Orbitalis (one parcel), Frontal Pole (one parcel), Lateral Orbito

Frontal (one parcel), and Medial Orbito Frontal(three parcels).

The Superior Temporal, Transverse Temporal, and Temporal Pole DK anatomical
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parcels correspond to the Superior Temporal Gyrus (STG) in Brainnetome. This region

is subdivided into six parcels, having a good correspondence with the Superior Tem-

poral (four parcels), the Temporal Pole (one parcel), and the Transverse Temporal (one

parcel) regions.

The Parahippocampal Gyrus (PhG) in the Brainnetome atlas is subdivided into

six parcels, corresponding to the Entorhinal (two parcels) and Parahippocampal (four

parcels) DK anatomical regions.

The DK Inferior Parietal and Supramarginal anatomical parcels correspond to the

Inferior Parietal Lobule (IPL) in Brainnetome, where each DK region is subdivided into

three parcels.

The MedioVentral Occipital Cortex (MVOcC) of Brainnetome atlas is subdivided

into five parcels. These correspond to two parcels for the Cuneus, one parcel for the

Pericalcarine, and one parcel for the Lingual region.

Finally, the Cingulate Gyrus (CG) in Brainnetome is composed of 7 parcels. These

parcels correspond in DK atlas to two parcels for the Posterior Cingulate, two parcels

for the Isthmus, two parcels for the Anterior Cingulate and one parcel for the Rostral

Anterior Cingulate region.

See the supplementary material2 of “The Human Brainnetome Atlas” for more infor-

mation on equivalences between atlases.

Finally, Table B.7 lists the datasets used for cross-validation analysis from the 79

subjects of the ARCHI database.

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961028/
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Bundle Atlas Bundle Atlas Bundle Atlas
AR_ANT_LEFT DWM lh_IT-IT_1l swm_atlas_2 lh_PoC-SM_0 swm_atlas_1
AR_LEFT DWM lh_IT-MT_0 swm_atlas_1 lh_PoC-SM_1 swm_atlas_1
AR_POST_LEFT DWM lh_LOF-LOF_0i swm_atlas_2 lh_PrC-Ins_0 swm_atlas_1
CG_LEFT DWM lh_LOF-Or_0 swm_atlas_1 lh_PrC-PrC_0l swm_atlas_2
CG2_LEFT DWM lh_LOF-RMF_0 swm_atlas_1 lh_PrC-SF_0 swm_atlas_1
CG3_LEFT DWM lh_LOF-RMF_1 swm_atlas_1 lh_PrC-SM_0 swm_atlas_1
IFO_LEFT DWM lh_LOF-ST_0 swm_atlas_1 lh_PrC-SM_1i swm_atlas_2
IL_LEFT DWM lh_LO-LO_0i swm_atlas_2 lh_PrCu-PrCu_0l swm_atlas_2
lh_CAC-PrCu_0 swm_atlas_1 lh_LO-LO_1i swm_atlas_2 lh_RAC-SF_1 swm_atlas_1
lh_CMF-CMF_0i swm_atlas_2 lh_LO-LO_2l swm_atlas_2 lh_RMF-RMF_0i swm_atlas_2
lh_CMF-Op_0 swm_atlas_1 lh_MOF-ST_0 swm_atlas_1 lh_RMF-RMF_1i swm_atlas_2
lh_CMF-PoC_0 swm_atlas_1 lh_MT-MT_0i swm_atlas_2 lh_RMF-SF_0 swm_atlas_1
lh_CMF-PrC_0 swm_atlas_1 lh_MT-MT_1i swm_atlas_2 lh_RMF-SF_1 swm_atlas_1
lh_CMF-PrC_1 swm_atlas_1 lh_MT-MT_1l swm_atlas_2 lh_SF-SF_0l swm_atlas_2
lh_CMF-RMF_0 swm_atlas_1 lh_MT-SM_0 swm_atlas_1 lh_SM-Ins_0 swm_atlas_1
lh_CMF-SF_0 swm_atlas_1 lh_MT-ST_0 swm_atlas_1 lh_SM-SM_0i swm_atlas_2
lh_Cu-Li_0l swm_atlas_2 lh_Op-Ins_0 swm_atlas_1 lh_SM-SM_1i swm_atlas_2
lh_Fu-Fu_0i swm_atlas_2 lh_Op-PrC_0 swm_atlas_1 lh_SM-SM_2i swm_atlas_2
lh_Fu-Fu_1l swm_atlas_2 lh_Op-SF_0 swm_atlas_1 lh_SP-SM_0 swm_atlas_1
lh_Fu-IT_0i swm_atlas_2 lh_Or-Ins_0 swm_atlas_1 lh_SP-SP_0i swm_atlas_2
lh_Fu-LO_0 swm_atlas_1 lh_PoC-Ins_0 swm_atlas_1 lh_ST-Ins_0 swm_atlas_1
lh_IC-PrCu_0 swm_atlas_1 lh_PoCi-PrCu_0 swm_atlas_1 lh_ST-ST_0i swm_atlas_2
lh_IP-IT_0 swm_atlas_1 lh_PoCi-PrCu_1 swm_atlas_1 lh_ST-ST_1l swm_atlas_2
lh_IP-LO_1 swm_atlas_1 lh_PoCi-RAC_0 swm_atlas_1 lh_ST-TT_0 swm_atlas_1
lh_IP-MT_0 swm_atlas_1 lh_PoCi-SF_0 swm_atlas_1 lh_Tr-Ins_0 swm_atlas_1
lh_IP-SM_0 swm_atlas_1 lh_PoC-PrC_0 swm_atlas_1 lh_Tr-RMF_0i swm_atlas_2
lh_IP-SP_0 swm_atlas_1 lh_PoC-PrC_1 swm_atlas_1 lh_Tr-SF_0 swm_atlas_1
lh_IP-SP_1 swm_atlas_1 lh_PoC-PrC_2 swm_atlas_1 UN_LEFT DWM
lh_IT-IT_0l swm_atlas_2 lh_PoC-PrC_3 swm_atlas_1

Table B.1: Bundles of the left hemisphere of the final fused bundle atlas. The name of
the bundles in the original SWM and DWM atlases and the name of the atlas to which
the bundles belong are listed. Nine bundles are from DWM atlas, 50 bundles are from
swm_atlas_1 and 27 bundles are from swm_atlas_2.
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Bundle Atlas Bundle Atlas Bundle Atlas
AR_ANT_RIGHT DWM rh_LOF-LOF_1r swm_atlas_2 rh_PrC-Ins_0 swm_atlas_1
AR_POST_RIGHT DWM rh_LOF-MOF_0 swm_atlas_1 rh_PrC-SF_0i swm_atlas_2
AR_RIGHT DWM rh_LOF-RMF_0 swm_atlas_1 rh_PrC-SM_0 swm_atlas_1
CG_RIGHT DWM rh_LOF-RMF_1 swm_atlas_1 rh_PrC-SM_1i swm_atlas_2
CG2_RIGHT DWM rh_LOF-ST_0 swm_atlas_1 rh_PrC-SP_0 swm_atlas_1
CG3_RIGHT DWM rh_LO-LO_0i swm_atlas_2 rh_PrCu-PrCu_0r swm_atlas_2
IFO_RIGHT DWM rh_LO-LO_1i swm_atlas_2 rh_RAC-SF_0 swm_atlas_1
IL_RIGHT DWM rh_LO-SP_0 swm_atlas_1 rh_RMF-RMF_0i swm_atlas_2
rh_CAC-PoCi_0 swm_atlas_1 rh_MOF-ST_0 swm_atlas_1 rh_RMF-RMF_0r swm_atlas_2
rh_CAC-PrCu_0 swm_atlas_1 rh_MT-MT_0i swm_atlas_2 rh_RMF-RMF_1i swm_atlas_2
rh_CMF-CMF_0i swm_atlas_2 rh_MT-MT_0r swm_atlas_2 rh_RMF-RMF_1r swm_atlas_2
rh_CMF-Op_0i swm_atlas_2 rh_MT-MT_1i swm_atlas_2 rh_RMF-SF_0 swm_atlas_1
rh_CMF-PrC_0 swm_atlas_1 rh_MT-SM_0 swm_atlas_1 rh_RMF-SF_0r swm_atlas_2
rh_CMF-PrC_1 swm_atlas_1 rh_MT-ST_0 swm_atlas_1 rh_RMF-SF_1 swm_atlas_1
rh_CMF-RMF_0 swm_atlas_1 rh_Op-Ins_0 swm_atlas_1 rh_SF-SF_1r swm_atlas_2
rh_CMF-SF_0 swm_atlas_1 rh_Op-PrC_0 swm_atlas_1 rh_SF-SF_2r swm_atlas_2
rh_CMF-SF_1 swm_atlas_1 rh_Op-SF_0 swm_atlas_1 rh_SM-Ins_0 swm_atlas_1
rh_Cu-Li_0 swm_atlas_1 rh_Op-Tr_0 swm_atlas_1 rh_SM-SM_0i swm_atlas_2
rh_Fu-Fu_0i swm_atlas_2 rh_Or-Ins_0 swm_atlas_1 rh_SM-SM_1i swm_atlas_2
rh_Fu-IT_0i swm_atlas_2 rh_PoCi-PrCu_1 swm_atlas_1 rh_SM-SM_2i swm_atlas_2
rh_Fu-LO_1 swm_atlas_1 rh_PoCi-PrCu_2 swm_atlas_1 rh_SP-SM_0 swm_atlas_1
rh_IC-PrCu_0 swm_atlas_1 rh_PoCi-RAC_0 swm_atlas_1 rh_SP-SP_0i swm_atlas_2
rh_IP-IP_0r swm_atlas_2 rh_PoC-PoC_1r swm_atlas_2 rh_SP-SP_0r swm_atlas_2
rh_IP-IT_0 swm_atlas_1 rh_PoC-PrC_0 swm_atlas_1 rh_ST-ST_0i swm_atlas_2
rh_IP-LO_0 swm_atlas_1 rh_PoC-PrC_1 swm_atlas_1 rh_ST-TT_0 swm_atlas_1
rh_IP-MT_0 swm_atlas_1 rh_PoC-PrC_1r swm_atlas_2 rh_Tr-Ins_0 swm_atlas_1
rh_IP-SM_0 swm_atlas_1 rh_PoC-PrC_2 swm_atlas_1 rh_Tr-RMF_0i swm_atlas_2
rh_IP-SP_0 swm_atlas_1 rh_PoC-PrC_3i swm_atlas_2 rh_Tr-SF_0 swm_atlas_1
rh_IT-MT_1 swm_atlas_1 rh_PoC-SM_0 swm_atlas_1 rh_Tr-SF_1r swm_atlas_2
rh_IT-MT_2 swm_atlas_1 rh_PoC-SP_0 swm_atlas_1 rh_Tr-Tr_0r swm_atlas_2
rh_LOF-LOF_0i swm_atlas_2 rh_PoC-SP_1 swm_atlas_1 UN_RIGHT DWM

Table B.2: Bundles of the right hemisphere of the final fused bundle atlas. The name of
the bundles in the original SWM and DWM atlases and the name of the atlas to which
the bundles belong are listed. Nine bundles are from DWM atlas, 50 bundles are from
swm_atlas_1 and 34 bundles are from swm_atlas_2.
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Region (gyrus) Abbreviation

Bankssts Ban
Caudal anterior cingulate CAC
Caudal middle frontal CMF
Corpus callosum COC
Cuneus Cu
Entorhinal En
Fusiform Fu
Inferior parietal IP
Inferior temporal IT
Isthmus cingulate IC
Lateral occipital LO
Lateral orbito frontal LOF
Lingual Li
Medial orbito frontal MOF
Middle temporal MT
Parahippocampal PH
Paracentral PC
Pars opercularis Op
Pars orbitalis Or
Pars triangularis Tr
Pericalcarine PeCa
Postcentral PoC
Posterior cingulate PoCi
Precentral PrC
Precuneus PrCu
Rostral anterior cingulate RAC
Rostral middle frontal RMF
Superior frontal SF
Superior parietal SP
Superior temporal ST
Supramarginal SM
Frontal pole FRP
Temporal pole TEM
Transverse temporal TT
Insula Ins

Table B.3: Regions and abbreviations of Desikan-Killiany atlas [31]. The regions are
present in both hemispheres.
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Region (gyrus) # SP lh atlas 5 # SP rh atlas 5 # SP lh atlas 13 # SP rh atlas 13

Bankssts 1 1 2 1
Caudal anterior cingulate 1 1 1 1
Caudal middle frontal 3 4 3 4
Cuneus 3 2 1 1
Entorhinal 2 2 2 1
Fusiform 4 3 5 3
Inferior parietal 2 3 6 5
Inferior temporal 4 3 3 3
Isthmus cingulate 3 2 3 2
Lateral occipital 2 3 3 2
Lateral orbito frontal 3 3 4 3
Lingual 2 2 3 2
Medial orbito frontal 2 2 3 2
Middle temporal 3 2 4 2
Parahippocampal 1 1 1 1
Paracentral 1 1 1 1
Pars opercularis 1 1 1 1
Pars orbitalis 1 1 2 1
Pars triangularis 1 1 1 1
Pericalcarine 1 1 1 1
Postcentral 4 3 6 6
Posterior cingulate 3 3 3 3
Precentral 7 3 9 3
Precuneus 3 2 4 5
Rostral anterior cingulate 1 1 1 1
Rostral middle frontal 4 2 4 4
Superior frontal 4 3 4 4
Superior parietal 3 4 2 4
Superior temporal 5 4 6 4
Supramarginal 4 4 4 4
Frontal pole 1 1 1 1
Temporal pole 1 1 1 1
Transverse temporal 1 1 1 1
Insula 3 2 3 2

Table B.4: Number of sub-parcels for each anatomical region (gyrus) for atlas 5 and
atlas 13. First column: anatomical parcels from Desikan-Killiany atlas. Second and
third columns: number of sub-parcels per hemisphere after applying the parcellation
method for atlas 5. Fourth and fifth columns: number of sub-parcels per hemisphere
for atlas 13. The sub-parcels of the atlas 13 that differ from the atlas 5 are marked in
bold.
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Region (gyrus) # SP lh # SP rh

Bankssts 1 1
Caudal anterior cingulate 1 1
Caudal middle frontal 0 3
Corpus callosum 0 0
Cuneus 0 1
Entorhinal 1 1
Fusiform 3 1
Inferior parietal 1 2
Inferior temporal 1 2
Isthmus cingulate 2 1
Lateral occipital 1 1
Lateral orbito frontal 2 3
Lingual 2 1
Medial orbito frontal 2 1
Middle temporal 3 1
Parahippocampal 1 1
Paracentral 1 1
Pars opercularis 0 0
Pars orbitalis 1 0
Pars triangularis 1 1
Pericalcarine 1 1
Postcentral 3 0
Posterior cingulate 1 0
Precentral 2 1
Precuneus 0 2
Rostral anterior cingulate 1 1
Rostral middle frontal 2 1
Superior frontal 2 3
Superior parietal 2 2
Superior temporal 2 1
Supramarginal 1 4
Frontal pole 1 0
Temporal pole 1 1
Transverse temporal 1 1
Insula 3 0

Table B.5: Number of sub-parcels in common between atlas 13 and the other atlases
generated by the method of parcellation for each anatomical region (gyrus) for a Dice
coefficient ≥ 0.6. First column: anatomical parcels from Desikan-Killiany atlas. Second
and third columns: number of sub-parcels per hemisphere after applying the parcella-
tion method.
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Region (gyrus) lh_atlas 5 rh_atlas 5 lh_atlas 13 rh_atlas 13 lh_Lefranc rh_Lefranc lh_BN rh_BN

Bankssts 1 1 2 1 4 2 2 2
Caudal anterior cingulate 1 1 1 1 4 7 2* 2*
Caudal middle frontal 3 4 3 4 3 3 2* 2*
Cuneus 3 2 1 1 2 3 2* 2*
Entorhinal 2 2 2 1 3 2 2* 2*
Fusiform 4 3 5 3 8 7 3 3
Inferior parietal 2 3 6 5 3 3 3* 3*
Inferior temporal 4 3 3 3 2 2 7 7
Isthmus cingulate 3 2 3 2 3 6 2* 2*
Lateral occipital 2 3 3 2 9 2 6 6
Lateral orbito frontal 3 3 4 3 4 2 1* 1*
Lingual 2 2 3 2 2 3 2* 2*
Medial orbito frontal 2 2 3 2 2 4 3* 3*
Middle temporal 3 2 4 2 6 7 4 4
Parahippocampal 1 1 1 1 3 1 4* 4*
Paracentral 1 1 1 1 4 3 2 2
Pars opercularis 1 1 1 1 2 2 3* 3*
Pars orbitalis 1 1 2 1 4 3 1* 1*
Pars triangularis 1 1 1 1 2 2 3* 3*
Pericalcarine 1 1 1 1 3 4 1* 1*
Postcentral 4 3 6 6 5 5 4 4
Posterior cingulate 3 3 3 3 3 3 2* 2*
Precentral 7 3 9 3 5 5 6 6
Precuneus 3 2 4 5 2 2 4 4
Rostral anterior cingulate 1 1 1 1 2 2 1* 1*
Rostral middle frontal 4 2 4 4 5 2 5* 5*
Superior frontal 4 3 4 4 5 3 7 7
Superior parietal 3 4 2 4 3 4 5 5
Superior temporal 5 4 6 4 8 3 4* 4*
Supramarginal 4 4 4 4 3 5 3* 3*
Frontal pole 1 1 1 1 2 3 1* 1*
Temporal pole 1 1 1 1 2 2 1* 1*
Transverse temporal 1 1 1 1 3 3 1* 1*
Insula 3 2 3 2 4 2 6 6

Table B.6: Comparison of the number of subdivisions of Desikan-Killiany (DK) atlas
regions, for the different atlases based on dMRI. First column: the DK anatomical
parcel. The second and third columns correspond to atlas 5, while the fourth and fifth
columns correspond to atlas 13. The sixth and seventh columns refer to Lefranc atlas
and the last two columns to the Brainnetome atlas. For each atlas, the left and right
hemisphere are indicated by lh and rh, respectively. The numbers that appear in bold
with an asterisk in Brainnetome represent the parcels that do not perfectly match with
Desikan-Killiany atlas regions.
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# atlas testing subjects subjects for the atlas

cv1 1-10 11-79
cv2 11-20 1-10, 21-79
cv3 21-30 1-20, 31-79
cv4 31-40 1-30, 41-79
cv5 41-50 1-40, 51-79
cv6 51-60 1-50, 61-79
cv7 61-70 1-60, 71-79
cv8 70-79 1-69

Table B.7: Subject datasets used for cross-validation analysis from the 79 subjects of
the ARCHI database. Left column: the eight groups of atlas generation and testing
datasets. The atlases are named from cv1 to cv8. Second column: the range of sub-
jects used for the testing datasets. Note that in cv8, subject 70 is repeated, to complete
10 subjects. Third column: the range of subjects used for the atlas creation datasets.



Appendix C

Resumen del trabajo realizado

C.1. Introducción

El cerebro humano es altamente complejo y su funcionamiento completo no ha sido

descifrado en la actualidad. Su estudio se remonta al antiguo Egipto, y aunque siempre

ha existido el deseo de comprender su funcionamiento y su estructura anatómica, su

anatomía no se ha conocido hasta hace poco, especialmente en lo que respecta a

la conectividad de la materia blanca y su estructura [103]. Gracias al estudio de las

diferentes áreas cerebrales en base a diferentes modalidades es posible comprender

mejor su funcionamiento, así como las múltiples patologías asociadas. La estructura y

la función del cerebro están fuertemente ligadas.

Para entender cómo funciona el cerebro, es necesario conocer la red de cone-

xiones del cerebro o el conectoma del cerebro humano. Los elementos básicos del

conectoma son una composición de cuerpos de neuronas cerebrales (nodos) y las

conexiones (aristas) que existen entre ellos, formados por las fibras neuronales de

materia blanca [118, 59, 13].

Actualmente, se conocen diferentes técnicas para poder observar el cerebro de

manera no invasiva. Una de ellas es la Resonancia Magnética (MRI), a través de la

cual se han podido obtener imágenes de alta resolución para estudiar las diferentes

áreas del cerebro. Esta técnica tiene diferentes modalidades, una de las cuales se

conoce como Imagen de Resonancia Magnética de difusión (dMRI) [90]. Esto nos

permite caracterizar el proceso de difusión de las moléculas de agua [6, 75]. Gracias

a ello, se pueden obtener las trayectorias de las fibras que forman los principales

fascículos que conectan las diferentes áreas del cerebro [101] y, mediante algoritmos

de tractografía, se pueden reconstruir en 3D [92]. Así, la estructura del cerebro puede
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ser estudiada in vivo y de manera no invasiva [91, 129, 53].

Sin embargo, los resultados basados en la tractografía de dMRI deben ser anali-

zados cuidadosamente debido a las limitaciones de esta modalidad. El análisis de los

resultados de los algoritmos de tractografía contienen ruido debido a los artefactos de

la tractografía que pueden conducir a diferencias en los perfiles de conectividad en

los estudios con poblaciones de sujetos [15]. A pesar de que los algoritmos de tracto-

grafía generan fascículos válidos para el estudio de la conectividad cerebral, el gran

número de líneas o fibras que pasan por los vóxeles tienen la limitación espacial del

tamaño de los mismos, generando así una serie de falsos positivos y negativos. Uno

de los desafíos a conseguir en los próximos años será reducir estos falsos positivos y

mejorar la resolución de los tractos de materia blanca [82]. Además, la alta variabilidad

de las fibras de materia blanca entre los sujetos dificulta el estudio de la conectividad

cerebral, ya que los resultados de la tractografía generan complejos conjuntos de da-

tos de al menos 1 millón de fibras, especialmente si se tienen en cuenta las fibras de

materia blanca superficiales.

El estudio del conectoma humano es un área clave y en crecimiento de investiga-

ción [121]. También es la intersección de los siguientes campos: Biología, Ingeniería

Electrónica, Ciencias de la Computación, Física y Neurociencia. En particular, ciencias

de la computación es una disciplina muy importante porque proporciona métodos efi-

cientes y robustos que pueden trabajar con grandes conjuntos de datos en un tiempo

razonable. Además, estos métodos son capaces de tratar el ruido producido en las

tractografías, así como manejar la alta variabilidad que existe entre los sujetos. El ma-

nejo de los datos de las tractografías no es una tarea trivial, ya que es más compleja

de lo que parece a priori, pues requiere la manipulación de muchos formatos, los datos

contienen ruido y es necesario aplicar transformaciones. Desde ese punto de vista, se

necesita una mayor validación de los resultados al utilizar la tractografía de difusión,

que debe contrastarse con la anatomía, la resonancia magnética funcional y los estu-

dios post mortem. Esta labor se centra en los métodos para analizar los datos de la

tractografía a fin de obtener la mejor información sobre las conexiones y contribuir a la

comprensión del conectoma humano.
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En esta tesis, proponemos algoritmos y métodos eficientes para el estudio de la co-

nectividad del cerebro capaces de trabajar con grandes conjuntos de fibras generadas

por algoritmos de tractografía. Por lo tanto, contribuimos al desarrollo de un método de

clustering de fibras de materia blanca para tratar los datos de la tractografía. Actual-

mente, hay muchos métodos de clustering de fibras [42, 43, 55, 106]. Sin embargo,

no todos ellos realizan una validación tan minuciosa como la que proponemos en esta

tesis. El clustering de fibras no valida si las fibras son verdaderas o no, ya que busca

representar los fascículos de materia blanca presentes en los sujetos para posterior-

mente realizar estudios y análisis de conectividad cerebral. Además, desarrollamos un

método que realiza el etiquetado de los fascículos de materia blanca superficial. Exis-

te un amplio conocimiento sobre las fibras de larga asociación y proyección, utilizadas

para identificar regiones funcionales a través de su conectividad, pero los fascículos

de materia blanca superficial son menos estudiados en el estado del arte, debido a

que los fascículos de fibras tienen una gran variabilidad entre los sujetos [49, 106] y

tienen un tamaño pequeño, lo que hace que etiquetarlas e identificarlas sean tareas

complejas. Por lo tanto, mediante los métodos intra e intersujeto desarrollados, he-

mos podido identificar los fascículos intersujeto con un alto grado de reproducibilidad

y darles un nombre automático ya que no están descritos en detalle en la anatomía. Fi-

nalmente, en esta tesis, se proponen tres métodos de parcelación, el principal basado

en un atlas de fascículos de fibras de materia blanca, y dos métodos secundarios ba-

sados en clustering y la topología del cerebro. Una parcelación cortical es un método

para subdividir la corteza cerebral en parcelas [141]. Existen parcelaciones basadas

en diferentes modalidades, como la anatómica, la información basada en la difusión,

la resonancia magnética funcional y la multimodal. Como actualmente hay muchos

tipos diferentes de parcelaciones, no hay consenso sobre qué parcelación es mejor

que otra, o cuál es el mejor método para llevar a cabo una parcelación. Por esta razón,

hemos desarrollado un método de parcelación basado en un atlas de fibras de materia

blanca que puede ayudar en el estudio y descifrado del conectoma humano.

Además, como prueba de concepto, hemos llevado a cabo una parcelación indivi-

dual basada en el clustering de fibras para hacer frente a la limitación que se encuentra

cuando se utiliza un atlas de fascículos de fibras. Al utilizar la tractografía completa, el
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número de parcelas obtenidas es mayor ya que se utilizan todas las fibras del cerebro

y no sólo un conjunto de fibras que forman el atlas. Finalmente, hemos desarrollado

un método de parcelación individual basado en la topología de la malla cerebral. Este

método es capaz de llevar a cabo la parcelación cortical en un tiempo eficiente y con

una buena homogeneidad en las parcelas obtenidas, siendo altamente competitivo

con los métodos del estado del arte basados en la macroanatomía.

Para concluir, es probable que esta investigación sea de gran interés para los neu-

rocientíficos, los neuroanatomistas y los neurólogos, ya que se pueden utilizar méto-

dos de preprocesamiento y programas informáticos de alta calidad para estudiar la

conectividad del cerebro. Gracias a este trabajo será posible desarrollar estudios clí-

nicos modernos analizando nuevas bases de datos y así poder obtener respuestas

sobre las funciones y la estructura del cerebro.
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C.2. Metodología utilizada

C.2.1. Objetivo principal

Esta tesis se centra en el desarrollo de algoritmos y métodos para analizar y estu-

diar la conectividad anatómica del cerebro utilizando datos de dMRI, y así cooperar a

la decodificación del conectoma del cerebro humano.

C.2.2. Objetivos específicos

Se proponen los siguientes objetivos específicos para abordar el trabajo de tesis:

OBJ1: Mejorar un método eficiente para el clustering de fibras.

OBJ2: Evaluar el clustering de fibras mediante la realización de análisis cualita-

tivos y cuantitativos y comparaciones con otros algoritmos existentes.

OBJ3: Diseñar e implementar un método para el etiquetado automático de los

fascículos de materia blanca superficial.

OBJ4: Realizar la evaluación del etiquetado por clustering intra e intersujeto.

OBJ5: Crear un método para la generación de atlas de parcelas para la población

de sujetos estudiados.

OBJ6: Evaluar el método de parcelación con métricas de reproducibilidad y ha-

cer la comparación con otros atlas de parcelas del estado del arte.

OBJ7: Generar un método de parcelación cortical individual basado en la infor-

mación de conectividad de la materia blanca a partir de un conjunto de datos

de tractografía y realizar la evaluación del método de parcelación individual con

métricas de conectividad de redes cerebrales.

OBJ8: Crear un método para realizar la parcelación individual de la corteza te-

niendo en cuenta la topología. Evaluar la reproducibilidad del método generado

con otros atlas basados en la macroanatomía.
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C.2.3. Metodología

Para lograr los objetivos específicos de esta tesis, deben completarse las siguientes

tareas:

T1: Revisión y estudio del estado del arte de los métodos de clustering de fibras

de materia blanca, etiquetado automático de las fibras de materia blanca super-

ficial y parcelación de la superficie cortical basada en diferentes modalidades

(OBJ1, OBJ3, OBJ5, OBJ7, OBJ8).

T2: Colaboración en la implementación de un método rápido y eficiente de clus-

tering de fibras. Para lograrlo, se utilizará un algoritmo de clustering para reducir

el número de elementos de entrada de las fibras de materia blanca. Por otro

lado, se adaptará un algoritmo de segmentación de fibras para reasignar peque-

ños clústeres a clústeres más grandes. Finalmente, los clústeres se mezclarán,

reduciendo así el número de clústeres generados (OBJ1).

T3: Evaluación cualitativa del método de clustering de fibras con algoritmos del

estado del arte. Analizaremos los clústeres con diferentes configuraciones. Ade-

más, se extraerán imágenes de clústeres anatómicamente significativos, com-

probando que el método presenta una mejor calidad y delimitación de los clúste-

res (OBJ2).

T4: Evaluación cuantitativa para medir el tiempo de ejecución del método de

clustering de fibras, así como las distancias intra e inter-clúster (OBJ2).

T5: Diseño e implementación del método de etiquetado de fascículos de materia

blanca superficial intrasujeto. Primero se aplicará el clustering a la tractografía

del sujeto, y luego se filtrará para los fascículos cortos. Las fibras se intersecarán

con la malla cerebral y, finalmente, los clústeres serán etiquetados basados en

un atlas (OBJ3).

T6: Diseño e implementación del método de etiquetado de la materia blanca su-

perficial entre sujetos. Más específicamente, se etiquetará a un grupo de sujetos,

manteniendo la correspondencia entre ellos. Para ello, se utilizarán un algoritmo
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de matching y un algoritmo de clustering para buscar la correspondencia de los

clústeres de diferentes sujetos (OBJ3).

T7: Evaluación del método de etiquetado intrasujeto. En primer lugar, la corres-

pondencia de los fascículos se encontrará a través de los sujetos. Además, se

medirán las distancias de los centroides de los fascículos entre los pares de su-

jetos (OBJ4).

T8: Evaluación de los métodos de etiquetado entre sujetos para medir la repro-

ducibilidad de los clústeres con diferentes umbrales entre los sujetos (OBJ4).

T9: Fusión de un atlas de materia blanca por medio de dos atlas de fibras cortas

y uno de fibras largas. Además, la información anatómica se generará a partir

de la segmentación cortical para descartar fibras mal segmentadas para cada

uno de los sujetos de la base de datos ARCHI. Luego, se utilizará el pipeline

del software BrainVisa para realizar la conversión entre los espacios de la malla

cerebral obtenida (OBJ5).

T10: Diseño, implementación y evaluación del algoritmo de segmentación de

fibras de materia blanca optimizado para obtener fascículos de fibras estables

presentes en la mayoría de los sujetos (OBJ5).

T11: Diseño e implementación de un método para generar atlas de parcelas

en diferentes granularidades y obtener así una parcelación representativa para

un grupo de sujetos. Este método tendrá en cuenta las superposiciones que se

producen entre las diferentes subparcelas de los distintos sujetos. Además, ob-

tendrá las probabilidades de las conexiones subyacentes para generar las sub-

parcelas. Finalmente, se aplicará un posprocesamiento de las subparcelas para

obtener una mejor definición de las mismas (OBJ5).

T12: Evaluación del método de parcelación cortical mediante el análisis de la

conectividad cerebral y la reproducibilidad de los diferentes atlas generados. A

continuación, se compararán también dos atlas del método con otros atlas del es-

tado del arte basados en modalidades de resonancia magnética, buscando sub-

parcelas y funcionalidades comunes (siempre que sea posible). Por otra parte,
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se realizará un análisis de validación cruzada y se utilizarán métricas de cálculo

de redes para el estudio de la conectividad del cerebro (OBJ6).

T13: Diseño e implementación de un método para llevar a cabo la parcelación

individual de la corteza cerebral. Posteriormente, el clustering de fibras se apli-

cará a toda la tractografía. Finalmente, se utilizará el algoritmo de parcelación

individual y se realizará un posprocesamiento de las subparcelas. Además, se

utilizarán las métricas de conectividad cerebral para la evaluación. Finalmente,

se realizará un análisis cualitativo con el resultado de la parcelación para los

sujetos (OBJ7).

T14: Diseño e implementación de un método de parcelación cortical paralela ba-

sado en la topología del cerebro que tendrá en cuenta las circunvoluciones y

los surcos. Además, se realizará un análisis cualitativo y se medirá el tiempo de

ejecución del método de parcelación cortical. Por último, se evaluará la reprodu-

cibilidad con otros métodos del estado del arte (OBJ8).
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C.3. Resultados más relevantes

En esta sección se presentan las principales contribuciones de la tesis. Todas ellas

tratan sobre el desarrollo de métodos para el estudio de la conectividad cerebral. Estas

contribuciones se listan a continuación:

Los algoritmos de clustering de fibras en la investigación de la neuroanatomía

generan datos que permiten el estudio de la estructura de la materia blanca.

La primera contribución de esta tesis es la colaboración en el desarrollo de un

método automatizado de clustering de fibras llamado FFClust, que identifica fas-

cículos de materia blanca a partir de grandes conjuntos de datos de tractografía.

La primera versión de este trabajo se desarrolló en otra tesis de máster [125].

El objetivo principal es desarrollar un clustering eficiente para agrupar las fibras

en clústeres compactos y regulares, que representen la estructura de la materia

blanca de todo el cerebro. Los clústeres resultantes describen el conjunto de los

principales fascículos de materia blanca presentes en un cerebro individual. En

los individuos, los clústeres pueden utilizarse para estudiar la conectividad local

en cerebros patológicos, mientras que a nivel de población, el procesamiento y

análisis de los fascículos reproducibles y otros algoritmos de posprocesamiento

pueden llevarse a cabo para estudiar la conectividad del cerebro y crear nuevos

atlas de fascículos de materia blanca. Un interés especial es su utilización para

el estudio de los fascículos de asociación cortos y su segmentación, así como

de las subdivisiones de los fascículos anatómicos largos. El método propuesto

es unas 8,6 veces más rápido que el método del estado del arte, y permite un

rápido procesamiento y visualización de los principales conjuntos de fibras de

materia blanca.

Mis contribuciones a este trabajo son la colaboración en las siguientes tareas:

redacción del primer borrador, revisión de todas las versiones y borradores pos-

teriores, estudio y revisión del estado del arte en el clustering de fibras, creación

de esquemas y de la mayoría de las imágenes del paper, cambio de la concu-

rrencia por paralelismo en los pasos 1 y 4, paralelización de la etapa 2 de mapeo
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que no tenía paralelismo, implementación de todo el código, dando una mejo-

ra de al menos 2,5 veces más rápido que su versión anterior, optimización de

entrada/salida y cambio de formato, prueba y búsqueda de errores e implemen-

tación de los dos códigos del cálculo de centroides, las pruebas se hicieron de

nuevo con 50 sujetos (antes se hacían con un solo sujeto), uso de la media y

la desviación estándar en todas las gráficas, agregados a la comparación con

el estado del arte los métodos de QuickBundlesX (QBX ) [43] y Guevara [55],

implementación de la distancia máxima en QuickBundles (QB) [42] y QBX (que

requiere tiempos de ejecución superiores a un día) para las pruebas de distancia

con todos los métodos, pruebas de tiempo de ejecución de QB y QBX con dis-

tancia máxima (horas de pruebas), la implementación de las distancias entre los

clústeres (no existentes), adición del índice de Davies-Bouldin (DB) [9] y la com-

paración con todos los métodos, el análisis cualitativo mediante la segmentación

para demostrar que los clústeres obtenidos tienen significado biológico, adición

del método de Guevara a todos los análisis cualitativos, la comparación de los

clústeres más similares y el tiempo de ejecución entre los métodos. Este paper

fue aceptado en la revista NeuroImage [127].

Las siguientes contribuciones que se presentan son resultado directo de este

trabajo de tesis.

Se han utilizado métodos de clustering de fibras para agrupar automáticamente

fibras similares en clústeres. Sin embargo, debido a la variabilidad entre los su-

jetos y a los artefactos, los clústeres resultantes son difíciles de procesar para

encontrar conexiones comunes entre los sujetos, especialmente para la materia

blanca superficial. La segunda contribución de esta tesis es un método de etique-

tado automático de fascículos de asociación cortos en un grupo de sujetos. El

método se basa en un clustering de fibras intrasujeto que genera clústeres de fi-

bras compactos. Después, tomando como referencia el atlas de Desikan-Killiany

[31], los clústeres son etiquetados en base a la conectividad cortical de las fi-

bras, y nombrados según su posición relativa a lo largo de un eje. Las etiquetas

proporcionan información útil para la visualización y el análisis de las conexiones
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individuales, lo cual es muy difícil sin ninguna información adicional. Finalmente,

comparamos y aplicamos dos estrategias diferentes para el etiquetado de los fas-

cículos entre sujetos: una de ellas basada en un famoso algoritmo de clustering

del estado del arte, y la otra basada en un algoritmo de matching. El rendimiento

de ambas implementaciones se compara en términos de reproducibilidad y dis-

tancia de los fascículos entre sujetos. Los clústeres obtenidos podrían utilizarse

para realizar análisis de conectividad manual o automático en individuos o entre

sujetos. El trabajo resultante está publicado en la revista Biomedical Engineering

Online [126].

La tercera contribución de esta tesis, y también la más importante, es un método

para crear parcelaciones de la superficie cortical a partir de un atlas anatómico.

La información de conectividad se obtiene de un atlas de fascículos de materia

blanca, en lugar de la tractografía completa. Este atlas está compuesto por un

atlas de fibras de materia blanca profunda y dos atlas de materia blanca superfi-

cial. Así, se obtiene una correspondencia directa entre los fascículos y las regio-

nes corticales entre los sujetos, pudiendo obtener una buena representación del

conectoma del cerebro humano, ya que los fascículos obtenidos se basan en los

atlas de fascículos que contienen las conexiones cortas y largas más reproduci-

bles que se encuentran en una población de sujetos. Además, el método produce

otro resultado que contiene la representación probabilística de las subparcelas

preliminares. De esta manera, la información podría utilizarse con fascículos seg-

mentados de cada individuo y crear así parcelaciones individuales adaptadas a

cada sujeto que deberían de conducir a una mayor consistencia en la conexión

estructural entre los sujetos. Este trabajo ha sido publicado en la revista Frontiers

in Neuroinformatics [79].

La cuarta contribución es un método complementario al método de parcelación

y realiza la parcelación cortical completa de un individuo teniendo en cuenta la

información de conectividad de las fibras de la materia blanca. Nuestro objetivo

es realizar una parcelación cortical individual de buena calidad que se utilizará
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para una parcelación en grupo en el futuro. El resultado es el etiquetado comple-

to de los vértices de la malla cortical, que representan las diferentes subparcelas

de la corteza, con fuertes conexiones a otras subparcelas. Utilizamos las mé-

tricas de redes del cerebro para evaluar el método en un conjunto de sujetos.

Estas métricas cumplen con la segregación e integración funcional, así como

con la definición de small-world. El resultado de este trabajo fue publicado en

la IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information

and Communication Technologies (CHILECON) [80].

Finalmente, la última contribución de esta tesis es un método paralelo para la

parcelación completa de la superficie cortical, basado en la distancia geodésica.

El método tiene dos modos de uso, el primero subdivide cada parcela anatómica

dada por el atlas de Desikan-Killiany. El segundo modo de uso realiza la división

cortical completa de un sujeto. El método propuesto estará a disposición de la

comunidad para llevar a cabo la evaluación de las parcelaciones corticales basa-

das en datos. Como ejemplo, comparamos la parcelación GeoSP con los atlas

de Desikan-Killiany y Destrieux en 50 sujetos, obteniendo parcelas más homo-

géneas para GeoSP y diferencias menores en la conectividad estructural entre

los sujetos. El paper resultante fue publicado en la 42 Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC) [81].
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C.4. Conclusiones y trabajo futuro

En esta sección presentamos las conclusiones de todo el trabajo realizado en la

tesis. Además, mostramos las futuras líneas de investigación que sería interesante

explorar.

C.4.1. Conclusiones

Los desarrollos de esta tesis están relacionados con el área de la neurociencia

computacional, específicamente con algoritmos y métodos para el estudio de la co-

nectividad cerebral basada en dMRI. Hemos desarrollado algoritmos eficientes que

pueden tratar el ruido presente en la tractografía de difusión. Estos artefactos son

producidos por los algoritmos de la tractografía, generando fascículos válidos que se

tienen en cuenta cuando se utilizan las fibras de materia blanca. Además, la alta varia-

bilidad de las fibras (más de un millón) entre los sujetos genera una gran complejidad al

tratar estos masivos conjuntos de datos 3D. Por lo tanto, cuando se utiliza la tractogra-

fía de difusión, se necesita una validación adicional, como contrastar con la anatomía

y obtener un significado biológico, utilizando estudios post mortem o aplicando otras

técnicas de resonancia magnética como la resonancia magnética funcional.

Esperamos que esta investigación sea beneficiosa para los neurocientíficos del

área, ya que pueden desarrollarse estudios modernos analizando nuevas bases de

datos y contribuyendo a la decodificación del conectoma humano.

Las conclusiones de los trabajos presentados se exponen a continuación:

Clustering y etiquetado de fibras de la materia blanca. Presentamos FFClust

que es un algoritmo eficiente de clustering de fibras de la materia blanca. Es por

lo menos un orden de magnitud más rápido que QuickBundles, que es uno de

los algoritmos más utilizados para clustering de fibras. Por ejemplo, un sujeto

con aproximadamente 1 millón de fibras es procesado por la versión secuencial

de FFClust en 1,99 min, y su implementación paralela en 45 s, mientras que QB

tarda 2,2 h usando su mejor configuración. Sin embargo, usando el índice de
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Davies-Bouldin (DB) para medir la calidad de los clústeres, QB logra el mejor

resultado, seguido de FFClust, mientras que QBX no mejora la calidad de QB.

Gracias a este método se pueden realizar nuevos estudios de conectividad ce-

rebral, en particular sobre las fibras de la materia blanca superficial. Además, el

método de FFClust y el método de Guevara consiguen un índice Davies-Bouldin

similar y pueden identificar todos los fascículos al aplicar la segmentación. Tam-

bién tienen los menores porcentajes de error al identificar los fascículos selec-

cionados. Sin embargo, FFClust es más rápido y más simple que el método

Guevara.

Por otro lado, implementamos un método rápido para el etiquetado automático

de los fascículos de fibras de materia blanca, específicamente para la materia

blanca superficial, basado en un clustering intrasujeto y la conectividad de los

clústeres con la malla cortical, basado en un atlas anatómico de regiones de

interés. El algoritmo también añade una etiqueta asociada a la posición relativa

de los fascículos. Los resultados del etiquetado intrasujeto muestran un grado

de correspondencia entre los sujetos, que se mejora aún más con el etiquetado

intersujeto. Un etiquetado completo entre sujetos se ejecuta en un tiempo medio

de 3,5 minutos para un conjunto de datos de tractografía de alrededor de un

millón de fibras. Esto permite una exploración, visualización y análisis rápidos y

fáciles de los fascículos de asociación corta etiquetados en los individuos, lo cual

es muy difícil sin ninguna información adicional.

Además, desarrollamos un etiquetado entre sujetos usando dos métodos. Uno

de ellos consiste en matching, en particular, el algoritmo Húngaro, y el otro en

clustering, empleando el algoritmo QuickBundles. Los resultados muestran una

mejor reproducibilidad entre los sujetos para el método de clustering frente al

algoritmo de matching, manteniendo una distancia moderada entre los clústeres,

lo que indica una buena calidad de los clústeres. Además, el algoritmo es esca-

lable y todo el procesamiento para el etiquetado entre sujetos se ejecuta en un
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tiempo razonable, de aproximadamente 1,17 h para 20 sujetos. Los clústeres ob-

tenidos podrían utilizarse para realizar estudios de conectividad en grupo, como

la creación de atlas de fascículos de materia blanca, y el desarrollo de nuevos

métodos para el análisis de la conectividad del cerebro.

Parcelación de la superficie cortical. El método propuesto crea una parcela-

ción de la superficie cortical, que consiste en la subdivisión de parcelas anató-

micas, a partir de un atlas de fascículos de fibras basado en la difusión. La par-

celación generada depende de tres parámetros configurables que generan una

parcelación con un número menor o mayor de subparcelas. Además, un resulta-

do intermedio del método es la representación probabilística de las subparcelas

preliminares, asociadas a las dos conexiones de cada fascículo.

Como conclusión final, este método puede crear una parcelación cortical basada

en la conectividad estructural, a partir de parcelas anatómicas, lo que da lugar

a subparcelas con perfiles de conectividad muy consistentes en toda una pobla-

ción de sujetos, y un grado de correspondencia con parcelas del estado del arte

basadas en modalidades de resonancia magnética.

Además, hemos desarrollado un método para realizar parcelaciones corticales

individuales, basado en la información de la conectividad de las fibras de la ma-

teria blanca. El clustering de fibras ayuda a definir conexiones más compactas y

por lo tanto regiones, además de filtrar los valores atípicos. Los resultados mues-

tran una buena calidad en los sujetos analizados, en particular, en los mapas de

conectividad. Estos fueron evaluados con métricas de redes cerebrales, como el

coeficiente de clustering, el path length y small-worldness. Estas métricas indi-

can una buena integración funcional y segregación del cerebro. Sin embargo, no

hay consenso en la comunidad sobre la validez de estas métricas. Se necesitan

más mejoras y validaciones.

Finalmente, presentamos un método paralelo, llamado GeoSP, que crea una par-

celación individual de la malla cortical basada en la distancia geodésica, conside-

rando así la topología del cerebro, es decir, las circunvoluciones y los surcos. El
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método representa la malla por medio de una red y tiene dos modos de uso. Por

defecto, realiza la parcelación basada en los límites del atlas de Desikan-Killiany.

El otro modo realiza la división para la corteza completa. Los resultados mues-

tran subparcelas homogéneas. Los tiempos de ejecución para el modo basado

en el atlas es de 18 s y de 82 s para el modo de corteza completa. Además, en

comparación con dos atlas macroanatómicos, GeoSP tiene menos diferencias

en la reproducibilidad de la conectividad estructural entre los sujetos, probable-

mente debido a una mayor homogeneidad de los subparcelas. Sin embargo, esto

no significa que la parcelación tenga significado biológico o que sea mejor que

las otras. Es necesario realizar más análisis. El método está disponible para rea-

lizar comparaciones entre parcelaciones, ya sean basadas en MRI de difusión o

funcional.

C.4.2. Trabajo futuro

En esta sección, presentamos las líneas futuras de investigación que podrían lle-

varse a cabo en base al trabajo de esta tesis. Presentamos estas ideas para cada una

de las contribuciones realizadas:

Clustering y etiquetado de fibras de la materia blanca. Ya que FFClust tiene

cuatro pasos, como trabajo futuro proponemos mejorar los tiempos de ejecución

para las etapas más lentas. Esto podría ser útil para integrar el algoritmo de

clustering con aplicaciones de visualización para permitir la exploración rápida

y otros análisis de posprocesamiento de la estructura de la materia blanca pa-

ra uno o varios sujetos. Entonces, sugerimos que FFClust puede utilizarse en

aplicaciones similares en las que el método de Guevara se ha utilizado con éxito

[53, 50].

En lo que respecta al etiquetado de los fascículos de la materia blanca superficial,

la labor futura podría centrarse en la aplicación del método en bases de datos de

alta calidad, como la base de datos del Human Connectome Project (HCP), para

la creación de un atlas de materia blanca superficial y parcelaciones corticales
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basadas en la difusión. Además, se podrían utilizar otros algoritmos para generar

un mejor etiquetado de los fascículos de la materia blanca superficial.

Parcelación de la superficie cortical. La parcelación cortical basada en un

atlas de fascículos de fibras podría utilizar un nuevo atlas de fascículos, basado

en una base de datos más grande, como la base de datos HCP y la tractogra-

fía probabilística. Además, los fascículos podrían obtenerse de un clustering de

fibras entre sujetos de la misma base de datos, lo que podría dar lugar a una

mejor representación de las conexiones de los fascículos de materia blanca de

la población de sujetos. Sin embargo, el posprocesamiento de las subparcelas

candidatas sería probablemente más complicado debido a una mayor cantidad

de fascículos y una mayor superposición de las subparcelas. Además, la infor-

mación funcional podría utilizarse para crear una parcelación mediante el uso

de frameworks de parcelación multimodal [99]. Además, otra línea a explorar es

la inclusión de algunos fascículos de atlas basados en áreas funcionales cono-

cidas. Por último, la información probabilística de las subparcelas preliminares

podría utilizarse, en combinación con los fascículos individuales segmentados,

para crear parcelaciones individuales adaptadas a cada sujeto. Su efecto será el

de pequeños cambios en los límites de las subparcelas de cada sujeto, debido

a las diferencias individuales de los fascículos segmentados. Las parcelaciones

adaptadas deberían conducir a una mayor consistencia en la conexión estructu-

ral entre los sujetos.

En cuanto a la parcelación de la superficie cortical basada en clustering, como

trabajo futuro podríamos explorar la aplicación de una versión multisujeto de este

método de parcelación y probarlo en diferentes bases de datos, como la del Hu-

man Connectome Project. De este modo, podríamos obtener un atlas (o modelo)

de parcelas corticales con perfiles de conectividad similares en una población de

sujetos sanos. También se podría integrar otra información, como fibras segmen-

tadas con un atlas de fascículos [128], o datos de otras modalidades, como la

MRI funcional.
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Por último, como futuras líneas de investigación con respecto a la parcelación

geodésica, se podría mejorar el tiempo de ejecución del método propuesto para

ambos modos de funcionamiento. Por otra parte, otros atlas anatómicos podrían

utilizarse como base para trazar los límites entre las parcelas anatómicas en

lugar del atlas de Desikan-Killiany.
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