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1.1 Hipótesis del trabajo . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.1.1 Perturbaciones amortiguadas . . . . . . . . . . . . . . . . . . 33

1.1.2 Perturbaciones no-lineales - caso isotérmico . . . . . . . . . . . 34
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∣∣Ēk,ω∣∣ for εe = 4.0 × 10−2 for the case of

immobile ions. Three time intervals are shown. . . . . . . . . . . . . . 92

5.2 Evolution of the variation of (a) electrons density, filtered in frequency,

δn̄e,fil, and its spatial Fourier transform (b) for εe = 4.0 × 10−2, for

immobile ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

XI



5.3 Evolution of the variations of the electrons distribution function, δf̄e,

in the low velocity range with immobile ions for perturbative ampli-

tude εe = 4.0× 10−2. The velocity of the structures found in Fig.5.2

are shown (black dashed line). . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Evolution of the electric field energy ĒE for the nonlinear case, εe =
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Agradezco a los funcionarios de la Universidad de Concepción por su inmensa

disposición y paciencia, particularmente durante estos tiempos de pandemia y al

final esta etapa.

Agradezco al Ministerio de Educación de Chile por financiar las becas de Exce-

lencia Académica, Bicentenario y Gratuidad que recib́ı, al señor Gonzalo Pincheira,
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familia y a mı́ librarnos de preocupaciones económicas a causa de mis estudios. Aśı
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este páıs. Es cierto que no está resuelto, pero esos pequeños avances han permitido

a más personas, entre quienes me incluyo, poder acceder a la educación superior y

continuar sus estudios sin que el financiamiento sea un obstáculo.
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Abstract

In order to study how the dynamics of an unmagnetized Maxwellian electron plasma

is modified by the presence of mobile positive heavy ions, the present work aims to

study the regimes of damped and nonlinear perturbations in a driftless Maxwellian

electron-ion plasma, considiring a mass ratio mi/me = 1836.153 and charge ratio

qi/|qe| = 1.0, specifically in the range of low frequencies (ωr ≤ 0.2ωpe) and velocities

in the order of the ion acoustic phase velocity vφ,IA for the excited wavenumber,

primarily for the temperature ratio Ti/Te = 1.0. Also, the response of the plasma

is studied for different temperature ratios Ti/Te above and below Ti/Te = 1.0. The

whole study is accomplished through numerical simulations of the Vlasov-Poisson

system of equations using spectral interpolation in position and velocity, and sym-

plectic integration in the time dependency. It is expected that in the case of damped

perturbations both Langmuir and ion acoustic waves propagate relatively indepen-

dent from each other and exhibit opposite behaviors in the velocity range of interest,

whereas in the nonlinear case, electrostatic solitary waves are expected to arise due

to the presence of heavy mobile ions related to electron trapping and ion acoustic

solitons. It is expected that dynamics related to the ions is accentuated with lower

ratios Ti/Te.
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Resumen

Para estudiar cómo se modifica la dinámica de un plasma Maxwelliano de electrones

no magnetizado con la presencia de iones positivos pesados, el presente trabajo tiene

por objetivo estudiar los reǵımenes amortiguado y no lineal de perturbaciones en un

plasma Maxwelliano electrón-ión sin deriva relativa considerando una razón de masa

mi/me = 1836.153 y razón de carga qi/|qe| = 1.0, espećıficamente en el rango de

bajas frecuencias (ωr ≤ 0.2ωpe) y velocidades del orden de la velocidad de fase de

ondas ión acústicas vφ,IA para el número de onda excitado, principalmente para la

razón de temperatura Ti/Te = 1.0. También se estudia la respuesta del plasma para

diferentes razones de temperatura Ti/Te por encima y por debajo de Ti/Te = 1.0.

Todo el estudio se realiza por medio de simulaciones numéricas del sistema de ecua-

ciones de Vlasov-Poisson usando interpolación espectral en posición y velocidad, e

integración simplética en la dependencia temporal. Se espera que en el caso de per-

turbaciones amortiguadas se espera que las ondas de Langmuir e ión-acústicas se

propaguen relativamente independientes una de la otra y que exhiban un compor-

tamiento opuesto en el rango de velocidades de interés, mientras que en caso no

lineal, se espera que surjan ondas electrostáricas solitarias debido a la presencia de

iones móviles, ascociadas a atrapamiento de electrones y solitones ión-acústicos. Se

espera que la dinámica asociada a los iones se acentúe con razones Ti/Te más bajas.
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1 Introduction

In the investigation of plasma waves approximations are made depending on the

masses of the composing species, the spatial, time, and velocity scales of the phenom-

ena of interest. While in some cases the lightest species are moved only, the addition

of a mobile heavy species to the plasma might yield a more realistic model. It has

been demonstrated that the presence of positively charged, Maxwellian-distributed,

heavy mobile ions (protons) modifies evolution of an unmagnetized, collisionless,

plasma during linear Landau damping of Langmuir waves in initially isothermal

Maxwellian electron collisionless plasmas, exploring particle densities and field en-

ergy, but without exploring velocity dependency was not discussed. In the nonlinear

regime of the same plasma, the amplitude of the excited mode indicates that the

effects of mobile ions are reduced. However, this fact does not discard any dynamics

related to the ions scales. Therefore, the present work addresses the issue of how

the presence of mobile heavy positively charged ions modifies the dynamics of an

unmagnetized electron Maxwellian plasma in the range of the ions scales for both

damped and nonlinear perturbations, and to characterize the phenomena arisen by

the introduction of such heavy species.

From the equations of motion of any particle j of the plasma, the time scale of
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its dynamics is estimated as τj ∼ mj, where mj is the mass of a particle of the

species j. Therefore, the motion of heavier species occurs on a longer time scale.

The existence of different time scales can be observed in Fig.1.1, where the trajec-

tories of two particles of mass m1 = me and m2 = 1836me, with me the electron

mass, are shown. Both are simultaneously subjected to the force due to a Langmuir

wave (LW), of short time scale, and a lower amplitude ion acoustic wave (IAW), of

large time scale, with the same wavenumber. The light particle is resonant with the

Langmuir wave and the heavy particle is resonant with the IAW. Figure 1.1(a) shows

that the motion of the heavy particle can be neglected during a short range of time

and the low frequency forcing remains negligible.

Figure 1.1: Particle trajectories variations from the equilibrium trajectory, xeq,i(t) =
x0,i + v0,it, for a light particle, m1, and a heavy particle, m2, driven by a LW and
a lower amplitude IAW. The particle m2 does not deviate significantly from its
equilibrium trajectory (a). At larger times (b), deviations are not negligible.

The approximation of immobile heavy species considers light particles as mobile

and the remaining species are assumed to be infinitely heavy and static, as in the

case of a typical electron and ion plasma. Ions can be uniformly or non-uniformly

distributed. Plenty of studies use this approximation with uniform ions, address-
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ing phenomena whose frequency and velocity ranges are such that heavy species

do not contribute to the evolution of the plasma, achieving good agreement with

experiments and observations: works as fundamental as those concerning the col-

lisionless linear and nonlinear Landau damping of LWs in electron plasmas [1–7],

assume immobile ions, with experimental works confirming the predicted behavior

[8]. In critical phenomena in plasma physics [9], it has been demonstrated that the

presence of mobile ions does not affect the critical behavior of the Landau damping

of Langmuir waves [10]. Other works considering immobile ions focus on the propa-

gation of nonlinear phase space states such as BGK waves, analytical solutions of the

Vlasov-Poisson system, consisting of quasi-stationary electrostatic structures involv-

ing particle trapping [11], such as electron holes [12], or the broadband electrostatic

noise in terrestrial and planetary magnetospheres, in which the plasma is modeled

by hot and cold electron cores, and an electron beam, in order to excite nonlinear

electron acoustic modes[13].

However, certain phenomena may take place in longer time scales and the dy-

namics of heavy species is not negligible, as shown in Fig.1.1(b). In such cases, the

heaviest species dynamics must be included in the system of equations, as their pres-

ence might modify the observed dynamics, yielding a more complete description of

the actual phenomenon or introduce additional phenomena, unnoticed on short time

scales. In the context of laser experiments, for example, in testing nuclear fusion

configurations such as inertial confinement fusion plasmas, in which laser light is di-

rected to a target inside a cavity to ignite it [14]. The process involves a stimulated

Brillouin scattering instability in which an incoming electromagnetic wave, produced

by a laser, decays into an IAW and a backscattered electromagnetic wave [15]. Such
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a process is undesirable in inertial confinement fusion as a fraction of the radiation

sent to the target is reflected. Several mechanisms related to the IAW component

have been proposed to reduce this instability, in order to reduce reflection and in-

crease absorption of electromagnetic waves, such as the excitation of ion trapping

[16], ion distribution heating [17], ion Landau damping [18], the addition of multiple

ion species to enhance ion Landau damping [19], and saturation through two-ion

parametric decays [20].

In astrophysical plasmas, in situ measurements of electric fields and spectra made

by Freja satellite and SCIFER sounding rocket in the terrestrial auroral region indi-

cate that the modulation of Langmuir wave packets observed therein, corresponding

to narrow band emissions, is explained by scattering of whistler and lower hybrid

modes, related to proton dynamics; these waves must be included to account for

low frequency signals found in the modulation process [21]. In situ measurements

in the parallel auroral acceleration region made by FAST satellite in 1997 indicate

the presence of frequency peaks around 300[Hz], corresponding to the range of the

hydrogen ion acoustic frequency, would modulate the amplitude of electron acoustic

wave packets [22].

Low frequency waves are also found directly in solar wind plasmas, related to the

so called type III solar sources, discovered in 1950, which correspond to radioemis-

sions proceeding from solar bursts, that would indicate the presence of nonthermal

electron beams in the solar wind itself, as well as in the solar system, providing infor-

mation of conditions of the background medium, and of acceleration and transport of

electrons [23]. Spectral observations from Galileo spacecraft in 1990 indicate the ex-
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istence of three strong peaks, two of high frequencies close to 24[kHz], corresponding

to Langmuir waves, and one of low frequency around 400[Hz], identified as IAWs [24].

The generating mechanism of type III radioemissions has been discussed by

Cairns [25], led by discrepancies between observations and theoretical works. Two

possible mechanisms have been considered, the nonlinear resonant wave-wave cou-

pling Langmuir electrostatic decay, consisting of the decay of a primary LW into a

secondary LW and a IAW, and scattering of thermal ions, in which individual ions

and their screening electron cloud responses are out of phase due to their mass dif-

ference, producing the scattering of incoming LWs [26]. It is argued that in order

for the scattering to occur, the collective ion response must be inhibited. Such inhi-

bition takes place if the time scale of this response is short compared to that of the

scattering, and if the time scale of the scattering is much larger than the time scale

of the slowest process and lasts several cycles [25]. According to measurements, the

energy levels required for the scattering are not possible, and in regions with elec-

tric field energy density to plasma thermal energy ratio W . 10−5, Langmuir decay

is expected to be related to type III radioemissions; the scattering of thermal ions

would be relevant only in regions with W . 10−3.

Electron oscillations have been studied in the presence of mobile heavy positive

ions through kinetic simulations in unmagnetized plasmas. Xu et al. [27] stud-

ied the linear regime of Landau damping in a collisionless Maxwellian electron and

ion plasma, by exciting the first mode only. In this work, it is found that ions

(mi/me = 1836), initially isothermal species Ti/Te = 1.0 with qi/|qe| = 1.0, noto-

riously affect the linear damping, observed in the amplitude of the excited mode
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(|E(m = 1)|) in Fig.1.2. For initial amplitudes of perturbation of the electrons dis-

tribution (εe) in the damped regime [Figs.1.2 (c) and (d)], the usual linear Landau

damping (compared to the case of immobile ions) occurs up to t ' 100, when slow

damped oscillations become dominant and an important deviation from the case

with immobile ions is observed.

Figure 1.2: Evolution of the excited mode of the electric field, |E(m = 1)| for
different initial perturbation amplitudes (a) εe = 1.0 × 10−1, (b) εe = 1.0 × 10−2,
(c) εe = 8.0 × 10−3 and (d) εe = 3.0 × 10−3, for mobile and immobile ions, with
Ti/Te = 1.0. Plots from Xu et al. [27].

Two kind of waves are identified: a LW, with frequency and damping rate esti-

mated through linear Vlasov-Poisson dispersion relation, and an IAW, with frequency

6



estimated with the fluid approximation and damping rate estimated through linear

Vlasov-Poisson dispersion relation. As the frequency of |E(m = 1)| changes, varia-

tions of the electrons density, δne, become of the same order compared to those of

the ions density, δni, and exhibit the same dependency in position and time domain

with low frequency oscillations for t > 100, indicating that electrons ultimately fol-

low the motion of the ions. However, details of the velocity dependency about the

resonance zones involved in the propagation of those waves, and how each species of

the plasma contributes to their development are not studied in Xu et al. work.

At perturbative amplitudes well above the critical amplitude to excite nonlinear

Landau damping of LWs [see Fig.1.2 (a)], fast oscillations are dominant and ion dy-

namics is not distinguishable through the evolution |E(m = 1)|. Although in Ref.[27]

it is stated that ion perturbations may occur, they would be negligible in comparison

with those of the electrons, and no further discussion is provided.

Nonlinear, long-lasting, coherent structures in position space and phase space

have been observed in the presence of mobile heavy positive ions in unmagnetized

collisionless Maxwellian electron and ion plasmas, such as ion holes, solitons, as well

as ion interactions with electrons structures of the same nature, such as electron

holes.

An ion hole consists of ions trapped around a local minimum of electrostatic po-

tential [12, 28], repelling electrons around it. In this case, electrons are Boltzmann

distributed, meaning that they respond so rapidly that they develop instantaneous

equilibrium configurations, and it is required for them to be hot enough to pro-
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duce pressure to sustain the depopulation of ions at the center of the structure [29].

They have been measured with high resolution in the Earth’s auroral region by

FAST spacecraft, propagating with velocity consistent with the IA mode [30], and

also found in Vlasov-Poisson simulations of unmagnetized Maxwellian electron and

ion beam plasmas initially exciting a slow electron hole, after the growth of several

smaller electron holes, considering a low mass ratio (mi/me = 4) [31]. Other con-

figurations that yield an ion hole are setting this state directly at the initial instant

in the ions distribution in simulations [32], ion-ion two-stream instability [33], and

generally unstable configurations involving streaming populations of ions [29].

Solitons are defined as localized structures propagating without loss or disper-

sion, evolving from large amplitude waves [34], and are observed in the electrostatic

potential or as compressive pulses in the density of the species driving the propa-

gation, which result from successive nonlinear coupling between the excited waves

limited by the dispersion of waves whose phase of velocity importantly differs from

that of the fundamental wave [35]. Ion acoustic solitons (IASs) are considered. These

structures are observed in the ions density involving IAWs [36]. Based on the fluid

model, they are found to propagate at velocities vS in the range 1 < vS/cS . 1.6

[35], where cS is the ion acoustic speed in the fluid model. Kinetic features have

been further included in the model, such as ion and electron Landau damping, and

electron trapping [37]. Simulation studies using hybrid models (kinetic ions, Boltz-

mann electrons) and fully kinetic models, show that IASs might not always retain

their characteristics unaltered: unstable IASs might break into several IAWs [38], or

grow in amplitude for large initial perturbations [39]. Properties such as the velocity

of propagation can be modified by electron trapping. Further differences are noted
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for velocities of propagation larger than cS [40]. This implies that solitons interact

and even couple to electron holes, as reported in several studies [41–45], propagating

with velocities in the range indicated above. However, a certain perturbation in the

ions density is required for solitons to arise and couple [43]. Other works involving

electron hole-ion soliton coupling still label the soliton component as IASs although

it propagates with velocity vS = 4.06cS, out of the predicted range [46].

Hutchinson and Zhou developed a theory for the propagation of accelerating

electron holes considering interaction with heavy ionic species from a kinematic ap-

proach, focusing on momentum exchange [47, 48]. In this case, ions interact with the

hole by exchanging momentum through reflection if the trapping potential is intense

enough, and passing through it in the opposite case, tending to accumulate ions in

the region of lower electron density. Through simulations with nonzero drift, mass

ratio mi/me = 1836 and a temperature ratio Ti/Te = 2.5×10−2, the authors observe

the same coupling between electron holes and ion solitons discussed by Saeki and

Rasmussen [44] and Saeki and Genma [45]. They also show that holes rapidly react

to changes in the distribution of the ions. For faster electron holes, the degree of

interaction with ions is relatively smaller and can be neglected [48].

Works involving Maxwellian electron and ion plasmas with a relative drift, mi/me =

1836 and Ti/Te = 0.1, have shown that slow electron holes interact with the distri-

bution of the ions, tending to produce localized perturbations in the latter, as in the

context of subcritical plasma turbulence, where it has been shown that the excita-

tion of an electron hole in conditions of linear stability may lead to the excitation

of nonlinear electron holes due to the dependency of the initial perturbation [46,
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49]. The excited electron hole is observed to accelerate to velocities faster than cs

as IAWs are excited in the ions density, attributed to IASs. It is shown that faster

holes in this velocity range propagate stably [49], and it is indicated that the hole

allows for bunching of ions within the trapping region, as discussed by Hutchinson

and Zhou [47].

Considering the same system with a low mass ratio, mi/me = 4, a relative drift

and initially isothermal species, but addressing the mechanism of excitation of cur-

rent driven IAWs in collisionless plasmas, Lesur et al. [31] excite nonlinear modes

related to phase space structures which involve momentum and energy exchange.

The development of slow primary electron holes eventually leads to the generation

of secondary, smaller holes, yielding phase space turbulence with an ensemble of

structures, as the primary one leaves a trail of negative density as it is accelerated.

The electron holes are reported to grow more easily when there is more overlap be-

tween both species distributions.

For higher mass ratio, mi/me = 29500, drifting, and initially isothermal species,

Eliasson and Shukla [50] studied the interaction of electron holes with the plasma

through Vlasov-Poisson simulations of a Maxwellian electron-oxygen ion plasma by

initializing electrons with a static Schamel hole. The positive potential developed by

the hole expels low energy ions, producing a cavity in the ions density, and there-

fore a negative potential which eventually repels the hole away, with the ion cavity

remaining static.

The temperature ratio between species is an important parameter in plasma
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physics. In the linear approximation, the damping rate and propagation of IAWs

in Maxwellian electron and ion plasmas depend directly on Ti/Te. The IAWs are

favored by cold ions, as the damping rate tends to zero [51], due to the lack of reso-

nant ions available for wave-particle interaction. On the contrary, as this ratio tends

to the unity, the wave is heavily damped for any wavenumber, because there are

more ions available for such interaction. In the work of Norgren et al. [52], the linear

dispersion relation is used to characterize linear instabilities in a Maxwellian electron

and ion plasma with an electron beam, in the context of electrostatic solitary waves

in the magnetosphere. They show that for higher Ti/Te the condition of marginal

instability is displaced to larger beam speed because a larger population of ions is

available at lower velocities, damping waves due to resonant interaction.

Measurements in space plasmas indicate that the temperature ratio varies de-

pending on the observed region. On the magnetotail, measurements made by Clus-

ter spacecraft on slow electron holes, capable of interaction with surrounding ions,

are explained with plasmas composed by species with relative drift whose temper-

ature ratio is in the range 0.89 ≤ Ti/Te ≤ 1.78 [53]. In zones related to the solar

wind, temperature varies in a wide range, 0.1 ≤ Ti/Te ≤ 2.0 [23] and it has been

found that nonlinear IAWs generated by streaming electron-ion plasmas tend to be

observed with higher amplitudes for lower ratios [54].

The use of a high temperature ratio can modify the coupling between IASs and

electron holes. Zhou et al. reported that the coupling is disrupted for high temper-

ature ratios, Ti/Te > 1, as more ions are available in the resonance zone, hence ion

Landau damping becomes stronger and the soliton decays, yielding a free electron
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hole [43]. In the investigation of electrostatic instabilities, in the context of broad-

band and narrowband electrostatic noise signals obtained by the Geotail spacecraft,

Omura et al. [55] studied simulations of bi-stream instability, using an ion core with

an electron beam with mass ratio mi/me = 100, finding that hot ions yield electro-

static solitary waves, whereas for cold ions lead the electrostatic potential to decay

into several IAWs.

In the light of this exposition, the same configuration in the work of Xu et al. is

used in this work to study further effects of mobile, heavy, positively charged ions

in an unmagnetized, collisionless, Maxwellian electron and ion plasma without rel-

ative drift, for the cases of damped and nonlinear perturbations. For the former, it

is proposed to study the velocity dependency of both species around the resonance

zones with an emphasis on lower velocities, around the phase velocity of the excited

IAW, vφ,IA, and how each of the composing species is affected by the propagation of

both waves.

In the nonlinear case, although several of the previously described works involve

relative drift between the electron and ion distributions, it is interesting to determine

whether the energy injected by a large amplitude initial monochromatic perturbation

in the plasma allows for the development of nonlinear dynamics in the distribution of

the ions. If such nonlinear behavior does occur, it is proposed to study the structures

and waves that might develop, their interaction with the electrons distribution, the

effect of the observed waves on each of the resonant regions in velocity space, and

how microscopic and macroscopic quantities, other than the electric field energy, are

affected by their motion.
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Due to the relevance of the temperature ratio in the dynamics in an electron and

ion plasma in the nonlinear regime, it is of interest to determine the response of the

plasma as the temperature ratio Ti/Te is varied with respect to the isothermal case,

as waves related to collective response of ions are reported to be affected by this

ratio.

1.1 Hypotheses of the work

According to the previously discussed topics and the proposed work, the following

hypotheses are considered. All of them are applied on collisionless, unmagnetized,

driftless plasmas composed by Maxwellian electrons and heavy ions with mass ratio

mi/me = 1836.153 and charge ratio qi/|qe| = 1.0.

1.1.1 Damped perturbations

For the case of amplitudes lower than the critical amplitude for exciting nonlinear

Landau damping of Langmuir waves (εC), (i) a resonance zone is expected to be

found around vφ,IA for the excited k in the distribution function of each species. In

such a resonance region, (ii) both electrons and ions should exhibit opposite behavior

in velocity space, as predicted by the linear theory. (iii) The waves found by Xu et

al. [27], are expected to develop independently and the resonance zone of one wave

is not likely to affect the resonance zone of the other.
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1.1.2 Nonlinear perturbations - isothermal case

Concerning the case perturbations above εC , (i) there should be low frequency sig-

nals due to the presence of ions detectable on other macroscopical quantities, of lower

amplitudes due to the large inertia. (ii) It is expected that ions develop nonlinear

behavior, specifically solitary electrostatic waves involving electron holes and IASs,

rather than ion holes, since the system does not involve streaming. (iii) The obser-

vation of IASs implies that the low frequency dynamics is related to waves coinciding

with the IA branch. (iv) As perturbations in the ions density exhibit lower levels,

a threshold amplitude larger than the threshold for nonlinear Landau damping is

expected.

1.1.3 Nonlinear perturbations - temperature variation

For the case of amplitudes larger than εC and a variation of the initial tempera-

ture ratio Ti/Te, (i) the hypothesized nonlinear regime of the variations of the ions

density for the isothermal case should become intensified if Ti/Te is reduced, and

as a consequence (ii) the tendency of the waves on the IA mode to be less damped

with lower Ti/Te from the linear theory should still hold in this regime, and waves

coinciding with that branch should become more intense. (iii) For higher Ti/Te, it

is expected that electrostatic solitary waves involving electron holes propagate, and

that ion structures become decoupled from the holes or not to couple to them at all.
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1.2 Objectives

1.2.1 General objectives

The general objectives of this work, applied to the addressed plasmas, are (i) to

determine the dynamic effects of the presence of mobile, heavy positively charged

ions on each of the species composing the plasma and to determine whether the

modes found by Xu et al. [27] develop independently from each other, in the case of

damped perturbations. (ii) For the case of nonlinear perturbations, to characterize

the low frequency response of both the ions and electrons distribution, to determine

the threshold amplitude for the low frequency dynamics, and (iii) to determine the

effects of initializing the plasma with different temperature ratios.

1.2.2 Specific objectives

Specific objectives common to all three cases are to estimate the roots of the linear

dispersion relation and to compare them with the respective electric field spectra, to

follow the position averaged distribution functions around the speed vφ,IA estimated

through the linear dispersion relation and to establish a comparison with the case of

immobile ions for the same perturbative amplitudes. For the cases of damped per-

turbations and nonlinear perturbations with Ti/Te = 1.0, other specific objectives

are to use perturbative amplitudes that lead to the same qualitative behavior found

by Xu et al., to estimate correlations in the electrons distribution functions with

the respective case of immobile ions. A common specific objective related to the

nonlinear cases is to follow the distribution functions around possible characteristic

nonlinear structures. To estimate the threshold in the isothermal case, several per-
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turbative amplitudes εe are tested, whereas in the case of the variation of the initial

temperature, temperature ratios Ti/Te both above and below Ti/Te = 1.0 are tested.

1.3 Methodology

1.3.1 Simulations

In order to carry out this work, a simulation study is performed, considering the

kinetic theory, modeling both mobile species through the Vlasov-Poisson system

of equations. For this purpose, a code that solves the system of equations through

symplectic integration is used. Such a code is written in Julia programming language

version 1.3.1, and is part of a library called Vlasova.jl, developed by J. A. Gidi, in

the Physics Department of Universidad de Concepción. Julia is an MIT license open

source, high level syntax language developed for high performance, appropriate for

the simulations required for this work. The computationally expensive simulations

required for this work are performed on a server with 504Gb RAM, processor Intel

Xeon CPU E5-2699 v4 of 44 cores, 2 threads per core and Linux 4.19.0-6-amd64

kernel.

Simulation parameters and domain

The simulations consider one dimensional plasmas only, both in the linear (εe =

1.0× 10−3 and 8.0× 10−3) and nonlinear (εe = 4.0× 10−2) regime of perturbations.

The equilibrium state of the plasma is initially perturbed with a monochromatic

wave (k = 0.4λ−1
De). The plasma is allowed to evolve up to 3000 electron plasma

periods, in order to allow for the development of quasi-stationary dynamics. In the

nonlinear case, several runs are made with lower εe (εe > 1.66 × 10−2). In order to
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observe nonlinear dynamics, simulations require up to 5000 electron plasma periods.

The velocity domain for both species is [−8vTj, 8vTj], where vTj is the initial ther-

mal velocity of the species j, and the domain is large enough to retain the important

physics of the problem, and for the distributions to be nearly zero at the boundaries of

the domain. For simulations lasting 3000 electron plasma periods, Nv = 8192 nodes

are used (εe ≤ 2.0×10−2), which are increased to Nv = 16384 for simulations lasting

up to 5100 electron plasma cycles (2.0×10−2 < εe ≤ 1.72×10−2), and to Nv = 32768

for up to 6000 electron plasma cycles (1.72× 10−2 < εe ≤ 1.66× 10−2). The number

of nodes is duplicated because the fine structure in velocity space reaches the sim-

ulation grid in the electrons distribution for long term simulations with Nv = 8192.

The same observation applies for Nv = 16384. It is noted that the use of Nv = 16384

in simulations lasting 3000 electron plasma periods does not change the results sig-

nificantly, as test runs show.

The position domain is common for both species, [0, Lx] with Lx = 5πλDe and

considers periodic boundary conditions with the same number of nodes for all sim-

ulations, Nx = 512. Test simulations indicate that a higher number, Nx = 1024,

retains the same features as with the half.

1.3.2 Linear dispersion relation

The determination of roots of the linear dispersion relation is also performed by a

main code run on Julia language which solves the dispersion relation through the

Muller method. The latter is written in Python and was developed by R. E. Navarro,

in the Physics Department of Universidad de Concepción. These codes are run on a
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Dell notebook model Inspiron 14 7472 with 8 Gb RAM, processor Intel Core i5-8250U

CPU and Linux 4.14.175-1 Manjaro kernel.

1.3.3 Scope and limitations

The work is focused in one dimensional collisionless, non-drifting, unmagnetized,

Maxwellian electron and ion plasmas with fixed mass and charge ratios, and with

electrostatic perturbations. Although the configuration of Maxwellian species with-

out drift is basic, it is widely used in theoretical plasma physics and to model plasmas

in laboratory as well as in space environment. Hence, it is expected to contribute to

the spectrum of phenomena related to this distribution.

The work focuses on the development of nonlinear structures in position and

phase space through the evolution of the distribution function fj from each species,

allowing for the occurrence of fully kinetic phenomena, for a wide range of pertur-

bation amplitudes, from the linear damped regime to large nonlinear amplitudes.

Other nonlinear structures are observed through the evolution of the particle den-

sity with their respective spectra compared to the linear dispersion relation, and the

averaged particle distribution functions around resonance zones.

Concerning the position domain, it is noted that due to its extension, the prop-

agating modes cannot develop wavelengths larger than Lx = 15.7080λDe, limiting

the observed phenomena to sizes from the order of the electron Debye length to ten

electron Debye lengths, which, although restricted, still allows for the development

of short wavelength collective phase space structures such as electron holes.
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For the analysis, the electrons density and the electrostatic potential are filtered

in frequency. As Fourier transforms are used to apply the frequency filter and as the

signals are not periodic in the time dependency, Gibbs phenomenon occurs in the

initial instants of the filtered quantities remaining inaccessible up to a hundred of

electron plasma cycles. Therefore, the evolution of these quantities is inferred from

other quantities which are accessible at those instants, such as the position averaged

distribution functions and the ions density.

1.4 Organization of the work

The present work is organized as follows. In Chapter 2, kinetic theory is thoroughly

described and the linear dispersion relation for waves is found. Also, a descrip-

tion of nonlinear structures is given. In Chapter 3, the methods for the numerical

integration of the Vlasov-Poisson equations are shown. In Chapter 4 the case of

monochromatic perturbation with low enough amplitude to yield damped waves is

studied considering the perturbation of the distribution of the ions. The excited

modes are identified in the electric field spectrum and in the distribution functions,

the resonance zone related to the slow mode is studied and compared with the case

of immobile ions. In Chapter 5, the nonlinear case is studied, finding the formation

and propagation of slow electron holes and solitary ion waves, which couple and lead

to the formation of secondary structures at larger times. Chapter 6 studies the same

problem for different temperature ratios, finding changes in the observed structures

in the ions distribution, the excited waves, but retaining the propagation of slow

electron holes. Finally, Chapter 7 summarizes the previous results and provides the

conclusions of this work.
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1 Introducción

En la investigación de ondas de plasma se hacen aproximaciones según las masas

de las especies que lo componen, y las escalas espacial, temporal y de velociddes de

los fenómenos de interés. Mientras que en algunos casos sólo se mueven las especies

más livianas, la adición de una especie pesada móvil en el plasma corresponde a un

modelo más realista. Se ha demostrado que la presencia de iones móviles pesados

(protones), con carga positiva y con distribución Maxwelliana, modifica la evolución

del plasma no colisional y no magnetizado durante el amortiguamiento lineal de

Landau de ondas de Langmuir en plasmas Maxwellianos de electrones inicialmente

isotérmicos, explorando la desidad de part́ıculas y la enerǵıa del campo eléctrico,

pero sin explorar la dependencia de velocidad. En el régimen no-lineal del mismo

plasma, la amplitud del modo excitado indica que los efectos de iones móviles se

reducen. Sin embargo, esto no descarta alguna dinámica relacionada con las escalas

de los iones. Por lo tanto, el presente trabajo aborda cómo la presencia de iones pe-

sados, móviles con carga positiva modifican la dinámica de un plasma Maxwelliano

de electrones en el rango de las escalas de iones para los reǵımenes lineal y no-lineal

de perturbaciones, y caracterizar los fenómenos que surgen por la introducción de

tal especie.
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De las ecuaciones de movimiento de una part́ıcula j cualquiera del plasma, la

escala de tiempo de su dinámica se estima como τj ∼ mj, donde mj es la masa de

la part́ıcula de la part́ıcula. Por lo tanto, el movimiento de las especies más pesadas

ocurre en una escala de tiempo más larga. La existencia de escalas de tiempo se

puede observar en Fig.1.1, donde se muestran las trayectorias de dos part́ıculas de

masa m1 = me y m2 = 1836me, con me la masa del electrón. Ambas están si-

multáneamente sometidas a una fuerza debido a una onda de Langmuir (LW), de

corta escala de tiempo, y una onda ión acústica (IAW) de baja amplitud, de escala

de tiempo más larga, con el mismo número de onda. La part́ıcula ligera es resonante

con la onda de Langmuir y la part́ıcula pesada lo es con la IAW. La Fig.1.1(a) mues-

tra que el movimiento de una part́ıcula pesada puede despreciarse durante un corto

intervalo de tiempo y el forzamiento de baja frecuencia es despreciable.

Figure 1.1: Variaciones de trayectorias de part́ıculas respecto del equilibrio, xeq,i(t) =
x0,i + v0,it, para una part́ıcula ligera, m1, y una part́ıcula pesada, m2, impulsadas
por una LW y una IAW de baja amlpitud. La part́ıcula m2 no se desv́ıa siginificati-
vamente con respecto de su trayectoria de equilibrio (a). A tiempos más largos (b),
las desviaciones no son despreciables.

La aproximación de especies pesadas móviles consideran part́ıculas livianas como
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móviles y las especies restantes son supuestas infinitamente pesadas y estáticas,

como el caso t́ıpico de un plasma de electrones y iones. Muchos estudios usan esta

aproximación con iones uniformes, abordando fenómenos cuya frecuencia y rangos

de velocidad son tales que las especies pesadas no contribuyen a la evolución del

plasma, coincidiendo con experimentos y observaciones: trabajos tan fundamentales

como aquellos referentes al amortiguamiento no colisional lineal y no-lineal de Lan-

dau de LWs en plasmas de electrones[1–7], suponen iones inmóviles, con trabajos

experimentales confirmando el comportamiento predicho [8]. En fenómenos cŕıticos

en f́ısica de plasmas [9], se ha mostrado que la presencia de iones móviles no afecta

al comportamiento cŕıtico del amortiguamiento de Landau de LWs [10]. Otros tra-

bajos que consideran iones inmóviles se enfocan en la propagación de estados de

espacio fase no-lineales tales como ondas BGK, soluciones anaĺıticas del sistema de

Vlasov-Poisson, que consisten en estructuras cuasi-estacionarias, electrostáticas que

involucran atrapamiento de part́ıculas [11], tales como agujeros de electrones (elec-

tron holes) [12], o el ruido electrostático de banda ancha en magnetósferas terrestres

y planetarias, en las que el plasma es modelado como núcleos calientes y fŕıos de

electeones y un haz de electrones, con el fin de excitar modos electrón acústicos [13].

Sin embargo, ciertos fenómenos pueden tener lugar en escalas de tiempo más

largas y la dinámica de las especies pesadas no es despreciable, como se muestra en

Fig.1.1(b). En tales casos, la dinámica de las especies pesadas debe incluirse en el

sistema de ecuaciones, ya que su presencia puede modificar la dinámica observada,

resultando en una descripción más completa del fenómeno o introduciendo fenómenos

adicionales, inadvertidos en escalas de tiempo cortas. En el contexto de experimen-

tos láser, por ejemplo, en configuraciones de fusión nuclear como el confinamiento
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inercial de plasmas de fusión, en que una luz láser es dirigida hacia un objetivo

dentro de una cavidad para encenderlo [14]. El proceso involucra una inestabilidad

de scattering estimulado de Brillouin, en que una onda electromagnética incidente,

producida por un láser, decae en una IAW y en una onda electromagnética en la

dirección opuesta a la incidente [15]. Tal proceso es indeseable en confinamiento

inercial, ya que una fracción de la radiación enviada al objetivo se refleja. Se han

propuesto distintos mecanismos relacionados a la componente IAW para reducir esta

inestabilidad, con el fin de reducir la refleción y aumentar la absorción de ondas elec-

tromagnéticas, tales como la excitación de atrapamiento de iones [16], calentamiento

en la distribución de iones [17], amortiguamiento de Landau por iones [18], adición

de múltiples especies iónicas para potenciar el amortiguamiento de Landau por iones

[19], y saturación a través de decaimientos paraméticos iónicos [20].

En plasmas astrof́ısicos, mediciones in situ de campos eléctricos y espectros real-

izados por el satélite Freja y el cohete sonda SCIFER en la región auroral terrestre

indican que la modulación de paquetes de LWs observados alĺı, correspondientes a

emisiones de banda corta, se explican por scattering de modos whistler y lower hy-

brid, relacionados con la dinámica de protones; estas ondas se incluyen para dar

cuenta en señales de baja frecuencia encontradas en procesos de modulación [21].

Mediciones in situ en la región de aceleración paralela auroral hechas por el satélite

FAST en 1997 indican la presencia de peaks de frecuencia alrededor de 300[Hz], corre-

spondientes al rango de la frecuencia hidrógeno-ión acústica, modulaŕıan la amplitud

de paquetes de onda electrón ac’usticas [22].

También se encuentran direcetamente ondas de baja frecuencia en plasmas del
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viento solar, relacionadas a las llamadas fuentes solares tipo III, descubiertas en 1950,

que corresponden a radioemisiones provenientes del viento solar mismo, aśı como en

el sistema solar, proporcionando información sobre las condiciones del medio de

fondo, y de la aceleración y transporte de electrones [23]. Observaciones espectrales

de la sonda Galileo de 1990 indican la existencia de tres peaks intensos, dos de alta

frecuencia cercanos a 24[kHz], correspondientes a ondas de Langmuir, y uno de baja

frecuencia alrededor de 400[Hz], identificados como IAWs [24].

El mecanismo de generación de radioemisiones tipo III ha sido discutido por

Cairns [25], llevado por discrepancias entre observaciones y trabajos teóricos. Se han

considerado dos mecanismos, el acoplamiento no-lineal, resonante onda-onda cono-

cido como decaimiento electrostático de Langmuir, consistente en el decaimiento de

una LW primaria en una IAW y scattering por iones térmicos, en el que iones in-

dividuales y la respuesta de su nube de electrones apantallante están fuera de fase

debido a la diferencia de masas, produciendo scattering de LWs entrantes [26]. Se

argumenta que para que el scattering ocurra, la respuesta colectiva de los iones debe

inhibirse. Tal inhibición tiene lugar si la escala de tiempo de esta respuesta es corta

comparada con la del scattering y si la escala de tiempo del scattering es mucho más

larga que la escala de tiempo del proceso más lento y culmina varios ciclos después

[25]. De acuerdo a mediciones, los niveles de enerǵıa requeridos para el scattering no

pueden ocurrir, y en regiones con razón de densidad de enerǵıa de campo eléctrico

y enerǵıa térmica de plasma W . 10−5, se espera que ocurra decaimiento de Lang-

muir relacionado con radioemisiones tipo III; el scattering por iones térmicos seŕıa

relevante sólo en regiones con W . 10−3.
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Se han estudiado oscilaciones de electrones en la presencia de iones pesados

móviles con carga positiva a través de simulaciones cinéticas. Xu et al. estudi-

aron el régimen linear del amortiguamiento de Landau en un plasma no colisional,

no magnetizado, de electrones y iones Maxwellianos, excitando sólo el primer modo.

En este trabajo, se encuentra que iones (mi/me = 1836), con especias inicialmente

isotérmicas Ti/Te = 1.0 con qi/|qe| = 1.0, notoriamente afectan el amortiguamiento

lineal, observado en la amplitud del modo excitado (|E(m = 1)|) en Fig.1.2. Para

amplitudes de perturbación en la distribución de electrones (εe) en el régimen amor-

tiguado [Figs.1.2 (c) and (d)], ocurre el amortiguamiento de Landau usual (com-

parado con el caso de iones inmóviles) hasta t ' 100, cuando oscilaciones amor-

tiguadas lentas comienzan a dominar y se observa una importante desviación re-

specto del caso con iones inmóviles.

Se identifican dos tipos de ondas: una LW, con frecuencia y amortiguamientos

estimados con la relación de dispersión lineal del sistema de Vlasov-Poisson, y una

IAW, con frecuencia estimada con la aproximación fluida y amortiguamiento esti-

mado por medio de la relación de dispersión linear del sistema de Vlasov-Poisson.

Mientras la frecuencia de |E(m = 1)| cmabia, las variaciones de la densidad de

electrones, δne, se reducen al mismo orden que las de la densidad de iones, δni, y

exhiben la misma dependencia en los dominios de posición y tiempo con oscilaciones

de baja frecuencia para t > 100, indicando que los electrones terminan por seguir

el movimiento de los iones. Sin embargo, en el trabajo de Xu et al. no se estudian

detalles de la dependencia de velocidades alrededor de las zonas de resonancia involu-

cradas en la propagación de estas ondas, ni cómo cada especie del plasma contribuye

a su desarrollo.
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Figure 1.2: Evolución del modo excitado del campo eléctrico |E(m = 1)| para difer-
entes amplitudes de perturbación (a) εe = 1.0 × 10−1, (b) εe = 1.0 × 10−2, (c)
εe = 8.0×10−3 y (d) εe = 3.0×10−3, para iones móviles e inmóviles, con Ti/Te = 1.0.
Gráficos corteśıa de Xu et al. [27].

Con amplitudes de perturbación por encima de la amplitud cŕıtica para excitar el

amortiguamiento no-lineal de LWs [see Fig.1.2 (a)], dominan oscilaciones rápidas y

la dinámica de los iones no puede distinguirse a través de la evolución de |E(m = 1)|.

Aunque en Ref.[27] se afirma que pueden ocurrir perturbaciones iónicas, seŕıan de-

spreciables en comparación con aquellas de los electrones, sin más discusión al re-

specto.
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Se han observado estructuras coherentes de larga duración en el espacio de posi-

ciones y en el espacio de fases en la presencia de iones móviles con carga positiva en

plasmas no colisionales y no magnetizados de electrones y iones Maxwellianos, como

agujeros de iones (ion holes), aśı como interacciones de iones con estructuras de la

misma naturaleza, tales como electron holes.

Un ion hole consiste en iones atrapados alrededor de un mı́nimo local de potencial

electrostático [12, 28], repeliendo electrones a su alrededor. En este caso, los elec-

trones tiene una distribución de Boltzmann, es decir, responden tan rápidamente que

desarrollan configuraciones de equilibrio instantáneo, y se requiere que sean lo su-

ficientemente camlientes como para producir presión para sostener la despoblación

de iones en el centro de la estructura [29]. Se han medido con alta resolución en

la región auroral terrestre, por medio de la sonda FAST, propagándose con veloci-

dades consistentes con el modo IA [30], y también se han encontrado en simula-

ciones de Vlasov-Poisson de plasmas no magnetizados de electrones y haz de iones

Maxwellianos excitando inicialmente el electron hole, después del crecimiento de var-

ios electron holes pequeños, considerando una razón de masas baja (mi/me = 4) [31].

Otras configuraciones que producen un ion hole son colocar este estado directamente

en el instante inicial en la distribución de iones en simulaciones [32], inestabilidad

de dos corrientes ión-ión [33], y en general, configuraciones inestables que involucran

corrientes contra-propagantes de iones [29].

Los solitones se definen como estructuras localizadas que se propagan sin pérdida

o dispersión, evolucionando desde ondas de gran amplitud [34], y se observan en

el potencial electrostático o como pulsos compresivos en la densidad de la especie
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que sustenta su propagación, que resulta de acoplamiento no-lineal sucesivo entre las

ondas excitadas limitadas por la dispersión de ondas cuya velocidad de fase difiere

importantemente de la de la onda fundamental [35]. Se consideran solitiones ión

acústicos (IASs). Estas estructuras se observan en la densidad de los iones, involu-

crando IAWs [36]. Basado en el modelo fluido, se encuentra que se propagan con

velocidades vS en el rango 1 < vS/cS . 1.6 [35], donde cS es la velocidad de onda ión

acústica del modelo fluido. Se han incluido elementos cinéticos en su modelación,

tales como amortiguamiento de Landau por iones y electrones, y atrapamiento de

electrones [37]. Estudios de simulación usando modelos h́ıbridos (iones cinéticos y

electrones con distribución de Boltzmann) y modelos puramente cinéticos, muestran

que los IASs no siempre podŕıan reneter sus propiedades inalteradas: IASs inestables

podŕıan generar varias IAWs [38], o crecer en amplitud para grandes perturbaciones

iniciales [39]. Propiedades como la velocidad de propagación pueden modificarse

con atrapamiento de electeones. Pueden notarse más diferencias para velocidades

de propagación mayores a cS [40]. Esto implica que los solitones interactúan e in-

cluso pueden acoplarse a electron holes, como se ha reportado en varios estudios

[41–45], propagándose con velocidades en el rango indicado. Sin embargo, se re-

quiere una cierta perturbación en la densidad de los iones para que puedan excitarse

solitones y acoplarse [43]. Otros trabajos que involucran acoplamiento electron hole-

solitón ión aún identifican al solitón como IASs, aunque se propaguen con velocidades

vS = 4.06cS, fuera del rango predicho [46].

Hutchinson y Zhou han desarrollado una teoŕıa para la propagación de electron

holes acelerados considerando interación con especies iónicas pesadas usando un en-

foque cinemático, enfocándose en el intercambio de momentum [47, 48]. En este
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caso, los iones interactúan con el hole intercambiando momentum a través de re-

flexión si el potencial de atrapamiento es lo suficientemente intenso, y pasando a

través de él en el caso opuesto, tendiendo a acumular iones en la región de menor

densidad electrónica. Por medio de simulaciones de plasmas no colisionales, no mag-

netizados y electrostáticos con deriva relativa no nulo entre especies, razón de masas

mi/me = 1836 y una razón de temperatura Ti/Te = 2.5 × 10−2, los autores obser-

van el mismo acoplamiento entre electron holes y solitones de iones discutidos por

Saeki y Rasmussen [44] y Saeki y Genma [45]. Ellos también muestran que los holes

rápidamente reacciones ante cambios en la distribución de iones. Para electron holes

más rápidos, eñ grado de interacción con los iones es relativamente pequeño y puede

despreciarse [48].

Trabajos que inclucran plasmas no colisionales, no magnetizados de electrones y

iones con deriva relativa, mi/me = 1836 y Ti/Te = 0.1, han mostrado que electron

holes lentos interactúan con la distribución de iones, tendiendo a producir pertur-

baciones localizadas en la última, como en el contexto de turbulencia subcŕıtica en

plasmas, donde se ha mostrado que la excitación de un electron hole en condiciones

de estabilidad linear puede llevar a la excitación de electron holes debido a la dep-

dendencia de la perturbación inicial [46, 49]. Se observa que el electron hole excitado

acelera a velocidades más rápidas que cS debido a que se excitan IAWs en la densidad

de iones, atribuidas a IASs. Se muestra que los holes más rápidos en este rango de

velocidades se propagan establemente [49], y se indica que el hole permite acumu-

lación de iones en el interior de la región de atrapamiento, como discuten Hutchinson

y Zhou [47].

29



Considerando el mismo sistema con una razón de masas baja, mi/me = 4, un

drift relativo inicial y especies inicialmente isotérmicas pero abordando el mecan-

ismo de excitación de IAWs por medio de corriente in plasmas sin colisiones, Lesur

et al. [31] excitan modos no-lineales relacionados con estructuras del espacio de fase

que involucran intercambio de momentum y enerǵıa. El desarrollo de electron holes

primarios eventualmente conduce a la generación de holes de menor tamaño, resul-

tando en turbulencia en el espacio de fase con un conjunto de estructuras a medida

que el hole primario deja un rastro de densidad negativa y es acelerado. Se reporta

que los electron holes crecen más fácilmente cuando hay un solapamiento entre las

distribuciones de ambas especies.

Para razones de masa más altas, mi/me = 29500, especies inicialmente isotérmicas

con drift relativo, Eliasson y Shukla [50] estudiaron la interación de electron holes con

el plasma a través de simulaciones de Vlasov-Poisson de un plasma con electrones-

iónes de ox́ıgeno Maxwellianos inicializando los electrones con un hole estático de

Schamel. El potencial positivo desarrollado por el hole repele iones de baja enerǵıa,

produciendo una cavidad en la densidad de iones, y por lo tanto un potencial nega-

tivo que eventualmente repele al hole, quedando estática la cavidad de iones.

La razón de temperatura entre especies es un parámetro importante en f́ısica de

plasmas. En la aproximación lineal, la tasa de amortiguamiento y la propagación

de IAWs en plasmas con electrones e iones Maxwellianos dependen directamente

de Ti/Te. Las IAWs son favorecidas con iones fŕıos, dado que la tasa de amor-

tiguamiento tiende a cero [51], debido a que hay una menor cantidad de iones reso-

nantes disponibles para interacción onda-part́ıcula. Por otro lado, cuando esta razón
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tiende a la unidad, la onda es fuertemente amortiguada para cualquier número de

onda, porque hay más iones disponibles para tal interacción. En el trabajo de Nor-

gren et al. [52], la relación de dispersión lineal es usada para caracterizar inestabili-

dades lineales en un electrones y iones con un haz de electrons, todos Maxwellianos,

en el contexto de ondas solitarias electrostáticas en la magnetósfera. Se muestra que

para Ti/Te más altos, la condición de inestabilidad marginal se desplaza a velocidades

de haz más grandes, porque hay una población de iones más grande a velocidades

más bajas, amortiguando ondas por interacción resonante.

Mediciones en plasmas espaciales indican que la razón de temperatura var’ia de-

pendiendo de la región observada. En la magnetocola, mediciones realizadas sobre

electron holes lentos, por la sonda Cluster, capaz de interactuar con iones de alrede-

dor, se explican con plasmas compuestos por especies con drift relativo cuya razón de

temperatura está en el rango 0.89 ≤ Ti/Te ≤ 1.78 [53]. En zonas relacionadas con el

viento solar, la temperatura vaŕıa en un amplio rango, 0.1 ≤ Ti/Te ≤ 2.0 [23] y se ha

encontrado que IAWs no-lineales generadas por plasmas con corrientes de electrones

y iones tienden a observarse con mayor amplitud con razones de temperatura más

bajas [54].

El uso de una razón de temperatura alta puede modificar el acoplamiento entre

IASs y electron holes. Zhou et al. reportaron que el acoplamiento se rompe con ra-

zones de temperatura alta, Ti/Te > 1, ya que hau más iones en la zona de resonancia,

por lo que el amortiguamiento de Landau por iones se vuelve más fuerte y el solitón

decae, obteniéntose un eletron hole libre [43]. En la investigación de inestabilidades

electrostáticas, en el contexto de señales del ruido electrostático de banda ancha
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y corta obtenidas por la sonda Geotail, Omura et al. [55] estudiaron simulaciones

de inestabilidad de dos corrientes (bi-stream instability), usando un núcleo de iones

con un haz de electrones con razón de masa mi/me = 100, encontrando que iones

calientes producen ondas solitarias electrostáticas, mientras que iones fŕıos llevan al

potencial electrostático a decaer en varias IAWs.

A la luz de esta exposición, en este trabajo se utiliza la misma configuración

usada en el trabajo de Xu et al. para estudiar más efectos de iones móviles pesados

con carga positiva en plasmas no magnetizados y no colisionales compuestos por

electrones y iones Maxwellianos sin deriva relativa, para los casos de perturbaciones

amortiguadas y no-lineales. For el primero, se propone estudiar la dependencia de

velocidad del ambas especias alrededor de las zonas de resonancia con énfasis en las

velocidades bajas, alrededor de la velocidad de fase de las IAWs excitadas, vφ,IA, y

cómo cada una de las especies que componen el plasma es afectada por la propa-

gación de ambas ondas.

En el caso no-lineal, aunque muchos de los trabajos previamente descritos in-

volucran deriva relativa entre las distribuciones de electrones y iones, es interesante

determinar si la enerǵıa inyectada por una perturbación inicial de gran amplitud

en el plasma permite el desarrollo de din’amica no-lineal en la distribución de los

iones. Si tal comportamiento no-lineal ocurre, se propone estudiar las esturcturas y

ondas que pudieran desarrollarse, su interacción con la distribución de los electrones,

el efecto de las ondas observadas en las regiones resonantes en el espacio de veloci-

dades, y cómo cantidades microscópicas y macroscópicas, además de la enerǵıa del

campo eléctrico, resultan afectadas por su movimiento.
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Debido a la relevancia de la razón de temperatura en la dinámica de un plasma

de electrones y iones en el régimen no-lineal, es de interés determinar la respuesta

del plasma a medida que se vaŕıa la razón de temperatura Ti/Te con respecto al caso

isotérmico, dabido a que las ondas relacionadas con la respuesta colectiva de los iones

es afectadas por esta razón.

1.1 Hipótesis del trabajo

De acuerdo a los temas previamente discutidos y el trabajo propuesto, se consideran

las siguientes hipótesis. Todas ellas se aplican a plasmas no colisionales, no mag-

netiizados, sin deriva relativa y compuestos por electrones y iones Maxwellianos con

razón de masa mi/me = 1836.153 y razón de carga qi/|qe| = 1.0.

1.1.1 Perturbaciones amortiguadas

Para el caso de amplitudes inferiores a la amplitud cŕıtica requerida para excitar el

amortiguaminto no-lineal de Landau de LWs (εe,C) [56], (i) se espera encontrar una

zona de resonancia alrededor de vφ,IA para el número de onda excitado en la función

de distribución de cada especie. En tal región de resonancia, (ii) ambas especies

debeŕıan exhibir un comportamiento opuesto en el espacio de velocidades, según se

estima con la teoŕıa lineal. (iii) Se espera que Las ondas encontradas por Xu et al.

[27] se desarrollen de forma independiente y que la zona de resonancia de una onda

es poco probable que afecte la zona de resonancia de la otra.
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1.1.2 Perturbaciones no-lineales - caso isotérmico

Con respecto al caso de perturbaciones por sobre εe,C , (i) debiera hacer señales de

baja frecuencia debido a la presencia de los iones, detectables en otras cantidades

macroscópicas, de amplitudes más bajas debido a su mayor inercia. (ii) Se espera que

los iones desarrollen un comportamiento no-lineal, espećıficamente ondas solitarias

electrostáticas que involucren electron holes y IASs, en lugar de ion holes, debido a

que el sistema no involucra corrientes. (iii) La observación de IAAs implica que la

dinámica de baja frecuencia está relacionada con ondas que coinciden con la rama

IA. (iv) Dado que las perturbaciones en la densidad de iones tiene niveles más bajos,

se espera que esta dinámica requiera un umbral de perturbación más alto que en el

caso del amortiguamiento no-lineal de Landau.

1.1.3 Perturbaciones no-lineales - variación de temperatura

Para el caso de amplitudes de perturbación mayores que εC y una variación de

la razón de temperatura inicial Ti/Te, (i) el régimen no-lineal hipotetizado en las

variaciones de la densidad de iones en el caso isotérmico debeŕıa intensificarse si se

reduce Ti/Te, y como consecuencia (ii) la tendencia de las ondas en el modo IA de

ser menos amortiguada con Ti/Te más pequeño de la teoŕıa lineal debeŕıa mantenerse

en este régimen, y las ondas que coinciden con esa rama debeŕıan intensificarse. (iii)

Para Ti/Te más altos, se espera que se propaguen ondas solitarias electrostáticas

que involucren electron holes, y que las estructuras relacionadas con los iones se

desacoplen de ellos o que no haya acopplamiento en lo absoluto.

34



1.2 Objetivos

1.2.1 Objetivos generales

Los objetivos generales de este trabajo, aplicados al plasma objetivo del estudio, son

(i) determinar los efectos dinámicos de la presencia de iones móviles pesados con

carga positiva en cada una de las especies que componen el plasma y determinar si

los modos encontrados por Xu et al. [27] se desarrollan uno independiente del otro, el

caso de perturbaciones amortiguadas. (ii) Para el caso de perturbaciones no-lineales,

se busca caracterizar la respuesta de baja frecuencia de ambas especies, determinar

la amplitud de perturbación umbral para la dinámica de baja frecuencia y (iii)

determinar los efectos de inicializar el plasma con diferentes razones de temperatura.

1.2.2 Objetivos espećıficos

Son objetivos espećıficos comunes para los tres casos estimar las ráıces de la relación

de dispersión lineal y compararlas con los espectros del campo eléctrico respectivos,

seguir las funciones de distribución promediadas en posiciones alrededor de la ve-

locidad vφ,IA estimada por medio de la relación de dispersión lineal y establecer

una comparación con el caso de iones inmóviles con la misma amplitud de per-

turbación. Objetivos espećıficos para los casos de perturbaciones amortiguadas y

no-lineales inicialmente isotérmicas Ti/Te = 1.0 son usar amplitudes de perturbación

que conduzcan cualitativamente al mismo comportamiento encontrado por Xu et al.,

estimar correlaciones en las funciones de distribución de los electrones con caso re-

spectivo de iones inmóviles. Un objetivo espećıfico común a los casos no-lineales es

seguir las funciones de distribución alrededor de posibles estructuras no-lineales car-
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acteŕısticas. Con el fin de estimar la amplitud umbral en caso isotérmico, se prueban

varias amplitudes de perturbación εe are tested, mientras que en el caso de variación

de tempertura inicial, se prueban razones de temperatura Ti/Te por encima y por

debajo de Ti/Te = 1.0.

1.3 Metodoloǵıa

1.3.1 Simulaciones

Para llevar a cabo este trabajo, se realiza un estudio de simulaciones consideranto

teoŕıa cinética, modelando ambas especies móviles a través del sistema de ecuaciones

de Vlasov-Poisson. Para este propósito, se usa un código que resuelve el sistema de

ecuaciones a través de integración simpléctica. Tal código está escrito en lenguaje

de programación Julia vesión 1.3.1, y es parte de una libreŕıa llamada Vlasova.jl,

desarrollada por J. A. Gidi, en el Departamento de F́ısica de la Universidad de

Concepción. Julia es un lenguaje con licencia de código abierta MIT y śıntaxis de

alto nivel, desarrollado para alto rendimiento, apropiado para las simulaciones que

se requieren en este trabajo. Las simulaciones, computacionalmente demandantes

requeridas para este trabajo se realizan en un servidor con 504 Gb de RAM, proce-

sador Intel Xeon CPU E5-2699 v4 de 44 núcleos, 2 hilos por núcleo y kernel Linux

4.19.0-6-amd64.

Parámetros de la simulación y dominios

Las simulaciones consideran plasmas unidimensionales, tanto para el régimen lin-

eal (εe = 1.0 × 10−3 y 8.0 × 10−3) como no-lineal de perturbaciones (εe = 4.0 ×

10−2). El estado de equilibrio del plasma es inicialmente perturbado con una onda
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monocromática (k = 0.4λ−1
De). Se permite que el plasma evolucionen hasta 3000 ciclos

de oscilación de plasma de electrones, con el fin de permitir el desarrollo de dinámica

cuasi-estacionaria. En el caso no-lineal, se realizan varias simulaciones con ampli-

tudes εe más bajas (εe > 1.66× 10−2). Con el fin de observar la dinámica no-lineal,

las simulaciones requieren hasta 6000 ciclos de oscilación de plasma de electrones.

El dominio de velocidades para ambas especies es [−8vTj, 8vTj], donde vTj es la

velocidad térmica inicial de la especie j, y el dominio es lo suficientemente largo

como para retener la f́ısica importante del problema, y para que las distribuciones

sean aproximadamente cero en el borde del dominio. Para simulaciones que du-

ran 3000 ciclos de oscilación de plasma de electrones, se usan Nv = 8192 nodos

(εe ≤ 2.0 × 10−2), los que son incrementados a Nv = 16384 para simulaciones que

duran hasta 5100 ciclos de oscilación de plasma de electrones (2.0 × 10−2 < εe ≤

1.72× 10−2), y a Nv = 32768 para hasta 6000 ciclos de oscilación de plasma de elec-

trones (1.72 × 10−2 < εe ≤ 1.66 × 10−2). El número de nodos es duplicado porque

la estructura fina en el espacio de velocidades alcanza la grilla de la simulación en

la distribución de electrones para simulaciones de larga duración con Nv = 8192. La

misma observación se hace para Nv = 16384. Se hace notar que el uso de Nv = 16384

en simulaciones que duran 3000 ciclos de oscilación de plasma de electrones no cam-

bia significativamente los resultados, según simulaciones de prueba.

El dominio de posiciones es común a ambas especies, [0, Lx] con Lx = 5πλDe y

considera condiciones de borde periódicas con el mismo número de nodos para todas

las simulaciones, Nx = 512. Simulaciones de prueba indican que un número mayor,

Nx = 1024, tiene las mismas caracteŕısticas que con la mitad.
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1.3.2 Relación de dispersión lineal

La determinación de las ráıces de la relación de dispersión lineal también se lleva

a cabo con un código principal realizado en lenguaje Julia, que resuelve la relación

de dispersión por medio del método de Muller. Este último está escrito en lenguaje

Python y fue desarrollado por R. E. Navarro, en el Departamento de F́ısica de la

Universidad de Concepción. Estos códigos se hacen correr en un computador portátil

Dell modelo Inspiron 14 7472 con 8 Gb de RAM, procesador Intel Core i5-8250U

CPU y kernel Linux 4.14.175-1 Manjaro.

1.3.3 Alcance y limitaciones

Este trabanjo está enfocado en plasmas no colisionales, sin deriva, no magnetizados

compuestos por electrones e iones Maxwellianos con razón de masa y carga fijas, y con

perturbaciones electrostáticas. Aunque la configuración de especies Maxwellianas sin

deriva es básica, es ampliamente utilizada en f́ısica teórica de plasmas y para modelar

plasmas de laboratorio aśı como en plasmas en ambientes espaciales. Por lo tanto,

se espera contribuir al espectro de fenómenos relacionados a esta distribución.

Este trabajo se enfoca en el desarrollo de estructura no-lineales en el espacio

posiciones y de fase a través de la evolución de la función de distribución fj de

cada especie, permitiendo que ocurran fenómenos completamente cinéticos, para

un amplio rango de amplitudes perturbación, desde el régimen lineal amortiguado,

hasta grandes amplitudes no-lineales. Se observan otras estruturas no-lineales en la

evolución de la densidad de part́ıculas y sus espectros respectivos comparados con la

relación de dispersión lineal, y en las funciones de distribución promediadas alrede-
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dor de las zonas de resonancia.

Con respecto al dominio de posiciones, se debe notar que debido a su extensión,

los modos que se propagan no pueden desarrollar longitudes de onda mayores que

Lx = 15.708λDe, limitando los fenómenos que pueden observarse a tamaños en el

orden de una a una decena de longitudes de Debye, las que, aunque restringidas,

aún permiten el desarrollo de estructuras colectivas en el espacio de fases de corta

longitud de onda, tales como electron holes.

Para el análisis, la densidad de electrones y el potencial electrostático se filtran en

frecuencia. Dado que se usan transformadas de Fourier para filtrar en frecuencias y

como la señal no es periódica en la dependencia temporal, ocurre fenómeno de Gibbs

en los instantes iniciales, siendo inaccesibles hasta unos cientos de ciclos de oscilación

de plasma de electrones. Por lo tanto, la evolución de estas cantidades se infiere

de otras cantidades que śı son accesibles a esos instantes, como las distribuciones

promediadas en posición y la densidad de iones.

1.4 Organización del trabajo

El presente trabajo se organiza como sigue. En el Caṕıtulo 2, se describe completa-

mente la teoŕıa cinética y se encuentra una relación de dispersión de ondas. También,

se da una descripción de estructuras no-lineales en el marco de la teoŕıa de Vlasov. En

el caṕıtulo 3, se muestran los métodos numéricos de integración de las ecuaciones de

Vlasov-Poisson. En el Caṕıtulo 4 se estudia el caso de perturbación monocromática

con baja amplitud para obtener ondas amortiguadas. Se identifican los modos exci-

tados en el espectro del campo eléctrico y en la función de distribución, se estudia la
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zona de resonancia relacionada con el modo lento y se compara con el caso de iones

inmóviles. En el Caṕıtulo 5, se estudia el caso no-lineal, encontrando la formación y

propagación de electron holes lentos y ondas solitarias de iones, las que se acoplan

y conduce a la formación de estructuras secundarias a tiempos largos. El Caṕıtulo

6 estudia el mismo problema del caso anterior para diferentes razones de temper-

atura, encontrando cambios in las estructuras observadas en la distribución de los

iones, las ondas excitadas, pero reteniendo la propagación de electron holes lentos.

Finalmente, el Caṕıtulo 7 resume los resultados anteriores y provee las conclusiones

de este trabajo.
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2 Plasma physics kinetic theory and electrostatic

waves

In this chapter, the theoretical framework of the thesis is exposed. First, the Vlasov-

Poisson system, used to model the electrostatic collisionless plasmas addressed in

this work, is stated, followed by a discussion of the involved approximations and

properties of the system of equations. Then, the Vlasov-Poisson system is linearized

to first order to derive the linear dispersion relation for a Maxwellian electron-ion

plasma, allowing to find and describe the modes involved in the addressed problem.

Finally, nonlinear phenomena related to slow the dynamics of electrostatic electron-

ion plasmas are discussed, such as slow electron holes and ion acoustic solitons.

2.1 Vlasov equation and system of equations

Plasmas are physical systems composed of particles mainly interacting through Lorentz

force and collisions. The number of these particles in a plasma is in the order of the

Avogadro number. Solving the individual dynamics of each particle is quickly de-

manding in most numerical situations. A statistical approach that retains the main

features of the system is then desired. The kinetic theory fulfills this requirement,

by dealing with a scalar density for each species composing the plasma, called the
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particle distribution function, instead of individual particles.

The kinetic theory models a non-relativistic, unmagnetized, electrostatic, colli-

sionless plasma through the Vlasov equation (2.1.1), the Gauss law (2.1.2) and the

Faraday-Lenz law (2.1.3),

[
∂

∂t
+ v · ∇+

qj
mj

E · ∇v

]
fj(r,v, t) = 0, (2.1.1)

∇ · E(r, t) =
ρ(r, t)

ε0
, (2.1.2)

∇× E = 0 (2.1.3)

where fj is the distribution function of the species j, depending on position r, velocity

v and tine t, qj and mj are the charge and mass per particle of the species j and ρ

is the charge density, obtained from the distribution functions fj as

ρ =
∑
j

qj

∫
fj d3v. (2.1.4)

The Faraday-Lenz law (2.1.3) implies that the electric field can be written in terms of

a scalar electrostatic potential Φ as −∇Φ = E. This system of equations is referred

to as the Vlasov-Poisson system. Throughout this work, the Vlasov-Poisson system

is used to model the plasmas.

In this plasma, magnetic field is not induced. Although the field E usually de-

pends on time, equation (2.1.3) prohibits the induction of time variations in a mag-

netic field. The electrostatic approximation also implies that the induced electric

field is due solely to variations in the charge density [57]. Ampere-Maxwell law is
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then reduced to J = −ε0∂E/∂t, meaning that currents in the plasma are longitudinal

with respect to E and no transverse currents responsible of magnetic inductions ex-

ists. This condition relaxes the first restriction in the sense that magnetic induction

may occur but its effect is negligible in comparison with the dynamics related to the

electric field alone [57].

Generally, a plasma may exhibit collisions or short range interparticle interac-

tions. In such a case, fj is governed by the Boltzmann equation [35]. For the

plasmas addressed in this work, Boltzmann equation is

[
∂

∂t
+ v · ∇+

qj
mj

E · ∇v

]
fj(r,v, t) =

dfj
dt

∣∣∣∣
C

, (2.1.5)

where the right side is the term of collisions, which is proportional to the frequency

νc at which binary interparticle collisions would occur. Anatoly Vlasov [58] demon-

strated that, in certain plasmas, the collision term is negligible compared to the

characteristic frequency of electron oscillations, the electron plasma frequency ωpe,

concluding that the collision term may be neglected. Most plasmas can be consid-

ered as collisionless. In this condition, equation the Boltzmann equation (2.1.5) is

the Vlasov equation (2.1.1).

2.1.1 Properties of the Vlasov-Poisson system

The Vlasov equation has conserved quantities. The most important one is the distri-

bution function fj for each species when evaluated along their characteristic curves,
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which correspond to particle trajectories. In an electrostatic plasma

dr

dt
= v,

dv

dt
=

qj
mj

E.

Accordingly, equation (2.1.1) is reduced to dfj/dt = 0. Thus, by following the tra-

jectory of each particle composing the plasma at all times, the distribution function

remains unchanged [59]. As a consequence, the number of particles remains constant

in any volume of phase space of the plasma [35]. Generally, any analytic function

of fj is conserved [60], such as the entropy of the plasma. In conjunction with the

electrostatic equations, the total energy of the plasma ET , given by

ET =
1

2

∑
j

mj

∫ ∫
v2fj d3r d3v +

1

2

∫
ε0|E|2 d3r,

where the first term is the total particle kinetic energy and the second term is the

electric field energy, is found to be a conserved quantity by evaluating the second

moment of the Vlasov equation, implying that the energy of the plasma is constantly

transferred between particles and the electric field.

Due to its collisionless character, the evolution of a system modeled by the Vlasov

equation is reversible [57].

2.2 Linear approach to the Vlasov-Poisson system of equa-

tions

The Vlasov-Poisson system is solved through first order perturbative theory. Within

this framework, equilibrium quantities are perturbed. For any quantity G, with its
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equilibrium state G0, the perturbation G1 verifies G = G0 +G1 and |G1| � |G0|. To

first order, equations (2.1.4), (2.1.1) and (2.1.2) are reduced to

[
∂

∂t
+ v · ∇

]
f1,j =− qj

mj

E1 · ∇vf0,j, (2.2.1)

∇ · E1 =
ρ1

ε0
, (2.2.2)

∇× E1 = 0, (2.2.3)

ρ1 =
∑
j

qj

∫
f1,j d3v, (2.2.4)

where (2.2.3) implies that −∇Φ1 = E1. The system considers initial conditions and

periodic boundary conditions. The equilibrium state is assumed to be quasi-neutral,

meaning that ρ0 = 0. By further assuming that Φ0 = 0 at the boundaries, the

equilibrium state has E0(r) = 0.

2.2.1 Linear dispersion relation

The above system of equations can be solved through the characteristic curves

method, according to Ref.[60], by considering that the initial perturbation is adi-

abatically turned on, that is, perturbations are zero at t → −∞ [59] and remain

small at the instant of interest t. The perturbative distribution function is then

f1,j(r,v, t) = − qj
mj

∫ t

−∞
E1(r, t′) · ∇vf0,j(r,v) dt′. (2.2.5)

A Fourier transform in space and Laplace transform in time can be used on this

solution, since the problem considers initial conditions and periodic boundary con-
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ditions,

f1,j,k,ω = − qj
mj

∫ t

−∞
exp [i (k · [r′(t′)− r]− ω[t′ − t])] E1,k,ω · ∇vf0,j(r,v) dt′. (2.2.6)

The conditions for the unperturbed trajectories at t′ = t are r′(t) = r and v′(t) = v

yielding straight lines, r′(t′) = v(t′ − t) + r, v′(t′) = v. The use of a Fourier-

Laplace transform implies that ω and k are constant in time. The variable ω can

be expanded as ω = ωr + iγ, where ωr is the frequency of oscillation of the wave

and γ is its damping or growth rate. Furthermore, quantities exhibit a dependency

a(r, t) = ak exp [i(k · r− ωt)], being ak the amplitude of a. By replacing these

results into the charge density, then into the Gauss law (2.2.2), and considering the

electrostatic potential through E1,k,ω = −ikΦ1,k,ω, the system of equations is reduced

to the form

εk,ωΦ1,k,ω = 0, (2.2.7)

where εk,ω is the dielectric function of the plasma, given by (details are given in

Appendix A.1)

εk,ω = 1 +
∑
j

q2
j

ε0mjk2

∫
k · ∇vf0,j

ω − k · v
d3v. (2.2.8)

The dispersion relation is obtained by setting εk,ω = 0, as non-trivial solutions for

E1,k,ω are required. It is noted that εk,ω has no singularities, as γ 6= 0.

As the configuration studied in this work is the same as the used by Xu et al.
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[27], a Maxwellian distribution is chosen as equilibrium configuration,

f0,j(v) =
n0,j[√
2πvTj

]3 exp

[
− v2

2v2
Tj

]
, (2.2.9)

with vTj =
√
kBTj/mj the initial particle thermal speed for each species, kB is the

Boltzmann constant and Tj the initial temperature of the species j. Without loss of

generality, the axes of the system are aligned with k. The integral in (2.2.8) is then

reduced to one dimension and it can be written in terms of the plasma dispersion

function Z(ζj) [61], where ζj = ω/
√

2kvTj, is the resonance parameter (details are

given in Appendix A.2).

1 +
∑
j

ω2
pj

v2
Tjk

2
[1 + ζjZ(ζj)] = 0, (2.2.10)

where ωpj =
√
q2
jn0,j/ε0mj is the plasma frecuency of species j. This dispersion rela-

tion provides an infinite number of modes that may take in a plasma with equilibrium

particle distributions of the form (2.2.9).

2.2.2 Linear modes in an electron-ion plasma

An electron-ion Maxwellian plasma with zero relative drift is considered throughout

this work. In such a plasma, two modes can be analytically calculated through ap-

proximations of the Z(ζj) function, based on the location of the resonance zone with

respect to the thermal speed of both species.
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Figure 2.1: Least damped modes that solve the linear dispersion relation of an
electrostatic unmagnetized plasma with Maxwellian electrons and ions (2.2.10). Mass
ratio mi/me = 1836.153 and several temperature ratios. Frequency (a) and damping
rate (b) of the Langmuir mode, and frequency (c) and damping rate (d) of the IA
mode. The Langmuir branch remains the same for the tested Ti/Te ratios.

Langmuir and ion acoustic modes

Roots of the dispersion relation are shown in Figs.2.1 and 2.2 for mi = 1836.153me,

zero drift and temperature ratios Ti/Te = 2.5× 10−2, 1.0× 10−2, 5.0× 10−1, 1.0, 2.5

and 5.0. The least damped modes are shown in Fig.2.1. The Langmuir mode is shown
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in Figs.2.1(a) and (b). It is related to electron dynamics and remains unaltered for

the tested temperature ratios. As its phase speed is higher than the ion thermal

range, it remains unaffected by details of the ions distribution. It is weakly damped

for k < 0.4λ−1
De and it becomes heavily damped for shorter wavelengths, lasting a few

oscillation cycles before its amplitude is zero. The IA mode is shown is Figs.2.1(c) and

(d) and is related to the heavy ions dynamics, exhibiting an increase in frequency

at larger Ti/Te, implying a faster propagation for fixed k, but with an increasing

damping. The mode is least damped for lower temperature ratios, remaining nearly

zero for k . 2λ−1
De. It is noted that this mode has nearly constant phase speed for

long wavelengths, k < 0.5λ−1
De.

Acoustic-like modes

The linear dispersion relation (2.2.10) also predicts infinite modes of higher order

whose damping ratio is larger than that of the IA mode and the Langmuir mode.

If the wave phase speed is in the order of the electron thermal speed or larger (not

shown), they are termed electron-acoustic waves [62] and are due to electrons dy-

namic. For Maxwellian plasmas, they were predicted to be heavily damped to be

observed in experiments and numerical simulations [63, 64].

There are also slower acoustic-like modes whose phase speed is in the order of

the IA speed, and their dynamics involves the ions distribution. Low frequency

acoustic-like branches are shown in Fig.2.2 for mass ratio mi/me = 1836.153 and

three temperature ratios, Ti/Te = 5.0 [Figs2.2(a) and (b)], Ti/Te = 1.0 [Figs.2.2(c)

and (d)] and Ti/Te = 2.5×10−2 [Figs.2.2(e) and (f)]. The seven least damped higher

order low frequency modes are shown. It is observed that they have larger frequencies
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Figure 2.2: Roots of the linear dispersion relation (2.2.10) corresponding to low
frequency higher order modes. Frequency and damping rates for Ti/Te = 5.0 [(a)
and (b)], Ti/Te = 1.0 [(c) and (d)] and Ti/Te = 0.025 [(e) and (f)]. Mass ratio
mi/me = 1836.153. The seven least damped higher order modes are shown for each
temperature ratio.

than the IA mode, and therefore larger phase speed but also larger damping rates.

These features are accentuated at high temperature ratio, as observed in Fig.2.2.
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2.3 Nonlinear phenomena

2.3.1 Nonlinear Landau damping

The linear analysis ceases to be valid at perturbations of finite amplitude. Exper-

imental [8] and theoretical works focused both on the short time evolution [4] and

the asymptotic regime [2], show that γ varies in time for finite amplitudes. A large

amplitude perturbation yields a stage of nonlinear damping, which deviates from

the exponential decay (see εe = 8.0 × 10−3 in Fig. 2.3). If the amplitude is further

increased (see εe = 4.0 × 10−2 in Fig. 2.3), damping occurs but it is arrested and

the excited mode amplitude begins to grow till it saturates, oscillating irregularly in

time, as seen in Fig. 2.3.

Figure 2.3: Evolution of the amplitude of the excited mode of the electric field,
m = 1 in an electron plasma (immobile ions), for linear case, εe = 1.0 × 10−4, the
slightly nonlinear damped, εe = 8.0× 10−3, and the nonlinear case, εe = 4.0× 10−2,
being εe the amplitude of the initial perturbation.
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At further instants, particles are trapped by the self-consistent potential, that

is, a population of particles whose velocity is close to the phase velocity of the

propagating wave oscillates irregularly about it, developing a BGK state as shown

in Fig. 2.4.

Figure 2.4: Evolution of the electrons distribution function fe around the resonance
zone for nonlinear Landau dmaping, considering immobile ions.

2.3.2 BGK states and electron holes

Nonlinear exact quasi-stationary solutions for the Vlasov-Poisson system were first

found by Bernstein, Greene and Kruskal (BGK) [11] in 1957, by addressing the prob-

lem of trapped particles in an electrostatic plasma. These states are labeled as BGK.

Further works [46, 65, 66] obtain the same states through an improved method,

ruling out singular solutions. Those works consider as a solution for a Maxwellian

electron plasma exhibiting trapping, the distribution function fe as a function of the
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Figure 2.5: Schematic distribution function fe(E) = fe(x, v) (2.3.1). The solution is
centered in the trapping zone, in the range −

√
v2

0 + 2φ < v <
√

2φ, where φ is the
normalized electrostatic potential. Figure from Schamel, 1986 [28].

total electron energy E = mev
2/2 + qeΦ given by [65]

fe(E) =
1 + k2

0Ψ/2√
2π


exp

−1

2
σ

(√
2E − [vD − v0]

)2

v2
Te

 , E > 0,

exp

[
−1

2

(vD − v0)2

v2
Te

]
exp [−βE] , E < 0,

(2.3.1)

where k0 provides the length of the trapping structure, Ψ is the perturbation am-

plitude, vD is a possible drift of the equilibrium distribution, v0 is the speed of the

trapping structure, σ = sgn(v), and β is a parameter that controls the degree of

trapping, being β < 0 if there are trapped particles. The condition E > 0 means

untrapped electrons, whereas E < 0 means trapped electrons. A schematic profile

of the distribution is shown in Fig.2.5.

These states are characterized as quasi-stationary of electrostatic nature that per-

sist longer times without undergoing Landau damping, and are inherently related to

particle trapping [11, 12].
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Figure 2.6: Scheme of the (a) electrostatic potential of amplitude ψ around an
electron hole and (b) of the electron phase space with contours of constant energy
E, depicting trapped electrons (gray region) and untrapped electrons (white region).
Position is measured in electron Debye lengths, λDe, velocity in IA speed, cS and
potential measured in energy per charge, Te/e. Figure from Zhou and Hutchinson,
2017 [67].

Typical BGK states are particle holes, observed in phase space of one or several

species as vortices moving with velocity v0, and exhibit a deficit of particle density

within that region, surrounded by a particle excess, which is related to shielding

[48]. Figure 2.6 shows the electrostatic potential and the phase space around a

region of trapping of an electron distribution. Two regions can be distinguished

in such a structure: (i) one for untrapped particles [white region in Fig.2.6(b)],

corresponding to nearly free streaming particles, and one for trapped particles [gray
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region in Fig.2.6(b)], corresponding to particles moving back and forth within the

potential region.

2.3.3 Electron hole interaction with heavy ions

Electron holes can propagate in electron-ion plasmas. If their speed of propagation

is in the order of the ion thermal speed, electron holes interact with heavy ions [48].

Hutchinson and Zhou developed a momentum theory for electron holes, by assuming

that the transit time of ions through the hole is shorter than the time scale of the

hole acceleration [47]. Their theory considers that ions interact with electron holes

through four ways: by (i) transit through the trapping region, (ii) accumulation of

ions within the trapping region due to transit, (iii) reflection and (iv) growth of the

trapping potential.

In the frame of the hole, ions transiting through it change their incident velocities

due to the acceleration of the hole, leading to an accumulation of ions within the

region of trapping. In an inertial frame, this difference is [47]

v′2 − v′1 =
dv′0
dt

∫ x2

x1

[
1

v
− 2

v1 + v2

]
dx, (2.3.2)

where primed velocities are measured in an inertial frame, unprimed velocities are

measured in the hole frame, the indices 1 and 2 indicate entrance and exit of the

hole, respectively, v′0 is the hole velocity and v =
√
v2

1 − qiΦ(x)/mi is the ion velocity.

These ions have kinetic energy larger than the electrostatic energy. In the opposite

case, ions are reflected from the potential. Acceleration is not needed for reflection

to occur. The growth in the depth of the trapping potential also affects the flow of
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ions, as seen from the energy equation in the frame of the hole,

v2 − v1 =
qi

miv2
1

∫ x1

x1

v1

v

dΦ

dt
dx, (2.3.3)

and lead to further accumulation of ions within the hole [47].

2.3.4 Ion acoustic solitons

Solitons are nonlinear structures that propagate without dispersion, retaining their

properties unaltered. They were predicted in 1967 by Washimi and Tanuiti [36]

from fluid plasma equations. These structures propagate with speed vs such that

1 < vS/cS . 1.6, where cS is the IA speed. Solitons can be observed as a compres-

sive pulse in the particle density as shown in Fig.2.7. If the charge of the species is

positive, the soliton yields a positive potential.

Figure 2.7: Ion acoustic solitons approaching. The figure depicts the ions density
ni (black dashed line) and the electrostatic potential φ (blue solid line). Position
is measured in electron Debye lengths, λDe, ions density in the equilibrium density,
n∞, and potential measured in Te/e. Figure from Zhou and Hutchinson, 2018 [43].

The mechanism behind these structures involves a nonlinear resonant wave cou-

pling between waves allowed by the dispersion relation. In the case of IASs, the
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dispersion relation is that of the IAWs [59], shown in Fig.2.1(c), approximated to

small k, where the phase speed is nearly constant. The strength of the coupling

depends on the relative phase speed between the waves, being maximum when they

propagate at the same speed [35]. As the phase speed of IAWs changes for larger k,

further waves are not excited and the soliton is established.

Ion solitons have been theoretically predicted and observed to couple to slow

electron holes and to propagate jointly in position space [41–45], considering a kinetic

approach. In this structure, slow electrons are trapped around the potential of the

soliton. This interaction can be modified by the temperature of the ions distribution

Ti/Te as shown by Zhou and Hutchinson [43] in an electron-ion plasma. At larger

Ti/Te, kinetic effects enter in the dynamics and the IA mode behind the IASs becomes

heavily damped, as there is a larger number of resonant ions. The structure is then

decoupled and the electron hole propagates alone.
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3 Basis of the numerical integration and numeri-

cal implementation

The present chapter is devoted to the description of the used normalization, and to

considerations on position, velocity and time scales. Also, both the theoretical and

the numerical implementation behind the integration of the Poisson equation, and

of the symplectic integration used to solve the Vlasov equation are described.

3.1 Normalizations and species scales

The simulation is performed for the one dimensional case. In order to proceed, the

variables and functions are nondimensionalized as follows.

• Time t, time step ∆t and frequencies ω are normalized with respect to electron

plasma frequency ωpe, t̄ ≡ ωpet, ∆t̄ ≡ ωpe∆t, ω̄ ≡ ω/ωpe.

• Position r, lengths L and wavevectors k are normalized with respect to the

electron Debye length λDe, r̄ ≡ r/λDe, L̄x,y,z ≡ Lx,y,z/λDe, k̄ ≡ kλDe.

• Velocities are normalized with respect to the electron thermal velocity vTe,

v̄ ≡ v/vTe. It is also needed to normalize velocities with respect to their

own thermal velocity, v̄j ≡ v/vTj, to describe the species j. Other thermal

58



velocities are v̄Tj ≡ vTj/vTe. The associated wavevector in velocity space is

normalized as µ̄j ≡ µvTj.

• Electric charges are normalized with respect to the module of the electron

charge |qe|, as q̄j ≡ qj/|qe|.

• Electric field is normalized as Ē ≡ E (|qe|/meωpevTe), the charge density is

normalized as ρ̄ = ρ (|qe|λDe/meωpevTeε0), and the electrostatic potential is

normalized as Φ̄ ≡ Φ (|qe|/meωpevTeλDe).

• The species masses and densities are normalized with respect to the electron

mass, me, as m̄j = mj/me, and to the total electron particle density ne as

n̄j ≡ nj/ne.

• The distribution funciton is normalized considering that the system is one-

dimensional, f̄j ≡ vTefj/ne. As in the case of the velocity, the distribution

is also normalized with respect the thermal velocity of its own species, f̃j ≡

vTjfj/ne.

The numerical solution of the system involves solving two species, different scales

arise.

• The integration considers the same time scale for all species because all the

species affect each other through changes in the electric field at all times. The

use of different scales would lead to problems in solving common quantities,

such as the electric field and the charge density. For instance, in between two

successive instants in the scale of the heaviest species of the plasma, there are

several instants in the scale of the lightest species. Therefore, the contribution

of each species would be unbalanced.
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• The integration considers the same position scale for all species, by a similar

argument. When calculating the charge density and the electric field in a

certain space region, there will not be a contribution of all species at the same

points of the grid, leading to problems in estimating these quantities.

• The integration considers individual velocity scales for each species. In the

case of an electron-ion plasma with mass ratio mi/me = 1836, for instance,

most of the dynamics of electrons occurs in a range of [−8, 8]vTe, whereas that

of ions, occurs in a range of [−0.17, 0.17]vTe. If the same scale is used, the grid

would contain several nodes for solving electrons dynamics, but it would have

considerably less for solving ions dynamics. The use of individual velocity scales

allows solving both species with the same number of nodes just by re-scaling

the velocity dependency with the respective thermal velocity to the electrons

velocity scale. Also, there are no common quantities defined in velocity space.

Regarding the previous considerations about species scales, the system of equations

to numerically solve is the following

[
∂

∂t̄
+ v̄Tj v̄j

∂

∂x̄
+

q̄j
m̄j v̄Tj

Ē
∂

∂v̄j

]
f̃j = 0, (3.1.1)

−∂Φ̄

∂x̄
= Ē, (3.1.2)

−∂
2Φ̄

∂x̄2
=
∑
j

q̄j

∫ ∞
−∞

f̃j dv̄j. (3.1.3)

The coefficients v̄Tj =
√
T̄j/m̄j and q̄j/m̄j v̄Tj = q̄j/

√
m̄jT̄j in the Vlasov equation

allow to perform the integration on the velocity space of each species and then to

re-scale it to the electrons velocity scale.
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3.2 Integration of the Vlasov-Poisson system

3.2.1 Integration of the electric field

The electric field in this scheme is calculated through equations (3.1.2) and (3.1.3),

which require the distribution functions f̃j. These equations can be solved through

Fourier transform. Let f̃j,k̄ ≡ Fk̄
[
f̃j

]
and Φ̄k̄ ≡ Fk̄

[
Φ̄
]

the Fourier transforms in po-

sition space of the distribution function and the electrostatic potential, respectively.

Hence, the Fourier transform of (3.1.3) yields

k̄2Φ̄k̄ =
∑
j

q̄j

∫ ∞
−∞

f̃j,k̄ dv̄j.

The electric field is then determined through the Fourier transform of equation

(3.1.2), −ik̄Φ̄k̄ = Ēk̄, from which the electric field is obtained as

Ē
[
f̃j

]
= F−1

x̄

[
− i
k̄

∑
j

q̄j

∫ ∞
−∞

f̃j,k̄(v̄j, t̄) dv̄j

]
.

The quasi-neutrality condition is implemented by setting Ēk=0 = 0, meaning that

the mean electric field is zero in the plasma at all times.

Numerical implementation

The calculation is numerically performed in the integrator through the Fast Fourier

Transform of the West (FFTW) algorithm. The use of periodic boundary conditions

in position space makes suitable the use of the Fourier transform. The electric field

is then obtained through the inverse FFTW. Let be Nv the number of nodes of the
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velocity grid on which the distribution function is defined. The electric field at each

time step is then calculated as

Ē = IFFTx̄

[
− i
k̄

∑
j

q̄j∆v̄j

Nv∑
n=1

FFTk̄

[
f̃j

]]
,

where the integral over the velocity space has been discretized into a summatory

from 1 to Nv, and ∆v̄j = ∆v/vTj is the resolution of the velocity grid of the species

j.

3.2.2 Integration of the Vlasov equation

Symplectic operators and integrators

Symplectic operators are related to Hamiltonian systems, that is, physical systems

consisting of whether discrete particles or continuum media, whose dynamics can

be represented through a Hamiltonian function and evolve according to Hamilton

equations [68, 69]. A symplectic operator is a linear operator which acts on the

phase space coordinates of a Hamiltonian system or quantities depending on those

coordinates that constitutes a canonical transformation [70] and verifies Liuoville’s

theorem, conserving volumes in phase space [71], preserving details of the phase

space of the system.

Symplectic integrators are numerical integration schemes constructed with sym-

plectic operators. In defining numerical integrators, an approximate Hamiltonian

H̃ arises, related to a flow map that evolves the system in a similar way than the

exact Hamiltonian H does [72]. The relation between the exact Hamiltonian and its
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approximation is obtained through a series expansion [73],

H̃ = H + ∆tnHn +O(∆tn+1),

where n is the order of the integrator. The expansion means that H̃ is close to

the original Hamiltonian except for variations of the n−th order in the time step

∆t. Therefore, in a conservative Hamiltonian system, H̃ exhibit variations about H,

ensuring bounded variations in the Hamiltonian and the total energy, in cases when

the total energy is equivalent to its Hamiltonian. Therefore, the main features of a

symplectic integrator are the preservation of details of phase space of the system,

remaining close to its actual dynamics, and the conservation of the total energy in a

conservative system, being adequate for long term simulations.

Other methods, such as the Runge-Kutta family of integrators, have been re-

ported to be unstable for long time dynamics, introducing numerical dissipation and

changing the evolution of the system [74, 75]. These methods are not based on dy-

namical equations, and hence they conserve neither the phase space structure nor

the energy of the system.

Symplectic integration of the Vlasov equation

The Vlasov equation can be regarded as the evolution of the distribution function of

the species j given the Hamiltonian operator H = T + V,

Hfj =
∂fj
∂t
, (3.2.1)
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where the non-commuting operators T and V are defined as

T ≡ −v · ∇, V ≡ − qj
mj

E · ∇v.

Thus, the Vlasov equation is related to the conservative Hamiltonian H, and the

use of symplectic integration to estimate the evolution of the distribution function

fj is justified. Given a time interval ∆t and all the quantities at the instant t, the

distribution function at t+ ∆t is straightforwardly integrated.

fj(r,v, t+ ∆t) = exp [∆t (T + V)] f(r,v, t), (3.2.2)

This solution is valid as long as the operators T and V do not explicitly depend on

time. It is noted that although E does vary in time, it is formally a function of fj,

hence, it does not explicitly depend on t. Therefore, if the time interval of interest is

divided into M partitions whose width is ∆t, then the general solution of the Vlasov

equation for the species j is given by [74]

fj(r,v, t) = [exp (∆t [T + V])]M fj(r,v, 0),

where the operator V is updated before each application. An approximation is made

to estimate the exponential. In the construction of symplectic integrator methods,

it has been demonstrated that the exponential operator in (3.2.2) can be expanded

as [76]

exp [∆t (T + V)] =
n∏
j=1

exp [∆tτjT] exp [∆tνjV] +O
(
∆tr+1

)
, (3.2.3)
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where n is the number of operator pairs, r is the order of the integrator, and τj and

νj are real positive coefficients. These conditions ensure that in solving the system

the physics always evolves covariantly with time. Negative coefficients would imply

that the system evolves backward in time [77], which produces nonphysical results

in non time-invariant systems. Each of the exponential operators is symplectic since

each of them comes from a canonical transformation.

In the solution (3.2.3) the operators T and V are applied separately on the initial

condition while truncating the operator up to terms of order ∆tr. Each operator acts

on independent variables of fj, therefore, each dependency is independently solved.

Such a solution is based on the Strang splitting scheme [78], which, although it uses a

time advance operator based on finite differences (Lax-Wendroff operators), it splits

the differential equation in the same way.

The order r of the integrator is determined by comparing the obtained solution

with the Baker-Campbell-Hausdorff expansion of the exact exponential [74], and

choosing the coefficients τj and νj such that terms up to order ∆tr vanish. Along with

conditions of decomposition, the coefficients are then determined for the integrator.

In some cases there might be several choices of coefficients, in which case, they are

determined through a minimization process for the coefficient proportional to ∆tr+1.
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Advections and the used integrator

In analogy with the solution (3.2.2), solving each of the exponentials in (3.2.3) implies

solving equations

[
∂

∂t
+ τlv · ∇

]
fj = 0, (3.2.4)[

∂

∂t
+ νl

qj
mj

E · ∇v

]
fj = 0, (3.2.5)

which are advection equations related to the T operator [eq. (3.2.4)], and to the V

operator [eq. 3.2.5]. In this sense, the problem of integrating the Vlasov equation

has been reduced to solve advections of the distribution function fj on each of its

dependencies. For the one dimensional problem with the normalized variables, the

above set of equations to solve is then

[
∂

∂t̄
+ (τlv̄Tj) v̄j

∂

∂x̄

]
f̃j = 0, (3.2.6)[

∂

∂t̄
+

(
νlq̄j
m̄j v̄Tj

)
Ē

∂

∂v̄j

]
f̃j = 0, (3.2.7)

where the electric field Ē must be calculated before each advection (3.2.7) is per-

formed. In this work, these equations are solved through Fourier transforms, that

is, each advection is Fourier transformed on the variable of integration, and then it

is inverse transformed. Thus, the advection equations to solve are

[
∂

∂t̄
+ i (τlv̄Tj) v̄j k̄

]
f̃j,k̄ = 0,[

∂

∂t̄
+ i

(
νlq̄j
m̄j v̄Tj

)
Ē µ̄j

]
f̃j,µ̄j = 0,
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where f̃j,k̄ ≡ Fk̄
[
f̃j

]
and f̃j,µ̄j ≡ Fµ̄j

[
f̃j

]
are the Fourier transform of f̃j in position

space, with conjugated variable k̄, and in velocity space, with conjugated variable

µ̄j. The solutions for each advection for a time step ∆t̄ are

f̃j,k̄(v̄j, t̄+ ∆t̄) = f̃j,k(v̄j, t̄) exp [−i (τj v̄Tj) v̄jk∆t̄] ,

f̃j,µ̄j(x̄, t̄+ ∆t̄) = f̃j,µj(x̄, t̄) exp

[
−i
(

νj q̄j
m̄j v̄Tj

)
Ē
[
f̃j

]
µ̄j∆t̄

]
.

Numerical implementation

Fourier transforms are calculated through the FFTW algorithm. Although it is

suitable for periodic boundary conditions in position space, its use is not trivial

in the velocity space. Dependencies are then forced to be periodic by taking a

large enough velocity range, so that the distribution functions are nearly zero at the

boundaries v̄j,max/min. Thus, the periodicity condition

f̃j(x̄, v̄j,max, t) = f̃j(x̄, v̄j,min, t),

is nearly fulfilled at all times and all positions, and the use of the FFTW algorithm

is suitable for the integration over the velocity space.

In regard of the velocity dependency, a plasma may develop filamentation, a

process related to the streaming of free particles, observed in the species phase space

as filaments whose width in the velocity dependency is reduced as the plasma evolves.

In simulations, filamentation limits the maximum instant to advance the plasma

as structures whose width is in the order of ∆v̄j cannot be solved properly. The

development of those lengths in velocity space is damped by the introduction of a
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Gaussian-like filter F [79], given by

F(µ̄j) = exp

[
−36

(
µ̄j

max[µ̄j]

)36
]

(3.2.8)

applied as a convolution to the distribution function of the species j in each velocity

advection. If f̃ 0
j denotes the distribution before any advection is applied and f̃ 1

j

denotes the distribution function after being advected, direct integration yields

f̃ 1
j =IFFTx̄

[
FFTk̄

[
f̃ 0
j

]
exp

[
−i (τlv̄Tj) v̄j k̄∆t̄

]]
,

f̃ 1
j =IFFTv̄j

[
F(µ̄j)FFTµ̄j

[
f̃ 0
j

]
exp

[
−i
(

νlq̄j
m̄j v̄Tj

)
Ēµ̄j∆t̄

]]
.

The values of the coefficients are determined by the specific integrator. In this work,

the second order integrator of McLachlan and Atela [80] is used with advection in

velocity as the first step, consisting of four advections in the order V − T − V − T,

and whose coefficients, in accordance to (3.2.3) are

τ1 = 0, ν1 =
1√
2
, τ2 = ν1, ν2 = 1− ν1, τ3 = ν2, ν3 = 0.

As a closing remark, it is observed that although in this scheme the distribution

function, the electric field, and any other related quantity, are fields defined on an

Eulerian grid in position space, velocity space and time, the evaluation along tra-

jectories is of Lagrangian nature. Thus, the integration scheme is labeled as semi-

Lagrangian.

The previous numerical calculations to required to solve the Vlasov-Poisson sys-
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tem are implemented in a Julia (v 1.3.1) code through the library Vlasova.jl created

by J. A. Gidi, from the Departamento de F́ısica in Universidad de Concepción.

3.3 Resolution of the linear dispersion relation

The roots of the linear dispersion relation are obtained by solving (2.2.10). In order to

do this, the plasma dispersion function is calculated through the scaled complement

error function, in the form

Z(ζj) = i
√
π erfcx (−iζj) , (3.3.1)

where ζ is the resonance parameter ζ = ω/vTjk, for a given array of k. The li-

brary SpecialFunctions.jl of Julia language (v 1.3.1). It is numerically calculated

through the C math standard library [81].

The resolution of (2.2.10) is performed through the Muller algorithm and imple-

mented in a Python code created by R. E. Navarro from the Departamento de F́ısica

in Universidad de Concepción. Muller algorithm uses a second order approximation

of the derivative used in the Newton-Raphson method [82] to estimate the zeros of

the dielectric function (2.2.8). The algorithm is first provided with seeds consisting

of points of the ζ−grid which are close to actual zeros of εk,ω for the first wavenumber

k0. Branches corresponding to modes of the linear dispersion relation are obtained

by using each of the roots as a seed for the following wavenumbers. The calcula-

tion for the following two wavenumber uses the previous roots as seeds. The roots

for the remaining wavenumbers are estimated through a second degree polynomial

extrapolation with the three last roots along the same branch.
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3.4 Nonlinear curve fit

Curve fittings in this work are made with the Julia (v. 1.3.1) library LsqFit.jl,

which uses a nonlinear generalization of the least square method called Levenberg-

Marquardt method [83].
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4 Single wave excitation - Damped perturbations

in a Maxwellian electron-ion plasma

Throughout this chapter, when mobile, ions are Maxwellian distributed at the equi-

librium configuration, considering a mass ratio m̄i = 1836.153, and being isothermal

to electrons, T̄i = 1.0,

f̃0,i(v̄i) =
1√
2π

exp

[
−1

2
v̄2
i

]
,

where the condition of quasi-neutrality, n̄i = 1.0, q̄i = 1.0 is used. The first mode of

the electric field is excited, with wavenumber k̄1 = 0.4 and perturbative amplitude

εe,

f̃e (x̄, v̄e, 0) =
[
1 + εe cos(k̄1x̄)

]
f̃0,e(v̄e), (4.0.1)

with f̃0,e(v̄e) a Maxwellian distribution of the same form as f̃0,i(v̄i). In literature,

when considering electron-ion plasmas with both species as kinetic, it is customary

to perturb electrons only, while heavy ions are static due to the inertia difference.

However, when the system is perturbed by a sudden potential, there is a sudden

force acting on all the species.
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In order to estimate the perturbation amplitude of the ions distribution, it is

assumed that the particle dynamics is nonrelativistic and slightly deviate from their

initial position x0 with impulsive forcing F (x0, t) = qjE0 sin(k1x0)δ(t), in accordance

with the sudden perturbation. The equations of motion lead to trajectories

v(t) =
qj
mj

E0 sin(k1x0) + v0, x(t) =

[
qj
mj

E0 sin(k1x0) + v0

]
t+ x0,

where v0 is the initial velocity of the particle, corresponding to the equilibrium

configuration. According to this solution, the deviation of the particle from its

equilibrium trajectory is proportional to qj/mj at a given instant t prior to the

plasma evolution. Thus, the perturbation amplitude ratio of both distributions is

εi/εe = q̄i/(q̄em̄i) = −5.447× 10−4 and the ion initial distribution is given by

f̃i (x̄, v̄i, 0) =

[
1 +

q̄i
q̄em̄i

εe cos(k̄1x̄)

]
f̃0,i(v̄i). (4.0.2)

In the following sections, macroscopic quantities and reduced distribution func-

tions are observed for both electrons and ions, considering the mode k̄1 = 0.4 and

position space length L̄x = 5π. Two amplitudes are tested, one corresponding to the

linear regime, εe = 1.0×10−3, and one below but close to the critical amplitude εe,C ,

εe = 8.0× 10−3.

4.1 Electric field energy and spectra

The most notorious macroscopic quantity which allows identifying the effects of mo-

bile ions is the amplitude of the excited mode of the electric field |Ē1|. The present
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simulations obtain qualitatively the same results as those from Xu et al. [27] for the

damped regime, as seen in Figs.4.1(a) and (b).

Figure 4.1: Evolution of the amplitude of the first mode of the electric field |Ē1| for
(a) εe = 1.0 × 10−3 and (b) εe = 8.0 × 10−3, with and without mobile ions. The
damping rates of the observed modes are shown for the LW (red-dashed line) and
the IAW (blue-dashed line).

In the excited mode, it is observed that the effect of the ions dynamics is dominant

in both cases, but an increase in εe allows fast oscillations to persist with small ampli-

tude. In these cases, two oscillation frequencies are observed in the envelope of |Ē1|,

one related to electron dynamics during tωpe < 60 whose damping rate coincides with

that of Langmuir waves for the perturbed wavenumber, γ̄L = −6.6079 × 10−2, and

the other one corresponds to low frequency oscillations for tωpe > 100 with damping

rate coinciding with that of IAWs for the excited wavenumber, γ̄IA = −8.7939×10−3.
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Figure 4.2: Electric field spectra |Ēk,ω| of εe = 1.0×10−3 simulations for (a) high fre-
quency early-range and (b) low frequency later-range. Roots of the linear dispersion
relation are shown for comparison.

A comparison between the roots of the linear dispersion relation (2.2.10) and

the electric field spectra |Ēk,ω| of both perturbative amplitudes εe (Figs.4.2 and

4.3, respectively) confirms the excitation Langmuir and IA waves with frequencies

ω̄L = 1.2852 and ω̄IA = 1.8265 × 10−2, respectively, as interpreted by Xu et al.[27].

Both are the least damped modes of the dispersion relation (2.2.10).

For εe = 8.0 × 10−3, high frequency LW oscillations are still observable in |Ē1|

[Fig.4.1(b)] and in |Ēk,ω| [Fig.4.3(b)], but with amplitude one order of magnitude

below that of the IAW. These results confirm the modes found by Xu et al. for this
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Figure 4.3: Electric field spectra |Ēk,ω| of εe = 8.0 × 10−3 simulations for (a) high
frequency early-range, (b) high frequency later-range and (c) low frequency later-
range (right panel). Roots of the linear dispersion relation are shown for comparison.

plasma.

4.2 Behavior in velocity domain

The low amplitudes allow the use of linear theory for the estimation of the overall

behavior of the distribution functions (2.2.5). Since the equilibrium distribution of

both species is Maxwellian, the charge indicates that the perturbative effects around

the phase velocity of the excited IAW, v̄φ,IA should be opposite on the electrons and

heavy ions distribution, and that the amplitude of the variations in the latter should

be of lower amplitude.

The position averaged variations of the distribution function
〈
δf̃j

〉
x̄

(v̄) is fol-
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lowed for both species. This quantity is given by

〈
δf̄j
〉
x̄

(v̄) =
1

L̄x

∫ L̄x

0

[
f̄j(x̄, v̄, t̄)− f̄0,j(v̄)

]
dx̄,

where fj and v have been normalized with respect to electron quantities. According

to the normalization, the relation between f̄j and f̃j, obtained from the simulations,

is f̄j = n̄j/v̄Tj f̃j. It is noted that as the system is symmetric in velocity space, the

same dynamics occurs at v̄ < 0 and at v̄ > 0. Therefore, only one range is shown.

Also, the overall behavior with both perturbative amplitudes is qualitative the same

except by the level of the amplitudes, so that only one case is shown (εe = 8.0×10−3).

The resonance zone about the phase speed of the IAW v̄φ,IA = ω̄/k̄ = 4.662 × 10−2

is followed.

Figure 4.4: Evolution of the variation position-averaged ions distribution function,〈
δf̄i
〉
x̄
. As references, the phase velocity of the IAW (white dotted line) and the

initial resonant velocity (white dashed line) are shown, for εe = 8.0× 10−3.

In Figs.4.4, 4.5, 4.6 (d) through (f), the particle distribution of the heavy ions,
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〈
δf̄i
〉
x̄
, is shown. The initial perturbation produces a resonance zone about v̄ '

2.5×10−2 [Fig.4.5(a)]. After tωpe = 100 the same tendency in velocity domain holds

but around v̄ ' 4.0 × 10−2 [Figs.4.5(b)], with negligible changes at longer times

(Fig.4.4).

Figure 4.5: Details of (a) the initial stage and (b) transition to long-term range of
the variations of the position-averaged ions distribution function,

〈
δf̄i
〉
x̄
, for εe =

8.0× 10−3. The same velocities are plotted.

The evolution of
〈
δf̄i
〉
x̄

shows that fast oscillations in the particle distribution

take place about v̄ = 2.5 × 10−2, as the fast oscillations dominate the dynamics of

the plasma [Fig.4.5(a)], with a large reduction in the number of ions slower than

v̄ = 2.5 × 10−2 [see Fig.4.6(d)] from the initial instant. This component decays in

time as observed in Figs.4.4 and 4.5(b). The decay corresponds to a reversal in the

initial acceleration that occurs as ions accumulate at the boundaries of the position

domain during 0 ≤ tωpe ≤ 100 (Fig.4.7), indicating the presence of a low frequency

positive potential that slows them down [Fig.4.6(d)] and stop the bunching. Af-

terwards, ions are repeled, reducing the density variations δn̄i (100 ≤ tωpe ≤ 200,
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Figure 4.6: Sections of the variations of the position-averaged particle distribution
function of electrons,

〈
δf̄e
〉
x̄

[(a), (b) and (c)], and ions,
〈
δf̄i
〉
x̄

[(d), (e) and (f)], for
εe = 8.0 × 10−3. The initial resonant velocity (black dashed-line) and v̄φ,IA (black
dotted-line) are shown.
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Fig.4.7), and accelerated, producing an accumulation of ions with velocities close to

v̄φ,IA [Fig.4.6(e)] as the oscillations are damped. The damping causes a weak forcing

on the particles yieling lower variations in the particle density afterwards (tωpe > 200,

Fig.4.7). Consequently, time variations in
〈
δf̄i
〉
x̄

become smaller, retaining the same

shape at longer times [Figs.4.4 and 4.6(f)].

Figure 4.7: Variations of the ions density δn̄i during the initial evolution of the
plasma. Perturbative amplitude εe = 8.0× 10−3.

The variations of the position averaged distribution of electrons
〈
δf̄e
〉
x̄

are shown

in Figs.4.6(a) through (c) and 4.8. It is observed that electrons are resonantly af-

fected by the propagation of the IAWs. The resonant region exhibits the inverse

pattern around v̄ ' 4.0 × 10−2 during most of the evolution in comparison to that

of the ions distribution. This means that electrons are slowed down in this velocity

range.

Initially, low amplitude fast oscillations are observed without signals of resonant

interaction up to tωpe ' 100 [Fig.4.6(a)], when there is a sudden accumulation of
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electrons with v̄ < 4.0 × 10−2 at the expense of the faster ones, reaching a peak

at tωpe = 200 [Fig.4.6(b)]. It is observed that the depopulation of faster elec-

trons initially takes place in a wide range of velocities and becomes localized at

4.0 × 10−2 ≤ v̄ ≤ 7.5 × 10−2 around tωpe = 250. Simultaneously, electrons with

velocities v̄ ' 0 are accelerated and faster electrons continue to be slowed down,

accumulating slow electrons at v̄ ' 2.5 × 10−2, as heavy ions are accelerated from

the same velocity, depopulating the center of the distribution and a bounded range

of velocities around v̄φ,IA [Fig.4.6(b)]. At longer times, variations become nearly

stationary in the trough, and electrons with velocities around v̄ ' 2.5 × 10−2 are

slowed down, flattening the distribution for 0 ≤ v̄ < 2.5× 10−2 [Figs.4.8 and 4.6(c)].

Figure 4.8: Evolution of the variation position-averaged particles distribution func-
tion,

〈
δf̄e
〉
x̄
. As references, the phase velocity of the IAW (white dotted line) and

one resonant velocity (white dashed line) are shown, for εe = 8.0× 10−3.

The observed difference between both species can be attributed to the opposite

dynamic effect of the electric field on each species due to the particle charge. As the
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ions lead the dynamics of this mode, in the same way electrons do in the LWs, the

interaction with the electric field crowds them at velocities slightly faster than v̄φ,IA,

by increasing and reducing the velocity of nearby ions, depending on their relative

velocity. As electrons have the opposite charge, the electric field slows them down

in this velocity range.

4.3 Contribution of each species to the damped oscillations

The evolution of the envelope of the particle densities can be found through the

position averaged density variations,
〈
δn̄2

j

〉
x̄
, defined as

〈
δn̄2

j

〉
x̄

=
1

L̄x

∫ L̄x

0

[nj − n0,j]
2 dx̄. (4.3.1)

This quantity is shown in Fig.4.9 for both species with εe = 1.0×10−3 and in Fig.4.10

for εe = 8.0× 10−3. It is observed that initially, both species evolve at different time

scales with ions sustaining a low frequency propagation of the IAWs and electrons

sustaining the propagation of both the LWs, up to tωpe = 100, and of the IAWs.

The change in the frequency of
〈
δn̄2

j

〉
x̄

occurs when the amplitude of the variations

of both species reach the same levels, as shown by Xu et al. [27], indicating that

the dominant oscillations in the electrons distribution are due to the propagation of

the IAW after the LW has decayed, although a high frequency component remains

at the larger amplitude case εe = 8.0× 10−3.

Both resonant zones are eventually affected by the same electric field at all times.

In order to determine the extent at which both zones are affected by the propagation

of one wave or the other, two approaches are used. A comparison is made for the
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Figure 4.9: Evolution of the position averaged amplitudes
〈
δn̄2

j

〉
x̄

of the particle

densities for εe = 1.0× 10−3.

Figure 4.10: Evolution of the position averaged amplitudes
〈
δn̄2

j

〉
x̄

of the particle

densities for εe = 8.0× 10−3.

resonant zone of the LW with the case of immobile ions through the correlations
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between the distribution
〈
δf̄e
〉
x̄

from each case, C
[〈
δf̄e,i

〉
x̄
,
〈
δf̄e,m

〉
x̄

]
, given by

C
[〈
δf̄e,i

〉
x̄
,
〈
δf̄e,m

〉
x̄

]
(v̄, t̄) =

[〈
δf̄e,i

〉
x̄
−
〈
δf̄e,i

〉
x̄,v̄r

] [〈
δf̄e,m

〉
x̄
−
〈
δf̄e,m

〉
x̄,v̄r

]
σi,v̄rσm,v̄r

,

where
〈
δf̄e,j

〉
x̄

are the position averaged variations of the electrons distribution for

(j = i) immobile ions and for (j = m) mobile ions, the brakets 〈 · 〉v̄r represent

average on velocity space over the range v̄r = [v̄min, v̄max], and σj,v̄r is the standard

deviation of the distribution of species j over the range v̄r. If the distributions are

the same, they are maximally correlated at all times
(〈

C
[〈
δf̄e,i

〉
x̄

〈
δf̄e,m

〉
x̄

]〉
v̄r

= 1
)

but if this region is affected by the IAW, a deviation from the unity should be ob-

served. The second approach, for the ions distribution, is to observe the spectra and

to find signatures of LWs activity.

Figure 4.11: Early evolution of the correlations
〈
C
[〈
δf̄e,i

〉
x̄

〈
δf̄e,m

〉
x̄

]〉
v̄r

over the

range vr = [0.0, 1.5] for εe = 1.0× 10−3 and 8.0× 10−3.

In the velocity range 0 ≤ v̄ ≤ 1.5 electrons are nonresonantly affected by the LW.

They respond to the ions dynamics from tωpe ' 25, as observed in the correlations
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in Fig.4.11 with small deviations from the unity. This response is enhanced after

tωpe = 40 when the correlations begin to decay in magnitude, and the dynamics from

both cases become uncorrelated.

Since fast electrons are nonresonant with the IAW, it is expected that the pre-

dominating electric field weakly affects fast electrons. This fact is observed in

Fig.4.12, which shows a reduction of the correlations of the distributions in the

range 2.0 ≤ v̄ ≤ 4.0, with low frequency variations in the order of 10−5, so that

there is no significant deviation from the dynamics with immobile ions. Nonetheless,

electrons with velocities around v̄φ,L are affected by the IAWs from the beginning of

the evolution. The larger deviation from unity is observed about tωpe = 110, and it

is possible to associate it to the onset of the slow oscillations. As the perturbations

decay, electrons resonating with the LW become less affected by the slow dynamics

and ultimately remain unaltered, as the correlations tend to the unity.

Figure 4.12: Evolution of the correlations
〈
C
[〈
δf̄e,i

〉
x̄

〈
δf̄e,m

〉
x̄

]〉
v̄r

over the range

vr = [2.0, 4.0] for εe = 1.0× 10−3 and 8.0× 10−3.
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Figure 4.13: Spectra of the (a) electric field, |Ēk,ω|, (b) electrons density, |n̄e,k,ω|, and
(c) ions density, |n̄i,k,ω|, from the range 0 ≤ tωpe ≤ 200 for εe = 1.0× 10−3.

The effects of the LW on the ions distribution are weaker for both εe = 1.0×10−3

and 8.0× 10−3. This can be observed in the spectra of Fig.4.13 for εe = 1.0× 10−3,

and Fig.4.15 for εe = 8.0 × 10−3 for the initial stage, 0 ≤ tωpe ≤ 200, in which the

Langmuir mode is dominant, and for the remaining stage, 200 ≤ tωpe ≤ 1700, in

which the IAW is dominant. No appreciable signals around the Langmuir frequency

are found in |δn̄i,k,ω| on the first stage [Figs.4.13(c) and 4.15(c)] or in the later stage

[Figs.4.14(c) and 4.16(c)], even though there is a low amplitude peak in the electric

field [4.16(a)] and the electrons density spectra [4.16(b)].

The case εe = 1.0×10−3 differs at longer times (Fig.4.14), as the peak around ω̄L

is not observed in the electric field or the electrons density, indicating that variations
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Figure 4.14: Spectra of (a) the electric field, |Ēk,ω|, (b) electrons density, |n̄e,k,ω|, and
(c) ions density, |n̄i,k,ω|, from the range 200 ≤ tωpe ≤ 1700 for εe = 1.0× 10−3.

due to the propagation of the LW are below those produced by the propagation of

the IAW. Considering that the behavior of the resonant zone in
〈
δf̄i
〉
x̄

is produced

right after the initial perturbation is applied and that it remains the same regardless

of the initial high frequency component, it is concluded that the LWs do not affect

on the resonant zone related to the propagation of the IAW.

4.4 Summary and discussion

This chapter addresses the evolution of an electron-ion plasma with mass ratio m̄i =

1836.153, isothermal species, T̄i = 1.0, both initialized with driftless Maxwellian

distributions. Mobile heavy ions allow the development of damped IAWs besides

the damped LWs, as found by Xu et al. [27]. Due to the difference of inertia, the
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Figure 4.15: Spectra of (a) the electric field, |Ēk,ω|, (b) electrons density, |n̄e,k,ω|, and
(c) ions density, |n̄i,k,ω|, from the range 0 ≤ tωpe ≤ 200 for εe = 8.0× 10−3.

propagation of these waves yields two different time scales. The LWs, interacting

with electrons with velocities ∼ v̄φ,L, decay faster than the IAWs, which interact

with both electrons and ions with velocities in the order of v̄φ,IA, leading to the

domination of low frequency oscillations at longer times. In this process, ions in

the resonance zone are accelerated towards v̄φ,IA, whereas slow electrons tend to be

slowed down to velocities 0 ≤ v̄ ≤ 2.5× 10−2, depopulating the region around v̄φ,IA

as the forcing of the electric field on each species depends on the sign of their charge.

The observed waves develop with a large degree of independence. The evolution

of the correlations of the electrons distribution around the resonant zone of the LW

indicates that the development of the IAWs leaves signatures. As the field amplitude

undergoes further damping, the correlations tend to unity, indicating that the res-
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Figure 4.16: Spectra of (a) the electric field, |Ēk,ω|, (b) electrons density, |n̄e,k,ω|, and
(c) ions density, |n̄i,k,ω|, from the range 200 ≤ tωpe ≤ 1700 for εe = 8.0× 10−3.

onance zone behaves as in the case of immobile ions. However, it is noted that the

deviation of the correlations from unity is in the order of 10−5, so that the dynamics

of the resonance zone related to the LWs remain mostly unaffected by the IAWs.

On the ions distribution, the pattern observed in the resonance zone is excited at

the very beginning and is not affected afterward, and it is therefore not related to

dynamics of the LW, and although there is a high frequency component in
〈
δf̄i
〉
x̄

initially, it fades out as the LW damps out, yielding weak or none signals around ω̄L

in the spectra of δn̄i. Hence, the resonance zone related to the IAW is not greatly

affected by the fast wave either. As a consequence, the oscillations in the envelope of

the electrons density 〈δn̄2
e〉x̄ are initially produced by electrons resonating with the

LWs, and they are later produced by electrons resonating with the IAWs. The same

conclusion follows for the amplitude of the excited mode |E1|.
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The dominance of the IAW in the long term can be understood through the inertia

of the ions. A time scale larger than that of the electrons is introduced, observed in

the magnitudes of the damping rates, |γ̄L| > |γ̄IA|. Both waves are present from the

initial perturbation, with LWs of larger amplitude and fast decay, and the IAWs of

lower amplitude but slower decay. Once the oscillations of the LW reach the level of

the IAWs, since electrons around v̄φ,L continue to damp the fast wave, IAWs become

dominant and oscillations still occur as they slowly damp out.
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5 Single wave excitation - Nonlinear evolution of

a Maxwellian electron-ion plasma

This chapter is focused on the study of the nonlinear evolution of the system analyzed

in Chapter 4. Ion mass ratio is mi/me = 1836.153, driftless Maxwellian distribu-

tions and temperature ratio Ti/Te = 1.0, exciting the first mode of the plasma. The

perturbative amplitude εe is large enough to trigger the nonlinear regime of the fast

mode. In addition to the trapping zone associated to the fast mode, nonlinear struc-

tures are observed in the low velocity range, near v̄φ,IA and related to the dynamics

of heavy positively charged ions.

In the subsequent sections, it is noted that due to the symmetry of this plasma

in velocity space, the spectra are symmetric with respect to k̄ and ω̄r, hence only

one quadrant of the k̄− ω̄r is shown. Similarly, the distribution functions are shown

only for v̄ ≥ 0, since the behavior any structure found in this range is also found in

v̄ < 0 is the same but with the opposite velocity.
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5.1 Low frequency dynamics in the case of immobile ions

For comparison purposes, the low frequency dynamics of an electron plasma with

immobile ions in the nonlinear regime with amplitude εe = 4.0 × 10−2 is described.

This dynamics develops at larger times compared to that of the saturation of the

electric field and involves low frequecy, low amplitude modes.

5.1.1 Electric field spectra

The spectra of the electric field is shown in Fig.5.1. It is observed that low frequency

waves are excited. A region close to ω̄r ∼ 0 is excited around 0.4 < k̄ < 2.0

in Figs.5.1(b) and (c). Later during 1100 ≤ tωpe ≤ 1800, two regions of waves

are excited, one acoustic-like and another with frequencies below ω̄r = 6.0 × 10−2

[Fig.5.1(c)]. Their levels, however, remain two orders of magnitude below those of

the waves around the nonlinear Langmuir mode. The phase speed of the waves in

the acoustic-like region are in the range 4.488 × 10−2 ≤ v̄φ ≤ 8.976 × 10−2 with

most of the waves verifying 5.236× 10−2 ≤ v̄φ ≤ 7.854× 10−2. The second region of

excitation has waves with phase velocities 8.976× 10−3 ≤ v̄φ ≤ 2.244× 10−2.

5.1.2 Electrons density and phase space

In order to distinguish the low frequency dynamics in the variations of the elec-

trons particle density, a filter in frequency and wavenumber is applied, obtaining the

filtered electrons density δn̄e,fil(x̄, t̄),

δn̄e,fil(x̄, t̄) = F−1
x̄,t̄

[
Fk̄,ω̄r

[δn̄e(x̄, t̄)] Ω(k̄, ω̄r)
]
, (5.1.1)
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Figure 5.1: Spectra of the electric field
∣∣Ēk,ω∣∣ for εe = 4.0 × 10−2 for the case of

immobile ions. Three time intervals are shown.

where Ω(k̄, ω̄r) is a filter function given by

Ω(k̄, ω̄r) = exp

[
−
(
ω̄r − ω̄shift

ω̄width/2

)36
]
K(k̄), (5.1.2)

with ω̄width the frequency width of the filter, ω̄shift the central frequency of the filter

and K a function of k̄. For the case of filtering low frequencies only, ω̄shift = 0,

ω̄width = 1.2, excluding frequencies related to the fast mode and retaining the most

relevant frequencies of the slow modes, and K(k̄) = 1. For the case of one sin-

gle propagating structure, ω̄shift = ±0.3 with K(±k̄) = Θ(k̄), and ω̄shift = ∓0.3 with

K(k̄) = Θ(∓k̄), both with ω̄width = 0.6, where the upper signs are for positively prop-

agating structures, the lower signs are for negatively propagating structures and Θ

is the Heaviside function.
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Figure 5.2: Evolution of the variation of (a) electrons density, filtered in frequency,
δn̄e,fil, and its spatial Fourier transform (b) for εe = 4.0× 10−2, for immobile ions.

Figure 5.2 shows the evolution of the filtered electrons density [(a)] and its rep-

resentation in wavenumber space [(b)]. It is observed that localized structures, cor-

responding to electron cavities, are excited around tωpe ' 900 at the center of the

position domain that evolve into several counter-propagating narrower electron cav-

ities. In Fig.5.2(b), it corresponds to the development of several large wavenumbers

k̄ in the same range of the nearly zero frequency region in the electic field spec-

trum [Fig5.1(c)]. The initial cavities, 1200 ≤ tωpe ≤ 1650, propagate with speed

|v̄| ' 1.5 × 10−2. The following cavities appear during 1400 ≤ tωpe ≤ 1650 and

propagate with speed |v̄| = 6.2831 × 10−2 and yield several narrower cavities after

they cross with the central cavity at tωpe = 1775. The speed of these structures are
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within the range of the excited waves in the electric field spectrum [Fig5.1(c)].

Figure 5.3: Evolution of the variations of the electrons distribution function, δf̄e, in
the low velocity range with immobile ions for perturbative amplitude εe = 4.0×10−2.
The velocity of the structures found in Fig.5.2 are shown (black dashed line).

In the electrons phase space of Fig.5.3, a region of electron trapping is developed

at v̄ = 0 [Figs.5.3(a) and (b)] which is still observed at further instants [Fig.5.3(d)].

This structure would account for the initial electron cavity in δn̄e,fil and the for the

high intensity waves in Fig.5.1. Other holes are formed at tωpe = 1460 [Fig.5.3(c)]

whose speeds are similar compared to those of the cavities in δn̄e,fil during 1200 ≤

tωpe ≤ 1600. Several small electron holes are observed at tωpe = 2200 [Fig.5.3(d)],

which would account for the development of narrow cavities in δn̄e,fil after tωpe = 1800

[Fig.5.2(a)].
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5.2 Comparison between mobile ions and immobile ions for

the nonlinear regime

As shown by Xu et al. [27], low frequency signals in |E1| for the nonlinear regime

are not found. As several modes are excited after the saturation, the electric field

energy ĒE is a more representative quantity to observe. According to Fig.5.4, the

field energy behaves in the same way as the case of immobile ions.

Figure 5.4: Evolution of the electric field energy ĒE for the nonlinear case, εe =
4.0× 10−2.

5.2.1 Electric field spectrum

Differences are found with the case of immobile ions by observing the electric field

spectrum, the frequency filtered electron density, and the electrons distribution func-

tion. The evolution of the electric field spectrum in Fig.5.5 shows a similar structure

compared to that in Fig.5.1 for immobile ions, however with larger amplitudes. The

waves with nearly zero observed in Fig.5.1 are still observed when ions are allowed to

move, but their amplitudes remain nearly one order of magnitude below those found

along the acoustic-like branch, the most excited ones in this range of frequencies.
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Figure 5.5: Spectra of the electric field
∣∣Ēk,ω∣∣ for εe = 4.0 × 10−2 for the case of

mobile ions. Three time intervals are shown. Roots of the linear dispersion relation
(2.2.10) are shown, corresponding to the IA mode (solid white line) and the least
damped higher order mode (dashed white line).

It is observed that the acoustic-like branch lies on a region coinciding with a root

of the linear dispersion relation for Ti/Te = 1.0 corresponding to the least damped

higher order mode. These waves are excited earlier, during 300 ≤ tωpe ≤ 1000

[Fig.5.5(a)], whereas in the case of immobile ions, they are first observed during

1000 ≤ tωpe ≤ 1700 [Fig.5.1(b)].

5.2.2 Frequency filtered electrons density

In the frequency filtered electrons density in Fig.5.6 there are notorious differences

with the density obtained with immobile ions of Fig.5.2. Firstly, the amplitude of

the low frequency variations is increased to nearly the double both in the density
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Figure 5.6: Evolution of the variation of (a) electrons density, filtered in frequency,
δn̄e,fil, and its spatial Fourier transform (b) for εe = 4.0× 10−2, for mobile ions.

[Fig.5.6(a)] and in its position space Fourier transform [Fig.5.6(b)]. Second, the

electron cavities fine structure developed in both cases is different: for mobile ions,

it developes from tωpe ' 500 as observed in both δn̄e,fil and |δn̄k,e,fil|, with cavities

propagating with speed |v̄c| = 6.2831× 10−2 being the predominant structure. The

central cavity formed with immobile ions [Fig.5.6(a)] is still formed. After tωpe =

1000, these cavities yield narrower cavities at larger times, developing a structure

rich in short wavelengths.
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Figure 5.7: Evolution of the variations of the electrons distribution function, δf̄e, in
the low velocity range with mobile ions for perturbative amplitude εe = 4.0× 10−2.
The velocity of the structures is shown for each instant (black dashed line).

5.2.3 Electrons distribution function

The evolution of the electrons distribution function differs form that observed in the

case of immobile ions. Figure 5.7 shows that there is an electron hole being closed

at tωpe = 780 around v̄c [Fig.5.7(a)], whereas in the case of immobile ions there is no

signatures of trapping at that velocity up to tωpe = 1460 [Fig.5.3(a) and (c)]. This

hole is wider in position and in velocity spaces, indicating the presence of a more

intense potential than in the case of immobile ions. It is also observed that the hole

has accelerated motion [Figs.5.7(b) through (d)].

Similar aspects hold: (i) the trapping region at the center of the position domain

with zero velocity is still excited, but it is not the predominant structure. This

accounts for the low energy in modes with nearly zero frequency in Fig.5.5, and (ii)
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smaller holes are excited, which may account for the finer structure developed in the

electrons density.

5.2.4 Effects on the high velocity range

The introduction of mobile ions also affects the particle dsitribution at higher veloci-

ties. This fact is shown with the velocity averaged correlations between the distribu-

tions
〈
δf̄e,i

〉
x

and
〈
δf̄e,m

〉
x

in Fig.5.8, evaluated in the velocity range 2.0 ≤ v̄ ≤ 5.0.

Correlations deviate from unity at tωpe = 500 and exhibit larger deviations after

tωpe = 1100.

Figure 5.8: Velocity averaged correlations between the position averaged variations
in the electrons distributions of the case with mobile ions,

〈
δf̄e,m

〉
x
, and immobile

ions,
〈
δf̄e,i

〉
x
,
〈
C
[〈
δf̄e,m

〉
x
,
〈
δf̄e,i

〉
x

]〉
v
. Correlations are averaged over the velocity

range 2.0 ≤ v̄ ≤ 5.0.

Position averaged correlations of the whole distribution functions at single in-

stants, δf̄e,j, show that deviations from the case of immobile ions are observed in a

wide range of velocities, starting with the trapping region, as observed in Fig.5.9.
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Figure 5.9: Sections of the position averaged correlations between the variations of
the electrons distributions of the case with mobile ions, δf̄e,m, and immobile ions,
δf̄e,i,

〈
C
[
δf̄e,i, δf̄e,m

]〉
x
. Perturbative amplitude is εe = 4.0× 10−2.

The corresponding phase space of the electrons distribution at the instants in

Fig.5.9 is shown. Although there are differences in the position of some of the holes,

and specific details in the main trapping region, the overall structure of the phase

space remains the same, as observed in Fig.5.10.
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Figure 5.10: Phase space of the variations of the electrons distribution function
for the case of immobile ions [(a) through (d)] and mobile ions [(e) through (h)],
for the trapping region related to the Langmuir mode. Perturbative amplitude is
εe = 4.0× 10−2.

5.3 Low frequency dynamics due to mobile heavy ions

In this section, the effects of the dynamics of heavy ions in an electron plasma are

studied, focusing on the low frequency, slow velocity ranges. Results shown in the

previous sections for the electrons distribution are discussed.
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5.3.1 Electric field spectrum

The low frequency range spectra of the electric field shown in Fig.5.5 is discussed.

As previously noted, the excited modes lie on a region corresponding to the least

damped higher order mode predicted by the dispersion relation (2.2.10). Low ampli-

tude waves are found lying on the linear IA branch for k̄ = 0.4, suggesting minor role

in this configuration. The phase speed of the most intense waves are in the range

5.610 × 10−2 ≤ v̄ ≤ 8.976 × 10−2 for all three time intervals. The observed waves

grow in amplitude and reach shorter wavelengths as the sytem evolves: initially,

the most intense waves are observed with k̄ < 0.8 [Fig.5.5(a)], then the waves on

the linear order higher branch arise with k̄ < 2.4 with the largest amplitude wave

having k̄ = 0.4 [Fig.5.5(b)]. At last, waves reach k̄ = 3.2, and there are three large

amplitude waves along the same branch with k̄ = 0.4, 0.8 and 1.2 [Fig.5.5(c)].

5.3.2 Low frequecy component of the electrostatic potential

The electrostatic potential is directly related to the electric field and its structure.

Therefore, the evolution of the low frequency filtered electrostatic potential, esti-

mated similarly as the filtered electrons density (5.1.1) and considering the filter

(5.1.2), is described. This filter retains the component of the potential that interacts

with the heavy ions and the slow electrons.

The position dependency of the electrostatic potential for the time interval 150 ≤

tωpe ≤ 700 is shown in Fig.5.11. The potential mostly exhibits a dependency on one

wavenumber (k̄ = 0.4), up to tωpe = 500, when a localized positive potential is formed
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Figure 5.11: Evolution of the variation of (a) the electrostatic potential, filtered in
frequency, Φ̄fil, and its spatial Fourier transform (b) for εe = 4.0 × 10−2, for mobile
ions. Time interval corresponding to the localization of the solitary structure in the
potential.

around the center of the position domain, x̄ = L̄x/2 [Fig.5.11(a)], with wavenumbers

up to k̄ = 0.8 [Fig.5.11(b)]. After this instant, variations with k̄ = 1.2 are excited

and the potential becomes localized during 500 ≤ tωpe ≤ 600, when the cavities in

the electrons density are being formed [Fig.5.13(a)].

In Fig.5.12, during 400 ≤ tωpe ≤ 1000, the potential is observed to become

more localized and to grow in amplitude, as the electron cavities are deepened

[see Fig.5.6(a)], up to tωpe = 1000, forming two solitary low frequency counter-

propagating waves propagating with speed |v̄s,Φ| = 6.283 × 10−2, equal to that of
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Figure 5.12: Evolution of the variation of (a) the electrostatic potential, filtered in
frequency, Φ̄fil, and its spatial Fourier transform (b) for εe = 4.0 × 10−2, for mobile
ions. The time interval considers the initial formation of the solitary structures and
further propagation.

the structures in δn̄e,fil. Since the system is periodic, the boundaries of the position

domain as well as x̄ = L̄x/2 are crossing points at which the potential is locally and

instantaneously enhanced. After the crossing at tωpe = 1000, the solitary structure is

dispersed and several wavelengths of low amplitude are then excited [see Fig.5.12(b)].

This coincides with a crossing of the main cavities and a growing cavity at the cen-

ter of the position domain, and the further generation of narrower cavities in the

electrons density. The main structure persists at further instants.
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5.3.3 Evolution of the electrons density

In the electrons density in Figs.(5.6), cavities are formed at tωpe ' 500, when the

electrostatic potential begins to become localized. Figure 5.13 shows a detail of the

frequency filtered electrons density for 200 ≤ tωpe ≤ 700. Initially, most of the

variations occur with the excited wavenumber, k̄ = 0.4. The charge is homogenized

as the polarity of the potential is reversed [320 ≤ tωpe ≤ 440, Fig.5.11(a)]. Dur-

ing 400 ≤ tωpe ≤ 500, a local depletion of electrons is observed around x̄ = L̄x/2,

reaching the center that position at tωpe = 500. After this instant, shallow electrons

cavities begin to propagate.

The cavities propagate in the position domain, yielding deeper cavities at the

crossing points [Fig.5.6(a)]. Cavities are broadened and propagate accompanied by

an excess of electrons at their boundaries from tωpe = 800. At tωpe = 900, the central

cavity is excited. The three cavities cross at tωpe = 1000, leading to the generation of

shorter wavelengths variations [Fig.5.6(b)] and several narrower cavities [Fig.5.6(a)].

The evolution of the spectrum of the electrons density δn̄e is discussed. Fig-

ure 5.14 shows that the low frequency structure of the electrons density involves

the excitation of several waves in the same region as those found in the electric field

(Fig.5.5). The amplitude of these waves increases as the cavity-like regions are formed

[Fig.5.14(a) and (b)], exciting mostly waves of short wavelength, 1.2 < k̄ < 2.4. The

amplitudes of these waves continue to grow at longer times, exciting shorter wave-

lengths, k̄ > 2.4 [Fig.5.14(c)]. Therefore, most of the low frequency dynamics of

δn̄e is associated to waves lying on the linear higher order branch, with k̄ = 1.2
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Figure 5.13: Evolution of the variation of (a) the electrons density filtered in fre-
quency, δn̄e,fil, and its spatial Fourier transform (b) for εe = 4.0 × 10−2, for mobile
ions. The time interval considers the initial formation of the electron cavities.

and k̄ = 1.6. Waves below the linear IA branch are excited [white solid line in

Fig.5.14(c)], remaining of low amplitude in comparison to those in the acoustic-like

branch.

It is noted that the most intense waves excited in this case propagate with phase

speeds nearly in the same range and close to the speed |v̄c| of the electron cavities of

Fig.5.6(a). In the initial time interval, the ranges are 4.488×10−2 ≤ v̄ ≤ 8.976×10−2

and a low speed range, 0.0 ≤ v̄φ ≤ 2.244 × 10−2 [Fig.5.14(a)], 6.732 × 10−2 ≤ v̄φ ≤

8.334 × 10−2 [Fig.5.14(b)], 5.984 × 10−2 ≤ v̄φ ≤ 8.228 × 10−2 [Fig.5.14(c)]. Also,

slower waves are excited [Fig.5.14(b) and (c)], coinciding with the formation of the

106



Figure 5.14: Spectra of the electrons density |δn̄e,k,ω| for εe = 4.0 × 10−2 for the
case of mobile ions. Three time intervals are shown. Roots of the linear dispersion
relation (2.2.10) are shown, corresponding to the IA mode (solid white line) and the
least damped higher order mode (dashed white line).

central cavity [Fig.5.6(a)].

5.3.4 Evolution of the heavy ions density

The variations of the ions density, δn̄i, are shown in Figs.5.15 and 5.16. Initially,

time variations of the ions density occur mostly with k̄ = 0.4 [Figs.5.15(b) and

5.16(b)] with decreasing amplitude. During 200 ≤ tωpe ≤ 300, the potential has a

maximum which expels ions to the boundaries of the position domain, as observed

in 300 ≤ tωpe ≤ 450 [Fig.5.15(a)]. The potential then increases at those regions

and ions are again crowded at x̄ = L̄x/2. This charge accumulation is accompanied

by the formation of a cavity in the electrons density [Fig.5.13(a)] and yields the

localized positive potential observed at tωpe = 500 [Fig.5.11(a)]. As the potential
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Figure 5.15: Evolution of the variation of (a) ions density, δn̄i, and its spatial Fourier
transform (b) for εe = 4.0 × 10−2. The time interval considers the localization of
compressive pulses.

involves shorter wavelengths, the force on the species is enhanced, accumulating a

large amount of ions at the borders at tωpe = 600 [Fig.5.15(a)].

Figure 5.16 shows the evolution of δn̄i for longer times. After the localization

process, two counter-propagating solitary structures, corresponding to compressive

pulses, begin to propagate with speeds |v̄s| ' 6.283 × 10−2. Their propagation

coincides with that of the electron cavities [Fig.5.6(a)], suggesting that both struc-

tures propagate coupled in position space, and account for the solitary potential

[Fig.5.12(a)]. The solitary structures lose coherence after tωpe = 1000 as shorter

wavelength are developed (k̄ > 2.1), even though of low amplitude [see Fig.5.16(b)].
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Figure 5.16: Evolution of the variation of (a) ions density, δn̄i, and its spatial Fourier
transform (b) for εe = 4.0× 10−2. The time interval considers the formation of the
ion compressive pulses and further propagation.

This event coincides with the development of shorter wavelength structures in the

electrons density and the dispersion of the electrostatic potential.

The evolution of the low frequency spectrum of the ions density in Fig.5.17 ex-

hibits low amplitude variations with the most intense waves having longer wavelengts,

k̄ < 1.2. Waves along the acoustic-like branch are observed, with the most intense

waves having wavenumber k̄ ≤ 0.8. The phase speed of these waves lie within the

range 4.488 × 10−2 ≤ v̄φ ≤ 8.976 × 10−2, being coincident with the wave structure

in |Ēk,ω| and |δn̄e|. Other intense waves are observed with nearly zero frequency

for the range 0.4 ≤ k̄ ≤ 1.2 [Figs.5.17(b) and (c)]. As in the case of the electrons
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density, low amplitude waves located below the linear IA branch are present during

1100 ≤ tωpe ≤ 1800 with smaller wavenumbers, k̄ ≤ 2.4 [Figs.5.17(c)].

Figure 5.17: Spectra of the ions density |δn̄i,k,ω| for εe = 4.0 × 10−2 for the case of
mobile ions. Three time intervals are shown. Roots of the linear dispersion relation
(2.2.10) are shown, corresponding to the IA mode (solid white line) and the least
damped higher order mode (dashed white line).

5.4 Electron and ion nonlinear structures

The structures observed in the ions density and the low frequency component of the

electrons are located at the same positions and propagate with the same velocities,

as noted from Figs.5.6(a) and 5.16(a). The instant at which such a coupling would

occur, τloc, and the full distribution functions of each species are discussed.
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5.4.1 Local correlations

Since the low frequency structure of the electrons density and the ions density exhibit

an opposite tendency, their local correlations, C [δn̄i, δn̄e,fil], estimated as

C [δn̄i, δn̄e,fil] (x̄, t̄) =
δn̄i(x̄, t̄)δn̄e,fil(x̄, t̄)

σi(t̄)σe,fil(t̄)
,

where σj(t̄) the standard deviation of the particle density of species j in time, should

exhibit anti-correlation at the positions where the electron cavities and the compres-

sive pulses are located. The evolution of the local correlations of these densities is

shown in Fig.5.18.

Figure 5.18: Evolution of C [δn̄i, δn̄e,fil] and the transition to the localization of per-
turbations in position space. The localization time τloc is indicated (red dashed line)
for εe = 4.0× 10−2.

Local correlations also allow to determine the instant τloc by finding the instant

at which the correlations begin to be negative at the positions of these structures. In

this case, τloc = 618.75. Before this instant, correlations are mostly positive. After
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τloc, anti-correlation is observed at the location of the structures. At tωpe > 1000,

the anti-correlative behavior is lost at a large extent although at certain regions

is intermittently observed (for instance, see Fig.5.18 during 1200 ≤ tωpe ≤ 1400

and 1700 ≤ tωpe ≤ 1800). Most of the time both densities are nearly uncorrelated

(C ∼ 0), due to the difference in the range of wavelength developed by each species.

5.4.2 Particle distribution functions

The particle distribution functions are observed during three stages: (i) at the onset

of the formation of the structures (tωpe < τloc), (ii) during the propagation of the

structures (τloc ≤ tωpe ≤ 1000) and (iii) at the formation of shorter wavelength

structures (tωpe > 1000).

Onset of the formation of the structures

Figure 5.19 shows the variations of the distribution function of electrons [Figs.5.19(a)

through (d)], and of the ions [Figs.5.19(e) through (h)], at four instants prior to the

propagation of the low frequency structures in both densities. The variations in the

electrons distribution show the formation of a localized region of depletion of elec-

trons right above the phase speed v̄φ,IA that is further localized as the filamentation

progresses [Fig.5.19(d)]. This region is centered about |v̄| ' 6.0× 10−2, close to |v̄c|

and would account for the formation of shallow cavities during 400 ≤ tωpe ≤ 500 in

the electrons density (Fig.5.13).

In the variations of the ions distribution, large amplitude variations occur for

velocities in the range |v̄| ≤ v̄φ,IA. This distribution exhibits a slow filamentation

process. It is noted that as the localized depletion of electrons moves in position
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Figure 5.19: Phase space portraits of electrons δf̄e [(a) through (d)] and ions δf̄i [(e)
through (h)] for εe = 4.0 × 10−2, before the localization of the structures in both
densities. Velocity v̄φ,IA (black dotted line) is indicated.

space, the density of ions along the filaments exhibits a localized accumulation of

particles at the same position, which is observed to be accelerated from v̄ = 2.0×10−2

[Fig.5.19(g)] towards v̄ = 4.0 × 10−2 [Fig.5.19(h)]. This accumulation would ac-

count for the formation of compressive pulses in the ions density for tωpe ≤ 600

[Fig.5.15(a)].
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Figure 5.20: Evolution of the variations of the position averaged distribution function
of ions,

〈
δf̄i
〉
x̄
, around v̄ = v̄φ,IA for εe = 4.0× 10−2.

The depopulation of the electrons can be understood by observing the position

averaged variations of the distribution function,
〈
δf̄j
〉
x̄
, from each species. Although

a high frequency component is observed, it is noted that the behavior of both dis-

tributions resembles that of the case of damped perturbations, namely, a population

of ions is sped up to the velocities around v̄φ,IA (Fig.5.20), whereas electrons with

velocity slightly above v̄φ,IA are slowed down (Fig.5.21). As ions naturally interact

with waves at that velocity, slow electrons undergo the opposite dynamical effects

of the associated electric field. As the filamentation progress, this information is

translated into the position dependency, being observed as cavities in the electrons

density δn̄e,fil. From the present analysis, it is unclear if the electron holes related to

the Langmuir wave contribute to this localized depletion.
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Figure 5.21: Evolution of the variations of the position averaged distribution function
of electrons,

〈
δf̄e
〉
x̄
, around v̄ = v̄φ,IA for εe = 4.0× 10−2.

Propagation of nonlinear structures

Figure 5.22 shows the distribution function of electrons [Figs.5.22(a) through (d)],

and of the ions [Figs.5.22(e) through (h)], at four instants corresponding to the prop-

agation of the localized structures. In the electrons distribution it is observed that

the localized depopulation evolves into a electron hole which propagates with speed

v̄H = 6.25×10−2. This speed is in the range of the phase speed of the waves found in

the electric field spectrum [Fig.5.5(a)] and of the electrons density [Fig.5.14(a)]. As

it propagates, its width in the velocity range increases, indicating an intensification

of the trapping potential associated to it [see Fig.5.12(a)], and the electrons popu-

lation increases around the hole producing the shielding observed in Ref.[48], which

leads to an steep decay of the trapping potential at its boundaries. Such excess of

electrons can be observed in Figs.5.23(b) through (d) in δn̄e,fil.

In the ions distribution [Figs.5.22(e) through (g)], it is observed that the localized

accumulation of ions is enhanced, as also observed in the ions density in Fig.5.23,
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Figure 5.22: Phase space portraits of electrons δf̄e [(a) through (d)] and ions δf̄i [(e)
through (h)] for εe = 4.0× 10−2, during the propagation of the electron cavities and
the ion compressive pulses. Velocity v̄φ,IA (black dotted line) and the electron hole
velocity v̄H (black dashed line) are indicated.

and displaced to v̄φ,IA. This enhancement could be explained by the fact that an

increase in the intensity of the moving potential of the electron hole leads to the

accumulation of heavy ions within the trapping region [47]: a localized positive po-

tential with growing amplitude slows down incoming ions with an increasing force,
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Figure 5.23: Variations of the low frequency component of the electrons density, δn̄e,fil

(black), and ions density, δn̄i (red), for the instants shown in Fig.5.22, considering
positive and negative velocities of the distribution functions.

enlarging their transiting time. Since ions enhance the positive potential, this pro-

cess self-consistently leads to a growth in the trapping region, the cavity depth in the

electrons density, and the amplitude of the compressive pulses in the ions density

observed during 600 ≤ tωpe ≤ 1000 in Figs.5.6(a) and 5.16(a). These structures

account for the solitary waves found in the electrostatic potential in Fig.5.12(a).
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Once the hole is stablished [Fig.5.22(c)], ions with different velocities contribute

to the formation of the pulse. This is observed in the local accumulation of ions

along two filaments close to x̄ = L̄x [Fig.5.22(g)], with lower velocity. Also, as the

potential of these structures grows in amplitude, it is capable to limit the transit of

faster ions, as noted around v̄H at tωpe = 970 [Fig.5.22(h)].

Formation of shorter wavelength structures

Figure 5.24 shows the distribution functions of electrons [Figs.5.24(a) through (d)]

and ions [Fig.5.24(e) through (h)], at four instants corresponding to the development

of short wavelength structures after tωpe = 1000 found in Figs.5.6 and 5.16. The den-

sity sections plot in Fig.5.25 shows structures with positive velocity of propagation.

The electrons distribution shows the development of smaller electron holes which

would account for the propagation of narrower electron cavities in δn̄e,fil [Figs.5.6(a)

and 5.25]. At tωpe = 1000, the electrons distribution exhibit distortions at the bound-

aries in position space of the primary hole [Fig.5.24(a)] from which secondary holes

then grow, one around v̄H and the other around v̄φ,IA, as observed at tωpe = 1240

[Fig.5.24(c)]. The process is detailed in Figs.5.26(a) through (d). At further instants,

smaller and slower holes are excited below v̄ = v̄φ,IA, which is observed in δn̄e,fil as

narrower cavities [Fig.5.6(a)]. These holes grow from disturbances in the distribu-

tion function below v̄φ,IA observed at tωpe = 970 [Fig.5.22(d)] and established once

the secondary holes are formed. By comparison with the case of immobile ions, the

growth of these holes would be due to structures related to the Langmuir waves.

The ions distribution continues to exhibit local accumulations within the pri-
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Figure 5.24: Phase space portraits of electrons δf̄e [(a) through (d)] and ions δf̄i [(e)
through (h)] for εe = 4.0× 10−2, during the propagation of the electron cavities and
the ion compressive pulses. Velocity v̄φ,IA (black dotted line) and the electron hole
velocity v̄H (black dashed line) are indicated.

mary region of electron trapping, at tωpe = 1000 [Fig.5.24(e)]. Once the secondary

and smaller holes are developed, the ions distribution has undergone distrurbances

which lead to the formation of several local accumulation of ions along the filaments

[Fig.5.24(f) and more notoriusly in Fig.5.24(h)]. In this process, a deformation in the
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Figure 5.25: Variations of the low frequency component of the electrons density, δn̄e,fil

(black), and ions density, δn̄i (red), for the instants shown in Fig.5.24, considering
only positively propagating structures.

filament in the range v̄φ,IA ≤ v̄ ≤ v̄H is observed as the secondary holes are formed

[Fig.5.26(e) through (h)]. At further instants, such deformations also occur below

v̄φ,IA when several holes have been developed [Fig.5.24(h)]. This process seems to

produce the loss of coherence in both the compressive pulses and the electrostatic

potential found from tωpe = 1000. However, Fig.5.25 suggests that the electron and

ion structures remain coupled [Figs.5.25(a) and (b)].
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Figure 5.26: Details of the variations of electrons distribution δf̄e [(a) through (d)],
and ions distribution δf̄i [(e) through (h)]. Velocity range v̄φ,IA ≤ v̄ ≤ v̄H during
the process of acceleration of the primary electron hole. Velocity v̄φ,IA (black dotted
line) and the electron hole velocity v̄H (black dashed line) are indicated.

Figure 5.26 shows the formation of the secondary holes between tωpe = 970

and tωpe = 1200, and of the structure in ions distribution around v̄H . Before the

secondary holes are formed, ions locally bunch at the center of the primary hole

[Fig.5.26(a) and (e)] around the velocity of the hole v̄H , sharing boundaries in posi-

tion space with the electron hole. This region is then stretched with one boundary

dragged towards the velocity v̄φ,IA and and the other to v̄H [Figs.5.24(f) through (h)],
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indicating that a portion of these ions has been sped up and another portion has

been slowed down with respect to the primary hole. The deformation occurs after

the crossing of the three holes at tωpe = 1000 when the potential is locally enhanced

at the crossing point. These deformations are more notorious at larger times [see

Fig.5.24(e)], and can be interpreted as compressive ion pulses [45, 84], located at

the boundaries of the hole that trap neighbouring electrons [Fig.5.24(c) and (d)]. In

the cited references such pulses lead to the disruption of the primary hole into two

secondary counter-propagating holes. However, in this case, the primary hole per-

sists. The reason could be that a small population of ions contirbute to the pulses,

whereas there is still a large number of ions within the primary hole that sustains

its trapping potential.

In all the shown instants, the electron holes propagate with larger and increasing

speed (v̄H = 6.25× 10−2 to 7.75× 10−2) compared to those in Fig.5.24. Such accel-

eration could be related to the generation of secondary holes, as in the initial stages

the hole propagates at nearly constant speed [see Figs.5.22(a) through (d)].

5.5 Variation of the amplitude of the initial perturbation εe

The previously described dynamics is still observed for lower perturbative ampli-

tudes εe. The processes differ mainly in the level of the amplitudes of the involved

quantities, the time scales at which they are formed and the velocity of propagation

of the structures. In this section, the effects of the variation of εe on the instant τloc

are addressed.
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5.5.1 Effects on the amplitude of the ions density

Figure 5.27: Evolution of the position averaged squared amplitude of the ions density,
〈δn̄2

i 〉x, for different εe. The time of localization τloc (black crosses) is indicated.

As εe is reduced, the variations in the ions density occur at lower levels. Four

processes can be observed in this quantity, as noted in Fig.5.27, resembling the be-

havior of the electrons density with the Langmuir wave for the same configuration:

(i) an initial damping, which occurs at nearly the same rate for different εe, (ii) an

arresting of the damping, after which variations in the ions density slowly grow, (iii)

a coupling with electrons structures, which can be recognized through the correla-

tions C[δn̄i, δn̄e,fil], and (iv) a saturation.

A reduction in εe leads these stages to occur at longer times. If the amplitude εe is

low enough, the variations can eventually be fully damped, as in the cases addressed

in Chapter4, and therefore nonlinear structures are not formed. This suggests the

existence of a threshold amplitude to excite this nonlinear dynamics.
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5.5.2 Determination of the threshold amplitude εe for the localizations

in ions density

Figure 5.28: Simulation data and curve fit of τloc for the range 1.66 × 10−2 ≤ εe ≤
5.0× 10−2. The red dotted lines correspond to the confidence bands of the curve fit,
with a 0.85 confidence for the fit.

The instant τloc is determined for the range 1.66 × 10−2 ≤ εe ≤ 5.0 × 10−2, by

following C [δn̄i, δn̄e,fil], δn̄i and δn̄e,fil. The simulation data in Fig.5.28 suggest that

τloc is ruled by a power law,

τloc = α [εe − εe,T ]−β , (5.5.1)

where α and β are positive coefficients to be estimated, and εe,T is the threshold

perturbative amplitude, for which εe,T < εe triggers the development of the coupled

structures. According to the results from the simulations, a curve fitting considering

εe ≤ 5.0 × 10−2 provides the following parameters with their respective intervals of
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confidence.

α = 24.7295± 9.0143,

β =(9.2714± 0.9723)× 10−1,

εe,T = (1.3743± 0.079)× 10−2,

for 0.85 confidence. The threshold to trigger this nonlinear behavior is higher

than that required to trigger the nonlinear Landau damping process for the same

wavenumber reported in Ref.[9], implying that the development of these nonlinear

structures requires a larger amount of initial energy.

5.6 Summary and discussion

This chapter focuses on the nonlinear evolution of an electron-ion plasma with mass

ratio m̄i = 1836.153, initially isothermal species, T̄i = 1.0, both being initialized with

driftless Maxwellian distributions. A comparison between the cases of mobile and

immobile ions indicate that a low frequency dynamics occurs with waves located in a

region corresponding to the least damped higher order mode of the linear dispersion

relation, developing trapping regions in the electrons distribution function around

v̄H = 6.0× 10−2, and being observed as cavities in the electrons density. When ions

are endowed with motion, several quantities exhibit larger amplitudes. Specifically,

the excited electron holes are larger and exhibit more dynamics in this case. There-

fore, heavy ions with T̄i = 1.0 enhance the low frequency dynamics.

At higher velocities, the phase space structures related to the Langmuir wave
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are also modified, as shown by the position averaged correlations of the electrons

distributions for both cases at fixed instants. However, the overall dynamics remains

the same, as observed in the phase space portraits.

The observed low frequency dynamics indicates that the presence of mobile

ions excites electrostatic solitary waves related to the formation of slow counter-

propagating electron holes of growing amplitude, allowing to accumulate ions within

the trapping region, which further enhance the potential of the structure, leading to

the formation of solitary compressive pulses in the ions density and of solitary waves

in the electrostatic potential without drifting distributions and naturally developed

with the initial perturbation, unlike in Refs.[46, 48, 49] in which electrons and ions

have a drift or the initial perturbation is an electron hole. Once these structures

are established, both structures couple and propagate with the same velocity. This

velocity is in the order of the phase speed of the waves on the excited branch, as ob-

served in the electric field spectrum. The density spectra show that electrons mostly

contribute to the development of short wavelength structures, whereas ions do with

longer wavelengths. It is unclear if the electron holes created due to the nonlinear

regime of Langmuir waves contribute to the formation of these holes.

Remarkably, the spectra exhibit low activity around the region of the linear IA

branch, the least damped low frequency mode according to the linear dispersion rela-

tion, in the propagation of these structures, suggesting a weak role in the dynamics of

the plasma. However, information from the distribution functions indicates resonant

interaction around the IAW phase speed v̄φ,IA from early instants in the simulation.

Electrons with similar velocities undergo the opposite dynamical effects due to the
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charge difference, being mostly slowed down and depopulating a bounded interval

in velocity space above v̄φ,IA. As the system evolves, this depopulation is translated

into a depopulation in position space, leading to the formation of nonlinear struc-

tures.

The compressive pulses in the ions density propagate with speed v̄s = 2.6919c̄s,

where c̄s =
√
T̄e/m̄i = 2.334× 10−2, out of the velocity range predicted by the fluid

model for IASs [35]. Also, the waves related to their propagation do not lie on the

linear IA branch, as required in the low amplitude analytical solution [36, 85] and

as observed in simulations [39, 40]. Therefore, the present results suggest that the

excited structures are not IASs.

As the potential grows, the hole grows in extension and interacts with ions of

faster velocities. These ions, co-moving with the electron hole can be eventually

expelled from within the trapping region if the potential is intense enough. This is

observed when the counter-propagating holes and the central hole cross at the center

of the position domain. At enhancing the potential, its gradient at the boundaries

becomes larger, speeding up or slowing down ions depending on their location. This

process introduces low amplitude short wavelength structures in the ions density and

accounts for the loss of coherence in the compressive pulses. As ions are forced to

the boundaries of the trapping region, they form compressive pulses with positive

potential which trap electrons from the boundaries, yielding secondary holes. Un-

like other works in which the primary hole is disrupted [45, 84], this hole persists,

possibly due to a larger number of heavy ions accumulated within. It remains to

study the acceleration of the primary hole, as well as the formation of the central
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hole and the smaller narrower holes with speeds below v̄φ,IA. It is hypothesized that

these smaller holes should be caused by the development of fine structures in the fast

modes at both sides of the distribution whose net effect is a low frequency electric

field, as they are also observed in the case of immobile ions.

Finally, this low frequency dynamics still occurs for lower perturbative amplitudes

εe having longer time scales. Specifically, the ions density shows a decay in the

amplitude of its variations and exhibits similar behavior to that observed in the

electrons density of the nonlinear Landau damping of Langmuir waves. The instant

at which the structures in the electrons and ions distribution are formed and become

coupled is also larger. Tests with several amplitudes εe allow estimating the threshold

amplitude for this dynamics to occur. It is found that this threshold is larger than

that required for the nonlinear Landau damping of Langmuir waves; it is a process

that requires larger energy to occur.

128



6 Single wave excitation - Variation of the initial

temperature ratio for nonlinear perturbation in

a Maxwellian electron-ion plasma

In this chapter the effect of the variation of the temperature ratio T̄i on the evolution

of a driftless Maxwellian electron-ion plasma is analyzed in the nonlinear regime

of perturbations. The analysis considers perturbative amplitude εe = 4.0 × 10−2,

perturbative wavenumber k̄ = 0.4 and the plasma is initialized with temperature

ratios T̄i = 0.025, 0.2, 1.8 and 5.0.

6.1 Electric field spectra

The spectra of the electric field are shown in Figs.6.1 for T̄i ≤ 1.0 and 6.2 for

T̄i ≥ 1.0. The case T̄i = 1.0 is shown for comparison. The spectra are compared

with the roots of their respective linear dispersion relation for three time intervals

considering the formation of nonlinear structures (500 ≤ tωpe ≤ 1200), a middle

term interval (1100 ≤ tωpe ≤ 1800) and a longer term interval (1700 ≤ tωpe ≤ 2400).

It is observed that the low frequency activity is more intense for T̄i < 1.0 with

waves mostly lying on linear higher order modes. The excited regions in ω̄r − k̄
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Figure 6.1: Evolution of the electric field spectra, |Ēk,ω|, for T̄i = 1.0 [(a) through
(c)], 0.2 [(d) through (f)] and 0.025 [(g) through (i)], for three time intervals (rows).
Perturbative amplitude εe = 4.0 × 10−2. The respective IA mode (solid white line)
and higher order linear modes (dashed white line) from the linear dispersion relation
are shown. For T̄i < 1.0, the higher order modes show the boundaries of the excited
region.
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space are nearly the same than in case T̄i = 1.0. However, their respective linear

dispersion relations predict a larger number of higher order modes for this region

rather than just the least damped one, as the number of modes in a region increases

with lower T̄i in linear theory. The most of the excited waves in the plasma have

wavenumbers k̄ ≤ 1.2 and frequencies ω̄r ≤ 0.1 [Figs.6.1(d) through (i)], lower in

comparison to those found in the isothermal case. The range of phase velocities

for these waves is 4.488 × 10−2 ≤ v̄φ ≤ 8.976 × 10−2, in the same range as those

excited with T̄i = 1.0. Low intensity waves are excited in the region of the linear

IA mode for T̄i = 0.025 [Figs.6.1(g) through (i)] with phase velocities in the range

1.122× 10−2 ≤ v̄φ ≤ 4.488× 10−2.

In comparison, the amplitude of low frequency waves for T̄i > 1.0 is at least one

order of magnitude lower than with T̄i < 1.0, having the case T̄i = 5.0 the lower

amplitudes [Figs.6.2(a) through (c)] for all three time intervals. Furthermore, the

dispersion structure of this case found from the simulations is similar to that found

in the case of an electron-ion plasma with immobile ions, as shown in Fig.6.3, except

by waves with frequencies ω̄r ≤ 0.05 during 1100 ≤ tωpe ≤ 1800 [Figs.6.3(c) and

(d)], and along the acoustic-like branch during 2000 ≤ tωpe ≤ 2700 [Figs.6.3(e) and

(f)]. Further differences are found in the long term, as observed in Fig.6.4. The

middle case T̄i = 1.8 [Figs.6.2(d) through (f)] shows a structure similar to that of

the isothermal case but with lower amplitudes.

The excited regions in the cases T̄i > 1.0 are not necessarily coincident with

regions of linear higher order branches, as in the case of T̄i = 1.8 during 1100 ≤

tωpe ≤ 1800 [Fig.6.2(e)] and T̄i = 5.0 during 2000 ≤ tωpe ≤ 2700 [Fig.6.2(c)]. With
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Figure 6.2: Evolution of the electric field spectra, |Ēk,ω|, for temperature ratios
T̄i = 5.0 [(a) through (c)], 1.8 [(d) through (f)] and 1.0 [(g) through (i)]. The
respective IA mode (solid white line) and the least damped higher order linear modes
(dashed white line) from the linear dispersion relation are shown. Perturbative
amplitude εe = 4.0× 10−2.
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Figure 6.3: Comparison of the electric field spectra, |Ēk,ω|, between the case of
immobile ions [(a), (c) and (e)] and the case of mobile ions with initial temperature
ratio T̄i = 5.0 [(b), (d) and (f)]. Perturbative amplitude εe = 4.0× 10−2.

T̄i = 5.0 the most excited waves lie on its corresponding IA branch. However, at

longer times the excited waves reach the least damped linear higher order mode for

T̄i = 1.8 [Fig.6.2(f)]. This is not the case of T̄i = 5.0, in which the most excited

waves remain on the region of the linear IA branch at longer times [Fig.6.4(b), (d)

and (f)].

A remarkable feature is the difference in the amplitudes in each case, increasing

for lower T̄i, however being larger with T̄i = 0.2 than with T̄i = 0.025. Also, the
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Figure 6.4: Comparison of the electric field spectra, |Ēk,ω|, between the case of
immobile ions [(a), (c) and (e)] and the case of mobile ions with initial temperature
ratio T̄i = 5.0 [(b), (d) and (f)]. Three long term time intervals are considered.
The respective IA mode (solid white line) and the least damped higher order linear
mode (dashed white line) from the linear dispersion relation are shown. Perturbative
amplitude εe = 4.0× 10−2.

excited waves involve nearly the same region in ω̄r− k̄ space. As the linear dispersion

relation predicts different modes in that region, from IA mode with T̄i = 5.0 to a

series of higher order modes with T̄i = 0.025, it is suggested that the excited waves

cannot be associated to any branch of the linear dispersion relation.
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6.2 Nonlinear structures propagating in position space

The frequency filtered electrostatic potential Φ̄fil and variations in the electrons den-

sity δn̄e,fil, and the variations in the ions density δn̄i are followed for all the tested

temperature ratios in order to describe how the nonlinear structures found in the

isothermal case are modified.

6.2.1 Frequency filtered electrostatic potential

The evolution of the frequency filtered electrostatic potential is shown in Figs.6.5 for

T̄i ≤ 1.0 and in Fig.6.6 for T̄i ≥ 1.0. The frequency filter applied to the electrostatic

potential is given by eq.(5.1.2).

It is noted that in both temperature ranges the structure of the waves found in

the electric field spectra is related to the propagation of electrostatic solitary struc-

tures. The structures differ in the following aspects: (i) Although the amplitudes

and size in position space of the solitary potential are similar in cases T̄i = 0.2 and

T̄i = 0.025, these features are smaller for larger T̄i [Fig.6.6(a), for T̄i = 5.0]. There-

fore, the solitary potential is more intense and large with T̄i = 0.2 and T̄i = 0.025

[Figs.6.5(a) and (b)] than with the isothermal case. (ii) The instant at which the

solitary potential is generated is earlier with lower T̄i. This fact might be related to

the level of the potential in each case. (iii) The speed of propagation of the struc-

tures is slower with lower T̄i, being in the range 4.833 × 10−2 ≤ v̄Φ ≤ 5.236 × 10−2

for T̄i = 0.025 and increasing to 5.818× 10−2 ≤ v̄Φ ≤ 6.981× 10−2 for the isothermal

case, and then to 6.981 × 10−2 ≤ v̄Φ ≤ 7.854 × 10−2 for T̄i = 1.8. In the case of

T̄i = 5.0, however, the speed is slower, ranging in 6.283× 10−2 ≤ v̄Φ ≤ 6.684× 10−2.
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Figure 6.5: Evolution of the frequency filtered electrostatic potential, Φ̄fil, for
temperature ratios (a) T̄i = 1.0, (b) 0.2 and (c) 0.025. Perturbative amplitude
εe = 4.0× 10−2.

6.2.2 Particle densities

The evolution of the ions density, δn̄i (shown in Figs.6.7 and 6.11 for T̄i ≤ 1.0, and

in Figs.6.8 and 6.13 for T̄1 ≥ 1.0), and the freqeuency filtered electrons density, δn̄e,fil

(in Figs.6.12 and 6.9 for T̄i ≤ 1.0, and Figs.6.14 and 6.10 for T̄i ≥ 1.0) are followed.
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Figure 6.6: Evolution of the frequency filtered electrostatic potential, Φ̄fil, for temper-
ature ratios (a) T̄i = 5.0, (b) 1.8 and (c) 1.0. Perturbative amplitude εe = 4.0×10−2.

For the cases 0.1 ≤ T̄i ≤ 1.8, the structures found in both species correspond

to the same structures found in the isothermal case, namely, counter-propagating

compressive pulses in δn̄i and density cavities in δn̄e,fil. These structures coincide

in position space at all times and propagate with the same velocity as the solitary

structures in Φ̄fil do. Both the deficit of electrons and the accumulation of positive

ions account for the low frequency electrostatic potential in Figs.6.5 and (6.6).
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Figure 6.7: Evolution of variations of the ions density, δn̄i, for temperature ratios
(a) T̄i = 1.0, (b) 0.1 and (c) 0.025. Perturbative amplitude εe = 4.0× 10−2.

The structures of both species mainly differ in the following aspects: (i) Their

width in position space is larger for lower T̄i, in accordance to the same tendency of

Φ̄fil. Additionally, the amplitudes of the compressive pulses in δn̄i are larger at lower

temperature ratios. The depth of the electrons cavities is not greatly affected. (ii)

The instant at which the structures are formed is earlier for lower T̄i, varying from

138



Figure 6.8: Evolution of variations of the ions density, δn̄i, for temperature ratios
(a) T̄i = 5.0, (b) 1.8 and (c) 1.0. Perturbative amplitude εe = 4.0× 10−2.

tωpe ' 1000 with T̄i = 1.8 [Figs.6.8 and 6.10, both in frame (b)], to tωpe ' 500 with

T̄i = 0.2 [Figs.6.7 and 6.9, both in frame (b)]. (iii) The structures propagate with

slower velocity for lower T̄i, in the same way as Φ̄fil.

In case of the lowest temperature ratio (T̄i = 0.025), a different structure is found

from tωpe = 500, which leads to an intense compressive pulse at the center of the
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Figure 6.9: Evolution of variations of the electrons density filtered in frequency, δn̄e,fil,
for temperature ratios (a) T̄i = 1.0, (b) 0.1 and (c) 0.025. Perturbative amplitude
εe = 4.0× 10−2.

position domain at tωpe ' 670 [Fig.6.9(c)]. This pulse bifurcates and generates a

structure propagating with velocities 3.415 × 10−2 ≤ v̄ ≤ 5.236 × 10−2, generating

afterwards counter-propgating structures with velocities v̄ = 1.707×−2 in accordance

with the low frequency structures in the electric field spectra [Figs.6.1 (g) through

(i)]. This structure is also formed with T̄i = 0.2 at tωpe = 500, but is rapidly sur-

passed by the compressive ion pulses at tωpe = 800. In the electrons density, this is

140



Figure 6.10: Evolution of variations of the electrons density filtered in frequency,
δn̄e,fil, for temperature ratios (a) T̄i = 5.0, (b) 1.8 and (c) 1.0. Perturbative amplitude
εe = 4.0× 10−2.

observed as a low coherence structure formed during 700 ≤ tωpe ≤ 1500. In the long

term, the structures are the same as those found in the previous cases: in δn̄i corre-

spond to low coherence compressive ion pulses (Fig.6.11). In the electrons density,

low frequency cavities continue to propagate (Fig.6.12).

With the highest temperature ratio (T̄i = 5.0), the ions density develops cavi-
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Figure 6.11: Evolution of variations of the ions density, δn̄i, for temperature ratio
T̄i = 0.025. Perturbative amplitude εe = 4.0× 10−2. Long term time interval.

Figure 6.12: Evolution of variations of the electrons density filtered in frequency,
δn̄e,fil, for temperature ratio T̄i = 0.025. Perturbative amplitude εe = 4.0 × 10−2.
Long term time interval.

ties instead of compressive pulses. These structures are formed about tωpe = 1400

[Figs.6.10 (a)] up to tωpe ' 3000. Afterwards, a low coherence structure is developed

(Fig.6.13). In the δn̄e,fil, the cavity structure resembles the case of immobile ions, in

which cavities are formed about the same instant. Accordingly, ions would behave

as a mobile neutralizing background, and the formation of cavities in δn̄i would be a

response to sustain quasi-neutrality. At longer times (Fig.6.14) δn̄e,fil exhibits a low

coherence structure, as in δn̄i, in which the primary cavities from earlier instants are

not traceable.
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The cavity structure in δn̄e,fil with T̄i = 1.8 [Fig.6.10(b)] is similar to that in

T̄i = 5.0. However, it is formed earlier (tωpe ' 1000) and ion compressive pulses

are still formed [Fig.6.8(b)]. Therefore, in the transition from T̄i = 1.8 to 5.0, the

presence of mobile ions becomes less relevant in the low frequency dynamics of the

plasma.

Figure 6.13: Evolution of variations of the ions density, δn̄i, for temperature ratio
T̄i = 5.0. Perturbative amplitude εe = 4.0× 10−2. Long term time interval.

Figure 6.14: Evolution of variations of the electrons density filtered in frequency,
δn̄e,fil, for temperature ratio T̄i = 5.0. Perturbative amplitude εe = 4.0× 10−2. Long
term time interval.

The position averaged square variations of the ions density, 〈δn̄2
i 〉x̄, estimated
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through eq.(4.3.1), is shown in Fig.6.15 for different temperature ratios. This quan-

tity describes the envelope of δn̄i. Two important characteristics are noted: (i) the

first maximum reached by the variations of the ions density, corresponding to an

initial accumulation of ions at the boundaries of the position domain (see Fig.6.16),

is lower for higher T̄i, and (ii) a damping process that is observed right after the

first maximum is reached. The damping in 〈δn̄2
i 〉x̄ is larger for higher T̄i, reaching

lower amplitudes in δn̄i. Figure 6.15 suggests that the initial damping sets the level

of variations at further instants.

Figure 6.15: Evolution of the amplitude of the position averaged squared variations
of the ions density 〈δn̄2

i 〉x̄ for temperture ratios from T̄i = 0.025 to T̄i = 5.0. Pertur-
bative amplitude εe = 4.0× 10−2.

As the low frequency dynamics in an electron plasma is eased by the presence

of heavy ions, features of their distribution, such as T̄i, have effects on the electrons

distribution. This is observed through δn̄i and δn̄e,fil, in which the nonlinear struc-

tures formed in the low frequency range depends directly on T̄i. A higher T̄i would

lead electrons to behave as in the case of immobile ions. This could be understood

from the damping in the envelope of δn̄i. Larger damping would set the level of the

variations in lower amplitudes, which in turn would produce a weaker effect on the
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electrons distribution. On the opposite case damping is nearly absent, producing

large variations δn̄i and a characteristic structure of cavities in δn̄e,fil from earlier

instants.

Figure 6.16: Initial evolution of the variations of the ions density δn̄i for all the
tested temperture ratios. Perturbative amplitude εe = 4.0× 10−2.

6.3 Phase space structures

The phase space described by the electrons and ions distributions are followed

through the variations of the distribution functions δf̄j for all the tested temperature

ratios. The phase speed of the respective IAW for k̄ = 0.4 is used as a reference.

6.3.1 Electrons distribution

The variations of the electrons distribution function are shown in Figs.6.17 and 6.18

for T̄i ≤ 1.0, and in Fig.6.19 for T̄i ≥ 1, 0.

In all the cases an electron hole, referred to as primary, is formed. In the cases

0.025 ≤ T̄i ≤ 1.8, the primary hole has a lower bound in velocity space close to v̄φ,IA
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Figure 6.17: Evolution of variations of the electrons distribution function, δf̄e, for
temperature ratios T̄i = 1.0 [(a), (d), (g) and (j)], T̄i = 0.2 [(b), (e), (h) and (k)]
and T̄i = 0.025 [(c), (f), (i) and (l)], at four instants. The respective IA speed (black
dotted line) and the speed of the trapping region (black dashed line) are shown.
Perturbative amplitude εe = 4.0× 10−2.

for each T̄i (shown as a black dotted line). The primary hole has a larger size in

position space as well as in velocity space, for lower T̄i, in accordance with a more

intense electrostatic potential Φ̄fil and with wider cavities in δn̄e,fil. Thus, the for-
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mation of nonlinear structures, their size and the intensity of the potential Φ̄fil are

directly associated to the formation of a trapping zone.

Figure 6.18: Early instants of the evolution of variations of the electrons distribution
function, δf̄e, for temperature ratios T̄i = 1.0 [(a), (d), (g) and (j)], T̄i = 0.2 [(b),
(e), (h) and (k)] and T̄i = 0.025 [(c), (f), (i) and (l)], at four instants. The respective
IA speed (black dotted line) is shown. Perturbative amplitude εe = 4.0× 10−2.

Before the formation of the primary hole, it can be observed that at tωpe = 300,
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the distribution function exhibits a depopulation in a bounded range of velocities

right above v̄φ,IA [Figs.6.17(a) through (c)] for lower T̄i which evolves into an electron

hole [Figs.6.17(d) through (f) and Fig.6.18]. These disturbances take place later for

larger T̄i (Fig.6.19 for T̄i ≤ 1.8).

In the extreme case T̄i = 5.0, [Fig.6.19(a), (d), (g) and (j)], signatures of early

disturbance are not found, although a primary region of trapping is still formed and

followed by smaller electron holes at longer times, accounting for the structure in

δn̄e,fil. A direct comparison with the case of immobile ions [Figs.6.20(a) through (c)]

shows similarities in the distribution function in the low velocity range [Figs.6.20(e)

through (g)]. The evolution of the holes differ at further instants, as observed at

tωpe = 2550 [Figs.6.20(d) and (h)], although it still constists of small electron holes

within the same range of velocities. In addition to the evolution of δn̄e,fil and |Ēkω|2,

the phase space portraits indicate a weak effect of mobile ions in the electrons distri-

bution at higher T̄i, and suggesting that initially the electron holes observed in this

range are solely due to the faster electron modes.

The speed v̄φ,IA seems to play an important role in the evolution of the primary

electron hole [Fig.6.18 and Fig.6.17]. It is noted that there is an early depletion of

electrons as the filamentation develops [Fig.6.18(a) through (c)] right above v̄φ,IA,

allowing for a positive potential that eventually trap electrons. Once these struc-

tures are formed, they retain a lower bound at v̄φ,IA in velocity space. This is also

observed at T̄i = 1.8 with a smaller primary hole [Figs.6.19(b), (e), (h) and (k)].

Additionally, the speed of the primary hole is reduced with lower T̄i. Such fact
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Figure 6.19: Evolution of variations of the electrons distribution function, δf̄e, for
temperature ratios T̄i = 5.0 [(a), (d), (g) and (j)], T̄i = 1.8 [(b), (e), (h) and (k)]
and T̄i = 1.0 [(c), (f), (i) and (l)], at four instants. The respective IA speed (black
dotted line) and the speed of the trapping region (black dashed line) are shown.
Perturbative amplitude εe = 4.0× 10−2.

can be understood by considering that the processes that trigger the formation of the

hole are related to the speed v̄φ,IA which also decreases with T̄i. The upper bound

of the hole in velocity space is determined by the intensity of the potential Φ̄fil: a
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Figure 6.20: Comparison of the variations of the electrons distribution function, δf̄e,
between the cases of immobile ions [(a) through (d)] and temperature ratio T̄i = 5.0
[(e) through (h)]. Perturbative amplitude εe = 4.0× 10−2.

stronger potential yields a larger upper boundary and in the cases with T̄i < 1.8 such

boundary is in the order of v̄ = 0.1. Therefore, the net effect is that hole is centered

at a lower speed for lower T̄i.

6.3.2 Ions distribution

The ions distribution function in the equilibrium state, f̄0,i given by a one dimensional

Maxwellian distribution,
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f̄0,i =
n̄0,i√
2π v̄Ti

exp

[
− v̄2

2v̄2
T i

]
, (6.3.1)

is shown in Fig.6.21 for each tested T̄i. The variations of the distribution function,

δf̄i, are shown in Fig.6.27 for T̄i ≤ 1.0, and in Fig.6.30 for T̄i ≥ 1.0.

The equilibrium distribution function

Figure 6.21 shows that a reduction of the temperature ratio in f̄0,i implies a reduction

in the mobility of the heavy ions as a large fraction of them will have velocities closer

to the mean velocity of the distribution, restricting the dynamics of the species to

narrower ranges of velocity.

Figure 6.21: Half of the equilibrium distribution function of the ions distribution,
f̄0,i, for different temperature ratios T̄i. The respective speed v̄φ,IA is shown (dashed
line of the respective color).

As noted in Chapter 2, the phase speed of the corresponding IAW also decreases

with T̄i for fixed k̄. If the temperature is too low, the speed v̄φ,IA falls far from the

bulk of the distribution (see T̄i = 0.025 in Fig.6.21). In the case T̄i = 0.025, it is
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verified that v̄φ,IA = 6.139v̄T i, and any activity related to this speed is nonresonant

with the ions distribution. On the other hand, for high temperatures v̄φ,IA = 1.787v̄T i

(T̄i = 1.8) and 1.52v̄T i (T̄i = 5.0), meaning that any activity in this range is well into

the bulk of the ions distribution and resonant interactions associated to v̄φ,IA exist.

The resonance zone in the ions distribution

Figure 6.22: Sections of the position averaged variations of the ions distribution
function

〈
δf̄i
〉
x̄

(upper row) and of the ions kinetic energy distribution 〈δw̄i〉x̄ (lower

row) for temperature ratios T̄i = 1.0 [(a) and (b)], 0.2 [(c) and (d)] and 0.025 [(e) and
(f)], during the beginning of the simulation. The respective IA speeds are shown.
Perturbative amplitude εe = 4.0× 10−2.

The position averaged variations of the ions distribution function
〈
δf̄i
〉
x̄

and of

the kinetic energy distribution 〈δw̄i〉x̄ , where δw̄i = m̄iv̄
2δf̄i/2, are followed to clarify
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the behavior of ions around v̄φ,IA. These quantities are shown in Figs.6.22 and 6.24

for T̄i ≤ 1.0, and in Figs.6.23 and 6.25 for T̄i ≥ 1.0 for the initial and the damping

stages found in Fig.6.15. Generally, it is observed that the level of the variations〈
δf̄i
〉
x̄

and 〈δw̄i〉x̄ decrease with larger temperature ratio, as in the previously de-

scribed quantities in position space.

Figure 6.23: Sections of the position averaged variations of the ions distribution
function

〈
δf̄i
〉
x̄

(upper row) and of the ions kinetic energy distribution 〈δw̄i〉x̄ (lower

row) for temperature ratios T̄i = 5.0 [(a) and (b)], 1.8 [(c) and (d)] and 1.0 [(e) and
(f)]. The respective IA speeds (black dotted line) are shown. Perturbative amplitude
εe = 4.0× 10−2.

In all cases with 1.0 ≤ T̄i ≤ 5.0 (Fig.6.23) it is observed that there is an initial

accumulation of ions in a velocity range around the velocity v̄φ,IA whose extension is

larger for higher T̄i, that is rapidly formed after the plasma is perturbed, along with
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an increase in the kinetic energy (tωpe = 1.6). Due to the decrease in the population

of slower ions and the increment in 〈δw̄i〉x̄ over the observed velocity ranges, the

net effect is an acceleration towards faster velocities. Afterwards, the acceleration is

rapidly reversed, reducing the level of the variations
〈
δf̄i
〉
x̄

and 〈δw̄i〉x̄ in all the ob-

served cases. In the nonresonant cases T̄i ≤ 0.1 [Figs.6.22(c) through (f)] the same

accumulation is observed at velocities slower than v̄φ,IA, without variations about

v̄φ,IA. In all the studied cases of T̄i the reversion occurs as the envelope of δn̄i ap-

proaches to the first maximum (Fig.6.15). As the ions accumulate at certain regions

in position space, the self-consistent potential locally increases and slows down a

fraction of the ions.

Sections of the position averaged distribution function and kinetic energy dis-

tribution of ions are shown in Fig.6.24 for T̄i ≤ 1.0 and in Fig.6.25 for T̄i ≥ 1.0

during their respective damping stage, with the first instant corresponding to the

first maximum in the envelope of δn̄i.

In the cases T̄i ≥ 1.0, from the first to the second instant the variations in
〈
δf̄i
〉
x̄

occur into two adjacent velocity intervals corresponding to an increase in the faster

range and a decrease in the slower range, indicating a resonant interaction. The net

effect is a large increase in kinetic energy 〈δw̄i〉x̄ in the faster range and a slight de-

crease in the slower range. The extension of these ranges is shorter and the location

of the velocity v̄φ,IA is more weighted to the faster range, both for lower T̄i. Such

variations are produced by the self-consistent potential Φ̄fil created by the local ac-

cumulation of ions in position space in the first instant. The associated electric field

is strong enough to expel ions from those zones, redistributing them, and damping

154



Figure 6.24: Sections of the position averaged variations of the ions distribution
function

〈
δf̄i
〉
x̄

(upper row) and of the ions kinetic energy distribution 〈δw̄i〉x̄ (lower

row) for temperature ratios T̄i = 1.0 [(a) and (b)], 0.2 [(c) and (d)] and 0.025 [(e) and
(f)]. The respective IA speeds are shown. Perturbative amplitude εe = 4.0× 10−2.

the variations δn̄i. At the following instants, both quantities exhibit oscillations in

the velocity dependency, maintaining most of the variations close to v̄φ,IA.

In the nearly undamped cases T̄i < 1.0 [Figs.6.24(c) through (f)], a similar be-

havior is observed between the first and second instants in both quantities but at

velocities slower than v̄φ,IA. In the next instants the acceleration to faster veloci-

ties is reversed as ions are slowly redistributed in position space [Figs.6.7(b) and (c)].
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Figure 6.25: Sections of the position averaged variations of the ions distribution
function

〈
δf̄i
〉
x̄

(upper row) and of the ions kinetic energy distribution 〈δw̄i〉x̄ (lower

row) for temperature ratios T̄i = 1.0 [(a) and (b)], 0.2 [(c) and (d)] and 0.025 [(e) and
(f)]. The respective IA speeds are shown. Perturbative amplitude εe = 4.0× 10−2.

These results indicate that during the initial damping of δn̄i there is activity

around v̄φ,IA of resonant nature in the ions distribution for T̄i ≥ 1.0. If there are

nearly zero ions at that velocity, as in colder distributions, the damping is nearly

absent. For cases T̄i ≥ 1.0, there is an increase in both the number of ions and the

ion kinetic energy at velocities in the order of or larger than v̄φ,IA. As the electric

field driving this dynamics has the opposite effect on the electrons distribution,

that is, depopulating this region, it is suggested that this process generates the

initial depopulation that evolves into the primary trapping region for 1.0 ≤ T̄i ≤ 1.8
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[Fig.6.19 for T̄i = 1.0 and 1.8].

Variations of the distribution function

The variations of the ions distribution function, δf̄i, are presented in Figs.6.27 and

6.28 for T̄i ≤ 1.0, and in Fig.6.30 for T̄i ≥ 1.0.

In the temperature ratio range T̄i ≥ 0.2 [Figs.6.27(b), (e), (h) and (k) for T̄i = 0.2,

and Fig.6.30 for T̄i ≥ 1.0] the evolution of δf̄i mainly exhibits filamentation. The

speed at which the filamentation progresses differs with T̄i, being faster in distri-

butions with higher temperature ratios, as there is a large amount of faster ions

available to transport perturbations in phase space. The dominance of this process

also depends on T̄i, being dominant in T̄i = 5.0 and is greatly reduced towards

T̄i = 0.2. The extreme case T̄i = 0.025 does not exhibit filamentation at all.

As in all the previously discussed quantities, the level of the variations δf̄i in-

crease for lower T̄i. In comparison with δf̄e, in the isothermal case variations in the

ions distribution are of the same order of magnitude, whereas in T̄i = 0.025 the levels

exceeds those of electrons distribution by one order of magnitude, at least.

The difference of such variations could be due to the initial development of fila-

mentation, the presence of faster ions and a larger extension in velocity range of ions

that are affected by the perturbations depending on T̄i. In their motion, fast ions can

rapidly compensate density variations generated by slower ions. As a consequence,

the resulting potential will be weaker with higher T̄i, generating self-consistent vari-

ations of smaller amplitude at further times. This is observed in Fig.6.26, which
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Figure 6.26: Phase space plots of the variations of the ions distribution, δf̄i and
their corresponding variations in particle density, δn̄i, for T̄i = 5.0 [(a) through
(d)], 1.0 [(e) through (h)] and 0.025 [(i) through (l)], for three instants during the
damping of δn̄i with T̄i = 5.0. Perturbative amplitude εe = 4.0 × 10−2. Mass ratio
is m̄i = 1836.153.
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shows the phase space plots for three instants during the damping of δn̄i for T̄i = 5.0

and their respective particle density, for temperature ratios T̄i = 5.0 [Figs.6.26(a)

through (d)], 1.0 [Figs.6.26(e) through (h)] and 0.025 [Figs.6.26(i) through (l)].

To estimate the variations δn̄i both sides of the distribution in velocity space

are considered. The width in velocity space in which ions are affected is relevant in

the following way: as the plasma evolves, ions transport the initial perturbation in

phase space. If the range of velocities is too short, as in T̄i = 0.025, it will be trans-

ported nearly unaltered [Figs.6.26(i) through (k)] remaining localized in position

space. Structures at both sides of the velocity domain yield large amplitudes in δn̄i

when they are in or close to be in phase [Fig.6.26(k)] and low amplitudes when they

are in or close to be in anti-phase [for instance, in Fig.6.26(i) and (j)], whose varia-

tions contribute to the low frequency potential Φ̄fil. If the velocity range is wider, as

with T̄i ≥ 1.0, the structure will be transported at different velocities and will cover

a large region in position space [Fig.6.26(c)], compensating density variations due to

slower ions. The contribution of the whole velocity domain is therefore more likely

to yield a very small contribution in density variations and therefore in Φ̄fil. This

process can be interpreted as a screening due to fast ions. The screening would be

faster and more effective if there is a large number of ions with larger velocities.

This process would also account for the damping in the envelope of δn̄i. A colder

distribution does not exhibit screening and therefore variations will remain nearly

undamped, whereas a hotter distribution exhibits a more effective screening and

variations will be more rapidly damped. As a consequence, the variations δf̄i and

δn̄i remain lower, with a low frequency potential Φ̄fil incapable of disturbing the
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Figure 6.27: Evolution of variations of the ions distribution function, δf̄i, for tem-
perature ratios T̄i = 1.0 [(a), (d), (g) and (j)], T̄i = 0.2 [(b), (e), (h) and (k)] and
T̄i = 0.025 [(c), (f), (i) and (l)], at four instants. The respective IA speed (black
dotted line) and the speed of the trapping region (black dashed line) are shown.
Perturbative amplitude εe = 4.0× 10−2. Mass ratio is m̄i = 1836.153.

electrons distribution at low velocities and the ions distribution itself with higher T̄i,

and the plasma tends to behave as if ions were immobile. On the other hand, with

lower T̄i, ions have a larger initial contribution to Φ̄fil self-consistently sustaining

their dynamics and disturbing the electrons distribution at low velocities, rapidly

leading them to trapping.
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Figure 6.28: Evolution of variations of the ions distribution function, δf̄i, and of
the electrons distribution function, δf̄e, for temperature ratio T̄i = 0.025 during
the formation of secondary holes from the primary hole. The respective IA speed
(black dotted line) is shown. Perturbative amplitude εe = 4.0× 10−2. Mass ratio is
m̄i = 1836.153.

For the following instants, the phase space plots show a local accumulation of ions

within the region of trapping once the primary electron hole has been formed, due to

the deepening of the potential of the hole [47]. In the cases in which the speed of the

primary electron hole is close to the bulk of the ions distribution, co-moving ions are

directly affected. As observed in the isothermal case, the positive potential would
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expel ions from the center of the hole, forming compressive pulses at its boundaries

[45, 84] and producing secondary holes [Figs.6.27(g) for T̄i = 1.0, and Fig.6.30(h) for

T̄i = 1.8]. With the formation of further narrower holes, more compressive ion pulses

are formed around them [see Figs.6.27 (g) and (j) for T̄i = 1.0, and Figs.6.30(h) and

(k) for T̄i = 1.8].

Figure 6.29: Evolution of variations of the ions distribution function, δf̄i, and of
the electrons distribution function, δf̄e, for temperature ratio T̄i = 0.025 during the
formation of the primary electron hole. The respective IA speed (black dotted line)
is shown. Perturbative amplitude εe = 4.0× 10−2. Mass ratio is m̄i = 1836.153.

In the case T̄i = 0.025 [Figs.6.27(c), (f), (i) and (l), Figs.6.28(e) through (h) and
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Figs.6.29(e) through (h)], no variations occur about v̄φ,IA, yet trapping occurs by a

depopulation of electrons at this velocity. Phase space plots [Figs.6.18(c), (f), (i) and

(l) and Figs.6.29(a) and (b)] indicate that there is a localized depletion of electrons

at the center of the position domain in the velocity range of the ions distribution and

is transported to larger velocities and is amplified above v̄φ,IA. This process would

account for the cases where v̄φ,IA is nonresonant with the ions distribution.

As the primary hole propagates, the ions distribution is distorted in the same

manner as the cases of higher temperature, being ions repelled from the hole [Figs.6.27(i)

and (l), and Figs.6.28(f) through (h)] and although no ions are co-moving with

the primary hole, the electrons distribution is distorted and yields secondary holes

[Figs.6.28(a) through (d)]. The same occurs for T̄i = 0.2 (not shown), which also has

no ions co-moving with the primary electron hole.

With T̄i = 5.0, the ions distribution also exhibits localized accumulation but

filamentation is the dominant process [Figs.6.30(a), (d) and (g)], indicating that

these ions mostly free stream in the plasma. At larger times, however, compressive

pulses are observed when further smaller electron holes are formed [Fig.6.19(j)],

contributing to the formation of a low coherence structure found in δn̄i (Fig.6.13),

which might be responsible for the slight differences between this case and the case

of immobile ions.
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Figure 6.30: Evolution of variations of the ions distribution function, δf̄i, for temper-
ature ratios T̄i = 5.0 [(a), (d), (g) and (j)], T̄i = 1.8 [(b), (e), (h) and (k)] and T̄i = 1.0
[(c), (f), (i) and (l)], at four instants. The respective IA speed (black dotted line)
and the speed of the trapping region (black dashed line) are shown. Perturbative
amplitude εe = 4.0× 10−2.

6.4 Summary and discussion

This chapter studies the nonlinear dynamics of a driftless electron-ion Maxwellian

plasma with mass ratio m̄i = 1836.153 with perturbative amplitude εe = 4.0× 10−2

for different temperature ratios T̄i, making a comparison with the case T̄i = 1.0 and
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describing the observed dynamics. The evolution of the electric field spectra for the

tested T̄i shows that the most excited waves lie in nearly the same region in ω̄r − k̄

space. As the linear dispersion relation varies with T̄i, different linear branches co-

incide with the excited region, from the IA branch with T̄i = 5.0 to several higher

order modes with T̄i = 0.025, suggesting that the excited waves do not correspond to

a branch in the linear dispersion relation, in opposition to the conclusion in Chapter

5, and reinforcing the conclusion that the observed dynamics is not due to IAWs.

The electric field spectra show that the amplitudes of the signals in the electric

field spectra are decreasing for higher T̄i. Also, weak or negligible activity around the

linear IAW branch is found in all the studied cases, even in T̄i = 5.0. Similarly, the

signals found along this branch decrease with higher T̄i. This behavior is in agree-

ment with that found in IAWs whether linear [51] or nonlinear [54], in which they

are favored by lower temperature ratios T̄i, suggesting that not only IAWs undergo

this tendency but also other nonlinear waves related to heavy ions.

The nonlinear counter-propagating structures found in the isothermal case, namely,

solitary compressive pulses in δn̄i, cavities in δn̄e,fil and solitary structures in the po-

tential Φ̄fil are still generated in the range T̄i ≤ 1.8. The differences are the instant

at which they are formed, their width in position space, and their amplitudes. The

maximum width and amplitude and the earlier times occur with T̄i < 1.0, closer to

T̄i = 0. The cases T̄i > 1.0 have lower amplitudes and longer times. If T̄i is too high

(in the range T̄i > 1.8), these structures are not formed. In the case T̄i = 5.0, the

evolution of the electrons distribution resembles the case of immobile ions, whereas

ions behave mostly as a neutralizing mobile background. These results suggest that
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a hotter distribution of ions has a lower contribution to the dynamics of the plasma,

a similar tendency found by Zhou and Hutchinson [43] between electron holes and

IASs. Unlike their work, in the plasma studied here at the highest T̄i there is no

transition between coupled and decoupled electron holes.

It is also observed that the envelope of δn̄i exhibits initial damping that increases

with T̄i, being nearly zero for temperature ratios close to zero. This damping seems

to determine the level of variations at further instants and exhibits the same tendency

of the damping rate of the IAWs with T̄i [51]. As mobile ions ease the generation of a

low freqcuency dynamics, if ion density variations are too damped, as with T̄i = 5.0,

there will be a weak perturbation in the electrons distribution and the ions distri-

bution itself, and they will behave as if ions were motionless, in accordance with the

quantities observed in position space.

The distribution function of ions has a degree of mobility that depends on T̄i in

the sense that the same number of ions is distributed over a range of velocities of

different extensions. This width increases with higher T̄i. The resulting response if

T̄i is too low is that perturbations are slowly transported and their structure remains

unaltered and may remain localized for larger times, generating localized potentials

of large amplitude capable of producing trapping in the electrons density. Fast ions

can transport the perturbations far from their initial positions. If the density of

faster ions increases (higher T̄i) they may compensate density variations produced

by slower ions, and therefore, screen the self-consistent potential. Hence, amplitudes

in several quantities, including the energy in the electric field spectra at low frequen-

cies decrease with larger T̄i, but are still capable of driving the electrons distribution
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to develop a region of trapping. The screening occurs at the rate of motion of the

whole distribution which is faster in hotter distributions. In the case of T̄i = 5.0,

the large range of velocities allows screening the perturbation in a large region in

position space, leading to a fast decay of the amplitudes to low levels in a short time

scale. As the level of variations in the ions distribution strongly depends on the

amplitude of their self-consistent potential, δn̄i will remain low at further times. It

is suggested that this process yields the initial damping in the envelope of δn̄i.

As the filamentation progresses, the primary electron hole is formed right above

the velocity v̄φ,IA due to an initial depopulation of electrons. In the case where ions

are resonant with this velocity (T̄i = 1.0 and 1.8), there is a net increase in ions

density and ion kinetic energy around it, along with a depletion of ions at slower ve-

locities. Due to the opposite dynamical effects of the electric field depending on the

charge, electrons in this region would be slowed down with respect to this velocity,

generating the initial depletion. When v̄φ,IA is nonresonant with the ions distribu-

tion, there is an initial depletion of electrons at velocities close zero that is afterward

transported towards larger velocities, however, the mechanism through which the

depopulation occurs is not clear. Once the primary hole is formed, it grows in depth

and rapidly accumulates ions, incrementing the amplitude of the localized potential,

until compressive ion pulses are formed. It is noted that compressive ion pulses are

formed at the boundaries of the hole in position space that yields secondary holes

even when there are no ions co-moving with the primary hole (T̄i = 0.2 and 0.025).

According to these observations, the velocity v̄φ,IA is still relevant in the response of

the plasma although the spectra indicate that there is weak or negligible activity in

the region corresponding to this linear mode.
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It is noted that although certain temperature ratios are tested, the transition of

the observed phenomena with different T̄i suggests that there is a continuous transi-

tion between the tested temperature ratios. In fact, there is a continuous transition

in the location of v̄φ,IA with respect to the bulk of the distribution. Therefore, there

is still resonant interaction with the ions distribution at this velocity in the range

0.2 < T̄i < 1.0, and the net acceleration of ions around v̄φ,IA during the initial

damping should contribute to the generation of the initial depopulation that leads

to trapping in the electrons distribution. On the other hand, a continuous transition

should also be found within the range 1.8 ≤ T̄i ≤ 5.0 in which the dynamics of heavy

ions is rapidly damped and the low frequency dynamics remains the same than in

the case of immobile ions. A threshold temperature ratio T̄c is expected to be found

in this range.
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7 Conclusions

Throughout this work collisionless, unmagnetized, driftless Maxwellian electron-ion

plasmas with mass ratio m̄i = 1836.153 and charge ratio qi/|qe| = 1.0 have been

studied by exciting a single wavenumber, k̄ = 0.4, with perturbative amplitudes εe

below the critical amplitude for nonlinear Landau damping of Langmuir waves, εe,C ,

yielding damped oscillations, and above εe,C yielding nonlinear oscillations, both for

initially isothermal species, T̄i = 1.0. In the nonlinear case, the initial temperature

ratio T̄i has been varied to explore the effects in the dynamics of the plasma.

In the case of damped oscillations two kind waves propagate in the plasma, the

LWs led by the dynamics of the electrons, and the IAWs led by the heavy ions dy-

namics as found by Xu et al. [27], identified by comparison between the electric field

spectra and the frequencies and damping rates predicted by the kinetic linear disper-

sion relation. As T̄i = 1.0, the differences between the frequencies and the damping

rates are due to the difference of inertia, yielding weak damping and smaller fre-

quency for the IAWs, than for the LWs. The electrons distribution participates in

the propagation of both waves.

A resonance zone is found in the distribution of both species involving the phase
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velocity of the IAW, v̄φ,IA in which ions resonantly lead the dynamics and electrons

with velocities in the order of v̄φ,IA undergo the opposite dynamical effects due to the

charge difference, as expected from the linear theory estimation of the distribution

function. It is also found that both kinds of waves propagate relatively independently

one from the other as the resonance zone related to each one of them, or the whole

species, are not largely affected by the propagation of the other wave, suggesting

that the overall dynamics corresponds to a superposition of both kinds of waves.

Therefore, initially, the large amplitude Langmuir wave predominates in the plasma

sustained by electrons with velocities close to v̄φ,L. Since its damping rate is larger,

Langmuir oscillations rapidly decay below the levels of the IAWs, sustained by par-

ticles with velocities close to v̄φ,IA, and the dynamics is then governed by these waves.

In the case of nonlinear oscillations, the case of immobile ions is found to exhibit

a low frequency dynamics several electron plasma cycles after the formation of the

trapping zone of nonlinear Landau damping of Langmuir waves. The variations of the

electrons distribution show the development of an electron hole with velocity v̄ = 0

followed by counter-propagating holes propagating with velocities |v̄| ' 6.0 × 10−2,

with acoustic-like signatures in the electric field spectrum |Ēω,k|. Afterwards, the

electrons distribution becomes densely populated by small electron holes within the

range |v̄| ≤ 0.1. It is shown that the introduction of mobile initially isothermal ions

enhance the low frequency dynamics by allowing the propagation of electron holes

with velocities |v̄| = 6.283−2 of large extension in position and velocity spaces, at

earlier times than in the case of immobile ions. Further comparison of the variations

of the averaged distribution function and the distribution function indicate that the

phase space structure is modified even in the electron hole related to Langmuir waves.
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The spectrum |Ēk,ω| shows the excitation of waves in the same region as with mobile

ions, but the acoustic-like branch involves waves of larger amplitude. Although low

frequency activity is detected the IAWs are not the most excited wave in this system,

unlike the case of damped oscillations, and are rather on a branch corresponding to

the least damped higher order mode in the low frequency range predicted by the

linear dispersion relation.

By focusing on the low frequency dynamics, it is observed that the low-frequency-

filtered electrostatic potential exhibits solitary counter-propagating structures that

last for long times with nearly constant velocities, |v̄s,Φ| = 6.283 × 10−2, which can

be identified as solitary electrostatic waves. The frequency filtered variations of the

electrons density and the variations of the total ions density exhibit complementary

structures that propagate with the same velocity, corresponding to cavities in the

electrons density and compressive pulses in the ions density. It is remarkable that

these structures are excited without a relative drift between electrons and ions and

naturally develop from the initial perturbation without requiring an initial seed for

the electron hole or the ion soliton [46, 48, 49]. The spectrum of each quantity indi-

cates that the electrons contribute to the development of short wavelength structures

whereas heavy ions sustain longer wavelengths. Both account for the generation of

the localized positive low frequency potential Φ̄fil. These structures also account for

the dispersion structure found in |Ēω,k|.

The phase space portraits indicate that the cavity structure in the electrons den-

sity is due to the development of the electron holes. Particularly, holes initially

moving with velocity |v̄| = 6.283× 10−2, labeled as primary, are related to the ions
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dynamics as they are originated by depletion of electrons with velocities slightly

above v̄φ,IA in a bounded range of velocities. The averaged distributions from each

species suggest that this depletion is caused by the opposite dynamical effects of the

electric field on both species around v̄φ,IA due to charge difference. As the associated

potential grows in time, ions are bunched within the primary holes. This process

accounts for the formation of compressive ion pulses in the ions density, enhancing

the local potential. As the waves related to these structures do not lie on the linear

IAW branch, as identified in works related to IASs [39, 40], and their velocity of

propagation is out of the range analytically predicted for IASs [35], these structures

cannot be associated to IASs.

Ions co-moving with the primary hole are particularly affected by the trapping

yielding two compressive pulses at the boundaries of the primary hole in position

space and leading to the formation of secondary electron holes. Unlike other works

in which the primary hole is disrupted into two secondary holes [45, 84], this primary

hole continues to propagate, possibly due to the comparatively large population of

ions that still remain accumulated within the primary hole in comparison to those

producing the secondary ones.

This nonlinear behavior is found even for lower perturbative amplitudes εe, how-

ever higher than εe,C . For lower εe the formation of the nonlinear structures is delayed

and their amplitudes reduced. By following the instant τloc at which the structures in

the electrons and ions density become coupled, identified as the instant at which the

local correlations start to exhibit anti-correlative behavior in the localized structures,

it is noted that τloc diverges close to a certain perturbative amplitude. Through a
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curve fit, it is found that the coupling instant obeys a power law from which it is

deduced that the threshold amplitude to excite this low frequency dynamics is larger

than that required to excite the nonlinear Landau damping of Langmuir waves.

The nonlinear dynamics of the plasma is modified by changing the initial tem-

perature ratio between the electrons and heavy ions. Except for T̄i = 5.0, the same

nonlinear structures are developed in nearly all the tested cases differing in the level

of the variations of particle densities, distribution functions and frequency filtered

potential, being larger for lower T̄i, the instant at which the structures are formed,

being earlier for lower T̄i, and the velocity of propagation of the structures, being

slower for lower T̄i. The low frequency dispersion structure found in the electric field

spectrum indicates that the region of waves in ω̄r− k̄ space is nearly the same, being

more weighted to lower frequency and wavenumber waves with lower T̄i. A com-

parison with the roots of the respective kinetic linear dispersion relations suggests

that the excited branches cannot be associated to linear modes, in opposition to the

conclusion from the isothermal case.

The levels of every quantity from each case decrease with higher T̄i, suggesting

that the excited structures follow the same tendency as those related to IAWs [51,

54], in which the propagation of these waves is favored by lower T̄i. The amplitudes

seem to be settled by an initial damping found in the variations of the ions density.

Variations are largely damped at higher T̄i, as in the case of IAWs [51]. Furthermore,

if T̄i is high enough (T̄i = 5.0), the dynamics is similar to that found in the case of

immobile ions, evidencing their weak influence in the evolution of the plasma. In

this case, ions behave as a mobile neutralizing background. This behavior is similar
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to that found by Zhou and Hutchinson [43] for the coupling between slow electron

holes and IASs. The presence of mobile, positively charged, heavy ions enhance the

low frequency dynamics. Therefore, the level of the perturbations in δn̄i has a direct

effect on the electrons distribution at velocities in the order of v̄φ,IA. As a conse-

quence, if the variations in the ions density undergo heavy damping, as occurs for

T̄i = 5.0, there are lower variations and the dynamics of the electrons is not greatly

affected, behaving as if ions were immobile. These results suggest that this tendency

is not unique to IAWs but rather to perturbations related to the dynamics of heavy

ions.

The mobility of the ions distribution, determined by T̄i for each case, seems to be

responsible for the initial damping, screening the initial perturbation and yielding

weak perturbations on the electrons distribution and on the ions distribution itself.

Accordingly, a distribution in which there is a large number of fast ions, density

variations are rapidly homogenized and damped. This is not the case of temperature

ratios below T̄i = 1.0 and close to zero, specifically in the cases where v̄φ,IA is far from

the core of the distribution, in which the effects of the initial perturbation persist

for longer times.

The initial depopulation in the electrons density from which the primary elec-

tron holes are formed occurs right above the velocity v̄φ,IA for each T̄i, reasserting

the relevance of the phase velocity of the IAWs for the excited wavenumber in the

development of the low frequency dynamics of the plasma. In the cases in which

there are ions co-mobile with the primary holes (T̄i = 1.8 and 1.0), it is suggested

that the opposite dynamical effects of the IAW sustained by resonant interaction
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with the mobile ions would account for the initial depopulation. In the cases in

which v̄φ,IA is nonresonant with the ions distribution, phase space portraits indicate

that there is a local depletion of electrons close to the core of the distribution which

is transported to larger velocities. It is noted that in the cases in which there are

no ions co-moving with the primary electron hole, compressive ion pulses are still

formed and the primary hole still yields secondary holes, as in the case T̄i = 0.025.

In order to complete the picture of the low frequency dynamics of the plasma,

it is still necessary to study any possible effect of the predominant structures in the

plasma, namely, the electron holes related to the nonlinear Langmuir waves, which

although involving large frequencies (ω̄r & 0.1) and larger velocities (v̄ ∼ v̄φ,L), it

is still possible for them to couple and yield low frequency structures which might

influence the development of low frequnecy structures in the presence of mobile ions.

It is also of interest to study the behavior of the electrons distribution function at

other velocity ranges, as the position averaged correlations of the electrons distri-

bution function between the cases of immobile ions and mobile ions with T̄i = 1.0

become uncorrelated at a large extent of the velocity domain, indicating the presence

of further nonlinear structures which has also excluded from the present analysis.
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7 Conclusiones

A lo largo de este trabajo se han estudiado plasmas no colisionales, no magnetiza-

dos, sin deriva relativa compuestos por electrones y iones Maxwellianos con razón

de masa m̄i = 1836.153 y razón de carga qi/|qe| = 1.0, excitando sólo un número de

onda, k̄ = 0.4, con amplitudes de perturbación εe bajo la amplitud cŕıtica εe,C nece-

saria para excitar el amortiguamiento no lineal de Landau de ondas de Langmuir,

obteniéndose oscilaciones amortiguadas, y por sobre εe,C , produciendo oscilaciones

no lineales, ambas para el caso de especies inicialmente isotérmicas, T̄i = 1.0. En

el caso no lineal, se ha variado la razón inicial de temperaturas T̄i para explorar los

efectos en la dinámica del plasma.

En el caso de oscilaciones amortiguadas, dos tipos de ondas se propagan en el

plasma, las LWs, conducidas por la dinámica de los electrones, y las IAWs, conduci-

das por la dinámica de los iones pesados, como fue concluido por Xu et al. [27], iden-

tificados por la comparación entre los espectros del campo eléctrico y las frecuencias

y tasas de amortiguamiento predichas por la relación de dispersión lineal cinética.

Como T̄i = 1.0, la diferencia entre las frecuencias y tasas de amortiguamiento se

deben a la diferencia de inercia, produciendo un amortiguamiento débil y frecuen-

cias más bajas en las IAWs que en las LAWs. La distribución de los electrones
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participa en la propagación de ambas ondas.

Se encuentra una zona de resonancia en las distribuciones de ambas especies,

involucrando la velocidad de fase de la IAW, v̄φ,IA, en la que los iones dominan la

dinámica y electrones con velocidades en el orden de v̄φ,IA experimentan los efectos

dinámicos opuestos debido a la diferencia de carga, como se esperaba de la estimación

de la función de distribución de la teoŕıa lineal. También se encuentra que ambos

tipos de ondas se propagan de forma relativamente independiente una de la otra,

ya que la zona de resonancia relacionada con una de ellas, o toda la espece, no son

afectados de forma importante por la propagación de la otra onda, sugiriendo que

toda la dinámica corresponde a una superopsición de ambos tipos de ondas. Por lo

tanto, inicialmente, predominan las LWs de gran amplitud, sostenida por electrones

con velocidades ceranas a v̄φ,L. Dado que la tasa de amortiguamiento es mayor, las

oscilaciones de Langmuir decaen rápidamente por debajo de los niveles de las IAWs,

sostenidas por part́ıculas con velocidades cercanas a v̄φ,IA, y la dinámica es gober-

nada por estas ondas.

En el caso de oscilaciones no lineales, se encuentra que el caso de iones inmóviles

exhibe una dinámica de baja frecuencia varios ciclos de oscilaciones de plasma de

electrones después de la formación de la zona de atrapamiento del amortiguamiento

no lineal de Landau de ondas de LWs. Las variaciones en la distribución de los elec-

trones muestran el desarrollo de un electron hole con velocidad v̄ = 0 seguido por

holes contra-propagantes con velocidades |v̄| ' 6.0×10−2, con señales tipo-acústicas

en el espectro del campo eléctrico |Ēω,k|. Posteriormente, la distribución de los elec-

trones se pobla densamente por electron holes pequeños dentro del rango |v̄| ≤ 0.1.
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Se muestra que la introducción de iones móviles inicialmente isotérmicos potencia

la dinámica de baja frecuencia, permitiendo la propagación de electron holes con

velocidades |v̄| = 6.283−2 de gran extensión en los espacios de posición y velocidad,

en instantes antetiores a los del caso de iones inmóviles. Una comparación en más

detalle de las variaciones de la función de distribución promediada en posiciones y

la función de distribución en ambos casos indica que hay una modificación en la

estructura del espacio de fase, incluso en el electron hole relacionado a las LWs. El

espectro |Ēk,ω| muestra la excitación de ondas en la misma región que en el caso

de iones móviles, pero la rama tipo-acústica involucra ondas de mayor amplitud.

Aunque se detecta actividad de baja frecuencia, las IAWs no son las más excitadas

en el sistema, al contrario del caso de oscilaciones amortiguadas, y se encuentra más

bien sobre una rama correspondiente al modo de orden superior de baja frecuencia

menos amortiguado predicha por la relación de dispersión lineal.

Al enfocarse en la dinámica de baja frecuencia, se observa que el potencial elec-

trostático filtrado en frecuencias exhibe estructuras solitarias contra-propagantes que

persisten por largos tiempos con velocidades aproximadamente constantes, |v̄s,Φ| =

6.283× 10−2, las que pueden identificarse como ondas solitarias electrostáticas. Las

variaciones filtradas en frecuencias de la densidad de electrones y las variaciones de

la densidad de iones exhiben estructuras complementarias que se propagan con la

misma velocidad, correspondientes a cavidades en la densidad de electrones y pulsos

compresivos en la densidad de iones. Es destacable que estas estructuras se excitan

sin haber una deriva relativa entre ambas especies, y que se desarrollan naturalmente

desde la perturbación inicial sin requerir una semilla inicial para el electron hole o el

solitón de iones [46, 48, 49]. El espectro de cada cantidad indica que los electrones
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contribuyen al desarrollo de estructuras de onda corta mientras que los iones pesados

sostienen las de longitud de onda larga. Ambas dan cuenta de la generación de un

potencial electrostático positivo localizado de baja frecuencia Φ̄fil. Estas estructuras

también dan cuenta de la estructura de dispersión encontrada en |Ēω,k|.

Seccones del espacio de fase indican que la estructura de cavidades en la densidad

de electrones se debe al desarrollo de electron holes. Particularmente, los holes que

inicialmente se mueven con velocidad |v̄| = 6.283 × 10−2, aqúı denominados como

primarios, están relacionados con la dinámica de los iones, ya que se originan por un

despoblamiento de electrones con velocidades ligeramente superiores a v̄φ,IA en un

rango acotado de velocidades. Las funciones de distribución promediadas de ambas

especies sugieren que este despoblamiento se debe a los efectos dinámicos opuestos

del campo elétrico en ambas especies alrededor v̄φ,IA debido a una diferencia de carga.

A medida que el potencial asociado crece en el tiempo, los iones se acumulan en el

interior de los holes primarios. Este proceso da cuenta de la formación de pulsos

compresivos en la densidad de iones, potenciando el potencial local. Debido a que

las ondas relacionadas a estas estructuras no yacen sobre la rama IAW lineal, como

śı se ha observado en trabajos relacionados a IASs [39, 40], y su velocidad de propa-

gación está fuera del rango predicho anaĺıticamente para IASs [35], estas estructuras

no pueden relacionarse a IASs.

Los iones que se mueven junto con el hole primario son particularmente afec-

tados por el atrapamiento, produciendo dos pulsos compresivos en los bordes del

hole primario en el espacio de posiciones y llevan a la formación de electron holes

secundarios. A diferencia de otros trabajos en los que el hole primario se rompe
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en dos holes secundarios [45, 84], este hole primario continúa propagándose, posi-

blemente por la comparativamente mayor población de iones que aún se encuentran

acumulados en el hole primario en comparación con la de aquellos que producen los

secundarios.

Este comportamiento no lineal se encuentra incluso para amplitudes de pertur-

bación εe, mientras sean mayores que εe,C . Para amplitudes εe más bajas, la for-

mación de estructuras no lineales se retrasa y sus amplitudes se reducen. Siguiendo

el instante τloc en el que las estructuras en las densidades de iones y electrones se

acoplan, ideentificado como el instante en que las correlaciones locales comienzan

a exhibir comportamiento anti-correlativo en las estructuras localizadas, se puede

notar que τloc diverge cerca de una cierta amplitud de perturbación. Por medio de

un ajuste de curva, se encuentra que el instante de acoplamiento obedece una ley

de potencia de a que se deduce que amplitud umbral para excitar esta dinámica de

baja frecuencia es mayor que la requerida para excitar el amortiguamiento no lineal

de LWs.

La dinámica no lineal del plasma se modifica al cambiar la razón inicial de tem-

peratura entre los electrones y los iones pesados. Excepto por T̄i = 5.0, se desarrollan

las mismas estructuras no lineales in casi todos los casos, difiriendo en el nivel de

las variaciones de las densidades de part́ıculas, funciones de distribución y potencial

filtrado en frecuencias, siendo mayor para T̄i inferiores, el instante en que las estruc-

turas se forman, siento más corto para T̄i inferiores, y la velocidad de propagación

de las estructuras, siendo menor para T̄i inferiores. La estructura de dispersión de

baja frecuencia encontrada en el espectro del campo eléctrico indica que la región
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de ondas en el plano ω̄r − k̄ es aproximadamente la misma, estando más cargada a

frecuencias y números de onda más bajos para T̄i más pequeños. Una comparación

con las ráıces de las respectivas relaciones de dispersión lineales cinéticas sugiere

que las ramas excitadas no pueden asociarse a modos lineales, en oposición con la

conclusión deducida en el caso isotérmico.

Los niveles de todas las cantidades para cada caso decrecen con mayores T̄i,

sugiriendo que las estructuras excitadas siguen la misma tendencia que la de las

IAWs [51, 54], en las que la propagación de estas ondas se ve favorecida con T̄i

inferiores. Las amplitudes parecen fijadas por un amortiguamiento inicial encon-

trado en las variaciones de la densidad de los iones. Las variaciones son fuertemente

amortiguadas con T̄i altos, como en el caso las IAWs [51]. Más aún, si T̄i es lo sufi-

cientemente alto (T̄i = 5.0), la dinámica es similar al aencontrada en el caso de iones

inmóviles, evidenciando su débil incluencia en la evolución del plasma. En este caso,

los iones se comporan como un fondo neutralizante móvil. Este comportamiento es

similar al encontrado por Zhou y Hutchinson [43] para el acoplamiento entre electron

holes lentos y IASs. La presencia de iones pesados móviles con carga positiva poten-

cia la dinámica de baja frecuencia. Por lo tanto, el nivel de las perturbaciones en δn̄i

tiene un efecto directo en la distribución de los electrones en velocidades del orden de

v̄φ,IA. Como consecuencia, si las variaciones en la densidad de los iones experimentan

un amortiguamiento fuerte, como ocurre para T̄i = 5.0, hay variaciones más bajas

y la dinámica de los electrones no es mayormente afectada, comportándose como si

los iones fueran inmóviles. Estos resultados sugieren que esta tendencia no es única

de las IAWs, sino que de perturbaciones asociadas a la dinámica de iones pesados.
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La movilidad de la distribución de los iones, determinada por T̄i para cada caso,

parece ser responsable del amortiguamiento inicial, apantallando la perturbación ini-

cial y produciendo perturbciones débiles en la distribución de los electrones y de los

iones mismos. En consecuencia, la distribución en la que hay un mayor número

de iones rápidos, las variaciones en la densidad son rápidamente homogeneizadas y

amortiguadas. Este no es el caso de razones de temperaturas menores que T̄i = 1.0

y cercanas a cero, donde v̄φ,IA está lejos del centro de la función de distribución, en

la que lo efectos de la perturbación inicial persisten por tiempos más largos.

El despoblamiento inicial en la densidad de los electrones, a partir de la que se

forman los electron holes primarios, ocurre justo por sobre la velocidad v̄φ,IA para

cada T̄i, reafirmando la relevancia de la velocidad de fase de las IAWs para el número

de onda excitado en el desarrollo de la dinámica de baja frecuencia del plasma. En

los casos en que hay iones co-móviles con los holes primarios (T̄i = 1.8 and 1.0),

se sugiere que los efectos dinámicos opuestos de la IAW sostenidos por interacción

resonante con los iones móviles daŕıa cuenta del despoblamiento inicial. En los casos

en que v̄φ,IA es no resonante con la distribución de iones, secciones del espacio de

fase indican que hay un despoblamiento localizado de electrones cerca del centro de

la distribución que es transportado a velocidades mayores. Se debe notar que en los

casos en que no hay iones co-móviles con los holes primarios, aún se forman pulsos

compresivos y que los holes primarios aún producen holes secundarios, como en el

caso de T̄i = 0.025.

Con el fin de completar la imagne de la dinámica de baja frecuencia del plasma,

aún es necesario estudiar cualquier posible efecto de las estructuras predominantes en
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el plasma, a saber, electron holes relacionados con LWs no lineales, las que aunque

involucran frecuencias altas (ω̄r & 1) y velocidades altas (v̄ ∼ v̄φ,L), aún es posi-

ble que estas estructuras s eacoplen y produzcan estructuras de baja frecuencia

que podŕıan afectar e desarrollo de las estructuras producidas en presencia de iones

móviles. Es también de interés estudiar el comportamiento de la función de dis-

tribución de los electrones en otros rangos de velocidades, ya que las correlaciones

promediadas en posiciones de las funciones de distribución de electrones de los casos

de iones inmóviles y móviles con T̄i = 1.0 se tornan no correlacionadas en una gran

extensión del dominio de velocidades, indicando la presencia de más estructuras no

lineales que también fueron excluidas del presente análisls.
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Appendices
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A Linear dispersion relation calculation

A.1 Linear dispersion relation from (2.2.6) to (2.2.8)

By considering the unperturbed trajectories, the exponential is given by

exp [i (k · [r′(t′)− r]− ω [t′ − t])] = exp [i ([k · v− ω] t′ + ωt)] .

Direct integration of (2.2.6) and use of the electric potential in Fourier space yields

∫ t

−∞
exp [i (k · [r′(t′)− r]− ω[t′ − t])]×

E1,k,ω · ∇vf0,j dt′ = i
E1,k,ω · ∇vf0,j

ω − k · v

= Φ1,k,ω
k · ∇vf0,j

ω − k · v
.

The Laplace-Fourier transform of the perturbed distribution function then is given

by

f1,j,k,ω = −Φ1,k,ω
qj
mj

k · ∇vf0,j

ω − k · v
.
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Introduction of this result and electric potential into Gauss law, and use of Fourier

transform in space yield

ik · E1,k,ω =
ρ1,k,ω

ε0

k2Φ1,k,ω =− Φ1,k,ω

∑
j

q2
j

ε0mj

∫
k · ∇vfj0
ω − k · v

d3v,

from which it is obtained the equation[
1 +

∑
j

q2
j

ε0mjk2

∫
k · ∇vf0,j

ω − k · v
d3v

]
Φ1,k,ω = 0,

which is stated in the form εk,ωΦ1,k,ω = 0, where εk,ω is identified as the term in

square brackets, corresponding to the dispersion function in (2.2.8).

A.2 Linear dispersion relation from (2.2.8) to (2.2.10)

For the following calculations, the equilibrium distribution functions for all species

are Maxwellian distributions without drift.

f0,j(v) =
n0,j[√
2πvTj

]3 exp

[
− v2

2v2
Tj

]
.

Its gradient is given by

∇vf0,j = − v

v2
Tj

n0,j[√
2πvTj

]3 exp

[
− v2

2v2
Tj

]
.
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By introducing this result into εk,ω, and the plasma frequency definition, ω2
pj ≡

q2
jnj/ε0mj, the dispersion function is given by

εk,ω = 1− 1[√
2π
]3
v5
Tj

∑
j

ω2
pj

k2

∫
k · v

ω − k · v
exp

[
−v2

2v2
Tj

]
d3v.

To solve the integral, the velocity axes are aligned with respect to k, thus

v = v‖e‖ + v⊥e⊥,

where e‖ and e⊥ are unitary vectors parallel and perpendicular to k, respectively, so

that k · v = kv‖ and k ·Vj = kVj‖ = Vj cos θ, being θj the angle between k and Vj.

The integral is then solved.

∫
k · v

ω − k · v
exp

[
− v2

2v2
Tj

]
d3v =

∫
kv‖

ω − kv‖
exp

[
−

v2
‖

2v2
Tj

]
exp

[
− v2

⊥
2v2

Tj

]
d3v

=k

∫
exp

[
− v2

⊥
2v2

Tj

]
d2v⊥

∫ ∞
−∞

v‖
ω − kv‖

exp

[
−

v2
‖

2v2
Tj

]
dv‖.

The integral on v⊥ consists of two integrals of Maxwellian functions, one for each

perpendicular direction.

∫
exp

[
− v2

2v2
Tj

]
d2v⊥ =

∫ ∞
−∞

exp

[
−
v2
⊥,1

2v2
Tj

]
dv⊥,1

∫ ∞
−∞

exp

[
−
v2
⊥,2

2v2
Tj

]
dv⊥,2

= 2πv2
Tj. (A.2.1)
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For the integral on v‖, it is considered that

kv‖
ω − kv‖

= −1 +
ω

ω − kv‖
,

thus,

k

∫ ∞
−∞

v‖
ω − kv‖

exp

[
−

v2
‖

2v2
Tj

]
dv‖ = −

√
2πvTj +

∫ ∞
−∞

ω

ω − kv‖
exp

[
−

v2
‖

2v2
Tj

]
dv‖,

where the first term on the right hand side has been obtained in the same way

as (A.2.1). The integral in the second term on the right hand side is solved by

introducing a change of variables, ξ = v‖/
√

2vTj and ζj = ω/
√

2kvTj, yielding

k

∫ ∞
−∞

v‖
ω − kv‖

exp

[
−

v2
‖

2v2
Tj

]
dv‖ = −

√
2πvTj

[
1 +

ζj√
π

∫ ∞
−∞

exp [−ξ2]

ξ − ζj
dξ

]
.

The integral in the right side does not have analytical expression and has been

thoroughly studied by mathematicians. It depends on the variable ζj, which is

known as the resonance factor [51] and indicates the location of the resonance zone

in the distribution function with respect to the initial thermal velocity. This function

is called plasma dispersion function [61], defined as

Z(ζj) ≡
1√
π

∫ ∞
−∞

exp [−ξ2]

ξ − ζj
dξ.

Therefore,

k

∫ ∞
−∞

v‖
ω − kv‖

exp

[
−

v2
‖

2v2
Tj

]
dv‖ = −

√
2πkvTj [1 + ζjZ(ζj)] . (A.2.2)
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Finally, by gathering results from (A.2.1) and (A.2.2), the dispersion function is

εk,ω = 1 +
∑
j

q2
j

ε0mjk2

∫
k · ∇vfj0
ω − k · v

d3v

= 1 +
∑
j

ω2
pj

v2
Tjk

2
[1 + ζjZ(ζj)] .
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B Dictionary

B.1 Abbreviations

• BGK : Bernstein-Greene-Kruskal (referred to BGK states).

• LW/s : Langmuir wave/s.

• IA : Ion acoustic.

• IAS/s : Ion acoustic soliton/s.

• IAW/s : Ion acoustic wave/s.
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