
Universidad de Concepción

Facultad de Ciencias F́ısicas y Matemáticas
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A Vı́ctor y Sandra, por su amor infinito.

A Felipe, por siempre creer en mi.

iii



Agradecimientos

Cuando tomamos un nuevo desaf́ıo, muchas veces no dimensionamos lo grandes o complicados

que pueden llegar a tornarse, y además, desconocemos lo trascendentales que pueden llegar a

ser en nuestras vidas.

Sin duda agradezco a mi familia por su amor infinito, apoyo incondicional, llamadas constantes,

innecesarias preocupaciones y fruct́ıferas discusiones. Sin ustedes, nada de lo que soy, tengo y

puedo entregar, seŕıa posible.
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Resumen

Los blazars son un tipo de AGN que corresponden a fuentes de enerǵıa altamente variables y

compactas, que se caracterizan por la emisión de un chorro que apunta en la dirección de la

ĺınea de visión del observador. La emisión de estos chorros se considera uno de los fenómenos

más violentos del Universo y es de gran interés para la astronomı́a extragaláctica. Si bien

su estudio es reciente en comparación con otras áreas de investigación, se puede ver un gran

progreso dentro de este tema, pero aun aśı, no existe una claridad y comprensión total sobre

los procesos y fenómenos que tienen lugar en ellos y en su entorno, como por ejemplo, la

presencia y comportamiento de su campo magnético. Por esta razón, se han desarrollado

nuevas tecnoloǵıas dentro de varios programas de observación que apuntan al estudio de estos

interesantes fenómenos. Un ejemplo de esto, es el programa de monitoreo del telescopio de

40m del Radio Observatorio de Owens Valley (OVRO, según su sigla en inglés), perteneciente

al Instituto Tecnológico de California (Caltech), ubicado en Big Pine, California, USA, y que

monitorea aproximadamente 1,800 blazars, dos veces por semana.

En esta tesis, se propone un modelo matemático para la calibración en polarización del receptor

del telescopio de 40m de OVRO, KuPol. Basándose en cálculo de matrices de transmisión,

es posible obtener relaciones que facilitan la descripción y estudio del comportamiento del

instrumento, lo cual aporta a la realización de diagnósticos instrumentales a partir del modelo.
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Abstract

Blazars are a type of AGN that correspond to highly variable and compact energy sources,

which are characterized by the emission of a jet that points to the line of sight of the observer.

The emission of these jets is considered one of the most violent phenomena in the Universe and

is of great interest for extragalactic astronomy. While its study is recent compared to other

areas of research, great progress can be seen in this topic, but even so, there is no clarity and full

understanding of the processes and phenomena that take place in them and their environment,

for example, the presence and behavior of its magnetic field. For this reason, new technologies

have been developed within several observation programs that aim to study these interesting

phenomena. An example of this is the monitoring program of the 40m telescope Owens Valley

Radio Observatory (OVRO), belonging to California Institute of Technology (Caltech), located

in Big Pine, California, USA, and It monitors approximately 1,800 blazars, twice a week.

In this thesis, a mathematical model is proposed for the polarization calibration of the 40m

telescope OVRO receiver, KuPol. Based on transmission matrices calculation, it is possible

to obtain relations that facilitate the description and study of the instrument behavior, which

contributes to the instrumental diagnosis from the model.
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Chapter 1

Introduction

Astronomy offers a unique instance for the development of great and varied technology. In

particular, blazar offers us an opportunity to study in depth the magnetic fields of the jets

that these sources eject. For this purpose, the observation of polarization in astrophysical

objects, allows us to measure magnetic fields in their environment or to learn about the physical

conditions in the regions where light is scattered into our line of sight. Thus, the development

of instruments associated with the study of polarization becomes relevant, and in particular for

this thesis, the polarization calibration of an unique spectropolarimeter, such as KuPol.

1.1 Active Galaxy Nuclei

Active galactic nuclei (AGN) house some of the most powerful particle accelerators in the

universe. This sources have a strongly non-isotropic radiative output, with a pair of relativistic

jets emanating at opposite directions from the central engine [2]. These objects are believed

to consist of a supermassive black hole (SMBH) at the center of a galaxy, as shown in figure

1.1. The SMBH supports a complex structure that in some cases can outshine the combined

emission of all the stars in the galactic host. A great variety of AGN exist, a small fraction of

which are bright radio sources [15].

1.1.1 Blazar

When the observer’s line of sight happens to be aligned with the outflow direction, this type of

AGN is called blazar [19].

Blazars are broadband sources, emitting brightly over the entire electromagnetic spectrum [9].

Many are bright gamma-ray emitters, with emission extending in some cases to the TeV regime

[14]. Furthermore, these sources are strongly variable in all bands, with significant variation

1



Chapter 1. Introduction 2

Figure 1.1: Illustration of the viewing angle dependent standard model of AGN.
Source: Image produced by Aurore Simonnet, Sonoma State University [4].

Figure 1.2: AGN taxonomy. Source: Urry & Padovani [19].

on timescales ranging from many years down to a few minutes in some bands [1]. Blazars are

some of the most significant sources of extragalactic high-energy emission.

Blazars are widely understood to be the beamed counterparts to the radio galaxies. Unfortu-

nately, AGN taxonomy is complicated by rather frequent changes in terminology, in some cases
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to reconcile conventions from different branches of astronomy, and in some reflecting a shift in

the physical understanding of the sources. The original definition of the blazar class was rather

informal, so there is some variation in use of the term. This is showed in the figure 1.2.

1.1.1.1 Relevance of the polarization study in blazars

Magnetic fields play a critical role in various aspects of the physics of relativistic jets. Domi-

nance of magnetic over rest-mass energy at the base of a jet is required in order to accelerate

plasmas almost to the speed of light, the natural velocity of dynamic electromagnetic phenom-

ena. For this reason, the characterization of jet polarization properties provides a powerful

diagnostic of jet physics, particularly with respect to magnetic field configuration and particle

acceleration. Extragalactic jets generally emit a continuum of radiation from radio through op-

tical, and often into the X-ray regime. Through matched resolution comparisons of flux density

measurements at various frequencies, we can glean morphological information about particle

acceleration regions and jet energetic structure [12].

1.1.2 Origin of astronomical polarization

Polarization not only arise from propagation, the emission can be intrinsically polarized such as

synchrotron. In general, polarization is created or modified, wherever the cylindrical symmetry

of the propagating light is broken. This breaking of the symmetry can be due to the change of

direction of the light itself or due to the presence of unidirectional magnetic (or electric) fields.

The following physical processes are all known to produce and/or modify polarization [16]:

• Anisotropic scattering or reflection of continuum radiation. For instance Rayleigh scat-

tering in the Earth’s (or another planet’s).

• Anisotropy of line radiation. Here, the emergent polarization depends largely on the

quantum numbers of the transition.

• Differential absortion or scattering by magnetically aligned non-spherical dust grains.

This creates continuum polarization particularly in the infrered (IR) range and beyond.

• Synchrotron radiation from charged particles in a magnetic field exhibits continuum po-

larization.

• Magnetic fields also produce line polarization through the Zeeman effect. This line po-

larization may be modified by magneto-optical effects (i.e. birefringence of the medium

due to the magnetic field; the Faraday effect and the Voigt effect).

• Electric fields can produce a similar line polarization (the Stark effect).
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• Magnetic fields also modify and despolarize line polarization due to scattering through

the Hanle effect.

• Line polarization can also be created when the light is absorbed in a plasma in which

atoms are aligned by optical pumping ([11], [10]), or oriented by a magnetic field.

1.2 OVRO and 40m telescope

The Owens Valley Radio Observatory (OVRO) is one of the largest radio observatories in

the world operated by universities. It is located near Bishop, California, approximately 400

kilometers north of Los Angeles, USA.

The OVRO telescopes carry out experiments in the field of monitoring of transient star flares,

interstellar medium, cosmic microwave background and Blazars jet physics. In this last field,

the OVRO 40 meter telescope works. With the aim of doing research, in 2014 a new polarimetric

receiver, called KuPol, was installed in the 40m telescope, replacing the previous receiver (Ku-

Band). This increased the sensitivity of the telescope and its bandwidth, in addition to allowing

polarimetric observations.

Currently the 40m telescope is monitoring flux densities at 15 [GHz] of approximately 1800

blazars twice a week. These measurements are quite interesting, because by correlations in

their variability with the measurements of the Fermi gamma-ray telescope, it is possible to

explain the emission mechanisms in the jets that emerge from these AGNs [20]. The majority of

our sources are reasonably bright—more than 50 mJy at 15 GHz so the sensitivity requirements

of the program are relatively modest. This has allowed us to optimize for rapid observations

and easily repeatable measurements rather than scrabbling for sensitivity at all costs. Still, a

full understanding of the behavior of the telescope and receiver and careful measurement and

calibration are essential.

1.2.1 40m telescope receiver: KuPol spectropolarimeter

The KuPol instrument is a dual-beam receiver for the 40 m telescope at OVRO. It is, in fact,

a hybrid of two separate instruments called the analog and the digital instrument [7].

• Analog instrument: The analog instrument is a dual-polarization, beam-differencing

radiometer that is designed to produce identical data to the previous Ku-band instrument

that KuPol replaces. The purpose of this instrument is to maintain the total intensity

data from Ku band receiver.

• Digital instrument: The digital instrument is digital spectropolarimeter covering the

13 to 18 GHz band with ∼ 8 MHz resolution. The purpose of this instrument is to deliver

the Stokes parameters from horns Ant and Ref .
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An idea of the KuPol architecture and its general operation is shown in the figure 1.3.

Figure 1.3: System signal diagram, showing only some of the digital hardware.
The blocks named as Cryo stages, Cold Plate, UBE, optical to RF, signal distribution, and
downconverter represent the analog instrument. The block named as roach represents the
digital instrument. Source: KuPol Manual [7].

1.2.1.1 Analog instrument

The RF electronics in the cryostat consists of two circular horns, followed by circular to square

waveguide transitions, 90◦ waveguide phase shifters, and quad-ridge OMTs. These produce

circular polarization signals. We then couple noise diode signals into the signal paths using

cryogenic directional couplers. These signals are then combined in 180◦ hybrids to produce

sum and difference voltages mixing signals with the same polarization (LCP or RCP ). These

signals are amplified before exiting the cryostat.

The cold plate houses the remaining RF electronics for the analog receiver, and splits the signal

path to send RF1 through RF4 to the RF/optical system. The signals from the cryostat are

filtered, amplified, controlled by digital step attenuators, and then split. One part of the split

sends the signals to the RF/optical system for the digital instrument, while the other part goes

to the remaining part of the analog instrument. There are also some detector diodes at this

point in the system to monitor the RF power level in each signal chain.
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The remaining part of the analog instrument consists of phase switches, followed by 180◦. At

the output of the 180◦ hybrids we have separated the horn polarizations AntRCP , AntLCP ,

RefRCP , and RefLCP . These are then filtered by 13.5 to 17 GHz bandpass filters before being

sensed by detector diodes. The outputs of the detector diodes are passed to differential driver

circuits mounted on the underside of the cold plate.

The third section of the receiver at the prime focus the UBE box. The contents are: UBE

frame, RF/optical transmitters, RF amplification, optical mux, USB to serial, USB over fiber

hub, power supplies for the above, and 12-fiber optical fiber bundle.

1.2.1.2 Digital instrument

The KuPol digital instrument processes the band between 13 and 18 GHz in 500 MHz wide

chunks. The digital stages are:

1. Signal distribution: The four RF channels were converted to optical and multiplexed

onto a single optical fiber at the prime focus. The signal distribution crate contains the

demultiplexing box, followed by the optical to RF converters. The RF signals cover 13 to

18 GHz, and are amplified and then split 8 ways for distribution.

2. Downconversion: The receiver has 6 downconverter trays. Each tray produces two 500

MHz wide IF bands (the lower sideband and the upper sideband) for each RF input.

Each downconverter tray contains four identical sets of downconversion hardware, driven

by a common LO signal. This LO signal is generated by a crystal oscillator, amplified to

ensure a high enough LO level, then split 4-ways. The downconversion hardware consists

of an IQ-mixer, then a sideband-separating board (called a scm), and then a 500 to 1000

MHz IF bandpass filter.

3. Digitization and processing: The four LSB (or USB) outputs from a downconverter tray

are connected to a digital processing board. We use ROACH boards from the CASPER

collaboration. This digitizes the four IF data streams, and processes them.

4. Data readout and archiving: The control system running on kupolcontrol acquires the

data from each ROACH board, timestamps it, and stores it in an archive. In particular,

the four channels are passed through a polyphase filter bank (PFB) and then FFT’ed.

The PFB/FFT combination improves the spectral response of the instrument. The spec-

tral response of several adjacent frequency bins for a model with 32 total bins. After the

FFT step we apply a complex correction independently to each frequency bin. The pur-

pose of this correction is to equalize the path lengths and gains of the four IF channels, so

that the sums and differences of the IF data streams will recover the individual antenna

polarizations. The coefficients are loaded by the control system from disk. Once the indi-

vidual antenna polarizations have been recovered, they are passed through a correlation
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block to calculate the power in each polarization for each horn, and the Stokes Q and U

polarizations of both horns. These data are then passed to an accumulator block. This

accumulates a specified number of samples, then writes them to disk 1. All this process

is showed in the figure 1.4.
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Figure 1.4: Part of analog and digital operation overview.
In the right side, you can see the operation of data readout and archiving presented in point 4
of the previous section. Note that the instrument has 12 bands in a bandwidth 12 to 18 GHz.
We must mention, that the design and construction of the KuPol instrument includes these
characteristics, but due to the high levels of RFI present in OVRO, it was decided to eliminate
the first two bands of the instrument, and limit its operation to 13 and 18 GHz. Source: KuPol
Manual [7].

1.2.1.3 Instrumental error models for KuPol receiver

Currently the polarization calibration of KuPol receiver is not finished. Within the 40m tele-

scope collaboration there is a proposed method for instrumental calibration and that to date

has few results. A general idea of this method, is presented below.

Important coments of the method.

The actual instrumental calibration method for the KuPol receiver is based on Mueller matrix

calculus (see the next secctions). From this is possible to describe how the instrument affects

the astronomical signal.

The measured Stokes vector in terms of the instrumental Mueller matrix can be expressed by

eAL,R = MCL,RMAMpare
S (1.1)

eBL,R = MCL,RMBMpare
S (1.2)

1To understand in depth the digital model process developed in this stage, it is recommended to see appendix
B.
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where Mpar is the Mueller matrix for parallactic angle rotation due to the el/az mount of the

40m telescope, MA is the Mueller matrix for horn Ant, MB is the Mueller matrix for horn Ref ,

and MCL,R is the Mueller matrix that describes the action of the correlation receiver.

Note that MA and MB describe the effect of imperfections in the horns, and are in principle

different for two horns.

In particular, for the instrument calibration and to contrast this with our model, we are inter-

ested in the MCL,R characterization. A deep description of calculus is presented in Appendix

D of this thesis, where the method to obtain the instrument-corrected data streams for horns

Ant and Ref is presented.

For other hand, the Stokes vectors from the KuPoL data channels, for horn Ant and Ref are

respectively

eAL,R =


AL,R

AQ

AU

0

 (1.3)

eBL,R =


BL,R

BQ

BU

0

 (1.4)

Here, we treat the intensities recorded in LCP and RCP separately because they are produced

by different gain chains, and we have considered that the gain for signals LCP and RCP is the

same for horn Ant and Ref .

1.3 Polarization

In general terms, the polarization is a process or state in which rays of light exhibit different

properties in different directions, especially the state in which all the vibration takes place in

one plane. Several formalism exist to describe polarization, the application of which depending

on the polarimetric principle.

1.3.1 A mathematical formulation of polarization

In his remarkable article of 1852 entitled On the composition and resolution of streams of po-

larized light from different sources, George Gabriel Stokes, established an ideal mathematical

formalism to describe the state of polarization of any beam of light. In addition, he demon-

strated several of the most important properties of polarized light, among which he noted the

following:
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When any number of independent polarized streams, of given refrangibility, are mixed together,

the nature of the mixture is completely determined by the values of four constants, which are

certain functions of the intensities of the streams, and of the azimuths and eccentricities of the

ellipses by which they are respectively characterized; so that any two groups of polarized streams

which furnish the same values for each of these four constants are optically equivalent.

Those four constants that Stokes refers are the Stokes parameters. Unfortunately, the useful-

ness of formalism and the importance of Stokes theorems seem to have been ignored by the

scientific community for the next 80 years. In 1929, in a very complete study of the partial

polarization of light, the physicist Paul Soleillet described the Stokes parameters and used them

everywhere. Interestingly, in the third part of this same article, it is presented a formulation

of an anisotropic absorption theory that is nothing else than the construction of a transfer

equation for polarized radiation. Unfortunately, this document is still quite unknown by the

astrophysical community. Eighteen years later, in 1947, in his famous series of documents on

the radiative balance of stellar atmospheres, where Soleillet’s work is unknown, the american

astrophysicist Subrahmanyan Chandrasekhar, published a summary of Stokes results, empha-

sizing the importance and the usefulness of the formalism that proved to be especially suitable

for the formulation of a radiative transfer equation in a stellar atmosphere.

A year later, in 1948, Hans Mueller, professor of physics at the Massachusetts Institute of

Technology, devised a phenomenological approach to describe the transformation of Stokes

parameters by means of 4x4 matrices (now known as Mueller matrices). Since then, Mueller’s

approach has been widely used to treat with partially polarized light. A precursor of this

formalism can be found in an article by Francis Perrin (1942).

A few years before Mueller’s work, between 1941 and 1947, the american physicist Robert

Clark Jones presented his formalism to describe totally polarized light and the transformations

between any two totally polarized light beams [3].

1.3.2 Theorical background

1.3.2.1 Polarization formalisms

1. Stokes Parameters

The polarization state of a signal is usually described by the Stokes parameters I, Q, U ,

and V . In particular, I describes the total signal intensity, Q and U describe the linear

polarization state, and V describes the circular polarization state.

The Stokes parameters are a representation of the coherence vector, e (see appendix A.1)

in an indeterminate space. Thus, the Stokes vector S, is obtained from the coherence
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vector by

S =


I

Q

U

V

 = Te (1.5)

where T is a coordinate transformation of the coherence vector to the indeterminate space

of Stokes.

If we consider the orthogonal modes of the incident signal, Ex(t) and Ey(t), and if these

are represented analytically as complex voltages, we have that for a lineal basis system,

the Stokes parameters can be represented according to the modes Ex(t) and Ey(t), as

I =< |Ex(t)|2 > + < |Ey(t)|2 > (1.6)

Q =< |Ex(t)|2 > − < |Ey(t)|2 > (1.7)

U =< Ex(t)E
∗
y(t) > + < E∗x(t)El(t) >= 2 < Re(Ex(t)E

∗
y(t)) > (1.8)

V = −i[< Ex(t)E
∗
y(t) > − < E∗x(t)Ey(t) >] = 2 < Im(Ex(t)E

∗
y(t)) > (1.9)

For a orthogonal circular basis, where l̂ = 1√
2
(x̂ − iŷ) y r̂ = 1√

2
(x̂ + iŷ) 2, the Stokes

parameters are

I =< |El(t)|2 > + < |Er(t)|2 > (1.10)

Q =< El(t)E
∗
r (t) > + < E∗l (t)Er(t) >= 2 < Re(El(t)E

∗
r (t)) > (1.11)

U = −i[< El(t)E
∗
r (t) > − < E∗l (t)Er(t) >] = −2 < Im(El(t)E

∗
r (t)) > (1.12)

V =< |El(t)|2 > − < |Er(t)|2 > (1.13)

2. Mueller matrix

The four Stokes parameters denote the flow of radiant energy in specific vibrations of

the electromagnetic field, and all four are expressed in the same units. We write them

collectively as a column array of four elements, which is generally known as Stokes vector,

where its elements are not all independent, so as a 4-vector it is somewhat limited. When

convenient, the vector will be written as an array of rows, but use will always be prioritized

as a column matrix.

When the radiation propagates through a certain ”volume of space” (which may be empty

or contain some medium of material), the polarization of the input and output radiation

is represented by the input and output parameters of Stokes. Within the volume, the

polarization state can be altered: in general, any elliptical polarization can be transformed

2For a better understand the basis change, see appendix A
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into some other form of elliptical polarization, or the radiation can be polarized by the

medium. This can be represented by a transformation between the input and output

Stokes parameters, and in general the transformation is linear. When the input and

output Stokes parameters are arranged as 4-vectors, the transformation becomes a M

matrix of 4x4, called Mueller matrix, which is related to the Stokes parameters as

Sout = MSin (1.14)

where,

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 (1.15)

Note that:

• M works as the transfer function between Sout and Sin.

• The matrix elements are just the partial derivatives, for example [6],

mV,Q =
∂Vout
∂Qin

(1.16)

• Since the Stokes parameters are real quantities, the elements of M are all real num-

bers; mi,j must be positive (I is always positive) and the other elements can be

positive or negative.

When the radiation travels through several successive media, the output Stokes vector

for a media a is the input Stokes vector for the next media, b, that is,

Sb,out = MbSb,in = MbSa,out = MbMaSa,in = MSa,in (1.17)

or

M = MbMa (1.18)

where M represents the combined action of the two media a and b; this is the product of

the matrix of Mb and Ma (note the order: the first medium traversed comes last in the

equation of the matrix). This procedure is widely used in the design of optical instruments

and in the representation of the polarized radiation transformations within a multiple or

distributed astronomical source of polarized radiation (for example, a stellar or planetary

atmosphere). In the radio wave domain, a similar but distinct development has occurred:

4x4 matrices of a slightly different type are used to describe the polarization response of

a correlation-type interferometer [18] [5].
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3. Jones matrix

When the phase of a polarized signal relative to some other polarized signal is important,

the Stokes parameters are no use; they deliberately ignore phase (except in a relative

sense within each signal, as needed to specify the state of polarization). However, there

are situations (such as when combining the beams of an interferometer) when phase does

matter. Under such circumstances, we have to use Jones vectors and matrices [18].

Jones’s calculation can not handle partial polarization (mixed states of polarization).

There are situations in which the phase is important but the polarization is partial.

In such a case, the radiation must be formally separated into two (generally unequal)

mutually incoherent polarized components (pure states) of orthogonal polarizations (ie,

partial polarization in the input signal and its opposite), treating each separately by

calculating Jones and obtaining the final result by incoherent formal recombination of

the outputs.

Note that the relationship between the Mueller and Jones matrices is that each Mueller

matrix has its counterpart in Jones.

1.3.2.2 Scattering matrix

Consider an arbitrary network of N ports. The incident wave will be denoted to a port i by

V +
i , the wave reflected by V −i and the noise wave produced by the network to this port by ci.

These quantities are related by the Scatering matrix and noise wave vector c, as
V −1

V −2
...

V −N

 =


S11 S12 . . . S1N

S21
...

...

SN1 . . . SNN



V +

1

V +
2
...

V +
N

+


c1

c2

...

cN

 (1.19)

The Scattering matrix is unitary if the device has no losses and the reciprocal of the network

has symmetric Scattering matrices [13] [8].

In the formulation of the Scattering matrix, any component or network of components (ex-

cluding the detectors) can be described by a Scattering matrix dependent on the frequency

Sν . The scattering matrix relates the incident, reflected and transmitted waves that travel

in transmission lines connected to the N ports of a linear network. This formulation can be

extended to optical systems and used to describe instruments that contain optical components,

such as lenses or mirrors, and microwave circuit techniques, such as horns, transmission lines,

filters, etc. [8]
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1.3.3 Polarization study: Polarimetry and spectropolarimetry

Every astronomical object is polarized to some degree. Astronomical polarimetry, by nature,

therefore yield more information than imaging and/or spectroscopy alone. Polarization, i.e. the

vector properties of (scattered) starlight is particulary dependent on the physical circumstances

of the location where the light originated.

Another important and unique capability of polarimetry is the measurement of magnetic fields.

Magnetics fields are ubiquitous in astronomical contexts of all scales, but their exact influence

on many physical processes is often poorly understood. Only the measurement of magnetic

fields through polarimetry allows for the understanding of stars through all stages of their lives,

from their formation out of magnetized molecular clouds, to stellar activity during their time

on the main sequence, and to their final breaths and their after-life as pulsars or magnetars.

In several ways, astronomical polarimetry is orthogonal to imaging and spectroscopy. Most

importantly, polarimetry yields astronomical information that is very complementary. But also,

the technical implementation of polarimetry in the optical regime in conjunction with imaging or

spectroscopy (spectropolarimetry) and also interferometry (polarimetric interferometry) almost

always requires trade-offs on either side [16].

1.4 Objectives of this thesis

1.4.1 General objectives

1. Polarization calibration of the OVRO 40m telescope receiver, KuPol.

1.4.2 Specific objectives

1. To know and to understand the operation of the KuPol receiver.

2. To develop a polarization calibration model for the KuPol receiver.

3. Characterize KuPol receiver parameters from the polarization calibration model.

4. To contrast the results of the calibration model with instrument data.
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1.5 Overview of thesis

This thesis is organized as follows. In chapter 1, we have presented the scientific aim and the

theoretical tools to achieve this thesis, and a general 40m telescope and its receiver description.

In chapter 2, we develop and present the polarization calibration model proposal for KuPol

receiver. Chapter 3, we examine an instrumental parameter consideration over the polariza-

tion calibration model proposal and from these, we perform instrumental diagnostics such as

the isolation. Chapter 4, we will develop an analysis from previous diagnostics for to obtain

instrumental parameters. In chapter 5, we present the conclusions of this thesis. Guidelines for

future work will also be presented.



Chapter 2

Analytical calibration model proposal

for KuPol receiver

Polarimetry is a very challenging technique because the signals to measure are typically very

weak (< 1% of the observed intensity) and because the telescope employed instrumentation

introduces spurious polarization. Most polarimeters have calibration optics to determine po-

larimetric properties downstream from their mounting point. Other calibration techniques

include using polarized and unpolarized standard stars, lamps or daytime sky sources. Using a

range of techniques, it is possible to remove the instrumental contamination from the observed

signals but there are several difficulties. Calibration source brightness, instrument sensitivity,

ability to track targets and source availability all limit calibration techniques. Ideally, one would

like to have calibration polarizers before the entire optical train covering the full aperture. This

would illuminate the optics with a beam identical to that of the science observations but with

controlled polarimetric properties [17].

The commissioning, in general terms, corresponds to the stage that follows the installation and

testing of the functioning of a service, project or instrument, and which ends when a normal,

continuous and optimal operation is achieved. In this process, a severe revision and efforts are

made to prevent future defects in the operation of the instrument. In addition, commissioning

is the last opportunity to detect and correct design flaws that are impossible to predict.

For us, the commissioning offers a unique opportunity to fully understand the complex oper-

ation of the KuPol spectropolarimeter. Within this stage, the polarization calibration of the

instrument is important in order to obtain instrument parameters characterization.

15
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2.1 Analytical model description

The proposal (complete) polarization calibration model for KuPoL, propagates the signals that

enter for Ant and Ref horns throughout the instrument. For this, the model uses an abstraction

of the instrument, which groups the components into 4 stages that behave like black boxes and

that contain components that have similar effects on the signal that passes through them.

Finally, the model correlates the 4 signals that come out of the last black box and gives the

Stokes parameters on orthogonal circular basis for horns Ant and Ref . For a complete graphic

description of this model, see figure 2.3.

We have use the expressions for Stokes Q and U from the Simulink model of the receiver (see

appendix B) implemented for the digital processing of the signals. Thus, the Stokes parameters

calculated for KuPol per horn are

• Horn Ant

IA = |Al|2 + |Ar|2 (2.1)

QA = Re(Al)Re(Ar) + Im(Al)Im(Ar) (2.2)

UA = Re(Al)Im(Ar)− Im(Al)Re(Ar) (2.3)

VA = |Al|2 − |Ar|2 (2.4)

• Horn Ref

IB = |Bl|2 + |Br|2 (2.5)

QB = Re(Bl)Re(Br) + Im(Bl)Im(Br) (2.6)

UB = Re(Bl)Im(Br)− Im(Bl)Re(Br) (2.7)

VB = |Bl|2 − |Br|2 (2.8)

Note that (A,B)l,r are the outputs of last black box for our model, |(A,B)l,r|2 are their square

modules, and Re(A,B)l,r and Im(A,B)l,r are their real and imaginary components.

2.1.1 General comments for KuPol proposal polarization calibration

model

The proposed calibration model will work making a propagation of the signals that enter by

horns Ant and Ref , until the correlation box named Stokes that calculates of Stokes parameters

for circular polarization. It is important to note that the signals entering by Ant and Ref will

work separately. After horns, the orthogonal components of the signal, LCP and RCP , are

separated for each horn (called as Al and Ar for horn Ant, and Bl and Br for horn Ref). After
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that, the noise diodes (stage 1 ) are injected (one per branch). Then, the signals are mixed in

two 180◦ analog hybrids (stage 2 ) that receive signals with the same polarization from both

horns. Then the signals, separated by polarization, enter to the balance corrections boxes (stage

3 ) that contain all the parameters related to the instrument balance. After that, the signals

with the same polarization, are mixed in two 180◦ digital hybrid (stage 4 ) boxes.

The proposed model for the KuPol polarization calibration, will not work based on Mueller

matrices as it is usually done for this type of calibration. The 180◦ analog and digital hybrids

(stages 2 and 4 ) mix the signals coming from both horns with the same polarization. We

postulate that the non ideal Mueller matrix associated to these component must be a 8x8

matrix as follows

Mhybrid =

[
[AA]4x4 [AB]4x4

[BA]4x4 [BB]4x4

]
(2.9)

where AA and BB are the signals from Ant and Ref respectively, and AB and BA are the

mixes of the signals from Ant and Ref produced by the imperfection of the component. Then

to simplify the calculations, we have decided do not use Mueller matrices.

2.2 Simplified polarization calibration model

Before we begin to develop the full polarization calibration model for KuPol, we will analyze the

signals propagation (Al, Ar, Bl, and Br) along the KuPol receiver assumed that the instrument

components are perfect (they do not have losses) and the signals that enter the correlation box

(Stokes) are fully balanced (in amplitude and phase).

Thus, the KuPol receiver is reduced according to the figure 2.1.

The KuPol simplified calibration model we will consider 3 stages:

1. Noise diodes injection.

2. Perfect 180◦ analog hybrid.

3. Perfect 180◦ digital hybrid.

To start developing the simplified polarization calibration model, we have that the signals that

enter to the KuPol instrument and what are the signals that come out of the horns Ant and

Ref 1 are expressed by

1. Upper branches: Horn Ant signals

(a) Branch 1:

Ant(lcp) : Ale
−i(ωt+θA+δA) (2.10)

1In our model we neglect the effect of the optical train on the signal, since in practice, we will not have
access to instrumental data at this place
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Figure 2.1: Simplified calibration model.
Considers that the instrument is fully balanced and the two hybrids do not have imperfections.
The signals that come out of the second hybrid enter the Stokes box where the Stokes parameters
are calculated on a circular basis. Source: Own production.

(b) Branch 2:

Ant(rcp) : Are
i(ωt+θA) (2.11)

2. Lower branches: Horn Ref signals

(a) Branch 3:

Ref(lcp) : Ble
−i(ωt+θB+δB) (2.12)

(b) Branch 4:

Ref(rcp) : Bre
i(ωt+θB) (2.13)

Note that ωt is the cosmic signal frecuency, θA,B is the cosmic signal phase, and δA,B is the

phase difference between LCP and RCP branches per horn.

In the following sections we will propagate the previous signals along the instrument according

to the figure 2.1.
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2.2.1 Stage 1: Noise diodes (nd)

Each noise diodes signals are injected into LCP and RCP branches per horn (one per branch;

see relations (2.10) to (2.13)).

1. Upper branches: Horn Ant

(a) Branch 1:

End,A
l,out = Ale

−i(ωt+θA+δA) + VA (2.14)

(b) Branch 2:

End,A
r,out = Are

i(ωt+θA) + VA (2.15)

2. Lower branches: Horn Ref

(a) Branch 3:

End,B
l,out = Ble

−i(ωt+θB+δB) + VB (2.16)

(b) Branch 4:

End,B
r,out = Bre

i(ωt+θB) + VB (2.17)

Note that VA,B are the noise diode voltage injected into Ant and Ref branches respectively.

KuPol instrument has 4 noise diodes that are injected after horns Ant and Ref . Two of these

diodes are injected on horn Ant signals and two on horn Ref signals. On one side, we have to

NOISE diode that provides a noise temperature comparable to the system temperature and

on the other hand, the CAL diode provides a noise temperature comparable to the antenna

temperature of the astronomical sources we are observing [15].

2.2.2 Stage 2: 180◦ analog hybrid (ah)

The perfect 180◦ analog hybrid effect on the signal is given by the Scattering matrix for a 180◦

ideal hybrid [8] as

Sideal180 =
1√
2


0 1 1 0

1 0 0 −1

1 0 0 1

0 −1 1 0

 (2.18)

Considering that the hybrid corresponds to a four ports network, and that ports 1 and 4 are

the inputs and ports 2 and 3 are the outputs, the output signals from the 180◦ analog hybrid

are

(Output)2 =
1√
2

[(Input)1 + (Input)4] (2.19)
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(Output)3 =
1√
2

[(Input)1 − (Input)4] (2.20)

Figure 2.2: Arbitrary receiver.
The linear polarization orthogonal voltajes are Ex(t) y Ey(t) in the ports 1 and 2 respectively.
In the ports 3 to N are the output ports. Note that for our analysis the ports 1 and 4 are the
inputs and 2 and 3 are the outputs. Source: O. King, et al. [8].

If we use relations (2.19) and (2.20), to obtain the 180◦ analog hybrid output, and we remember

that for our work, the two upper branches of figure 1.3 are called 1 and 2 (LCP polarization)

and that the two lower branches are called 3 and 4 (RCP polarization), the 180◦ analog hybrids

outputs are

1. Upper branches: LCP

(a) Branch 1:

Eah,1
l,out =

1√
2

[(Ale
−i(ωAt+θA+δA) + VA) + (Ble

−i(ωBt+θB+δB) + VB)] (2.21)

(b) Branch 2:

Eah,2
l,out =

1√
2

[(Ale
−i(ωAt+θA+δA) + VA)− (Ble

−i(ωBt+θB+δB) + VB)] (2.22)

2. Lower branches: RCP

(a) Branch 3:

Eah,3
r,out =

1√
2

[(Are
i(ωAt+θA) + VA) + (Bre

i(ωBt+θB) + VB)] (2.23)

(b) Branch 4:

Eah,4
r,out =

1√
2

[(Are
i(ωAt+θA) + VA)− (Bre

i(ωBt+θB) + VB)] (2.24)

The instrument applies a temporal averaging over the signals before the digital hybrid imple-
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mentation 2. In particular Al,re
iωt and Bl,re

iωt will be 1. Thus, the signals that enter to the

next stage for the simplified model are

1. Upper branches: LCP

(a) Branch 1:

Eah,1
l,out =

1√
2

[(Ale
−i(θA+δA) + VA) + (Ble

−i(θB+δB) + VB)] (2.25)

(b) Branch 2:

Eah,2
l,out =

1√
2

[(Ale
−i(θA+δA) + VA)− (Ble

−i(θB+δB) + VB)] (2.26)

2. Lower branches: RCP

(a) Branch 3:

Eah,3
r,out =

1√
2

[(Are
iθA + VA) + (Bre

iθB + VB)] (2.27)

(b) Branch 4:

Eah,4
r,out =

1√
2

[(Are
iθA + VA)− (Bre

iθB + VB)] (2.28)

2.2.3 Stage 3: 180◦ digital hybrid (dh)

Using relations (2.19) and (2.20) that correspond to the output signals from a perfect 180◦

hybrid and taking into account that the signals that enter to this stage are the signals that

come out of the previous section, the outputs signals from the 180◦ digital hybrid for KuPol

are

1. Upper branches: LCP

(a) Branch 1:

Edh,1
l,out =

1

2
[(Ale

−i(θA+δA) + VA +Ble
−i(θB+δB) + VB)

+ (Ale
−i(θA+δA) + VA −Ble

−i(θB+δB) − VB)]

= Ale
−i(θA+δA) + VA

(2.29)

2For this, < eiωt >= 1. Note that < ... > symbol denotes temporal averages.
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(b) Branch 2:

Edh,2
l,out =

1

2
[(Ale

−i(θA+δA) + VA +Ble
−i(θB+δB) + VB)

− (Ale
−i(θA+δA) + VA −Ble

−i(θB+δB) − VB)]

= Ble
−i(θB+δB) + VB

(2.30)

2. Lower branches: RCP

(a) Branch 3:

Edh,3
r,out =

1

2
[(Are

iθA + VA +Bre
iθB + VB)

+ (Are
iθA + VA −Bre

iθB − VB)]

= Are
iθA + VA

(2.31)

(b) Branch 4:

Edh,4
r,out =

1

2
[(Are

iθA + VA +Bre
iθB + VB)

− (Are
iθA + VA −Bre

iθB − VB)]

= Bre
iθB + VB

(2.32)

2.2.4 Stokes parameter for KuPol receiver from simplified calibra-

tion model

In the previous section, we obtained the 180◦ digital hybrid outputs. To calculate the Stokes

parameters for the simplified model, we will use the (2.1) to (2.8) relations, that give us the

Stokes parameters relations on a circular basis. To obtain this, we need to identify the real and

imaginary components, and the square modules of the previous digital hybrid outputs.

2.2.4.1 Real and imaginary components 180◦ digital hybrid outputs

Using the Euler’s formula for the complex analysis, the real and imaginary components outputs

from 180◦ digital hybrid are

1. Upper branches: LCP
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(a) Branch 1:

Edh,1
l,out = Ale

−i(θA+δA) + VA

= (Alcos(θA + δA) + VA)− i(Alsin(θA + δA))
(2.33)

(b) Branch 2:

Edh,2
l,out = Ble

−i(θB+δB) + VB

= (Blcos(θB + δB) + VB)− i(Blsin(θB + δB))
(2.34)

2. Lower branches: RCP

(a) Branch 3:

Edh,3
r,out = Are

iθA + VA

= (Arcos(θA) + VA) + i(Arsin(θA))
(2.35)

(b) Branch 4:

Edh,4
r,out = Bre

iθB + VB

= (Brcos(θB) + VB) + i(Brsin(θB))
(2.36)

2.2.4.2 Square modules 180◦ digital hybrid outputs

Taking the square modules of the 180◦ digital hybrid outputs, we have

1. Upper branches: LCP

(a) Branch 1:

|Edh,1
l,out|

2 = (Alcos(θA + δA) + VA)2 + (Alsin(θA + δA))2

= (VA)2 + (Al)
2

(2.37)

(b) Branch 2:

|Edh,2
l,out|

2 = (Blcos(θB + δB) + VB)2 + (Blsin(θB + δB))2

= (VB)2 + (Bl)
2

(2.38)

2. Lower branches: RCP
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(a) Branch 3:

|Edh,3
r,out|2 = (Arcos(θA) + VA)2 + (Arsin(θA))2

= (VA)2 + (Ar)
2

(2.39)

(b) Branch 4:

|Edh,4
r,out|2 = (Brcos(θB) + VB)2 + (Brsin(θB))2

= (VB)2 + (Br)
2

(2.40)

Note that in relations (2.37) - (2.40), uncorrelated terms have been eliminated.

2.2.4.3 Stokes parameters calculation from simplified calibration model

Considering sections 2.2.4.1 and 2.2.4.2, the Stokes parameters for KuPol receiver from the

simplified model, for horns Ant and Ref , are

• Horn Ant

IA = |EA
l |2 + |EA

r |2 = (Al)
2 + (Ar)

2 + 2V 2
A (2.41)

QA = Re(EA
l )Re(EA

r ) + Im(EA
l )Im(EA

r ) = AlArcos(2θA + δA) + V 2
A (2.42)

UA = Re(EA
l )Im(EA

r )− Im(EA
l )Re(EA

r ) = AlArsin(2θA + δA) (2.43)

VA = |EA
l |2 − |EA

r |2 = (Al)
2 − (Ar)

2 (2.44)

• Horn Ref

IB = |EB
l |2 + |EB

r |2 = (Bl)
2 + (Br)

2 + 2V 2
B (2.45)

QB = Re(EB
l )Re(EB

r ) + Im(EB
l )Im(EB

r ) = BlBrcos(2θB + δB) + V 2
B (2.46)

UB = Re(EB
l )Im(EB

r )− Im(EB
l )Re(EB

r ) = BlBrsin(2θB + δB) (2.47)

VB = |EB
l |2 − |EB

r |2 = (Bl)
2 − (Br)

2 (2.48)

Note that:

• In relations (2.41) - (2.48), uncorrelated terms have been eliminated. Here we have

assumed that the horn Ant and Ref voltages (Al, Ar, Bl, and Br) and the noise diode

voltages (VA,B) are uncorrelated. Hence terms like < Al ∗ Bl >, < Ar ∗ VA >, or <

Br ∗ VB >3 are equal to zero.

• The relations (2.41) - (2.48) are the Stokes parameters for the ideal KuPol instrument.

3Note that < ... > denotes temporal averages.
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2.3 Complete polarization calibration model for KuPol

receiver

Figure 2.3: Complete polarization calibration model.
Source: Own production.

As shown in the figure 2.2, the KuPol calibration model will work considering a 4 stages through

which the signals that enter the instrument will be propagated.

1. Stage 1: Noise diodes that are injected into the system in each polarization branch

after horns Ant and Ref .

2. Stage 2: 180◦ analog hybrid that combines the signals with the same polarization from

Ant and Ref .

3. Stage 3: Instrumental balance corrections parameters that contains the total

balance instrument parameters (for amplitude and phase) between branches with same

polarization and between branches with different polarization. This stage considers the

balance from the analog instrument and the complex corrections coefficients from digital

instrument. In this stage, the instrument gain terms (complex) are incorporated.

4. Stage 4: 180◦ digital hybrid that combines the signal with the same polarization in

the digital instrument. It is important to note that for our work, we will consider this

implementation as perfect.
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After stage 4, the signals that come out of the digital hybrid enter the Stokes box where the

Stokes parameters are calculated.

It is important to note that in the complete model, we will consider all the instrumental imper-

fections.

2.3.1 Stage 1: Noise Diode (nd)

KuPol instrument has 4 noise diodes that are injected after horns Ant and Ref . Two of these

diodes are injected on horn Ant signals and two on horn Ref signals. On one side, we have to

NOISE diode that provides a noise temperature comparable to the system temperature and

on the other hand, the CAL diode provides a noise temperature comparable to the antenna

temperature of the astronomical sources we are observing [15]. Note that the NOISE diode is

∼ 1000 times stronger than CAL.

The effect that the noise diodes have on the signals that enter to the horns is adding their

voltage on the input signal.

1. Upper branches: Horn Ant

[
End,Al,out

End,Ar,out

]
=

[
Ale

−i(ωt+θA+δA)

Arei(ωt+θA)

]
+

[
VAe

i(ωt+γAl )

VAe
i(ωt+γAr )

]
(2.49)

=⇒ End,A
l,out = Ale

−i(ωt+θA+δA) + VAe
i(ωt+γAl )

=⇒ End,A
r,out = Are

i(ωt+θA) + VAe
i(ωt+γAr )

(2.50)

2. Lower branches: Horn Ref

[
End,Bl,out

End,Br,out

]
=

[
Ble

−i(ωt+θB+δB)

Brei(ωt+θB)

]
+

[
VBe

i(ωt+γBl )

VBe
i(ωt+γBr )

]
(2.51)

=⇒ End,B
l,out = Ble

−i(ωt+θB+δB) + VBe
i(ωt+γBl )

=⇒ End,B
r,out = Bre

i(ωt+θB) + VBe
i(ωt+γBr )

(2.52)

Note that in Al,re
iωt and Bl,re

iωt, ωt is the cosmic signal frecuency, θA,B is the cosmic signal

phase, δA,B is the phase difference between LCP and RCP branches per horn. On the other

hand, in VAe
i(ωt+γAl,r) and VBe

i(ωt+γBl,r), VA,B are the noise diode voltage injected into Ant and

Ref branches, and γA,Bl,r are the phase which the noise diodes signal are injected on the branch.
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2.3.2 Stage 2: 180◦ analog hybrid (ah)

General scattering matrix of a reciprocal four-port network matched at all ports has the fol-

lowing form:

[S] =


0 S12 S13 S14

S12 0 S23 S24

S13 S23 0 S34

S14 S24 S34 0

 (2.53)

Further simplification can be made by choosing the phase references on three of the four ports.

Thus, we choose S12 = S34 = α, S13 = βejθ, and S24 = βejφ, where α and β are real, and θ and

φ are phase constants to be determined (one of which we are still free to choose).

If we consider a relation between the output ports (2 and 3 for four-port network), there is a

relation between the phase constants as θ + φ = π ± 2nπ.

Then, considering the previous relation and replacing in (2.53),

[S] =


0 α βeiθ 0

α 0 0 βeiφ

βeiθ 0 0 α

0 βeiφ α 0

 (2.54)

If we ignore integer multiples of 2π, there are a particular choices that commonly occur in

practice, which coincide with the 180◦ hybrid as an antisymmetric coupler: θ = 0, φ = π. Also,

now we consider that θ+ φ = π+ ∆φ. The phases of the terms having amplitude β are chosen

to be 180◦ apart. Then the scattering matrix has the following form:

[S] =


0 α β 0

α 0 0 −βei∆φ

β 0 0 α

0 −βei∆φ α 0

 (2.55)

Note that these two couplers differ only in the choice of reference planes. In addition, the

amplitudes α and β are not independent. So, α2 + β2 = 1. Thus, apart from phase references,

an ideal four-port directional coupler has only one degree of freedom, leading to two possible

configurations [13].

On the other hand, for to characterize the hybrid effect, we will use the scattering matrix for

a 180◦ non ideal hybrid from [8]:

S180 =
1√
2


0

√
1 + δ180

√
1− δ180e

−iφΣ 0
√

1 + δ180 0 0 −
√

1− δ180e
−iφ∆

√
1− δ180e

−iφΣ 0 0
√

1 + δ180

0 −
√

1− δ180e
−iφ∆

√
1 + δ180 0

 (2.56)



Chapter 2. Analytical calibration model proposal for KuPol receiver 28

where δ180 is the amplitude imbalance of the hybrid, φΣ indicates the phase error in the operation

sum, and φ∆ indicates the phase error in the operation subtraction.

Note that:

1. (2.53) corresponds to the scattering 180◦ perfect hybrid matrix if δ180 = φΣ = φ∆ = 0.

2. If we compare (2.55) and (2.56), we note that: α =
√

1 + δ180 and β =
√

1− δ180.

3. If we compare (2.55) and (2.56), we note that exist a relation between φΣ and φ∆. This

relation is given by the phase difference ∆φ from element S24 of (2.55).

Thus, the scatering matrix proposed for our non ideal analog 180◦ hybrid is,

S180 =
1√
2


0

√
1 + δ180

√
1− δ180 0

√
1 + δ180 0 0 −

√
1− δ180e

i∆φ

√
1− δ180 0 0

√
1 + δ180

0 −
√

1− δ180e
i∆φ

√
1 + δ180 0

 (2.57)

From figure 2.2. and considering that the ports 1 and 2 correspond to the inputs, and the ports

3 and 4 are the outputs, we obtain that the relations that describe the hybrid outputs signals

from (2.57) are

(Output)3 =
1√
2

[
√

1− δ180(Input)1 +
√

1 + δ180(Input)4] (2.58)

(Output)2 =
1√
2

[
√

1 + δ180(Input)1 −
√

1− δ180e
i∆φ(Input)4] (2.59)

Thus, using (2.58) and (2.59), we have that the output hybrid signals are:

1. Upper branches: LCP

(a) Branch 1:

Eah,1
l,out =

1√
2

[
√

1− δ180(Ale
−i(ωt+θA+δA) + VAe

i(ωt+γAl ))

+
√

1 + δ180(Ble
−i(ωt+θB+δB) + VBe

i(ωt+γBl ))]

(2.60)

(b) Branch 2:

Eah,2
l,out =

1√
2

[
√

1 + δ180(Ale
−i(ωt+θA+δA) + VAe

i(ωt+γAl ))

−
√

1− δ180e
i∆φl(Ble

−i(ωt+θB+δB) + VBe
i(ωt+γBl ))]

(2.61)

2. Lower branches: RCP
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(a) Branch 3:

Eah,3
l,out =

1√
2

[
√

1− δ180(Are
i(ωt+θA) + VAe

i(ωt+γAr ))

+
√

1 + δ180(Bre
i(ωt+θB) + VBe

i(ωt+γBr ))]

(2.62)

(b) Branch 4:

Eah,4
l,out =

1√
2

[
√

1 + δ180(Are
i(ωt+θA) + VAe

i(ωt+γAr ))

−
√

1− δ180e
i∆φr(Bre

i(ωt+θB) + VBe
i(ωt+γBr ))]

(2.63)

The ∆φl,r are the difference phase for LCP and RCP polarizations branches. Remember that

KuPol has two 180◦ analog hybrid (see figure 2.3.).

2.3.3 Stage 3: Instrumental balance corrections parameters (bc)

We propose that in this stage, a series of parameters will be presented and these will give us

evidence of instrumental imbalance. This parameters will contribute to its correction.

The balance corrections parameters for branches with the same polarization are αlcp, αrcp, βlcp,

and βrcp, and for branches with the different polarization are αrl and βrl.

On the other hand, usually antenna feeds measure the components of the incident radiation

along two orthogonal polarization states by two separate feeds. The signals from the two feeds

travel through essentially independent paths till the correlator. However, due to mechanical

imperfections in the feed or imperfections in the electronics, the two signals can leak into each

other at various points in the signal chain. This is the polarization leakage that αrl and βrl

represent.

The instrument gain terms are incorpored. Note that the gain is complex as gj = |gj|eiφj , where

j is the number branch.

1. Upper branches: LCP

(a) Branch 1:

Ebc,1
l,out = g1E

ah,1
l,out

=
g1√

2
[
√

1− δ180(Ale
−i(ωt+θA+δA) + VAe

i(ωt+γAl )))

+
√

1 + δ180(Ble
−i(ωt+θB+δB) + VBe

i(ωt+γBl ))]

(2.64)
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(b) Branch 2:

Ebc,2
l,out = g1αlcpe

iβlcpEah,2
l,out

=
g1αlcpe

iβlcp

√
2

[
√

1 + δ180(Ale
−i(ωt+θA+δA) + VAe

i(ωt+γAl )))

−
√

1− δ180e
i∆φl(Ble

−i(ωt+θB+δB) + VBe
i(ωt+γBl )))]

(2.65)

2. Lower branches: RCP

(a) Branch 3:

Ebc,3
r,out = g3αrle

iβrlEah,3
r,out

=
g3αrle

iβrl

√
2

[
√

1− δ180(Are
i(ωt+θA) + VAe

i(ωt+γAr )))

+
√

1 + δ180(Bre
i(ωt+θB) + VBe

i(ωt+γBr ))]

(2.66)

(b) Branch 4:

Ebc,4
r,out = g3(αrle

iβrl)(αrcpe
iβrcp)Eah,4

r,out

=
g3αrle

iβrlαrcpe
iβrcp

√
2

[
√

1 + δ180(Are
i(ωt+θA) + VAe

i(ωt+γAr )))

−
√

1− δ180e
i∆φr(Bre

i(ωt+θB) + VBe
i(ωt+γBr ))]

(2.67)

The instrument applies a temporal averaging over the signals before the digital hybrid imple-

mentation 4. In particular Al,re
iωt and Bl,re

iωt will be 1. Thus, the signals that enter to the

next stage for the complete model are

1. Upper branches: LCP

(a) Branch 1:

Eah,1
l,out =

g1√
2

[
√

1− δ180(Ale
−i(θA+δA) + VA) +

√
1 + δ180(Ble

−i(θB+δB) + VB)] (2.68)

(b) Branch 2:

Eah,2
l,out =

g1αlcpe
iβlcp

√
2

[
√

1 + δ180(Ale
−i(θA+δA)+VA)−

√
1− δ180e

i∆φl(Ble
−i(θB+δB)+VB)]

(2.69)

2. Lower branches: RCP

4For this, < eiωt >= 1. Note that < ... > symbol denotes temporal averages.
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(a) Branch 3:

Eah,3
l,out =

g3αrle
iβrl

√
2

[
√

1− δ180(Are
iθA + VA) +

√
1 + δ180(Bre

iθB + VB)] (2.70)

(b) Branch 4:

Eah,4
l,out =

g3αrle
iβrlαrcpe

iβrcp

√
2

[
√

1 + δ180(Are
iθA + VA)−

√
1− δ180e

i∆φr(Bre
iθB + VB)]

(2.71)

2.3.4 Stage 4: 180◦ digital hybrid (dh)

The 180◦ digital hybrid effect on the signal is given by the Scattering matrix for a 180◦ ideal

hybrid [8] as

S180 =
1√
2


0 1 1 0

1 0 0 −1

1 0 0 1

0 −1 1 0

 (2.72)

Using (2.19) and (2.20), we have that the digital hybrid outputs are:

1. Upper branches: LCP

(a) Branch 1:

Edh,1
l,out =

1√
2

[Ebc,1
l,out + Ebc,2

l,out]

=
g1

2
[(Ale

−i(θA+δA) + VA)(
√

1− δ180 + αlcpe
iβlcp
√

1 + δ180)

+ (Ble
−i(θB+δB) + VB)(

√
1 + δ180 − αlcp

√
1− δ180e

i(∆φl+βlcp)]

(2.73)

(b) Branch 2:

Edh,2
l,out =

1√
2

[Ebc,1
l,out − E

bc,2
l,out]

=
g1

2
[(Ale

−i(θA+δA) + VA)(
√

1− δ180 − αlcpeiβlcp
√

1 + δ180)

+ (Ble
−i(θB+δB) + VB)(

√
1 + δ180 + αlcp

√
1− δ180e

i(∆φl+βlcp))]

(2.74)

2. Lower branches: RCP
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(a) Branch 3:

Edh,3
r,out =

1√
2

[Ebc,3
r,out + Ebc,4

r,out]

=
g3αrle

iβrl

2
[(Are

iθA + VA)(
√

1− δ180 + αrcpe
iβrcp

√
1 + δ180)

+ (Bre
iθB + VB)(

√
1 + δ180 − αrcp

√
1− δ180e

i(∆φr+βrcp))]

(2.75)

(b) Branch 4:

Edh,4
r,out =

1√
2

[Ebc,3
r,out − E

bc,4
r,out]

=
g3αrle

iβrl

2
[(Are

iθA + VA)(
√

1− δ180 − αrcpeiβrcp
√

1 + δ180)

+ (Bre
iθB + VB)(

√
1 + δ180 + αrcp

√
1− δ180e

i(∆φr+βrcp))]

(2.76)

Note that the digital hybrid will acts on the signals with same polarization, that is, it mixes

the signals of branches 1 and 2, and those of branches 3 and 4.

2.3.5 Stokes parameters for KuPol receiver from complete calibra-

tion model

To calculate the new Stokes parameters, we will use the (2.1) to (2.8) relations, that give us the

Stokes parameters relations on a circular basis. For to obtain this, we need to identify the real

and imaginary components, and the square modules of the previous digital hybrid outputs.

2.3.5.1 Real and imaginary components 180◦ digital hybrid outputs

Using the Euler’s formula for the complex analysis, the components real and imaginary outputs

from 180◦ digital hybrid are
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1. Uper branches: LCP

Edh,1l,out = Re(Edh,1l,out) + iIm(Edh,1l,out)

=
g1

2
[[Al(

√
1− δ180cos(θA + δA) +

√
1 + δ180αlcpcos(θA + δA − βlcp))

+ VA(
√

1− δ180 +
√

1 + δ180αlcpcos(βlcp))

+Bl(
√

1 + δ180cos(θB + δB)−
√

1− δ180αlcpcos(θB + δB −∆φl − βlcp))

+ VB(
√

1 + δ180 −
√

1− δ180αlcpcos(∆φl + βlcp))]

− i[Al(
√

1− δ180sin(θA + δA) +
√

1 + δ180αlcpsin(θA + δA − βlcp))

− VA
√

1 + δ180αlcpsin(βlcp)

+Bl(
√

1 + δ180sin(θB + δB)−
√

1− δ180αlcpsin(θB + δB −∆φl − βlcp))

+ VB
√

1− δ180αlcpsin(∆φl + βlcp)]]

(2.77)

Edh,2l,out = Re(Edh,2l,out) + iIm(Edh,2l,out)

=
g1

2
[[Al(

√
1− δ180cos(θA + δA)−

√
1 + δ180αlcpcos(θA + δA − βlcp))

+ VA(
√

1− δ180 −
√

1 + δ180αlcpcos(βlcp))

+Bl(
√

1 + δ180cos(θB + δB) +
√

1− δ180αlcpcos(θB + δB −∆φl − βlcp))

+ VB(
√

1 + δ180 +
√

1− δ180αlcpcos(∆φl + βlcp))]

− i[Al(
√

1− δ180sin(θA + δA)−
√

1 + δ180αlcpsin(θA + δA − βlcp))

+ VA
√

1 + δ180αlcpsin(βlcp)

+Bl(
√

1 + δ180sin(θB + δB) +
√

1− δ180αlcpsin(θB + δB −∆φl − βlcp))

− VB
√

1− δ180αlcpsin(∆φl + βlcp)]]

(2.78)

2. Lower branches: RCP

Edh,3r,out = Re(Edh,3r,out) + iIm(Edh,3r,out)

=
g3αrl

2
[[Ar(

√
1− δ180cos(θA + βrl) +

√
1 + δ180αrcpcos(θA + βrl + βrcp))

+ VA(
√

1− δ180cos(βrl) +
√

1 + δ180αrcpcos(βrl + βrcp))

+Br(
√

1 + δ180cos(θB + βrl)−
√

1− δ180αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180cos(βrl)−
√

1− δ180αrcpcos(βrl + ∆φr + βrcp))]

+ i[Ar(
√

1− δ180sin(θA + βrl) +
√

1 + δ180αrcpsin(θA + βrl + βrcp))

+ VA(
√

1− δ180sin(βrl) +
√

1 + δ180αrcpsin(βrl + βrcp))

+Br(
√

1 + δ180sin(θB + βrl)−
√

1− δ180αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180sin(βrl)−
√

1− δ180αrcpsin(βrl + ∆φr + βrcp)]]

(2.79)
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Edh,4r,out = Re(Edh,4r,out) + iIm(Edh,4r,out)

=
g3αrl

2
[[Ar(

√
1− δ180cos(θA + βrl)−

√
1 + δ180αrcpcos(θA + βrl + βrcp))

+ VA(
√

1− δ180cos(βrl)−
√

1 + δ180αrcpcos(βrl + βrcp))

+Br(
√

1 + δ180cos(θB + βrl) +
√

1− δ180αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180cos(βrl) +
√

1− δ180αrcpcos(βrl + ∆φr + βrcp))]

+ i[Ar(
√

1− δ180sin(θA + βrl)−
√

1 + δ180αrcpsin(θA + βrl + βrcp))

+ VA(
√

1− δ180sin(βrl)−
√

1 + δ180αrcpsin(βrl + βrcp))

+Br(
√

1 + δ180sin(θB + βrl) +
√

1− δ180αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180sin(βrl) +
√

1− δ180αrcpsin(βrl + ∆φr + βrcp)]]

(2.80)

2.3.5.2 Square modules 180◦ digital hybrid outputs

Taking the square modules of the relations for the 180◦ digital hybrid outputs, we have

1. Upper branches: LCP

|Edh,1l,out|
2 =
|g1|2

4
[((Al)

2 + (VA)2)

((
√

1− δ180)2 + (αlcp
√

1 + δ180)2 + 2αlcp
√

1 + δ180

√
1− δ180cos(βlcp))

+ ((Bl)
2 + (VB)2)

((
√

1 + δ180)2 + (αlcp
√

1− δ180)2 − 2αlcp
√

1 + δ180

√
1− δ180cos(∆φl + βlcp))]

(2.81)

|Edh,2l,out|
2 =
|g1|2

4
[((Al)

2 + (VA)2)

((
√

1− δ180)2 + (αlcp
√

1 + δ180)2 − 2αlcp
√

1 + δ180

√
1− δ180cos(βlcp))

+ ((Bl)
2 + (VB)2)

((
√

1 + δ180)2 + (αlcp
√

1− δ180)2 + 2αlcp
√

1 + δ180

√
1− δ180cos(∆φl + βlcp))]

(2.82)

2. Lower branches: RCP

|Edh,3r,out|2 =
|g3|2α2

rl

4
[((Ar)

2 + (VA)2)

((
√

1− δ180)2 + (αrcp
√

1 + δ180)2 + 2αrcp
√

1 + δ180

√
1− δ180cos(βrcp))

+ ((Br)
2 + (VB)2)

((
√

1 + δ180)2 + (αrcp
√

1− δ180)2 − 2αrcp
√

1 + δ180

√
1− δ180cos(∆φr + βrcp))]

(2.83)

|Edh,4r,out|2 =
|g3|2α2

rl

4
[((Ar)

2 + (VA)2)

((
√

1− δ180)2 + (αrcp
√

1 + δ180)2 − 2αrcp
√

1 + δ180

√
1− δ180cos(βrcp))

+ ((Br)
2 + (VB)2)

((
√

1 + δ180)2 + (αrcp
√

1− δ180)2 + 2αrcp
√

1 + δ180

√
1− δ180cos(∆φr + βrcp))]

(2.84)
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Note that in relations (2.81) to (2.84), uncorrelated terms have been eliminated. Here we have

assumed that the horn Ant and Ref voltages (for both polarizations) and the noise diode

voltages (VA,B) are uncorrelated. Hence terms like < Al ∗Bl >, < Ar ∗ VA >, or < Br ∗ VB >5

are equal to zero.

2.3.5.3 Stokes parameters calculation from complete calibration model

Considering the previous sections and taking the relations of Stokes parameters for circular

basis, the Stokes parameters for KuPol receiver from the complete model are

• Horn Ant.

IA =
1

4
[|g1|2[((Al)

2 + (VA)2)

((
√

1− δ180)2 + (αlcp
√

1 + δ180)2 + 2αlcp
√

1 + δ180

√
1− δ180cos(βlcp))

+ ((Bl)
2 + (VB)2)

((
√

1 + δ180)2 + (αlcp
√

1− δ180)2 − 2αlcp
√

1 + δ180

√
1− δ180cos(∆φl + βlcp))]

+ |g3|2α2
rl[((Ar)

2 + (VA)2)

((
√

1− δ180)2 + (αrcp
√

1 + δ180)2 + 2αrcp
√

1 + δ180

√
1− δ180cos(βrcp))

+ ((Br)
2 + (VB)2)

((
√

1 + δ180)2 + (αrcp
√

1− δ180)2 − 2αrcp
√

1 + δ180

√
1− δ180cos(∆φr + βrcp))]]

(2.85)

QA =
g1g3αrl

2
[[Al(

√
1− δ180cos(θA + δA) +

√
1 + δ180αlcpcos(θA + δA − βlcp))

+ VA(
√

1− δ180 +
√

1 + δ180αlcpcos(βlcp))

+Bl(
√

1 + δ180cos(θB + δB)−
√

1− δ180αlcpcos(θB + δB −∆φl − βlcp))

+ VB(
√

1 + δ180 −
√

1− δ180αlcpcos(∆φl + βlcp))]

∗ [Ar(
√

1− δ180cos(θA + βrl) +
√

1 + δ180αrcpcos(θA + βrl + βrcp))

+ VA(
√

1− δ180cos(βrl) +
√

1 + δ180αrcpcos(βrl + βrcp))

+Br(
√

1 + δ180cos(θB + βrl)−
√

1− δ180αrcpcos(θB + βrl + ∆φl + βrcp))

+ VB(
√

1 + δ180cos(βrl)−
√

1− δ180αrcpcos(βrl + ∆φl + βrcp))]

− [Al(
√

1− δ180sin(θA + δA) +
√

1 + δ180αlcpsin(θA + δA − βlcp))

− VA
√

1 + δ180αlcpsin(βlcp)

+Bl(
√

1 + δ180sin(θB + δB)−
√

1− δ180αlcpsin(θB + δB −∆φr − βlcp))

+ VB
√

1− δ180αlcpsin(∆φr + βlcp)]

∗ [Ar(
√

1− δ180sin(θA + βrl) +
√

1 + δ180αrcpsin(θA + βrl + βrcp))

+ VA(
√

1− δ180sin(βrl) +
√

1 + δ180αrcpsin(βrl + βrcp))

+Br(
√

1 + δ180sin(θB + βrl)−
√

1− δ180αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180sin(βrl)−
√

1− δ180αrcpsin(βrl + ∆φr + βrcp)]]

(2.86)

5Note that < ... > denotes temporal averages.
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UA =
g1g3αrl

2
[[Al(

√
1− δ180cos(θA + δA) +

√
1 + δ180αlcpcos(θA + δA − βlcp))

+ VA(
√

1− δ180 +
√

1 + δ180αlcpcos(βlcp))

+Bl(
√

1 + δ180cos(θB + δB)−
√

1− δ180αlcpcos(θB + δB −∆φl − βlcp))

+ VB(
√

1 + δ180 −
√

1− δ180αlcpcos(∆φl + βlcp))]

∗ [Ar(
√

1− δ180sin(θA + βrl) +
√

1 + δ180αrcpsin(θA + βrl + βrcp))

+ VA(
√

1− δ180sin(βrl) +
√

1 + δ180αrcpsin(βrl + βrcp))

+Br(
√

1 + δ180sin(θB + βrl)−
√

1− δ180αrcpsin(θB + βrl + ∆φl + βrcp))

+ VB(
√

1 + δ180sin(βrl)−
√

1− δ180αrcpsin(βrl + ∆φl + βrcp)]

+ [Al(
√

1− δ180sin(θA + δA) +
√

1 + δ180αlcpsin(θA + δA − βlcp))

− VA
√

1 + δ180αlcpsin(βlcp)

+Bl(
√

1 + δ180sin(θB + δB)−
√

1− δ180αlcpsin(θB + δB −∆φr − βlcp))

+ VB
√

1− δ180αlcpsin(∆φr + βlcp)]

∗ [Ar(
√

1− δ180cos(θA + βrl)−
√

1 + δ180αrcpcos(θA + βrl + βrcp))

+ VA(
√

1− δ180cos(βrl)−
√

1 + δ180αrcpcos(βrl + βrcp))

+Br(
√

1 + δ180cos(θB + βrl) +
√

1− δ180αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180cos(βrl) +
√

1− δ180αrcpcos(βrl + ∆φr + βrcp))]]

(2.87)

VA =
1

4
[|g1|2[((Al)

2 + (VA)2)

((
√

1− δ180)2 + (αlcp
√

1 + δ180)2 + 2αlcp
√

1 + δ180

√
1− δ180cos(βlcp))

+ ((Bl)
2 + (VB)2)

((
√

1 + δ180)2 + (αlcp
√

1− δ180)2 − 2αlcp
√

1 + δ180

√
1− δ180cos(∆φl + βlcp))]

− |g3|2α2
rl[((Ar)

2 + (VA)2)

((
√

1− δ180)2 + (αrcp
√

1 + δ180)2 + 2αrcp
√

1 + δ180

√
1− δ180cos(βrcp))

+ ((Br)
2 + (VB)2)

((
√

1 + δ180)2 + (αrcp
√

1− δ180)2 − 2αrcp
√

1 + δ180

√
1− δ180cos(∆φr + βrcp))]]

(2.88)

• Horn Ref.

IB =
1

4
[|g1|2[((Al)

2 + (VA)2)

((
√

1− δ180)2 + (αlcp
√

1 + δ180)2 − 2αlcp
√

1 + δ180

√
1− δ180cos(βlcp))

+ ((Bl)
2 + (VB)2)

((
√

1 + δ180)2 + (αlcp
√

1− δ180)2 + 2αlcp
√

1 + δ180

√
1− δ180cos(∆φl + βlcp))]

+ |g3|2α2
rl[((Ar)

2 + (VA)2)

((
√

1− δ180)2 + (αrcp
√

1 + δ180)2 − 2αrcp
√

1 + δ180

√
1− δ180cos(βrcp))

+ ((Br)
2 + (VB)2)

((
√

1 + δ180)2 + (αrcp
√

1− δ180)2 + 2αrcp
√

1 + δ180

√
1− δ180cos(∆φr + βrcp))]]

(2.89)
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QB =
g1g3αrl

2
[[Al(

√
1− δ180cos(θA + δA)−

√
1 + δ180αlcpcos(θA + δA − βlcp))

+ VA(
√

1− δ180 −
√

1 + δ180αlcpcos(βlcp))

+Bl(
√

1 + δ180cos(θB + δB) +
√

1− δ180αlcpcos(θB + δB −∆φl − βlcp))

+ VB(
√

1 + δ180 +
√

1− δ180αlcpcos(∆φl + βlcp))]

∗ [Ar(
√

1− δ180cos(θA + βrl)−
√

1 + δ180αrcpcos(θA + βrl + βrcp))

+ VA(
√

1− δ180cos(βrl)−
√

1 + δ180αrcpcos(βrl + βrcp))

+Br(
√

1 + δ180cos(θB + βrl) +
√

1− δ180αrcpcos(θB + βrl + ∆φl + βrcp))

+ VB(
√

1 + δ180cos(βrl) +
√

1− δ180αrcpcos(βrl + ∆φl + βrcp))]

− [Al(
√

1− δ180sin(θA + δA)−
√

1 + δ180αlcpsin(θA + δA − βlcp))

+ VA
√

1 + δ180αlcpsin(βlcp)

+Bl(
√

1 + δ180sin(θB + δB) +
√

1− δ180αlcpsin(θB + δB −∆φr − βlcp))

− VB
√

1− δ180αlcpsin(∆φr + βlcp)]

∗ [Ar(
√

1− δ180sin(θA + βrl)−
√

1 + δ180αrcpsin(θA + βrl + βrcp))

+ VA(
√

1− δ180sin(βrl)−
√

1 + δ180αrcpsin(βrl + βrcp))

+Br(
√

1 + δ180sin(θB + βrl) +
√

1− δ180αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180sin(βrl) +
√

1− δ180αrcpsin(βrl + ∆φr + βrcp)]]

(2.90)

UB =
g1g3αrl

2
[[Al(

√
1− δ180cos(θA + δA)−

√
1 + δ180αlcpcos(θA + δA − βlcp))

+ VA(
√

1− δ180 −
√

1 + δ180αlcpcos(βlcp))

+Bl(
√

1 + δ180cos(θB + δB) +
√

1− δ180αlcpcos(θB + δB −∆φl − βlcp))

+ VB(
√

1 + δ180 +
√

1− δ180αlcpcos(∆φl + βlcp))]

∗ [Ar(
√

1− δ180sin(θA + βrl)−
√

1 + δ180αrcpsin(θA + βrl + βrcp))

+ VA(
√

1− δ180sin(βrl)−
√

1 + δ180αrcpsin(βrl + βrcp))

+Br(
√

1 + δ180sin(θB + βrl) +
√

1− δ180αrcpsin(θB + βrl + ∆φl + βrcp))

+ VB(
√

1 + δ180sin(βrl) +
√

1− δ180αrcpsin(βrl + ∆φl + βrcp)]

+ [Al(
√

1− δ180sin(θA + δA)−
√

1 + δ180αlcpsin(θA + δA − βlcp))

+ VA
√

1 + δ180αlcpsin(βlcp)

+Bl(
√

1 + δ180sin(θB + δB) +
√

1− δ180αlcpsin(θB + δB −∆φr − βlcp))

− VB
√

1− δ180αlcpsin(∆φr + βlcp)]

∗ [Ar(
√

1− δ180cos(θA + βrl)−
√

1 + δ180αrcpcos(θA + βrl + βrcp))

+ VA(
√

1− δ180cos(βrl)−
√

1 + δ180αrcpcos(βrl + βrcp))

+Br(
√

1 + δ180cos(θB + βrl) +
√

1− δ180αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(
√

1 + δ180cos(βrl) +
√

1− δ180αrcpcos(βrl + ∆φr + βrcp))]]

(2.91)
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VB =
1

4
[|g1|2[((Al)

2 + (VA)2)

((
√

1− δ180)2 + (αlcp
√

1 + δ180)2 − 2αlcp
√

1 + δ180

√
1− δ180cos(βlcp))

+ ((Bl)
2 + (VB)2)

((
√

1 + δ180)2 + (αlcp
√

1− δ180)2 + 2αlcp
√

1 + δ180

√
1− δ180cos(∆φl + βlcp))]

− |g3|2α2
rl[((Ar)

2 + (VA)2)

((
√

1− δ180)2 + (αrcp
√

1 + δ180)2 − 2αrcp
√

1 + δ180

√
1− δ180cos(βrcp))

+ ((Br)
2 + (VB)2)

((
√

1 + δ180)2 + (αrcp
√

1− δ180)2 + 2αrcp
√

1 + δ180

√
1− δ180cos(∆φr + βrcp))]]

(2.92)

Note that in relations (2.85) to (2.92), uncorrelated terms have been eliminated. Here we have

assumed that the horn Ant and Ref voltages (for both polarizations) and the noise diode

voltages (VA,B) are uncorrelated. Hence terms like < Al ∗Bl >, < Ar ∗ VA >, or < Br ∗ VB >6

are equal to zero.

Thus, the instrumental Stokes parameters obtained from the complete analytical calibration

model and that represent the real operation of the KuPol receiver are the relation (2.85) to

(2.92).

6Note that < ... > denotes temporal averages.



Chapter 3

Instrumental considerations and

diagnosis

The analytical model developed in chapter 2, gives us the opportunity to identify a serie of

instrumental parameters that will contribute to the KuPol calibration.

The next diagnosis and considerations will be applicated to the complete model presented in

the section 2.3.

3.1 Instrumental parameters considerations

3.1.1 180◦ analog hybrid considerations

In this seccion we will take into account the analyzes presented in appendix C of this thesis,

which presents a balance analysis of the four 180◦ hybrid that were fabricated and are present

in the analog instrument of Kupol.

From the figure C.1 we can be seen that the balance parameter for amplitude (δ180) and for

phase (∆φ). If we consider the results between 13 and 18 GHz, and we assume that the highest

gain hybrids have been located in the cryogenic stage and that the worst gain have been located

in the cold plate stage (see figure 1.3), the hybrids 1 and 4 will be considered for our analysis.

Then, we can consider that ∼ δ180 = 0 for hybrid 1 and 4.

For the phase balance parameter (∆φl,r), we can not have an approximation since it varies for

hybrid 1 and 4. To obtain this parameter, other analyzes are necessary.

Thus, considering the figure 2.1, where ports 1 and 2 correspond to the inputs, and the ports

3 and 4 are the outputs, we obtain that the relations that describe the hybrid outputs signals

39
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from (2.58) and (2.59) are

(Output)3 =
1√
2

[(Input)1 + (Input)4] (3.1)

(Output)2 =
1√
2

[(Input)1 − e∆φ(Input)4] (3.2)

Now, if we use relations (3.1) and (3.2), for to obtain the 180◦ analog hybrid output, and we

remember that for our work with the instrument, the two upper branches of figure 1.3 are

called 1 and 2 (LCP polarization) and that the two lower branches are called 3 and 4 (RCP

polarization), the analog hybrids outputs are

1. Upper branches: LCP

(a) Branch 1:

Eah,1
l,out =

1√
2

[(Ale
−i(ωt+θA+δA) + VAe

i(ωt+γAl )) + (Ble
−i(ωt+θB+δB) + VBe

i(ωt+γBl ))] (3.3)

(b) Branch 2:

Eah,2
l,out =

1√
2

[(Ale
−i(ωt+θA+δA) + VAe

i(ωt+γAl ))− ei∆φl(Ble
−i(ωt+θB+δB) + VBe

i(ωt+γBl ))]

(3.4)

2. Lower branches: RCP

(a) Branch 3:

Eah,3
l,out =

1√
2

[(Are
i(ωt+θA) + VAe

i(ωt+γAr )) + (Bre
i(ωt+θB) + VBe

i(ωt+γBr ))] (3.5)

(b) Branch 4:

Eah,4
l,out =

1√
2

[(Are
i(ωt+θA) + VAe

i(ωt+γAr ))− ei∆φr(Bre
i(ωt+θB) + VBe

i(ωt+γBr ))] (3.6)

Remember that KuPol has two 180◦ analog hybrid. Then ∆φl corresponds to the phase dif-

ference for LCP polarization branches and ∆φr corresponds to the phase difference for RCP

polarization branches.

3.1.2 Instrumental balance corrections parameters (bc)

Taking the same parameters and considerations from 2.3.3 section and now, taking into account

that the signals that enter to this stage are the signals that come out of the previous section
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((3.3) to (3.6)), the outputs signals from the instrument balance stage are

1. Upper branches: LCP

(a) Branch 1:

Eah,1
l,out = g1E

ah,1
l,out

=
g1√

2
[(Ale

−i(ωt+θA+δA) + VAe
i(ωt+γAl )) + (Ble

−i(ωt+θB+δB) + VBe
i(ωt+γBl ))]

(3.7)

(b) Branch 2:

Eah,2
l,out = g1αlcpe

iβlcpEah,2
l,out

=
g1αlcpe

iβlcp

√
2

[(Ale
−i(ωt+θA+δA) + VAe

i(ωt+γAl ))− ei∆φl(Ble
−i(ωt+θB+δB) + VBe

i(ωt+γBl ))]

(3.8)

2. Lower branches: RCP

(a) Branch 3:

Eah,3
l,out = g3αrle

iβrlEah,3
r,out

=
g3αrle

iβrl

√
2

[(Are
i(ωt+θA) + VAe

i(ωt+γAr )) + (Bre
i(ωt+θB) + VBe

i(ωt+γBr ))]
(3.9)

(b) Branch 4:

Eah,4
l,out = g3(αrle

iβrl)(αrcpe
iβrcp)Eah,4

r,out

=
g3αrle

iβrlαrcpe
iβrcp

√
2

[(Are
i(ωt+θA) + VAe

i(ωt+γAr ))− ei∆φr(Bre
i(ωt+θB) + VBe

i(ωt+γBr ))]

(3.10)

The instrument applies a temporal averaging over the signals before the digital hybrid imple-

mentation 1. In particular Al,re
iωt and Bl,re

iωt will be 1. Thus, the signals that enter to the

next stages for the complete model will be

1. Upper branches: LCP

(a) Branch 1:

Ebc,1
l,out =

g1√
2

[(Ale
−i(θA+δA) + VA) + (Ble

−i(θB+δB) + VB)] (3.11)

1For this, < eiωt >= 1. Note that < ... > symbol denotes temporal averages.
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(b) Branch 2:

Ebc,2
l,out = g1αlcpe

iβlcpEah,2
l,out

=
g1αlcpe

iβlcp

√
2

[(Ale
−i(θA+δA) + VA)− ei∆φl(Ble

−i(θB+δB) + VB)]
(3.12)

2. Lower branches: RCP

(a) Branch 3:

Ebc,3
r,out = g3αrle

iβrlEah,3
r,out

=
g3αrle

iβrl

√
2

[(Are
iθA + VA) + (Bre

iθB + VB)]
(3.13)

(b) Branch 4:

Ebc,4
r,out = g3(αrle

iβrl)(αrcpe
iβrcp)Eah,4

r,out

=
g3αrle

iβrlαrcpe
iβrcp

√
2

[(Are
iθA + VA)− ei∆φr(Bre

iθB + VB)]
(3.14)

3.1.3 180◦ digital hybrid (dh)

Using relations (2.19) and (2.20) that correspond to the output signals from a perfect 180◦

hybrid, and taking into account that the signals that enter to this stage are the signals that

come out of the previous section ((3.11) to (3.14)), the new outputs signals from the 180◦ digital

hybrid for KuPol are

1. Upper branches: LCP

(a) Branch 1:

Edh,1
l,out =

1√
2

[Ebc,1
l,out + Ebc,2

l,out]

=
g1

2
[(Ale

−i(θA+δA) + VA)(1 + αlcpe
iβlcp)

+ (Ble
−i(θB+δB) + VB)(1− αlcpei(∆φl+βlcp))]

(3.15)
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(b) Branch 2:

Edh,2
l,out =

1√
2

[Ebc,1
l,out − E

bc,2
l,out]

=
g1

2
[(Ale

−i(θA+δA) + VA)(1− αlcpeiβlcp)

+ (Ble
−i(θB+δB) + VB)(1 + αlcpe

i(∆φl+βlcp))]

(3.16)

2. Lower branches: RCP

(a) Branch 3:

Edh,3
r,out =

1√
2

[Ebc,3
r,out + Ebc,4

r,out]

=
g3αrle

iβrl

2
[(Are

iθA + VA)(1 + αrcpe
iβrcp)

+ (Bre
iθB + VB)(1− αrcpei(∆φr+βrcp))]

(3.17)

(b) Branch 4:

Edh,4
r,out =

1√
2

[Ebc,3
r,out − E

bc,4
r,out]

=
g3αrle

iβrl

2
[(Are

iθA + VA)(1− αrcpeiβrcp)

+ (Bre
iθB + VB)(1 + αrcpe

i(∆φr+βrcp))]

(3.18)

3.1.4 Stokes parameters for KuPol receiver considering δ180 = 0

In the previous section, we obtained the new outputs for the 180◦ digital hybrid from the

analyzes presented in appendix C, which it was concluded that δ180 = 0.

To calculate the new Stokes parameters, we will use the (2.1) to (2.8) relations, that give us the

Stokes parameters relations on a circular basis. For to obtain this, we need to identify the real

and imaginary components, and the square modules of the previous digital hybrid outputs.

3.1.4.1 Real and imaginary components 180◦ digital hybrid outputs when δ180 = 0

Using the Euler’s formula for the complex analysis, the new outputs signals from 180◦ digital

hybrid when δ180 = 0 (see relation (3.15) to (3.18)) are:
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1. Uper branches: LCP

Edh,1l,out = Re(Edh,1l,out) + iIm(Edh,1l,out)

=
|g1|
2

[[Al(cos(θA + δA) + αlcpcos(θA + δA − βlcp)) + VA(1 + αlcpcos(βlcp))

+Bl(cos(θB + δB)− αlcpcos(θB + δB −∆φl − βlcp)) + VB(1− αlcpcos(∆φl + βlcp))]

− i[Al(sin(θA + δA) + αlcpsin(θA + δA − βlcp))− VAαlcpsin(βlcp)

+Bl(sin(θB + δB)− αlcpsin(θB + δB −∆φl − βlcp)) + VBαlcpsin(∆φl + βlcp)]]

(3.19)

Edh,2l,out = Re(Edh,2l,out) + iIm(Edh,2l,out)

=
|g1|
2

[[Al(cos(θA + δA)− αlcpcos(θA + δA − βlcp)) + VA(1− αlcpcos(βlcp))

+Bl(cos(θB + δB) + αlcpcos(θB + δB −∆φl − βlcp)) + VB(1 + αlcpcos(∆φl + βlcp))]

− i[Al(sin(θA + δA)− αlcpsin(θA + δA − βlcp)) + VAαlcpsin(βlcp)

+Bl(sin(θB + δB) + αlcpsin(θB + δB −∆φl − βlcp))− VBαlcpsin(∆φl + βlcp)]]

(3.20)

2. Lower branches: RCP

Edh,3r,out = Re(Edh,3r,out) + iIm(Edh,3r,out)

=
|g3|αrl

2
[[Ar(cos(θA + βrl) + αrcpcos(θA + βrl + βrcp))

+ VA(cos(βrl) + αrcpcos(βrl + βrcp))

+Br(cos(θB + βrl)− αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(cos(βrl)− αrcpcos(βrl + ∆φr + βrcp))]

+ i[Ar(sin(θA + βrl) + αrcpsin(θA + βrl + βrcp))

+ VA(sin(βrl) + αrcpsin(βrl + βrcp))

+Br(sin(θB + βrl)− αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(sin(βrl)− αrcpsin(βrl + ∆φr + βrcp)]]

(3.21)

Edh,4r,out = Re(Edh,4r,out) + iIm(Edh,4r,out)

=
|g3|αrl

2
[[Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp))

+ VA(cos(βrl)−
√

1 + δ180αrcpcos(βrl + βrcp))

+Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(cos(βrl) + αrcpcos(βrl + ∆φr + βrcp))]

+ i[Ar(sin(θA + βrl)− αrcpsin(θA + βrl + βrcp))

+ VA(sin(βrl)− αrcpsin(βrl + βrcp))

+Br(sin(θB + βrl) + αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(sin(βrl) + αrcpsin(βrl + ∆φr + βrcp)]]

(3.22)
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3.1.4.2 Square modules 180◦ digital hybrid outputs when δ180 = 0

Taking the square modules of the new relations for the 180◦ digital hybrid outputs, we have

1. Upper branches: LCP

|Edh,1l,out|
2 =
|g1|2

4
[((Al)

2 + (VA)2)(1 + α2
lcp + 2αlcpcos(βlcp))

+ ((Bl)
2 + (VB)2)(1 + α2

lcp − 2αlcpcos(∆φl + βlcp))]

(3.23)

|Edh,2l,out|
2 =
|g1|2

4
[((Al)

2 + (VA)2)(1 + α2
lcp − 2αlcpcos(βlcp))

+ ((Bl)
2 + (VB)2)(1 + α2

lcp + 2αlcpcos(∆φl + βlcp))]

(3.24)

2. Lower branches: RCP

|Edh,3r,out|2 =
|g3|2α2

rl

4
[((Ar)

2 + (VA)2)(1 + α2
rcp + 2αrcpcos(βrcp))

+ ((Br)
2 + (VB)2)(1 + α2

rcp − 2αrcpcos(∆φr + βrcp))]

(3.25)

|Edh,4r,out|2 =
|g3|2α2

rl

4
[((Ar)

2 + (VA)2)(1 + α2
rcp − 2αrcpcos(βrcp))

+ ((Br)
2 + (VB)2)(1 + α2

rcp + 2αrcpcos(∆φr + βrcp))]

(3.26)

Note that in relations (3.23) to (3.26), uncorrelated terms have been eliminated. Here we have

assumed that the horn Ant and Ref voltages (for both polarizations) and the noise diode

voltages (VA,B) are uncorrelated. Hence terms like < Al ∗Bl >, < Ar ∗ VA >, or < Br ∗ VB >2

are equal to zero.

3.1.4.3 Stokes parameters calculation from complete calibration model when δ180 =

0

Considering that KuPol 180◦ analog hybrids are balanced in amplitude (δ180 = 0) and taking

the relations of Stokes parameters for circular basis, the new Stokes parameters for KuPol

receiver are

• Horn Ant.

IA =
1

4
[|g1|2[((Al)

2 + (VA)2)(1 + α2
lcp + 2αlcpcos(βlcp))

+ ((Bl)
2 + (VB)2)(1 + α2

lcp − 2αlcpcos(∆φl + βlcp))]

+ |g3|2α2
rl[((Ar)

2 + (VA)2)(1 + α2
rcp + 2αrcpcos(βrcp))

+ ((Br)
2 + (VB)2)(1 + α2

rcp − 2αrcpcos(∆φr + βrcp))]]

(3.27)

2Note that < ... > denotes temporal averages.
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QA =
|g1||g3|αrl

2
[[Al(cos(θA + δA) + αlcpcos(θA + δA − βlcp)) + VA(1 + αlcpcos(βlcp))

+Bl(cos(θB + δB)− αlcpcos(θB + δB −∆φl − βlcp)) + VB(1− αlcpcos(∆φl + βlcp))]

∗ [Ar(cos(θA + βrl) + αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl) + αrcpcos(βrl + βrcp))

+Br(cos(θB + βrl)− αrcpcos(θB + βrl + ∆φl + βrcp))

+ VB(cos(βrl)− αrcpcos(βrl + ∆φl + βrcp))]

− [Al(sin(θA + δA) + αlcpsin(θA + δA − βlcp))− VAαlcpsin(βlcp)

+Bl(sin(θB + δB)− αlcpsin(θB + δB −∆φr − βlcp)) + VBαlcpsin(∆φr + βlcp)]

∗ [Ar(sin(θA + βrl) + αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl) + αrcpsin(βrl + βrcp))

+Br(sin(θB + βrl)− αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(sin(βrl)− αrcpsin(βrl + ∆φr + βrcp)]]

(3.28)

UA =
|g1||g3|αrl

2
[[Al(cos(θA + δA) + αlcpcos(θA + δA − βlcp)) + VA(1 + αlcpcos(βlcp))

+Bl(cos(θB + δB)− αlcpcos(θB + δB −∆φl − βlcp)) + VB(1− αlcpcos(∆φl + βlcp))]

∗ [Ar(sin(θA + βrl) + αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl) + αrcpsin(βrl + βrcp))

+Br(sin(θB + βrl)− αrcpsin(θB + βrl + ∆φl + βrcp))

+ VB(sin(βrl)− αrcpsin(βrl + ∆φl + βrcp)]

+ [Al(sin(θA + δA) + αlcpsin(θA + δA − βlcp))− VAαlcpsin(βlcp)

+Bl(sin(θB + δB)− αlcpsin(θB + δB −∆φr − βlcp)) + VBαlcpsin(∆φr + βlcp)]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl)− αrcpcos(βrl + βrcp))

+Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(cos(βrl) + αrcpcos(βrl + ∆φr + βrcp))]]

(3.29)

VA =
1

4
[|g1|2[((Al)

2 + (VA)2)(1 + α2
lcp + 2αlcpcos(βlcp))

+ ((Bl)
2 + (VB)2)(1 + α2

lcp − 2αlcpcos(∆φl + βlcp))]

− |g3|2α2
rl[((Ar)

2 + (VA)2)(1 + α2
rcp + 2αrcpcos(βrcp))

+ ((Br)
2 + (VB)2)(1 + α2

rcp − 2αrcpcos(∆φr + βrcp))]]

(3.30)

• Horn Ref.

IB =
1

4
[|g1|2[((Al)

2 + (VA)2)(1 + α2
lcp − 2αlcpcos(βlcp))

+ ((Bl)
2 + (VB)2)(1 + α2

lcp + 2αlcpcos(∆φl + βlcp))]

+ |g3|2α2
rl[((Ar)

2 + (VA)2)(1 + (α2
rcp − 2αrcpcos(βrcp))

+ ((Br)
2 + (VB)2)(1 + α2

rcp + 2αrcpcos(∆φr + βrcp))]]

(3.31)
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QB =
|g1||g3|αrl

2
[[Al(cos(θA + δA)− αlcpcos(θA + δA − βlcp)) + VA(1− αlcpcos(βlcp))

+Bl(cos(θB + δB) + αlcpcos(θB + δB −∆φl − βlcp)) + VB(1 + αlcpcos(∆φl + βlcp))]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl)− αrcpcos(βrl + βrcp))

+Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φl + βrcp))

+ VB(cos(βrl) + αrcpcos(βrl + ∆φl + βrcp))]

− [Al(sin(θA + δA)− αlcpsin(θA + δA − βlcp)) + VAαlcpsin(βlcp)

+Bl(sin(θB + δB) + αlcpsin(θB + δB −∆φr − βlcp))− VBαlcpsin(∆φr + βlcp)]

∗ [Ar(sin(θA + βrl)− αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl)− αrcpsin(βrl + βrcp))

+Br(sin(θB + βrl) + αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(sin(βrl) + αrcpsin(βrl + ∆φr + βrcp)]]

(3.32)

UB =
|g1||g3|αrl

2
[[Al(cos(θA + δA)− αlcpcos(θA + δA − βlcp)) + VA(1− αlcpcos(βlcp))

+Bl(cos(θB + δB) + αlcpcos(θB + δB −∆φl − βlcp)) + VB(1 + αlcpcos(∆φl + βlcp))]

∗ [Ar(sin(θA + βrl)− αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl)− αrcpsin(βrl + βrcp))

+Br(sin(θB + βrl) + αrcpsin(θB + βrl + ∆φl + βrcp))

+ VB(sin(βrl) + αrcpsin(βrl + ∆φl + βrcp)]

+ [Al(sin(θA + δA)− αlcpsin(θA + δA − βlcp)) + VAαlcpsin(βlcp)

+Bl(sin(θB + δB) + αlcpsin(θB + δB −∆φr − βlcp))− VBαlcpsin(∆φr + βlcp)]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl)− αrcpcos(βrl + βrcp))

+Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(cos(βrl) + αrcpcos(βrl + ∆φr + βrcp))]]

(3.33)

VB =
1

4
[|g1|2[((Al)

2 + (VA)2)(1 + α2
lcp − 2αlcpcos(βlcp))

+ ((Bl)
2 + (VB)2)(1 + α2

lcp + 2αlcpcos(∆φl + βlcp))]

− |g3|2α2
rl[((Ar)

2 + (VA)2)(1 + α2
rcp − 2αrcpcos(βrcp))

+ ((Br)
2 + (VB)2)(1 + α2

rcp + 2αrcpcos(∆φr + βrcp))]]

(3.34)

Note that in relations (3.27) to (3.34), uncorrelated terms have been eliminated.Here we have

assumed that the horn Ant and Ref voltages (for both polarizations) and the noise diode

voltages (VA,B) are uncorrelated. Hence terms like < Al ∗Bl >, < Ar ∗ VA >, or < Br ∗ VB >3

are equal to zero.

Thus, the instrumental Stokes parameters obtained from the complete analytical calibration

model when the analog hybrids are balanced in amplitude (δ180 = 0) and that represent the

real operation of the KuPol receiver are the relation (3.27) to (3.34).

3Note that < ... > denotes temporal averages.
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3.1.5 Reduction of Stokes parameters from diodes injection

For the next considerations, we will take into account only the NOISE diode these provide a

comparable temperature to the system temperature.

If we consider that NOISE diode, located at the output of each horn, are injected (or not

injected) to the system, the new square modules of 180◦ digital hybrid outputs (relations (3.23)

to (3.26)) and the new Stokes parameters for the complete model calibration (relations (3.27)

to (3.34)), are reduced to the relations that are presented in the following sections.

For the next sections, note that VA = VB = ON indicates that NOISE diode was injected

on horn Ant branch or horn Ref branch. For other hand, VA = VB = OFF indicates that

NOISE diode is in state OFF in both branches.

3.1.5.1 Square modules relations for 180◦ digital hybrid outputs from diodes in-

jection when δ180 = 0

1. VA ON; VB OFF

NOISE diode state ON on horn Ant branch and state OFF on horn Ref branch.

(a) Upper branches: LCP

|Edh,1l,out|
2 =
|g1|2

4
((Al)

2 + (VA)2)(1 + α2
lcp + 2αlcpcos(βlcp)) (3.35)

|Edh,2l,out|
2 =
|g1|2

4
((Al)

2 + (VA)2)(1 + α2
lcp − 2αlcpcos(βlcp)) (3.36)

(b) Lower branches: RCP

|Edh,3r,out|2 =
|g3|2α2

rl

4
((Ar)

2 + (VA)2)(1 + α2
rcp + 2αrcpcos(βrcp)) (3.37)

|Edh,4r,out|2 =
|g3|2α2

rl

4
((Ar)

2 + (VA)2)(1 + α2
rcp − 2αrcpcos(βrcp)) (3.38)

2. VA OFF; VB ON

NOISE diode state OFF on horn Ant branch and state ON on horn Ref branch.

(a) Upper branches: LCP

|Edh,1l,out|
2 =
|g1|2

4
((Bl)

2 + (VB)2)(1 + α2
lcp − 2αlcpcos(∆φl + βlcp)) (3.39)

|Edh,2l,out|
2 =
|g1|2

4
((Bl)

2 + (VB)2)(1 + α2
lcp + 2αlcpcos(∆φl + βlcp)) (3.40)

(b) Lower branches: RCP

|Edh,3r,out|2 =
|g3|2α2

rl

4
((Br)

2 + (VB)2)(1 + α2
rcp − 2αrcpcos(∆φr + βrcp)) (3.41)
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|Edh,4r,out|2 =
|g3|2α2

rl

4
((Br)

2 + (VB)2)(1 + α2
rcp + 2αrcpcos(∆φr + βrcp)) (3.42)

3. VA OFF; VB OFF

NOISE diode state OFF on horn Ant branch and state OFF on horn Ref branch.

(a) Upper branches: LCP

|Edh,1l,out|
2 =
|g1|2

4
[(Al)

2(1 + α2
lcp + 2αlcpcos(βlcp)) + (Bl)

2(1 + α2
lcp − 2αlcpcos(∆φl + βlcp))]

(3.43)

|Edh,2l,out|
2 =
|g1|2

4
[(Al)

2(1 + α2
lcp − 2αlcpcos(βlcp)) + (Bl)

2(1 + α2
lcp + 2αlcpcos(∆φl + βlcp))]

(3.44)

(b) Lower branches: RCP

|Edh,3r,out|2 =
|g3|2α2

rl

4
[(Ar)

2(1 + α2
rcp + 2αrcpcos(βrcp))

+ (Br)
2(1 + α2

rcp − 2αrcpcos(∆φr + βrcp))]

(3.45)

|Edh,4r,out|2 =
|g3|2α2

rl

4
[(Ar)

2(1 + α2
rcp − 2αrcpcos(βrcp))

+ (Br)
2(1 + α2

rcp + 2αrcpcos(∆φr + βrcp))]

(3.46)

3.1.5.2 Stokes parameters reduction from diodes injection when δ180 = 0

1. VA ON; VB OFF

NOISE diode state ON on horn Ant branch and state OFF on horn Ref branch.

• Horn Ant.

IA =
1

4
[|g1|2((Al)

2 + (VA)2)(1 + α2
lcp + 2αlcpcos(βlcp))

+ |g3|2α2
rl((Ar)

2 + (VA)2)(1 + α2
rcp + 2αrcpcos(βrcp))]

(3.47)

QA =
|g1||g3|αrl

2
[[Al(cos(θA + δA) + αlcpcos(θA + δA − βlcp)) + VA(1 + αlcpcos(βlcp))]

∗ [Ar(cos(θA + βrl) + αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl) + αrcpcos(βrl + βrcp))]

− [Al(sin(θA + δA) + αlcpsin(θA + δA − βlcp))− VAαlcpsin(βlcp)]

∗ [Ar(sin(θA + βrl) + αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl) + αrcpsin(βrl + βrcp))]]

(3.48)

UA =
|g1||g3|αrl

2
[[Al(cos(θA + δA) + αlcpcos(θA + δA − βlcp)) + VA(1 + αlcpcos(βlcp))]

∗ [Ar(sin(θA + βrl) + αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl) + αrcpsin(βrl + βrcp))]

+ [Al(sin(θA + δA) + αlcpsin(θA + δA − βlcp))− VAαlcpsin(βlcp)

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl)− αrcpcos(βrl + βrcp))]]

(3.49)

VA =
1

4
[|g1|2((Al)

2 + (VA)2)(1 + α2
lcp + 2αlcpcos(βlcp))

− |g3|2α2
rl((Ar)

2 + (VA)2)(1 + α2
rcp + 2αrcpcos(βrcp))]

(3.50)
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• Horn Ref.

IB =
1

4
[|g1|2((Al)

2 + (VA)2)(1 + α2
lcp − 2αlcpcos(βlcp))

+ |g3|2α2
rl((Ar)

2 + (VA)2)(1 + α2
rcp − 2αrcpcos(βrcp))]

(3.51)

QB =
|g1||g3|αrl

2
[[Al(cos(θA + δA)− αlcpcos(θA + δA − βlcp)) + VA(1− αlcpcos(βlcp))]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl)− αrcpcos(βrl + βrcp))]

− [Al(sin(θA + δA)− αlcpsin(θA + δA − βlcp)) + VAαlcpsin(βlcp)]

∗ [Ar(sin(θA + βrl)− αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl)− αrcpsin(βrl + βrcp))]]

(3.52)

UB =
|g1||g3|αrl

2
[[Al(cos(θA + δA)− αlcpcos(θA + δA − βlcp)) + VA(1− αlcpcos(βlcp))]

∗ [Ar(sin(θA + βrl)− αrcpsin(θA + βrl + βrcp)) + VA(sin(βrl)− αrcpsin(βrl + βrcp))]

+ [Al(sin(θA + δA)− αlcpsin(θA + δA − βlcp)) + VAαlcpsin(βlcp)]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp)) + VA(cos(βrl)− αrcpcos(βrl + βrcp))]]

(3.53)

VB =
1

4
[|g1|2((Al)

2 + (VA)2)(1 + α2
lcp − 2αlcpcos(βlcp))

− |g3|2α2
rl((Ar)

2 + (VA)2)(1 + α2
rcp − 2αrcpcos(βrcp))]

(3.54)

2. VA OFF; VB ON

NOISE diode state OFF on horn Ant branch and state ON on horn Ref branch.

• Horn Ant.

IA =
1

4
[|g1|2((Bl)

2 + (VB)2)(1 + α2
lcp − 2αlcpcos(∆φl + βlcp))

+ |g3|2α2
rl((Br)

2 + (VB)2)(1 + α2
rcp − 2αrcpcos(∆φr + βrcp))]

(3.55)

QA =
|g1||g3|αrl

2
[Bl(cos(θB + δB)− αlcpcos(θB + δB −∆φl − βlcp))

+ VB(1− αlcpcos(∆φl + βlcp))]

∗ [Br(cos(θB + βrl)− αrcpcos(θB + βrl + ∆φl + βrcp))

+ VB(cos(βrl)− αrcpcos(βrl + ∆φl + βrcp))]

− [Bl(sin(θB + δB)− αlcpsin(θB + δB −∆φr − βlcp))

+ VBαlcpsin(∆φr + βlcp)]

∗ [Br(sin(θB + βrl)− αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(sin(βrl)− αrcpsin(βrl + ∆φr + βrcp)]]

(3.56)
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UA =
|g1||g3|αrl

2
[[Bl(cos(θB + δB)− αlcpcos(θB + δB −∆φl − βlcp))

+ VB(1− αlcpcos(∆φl + βlcp))]

∗ [Br(sin(θB + βrl)− αrcpsin(θB + βrl + ∆φl + βrcp))

+ VB(sin(βrl)− αrcpsin(βrl + ∆φl + βrcp)]

+ [Bl(sin(θB + δB)− αlcpsin(θB + δB −∆φr − βlcp))

+ VBαlcpsin(∆φr + βlcp)]

∗ [Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(cos(βrl) + αrcpcos(βrl + ∆φr + βrcp))]]

(3.57)

VA =
1

4
[|g1|2((Bl)

2 + (VB)2)(1 + α2
lcp − 2αlcpcos(∆φl + βlcp))

− |g3|2α2
rl((Br)

2 + (VB)2)(1 + α2
rcp − 2αrcpcos(∆φr + βrcp))]

(3.58)

• Horn Ref.

IB =
1

4
[|g1|2((Bl)

2 + (VB)2)(1 + α2
lcp + 2αlcpcos(∆φl + βlcp))]

+ |g3|2α2
rl((Br)

2 + (VB)2)(1 + α2
rcp + 2αrcpcos(∆φr + βrcp))]

(3.59)

QB =
|g1||g3|αrl

2
[[Bl(cos(θB + δB) + αlcpcos(θB + δB −∆φl − βlcp))

+ VB(1 + αlcpcos(∆φl + βlcp))]

∗ [Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φl + βrcp))

+ VB(cos(βrl) + αrcpcos(βrl + ∆φl + βrcp))]

− [Bl(sin(θB + δB) + αlcpsin(θB + δB −∆φr − βlcp))

− VBαlcpsin(∆φr + βlcp)]

∗ [Br(sin(θB + βrl) + αrcpsin(θB + βrl + ∆φr + βrcp))

+ VB(sin(βrl) + αrcpsin(βrl + ∆φr + βrcp)]]

(3.60)

UB =
|g1||g3|αrl

2
[[Bl(cos(θB + δB) + αlcpcos(θB + δB −∆φl − βlcp))

+ VB(1 + αlcpcos(∆φl + βlcp))]

∗ [Br(sin(θB + βrl) + αrcpsin(θB + βrl + ∆φl + βrcp))

+ VB(sin(βrl) + αrcpsin(βrl + ∆φl + βrcp)]

+ [Bl(sin(θB + δB) + αlcpsin(θB + δB −∆φr − βlcp))

− VBαlcpsin(∆φr + βlcp)]

∗ [Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φr + βrcp))

+ VB(cos(βrl) + αrcpcos(βrl + ∆φr + βrcp))]]

(3.61)

VB =
1

4
[|g1|2((Bl)

2 + (VB)2)(1 + α2
lcp + 2αlcpcos(∆φl + βlcp))]

− |g3|2α2
rl((Br)

2 + (VB)2)(1 + α2
rcp + 2αrcpcos(∆φr + βrcp))]]

(3.62)



Chapter 3. Instrumental considerations and diagnosis 52

3. VA OFF; VB OFF

NOISE diode state OFF on horn Ant branch and state OFF on horn Ref branch.

• Horn Ant.

IA =
1

4
[|g1|2[A2

l (1 + α2
lcp + 2αlcpcos(βlcp)) +B2

l (1 + α2
lcp − 2αlcpcos(∆φl + βlcp))]

+ |g3|2α2
rl[A

2
r(1 + α2

rcp + 2αrcpcos(βrcp)) +B2
r (1 + α2

rcp − 2αrcpcos(∆φr + βrcp))]]

(3.63)

QA =
|g1||g3|αrl

2
[[Al(cos(θA + δA) + αlcpcos(θA + δA − βlcp))

+Bl(cos(θB + δB)− αlcpcos(θB + δB −∆φl − βlcp))]

∗ [Ar(cos(θA + βrl) + αrcpcos(θA + βrl + βrcp))

+Br(cos(θB + βrl)− αrcpcos(θB + βrl + ∆φl + βrcp))]

− [Al(sin(θA + δA) + αlcpsin(θA + δA − βlcp))

+Bl(sin(θB + δB)− αlcpsin(θB + δB −∆φr − βlcp))]

∗ [Ar(sin(θA + βrl) + αrcpsin(θA + βrl + βrcp))

+Br(sin(θB + βrl)− αrcpsin(θB + βrl + ∆φr + βrcp))]]

(3.64)

UA =
|g1||g3|αrl

2
[[Al(cos(θA + δA) + αlcpcos(θA + δA − βlcp))

+Bl(cos(θB + δB)− αlcpcos(θB + δB −∆φl − βlcp))]

∗ [Ar(sin(θA + βrl) + αrcpsin(θA + βrl + βrcp))

+Br(sin(θB + βrl)− αrcpsin(θB + βrl + ∆φl + βrcp))]

+ [Al(sin(θA + δA) + αlcpsin(θA + δA − βlcp))

+Bl(sin(θB + δB)− αlcpsin(θB + δB −∆φr − βlcp))]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp))

+Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φr + βrcp))]]

(3.65)

VA =
1

4
[|g1|2[A2

l (1 + α2
lcp + 2αlcpcos(βlcp)) +B2

l (1 + α2
lcp − 2αlcpcos(∆φl + βlcp))]

− |g3|2α2
rl[A

2
r(1 + α2

rcp + 2αrcpcos(βrcp)) +B2
r (1 + α2

rcp − 2αrcpcos(∆φr + βrcp))]]

(3.66)

• Horn Ref.

IB =
1

4
[|g1|2[A2

l (1 + α2
lcp − 2αlcpcos(βlcp)) +B2

l (1 + α2
lcp + 2αlcpcos(∆φl + βlcp))]

+ |g3|2α2
rl[A

2
r(1 + (α2

rcp − 2αrcpcos(βrcp)) +B2
r (1 + α2

rcp + 2αrcpcos(∆φr + βrcp))]]

(3.67)
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QB =
|g1||g3|αrl

2
[[Al(cos(θA + δA)− αlcpcos(θA + δA − βlcp))

+Bl(cos(θB + δB) + αlcpcos(θB + δB −∆φl − βlcp))]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp))

+Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φl + βrcp))]

− [Al(sin(θA + δA)− αlcpsin(θA + δA − βlcp))

+Bl(sin(θB + δB) + αlcpsin(θB + δB −∆φr − βlcp))]

∗ [Ar(sin(θA + βrl)− αrcpsin(θA + βrl + βrcp))

+Br(sin(θB + βrl) + αrcpsin(θB + βrl + ∆φr + βrcp))]]

(3.68)

UB =
|g1||g3|αrl

2
[[Al(cos(θA + δA)− αlcpcos(θA + δA − βlcp))

+Bl(cos(θB + δB) + αlcpcos(θB + δB −∆φl − βlcp))]

∗ [Ar(sin(θA + βrl)− αrcpsin(θA + βrl + βrcp))

+Br(sin(θB + βrl) + αrcpsin(θB + βrl + ∆φl + βrcp))]

+ [Al(sin(θA + δA)− αlcpsin(θA + δA − βlcp))

+Bl(sin(θB + δB) + αlcpsin(θB + δB −∆φr − βlcp))]

∗ [Ar(cos(θA + βrl)− αrcpcos(θA + βrl + βrcp))

+Br(cos(θB + βrl) + αrcpcos(θB + βrl + ∆φr + βrcp))]]

(3.69)

VB =
1

4
[|g1|2[A2

l (1 + α2
lcp − 2αlcpcos(βlcp)) +B2

l (1 + α2
lcp + 2αlcpcos(∆φl + βlcp))]

− |g3|2α2
rl[A

2
r(1 + α2

rcp − 2αrcpcos(βrcp)) +B2
r (1 + α2

rcp + 2αrcpcos(∆φr + βrcp))]]

(3.70)

3.2 Diagnostics from analytical calibration model

3.2.1 Isolation parameter

In this section we will analyze the receiver balance through the digital backend looking at the

isolation between horns when the noise source is fired in either one of them.

To analize the instrumental isolation parameter between A and B beams (γ), it is neccesary to

consider the CAL procedure4, the diode on and off states, polarization (LCP or RCP ), and

band number.

The numerical relation for the instrumental isolation parameter is

γ =
(|A|2(on)− |A|2(off))− (|B|2(on)− |B|2(off))

(|A|2(on)− |A|2(off)) + (|B|2(on)− |B|2(off))
(3.71)

4Note that the output of the CAL and NOISE diodes is measured via the CAL procedure.
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It is important to note:

• The perfect value for instrumental isolation parameter should be 1 or −1 depending of

the polarization.

• A and B correspond to the signals from horns Ant and Ref respectively.

• The on and off states correspond to the diodes states. To consider the off state in the

relation (3.71), allows us to subtract from our analysis the basal noise of the instrument.

This is achieved by subtracting the diodes voltages (VA,B) from the expressions of the

square modules (relations (3.35) to (3.42)).

In particular, the isolation parameter for KuPol instrument for both polarizations is:

γlcp =
(|Edh,1

l,out|2(on)− |Edh,1
l,out|2(off))− (|Edh,2

l,out|2(on)− |Edh,2
l,out|2(off))

(|Edh,1
l,out|2(on)− |Edh,1

l,out|2(off)) + (|Edh,2
l,out|2(on)− |Edh,2

l,out|2(off))
(3.72)

γrcp =
(|Edh,3

r,out|2(on)− |Edh,3
r,out|2(off))− (|Edh,4

r,out|2(on)− |Edh,4
r,out|2(off))

(|Edh,3
r,out|2(on)− |Edh,3

r,out|2(off)) + (|Edh,4
r,out|2(on)− |Edh,4

r,out|2(off))
(3.73)

Note that Edh,1
l,out, E

dh,2
l,out, E

dh,3
r,out, and Edh,4

r,out are the 180◦ digital hybrid outputs.

Taking the square modules relations for 180◦ digital hybrid outputs from diodes injection when

δ180 = 0 (section 3.1.3.1), the isolation parameter for LCP and RCP is

γlcp =
2αlcp(V

2
Acos(βlcp)− V 2

Bcos(∆φl + βlcp))

(1 + α2
lcp)(V

2
A + V 2

B)
(3.74)

γrcp =
2αrcp(V

2
Acos(βrcp)− V 2

Bcos(∆φr + βrcp)

(1 + α2
rcp)(V

2
A + V 2

B)
(3.75)

Note that for both polarizations, the isolation parameter is given by the same instrumental

parameters that vary depending on the polarization under study, that is, instrumental balance

parameters (αlcp and βlcp for LCP polarization and αrcp and βrcp for RCP polarization), balance

parameters of 180◦ analog hybrid (in particular, phase parameter ∆φl,r), and noise diodes

voltages (VA and VB).

3.2.1.1 Considerations for isolation parameter

1. Ideal conditions for KuPol

If we consider that the 180◦ analog hybrid does not present imperfections and that KuPol

receiver is balanced, the isolation parameter for LCP and RCP polarization is given as

γlcp =
V 2
A − V 2

B

V 2
A + V 2

B

(3.76)
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γrcp =
V 2
A − V 2

B

V 2
A + V 2

B

(3.77)

Note that according to the operation of KuPol, if we inject a diode to the system at the

same time:

• The isolation parameter will be 1 if we inject VA to the system.

• The isolation parameter will be −1 if we inject VB to the system.

Both previous values denote perfect isolation.

2. Isolation parameter from diodes injection

If we consider the isolation parameter for KuPol for both polarizations (relations (3.74)

and (3.75)) and the diodes ON and OFF states, the isolation parameter for LCP and

RCP polarization is given as

(a) VA ON; VB OFF

γlcp =
2αlcpcos(βlcp)

1 + α2
lcp

(3.78)

γrcp =
2αrcpcos(βrcp)

1 + α2
rcp

(3.79)

(b) VA OFF; VB ON

γlcp =
−2αlcpcos(∆φl + βlcp)

1 + α2
lcp

(3.80)

γrcp =
−2αrcpcos(∆φr + βrcp)

1 + α2
rcp

(3.81)

From the previous relations, we can notice that according to our model, under real operating

conditions of KuPol, the isolation parameter of the system will be given only by instrumental

parameters. Here, it becomes relevant the noise diodes injection on the system, since it is

possible to carry out all this analysis.



Chapter 4

Model analysis and future work

4.1 Considerations between complete and simplified an-

alytical calibration model for KuPol receiver

From the relation (2.85) to (2.92), if we consider that the 180◦ analog hybrid does not present

imperfections and that the KuPol receiver is balanced, the following values must be taken into

account for the parameters involved:

• Ideal 180◦ analog hybrid: δ180 = ∆φl,r = 0

• KuPol receiver balanced: For amplitude parameters |g1| = |g3| = αrl = αrcp = αlcp =

1. For phase parameters βrl = βrcp = βlcp = 0

Thus, replacing this conditions in (2.85) - (2.92), the instrumental Stokes parameters are exp-

resed by,

• Horn Ant

IA = (Al)
2 + (Ar)

2 + 2V 2
A (4.1)

QA = AlArcos(2θA + δA) + V 2
A (4.2)

UA = AlArsin(2θA + δA) (4.3)

VA = (Al)
2 − (Ar)

2 (4.4)

• Horn Ref

IB = (Bl)
2 + (Br)

2 + 2V 2
B (4.5)

QB = BlBrcos(2θB + δB) + V 2
B (4.6)

UB = BlBrsin(2θB + δB) (4.7)
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VB = (Bl)
2 − (Br)

2 (4.8)

From (4.1) to (4.4), it is possible to note that this coincide with the simplified model Stokes

parameters expressions (see (2.41) to (2.48)). Thus, it is possible to elucidate that considering

ideal instrumental parameters, our model agrees with the simplified model of KuPol receiver.

4.2 Comments from analytical calibration model for KuPol

receiver

4.2.1 Instrumental parameters from isolation parameter

From an analysis of the isolation parameter when the noise diodes are injected to the system,

we will obtain relations to describe instrumental balance parameters.

For a particular case, from (3.78) and (3.79) relations, we can note:

• The isolation parameter is maximum when the cosine is maximum, i.e., cos(βlcp) =

cos(βrcp) = 1. Thus, βlcp = βrcp = 0.

• The parameters βlcp and βrcp contain instrumental balance effects of the analog and dig-

ital instruments. In particular, for the digital instrument, this effect is on the complex

coefficients that are obtained from the digital calibration model. The digital model cal-

ibration consists of the determination of complex coefficients for the digital instrument

that provide optimal separation of the antenna and reference beams in the digital sub-

channels. These coefficients are measured with special observations performed at zenith

by firing noise diodes. From data delivered by intermediate steps of this model, we can

perform αlcp and αrcp sweep so that cos(βlcp) = cos(βrcp) = 1.

• We know that γlcp and γrcp are a real number that we have access from the system archive.

To calculate the isolation parameter we work with KuPol data enableding it only for CAL

procedures, chiefly aimed at monitoring isolation between beams when a full track source

is being taken for the telescope.

Thus, from the previous points, we can to note that (3.78) and (3.79) given us a cuadratic

relation for αlcp and αrcp.

1. αlcp from γlcp

α2
lcp − 2

αlcp
γlcp

+ 1 = 0 (4.9)

⇒ αlcp =
1±

√
1− γ2

lcp

γlcp
(4.10)
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2. αrcp from γrcp

α2
rcp − 2

αrcp
γrcp

+ 1 = 0 (4.11)

⇒ αrcp =
1±

√
1− γ2

rcp

γrcp
(4.12)

For our analysis, we only considerate αlcp and αrcp relations that consider the sum of parameters

in their numerator, i.e., relations that give us αs > 0. If we consider a instrumental global effect

souch that exist a relation between αlcp and outputs signals from branches 1 and 2 for example,

such that αlcp =
Ebc,2l,out

Ebc,1l,out

, and we assign values to the output signals, we can conclude that always

αlcp > 0.

Using (4.10) and (4.12), and replacing in (3.80) and (3.81) respectively, we can obtain ∆φl and

∆φr.

1. ∆φl from γlcp

cos(∆φl) =
−2αlcp

γlcp(1 + α2
lcp)

(4.13)

⇒ ∆φl = arccos

(
−2αlcp

γlcp(1 + α2
lcp)

)
(4.14)

2. ∆φr from γrcp

cos(∆φr) =
−2αrcp

γrcp(1 + α2
rcp)

(4.15)

⇒ ∆φr = arccos

(
−2αrcp

γrcp(1 + α2
rcp)

)
(4.16)

Note that ∆φl,r is the phase balance of the two analog hybrid and that this instrumental value

is fixed since it is characteristic of the component.

On the other hand, taking the previous ∆φr,l and if we take the isolation paramater relations

when the noise diodes are injected to the system, we can to obtain the instrumental balance

parameters αlcp, αrcp, βlcp, and βrcp.

Now, dividing (3.78) for (3.80),

γlcp(VA = ON)

γlcp(VB = ON)
=

1

cos(∆φl)− sin(∆φl)tan(βlcp)

⇒ βlcp = arctan

(
cotan(∆φl)−

γlcp(VB = ON)

γlcp(VA = ON)sin(∆φl)

) (4.17)

So, we have obtained the phase balance of the instrument for polarization LCP . Note that the

phase balance of the instrument for polarization RCP is is obtained after dividing (3.79) by
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(3.81). Thus,

βrcp = arctan

(
cotan(∆φr)−

γrcp(VB = ON)

γrcp(VA = ON)sin(∆φr)

)
(4.18)

Now if we take βlcp and βrcp values and replacing them in (3.78) and (3.79) (or (3.80) and

(3.81)), the αlcp and αrcp are obtained.

Thus, from the previous relation we have shown that from an analysis of our analytical calibra-

tion model, and in particular, of the isolation parameter, it is possible to obtain the instrumental

balance parameters (amplitude and phase) for both polarizations.

The numerical calibration of each of these parameters will be considered in the future scope of

this thesis.

4.2.2 Instrumental parameters from Stokes parameters

4.2.2.1 βrl parameter

In particular, if we take the Stokes parameters reductions from diodes injection (Section 3.1.3.2),

and considering that NOISE diode voltages are too large compared to the power of the signals

that enter the instrument (Al, Ar, Bl, Br)
1, we can further reduce the relations (3.47) to (3.62).

If we focus on Stokes parameters Q and U and we consider their states on and off, we take:

1. VA ON; VB OFF

• Horn Ant.

∆QA = QA(ON)−QA(OFF )

=
g1g3αrl

2
V 2
A[(1 + αlcpcos(βlcp))(cos(βrl) + αrcpcos(βrl + βrcp))

+ αlcpsin(βlcp)(sin(βrl) + αrcpsin(βrl + βrcp))]

(4.19)

∆UA = UA(ON)− UA(OFF )

=
g1g3αrl

2
V 2
A[(1 + αlcpcos(βlcp))(sin(βrl) + αrcpsin(βrl + βrcp))

− αlcpsin(βlcp)(cos(βrl)− αrcpcos(βrl + βrcp))]

(4.20)

• Horn Ref.

1If we make a real comparison between these quantities, from the KuPol data we can say that the power of
the NOISE diodes is ∼ 106 times larger than the signals of the astronomical sources that we used to make the
calibration procedure of the telescope



Chapter 4. Model analysis and future work 60

∆QB = QB(ON)−QB(OFF )

=
g1g3αrl

2
V 2
A[(1− αlcpcos(βlcp))(cos(βrl)− αrcpcos(βrl + βrcp))

− αlcpsin(βlcp)(sin(βrl)− αrcpsin(βrl + βrcp))]

(4.21)

∆UB = UB(ON)− UB(OFF )

=
g1g3αrl

2
V 2
A[(1− αlcpcos(βlcp))(sin(βrl)− αrcpsin(βrl + βrcp))

+ αlcpsin(βlcp)(cos(βrl)− αrcpcos(βrl + βrcp))]

(4.22)

2. VA OFF; VB ON

• Horn Ant.

∆QA = QA(ON)−QA(OFF )

=
g1g3αrl

2
V 2
B[(1− αlcpcos(∆φl + βlcp))(cos(βrl)− αrcpcos(βrl + ∆φl + βrcp))

− αlcpsin(∆φr + βlcp)(sin(βrl)− αrcpsin(βrl + ∆φr + βrcp)]

(4.23)

∆UA = UA(ON)− UA(OFF )

=
g1g3αrl

2
V 2
B[(1− αlcpcos(∆φl + βlcp))(sin(βrl)− αrcpsin(βrl + ∆φl + βrcp)]

+ αlcpsin(∆φr + βlcp)(cos(βrl) + αrcpcos(βrl + ∆φr + βrcp))]

(4.24)

• Horn Ref.

∆QB = QB(ON)−QB(OFF )

=
g1g3αrl

2
V 2
B[(1 + αlcpcos(∆φl + βlcp))(cos(βrl) + αrcpcos(βrl + ∆φl + βrcp))]

+ αlcpsin(∆φr + βlcp)(sin(βrl) + αrcpsin(βrl + ∆φr + βrcp)]

(4.25)

∆UB = UB(ON)− UB(OFF )

=
g1g3αrl

2
V 2
B[(1 + αlcpcos(∆φl + βlcp))(sin(βrl) + αrcpsin(βrl + ∆φl + βrcp)]

− αlcpsin(∆φr + βlcp)(cos(βrl) + αrcpcos(βrl + ∆φr + βrcp))]

(4.26)

From the theory, from the difference of the noise diode on and off spectra, we obtain the phase

difference, βrl, between the LCP and RCP channels as

βrl = arctan

(
∆U

∆Q

)
(4.27)

Then, taking for example, the relations (4.19) and (4.20), we have that βrl is

∆UA
∆QA

=
(1 + αlcpcos(βlcp))(sin(βrl) + αrcpsin(βrl + βrcp))− αlcpsin(βlcp)(cos(βrl)− αrcpcos(βrl + βrcp))

(1 + αlcpcos(βlcp))(cos(βrl) + αrcpcos(βrl + βrcp)) + αlcpsin(βlcp)(sin(βrl) + αrcpsin(βrl + βrcp))
(4.28)
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If we consider the values obtained for αlcp, αrcp, βlcp, and βrcp previously, and the relations

(4.27) and (4.28), it is possible to get a βrl parameter reduction from adjustments. This topic

will be addressed in future works of this thesis.

4.2.2.2 αrl parameter

If we consider the Stokes parameters relations after the NOISE diodes were injected and we

also take the considerations made in the previous section, we can observe that the parameter

αrl is conserved in all the relations for Q and U .

If we analyze the behavior of this parameter and the effect that this could have on the instru-

ment, we see that within the instrumental calibration, it will be coupled to the gain terms g1

and g3 present in the expressions of Q and U . Therefore, we would expect that we only have

a global effect of gain (amplitude) on our data, which makes it impossible to distinguish the

term αrl from the rest. The gain effects are going to get calibrated when carrying over the

astronomical calibration of the system.

A deep analysis of this parameter and in particular, how it is relevant to KuPol polarization

calibration will be considered as future work.
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Conclusion

The polarization study of astronomical sources is a challenge for astronomical instrumentation

since it is a challenge for the instrumental developments that this implies.

The KuPol spectropolarimeter is a unique receiver in architecture, which to date has not been

calibrated in polarization. Today, this topic takes importance since the polarization study of

AGNs for the scientific community becomes relevant.

The usual theorical calibration of this type of instrument is done through mathematical tools

that do not ensure a complete and adequate instrumental characterization, which directly

affects the instrument calibration. In particular for KuPol, today there is a proposed model

(section 1.2.1.3) for its calibration from which very few results have been obtained, therefore

more investigation is needed. Independent of this situation, this model does not provide an

instance for the study of instrumental parameters relevant to the receiver. For this reason,

an analytical calibration model that contributes to the characterization of parameters and

instrumental diagnoses for KuPol was developed throughout this thesis.

The proposed analytical calibration model for KuPol provides unique opportunities and ad-

vantages so that from isolation parameter diagnosis of the system (to which we have access

from the instrumental data) we can study and characterize the operation of the 180◦ analog

hybrid. The model gives us the possibility of obtaining the balance component components (in

amplitude and phase). This topic has not been studied until now for KuPol.

Another study advantage from the isolation parameter is the characterization of the system

balance parameters (αlcp, αrcp, βlcp, βrcp). From the study and knowledge of these instrumental

parameters, we should be able to study the stability of KuPol since it was installed (in 2014)

and from this determine periods of time in which exist or not valid data for scientific analysis,

i.e., determine what range of data are balanced or not. This topic to date has not been studied

for KuPol.

Another important point of analysis and that the model gives us the opportunity to study is the
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polarization leakage. For our model, the manifestation of this instrumental problem is related

with αrl and βrl. For the αrl we can conclude that it is coupled to the gain terms of branches

3 and 4 of the instrument (g3) and that its calibration therefore depends on the obtaining and

calibration of gain of the branch on analysis. On the other hand, the parameter βrl is obtained

from the ON and OFF states of the Stokes Q and U , and corresponds to the instrumental

polarization angle of KuPol.

Thus, considering the αlcp, αrcp, βlcp, βrcp, αrl, and βrl from the model, we can be able to study

the polarization impact on the Stokes parameters.

From all points previously exposed, from the challenge proposed by this thesis, and taking into

account that the polarization study with astronomical instruments proposes a great challenge,

we can say that this thesis establishes the basis for concrete and powerful instrumental studies

in the area of polarimetry and spectropolarimetry astronomical.

Due to time issues related to the duration of this Master Program, it was not possible to carry

out a numerical study of the parameters involved in the analytical model proposed for KuPol

calibration. For this reason, it is important to say that we do not achieve all the objectives set

out at the beginning of this thesis. So in the next section a series of future work related to it

is proposed.

5.1 Future works

At this point of the investigation it is necessary to establish some future guidelines that con-

tribute to meet the objectives set at the beginning of this thesis.

1. To obtain instrumental parameters ∆φl,r, αlcp, αrcp, βlcp, βrcp, αrl, and βrl from data.

2. To obtain instrumental Stokes parameters for KuPol receiver from data.

3. To contrast our results for Stokes parameter with existing previous results from the 40m

collaboration.
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Appendix A

Polarimetry: Theorical background

A.1 Vector de Coherencia

An electromagnetic signal is polarized if there is any lasting relationship between the orthogonal

modes of amplitude and phase [18].

The coherence vector captures this relationship, which is given by:

e =

〈
ExE

∗
x

ExE
∗
y

EyE
∗
x

EyE
∗
y


〉

=< E ⊗ E∗ > (A.1)

where E is the complex vector of the orthogonal modes Ex(t) and Ey(t), < ... > indicates the

average in time, and ⊗ corresponds to the external product.

A.2 Stokes parameters on circular basis

Considering that the relation between linear and circular basis is: Ex = 1√
2
(Er + El) and

Ey = 1√
2
(Er − El), the Stokes parameters on circular basis are given by

I =< |Ex|2 > + < |Ey|2 >

=
1

2
[(Er + El)(E

∗
r + E∗l ) + i(−i)(Er − El)(E∗r − E∗l )]

=
1

2
[2ErE

∗
r + 2ElE

∗
l ]

=< |Er|2 > + < |El|2 >

(A.2)
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Q =< |Ex|2 > − < |Ey|2 >

=
1

2
[(Er + El)(E

∗
r + E∗l )− i(−i)(Er − El)(E∗r − E∗l )]

=
1

2
[2ErE

∗
l + 2ElE

∗
r ]

= ErE
∗
l + ElE

∗
r

= 2Re(E∗l Er)

(A.3)

U = 2Re(ExE
∗
y)

=< ExE
∗
y > + < E∗xEy >

=
1

2
[−i(Er + El)(E

∗
r − E∗l ) + i(Er − El)(E∗r + E∗l )]

=
1

2
[2iErE

∗
l − 2iElE

∗
r ]

= i(ErE
∗
l − ElE∗r )

= i2iIm(E∗l Er)

= −2Im(E∗l Er)

(A.4)

V = 2Im(ExE
∗
y)

= −i[< ExE
∗
y > − < E∗xEy >]

=
−i
2

[−i(Er + El)(E
∗
r − E∗l )− i(Er − El)(E∗r + E∗l )]

=
1

2
[−2ErE

∗
l + 2ElE

∗
r ]

=< |El|2 > − < |Er|2 >

(A.5)



Appendix B

Simulink model of the receiver

Images of the most relevant stages for the polarization calibration model proposed for KuPol

from its Simulink design developed by Dr. Oliver King 1.

1See Simulink file rx 29aug2014.slx
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Figure B.1: General view of the KuPol simulink model.
In the image it is possible to see the digitization and processing data, and data read-
out and archiving processes are implemented in the KuPol roaches. Source: O. King
(rx 29aug2014.slx).
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Figure B.2: Implementation of the complex coefficients determination.
The complex coefficients for the digital instrument that provide optimal separation of the
antenna and reference beams in the digital sub-channels. Source: O. King (rx 29aug2014.slx).
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Figure B.3: Mathematical implementation of the digital hybrid on the roaches from Simulink
model for KuPol.

Source: O. King (rx 29aug2014.slx).

Figure B.4: Mathematical implementation of square module for digital hybrid outputs.
Source: O. King (rx 29aug2014.slx).
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Figure B.5: Mathematical implementation of Q and U Stokes parameters of KuPol instrument.
Source: O. King (rx 29aug2014.slx).
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Figure B.6: Part of the Simulink accumulator model.
Here, the data readout and archiving processes are implemented. Source: O. King

(rx 29aug2014.slx).



Appendix C

Analog hybrid balance

Based on a series of measurements developed by Oliver King in 2016, it is possible to obtain

the balance parameters (amplitude and phase) associated to the 4 hybrids present in the KuPol

analogue instrument. These results are showed next,

Figure C.1: Balance parameters analog hybrid.
The amplitude (blue) and phase (pink) parameters for hybrid balance are presented for the 4
hybrids located in the KuPol analogue instrument. Source: This plots have been developed by
Rodrigo Reeves.

Note that for our analysis we considerate:
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• Results between 13 and 18 GHz.

• Hybrids number 1 and 4. We assume that the highest gain hybrids have been located

in the cryogenic stage and that the worst gain have been located in the cold plate stage.

Therefore, we will consider for our analysis the highest gain hybrids.

From the figure C.1 we can be seen that the balance parameters for the analog hybrid (δ180 and

∆φ) that we consider in our model (see section 2.3.2.) are cero for both hybrids.



Appendix D

Actual KuPol instrument calibration

D.1 Correlation receiver errors

The Mueller matrix MCL,R , that describes the action of the correlation receiver, can be expressed

by:

MCL,R =


MCIL,R 0 0 0

0 MCP cos(θC) MCP sin(θC) 0

0 −MCP sin(θC) MCP cos(θC) 0

0 0 0 0

 (D.1)

where MCIL,R is the gain experienced by the LCP or RCP signals1, MCP is the gain experienced

by the polarized signal, and θC is the rotation induced by the instrument of the polarization

vector.

It is important to mention that relation D.1 is variable in time as the gains of the amplifiers

and response of the whole system changes with time and temperature. The noise diodes are

using for to calculate them.

D.1.1 Instrumental calibration from noise diodes

The noise diode signal is described by a Stokes vector (eND) as

eND =


TND(t)

TND(t)

0

0

 = eNDA = eNDB (D.2)

1Note that it is the same for horn A and B (balance of the instrument is assumed.
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Note that:

• The noise diode Stokes vector is the same for signal from horn Ant and Ref .

• The noise diode is a purely linearly polarirized noise source aligned with +Q in the

instrument reference frame.

If we consider the previous relations and we take the difference between the noise diodes states

ON and OFF, we get for horn Ant,

∆eAL,R = eAL,R(ON)− eAL,R(OFF )

=


AL,R

AQ

AU

0


= MA

CL,R
∆eNDA

=

M
A
CIL,R

0 0 0

0 MA
CP cos(θ

A
C) MA

CP sin(θAC) 0

0 −MA
CP sin(θAC) MA

CP cos(θ
A
C) 0

0 0 0 0

∆eNDA

(D.3)

⇒ ∆eAL,R = ∆TND


MA

CIL,R

MA
CP cos(θ

A
C)

−MA
CP sin(θAC)

0

 (D.4)

From D.4 we have for horn Ant the next relations,

∆AL,R = ∆TNDM
A
CIL,R

(D.5)

∆AQ = ∆TNDM
A
CP cos(θ

A
C) (D.6)

∆AU = −∆TNDM
A
CP sin(θAC) (D.7)

Using D.5, D.6 and D.7, we can to define:

1. Intensity signal per polarization.

From (9),

mA
L,R = ∆TNDM

A
CIL,R

= ∆AL,R (D.8)

or

⇒ mA
L = ∆TNDM

A
CIL

= ∆AL (D.9)

⇒ mA
R = ∆TNDM

A
CIR

= ∆AR (D.10)
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Note that we will track mA
L = ∆AL and mA

R = ∆AR separately. These parameters will

vary independently, and will allow us to calculate Stoke V .

2. Degree of polarization.

From D.6 and D.7, separately,

∆AQ = ∆TNDM
A
CP cos(θ

A
C)/()2

(∆AQ)2 = (∆TND)2(MA
CP )2cos2(θAC) (D.11)

∆AU = −∆TNDM
A
CP sin(θAC)/()2

(∆AU)2 = (∆TND)2(MA
CP )2sin2(θAC) (D.12)

Adding D.11 and D.12, we can calculate the degree of polarization mA
p ,

(∆AQ)2 + (∆AU)2 = (∆TND)2(MA
CP )2

⇒
√

∆AQ)2 + (∆AU)2 = ∆TNDM
A
CP

⇒ mA
p =

√
∆AQ)2 + (∆AU)2 = ∆TNDM

A
CP (D.13)

3. Polarization angle.

Dividing D.12 in D.11, we can calculate the polarization angle,

∆AU
∆AQ

=
−∆TNDM

A
CP sin(θAC)

∆TNDMA
CP cos(θ

A
C)

= −tan(θAC)

⇒ θAC = −arctan
(

∆AU
∆AQ

)
(D.14)

For other hand, note that for the horn Ref , we have:

1. Intensity signal per polarization.

mB
L = ∆TNDM

B
CIL

= ∆BL (D.15)

mB
R = ∆TNDM

B
CIR

= ∆BR (D.16)

2. Degree of polarization.

mB
p =

√
(∆BQ)2 + (∆BU)2 = ∆TNDM

B
CP (D.17)
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3. Polarization angle.

θBC = −arctan
(

∆BU

∆BQ

)
(D.18)

D.1.1.1 Noise diodes corrected data

We can filter bad values of mL, mR, mp and θC , for horns A and B, and interpolated to apply

the instrumental correction to any set of data.

We get corrected Stokes Q and U values, for horns Ant and Ref , by[
Qc

U c

]
=

1

mp

[
cos(θC) −sin(θC)

sin(θC) cos(θC)

][
∆Q

∆U

]
=

1

mp

[
cos(θC)∆Q− sin(θC)∆U

sin(θC)∆Q+ cos(θC)∆U

]
(D.19)

Thus, the instrumentally-corrected values, for horns Ant and Ref , can be get by

1. Horn Ant

(a) Intensity signal for polarization LCP.

AcL =
∆AL
mA
L

(D.20)

(b) Intensity signal for polarization RCP.

AcR =
∆AR
mA
R

(D.21)

(c) Corrected Stokes Q.

AcQ =
1

mp

[cos(θC)∆AQ − sin(θC)∆AU ] (D.22)

(d) Corrected Stokes U.

AcU =
1

mp

[sin(θC)∆AQ + cos(θC)∆AU ] (D.23)

2. Horn Ref

(a) Intensity signal for polarization LCP.

Bc
L =

∆BL

mB
L

(D.24)
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(b) Intensity signal for polarization RCP.

Bc
L =

∆BL

mB
L

(D.25)

(c) Corrected Stokes Q.

Bc
Q =

1

mp

[cos(θC)∆BQ − sin(θC)∆BU ] (D.26)

(d) Corrected Stokes U.

Bc
U =

1

mp

[sin(θC)∆BQ + cos(θC)∆BU ] (D.27)

Now, if we use D.20 to D.27 expressions and the Stokes parameters relation on circular basis,

we can form the instrument-corrected data streams for horns Ant and Ref, as

eA0 =


AcL + AcR
AcQ
AcU

AcL − AcR

 =
1

∆TND
MAe

S (D.28)

eB0 =


Bc
L +Bc

R

Bc
Q

Bc
U

Bc
L −Bc

R

 =
1

∆TND
MBe

S (D.29)
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