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ABSTRACT

Chile, as the second largest salmon farming country in the world, reports the highest use of
antibiotics and pesticides, which can be harmful to both the environment and humans. These
compounds tend to be sequestered by suspended particles, transported by currents and finally
deposited in sediments, where they are later consumed by the benthic community. Changes in the
bacterial community, emergence of resistance genes and impacts at the ecological level have been
described for antibiotics and pesticides, although most focus on the local impact of salmon farming.
This study sought to understand the dynamics and fate of antibiotics throughout the Puyuhaupi
Fjord and to understand the partitioning behavior of the antibiotics florfenicol and flumequine
through adsorption experiments that simulate the average temperature of the fjord. In addition, the
occurrence of deltamethrin and cypermethrin in total suspended solids and filtering benthic
organisms (bivalves and sponges) in the Puyuhuapi Fjord was evaluated. Finally, an experiment of
respiration in the water column and marine sediments obtained in an area without aquaculture
activity (Banyuls Bay, France) was developed to evaluate if the presence of antibiotics and
pesticides can affect the degradation process of organic material, through changes in community
respiration and remineralized components.

Our results show low concentrations of florfenicol (from trace to 23.1 ng L) and
flumequine (trace level) detected after 180 and 360 days (respectively) since their last medication
at a distance between 2 and 23 km from the culture sites. The fugacity model used in our study
area, together with the decay model, predicts that flumequine can remain in sediments for more
than two months at sub-minimum inhibition concentrations (sub-MIC). This condition may
promote bacterial selection for antibiotic resistance and eventually pose a risk to human health
from the consumption of seafood products. The values of the partition constants Kq and Koc,
obtained by bacth experiments, suggest that the adsorption capacity of flumequine is twice that of
florfenicol (Table 2, section 3.2), implying that flumequine has a greater tendency to be adsorbed
and absorbed by sediments. From an environmental point of view, our results may imply that the
fate of flumequine will be related to processes affecting particles, suspension transport and seafloor
deposition, whereas florfenicol concentration be controlled by hydrodynamic processes such as
dilution and transport by currents. In turn, a higher fraction of flumequine may be stored in the

sediments in coastal areas housing salmon farming centers.
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The pesticides deltamethrin and cypermethrin were incorporated through dips to control
outbreaks of caligus (Caligus rogercresseyi) infection. Very low concentrations of deltamethrin
were detected in total suspended solids (0.01 to 0.05 ng L), which value would not have an effect
on organisms (NOEC, LCso and ECso) or at the ecological level (NOEAEC), which may come from
sediment resuspension or external input from adjacent areas with active salmon culture centers.
Although cypermethrin was not used in Puyuhuapi Fjord, low concentrations were detected in
bivalves and sponges (0.04 and 0.05 ng g2, respectively), values comparable to wild salmon caught
for human consumption (0.04 ng g*). These results suggest an indirect exposure of the compound
may be associated with external input from adjacent fjords or unreported treatments because
cypermethrin can remain for more than two years in sediments with high organic material and low
oxygen content. Preliminary results from the community breathing experiments suggest decreases
in activity and/or changes in the biological component, especially in the bacterial community, since
some differences in parameters such as dissolved organic carbon, ammonium, and nutrients are
observed. However, possible changes in bacterial diversity have not been analyzed due to the
pandemic conditions.

In future research, it is necessary to include in the study the fjords and canals adjacent to
our study area, with and without aquaculture activity, which will allow the authorities to better
evaluate the sanitary rests considering the interconnection of farming neighborhoods. It is also
suggested to use both sponges and bivalves to evaluate the environmental conditions of an area,
with or adjacent, to aquaculture activity. On the other hand, it is necessary to make modifications
to the fugacity model used in our study, incorporating the presence of at least two layers in the

water column.
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RESUMEN

Chile, como segundo pais con mayor produccion en el cultivo de salmones a nivel mundial,
reporta el mayor uso de antibidticos y pesticidas, o que puede ser perjudicial tanto para el
medioambiente como para el hombre. Estos compuestos tienden a ser secuestrados por las
particulas suspendidas, transportados por las corrientes y, finalmente son depositadas en los
sedimentos, donde eventualmente son consumidos por la comunidad bentonica. Cambios en la
comunidad bacteriana, aparicion de genes de resistencia e impactos a nivel ecoldgico han sido
descritos para antibidticos y pesticidas, aunque la mayoria se enfocan en el impacto local de la
actividad salmonera. Este estudio busco entender la dinamica y el destino de los antibi6ticos en
todo el fiordo Puyuhaupi y conocer el comportamiento particional de los antibiéticos florfenicol y
flumequina a través de experimentos de adsorcion que simular la temperatura promedio de fiordo.
Junto con esto se buscd evaluar la ocurrencia de deltametrina y cipermetrina en los sélidos totales
suspendidos y los organismos bentonicos filtradores (bivalvos y esponjas) en el fiordo Puyuhuapi.
Finalmente se desarrolld un experimento de respiraciéon en columna de agua y sedimentos marinos
obtenidos, una zona sin actividad acuicola (bahia Banyuls, Francia), para evaluar si la presencia de
antibioticos y pesticidas pueden afectar el proceso de degradacion del material organico, a través
de cambios en respiracién comunitaria y en las componentes remineralizadas.

Nuestros resultados muestran bajas concentraciones florfenicol (desde traza a 23.1 ng L™?)
y flumequina (nivel traza) detectados después de 180 y 360 dias (respectivamente) desde su la
ultima medicacion a una distancia de entre 2 y 23 km de los centros de cultivo. EI modelo de
fugacidad utilizado en nuestra area de estudio, junto con el modelo de decaimiento, predicen que
flumequina puede permanecer en los sedimentos mas de dos meses a concentraciones de inhibicion
sub-Minima (sub-MIC). Esta condicion puedo promover la seleccion bacteriana por resistencia a
los antibidticos y, eventualmente representar un riesgo para la salud humana por el consumo de
productos marinos. Los valores de constantes de particién Kq y Koc, obtenidos experimentalmente
en nuestro estudio, sugieren que la capacidad de adsorcion de flumequina es dos veces mayor que
la de florfenicol (Tabla 2, seccion 3.2), lo que implica que flumequina tiene una mayor tendencia
a ser adsorbido por los sedimentos. Desde el punto de vista ambiental, nuestros resultados pueden
implicar que el destino de la flumequina estard mas asociado a procesos como el transporte de

particulas y la deposicién en el fondo marino, mientras que el florfenicol deberia estar méas

xXxii



relacionado con procesos acuéticos como la dispersion y el transporte por las corrientes, lo que
sugiere que, eventualmente, una mayor fraccion de flumequina puede quedar almacenada en los
sedimentos en la zona con centros de cultivo de salmones.

Los pesticidas deltametrina y cipermetrina se incorporaron a través de bafios para controlar
brotes de infeccion por caligus (Caligus rogercresseyi). Concentraciones muy bajas de
deltametrina se detectaron en los sélidos totales suspendidos (0.01 a 0.05 ng L), cuyo valor no
tendria un efecto sobre los organismos (NOEC, LCso y ECsp) 0 a nivel ecologico (NOEAEC), los
que pueden provenir de la resuspension de sedimentos o por aporte externo de areas adyacentes
con centros de cultivo activos. A pesar de no ser utilizada cipermetrina en fiordo Puyuhuapi, bajas
concentraciones se detectaron en bivalvos y esponjas (0.04 y 0.05 ng g%, respectivamente) valores
comparables a salmones silvestres capturados para consumo humano (0.04 ng g*). Estos resultados
sugieren una exposicion indirecta del compuesto puede estar asociado al ingreso externo desde
fiordos adyacentes o bien tratamientos no reportados, debido a que cipermetrina puede permanecer
mas de dos afios en sedimentos con alto material organico y bajo contenido de oxigeno. Resultados
preliminares de los experimentos respiracion comunitaria sugieren disminucion en la actividad y/o
cambios en la componente bioldgica, especialmente en la comunidad bacteriana, dado que se
observan algunas diferencias en parametros como carbono organico disuelto, amonio y los
nutrientes. Sin embargo, los posibles cambios en la diversidad bacteriana no has sido analizados
debido a las condiciones de pandemia.

En futuras investigaciones es necesario incluir en el estudio los fiordos y canales adyacentes
a nuestra area de estudio, con a sin actividad acuicola, lo que permitiré a las autoridades evaluar de
mejor manera los descansos sanitarios considerando la interconexion barrios de cultivo. También
se sugiere utilizar tanto esponjas como bivalvos para evaluar el estado de una zona con actividad
acuicola o adyacente a ella. Por otro lado, es necesario realizar modificaciones al modelo de
fugacidad utilizado en nuestro estudio, incorporando la presencia de al menos dos capas en la

columna de agua.
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Résumé

Le Chili, deuxiéme pays d'élevage de saumons au monde, est celui qui utilise le plus d'antibiotiques
et de pesticides, qui peuvent étre nocifs pour I'environnement et I'nomme. Ces composés ont
tendance a étre sequestrés par les particules en suspension, transportés par les courants et
finalement déposes dans les sédiments, ou ils sont finalement consommeés par la communauté
benthique. Des changements dans les communautés bactériennes, I'émergence de genes de
résistance et les impacts écologiques ont été décrits pour les antibiotiques et les pesticides, bien
que la plupart se concentrent sur I'impact local de la salmoniculture. Le present travail vise a
comprendre la dynamique et le devenir des antibiotiques dans le fjord de Puyuhaupi, a caractériser
la partition des antibiotiques florfénicol et fluméquine par une approche expérimentale simulant
les températures moyennes du fjord en hver et été. En outre, la présence des pesticides
deltaméthrine et cyperméthrine dans les particules en suspension et les organismes benthiques
filtrants (bivalves et éponges) dans le fjord de Puyuhuapi a été évaluée. Enfin, une expérience
d’exposition des organismes vivants dans la colonne d'eau et dans les sédiments marins d'une zone
sans activité aquacole (baie de Banyuls, France) a été réalisée pour évaluer si la présence
d'antibiotiques et de pesticides affecte le processus de minéralisation de la matiére organique, a
travers des changements dans la respiration de la communauté et les composants reminéralisés.
Nos résultats montrent de faibles concentrations de florfénicol (de trace 4 23,1 ng L) et de
fluméquine (niveau de trace) détectées apres 180 et 360 jours (respectivement) depuis leur derniére
médication a une distance comprise entre 2 et 23 km des sites d’aquaculture. Le modele de fugacité
utilisé dans notre zone d'étude, associé au modele de décomposition, prévoit que la fluméquine
peut rester dans les sédiments pendant plus de deux mois a des concentrations d'inhibition
subminimales (sub-MIC). Cette situation peut favoriser la sélection bactérienne pour la résistance
aux antibiotiques et, a terme, constituer un risque pour la santé humaine lié a la consommation de
fruits de mer. Les valeurs des constantes de partage Kq et Koc, obtenues par des expériences en
lots dans notre étude, suggerent que la capacité d'adsorption de la fluméquine est deux fois
supérieure a celle du florfénicol (Tableau 2, section 3.2), ce qui implique que la fluméquine a une
plus grande tendance a étre adsorbée et absorbée par les sédiments. D'un point de vue
environnemental, le devenir de la fluméquine sera plus associé aux processus affectant les

particules, comme leur transport et leur déposition sur le fond marin, alors que la concentration de
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florfénicol sera controlé par des processus hydrodynaques, comme la dilution et le transport par les
courants. En conséquence, une fraction plus élevee de fluméquine pourrait étre stockée dans les
sédiments des zones cotieres d'élevage de saumons.

Les pesticides deltaméthrine et cyperméthrine ont été utilisés dans des bains de saumon
pour controler les foyers d'infection de Caligus (Caligus rogercresseyi). De tres faibles
concentrations de deltaméthrine ont été détectées dans les particules en suspension (0,01 & 0,05 ng
L1), ce qui n'aurait aucun effet sur les organismes (NOEC, LCso et ECso) ou au niveau écologique
(NOEAEC). Cette occurrence peut traduire la remise en suspension des sédiments ou un apport
externe provenant de zones adjacentes, dans lesquelles des sites d’aquaculture sont actifs. Bien que
la cyperméthrine n'ait pas été utilisée dans le fjord de Puyuhuapi, de faibles concentrations ont été
détectées dans les bivalves et les éponges (0,04 et 0,05 ng g%, respectivement) avec des valeurs
comparables a celles mesurées dans des saumons sauvage capturé pour la consommation humaine
(0,04 ng gb). Ces résultats suggerent une source depuis les fjords adjacents ou des traitements n’ont
pourtant pas été rapportés, car la cyperméthrine peut persister pendant plus de deux ans dans les
sédiments a forte teneur en matiere organique et a faible teneur en oxygeéene. Les résultats
préliminaires des expériences de respiration de la communauté suggérent une diminution de
I'activité et/ou des changements dans les composants biologiques, en particulier dans la
communauté bactérienne, puisque certaines différences dans les parameétres tels que le carbone
organique dissous, la concentration en ammonium et en nutriments sont observées. Cependant, les
changements possibles dans la diversité bactérienne n'ont pas été analysés en raison des conditions
de la pandémie.

Dans les recherches futures, il sera nécessaire d’évaluer les apports de contaminants par les
fjords et canaux adjacents a notre zone d'étude, avec et sans activité aquacole, ce qui permettra aux
autorités de mieux évaluer les durées des périodes de ruptures sanitaires en considérant
I'interconnexion entre les zones d'aquaculture. Il est également suggéré d'utiliser a la fois les
éponges et les bivalves pour évaluer la qualité environnementale des zones aquacoles. D'autre part,
il est nécessaire d'apporter des am aquacoleliorations au modele de fugacité utilisé dans notre étude,

en incorporant la présence d'au moins deux couches dans la colonne d'eau.
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1.0 INTRODUCTION

1.1 Antibiotic and pesticides used in aquaculture

Food fish demand has been increasing since the *80s, while natural fish capture seems to
have reached a limit at ca. 90 million tons since the early 90’s (Ottinger et al., 2016). Thus, the
higher demand has been supplemented by aquaculture activities in the last decades (FAO, 2020;
Figure 1).
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Figure 1. World capture fisheries and aquaculture production, extracted from FAO (2020).

Farming of marine salmon and trout produced 7.3 million tons in 2018, where Chile is
the second salmon producer (38%) after Norway (39%) (FAO, 2018). Extensive and massive
salmon production has long been known to generate local negative consequences in the marine
environment, biodiversity, and the physicochemical properties of the sea bottom, resulting in an
increase of the local carbon inventory, mostly through non consumed food pellets (Cromey et al.,

2002). Also, several studies have reported that a rise in nutrients has the potential to increase



primary production (Wang et al., 2012; Iriarte et al., 2013) and that a drop in O2 have been
observed in sediments (Buschmann et al., 2006; Gaw et al., 2014, Price et al., 2015) in the
vicinity of salmon cages (e.g., Neori et al., 2004; Nash et al., 2005). Nevertheless, other studies
suggest a minor or insignificant impact of these nutrients on algal blooms (Husa et al., 2014;
Skaala et al., 2014). Currently, the industry has made efforts to improve technologies aiming to
diminish nutrient inputs (Price et al., 2015).

Other potential environmental impacts of salmon farming include a direct release of
pesticides and pharmaceuticals, used to control outbreaks of parasites, bacterial infections, and
viral diseases (Burridge et al., 2010), that severely reduce production (FAO 2020). Antibiotics and
pesticides used in Chile have different application forms and dosage, where antibiotics are mainly

included in food pellets while pyrethroids are applied in baths, as shown in Table N°1.

Table 1. Antibiotics and pesticides more used in Chilean aquaculture industries

Compounds Chemical Structure Group Action Mechanism Application and Dose?
0
| ;“s” F o Protein synthesis within food
Florfenicol® : \©\/£ )K(C' Phenicols inhibitors: action over 10 ma ka- for 10 davs
8 N L subunit ribosome 50S gkg y
- ' o Fluoroquilo- yioition in DNA within food/
Flumequine | replication and o
. none L 25 mg kg for 10 days
transcription

Cypermethrind

cH,
HC, O
Hac)_/&ro\(@\@
o
il o on

Pyrethroids

Neurological impacts:
blocks the electron
transport chain acting

health baths
0.005mg L x30a60
min for 14 days

health baths

X L ;

Deltamethrine O ¢ TL*’LO"*”] Pyrethroids over the sodium channel 0.003 mg Lt x 30 min
1 for 14 days

Reference: a: Bravo et al. (2005); b: Macorni et al. (1990); c: Barnard and Maxwell (2001); d: Singh and Agarwal

(1991), e: Chalmers et al. (1987).

Once these compounds are released into the marine environment their environmental persistence
and impact on non-target organisms is determined by their physicochemical properties (Table 2)
that affect sorption, degradation processes, and sediment deposition (e.g., Power and Chapman,
1992; Lutnicka et al., 1999; Wen et al., 2009; Sirtori et al., 2012; Zhao et al., 2013; Gaw et al.,
2014; Mitchell et al., 2015).

Chile used in 2007 the highest amount of antibiotics compared to Norway, Canada and UK,
with 385600 kg of antibiotics (active ingredient) for a salmon production of 380381 tons. In
contrast, Norway with a higher salmon production (821997 tons) reported the use of 649 kg of
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antibiotics (active ingredient) (Burridge et al., 2010). The quantity of anti-lice declared in Chile
was 132 kg of pesticides (active ingredient) while 600 kg of pesticides (active ingredient) were

used in Norway (Burridge et al., 2010).

Table 2. Physicochemical properties and biological effects of antibiotics and pesticides used in
Chilean aquaculture industries.

Compounds Florfenicol Flumequine | Cypermethrin Deltamethrin

(Chemical Formule)? (C12H14C12FNO4S) | (C13H11NOs) | (Co2H19C12NO3) | (Co2H19BraNOs)

Molecular weight?

(g mol) 358.21 261.25 416.3 505.19

Octanol/ water partition A 1ob . c e .

(Log Kow: L kg™) 0.12°t0 0.19 1.3810 2.70 6.6 6.2

Organic carbon partition i A Eqd d 5.5f 5.8¢

(Log Koc: L kg™ 0.19 to -0.51 0.99t0 2.99

Water solubility 13070 Insoluble? 0.004¢ >0.002¢

(mg L)

No Observed Algae nd/ nd 1.3 nd

Effect Invertebrate nd/ 10 0.00004 0.0000041

Concentration

(NOEC; mg LY)? | Fish nd/ 10 0.00003 >0.000032

Lethal Algae na/ Nd nd nd/

Concentration Invertebrate nd/ Nd 0.0128 nd

(LCso, mg L)* | Fish > 780 Nd 0.0028 0.0015

Half maximal Algae >2.9 5.0 >0.1 9.1

Effective

Concentration Invertebrate >330 Nd 0.0003 0.00056

(ECs0, mg L*)* | Fish nd Nd nd 0.00026

No-Observed Ecosystem

Adverse-Effect Concentration nd nd 0.00005 0.0032

(NOEAEC, mg L)%

Bioconcentratio Factor

(BCF, L kg)* nd nd 1204 1400
Water ~ 748 121" 22.1 (pH 8)2 17 to 482

Half-life (days) Sediment 7.3 150! 30%to > 730! 65 to 285™
Biota 0.6" 1.251t0 0.6" 0.8 to 10° nd

&: Mesocosmos study data; nd: No data. References: a: http://sitem.herts.ac.uk/aeru/vsdb/index.htm; b: Kotodziejska et al. (2013);
c: Predicted ranges from USEPA (https://comptox.epa.gov/dashboard); d: Koc =0.41 Kow (Karickhoff, 1981); e: Oros and Werner
(2005); f: Maund et al. (2002); g: Kreider et al. (1996); h: Pouliquen et al. (2007); i: Hektoen et al. (1995); j: Halling-Sorenson et
al. (1998); k: Mackay et al., (2006); I: flocculated marine sediments (Hamaotene et al., 2018); m: Benskin et al. (2016); n: Horsberg
et al. (1994); fii: Rogstad et al. (1993); 0: USEPA (1989).

One of the serious concerns about the use of antibiotics in aquaculture includes the
development of resistance in bacterial populations which, in turn, can limit the effectiveness of
cultured species’ immune systems (Cabello, 2006; Primavera, 2006) and eventually be transferred

to humans (Burridge et al., 2010). Conversely, deltamethrin and cypermethrin exposure in non-
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target crustacean communities could produce changes in diversity (Van Geest et al., 2014a) and
affected the succession at an ecological level (Friberg-Jensen et al., 2003; Van Geest et al., 2014b),
according to NOEC and LCso values in different trophic levels (Table 2). These pesticides can
bioaccumulate through trophic webs even after hours of exposition (Willis et al., 2005; Alonso et
al., 2012; Burridge et al., 2014; Ernst et al., 2014).

Despite quantities of antibiotics and pesticides incorporated into marine systems, and due to
partition, dispersion, and degradation processes summated to typical sampling effort and analytical
difficulties, obtaining pesticide concentrations for each compartment (water, suspended, sediments,
and non-target organism) is a real challenge. This can explain the few environmental values
reported in the literature. In several cases, these values could be associated with fugacity-based
models level 111 which was used to describe the dynamic and fate of different compounds in coastal
marine environments after one day of medication. The model was tailored to a salmon processing
environment with considerations for compound partition, treatment dosage, degradation, advective
transport, rates of sedimentation and resuspension, and salmon density (Mackay and Paterson,
1991; Gouin and Harner, 2003; Hughes et al., 2012; Zhang et al., 2015; Kim et al 2017; Chen et
al., 2019; Wang et al., 2020).

1.2 Fate and persistence of antibiotics

Antibiotics are administrated to salmon as a component of food pellets, and following each
treatment, between 70% and 90% of non-metabolized compounds are released into the water
column through urinal, branchial and fecal excretion (Pouliquen et al., 2007, Grigorakis and Rigos,
2011; Miranda et al., 2018). Between 5% and 20% of uneaten pellets were observed to sink to
sediments (e.g., Gowen et al., 1994). Once released into the water column, and according to their
physicochemical properties, these antibiotics can be partitioned between dissolved and particulate
phases, suffer degradation processes, sedimentation processes, and also horizontal transportation
(Sirtori et al., 2012; Leal et al., 2015; Liu et al., 2015a, Mitchell et al., 2015). During all dispersal
processes (by horizontal transport), antibiotics can be affected by chemical, biological and abiotic
hydrolytic degradations (e.g., Wen et al., 2009; Sirtori et al., 2012; Zhao et al., 2013; Mitchell et
al., 2015).

All these processes, summated to environmental conditions, determine the fate and

persistence of antibiotics. Some studies have reported major preservation of antibiotics (longer
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half-life) just under the cages with a poor quality of the sediments and evidence of anoxic
conditions (black color and odor of H>S), due to organic matter accumulation (Bjorklund et al.
1990; Samuelsen et al., 1992). Flumequine, florfenicol, and others like oxytetracycline have a
larger half-life under anoxic conditions (Bjorklund et al. 1990; Hektoen et al., 1995; Coyne et al.,
2001; Burridge et al., 2008).

Degradation of antibiotics and metabolite products have been poorly studied under natural
environmental conditions, with a few studies in marine sediments under laboratory conditions (e.g.,
Gaw et al., 2014). One of them was florfenicol-amine (florfenicol metabolite) which has a
persistence of months in the sediments in contrast to one week for florfenicol (e.g., Hektoen et al.,
1995). Flumequine, in another hand, shows a major tendency to be associated with the particulate
phase, sinking in sediments and, eventually, being more persistent (Bjorklund et al., 1990; Coyne
et al., 2001; Burridge et al., 2008). Intense degradation of florfenicol due to high hydrolysis rate
has been reported to occur at pH above 8 (Mitchell et al., 2015), while ionic metals compounds
(e.g., Ca%*, Fe?*) or organic colloids or humic and fulvic material act in the retention of antibiotics
by sequestration (e.g., Wang et al., 2010; Leal et al., 2015; Liu et al., 2015; Mitchell et al., 2015).
Understanding the partitional behavior of antibiotics, like florfenicol and flumequine, under
controlled temperature conditions similar to the Patagonia fjord can help to understand their fate
in those environments.

Excessive and unrestricted use of antibiotics is a general problem in aquaculture (Ottinger et
al., 2016), especially in Chile, a country recognized for its high use of antibiotics (Burridge et al.,
2010). The annual use of antibiotics in the Patagonian regions of Los Lagos, Aysén, and
Magallanes hold an average of ~373 tons, and has varied from 180 tons in 2009 to ~550 tons in
2014 and 2015, and gradually decreasing to ~323 tons in 2018 (Sernapesca, 2019). Some studies
have been focusing on the local impact of salmon culture, however, few studies seek to understand
the dynamic and fate of these compounds along of fjords, with high pressure of aquaculture

activities.
1.3 Pesticides fate and occurrence in non-target organisms.

Pesticides are used, in Chile, as a treatment against infection in salmon cultures by Caligus
rogercresseyi, which can generate severe skin damage and a major salmon susceptibility to

suffering a bacterial and viral infection (Bravo, 2003; Johnson et al., 2004; Lhorente et al., 2014;
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Dresdner et al., 2019), which results in a decreasing to production and also in an increment in
production costs (Gonzalez and Carvajal, 2003; Rozas and Asencio, 2007; Revie et al., 2009;
Gonzélez et al., 2015). Some pesticides, like emamectin benzoate, have been used to target
organisms like C. rogercresseyi, which has been proven to have developed some resistance. As a
consequence, the industry has started to use new pesticides, like pyrethroids, using deltamethrin
since 2007 and cypermethrin since 2009 (Bravo et al., 2008, 2010). Others have also been used,
such as diflumenzuron (chitin synthesis inhibitor) in 2010 and azamethiphos in 2013 (Helgesen et
al., 2014; Quifiones et al., 2019).

Pyrethroids, as shown in Figure 2, are applied to salmons by bathing. The treated water is
later released into the seawater, and their plume can be followed in the dissolved phase 1 km away
from the locus of release and remain above detection limits for 48 hours (e.g. Willis et al., 2005;
Burridge et al., 2014).

Figure 2. Conceptual model of fate and organism impact of pesticides used in aquaculture

treatments (autoelaboration).



However, these compounds have a high Log Kow (about 6) summated to low solubility.
Thus theyare highly susceptible to absorbin the organic matter of particles (Erst et al., 2014;
Tucca et al., 2017; Méjanelle et al., 2020). After absorption, the pesticide carrier particles move
the compounds by horizontal transport and by sinking to sediments. Sorption may determine thi
fate and persistence of pyrthrrroids in the marine environment with a potential risk for non-target
benthic organisms (Tucca et al., 2017; Urbina et al., 2019; Méjanelle et al., 2020).

The impact of pyrethroids released in the dissolved phase has been reported to have a potential
effect over non-target adults and larvae crustacean (Mugni et al., 2013; Gebauer et al. 2017;
Parsons et al., 2020), where it produces a reduction in the feeding and motility at least during 1h
of salmon treatments, which can have some implications in an ecological level (Friberg-Jensen et
al., 2003; Van Geest et al., 2014a). Other planktonic groups, such as phytoplankton showed growth
stimulation and this process has implications on structure community through differences in
sensitivity of the species (Wang et al., 2010). It has been suggested that pesticides can produce
changes in a photo and chemoautotrophs carbon fixation in the microbiota (Rain et al., 2018).
Recent studies have reported an efficient bacterial degradation of deltamethrin as a tool to remove
residual content inside crabs (Ning et al., 2020). Pyrethroids have the potential to bioaccumulate
(Power and Chapman, 1992) due to their high affinity for organic matter and lipids (Log Kow 5 to
6). Filtering organisms are also exposed to pyrethroid contamination (e.g., Mazzola and Sara, 2001,
Norambuena-Subibabre et al., 2016). Contrary to the assumption that pyrethroid insecticides were
converted to non-toxic metabolites by hydrolysis in mammals (Godin et al., 2007), different
pyrethroids were shown to be bioaccumulated by dolphins (Alonso et al., 2012). Then assuming
the high affinity by particles and subsequence sinking in the sediments, is possible to consider that
these compounds can be incorporated by sessile filter organism, bioconcentrated or
bioaccumulated, and eventually used as an environmental bioindicator in areas with active

aquaculture conditions.

1.4 Impact of aquaculture pollutants on marine food webs and carbon cycle

A rising concern is whether pollutants and their metabolites released to aquatic
environments are transferred to non-target edible shellfish and fish resources (e.g., Lahti and
Oikari, 2011; Cabello et al., 2013), and thereby to humans (Burridge et al., 2010). Dissolved

pollutants enter non-target organisms of the pelagic food web through bioconcentration (Power and
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Chapman, 1992) as shown for treatment bath plume, and this exposure is limited to a few days
(Willis et al., 2005). Due to their deposition to sediments, they are also incorporated by benthic
organisms (Leung et al., 2012; Kim et al., 2014; Chen et al., 2015). A continue exposure of
antibiotics can induce changes in the sedimentary bacterial community (e.g., Samuelsen et al.,
1992) and favor bacterial groups with resistant genes (e.g., Chelossi et al., 2003). Such perturbation
has been reported close to aquaculture farms, especially by tetracycline (Miranda and Zeleman,
2002; Cabello et al., 2016). Since part of the microbial community is affected by antibiotics, we
would expect the activity of the affected population to be altered, and to be reflected in the overall
degradation of organic matter by the microbial community (e.g., Pantoja et al., 2011, Arnosti,
2014), the first step of organic carbon decay.

The impact of dissolved pyrethroids is less clearly understood but the exposure of pelagic
food web lasts at least hours (Willis et al., 2005; Burridge et al., 2014; Ernst et al., 2014), and
changes in non-target crustacean communities have been reported (Van Geest et al., 2014). They
can affect even crustacean benthic organisms, due to their high affinity for organic matter and lipids
(Log Kow 5 to 6). In benthic communities, meiofauna (<1000 to > 42 um mesh) has a key role in
carbon sequestration in sediments (Van Cappellen, 2003) and nutrient release due to
remineralization (Webb and Montagna, 1993). The interaction with bacterial activity in sediments
can stimulate organic matter degradation (Nascimiento et al., 2012; Bonaglia et al., 2014) and also
compete to consume organic matter (e.g. Nascimiento, 2010). Copepods (arthropods) are second
in abundance in sediment compared to nematodes (e.g., Coull, 1999; Sajan et al, 2010; El-Serehy
et al., 2015) and preferred preys of invertebrates and fishes (Coull, 1999), and they could also be
affected by pesticides that in turn affect mineralization or trophic structure.

Benthic response to antibiotics is complex because they inhibit some bacterial biochemical
processes (see Table N°1) and also induce gene resistance (e.g., Chellosi et al., 2003; Marti et al.,
2014). Bacteria with antibiotic resistance occur in feces of treated salmons and are also detected in
sediments underneath salmon farms (Miranda and Zemelman, 2002; Cabello, 2006; Primavera,
2006; Price et al., 2015). Antibiotics more likely affect biomass and degradation of organic carbon
and considering that aquaculture is a source of additional organic carbon to the ecosystem, a
decrease in mineralization may lead to an even greater organic carbon accumulation.

Our understanding of the occurrence of toxic compounds released by aquaculture is limited

to a few reports on pyrethroids in seawater, on florfenicol, and flumequine in sediments. Several



authors have pointed to the need for a more comprehensive inventory on the fate and partition of
antibiotics and insecticides in the environment and on their degradation (e.g., Ernst et al., 2014,
Gaw et al., 2014). The impact of these pollutants on the carbon cycle, and especially on organic

carbon mineralization is unknown.

1.5 The scientific problem and the strategy

Most of the studies about antibiotics have been focusing on the local impact of salmon
culture. However, few studies seek to understand the dynamic and fate of these compounds along
fjords with high pressure of aquaculture activities. Additionally, understanding the partitional
behavior of antibiotics, like florfenicol and flumequine, under controlled temperature and salinity
conditions similar to the Patagonia fjord can help to understand the fate of these compounds in
those environments.

Assuming that pyrethroids have a high affinity with particles and, subsequently, those
particles will sink into the sediments, these compounds have the potential to be incorporated by
sessile filter organisms, bioconcentrated or bioaccumulated, and eventually used as an
environmental bioindicator in areas with active aquaculture conditions.

The impact of antibiotics and pyrethroids on the carbon cycle, and especially, on organic
carbon mineralization is unknown. The abundance and diversity of microbial populations could be
affected by the antibiotic presence, producing a decrease in mineralization that may lead to an even
greater organic carbon accumulation. A similar situation can be observed in marine sediments
where copepods, the second highest group in abundance, could be affected by pesticides and, in
turn, affect organic matter mineralization or trophic structure.

The question of the impact of pollutants released by aquaculture activities is not trivial. First,
the marine environment dilutes the compounds to a point where they can be very difficult to detect.
Second, at such low levels, the impacts of pollutants are subtle changes in ecological functions
rather than usual toxicological effects (Rain-Franco et al., 2018). Finaly, the industry has set-up
management procedures to reduce the impact of salmon treatments, such as period of sanitary rests,
usually of 3 months, after the collection of the fish. The overall impact of using pesticides and
antibiotics may integrate toxicological effects close to the cages and during the treatment to other

low levels impacts, farther away from the cages and at times stretching to after the sanitary rest



period. Scientific tools do not exist at present date to appraise those likely various effects. We

therefore tried to tackle impacts using 3 complementary approaches (Figure 3):

Environmental Measurements: assessing the occurrence of compounds (antibiotics) after the
sanitary rest periods, all along the fjord, and not especially close to the cages. Also, pyrethooids
occurrence in suspended particles and benthic filter-feeding organism were analyzed.
Modeling: calculating exected concentration of antibiotics in seawater and sediments
Experiments: determining potential impact of pesticides and antibiotics on remineralization, at

concentrations representative of treatment periods, and of area in close vicinity of the cages.

Figure 3. Strategy
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1.6 Hypotheses

Hypothesis 1:
Based on the expected partition coefficients of antibiotics and pyrethroids flumequine and
pyrethroids are found mainly associated with organic material in particulate phases and benthic

filter-feeders in Puyuhuapi Fjord, while florfenicol is mainly under the dissolved form.

Hypothesis 2:
Antibiotics and pesticides will affect the community respiration of microorganisms and

meiofauna (crustaceans).

1.7 General goal

To understand the fate and dynamics of antibiotics and pesticides used by the aquaculture
industry in the marine ecosystem and to evaluate their impact on key processes of the marine carbon

cycle.

1.8 Specific goal

1) To determine the occurrence of florfenicol and flumequine in dissolved and particulate
phases and in surface sediments along the Puyuhuapi fjord, to establish their fate supported
by fugacity models.

2) To establish in laboratory experiments of sorption of florfenicol and flumequine under

temperature and salinity similar to those of Puyuhuapi fjord.

3) To determinate pyrethroid contents in benthic sessile filter organisms and estimate possible

bioconcentration.

4) To establish the effects of antibiotics and pesticides on community respiration in the water
column and marine sediments, through an experimental approach with samples collected in

Banyuls bay (France), an area without aquaculture activity.
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2.0 MATERIAL AND METHODS

The present work was developed in two geographical areas; i) zone with active aquaculture
activity, Puyuhuapi Fjord in Chilean Patagonia and, ii) zone without aquaculture activities in
Banyuls Bay in France. The fate and dynamics of antibiotics and pesticides were studied in
Puyuhuapy fjord and the effect of these compounds on the activity of bacterial communities and

meiofauna was studied in Banyuls bay.
2.1 Study Area

2.1.1 Puyuhuapi fjord

Two field trips were conducted during August 2016 and March 2017 in the Puyuhuapi
Fjord (44°57°S; 73°21°W), located in the Aysén Region of the Chilean Patagonia (Figure 4). The
location has a total area of ca. 700 km?, currently harboring 500 salmon cages (~ 9 % of fjord
surface area). Since 2001, salmon aquaculture has been a prominent activity in this area, currently
with 25 active culture centers and a salmon production of 26,670 tons during 2016 (Sernapesca,
20164, b).

Figure 4. Study area
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Puyuhuapi fjord is connected to the north by the Jacaf fjord and to the south by the Moraleda
Channel. Water circulation in the Puyuhuapi fjord follows an estuarine pattern characterized by a
surface seaward flow of fresher waters from the continent and an intrusion of oceanic waters
through the Jacaf and Moraleda Channels (Schneider et al., 2014). Primary production in
Puyuhuapi fjord averages 1.4 g C m2 d* (Daneri et al., 2012) and hypoxic conditions below 120m
depth are promoted by the remineralization of organic matter and the presence of the Jacaf and
Puyuhuapi sills (see Figure 3) which limit ventilation (Schneider et al., 2014, Silva and Vargas

2014).
2.1.2 Banyuls bay in NW Mediterranean Sea

Field trips were conducted at the SOLA station (42°30' N, 03°08" E, 27 m depth) and the
MESO station (42°29' N, 03°09’ E, 35 m depth) located in Banyuls bay at NW Mediterranean Sea
(Figure 5). These stations were part of long-term environmental monitoring by the Service
d’Observation du Laboratoire Arago. The area corresponds to an oligotrophic zone with a ~1 ng

chlorophyll a (chl a) L™ (Obernosterer et al., 2005) without aquaculture activities.
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2.2 Chapter I: Antibiotics florfenicol and flumequine in the water column and sediments

of Puyuhuapi Fjord, Chilean Patagonia

We sampled Puyuhuapi Fjord during August 6-9, 2016, six months after the last
programmed florfenicol treatment in the fjord between January and February 2016, and one year
after the last treatment with flumequine (Sernapesca, 2016b). Water samples were collected at 8
sites along the fjord at four depths and from the surface of the Cisnes River, and surface sediments
were taken at 4 sites (Figure 4). Seawater samples were collected with 10L-Niskin bottles and two-
liter subsamples were then filtered onto previously combusted GF/F filters (0.7 um pore size).
Filters were stored at -20°C in the dark until analysis. The filtrate was acidified to pH 3 with 40%
H2S04, amended with 0.5 g L™ Na,EDTA to chelate major cations, and then stored at 4°C. Surface
sediments were collected using a Rumohr corer, and the top one-centimeter sections were removed
with a core extruder. Sediment samples were then stored at -20°C in the dark until analysis.
Physical characterization of the sampling sites was conducted by measuring temperature, salinity,
and dissolved oxygen in the water column using a Seabird SBE Model 25 CTD.

2.2.1 Analysis of antibiotics

Dissolved organic matter was pre-concentrated onto 3 mL (60 mg) solid-phase
extraction columns (SSDVBO063, Styre Screen) in a VaccElut Cartridge Manifold (Agilent). C18
cartridges were previously conditioned with 5 mL methanol followed by 5 mL ultra-pure water.
Adsorbed material was eluted with 10 mL methanol at a flow rate of 2 drops per second into
silanized vials and directly evaporated under a nitrogen stream at 40°C. The residue was dissolved
in 1000 uL methanol and filtered through 0.22 um PVDF syringe filters, gently saturated with No,
and then kept at -20°C until analysis (Zhou et al., 2012). The particulate organic matter on filters
and within sediment (ca. 1 g dry weight) was extracted using ultrasound extraction (3 times) with
5 mL citric acid buffer (pH 3) and 5 mL acetonitrile for 15 min, and then centrifuged for 10 min at
1400 rpm. Supernatants were diluted to 100 mL using milli-Q water, amended with 0.5 g L*
Na,EDTA, and loaded into SPE columns (SSDVB063, Styre Screen). Elution and storage of
eluates were as described above for the dissolved phase.

Analyses of florfenicol and flumequine were conducted using an UHPLC Shimadzu
(Kyoto, Japan) Nexera X2 LC-30 AD system coupled to a single quadrupole mass spectrometer
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LCMS-2020 with an electrospray ionization (ESI) interface. Separation was carried out on a
Phenomenex (Torrance, CA, USA) Kinetex EVO C18 core-shell column (150 mm x 2.1 mm, 2.6
pm) connected to a Kinetex C1g guard column, both operating at 40° C. Mobile phase A was 0.1%
formic acid in Milli-Q water, and phase B was formic acid 0.1% in acetonitrile. The gradient used
was 10% B for 1 min, increased to 70% B over 3 min, and then maintained for 10 min at a flow
rate of 0.2 mL minL. The ESI interface was used simultaneously in positive and negative mode to
measure flumequine (positive) and florfenicol (negative). Mass spectrometry analysis was
implemented in selected ion monitoring (SIM) acquisition mode to monitor molecular ions at m/z
262 [M+H]" for flumequine and 356 [M-H] for florfenicol. Samples in which florfenicol and
flumequine were detected were further analyzed by UHPLC-MS-MS for confirmation, under the
same chromatographic conditions as for UHPLC-MS. Chromatography was performed in a
Shimadzu Nexera X2 UHPLC LC-30 AD system coupled to a LCMS8030 mass spectrometer with
ESI. Detection was carried out by tandem MS in multiple reaction monitoring (MRM) mode using
the following parent and product ions m/z values for flumequine (m/z 262—202) and florfenicol
(m/z 356—185). MS operating conditions were set as follows: ESI voltage 4.5 kV, collision energy
30.0 V, nebulizer gas (N2) flow: 3.0 L min?, drying gas (N2) flow: 15 L min’, desolvation line
(DL) temperature: 250 °C and heat block temperature: 400 °C. Data were acquired, recorded and
analyzed using Shimadzu LabSolution 5.8 software. Quantification was carried out using a
calibration curve with serial dilutions of florfenicol (CAS N° 73231-34-2) and flumequine (CAS
N° 42835-25-6). Reproducibility was 3 to 5 % (coefficient of variation), routinely determined from
three to five replicate analyses. Recovery yield of antibiotics from seawater was estimated by
adding 1 mL of a 100 pg Lt antibiotic standard solutions to 1L Milli-Q water (in triplicate) and
maintained for 24h in the dark under continuous shaking. Antibiotics were extracted and analyzed
as described in the above methodology, resulting in recoveries of 79% for florfenicol and 66% for
flumequine. Detection and quantification limits were calculated using signal-to-noise ratios (S/N)
of 3 and 10, respectively. Detection limits for florfenicol were 2 ng L in seawater and 1 ng
gdw in sediments and for flumequine were 12 ng L™t and 6 ng gdw™. Limits of quantification for
florfenicol were 6 ng L in seawater and 3 ng gdw* in sediments and for flumequine were 36 ng
Lt and 18 ng gdw™,

Regarding QA/QC, all solvents used for chromatography were LC grade, Milli-Q water
with a resistivity of 18.2 MQ c¢m (25°C), TOC < 5 ppb and bacterial count <0.01 CFU mL™. All
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reagents and chemicals were at least analytical grade (ACS) and all instruments are annually
calibrated as recommended by the by manufacturer. QC was performed using blank (methanol)
and internal reference samples (florfenicol and flumequine standards diluted at calibration middle-
level), which were analyzed in triplicate at initial, middle and end of each sample analysis batch.
Thus, the equipment performance was constantly evaluated including carry-over effect, resulting

in relative standard errors <5% for concentration and <1% for retention time.
2.2.2 Multimedia fugacity model

A fugacity-based model level 111 (Mackay and Paterson, 1991; Gouin and Harner, 2003;
Hughes et al., 2012; Zhang et al., 2015) was designed to predict the dynamic and fate of antibiotics
in farmed fish, and in the water column and sediment after one day of medication. The model was
tailored to a salmon processing environment with considerations for antibiotic partition, dosage,
degradation, advective transport, rates of sedimentation and resuspension, and salmon density.
Calculations were made for simultaneous treatments with medicated feed pellets in 25 salmon
farms, each consisting of 20 cages, as found in Puyuhuapi Fjord (Sernapesca, 2016b). Dosages in
fish feed were 10 mg kg™ florfenicol and 30 mg kg* flumequine, and the biomass of almonids was
between 11 and 17 kg m™ per cage with 15% mortality rate over a two-year production period
(Subpesca, 2016). The model considers both diffusive and advective transports of antibiotics from
seawater in sediments, and removal by microbial degradation, modeled as first order reaction rate.
Physical and chemical properties of antibiotics and environmental parameters used in the model
for Puyuhuapi Fjord are shown in Tables S2, S3 (Supplementary material). See more detail in the

result section chapter I.
2.2.3 Monte Carlo Simulation

A probabilistic simulation was carried out to assess uncertainties and sensitivity of the
model based on probability distributions of the input parameters (Table S3) and their contribution
to variability in modeling outcomes Lognormal and triangular distributions were assumed for input
parameters. These analyses determined 95% confidence intervals (C195%) from the probabilistic
distribution of model outcomes (Figure 3 main paper). Simulations were run 100,000 trials using
Crystal Ball 11.1.1 software (Gentry et al., 2008).
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2.2.4 Simulation test for permanence time of antibiotics

A second modeling experiment involved ten days of daily additions of florfenicol and fifteen days
of flumequine, a common treatment protocol for the industry in southern Chile (Contreras and
Miranda, 2011). This simulation was used to evaluate whether antibiotics remain at inhibiting or
sub-inhibiting concentrations in seawater and surface sediment after the end of the treatment, and
if so, for how long they remained above either of these thresholds. During consecutive daily
treatments, microbial decay of predicted antibiotic contents in both water and sediment was
calculated assuming to follow first-order reaction kinetics using half-life values from literature
(Table S2). Environmental concentrations estimated for seawater and sediment through modeling
were used as initial values for temporal decay simulation of antibiotics. During each treatment in

cages the degradation rate constant (k, d!) was computed using equation 1:

Ci__
né=—kt (1)

0

where Co is the estimated concentration from the multimedia model of compartment-i, and k values

are calculated as 0.693/t1/2.
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2.3 Chapter I1: Batch experiment study of water-sediment partition of flumequine and

florfenicol, two antibiotics used in salmon aquaculture in Chile

Seawater was collected from the surface, and marine sediment was collected at ca 90m
depth on the 8th October, 2018 at the Oceanographic Time Series Station 18 (36° 29.94' S, 73°
07.8" W) of the COPAS Center for Oceanographic Research in the eastern South Pacific (FONDAP
ANID Chile). Experimental procedures were conducted in the Laboratory of Marine Organic
Geochemistry at the University of Concepcion. Experiments were conducted under sterile and dark
conditions, under constant orbital agitation (200 rpm), at 8°C and 15°C, in both pure water (milliQ

water, salinity = 0%o) and marine water (salinity =35.34%)
2.3.1 Sediment-water batch experiments

Glassware was cleaned by calcination to 450°C for 4 h and exposed to UV radiation
for 30 minutes before use. Natural seawater was filtered through a PVDF membrane filter of 0.22
um pore size and then autoclaved. Natural marine sediments were autoclaved and exposed to UV
radiation for 30 minutes before use. Ultrapure water was obtained from a Milli-Q device (18Q).
Incubations were carried out on a Thermo Scientific Chamber MaxQ 6000. A mix of flumequine
(Sigma-Aldrich CAS 42835-25-6) and florfenicol (Sigma-Aldrich CAS 73231-34-2) was prepared
as a primary standard stock solution of 40 mg L* of each antibiotic.

Experiments started on the 23" of October, 2018. Forty mL of seawater or ultrapure water
were added to glass flasks of 80 mL. The same water volume was amended with 3 g of wet marine
sediments to prepare the water + sediment treatments. Each treatment was prepared in triplicate
(Figure 6).

Control treatments consisted of flasks containing pure water or seawater, with or without
sediment, but without antibiotic addition. For other treatments, antibiotics were added to the tubes
to a final concentration of 1.4 (8°C incubation) or 1.2 mg L (15°C incubation) of each florfenicol
and flumequine. Flasks were gently mixed, maintained for 30 min under dark conditions, and 1 mL
of water was sampled for the initial time. Further sampling times were at 1, 2, 3, 4, 24, and 48h.
The 1 mL water sample was diluted 10X using an acetonitrile: water mix (50:50, v/v), then a
subsample of 1 mL was directly injected in the UHPLC-MS.
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Figure 6. Experimental design used in batch experiments carried out in the Geochemistry
Organic Marine Laboratory at the University of Concepcion. After 30 min of incorporating
the antibiotics, 1 mL of water was sampled (initial time). Further samples were collected every
hour until 4h, at 24h and 48h. This experiment was done at 8°C and repeated at 15°C.

2.3.2 Analysis of antibiotics

Antibiotics were analyzed using a Shimadzu (Kyoto, Japan) Nexera X2 LC-30 AD UHPLC
system coupled to a single quadrupole mass spectrometer LCMS-2020 with an electrospray
ionization (ESI) interface. The mobile phase A was Milli-Q + Formic acid 0.1%, and B was
Acetonitrile + Formic Acid 0.1%. The analysis started using 10% B for 1 min, increasing to 70%
around 3 min, maintained for 10 min, and finally decreased to 10% B for 5 min. Florfenicol and
flumequine were separated on a Phenomenex (Torrance, CA, USA) Kinetex EVO C18 core-shell
column (150 mm x 2.1 mm, 2.6 um) connected to a Kinetex C18 guard column, operating at 40°
C. lonization ESI in positive and negative mode was used simultaneously to measure florfenicol
(negative) and flumequine (positive). Mass spectrometry analysis was implemented in selected ion
monitoring acquisition mode to monitor molecular ions at m/z 262 [M+H]" for flumequine and 356
[M-H] for florfenicol. Reproducibility was 3 to 5 % (coefficient of variation), routinely determined
from three to five replicate analyses (Jara et al., 2021).
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2.3.3 Statistical analyses

Tests of both homogeneity of variances (Levene test) and normality of variables (Shapiro—
Wilk test) were not fulfilled. We therefore tested for significant differences between categorical
factors (matrix, antibiotic type, and temperature) using the nonparametric Kruskal-Wallis test
(95% significance), and for differences between experimental treatments (Seawater, pure water,
seawater + sediment, and pure water + sediment) using the paired sample Wilcoxon test (95%

significance).
2.3.4 Calculation of Kq and Koc

When the difference between treatment with and without sediment was proven to be
significant using the Wilcoxon test, concentrations of sorbed antibiotics were calculated as the
difference between the concentration of a dissolved antibiotic in a given treatment without
sediment and that with sediment. This was calculated for each replicate at each of the equilibrated
times (4, 24, and 48 h). For instance, for the treatment seawater at 4H and the first replicate, it was
calculated as:

[FLU; ] — [FLUSWW]4H,R1 - [FLUSWW+SED]4H,R1
in sed SW W14H,R1 SedW

where,

[FLU sww]an, r1 is the dissolved antibiotic concentration (FLU stands for flumequine) in the first
replicate of the treatment (SW W stands for seawater winter temperature) without sediment
sampled at 4H, expressed in ug L?;

[FLU sw w+sep]sn, re IS the dissolved antibiotic concentration in the first replicate of the same
treatment with sediment, sampled at 4H, expressed in pug L*;

SedW is the dry weight of sediment used in the treatment, expressed in kg L™;

[FLU in sed sw w]an, r1 i the calculated content of flumequine sorbed to the sediment, expressed in

ug kg, for the treatment SW W, at 4H, for the first replicate.

The dissolved-particle partition constant Kq was calculated as the ratio of sorbed antibiotic
concentration to the dissolved antibiotic concentration, for a given treatment:

_ ClT,sed
ClT,sw

Kq
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Where:

Cirseq 1S the concentration of the compound i in the sediment, averaged for all equilibrium
times (T=, 4,8, 24 and 48h) in the experiments carried out at temperature T.

Cir sy Isthe concentration of the compound i in the seawater (experiment condition without
sediment), averaged for all equilibrium times (T=, 4, 8, 24 and 48h) in the experiments carried
out at temperature T.

6K, is the error on Kg, and is calculated using propagation error formula using derivatives:

ClT,sed SCLT,SW

5Kd:KdX\/(6 )%+ ( )?

CiT,sed CiT,sw
Where:
8Cir seq 1S the error on Cir g4 and its calculation is explained below.the error

8Cir g, Is the standard deviation of the measurements of Cir,, .

Calculation of 6Cir seq

ClT,sed = ClT,sw+sed - CLT,SW

The expression of §Cir s04 i, using derivatives:

6CiT,sed = J(6CiT,sw+sed)2 + (6CiT,sw)2

The organic carbon partition constant Koc represents the ratio of sorbed antibiotic concentration in
the organic phase, divided by the dissolved antibiotic concentration, for a given treatment and a
given replicate:

Kq

Koe = ==
ocC ocC

where, OC is the concentration of organic carbon in the dry sediment, expressed in kg kg™* and Koc
is expressed in L (of seawater)/ kg (of organic carbon). At station 18, OC= 0.03 kg kg™*= 3%.
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2.4 Chapter 111-B: Occurrence of pesticides in marine benthic filter-feeders in the
Puyuhuapi fjord (44°57°S; 73°21°W), Chilean Patagonia

2.4.1 Field Sampling

Seawater and benthic filter-feeding organisms were collected in seven sampling stations in
the Puyuhuapi fjord between March 23" and 30", 2017 (Figure 7, Table 3), onboard the vessel L/M
Don Osvaldo (with a length of 15 m and the beam of 3.5 m; registration CIS-1719 CA 2028).
Seawater samples were collected between 6 and 15 m depth with Niskin bottles (10 L), prefiltered
with a 100 um sieve, and filtered using a precombusted filter GF/F 0.7 um pore size. The filter was
kept at -20°C for pesticides and total organic carbon measurement. Sponge species (three species
for each station) and two bivalve species (Mytilus chilensis and Chlamys patagonica) were
collected by scuba diving, freeze-dried and kept in dark conditions. On each station, three
specimens of sponge were collected, and six specimens per bivalve species. Pesticides, lipids, and
elemental analysis (CHN) were conducted in the Benthic Ecogeochemistry Laboratory (LECOB)

at the Observatoire Océanologique de Banyuls-sur-mer, Sorbonne Université (France).
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Table 3. Location of sampling sites in the Puyuhuapi Fjord during March 2017. Three specimens
for each sponge species and six specimens for each bivalve species were collected by scuba-diving.

Samplin Longitude Total suspended
Sampling site PING 1 | atitude (S) g particles depth Organisms
Day (W)
(m)
a,b,c
1 23 44° 44.699' | 72°44.356' 6 SP ongesh and
bivalves
a,b,f
2 24 44°41.481' | 72°42.237 6 SP ongesh and
bivalves
a,b,d
3 25 44°38.570' | 72°47.829' 15 SP ongeshA and
bivalves™!
a,b,d
4 28 44°36.412' | 72°40.629' 15 S!oongesh‘ nd
bivalves™
5 29 44°33.024' | 72°39.386' 15 Sponges”*
6 29 44° 44.838' | 72°44.758' 6 Sponges™"*
7 30 44°44.702' 72°44.420' 15 Sponges®>9

Sponge’s: a) Cliona chilensis; b) Axintella crinita; c) Amphilectus rugosus; d) Tedania spinata; e) Biemna sp; f) Unidentified D; g) Unidentified S.

Bivalves: h) Mytilus chilensis ; i) Chlamys patagonica.

2.4.2 Total lipids analysis.

The sulphophosphovanillin method (colorimetric method) considers the relation of total
lipids with cholesterol and gravimetric standards as described by Baner and Blackstock (1973).
Briefly, this method is based on (i) lipid extraction: 1.5 mL of chloroform-methanol mixture (2:1)
were added to 25 mg of freeze-dried samples, maintained in orbital agitation during 20 min,
centrifugated for 5 min at 1000 rpm, and 1 mL of supernatant was dried at 90°C, (ii) hydrolysis:
500 uL sulfuric acid (97%) was added in order to hydrolyze ester lipids from dry extracts, closing
the screw cap, and heating for 10 min at 90°C. Samples were immediately cooled, (iii) complex
formation: 100 pL of the hydrolyzed solution were recovered, and 2.5 mL of phosphor-vanilla
solution were added to produce stable color by mixing, and measured in the spectrophotometer at
520 nm after 30 min in disposable cuvettes of 10-mm. A cholesterol stock solution (0.9 mg mL™)
was used to prepare the calibration curve with a range of concentration of 20 to 1000 pg chol. mg
dw. This calibration curve had been treated with the same procedure previously described after
drying the sample at 90°C in step (ii). Data were normalized by organic matter content in the

samples.
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2.4.3 Pesticide analysis.

The extraction and purification of pesticides from suspended solids and benthic organisms
were performed in the LECOB laboratory during autumn 2018. Solid lyophilized suspended
samples were extracted by ultrasound for 20 min with 5 mL dichloromethane (DCM), centrifuged
for 5 min at 5500 rpm. A similar process was used for sponges and soft body of bivalves samples
(0.5 g, lyophilized), but a DCM-hexane mixture (10:1) was used for the extraction. After extraction,
50 uL of internal standard (0.001 pug mL™) were added to extracts, reducing the volume to ~1 mL
using a rotary evaporator, and a few guantities of anhydrous sodium sulfate were added and keep
overnight. Finally, the extract was conserved in iso-octane.

Extracts were cleaned using a column packet from bottom to top with 5 g of water-
deactivated silica gel, 3 g of water-deactivated alumina, and 0.5 g of anhydrous sodium sulfate.
The column was cleaned with 5 mL of hexane. The extract was eluted in four phases, (i) F1, 25
mL of hexane, (ii) F2, 32 mL of hexane: DCM mixture (3:1), (iii) F3, 25 mL of DCM and, (iv) F4,
15 mL of methanol. The total volume was reduced with a rotary evaporator, conserved in an iso-

octane and kept at -20°C until analysis.

Table 4. Quantification transition and Detection and Quantification of limit (LOD and LOQ,
respectively) of pyrethroids in organisms (ng g lipid dw™) and particles (ng L™).

Compounds Quantification LOD LOQ LOD LOQ
transition
Unit (m/z) (ng g lipid dw™?) (ng g lipid dw?) (ng L) (ng L)
Allethrin 301 — 168 0.00856 0.01199 0.00008 | 0.00012
Bifenthrin 205 — 121 0.01741 0.03483 0.00017 | 0.00033
Cyhalomethrin 205 — 141 0.01741 0.34829 0.00017 0.00334
Cyfluthrin 207 — 35 0.03173 0.31729 0.00030 0.00305
Cypermetrhin 207 — 35 0.06181 0.47897 0.00059 | 0.00460
Fenvalerate 211 — 167 0.06181 3.09066 0.00059 | 0.02967
Deltamethrin 217 — 81 0.06181 0.09272 0.00059 0.00089

Fractions containing pesticides were analyzed by gas chromatography coupled to a triple
quadrupole mass spectrometer (GC/ MS-MS) operated in negative ionization mode with
ammonium as the ionizing agent (NCI) (Dallegrave et al., 2016). Briefly, the Multiple Reaction

Monitoring mode records consecutive fragmentations of parent ions to daughter ions, ultra-specific
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pairs of compounds. Quantification is performed against deuterated internal standards (d6-
Cypermethrin, m/z: 213 — 35) and correcting responses for each pyrethroid (Table 4).

Pesticide calibration curves were established by analyzing certified solutions. Analytical
quality control is based on reproducibility, recovery and blank levels (Feo et al., 2010, Dallegrave

etal., 2016, Aznar-Alemany et al., 2017).
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2.5 Chapter 1V: The impact on the carbon cycle of antibiotics and pyrethroids used in

aquaculture activities.

A community respiration experiment was performed to establish the impact of antibiotics
(oxytetracycline, florfenicol, and flumequine) and pyrethroids (cypermethrin and deltamethrin) in
carbon cycle processes. Seawater and marine sediment were performed in the Benthic
Ecogeochemistry Laboratory (LECOB) at the Oceanographic Observatory of Banyuls, Sorbonne
Université (France). Analysis for nutrients, ammonium, and dissolved organic carbon (DOC) were
conducted by Microbial Oceanography Laboratory (LOMIC) and flux cytometry was conducted in
BioPIC laboratory, both laboratories at the Oceanographic Observatory of Banyuls, Sorbonne
Université (France). Diversity and abundance of meiofauna were measured and bacterial

abundance and diversity will be determined by DNA analysis.
2.5.1 Field Sampling

Fifteen sediment cores were obtained in the MESO station (42°29' N, 03°09' E, 35 m depth)
by scuba-diving on June 19™, 2018. Whereas, on July 2", 20 L of seawater samples were collected
at 3 m depth with a Niskin bottle (10 L) in the SOLA station (42°30’ N, 03°08’ E, 27 m depth).

Seawater samples were prefiltered with a 200 um sieve.
2.5.2 Experiment procedures

The microcosm experiments (seawater and marine sediments) were performed under
dark conditions (to prevent algae growth) and at a constant temperature of 14°C, through
immersion in a water recirculation tank. Each microcosm was acclimatized for 24h. Solvent and
drugs were added as shown in Figure 8.

Daily dissolved oxygen was measured using an equipment Unisense Microsensor
Multimeter Picoammeter PA2000 and microelectrode Unisense OX-100-12593. Samples were
obtained for the initial condition (baseline) and for the final time of the experiments to measure
nutrients, ammonium, dissolved organic carbon, and biological parameters (meiofauna and

bacterial abundance and diversity).
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1. Acclimation for24 h.
. Sampling Initial control
3. Daily dissolved oxygen
measurements (with
, 4 14°C microelectrode)
Recirculation u 4. Sampling end experiment

Treatments:
C: Solvent control:
i) 50 uL Acetone
. ii) 50 puL Methanol
Sediments. S Added 500 ng L-! each
MESO station Seawater compound

At3 m depth T1: Antibiotics
Pre-filter 200 pm sieve T2: Pyrethroids

stcm l SOLA station T3: Antibiotics plus
— Pyretrhoids

System ‘ | ‘

EXPERIMENTS:

15 cm 1L

—

Figure 8. Design of experiments conducted in sediments and seawater microcosms.
Oxytetracycline, florfenicol and flumequine (antibiotics), and cypermethrin and deltamethrin
(pyrethroids) were added at a final concentration of 500 ng L™ for each compound. Samples were

obtained for initial conditions (baseline) and for the final time of the experiments.
2.5.3 Meiofauna community analysis

Subsamples of each core (3 cm) were cut off and preserved in 70% alcohol. These samples
were washed on a 1 mm and 40 pum sieve with fresh water. The separation of meiofauna and fine
sediments, after washing of samples, was extracted with Ludox (specific gravity:1.15). Briefly,
sediments plus meiofauna and 20 mL of water were transferred to a 500 mL centrifuge tube, added
100 mL of Ludox and 3 gr of Kaolin, mixed, and centrifuged for 5 min at 6000 rpm. The
supernatant containing the organisms was washed on a 40 um sieve with fresh water. The
organisms retained on the sieve were transferred to a plastic tube and preserved with 70% alcohol.
Ten drops of Rose Bengel were added to each sample for easier recognition of the organisms. The
meiofauna obtained was identified and counted under a stereomicroscope at a minimum 10-25 x

magnification and expressed as specimens per unit volume.
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2.5.4 Bacterial community analysis

Total bacterial abundance and high and low acid nucleoids content were analyzed by flux
cytometry at BioPIC laboratory at the Oceanographic Observatory of Banyuls, Sorbonne
Université (France). Additionally, the abundance and diversity of phytoplankton were analyzed.
Bacterial community diversity will be measured at Microbial Oceanography Laboratory in
Oceanographic at the Observatory of Banyuls, Sorbonne Université (France), as soon as possible

under these pandemic conditions.

2.5.5. Statistical analyses

Tests of both homogeneity of variances (Levene test) and normality of variables (Shapiro—
Wilk test) were fulfilled, then One-way Anova test for nutrients and two-ways Anova test for
Oxygen concentration values was applied for both water column and sediment experiments. We
therefore tested for significant differences between categories Control Solvents, Antibiotic,
Pesticides and Antibiotic + Pesticides treatments using the parametric Turkey test (95%
significance). Anosim test with a 95% significance was applied for biological components for both

water column and sediment experiments.
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3.0 RESULTS

3.1 Chapter I: Antibiotics florfenicol and flumequine in the water column and sediments
of Puyuhuapi Fjord, Chilean Patagonia
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Abstract

Chile is a major global producer of farmed salmon in the fjords of Patagonia, and also a major
consumer of antibiotics. We tested whether the antibiotics florfenicol and flumequine persisted in
the large Puyuhuapi Fjord after the six months that followed mandatory concerted treatment by all
salmon farms present in the fjord; we then estimated residence times of antibiotics in the system.
Antibiotics were detected in 26% of analyzed samples, only within the particulate phase, with
concentrations of florfenicol up to 23.1 ng L where quantified. Flumequine was present in one
sample at trace concentration; neither were detected in the dissolved phase nor in surface
sediments. A fugacity-based model predicted that flumequine remains in surface sediments at sub-
Minimal Inhibiting Concentrations (sub-MIC) shown to promote selection for antibiotic resistance
in bacteria. Our observations pose new questions such as whether surface sediments might act a
reservoir of antibiotic resistomes of bacteria, and whether bacteria bearing antibiotic resistance

genes could eventually become a risk for human health through consumption of marine products.
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Chile is a major global producer of farmed salmon in the Gords of Patagonia, and therefore a major
consumer of antibiotics. We tested whether the antibiotics florfenicol and flumeguine persisted in the
large Puyuhuapi FHord after the six months following mandatory concerted treatment by all salmon
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phase nor in surface sediments, A fugacity-based model predicted that flumequine should theoretically
remain in surface sediments at the sub-Minimal Inhibiting Concentrations {sub-MIC) previously shown
to promote selection for antibiotic resistance in bacteria. Our observations suggest that surface sediments
might act as a reservoir for antibiotic resistomes of bacteria, and that bacteria bearing antibiotic resis-
tance genes could eventually become a risk for human health through the consumption of marine
products.
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1. Introduction

reliant on the use of antibiotics that can reach the surrounding
emvironment (eg., Du et al, 2017). These antibiotics potentially

Aquaculture activities are being conducted on an increasingly
larger scale because of global food security concerns (FAQ, 20200,
Consequently, increased production levels are becoming more
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select and modify the environmental distribution of antibiotic-
resistant bacteria (Costanzo et al, 2005; Smith, 2008; Tamminen
et al., 2011; Shah et al, 2014) which ultimately pose a risk for hu-
man health through potential gene transfer to human pathogenic
bacteria (Miranda and Zemelman, 2001; Yang et al., 2013 ; Tomova
et al, 2015; Miranda et al., 2018).

Elevated abundances of antibiotic resistant bacteria have been
detected both in the water column {Nygaard et al, 1992 ; Samuelsen
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etal,1992; Schmidt et al., 2000; Petersen et al, 2002; Cabello et al.,
206), and in marine sediments beneath culture cages (Bjorklund
et al, 1991 ; Herwing et al, 1997; Schmidrt et al, 2000). These bac-
teria can persist in the environment even after the decomposition
of antibiotics (Tamminen et al., 2011},

The fate of antibiotics in the coastal ocean depends on physi-
cochemical partitioning between dissolved and particulate phases,
biological degradation, sedimentation, and horizontal transport
{Sirtor et al., 2012; Leal et al, 2015; Liu et al, 2015, Mitchell et al.,
2015). Antibiotics are administrated to farmed salmon as a
component of food pellets, and following each treatment, a fraction
of the consumed antibiotics is released into the water column
though wrinal, branchial and faecal excretion (Pouliquen et al.,
2007, Crigorakis and Rigos, 2011; Miranda et al., 20 8). Sinking of
unconsumed or partially consumed pellets undergo degradation,
particle scavenging and dispersion, also leading to release of anti-
biotics (Leal et al., 2015; Mitchell et al., 2015). Almost 5% of the total
administered food pellets remain unconsumed and are subse-
quently deposited to sediments beneath the cages (Cabello et al.,
2013; Miranda et al, 208) where they can be ingested —
together with antibiotics — by benthic and demersal organisms
{Leung et al., 2012; Chen et al., 2015 ). The antibiotics florfenicol and
flumequine are affected by sorption into particles, photo-
degradation, and microbial activities (Maki et al., 2006) that pre-
sumably include fungal degradation (Mnenna et al, 2011
Laboratory incubations of surface marine sediments have deter-
mined the half-life of florfenicol in marine sediments to be about
one week (Hekioen et al., 1995), with that of flumequine being
about 150 days (Halling-Serensen et al, 1998 ).

The antibiotics florfenicol and flumegquine are used for the
treatment of Pisciricketrtsiosis (SRS- Salmon Ridvetrsial septicoemia)
(Rozas and Enriguez, 2014). Florfenicol is also used for the treat-
ment of Bacterial Kidney Disease, BKD (Semapesca, 2017 a). Chile is
the second largest salmon producer globally after Morway (FAO,
208), and is therefore a major consumer of antibiotics when
normalized to harvest biomass (Miranda et al, 2018). Annual
consumption of antibiotics in Chilean salmon farms varied between
557 tonnes during 2015, and 323 wnnes during 2018, with an
antibiotic consumption index (i.e, antibiotic used/salmonid har-
vest) of 0.05% in 2017 (Sernapesca, 2019). High incidences of Pis-
cirickettsiosis has resulted in florfenicol as presently being one of
the most widely wsed antibiotics (Rozas and Enriquez, 2014;
Sernapesca, 2017b).

In the present study, we investigated the fate of the antibiotics
florfenicol and flumequine in Puyuhuapi Fjord. The study was
designed to assess whether these antibiotic loads could be
considered an environmental threat by promoting selection of
antibiotic-resistant bacteria when antibiotics were at least at sub-
Minimal Inhibiting Concentrations (sub-MIC, eg. Cairns et al.,
208}, Whilst MIC of antibiotics can inhibit visible growth of
some bacteria (e.g., Wiegand et al, 2008), sub-MIC selection for
antibiotic resistance mutations results from effects on genetic and
phenotypic varability, cell-to-cell signaling, biofilm formation,
quorum sensing and gene expression (Cairns et al, 2018)

Measurements of concentrations of antibiotics, and their po-
tential threat, were assessed through chemical determinations of
florfenicol and flumequine in the fjord, and through the use of a
multimedia fugacity-based model on non-equilibrium and steady-
state conditions (Mackay and Paterson, 1991; Madkay, 2001; Gouin
and Harner, 2003; Hughes et al, 2012; Zhang et al, 2015). This
modelling effort was developed to evaluate the specific compart-
ments of the coastal ocean where antibiotics might be more likely
to be detected, and to estimate their potential persistence in the
water column and in sediments.

Chemasphene 275 (2021) 130029
2. Materials and methods

21 Srudyarea

Puyuhuapi Fjord (44°57.57'5; 73°21'W) is located in the Aysén
Region of Chilean Patagonia and has a total area of ca. 700 km?,
currently harboring 500 salmon cages (-9% of fjord surface area).
Since 2001, salmon aquaculture has been a prominent activity in
this area, currently with 25 active culture centers and a salmon
production of 26,670 tonnes during 2006 (Semapesca, 2016a, bl
The fjord is connected to the north through the Jacaf Channel and to
the south through the Moraleda Channel (Fig. 1) Water circulation
in Puyuhuapi Fjord follows an estuarine pattern characterized by
surface seaward flow of fresher waters from the continent and
intrusion of oceanic waters through the Jacaf and Moraleda Chan-
nels(Schneideret al., 201 4). Primary production in Puyuhuapi Fjord
averages 14g Cm~2d ' (Daneri et al., 2012). Hypoxic conditions
below 120 m depth are promoted by remineralization of organic
matter and the presence of the Jacaf and Puyuhuapi sills (Fig. 1)
which limit ventilation (Schneider et al, 2014; Silva and Vargas
2014).

Official reports from the Undersecretariat of Fisheries and
Aquaculture indicate that ca. 20 tonnes florfenicol were used dur-
ing 2015, and ca 4 tonnes during 20016 in Puyuhuapi Ford
(Semapesca, 2016c), while almost 17 onnes flofenicol and 0.45
tonnes flumequine were used in Jacaf Fjord (Sernapesca, 2016¢,
2017h, 2018) as treatment for an outbreak of Piscirickettsiosis re-
ported in 2016 (Sernapesca, 2017a).

2.2 Sampling

Sampling was conducted in Puyuhuapi Fjord between August
69, 2016, six months after the last programmed florfenicol
treatment within the fjord that occurred between January and
February 2016, and one year after the last treatment with flume-
quine (Semapesca, 2016b). Water samples were collected at 4
depths from 8 sites along the fjord and from surface water of the
Cisnes River. Samples from surface sediments were taken at 4 sites
within the fjord (Fig. 1, Table 1). Seawater samples were collected
using 10L-Niskin bottles, and 2-L subsamples subsequently filtered
onto previously combusted GFF filters (0.7 pm pore size). Filters
were stored at —20 *C in the dark until analysis. Filtrate was
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44,8 |[' :
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Fig. 1. Location of sampling sites in Puyuhwapl Fond. See also Table for detalls of sites
1—4. The map was generated using the Ocean Data View software (Schlitzer, 2008
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Talble 1
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‘Water and surface sediment (0—1 cm) samples analyzed for flofenicol and flumeguine in Puyuhuapi Fonrd. Although both particulate and dis-
solved phases were analyzed (see methods), antiblotics were detected only in suspended particles and shown inng L™" = standard deviation of
duplicate injections. ND: Not detected. Trace indicates concentration lower than guantification limdt {detalls in method section].

Sampling site and geographical lecation Water depth (m) Florfeniool Flumeequine
1 F ND Trace
44* 31607 5 1o ND ND
T A23FW 50 ND ND
140 ND ND
2 F 104+ 05 ND
A4 I3RS 100 B1z25 ND
T A212TW 140 (surface sediment) ND ND
3 2 ND ND
44* 35309° 5 1o ND ND
T A358T'W T ND ND
140 ND ND
270 (surface sediment) ND ND
4 2 ND ND
A44* 35906 5 0 ND ND
T A2 TTW T ND ND
140 ND ND
150 (surface sediment) ND ND
5 2 ND ND
A 433417 5 10 ND ND
T 458668 W 50 ND ND
100 ND ND
130 (surface sediment) ND ND
1] F ND ND
4d* 43330 5 1o ND ND
T AIBOE W 50 ND ND
160 ND ND
7 0 (Cismes River) ND ND
44* B4R 5
T A2 DD W
8 F Ta3=z01 ND
a4 55132 5 10 T4= 059 ND
T3 07553 W 100 91=02 ND
9 2 ND ND
44* 55067 5 10 Trace ND
T3 05318 W 50 Trace ND
150 ND ND

acidified to pH 3 with 40% H,504, amended with 0.5 L' Na;EDTA
to chelate major cations, and then stored at 4 *C. Surface sediments
were collected wsing a Rumohr corer, and the top 1 cm sections
removed with a core extruder. Sediment samples were then stored
at —20*Cin the dark until analysis. Physical characterization of the
water column at each sampling site was conducted by measuring
temperature, salinity and dissolved oxygen wsing a Seabird SBE
Model 25 CTD (Table 51},

2.3, Analysis of antibiotics

Dissolved organic matter was pre-concentrated onto 3 mL
(60 mg) solid phase extraction columns (SSDVB0G3, Styre Screen)
in a VaccElut Cartridge Manifold (Agilent). Cis carridges were
previously conditioned with 5 mL methanol followed by 5 mL ultra-
purew ater. Adsorbed material was eluted with 10 mL methanol at a
flow rate of 2 drops per second into silanized vials, and directly
evaporated under a nitrogen stream at 40 *C. The residue was
dissolved in 1000 L methanol and filtered through 0.22 um PVDF
syringe filters, gently saturated with Nz, and then kept at —20 °C
until analysis (Zhou et al, 20012),

The particulate organic matter on filters and within sediment
(ca. 1 g dry weight) was extracted using ultrasound extraction (3
times) with 5 mL citric acid buffer {pH 3) and 5 mL acetonitrile for
15 min, and then centrifuged for 10 min at 1400 rpm. Supematants
were diluted to 100 mL using Milli-(} water, amended with 0.5 gL !
MasEDTA, and loaded into SPE columns (SSDVBOG3, Styre Screen ).
Elution and storage of eluates were as described above for the

dissolved phase.

Analyses of florfenicol and flumequine were conducted using an
UHPLC Shimadzu (Kyoto, Japan) Nexera X2 LC-30 AD system
coupled to a single quadrupole mass spectrometer LCMS-2020with
an electrospray ionization (ESI) interface. Separation was carried
out on a Phenomenex (Torrance, CA, USA) Kinetex EVO Cyg core-
shell column (150 mm = 2.1 mm, 26 pm) connected to a Kinetex
Cg guard column, with both operating at 40 “C. Mobile phase A was
0.1% formic acid in Milli-Q) water, and phase B was formic acid 01%
in acetonitrile. The gradient used was 10% B for 1 min, increased to
70% B over 3 min, and then maintained for 10 min at a flow rate of
0.2 mLmin~ . The ES| interface was used simultaneously in positive
and negative mode to measure flumequine (positive) and florfe-
nicol {negative). Mass spectrometry analysis was implemented in
selected ion monitoring (SIM) acquisition mode to monitor mo-
lecular ions at m'z 262 [M+H|* for flumequine and 356 [M — H] for
florfenicol.

Samples in which florfenicol and flumequine were detected
were further analyzed by UHPLC-MS-MS for confirmation, under
the same chromatographic conditions as adopted for UHPLC-MS.
Chromatography was performed in a Shimadzu Nexera X2 UHPLC
LC-30 AD system coupled to a LCMSB030 mass spectrometer with
ESL Detection was carried out by tandem MS in multiple reaction
monitoring (MEM) mode using the following parent and product
ions m/z values for flumequine (m'z 262 — 202 ) and florfenicol {my'
z 356 — 185). MS operating conditions were set as follows: ESI
voltage 4.5 kV, collision energy 30.0 V, nebulizer gas (N3] flow:
3.0 L min ", drying gas (M) flow: 15 L min~ ', desolvation line (DL)
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temperature: 250°C and heat block temperature: 400 “C Data were
acquired, recorded, and analyzed using Shimadzu LabSolution 5.8
software, Quantification was carried out using a calibration curve
with serial dilutions of florfenicol (CAS N* 73231-34-2) and flu-
mequine (CAS N* 42835-25-6). Reproducibility was 3—5% (coeffi-
cient of variation ), routinely determined from three to five replicate
analyses. Recovery yield of antibiotics from seawater was estimated
by adding 1 mLofa 100 pg L' antibiotic standard solutions to 1L
Milli-Q) water (in triplicate) and maintained for 24 h in the dark
under continuwo us shaking. Antibiotics were extracted and analyzed
as described in the above methodology, resulting in recoveries of
79% for florfenicol and 66% for flumequine. Detection and quanti-
fication limits were calculated using signal-to-noise ratios (5/N) of
3 and 10, respectively. Detection limits for florfenicol were 2 ng L™
in seawater and 1 ng gdw "in sediments, and for flumequine were
12mgl "and 6 ng gdw ! respectively. Limits of quantification for
florfenicol were 6 ng L !in seawater and 3 ng gdw !in sediments
and for flumequine were 36 ng L' and 18 ng gdw .

Regarding QA/QC, all solvents used for chromatography were LC
grade, Milli-Q water with a resistivity of 182 M cm (25 *C),
TOC = 5 ppb and bacterial count <0.01 CFU mL Lan reagents and
chemicals were at least analytical grade (ACS) and all instruments
are annually calibrated as recommended by the manufacturer. QC
was performed using blank (methanol) and intemal reference
samples (florfenicol and flumequine standards diluted at calibra-
tion middle-level), which were analyzed in triplicate at initial,
middle and end of each sample analysis batch. Thus, the equipment
performance was constantly evaluated, including carry-over effect,
resulting in relative standard errors < 5% for concentration and < 1%
for retention time.

24 Multimedia figacity model

A fugacity-based model level Il (Mackay and Patersomn, 1991;
Gouin and Hamer, 2003 ; Hughes et al, 2012; Zhang et al., 2015)
was developed to predict equilibrium distribution of antibiotics in
farmed fish, and in the water column and sediment after one day of
medication. The model was tailored to a salmon processing envi-
ronment, with considerations given to antibiotic partition, dosage,
degradation, advective transport, rates of sedimentation and
resuspension, and salmon density. Calculations were made for
simultaneous treatments with medicated feed pellets in 25 salmon
farms, each consisting of 20 cages, as found in Puyuhuapi Fjord
(Sermapesca, 2016h). Dosages in fish feed were 10 mg kg ! florfe-
nicol and 30 mg kg ! flumequine, and the biomass of salmonids
was between 11 and 17 kg m 3 per cage, with 15% mortality rate
assumed over a two-year production period (Subpesca, 2016). The
model considers both diffusive and advective transport of antibi-
otics from seawater into sediments, and removal by microbial
degradation, modelled as a first order reaction rate. Physical and
chemical properties of antibiotics and environmental parameters
used in the model for Puyuhuapi Fjord are shown in Tables 52 and
53 (Supplementary material )

Modelled antibiotic concentrations in seawater, sediment, fish
and suspended particles (C;, molm 3)werecalcuLated on the basis
of their fugacity values in each compartment (#;, Pa). fi is inter-
preted as the escaping tendency of chemicals from one phase to
another, and combines with the fugacity capacity (Z;, mol Fa "m 3)
to give the concentration of each specific compartment-i (Mackay,
2001):

Ci=f =% (1

Zi values were calculated for the compartments of water (dis-
solved), suspended particles, sediment and fish, as shown in the
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set-up depicted for florfenicol and flumequine (Fiz. 2), on the basis
of physical-<chemical and environmental parameters (Table S4):

241, Transport and degradation

Transport of antibiotics (F, mol d~ ') — by sorption from seawater
into sediment and by diffusive uptake from water by salmon — was
estimated using F = D (fy — fz), where D is a transport rate
parameter (mol Pa~'d 1), #; the fugacity of antibiotics in water,
and #3 their fugacity in either fish or sediments. Advective transfer
processes are water current {Guw, m® d 'j. and rates of deposition
(Gp, m* d ') and resuspension of particles (Gg, m® d ') across the
water-sediment interface:

FLrampu'I. =G g Jti = DLer.pu-r‘l )(i (2)

where ; is flow rate (m® d 1), Z;is fugacity capacity (molPa ' m~¥)
to define the flux F from the D value Dyyygpar (Mol Pa~! d-1) rep-
resenting currents in water and particulate flux ar the water-
sediment interface (ie, deposition and resuspension). Degrada-
tion flux (Fiegadarian) for each compartment-i is represented as:

Faegradation = I VC = Iy Vi Zi #i = Daerato o Fi (3)

k; is the reaction rate constant (d ') for degradation of both
antibiotics, and V is the volume of each compartment-i {m3). o
values were multiplied by fugacity (£;) for each compartment-i to
obtain the rate in units of mol d ! (further transformed © kgd ')
In fish, the food uptake D value (Dygoq) was estimated from Gy Zrog,
where 7. was calculated from the lipid content of pellets
(20=30%, fraoq). Zwe and the octanol-water partition coefficient
(Kow). Uptake efficiency (Epag) of 95% was assumed in the model.

242 Fugacity and predicted conce nirations

The mass balance models adopted to estimate # in water (fw),
sediment ( #¢) and fish ( ff) were defined from previously calculated
D values (mol Pa 'd ')as shown in equations (4)—(6),

: Ew-55+CwCin+ Fs{ Dresupensian ) +F (Dginfioh- water + Descretion)
W= :
( Daopasirion + Dadvecrion +Ddegradarion )

(4)

_ Eg g+ ?twﬂﬂdepdnuan}' (5)
(DJ'au.q.remm: + Ddegum'aumt + Dpyriar)

fw';ﬂjaud-m + D warer -sh) (6)

F ==
kﬂgul fsh—warer + Dinerabalizarion + Dgrand'r + Deogererian |

where E represents the emission rates (mol d '). assuming uptake
efficiency of 95% of the chemical by fish {Dfaad-ss5x), and a loss of 5%
through medicated feed pellets unconsumed by salmonids, which
then became a direct input to water or sediment compariments
(Epesy and Ec gy, respectively). Gy is the advection inflow rate {m3
d '), Cy is the advection inflow concentration (mol m 3), and Dy
the diffusive transport of antibiotics between water and fish. For #5
it was assumed that fugacity of the antibiotic in food (fja) was
equal to fur

243 Monte Carlo simulation

A simulation was carried out to assess uncertainties and sensi-
tivity of the model based on probability distributions of the input
parameters (Table 53) and their contribution to wvarability in
madelling cutcomes. Lognormal and triangular distributions were
assumed for input parameters. These analyses determined the 95%
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confidence intervals (Clysy) from the probabilistic distribution of
model outcomes (Fig. 3 main paper ). Simulations were run 100,000
trials using Crystal Ball 1111 software (Gentry et al., 2008).

244 Simulation test for permanence time of antibiotics

A second experiment modelled ten days of daily additions of
florfenicol and fifteen days of flumequine, a common treatment
protocol for the industry in southern Chile {Contreras and Miranda,
2011). This simulation was used to evaluate whether antibiotics
remain at inhibiting or sub-inhibiting concentrations in seawater
and surface sediment beyond the end of the treatment, and if so, for
how long they persisted above either of these thresholds.

During consecutive daily treatments, microbial decay of pre-
dicted antibiotic contents in both water and sediment was calcu-
lated assuming that such decay followed first-order reaction
kinetics using published values for half-life (Table 52 ). Concentra-
tions estimated for seawater and sediment through modelling were
used as initial values for temporal decay simulation of antibiotics.
During each treatment in cages the degradation rate constant (k,
d ') was computed using equation {7

G
o=

kt (7

where Cy is the estimated concentration from the multimedia
model of compartment-i, and k calculated as 0LG93/t)
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3. Results
3.1 Presence of antibiatics in Puyuhuapi Fjord

For analysis of florfenicol and flumequine, we processed 32
samples of seawater, 1 of river water, and 4 of surface sediment.
Antibiotics were detected only in suspended seawater particles,
and were not detected in the dissolved phase nor in surface sedi-
ments. Antibiotics were found in 26% of analyzed samples, in four
out of nine sampling sites, and at levels ranging from trace con-
centrations to 231 ng L' for florfenicol (sites 2, §, and 9), and at
only trace concentrations for flumequine (site 1). Where present,
florfenicol was found at all depths (0—100 m) in the water column,
with flumequine detected in only one sample at 2-m depth
(Table 1),

3.2 Modelled fluxes of florfenicol and flumeguine

Modelling output  predicted average concentrations of
0.06 + 003 ng L' of florfenicol and 018 + 0,08 ng L' of flume-
quine in the water column after 1 day of medication in 25 salmon
farms. Advection was a significant controlling factor determining
the short-term fate of antibiotics, by transporting =90% of florfe-
nicol and flumequine from cages into the surounding water col-
umn (Fig. 51 ). In fish, flumequine was metabolized twice as fast as
florfenicol. Unconsumed food pellets from salmon cages were the
major predicted source of antibiotics to surface sediments,
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Flg 3. Simulation of consecutive treatment s with florfenim] and flumegquine in salmon cages with predicied water column concentrations (A, B) and sediment content (C, ) after
addition of antiblotics. Black lines show average values predicted by the scenario of average salmon density of 14 kg m™ within the minimum and maximum permitted s lmon
density in cages (blue lines. 11 and 17 kgfish m ). The horizontal green dotted line shows sub-MIC threshald in surface sediment. (For interpretation of the references tocolour in

this figure legend, the reader is referred to the Web version of this article.)
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resulting in predicted contents of 2 + 0,01 ng florfenicol gdw !and
368 + B2 ng flumequine gdw ' (Fig. 2).

3.3. Timescale of persistence of antibiotics in the fjord

Modelled decay following 10 consecutive days of antibiotic
treatment in Puyuhuwapi Fjord showed that florfenicol would be
predicted to remain below detection limits in the water column
(<2 mg L '), and above detection limit in surface sediments (1 ng
gdw '}l for about 12 days. For an average salmon density of
14 kg m 3, maximum values were 0.1 ng L~ ! in seawater and -4 ng
gdw ! in surface sediment during the 10-d treatment peried (Fig. 3
A, C). lumequine, administered for 15 consecutive days would be
predicted to remain below detection limit (12 ng L '}l in the water
column (Fig. 3B). Under scenarios of either average (14 kg m 3) ar
highest permitted salmon density (17 kg m~ ), predicted flume-
quine concentration peaked at - 10,000 ng gdw ! in sediments and
remained above the sub-MIC threshold of ~4000 ng gdw ! forup to
150 days (Fig. 3D).

4. Discussion
4.1 Contents of florfenicol and flumeguine during sanitary rest

Our observations of detectable florfenicol and flumequine in a
relatively small proportion of samples is in general agreement with
previous published studies in a range of marine environments
under human influence around the world (Table 2). However, much
higher concentrations of florfenicol ranging from 30 pg L' to
11 mg L! have been reported in water samples collected 500 m
from fish farming sites in Dailan Bay, northern China, during active
treatment (Zong et al., 2010 Data are more limited for dissolved
flumequine in seawater, but in Cadiz Bay (Spain), flumequine was
detected in 14% of samples, with the highest concentration being
3.6 ng L1 (Biel-Maeso et al, 2018). Published data are too limited to
compare to the trace amounts of flumequine detected by our study
in only one water phase sample.

Chemosphere 275 (2027 ) 130029

Forfenicol and flumequine were not detected in surface sedi-
ments at sites located between 2 and 23 km from the salmon farm
perimeters These data are consistent with previous observations in
the Calbuco Archipelago in northern Patagonia (41°48'S) where no
florfenicol and only trace amounts of flumequine were detected in
surface sediments in areas located between 20 m and 8 km from a
salmon farm (Buschmann et al., 2012). Our study is also consistent
with data from sites located 500 m from freshwater trout farms in
I@lian rivers, where flumequine contents in sediments ranged from
undetectable to 0.8 ng gdw ! (Lalumera et al., 2004). In the 5 water
samples where antibiotics were gquantified, concentrations
(74-231ng L | Table 1) were below minimal inhibigng concen-
trations (sub-MIC) reported for bacteria (eg. 2 mg kanamycin L L
Cairns et al, 2018 ) ca. 180 days after administration of florfenicol,
and ca. 365 days after the last treatment of flumequine. Concen-
trations during the peried between the addition of antibiotics and
our sampling (six to twelve months later) was considered using
modelled decay of florfenicol and flumequine in the ford (dis-
cussed in section 4.3 ).

4.2 Modelling fluxes of florfenicol and flumegu ine

Fugacity-based models have been successfully used to describe
distributions of non-ionic hydrophobic pollutants (Gouin and
Hamer, 2003; Huang et al., 2019; Hughes et al, 2012). Given a
tendency to strongly adsorb onto particulate organic carbon, the
fate of flumequine appears to be adequately described by such a
maodel, whereas the interaction of florfenicol with particles could
be underestimated by not considering ionic and hydrogen bonding
(Toll, 2001 ). Monetheless, the fugacity-based model Il has appro-
priately predicted florfenicol concentrations in Chinese rivers
{Zhang et al, 2015).

In the present modelling study, water column and sediment
compartments showed similar general distribution pattemns for
both antibiotics, with advective fluxes accounting for =90k of losses
from cages to the water column, and an almost total degradation of
deposited antibiotics in surface sediments under the cages (Fig. 2).

Table 2
Concen trations of florfenionl and flumequine in water and sediments measured in the present study compared with several other environments. MA: Not analyzed, ND: Not
detected.
Country Lisat o Flumne gl e Flosrfie mic ol Remarks References
Water (ngL™")
China Yangtze Estuany NA A0 Industrialized zone, highly populated. Yan et al. (2013), Zhao et al (2015)
Sampling along the coast
Jiulong River Estuary NA &—-15 Surmunded by plg farms along dvers, Zheng et al. (2011)
Samples collected in the intertidal zone,
during low tide
Beibuwan Gulf NA ND- 35 Surmunded by shrimp and fish frms U et al. (2016)
Yellow Sea NA ND - 42 Samples were collected 5 km from Du et al (2017)
aguaculture zone
Dailan Bay NA WD - T 1000 Samipling conducted in the vicinity of Fong et al. (2010) Na et al (2013), Xie
auaculture act ivities. et al (2018)
Spaln Gulf and Bay of Cadiz ND - 4 NA Area influenced by human activities Biel-Maeso et al (2018 Mart{nez-
Bueno et al. (2009)
Chile Puyuhuapl Ford ND ND Dissolved phase sx months after This study
el cathons.
ND - Trace ND - 23 Particulate phase-six month after
meadications
Sediments (ng gdw ™)
China Yang River estuany ND - 0.3 NA Samples taken near aquacul ture activity Uuet al.{2018)
Beibuwan Gulf NA ND - 35 Surmunded by shrimp and fish fms U et al. (2018)
Dailan bay NA 1 Samiples taken near aquaculture actvity MNa et al. {2013)
Italy River basins, ltaly ND -1 NA Freshow ater trout farm Lalumera et al. {2004)
Chile {Pat agonia) Cal buco Archipelagn Trace ND Samples collected near aguacultune Buschmann etal (2012)
Brms
Puyuhuapl Ford ND ND Surface sediments sbe month after This study

meedications

7
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The sensitivity of pollutant concentrations to advective influence
computed by fugacity-based models is awell-known feature (Wang
etal, 2020}, especially for refractory pollutants, For instance, 80% of
the decrease in benzola |pyrene concentration in Lake Michigan is
due to advective fluxes (Huang and Batterman, 2014). However, in
rural catchments of the Meijiang River watershed in China, the
modelled degradation of tetracycline antibiotics contributed more
to their decay than did advective fluxes (Chen et al, 2019) In
contrast to this recent watershed model, the level 1l model that we
tailored to Puyuhuapi Fjord showed that advection and water col-
umn processes (water depth) were responsible for the greatest
losses of antibiotics (Fig. 51 ). This difference between models could
result from high residence times of waters of the catchment in
China compared to the waters of Puyuhuapi Fjord in which surface
current velocities range from 3 to 10 cm s ! (Schneider et al., 2014).
Owerall, in both studies, the models predicted almost total degra-
dation of florfenicol and flumequine in the water column prior to
settling in sediments (>99%),

Multimedia fugacity models have been used to predict con-
centrations of various pollutant in rivers, lakes, urban areas, and
coastal waters, However, comparisons between modelled and
measured concentrations have shown variable degrees of agree-
ment. For PAH (polycyclic aromatic hydrocarbons) in continental
water and sediment in the Shanghai area, for PCB {polychlorinated
biphenyls) in the Ontario lake, and for the antibiotics oxytetracy-
cline and chlortetracycline in Meijiang river sediments, measured
concentrations were 2 to 10-fold higher than predicted values (Xu
et al., 2013; Jung et al., 2014; Sun et al, 2018; Chen et al., 2019;
Huang et al., 2019). In contrast, in Meijiang river sediments, tetra-
cycline and doxycycline measurements were 3-times lower than
predicted values (Chen et al, 2019). In the coastal waters of
Boseong Bay, Korea, predicted concentrations of oxytetracycline
were close to measured concentrations, but could be under-
estimated by up to 20-fold, depending upon model configuration
(Kim et al, 2017).

In our study, samples were collected six months after the last
medication, and in ~B0% samples, antibiotics were undetectable,
both in sediments and in the water column, thus matching the low
values predicted by our model ca 180 day after ad ministration of
florfenicol, and ca 365 days after treatment by flumequine.

4.3, Timescale of persisterice of an ibiotics in the fjord

Our modelling approach considered microbial degradation of
antibiotics excreted, andfor unconsumed, by salmon following
daily additions of florfenicol for 10 days, and flumegquine for 15
days. This resulted in a period of 104 days during which high levels
of antibiotics were predicted in the water column, and surface
sediments (Fig. 3). An important question is whether this timescale
has relevance to the selection of bacteria resistant to antibiotics?
Regarding concentrations of 01-0.7 ng L ' florfenicol or
02-6ngL ! flumequine (Fig. 3A and B) predicted for the water
column, these concentrations are much lower than the sub-MIC
levels (-2 pg mL~ !, e.g. Caims et al, 2018) shown @ be associated
with horizontal transfer of resistance genes.

In sediments, however, from day 10-50, flumequine contents
between 2 and 8 ug gdw ' were predicted, corresponding
approximately to 2 jpg flumequine per cm” sediment (Fig. 3D). This
is within the order of magnitude of the sub-MIC concentration of
2 ug mL ! (4000 ng gdw ! sediment) and could therefore pro-
mote selection of antibiotc-resistance bacteria. There is evidence of
accumulation of antibiotic resistomes of bacteria in sediments
beneath salmon cages that can be transferred from fish feces (e.g.,
Muziasari et al., 2017), and we hypothesize that the concentrations
predicted in sediments by our study have the potential to cause
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emergence of microbial resistance, even at the end of the sanitary
rest period. Although we did not detect antibiotics in sediments at
sites located 2 km away from the cages, the potential reservoir of
the antibiotic resistance genes area would nevertheless encompass
the ~9% of Puyuhuapi Fjord (700 kmzjthat is currently occupied by
salmon cages.

There is growing evidence that antibiotic resistance genes can
be enriched locally in sediments beneath cages (eg, MNdi and
Barton, 2011), and this question merits more focused research
attention. There is clearly a potential risk for spread of genes to
surrounding environments, as evidenced by the documented
presence of resistance-genes for florfenicol, oxalic acid, oxytetra-
cycline and quinolones in the Chiloé archipelago in northern
Patagonia (Miranda and Zemelman, 2002; Miranda and Rojas,
2007; Buschmann et al, 2012; Tomova et al., 2015).

5. Conclusions

In a large Patagonian fjord impacted by intensive salmon cul-
ture, low levels of antibiotics were detected ca 180 days after
concerted medication with florfenicol, and ca 360 days after
treatment with flumegquine at sampling sites located between 2
and 23 km from the nearest farm. The low concentrations
measured in suspended particles were consistent with our pre-
dictions from a fugacity-based model.

Our modelling approach predicted that elevated contents of
flumequine can remain within sediments for up to 2 months before
degrading completely. Coastal sites influenced by antibiotic inputs
can therefore become potential sites for accumulation of antibiotic
resistomes of bacteria, and for the transfer of genetic material
among microbial resistant groups. Because of the complex roles
that bacteria play in marine ecosystems, amy such potental
perturbation is an issue of concern that should be addressed with
further field data.
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Tahle 51. Location and characterization of sampling sites in Puyuhuapi Fjord during

August 2016

Sampling site / | Ladtude | Longitude Sampling Temperature Salinity Oxygen
Water depth (5) W) depths (m) (°C) (psu) (mL LY
. -
1/280m 447 31.607" | 72 42312 I4é0 %, 109-94 338-271 | 59-14
2,100,
2/140m 447 33.854' | 727 42127 | surface 10.7-92 330-258 | 60-31
sediment
2,10, 70,
3/270m 44° 35309 | 72 43587 | 140, surface 10.7-95 338-304 ) 55-14
sediment
2,10, 70,
4/ 190m 447 35906 | 727 42.721" | 140, surface 10.7-94 338-206| 57-14
sediment
2,10, 50,
5/130m 44° 43.341' | 727 45.866' | 100, surface 108-93 338-201| 59-14
sediment
. 2,10, 50,
6/230m 447 43.330" | 727 43.39¢' 160 108-9.0 334-258 | 61-22
Cisnes
7/0.5m 44°46.483' | 72°42.000 | FEVEE No data Nodata | No data
surface
water
8/230m 44° 55132 | 737 07.553' | 2,10, 100 108-91 335-241 | 64-23
. S 2,10, 50, - - -
9/145m 44° 55.067 | 737 05.318 150 104-85 339-171 i.2-1.6
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Tahble 52. Physical and chemical properties of the antibiotics florfenicol and flumequine

used in our modelling.

Florfenicol Flumequine
CAS 73231-34-2 42835-25-6
Chemical formula C1oH1sCLFNOsS CiHisFNOs
Molecular weight (g mol™) 358.21° 261.25°
Solubility in water (mg L) 423 to 5946%F 14 t0 21879
Vapor pressure (Pa) 5.60 x10% t0 7.33 536 x107 to0 2.48

x10%a x10%
Henry’s Law Constant (Pa m’ mol) )3{5;;10 Dto05.25 E.Fﬂ4_1f]ﬂ $t0 2.07
Log Kow (L kg'h) 012510 0.197 138 to 2.70°
Log Koc (Lkg™h) -0.19 to -0.31¢ 0.99 to 2.99¢
Degradation half-life i water (d) 1.284 4.77%f
Degradation half-life in sediment (d) 1.067 to 1.70° 60° to 135%
Degradation half-life in fish (d) 0.504 0324

“Predicted ranges from UUSEPA (hitps://comptox. epa. govidashboard). Henry's Law
Constant (HLC) ranges were estimated through equation HLC = Vapor Pressure (Pa) /
Water solubility (mol m™)

*Kolodziejska et al. (2013)

‘Koc =041 Kow (Karickhoff, 1981). Koc is the organic carbon-water partition coefficient
and Kom is the octanol-water partition coefficient

9Sun et al. (2012). Half-life estimated in microcosm experiments

‘Hektoen et al. (1995). Half-life estimated for the top 1 cm of sediment

fPouliquen et al. (2007). Half-life estimated for hydrolysis and photolysis in seawater. A
total half-life (#12) was calculated. adding f12 for biodegradation (taken from USEPA?).
EfHansen et al. (1992)
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Table $S3. Environmental and salmon culture parameters for Puynhuapi Fiord.

Parameter Average Source
(range)
Salmon farms
Number of salmon farms m Puyuhuap - I‘anri?ual Fishéries‘and Aquaculture
Fjord 25 Service of Chile (Semnapesca.
www.semapesca.cl)
National Fisheries and Aquaculture
Volume of salmon cages (m’) 13.500 Service of Chile (Semnapesca.
www.semapesca.cl)
National Fisheries and Aquaculture
Salmon wet biomass per cage (kg m™) 14 (11-17) | Service of Chile (Sernapesca,
www.semapesca.cl)
National Fisheries and Aquaculture
Mortality (%0) 15 Service of Chile (Semapesca,
www.sermapesca.cl)
37 .800— National Fisheries and Aquaculture
Number of salmomds per cage 571375 Service of Chile (Semapesca,
T www.semapesca.cl
Water column and sediment
Water volume of Puyuhuapi Fjord (km®) 40 ;Sﬁﬂ?n length. 3000 m wadth. 50 m
%Current velocity (cm s™). Gw 6 (3—10) Subpesca (2017)
Water column depth (m) 30 (20-80) | Schneider et al. (2014)
Suspended particle concentration 47 (2.4~ Measured
(mg LY 7.0)
Suspended particle fraction. f 3.16 x106 S:J:f: concentration/particle
Sediment volume of the Fjord (km?®) 0.04 Section 05 cm
Organic carbon fraction, fro 054 (044~ | Measured
0.64)
Deposition rate (m’ m~ d), Gp 1.02x10% | Chen et al (1999) (~6 mm pellets)
*Resuspension rate (m® m2d!), Gz 2.64x107 Mackay (2001)
*Burial sediment rate (m® m2d-), Gs 8165107 | Mackay (200D)
*Sediment-water mass transfer coefficient 0.24 Mackay (2001)
(MTC.md™h ”
Salmon
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National Fisheries and Aquaculture

Harvest wet biomass (kg) i.g){?r.ﬂ— Service of Chile (Semapesca,
o www.semapesca.cl)
Salmon lipid fraction, fi 0.16 Hamulton et al. (2003)
Pellet lipid fraction (%), food 2030 Chen et al. (1999)
10 (for 10 Agricultural and Livestock Service
Dose florfemcol (mg kg'l Fish), Eftorfemicol consecutive | of Chile (SAG, www.sag.gob.cl)
days)
Metabolization rate constant flumequine 117 Estimated from half-life in fish
(d"1). Mewabolization Aerfemicol '
Excretion rate constant florfenicol (dh). 113 Horsberg et al. (1996)
Excration-florfenicol
30 (for 15 Agnicultural and Livestock Service
Dose flumequine (mg kg!). Efumeguine consecutive | of Chale (SAG, www.sag gob.cl)
days)
Metabolization rate constant flumequine 517 Estimated from half-life in fish
{d_l}, T atabolization-flumesgquine o
Excretion rate constant flumequine (d-1). 0.42 Elema et al. (1993)
Excration-flumeguine
Growth rate constant (d™1). grow 0.004 Folkestad et al. (2008)

E average current velocity in the upper 15 m_

' When data were not available, we used values proposed in Mackay (2001)
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Table 54. Model description (Z)

Compartment Z value Abbreviation
H = Henry's Law constant (Pa m® mol 1)
Water Zw=1/H or 5/P S = water solubility (mol m™)
P = vapor pressure (Pa)
feo= organic carbon fraction
Sediment Z=2yw * feo " Koo ™® Koc = organic carbon-water partition
(/1000) coefficient
p° = density of sediment (1500 kg m™)
Jfr=volume fraction of lipid content in
. fish
Fish ;‘Z;']i;!;}ﬁ Ko ® Kow = octanol-water partition coefficient
' p’= density of fish biomass in cages
(1000 kg m™)
. o i owT % Jfep=volume fraction particles in water
;ﬁfigﬂi f;‘;’lzﬂ\i;!{])fp Koc " = density of suspended particles (1500

kg m™)
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Figure 51. Model sensitivity analvsis for florfenicol (A. B) and flumequine (C. D} in
seawater (left panels) and sediment (right panels) according to their physico-chemical
properties and envirommental variables: Log Kow= octanol-water partition coefficient,
HLC = Henry's Law constant (Pa m® mol™). Log Koc= carbon-water partition coefficient.
Sw= solubility in water (mg L1}, P,= vapor pressure (Pa). P-= half-life in sediment (d).
Depth= water column depth (m). V.= current velocity (cm '), Weight= salmon weight per
mdividual (kg). Density of salmon weight in cages (kg m™). S5= suspended solids (mg L~

1. foo= fraction of organic carbon in sediment .
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3.2 Chapter Il: Batch experiment study of water-sediment partition of flumequine and

florfenicol, two antibiotics used in salmon aquaculture in Chile

Manuscript submitted the Shorter Research Note of Marine Pollution Buletin
MPB-D-21-01887
Bibiana Andrea Jara Vergara
PhD in Oceanography

Universidad de Concepcion

Abstract

The water-sediment partitioning of flumequine and florfenicol, two antibiotics used in
salmon aquaculture in Chile, was studied by batch experiments, conducted using either pure water
or seawater, with or without sediment, and at two temperatures. For florfenicol in seawater, Log
Kq (partition between water and sediment) varied from 0.71 + 0.91 to 0.69 + 0.69, and Log Koc
(partition between water and organic fraction of sediment) from 2.23 £ 2.44 to 2.21 £+ 0.21. Higher
values of Log Kq (0.85 + 0.08 to 1.38 + 0.66) and Log Koc (from 1.50 + 1.25 to 2.60 + 2.85)
characterized the greater affinity of flumequine to particles. Difference between Koc and the
octanol-water partition constant (Kow) showed that for florfenicol, adsorption onto the surface of
particles was a more significant process than the absorption driven by hydrophobicity. In contrast,

for flumequine, hydrophobic absorption was a major driver of sorption to sediments

Keywords:

Emergent pollutant, antibiotic sorption, florfenicol, flumequine, Kq and Koc.
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Highlights

e Inseawater, 11 *+ 5% of florfenicol and 24 + 7% of flumequine are sorbed to particles.

e Flumequine has a greater affinity to particles than florfenicol.

e Log Koc values of florfenicol are much lower than Log Kow suggesting that surface-
driven processes control the sorption of this compound.

e Log Koc values of flumequine are close to Log Kow.

e The formation of complexes with seawater ions lowers florfenicol concentration by 13 +
8% with respect to Milli-Q water.

¢ Flumequine may form complexes with ions leached out from sediment.
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Introduction

Chile is the second most important salmon producer in the world, after Norway (FAO,
2018), and is a major consumer of antibiotics per biomass of salmon produced (antibiotic
consumption index of 0.05%, or wight antibiotics/harvested salmon, Miranda et al., 2018). Our
understanding of the impact of these emerging pollutants used by aquaculture in coastal waters is
limited to a few studies addressing their presence (Buschmann et al., 2012; Jara et al., 2021) and
the development of bacterial resistance genes (Miranda and Zemelman, 2002; Miranda and Rojas
2007; Cabello et al., 2016). Two of the major antibiotics used are florfenicol and flumequine whose
treatments are administrated to salmon through incorporation into food pellets. However,
approximately 5% of unconsumed pellets can be deposited from aquaculture activities into
sediments (Cabello et al. 2013; Miranda et al. 2018).

The impact of antibiotics depends on their mode of release into the environment, and on subsequent
partition between the dissolved phase (truly dissolved, complexed, absorbed to dissolved organic
carbon) and particles (suspended, sinking and sedimentary). Surface processes (adsorption) such
as ion exchange, cation and hydrogen binding all govern reverse exchanges between water and
particles for those antibiotics with ionic charges, whilst diffusive exchanges such as absorption to

the organic phase drive the sorption of neutral antibiotics (Cao et al. 2015). The dissolved-particle
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partition constant (Kgq) and the octanol-water partition constant (Kow) provide information on the
tendency of chemicals to be affected by the aforementioned processes, but these constants are not
presently available for all antibiotics. For instance, for flumequine and florfenicol, Kq values are
only available for soils and not for marine sediments. For florfenicol, Log Kow values reported in
the literature vary over a range from -0.17 to 1.63. Predictions of the fate of these antibiotics in
marine ecosystems housing salmon aquaculture activities are hindered by this lack of fundamental
information.

In soils, the dependence of the sorbed fraction of antibiotics to their water concentration is
described either by linear relationships (K4, Cs = Kf Cw) or by Freundlich isotherms (Ks, Cs = K¢ Cw
1/n). In the concentration range up to 10 mg/ L, the Freundlich isotherm fitted the sorption of
norfloxacin to marine sediments, whilst sorption was also well described by the linear relationship
with R? values of between 0.94 and 0.98 (Cao et al., 2015). As the non-linear empirical variation
applies to a higher concentration range, the sorption of florfenicol and flumequine in the sub mg/L
range is assumed here to be linear, and described by Kg.

In the present study, batch experiments mimicking sorption-desorption between water and
sediments were carried out at the sub-ppm level, over a range of conditions (temperature and
salinity) typical of Chilean fjords (e.g. Schneider et al., 2014). The objectives were to provide
experimental data on partition constants of florfenicol and flumequine between water and sediment

particles (Kq), and between water and the organic matter associated with particles (Koc).

Results

All experiments were characterized by a steep decrease of dissolved antibiotic
concentration during the initial 3 hours of the experiment (Figure 1), followed by little variation
between 4 and 48 hours. However, the concentration of florfenicol increased at the final sampling
time under all conditions. We assumed that partition equilibrium was reached at 4 h, and therefore

replicates at 4 h, 24 h, and 48h were used to calculate partition coefficients.

The Kruskal Wallis statistical tests performed on these equilibrium concentrations showed
that temperature, matrix, and antibiotic type contributed to the observed variances, producing
significative differences between the concentration in each treatment, for each factor (Kruskal
Wallis; p < 0.05).
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Figure 1. Florfenicol and flumequine dissolved concentrations (average + SD) in batch
experiments with (orange square) and without (blue diamond) added marine sediments: A) and E)
pure water at 8°C; B) and F) pure water at 15°C; C) and G) Seawater at 8°C and D) and H)
Seawater 15°C.
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Florfenicol did not deccrease in concentration in pure water + sed compared to pure water alone
(Figure 1) thus partition constants were not calculated for these conditions. In contrast, florfenicol
showed significant sorption to the sediments in seawater treatments. In addition, whether sediment
was present or not, florfenicol concentration decreased significantly by 20 to 40% at 8°C and by 4
to 15% at 15°C (Table 1).

For all experimental treatments, flumequine concentrations were significantly lower in the
presence of sediment (Table 1). Flumequine showed greater decreases in concentration than
florfenicol, suggesting a higher sorption tendency. After stable conditions were reached, 49 + 10%
of flumequine was sorbed to sediments in pure water, and 19 + 6% in saline water, whilst the
percentage of adsorbed florfenicol in saline water was less than 10 + 2% (Figure 1). The influence
of temperature on sorption was complex, with non-significant effects on dissolved florfenicol and
flumequine in pure water without sediment. In contrast, flumequine concentrations decreased
significantly at 15°C compared to 8°C in seawater treatments (Table 1). For florfenicol, the initial
drop in concentration appeared to be more pronounced at 8°C and similar both with and without
sediment. These observations are suggestive of enhanced adsorption onto vial walls at 8°C
compared to 15°C. The proportion of flumequine adsorbed onto sediments was lower at the

summer temperature, and in seawater compared to pure water (Table 1).

The sorption coefficient Kq describes the reversible tendency of compounds to adsorb onto
particles. In seawater, Log Kq for florfenicol varied between 0.71 + 0.91 and 0.69 + 0.69 (Table 2),
while previous Kq from freshwater environments are reported from -1.15 to 0.37 (Endris, 2004;
2013) and 2.9 for seawater (Na et al., 2013). Koc is the organic carbon-normalized sorption
coefficient and indicates the tendency of the compounds to sorb on the organic fraction of the
particles. The range of Log Koc measured for florfenicol in this study was 2.21 + 0.21 to 2.23 =
2.44.
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Log Kg calculated for flumequine varied between 0.85 + 0.08 and 1.38 = 0.66 with lower values
observed in seawater (Table 2), while K4 values of flumequine were only available for the humic
fraction of soils in the literature, and correspond to Log Kgq 3.4 to 4.0 (Tolls, 2001). Log Koc values
of flumequine calculated for pure water and seawater ranged between 1.50 £ 1.25 and 2.60 + 2.85,
while Log Koc values representing flumequine sorption to humic acids in soils were higher, from
3.4to4.4 (Tolls 2001).

Table 2. Empiric values of the particle partition coefficient (Kq, L of water/ kg of dry sediment)
and organic carbon (Koc, L of water/ kg of organic carbon) for florfenicol and flumequine, in the
different temperature and ionic conditions of batch experiments.

Temperature Florfenicol Flumequine
8°C 15° C 8°C 15° C
Log Ka Pure Water - - 0.85+0.08 | 1.38+0.66
Seawater 0.71£0.91 | 069+0.69 | 1.08+0.53 | 0.94+0.55
Log Koc Pure Water - - 233+1.44 | 1.66+1.33
Seawater 223+244 | 221+0.21 | 260+2.85 | 1.50+1.25
Discussion

The half-life of florfenicol and flumequine is one week and ~ 150 days, respectively
(Hektoen et al., 1995; Halling- Sorenson et al., 1998), suggesting that the initial decreases in
concentration observed in the present experiments were not related to degradation. The initial
concentration decreases cannot be attributed to complexation because they occur in all conditions,
even in pure water devoid of ions, and instead likely reflect adsorption of a proportion of the
antibiotics to the walls of experimental vessels. Equilibrium times in our experiments (ca 4 h) are
in good agreement with previous observations (>2 h, Guaita et al., 2011; within 6 h, Cao et al.,
2015. The partition constants Kq and Koc point to a sorption capacity of flumequine that is double
that of florfenicol, thus implying potential storage of a greater fraction of flumequine in sediments
in the vicinity of salmon farming activities. Sorption could be related to cation availability and
complexation, ion strength changes, pH, dissolved organic matter (MacKay and Seremet, 2008;
Guaita et al., 2011; Jia et al., 2013; Na et al., 2013). Various studies addressing the sorption of
veterinary antibiotics to soils have shown that surface processes play a more important role than
organic carbon absorption driven by hydrophobicity (Tolls 2001). However, some data from the
marine environment contrast with this conclusion. In the Bohai and Yellow Seas, for example, the
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formation of cation bridges between oxolinic acid and calcium and magnesium explained the
adsorption of oxolinic acid to intertidal sediments, but failed to explain the adsorption of other
quinolones (Lang et al., 2018) which were also not explained by sediment types, pH, or organic
carbon content (Lang et al., 2018). When sorption of a compound is driven by hydrophobic
diffusive exchange (id est absorption), environmental Log Koc approaches the theoretical partition
constant Log Kow. Florfenicol Log Koc calculated from the present study was 2 to 3 units higher
than other published values for Log Koc (0.37 in Endris, 2004; 2013). Either hydrophobic
absorption contributes to only a low percentage of the florfenicol associated with particles, while
the major florfenicol-particle interaction is due to surface-driven processes, or published values of
Log Kow of florfenicol are underestimated.

Log Koc of flumequine estimated in our batch experiments are also higher than published
values, although by only more or less one unit on the Log scale. Our data contribute to a better
definition of partition constants of antibiotics in the marine environment, but further research is
required to better clarify estimates and to understand the processes underlying their variability.
Comparing the partition in pure water with that in seawater provides evidence for the formation of
complexes with marine major ions for florfenicol (significant Wilcoxon tests), however this was
not observed for flumequine (non-significant Wilcoxon tests). The pKa for florfenicol’s is 6.3, and
therefore the basic ionized form dominates both in pure water (pH=7.2) and in seawater (pH=8.2,
pH=8.7 in sediment slurries). The decrease in concentration of this basic, negatively charged form
of florfenicol in seawater is likely due to the formation of complexes with major marine cations.
Variable difference between pure and seawater concentration suggests that 16 + 8% and 10 £+ 8%
of the florfenicol was complexed in winter and summer, respectively. Sulfamethazine also forms
complexes which increase its affinity to particles (Wegst-Uhrich et al., 2014). Similarly, in the
present batch experiments, florfenicol in seawater appears to bind to particles and form complexes.
The pKa of flumequine is 9.3, and its acid neutral form dominates under all experimental
conditions. The non-significant difference between flumequine concentrations in pure- and sea-
water conditions argues against the complexation of flumequine. However, the complexation of
flumequine with Cu (11) has been reported during experiments in soils (Guaita et al., 2011). Marine
sediments may leach cations that are not present in seawater such as Cu?*, and the potential

complexation of flumequine cannot be ruled out in the presence of sediment. Further research is
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also needed to explain why flumequine sorption to sediment is lower in seawater (19 = 6%) than
in pure water (49 £ 10%) (Figure 2).
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Figure 2. Box plot showing the means, standard errors, and standard deviations for dissolved
concentration of flumequine and florfenicol in each treatment. A) 8°C (winter conditions) and B)
15°C (summer). FLU: Flumequine, FLO: Florfenicol, PW: pure water (pure water), SW: Seawater,
and SED: with wet sediment added to the tube.

The role of temperature on antibiotic behavior was explored for the first time to our
knowledge. Dissolved concentrations of florfenicol were significantly different at 8°C and 15°C in
all treatments (Table 1). Flumequine dissolved concentrations showed no significant differences at
both temperatures in pure water treatments, but were significantly different in marine conditions,
either with or without sediments (Table 1). Moreover, the proportion of sorbed flumequine
increased from 19 £ 6% under summer temperatures to 30 = 6% under temperature conditions
typical of Chilean fjords in winter. The underlying processes driving these novel findings are
presently unknown, but there are clear seasonal implications for the retention of flumequine in the

vicinity of aquaculture activities.

Conclusions
Analytical difficulties limit our understanding of the environmental impact of emerging
pollutants, and specifically those antibiotics used by salmon farming in Chilean fjords (Jara et al.,

2021). Further in situ studies are clearly required, while batch experiments offer an alternative to
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empirically describe the sorption behavior of these antibiotics in the coastal environment. The
present study has shown flumequine to have a higher sorption tendency than florfenicol, and the
fate of flumequine will therefore be more associated with processes such as particle transport and
deposition onto the seafloor. In contrast, florfenicol shows a lower tendency to bind to particles,
and the fate of this antibiotic will be to a greater extent related to hydrodynamic processes such as
dispersion and water mass transport by currents. The discrepancy between Koc and Kow indicates
that reversive absorption to organic carbon is not the dominant process driving sorption of
florfenicol to sediment particles; other surface-driven processes (ion exchange, cation and
hydrogen binding, and complex formation) are likely to drive partition processes (Tolls 2001). The
present study provides experimental partition constants for flumequine showing that diffusive
absorption to organic carbon is an important driver of the association of this compound with

sediments.
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3.3 Chapter Il1: Pesticide fate and occurrence in non-target organisms

3.3.1 Fate of pyrethroids in freshwater and marine environments
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Abstract

As a consequence of their increasing use, pyrethroid insecticides are recognized as a threat
for nontarget species and ecosystem health. The present chapter gives a state-of-art overview of
individual pyrethroid occurrence in waters and sediments worldwide, together with recent reports
of their quantification in the atmospheric gas and aerosol phases. Degradation rates, transport
processes, and partitioning of pyrethroids between environmental phases are reviewed. River flow
efficiently transports pyrethroids to river mouths and estuaries, while pyrethroid impact on the
marine environment remains difficult to appraise due to lack of comprehensive studies.
Nevertheless, aquaculture arises as an important but poorly understood environmental burden.
Owing to their large organic carbon pool, sediments may act as a sink for pyrethroids and impair
nontarget aquatic species. Partitioning potential of pyrethroids is compared to that of other well-
known legacy pollutants in the light of their position in the phase space defined by key
physicochemical properties (Kow and H’). The transport and partition of pyrethroids away from
their source are strongly dependent on their half-life, but their quasi constant emissions in urban
and agricultural area may compensate for their degradation, therefore sustaining the occurrence

and behavior of some individual pyrethroids as “quasi persistent organic pollutants.”
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1.0 Introduction

In the last 20 years synthetic pyrethroids have gradually replaced other pesticides. These
pyrethroids has been widely used in agriculture and aquaculture (Aznar-Alemany and Eljarrat,
2020a) and also extensively used in urban and industrial areas and livestock farms to control pests
such as mosquitoes, lice, and wood-destroying dwellers. The major advantage of pyrethroids are
low cost, low mammalian toxicity, and shorter persistence in the environment than other classes of
pesticides (Wolfram et al., 2018).

Pyrethroids treatments has been applied against insects and crustaceans. The distribution of
bifenthrin and three other pyrethroids was only a few percents in the freely-dissolved portion of
several samples while the major fraction was associated to DOM and solid phases (Bondarenko et
al., 2006). Once released into the environment pyrethroids tend to sorb on organic particles and
sediments (log Kow from 4.8 to 7.0). When these compound are sorbed on particles, the carrier
particles may be consumed by filter feeders and transfer pyrethroids to higher trophic levels, or
alternatively, particles may consist in a reservoir for these pollutants, probably reducing their
biodegradability in natural waters. As a result of biomagnification at high trophic levels, negative
impact of pyrethroids has been suggested to cause immunity and estrogenic disruption to
mammalians (Aznar-Alemany and Eljarrat, 2020Db).

Distribution and fate of pyrethroids depend of their properties such as air-water or water-
sediment partition behavior, degradation processes (biological, hydrolytic and photolythic),
transport processes (diffusive and advective), organic content and transference to sediments, fluxes
and biota interactions (Ernst et al., 2014). Bioavailability of pesticides have a direct relationship
first with diffusive processes such as water-particle partitioning, like air-water exchange, water-
sediment partition, gas-aerosol partition, while advective transport consists in the movement or
flux of the phase itself, transporting the pesticides which it contains (Tucca et al., 2017; Urbina et
al., 2019).

The major impacts of pyrethroids are the effects on non-target organism (Mazzola and Sara,
2001; Mugni et al., 2013; Norambuena-Subibabre et al., 2016; Gebauer et al., 2017; Parsons et al.,
2020), which can have severe consequence at the ecological level (Friberg-Jensen et al., 2003; Van
Geest et al., 2014a). The high persistence of pyrethroids (Hamaotene et al., 2018; Hamoutene and
Salvo, 2020) can increase the exposure of non-target organisms increasing the likelihood of being
bioconcentrated and bioaccumulated and eventually biomagnified (Mazzola and Sara, 2001; Xue
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etal., 2005; Alonso et al., 2012; Van Geest et al., 20144, b) and eventually be transferred to humans

through food consumption. (e.g., Burridge et al., 2010).
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Figure 1. Scheme of the geochemical cycle of pyrethroids in the environment. Boxes represent the
environmental phases. The soil box represents both the solid phase of soils (plants and soil
particles) and the soil porous water. Arrows represent the fluxes between phases, thin black arrows
stand for fluxes of key transport (advective) processes and large gray arrow show key partition
(diffusive) fluxes. Gray stars symbolize pyrethroid direct emissions to the environment; A is the
emission that remains as aerosol during spray application, mostly to cropland; B is the emission
that is deposited on soils and plant during spray application.
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3.3.2 Occurrence of pyrethroids in marine benthic filter-feeders in the Puyuhuapi
fjord (44°57°S; 73°21°W), Chilean Patagonia

Abstract

Pesticides deltamethrin and cypermethrin, introduced in Chile in 2007 and 2009,
respectively, have been used to control the outbreaks of ectoparasitic infection in marine salmon
farming. Once these pyrethroids are released to the water column, and due to the high affinity of
organic particles and lipid content, they are deposited into the marine sediment and bioconcentrated
in benthic organisms. Sponges and bivalves have been described as good bioindicators due to with
high filter capacity and bioconcentrate organic and inorganic pollutants. This study aimed to
evaluate the occurrence of deltamethrin and cypermethrin, in suspended particles and benthic filter-
feeding organisms collected in the Puyuhuapi fjord, an area with active aquaculture. Deltamethrin
was applied in Puyuhuapi fjord in January and April 2016, while cypermethrin was never used.
Deltamethrin was detected in suspended particles at very low concentrations with values of 0.01
and 0.05 ng L (stations 1 and 7), suggesting possible resuspension from surface sediments.
Cypermethrin concentrations were detected in most analyzed benthic filter-feeding organisms with
maximum values of 1.76 ng lipid dw™ for sponges and 1.04 ng g lipid dw™ for bivalves. Our
cypermethrin concentration values (0.04 to 0.05 ng g, average all stations) were comparable to
those reported in wild salmon (0.04 ng g?), which suggests a possible indirect exposure to

cypermehrin that should be investigated.
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1.0 Introduction

Pesticides are mainly used to control the outbreaks of ectoparasitic infection in freshwater
and marine salmon farming (e.g. Bravo, 2003; Johnson et al., 2004; Burridge et al., 2010; Lhorente
et al., 2014; Dresdner et al., 2019). Regardless of pesticide treatment, food (e.g., emamectin
benzoate), or baths (pyrethroids), these compounds and their secondary metabolites can be
deposited in the marine sediments and, eventually, bioconcentrated in organisms (e.g., Xue et al.,
2005; Alonso et al., 2012; Van Geest et al., 20144, b). Deltamethrin and cypermethrin (second-
generation of pyrethroids) represent more than 25% of the world's market pesticides (Cycon et al.,
2016), which have been introduced in Chile for the salmon industry since 2007 and 2009,
respectively (Bravo et al., 2008, 2010). After bath treatments, these compounds are released into
the environment where, according to their physicochemical properties (Table 1), they can be
absorbed by organic particles (Méjanelle et al., 2020). Once these compounds are absorbed, they
undergo horizontal transport, degradation processes and are deposited in the marine sediments (Erst
et al., 2014; Méjanelle et al., 2020). However, their high affinity with organic particles can result
in major protection of biological degradation and, as a consequence, an increase in bioavailability
for benthic filter-feeding organisms (Tucca et al., 2017; Urbina et al., 2019; Méjanelle et al., 2020).
Several studies have reported noxious effects of pyrethroids in non-target organisms during the
dissolved phase in the water column (Mugni et al., 2013; Gebauer et al.2017; Parsons et al., 2020)
and particulate phase in marine sediment (e.g., Mazzola and Sara, 2001; Norambuena-Subibabre
et al., 2016). The effect of lethal or sublethal concentrations in non-target crustaceans in the water
column and marine sediments could have severe ecological implications (Friberg-Jensen et al.,
2003; Van Geest et al., 2014a). Due to their high affinity with lipids (Log Kow 5 or 6), these
compounds can be bioaccumulated into the non-target invertebrates (bivalves, sponges, coral, etc.)
and biomagpnification for the vertebrate organisms can occur (e.g., Mazzola and Sara, 2001; Alonso
etal., 2012; Azmar-Alemany et al., 2017a).

Considering the high affinity of deltamethrin and cypermethrin for organic particles, the
subsequence sinking into the sediments, and incorporation into non-target organisms, this study
aimed to evaluate the occurrence of deltamethrin and cypermethrin in suspended particles and

benthic filter-feeding organisms collected in the Puyuhuapi fjord, an area with active aquaculture.
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Table 1. Physicochemical properties and biological effects of antibiotics and pesticides used in
Chilean aquaculture industries.

Compounds Cypermethrin Deltamethrin
Chemical formule? (C22H19C|2NO3) (szngBerO3)
Molecular weight (g mol™*)? 416.3 505.2
Octanol/ water partition (Log Kow; L kg?)° 6.6 6.2
Organic carbon partition (Log Koc; L kg?) 5.59 5.8"
Water solubility (mg L?)¢ 0.004 >0.002
No Observed Effect Algae 1.3 nd
Concentration Invertebrate 0.00004 0.0000041
(NOEC; mg L1)® Fish 0.00003 >0.000032
. Algae nd nd/
I(‘fglil rignfi?et ration Ir!vertebrate 0.0128 nd
’ Fish 0.0028 nd
Half maximal Effective Algae >0.1 9,1
Concentration Invertebrate 0.0003 0.00056
(ECso, mg LY)® Fish nd 0.00026
No-Observed Ecosystem Adverse-Effect
Concentration (NOEAEC, mg L)% 0.00005 0.0032
Bioconcentratio Factor (BCF, L kg?)® 1204 1400
Water 22.1 (pH 8) 17 to 48
Half-life (days)® Sediment 30%to > 730' 65 to 285°
Biota 0,8 to 10" nd

&: Mesocosmos study data; nd: No data. References: a: https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm; b: Benskin et al.(2016);
c: Oros and Werner (2005); d: Mackay et al., (2006); e: http://sitem.herts.ac.uk/aeru/vsdb/index.htm; f: USEPA (1989); g: Maund
et al.(2002); h: Koc = 0.41 Kow (Karickhoff, 1981); i: flocculated marine sediments (Hamaotene et al., 2018)

2.0 Results

2.1 Total lipids in benthic filter-feeding organisms

A total of 26 benthic organisms, distributed in seven sponge species and two bivalve
species, were processed for lipid measurement. The values have shown a range of 133.8 to 20.7
mg chol gdw™ and 142.3 to 30.4 mg chol. gdw™ for sponge’s and bivalve’s, respectively (Figure
2). Patagonian oyster (C. patagonica) was ~ 2.5 times lower than M. chilensis with average values
of 38.9 + 12.1 (two stations) and 98.9 + 38.9 mg chol. gdw (four stations), respectively. A wide
range of lipid concentration was observed in sponges with average values between 33.4 (Biemna
sp, one station) and 102.2 + 27.6 mg chol. gdw™ (Tedania spinata, three stations). Only sponges
Axintella crinite and Cliona chilensis were present in most sampling stations. The average values
were 39.5 + 16.9 mg chol gdw™ (six stations) and 56.9 + 13.5 mg chol. gdw (seven stations) for

C. chilensis and A. crinite, respectively. Figure 2 showed that C. chilensis have an increased
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tendency at station 4 and a lower decrease at station 6. A similar trend was observed in A. crinite
with a major value in station 3 and a small decrease at stations 5 (near Jacaf fjord) and 6 (Figure
1).

Figure 1. Total

1o r ; lipids concentration

120 | | (mg chol. gdw™?) in

100 benthic filter-
feeder’s samples

80

obtained in

Puyuhuapi fjord in
March 2017.

Total lipids concentration (mg chol. gdw1)

3 5
Sampling stations
B Axintella crinita E Cliona chilensis B Tedania spinata
B Amphilectus rugosus B Unidentified (D) & Biemna sp
B Unidentified S B Mytilus chilensis Chlamys patagonica

2.2 Pesticides in Puyuhuapi fjord

Only cypermethrin and deltamethrin were detected in organisms and suspended particles,
respectively. Cypermethrin was found in 65% of organisms analyzed (Figure 3). The highest values
were found in site 3 in sponges (C. chilensis and T. spinata) with values of 1.8 and 1.3 ng g lipids
dw (respectively) and site 4 in oysters and sponges (C. patagonica and C. chilensis) with values
of 1.04 and 0.96 ng g lipids dw, respectively. The lowest contents of cypermethrin were found at
Station 1 with values of 0.12 and 0.09 ng g lipids dw™ (C. chilensis and A. rugosus, respectively),
while in site 7 was not detected. Deltamethrin in suspended solid samples was detected at stations
1 and 7 (Figure 4, Table 2).
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Figure 2. Cypermethrin concentration (ng g lipid dw™) in benthic organisms collected in the

Puyuhuapi fjord.
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Figure 3. Deltamethrin concentration (ng L™) in particulate matter collected near localities where

organisms were collected.
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3.0 Discussion

3.1 Comparison of pesticide concentrations in organisms and the environment

Table 4 compares concentrations of deltamethrin and cypermethrin from suspended solids
and in organisms reported in different studies. Concentrations of deltamethrin in total suspended
particles were very low with a range of 0.01 to 0.05 ng L%, and located at less than 1 km (0.74 km)
south of the salmon farming center (stations 1 and 7, Figure 1). The last medication was applied
almost one year before (Sernapesca, 2016b) but we do not know which center applied the
medication. Several studies have reported the highest toxicity of deltamethrin in non-target
crustacean groups in the water column and sediments (Van Geest et al., 2014a, b; Urbina et al.,
2019; Frantzen et al., 2020) and additionally, this pesticide has a high tendency to be accumulated
in bivalves, but also they have a high depuration rate (Brooks et al., 2019).

Our values were two orders of magnitude lower than values reported in Monterrey Bay,
during a storm event, with a concentration of 1.8 ng L™ (Ng et al., 2012). Seawater samples
collected in South Africa estuary with a concentration of 253 ng L™ (Wolfand et al., 2019), were
four orders of magnitude higher than our values. A similar situation was observed for samples
collected near aquaculture centers in New Brunswick (Canada) with a deltamethrin concentration
of 400 ng L (Ernst et al., 2014).

Table 2. Comparison of cypermethrin and deltamethrin concentration in total suspended solids and
organisms in freshwater and seawater environments. The range values consider all stations and

samples measure. LOQ= Quantify limit, nd= not detected, na= not analyzed.

Localities Conditions Cypermethrin | Deltamethrin | Reference
Total suspended solids (ng L)
Salinas river and Ng et al.,
Storm event nd- 23.4 nd- 1.8
Monterey Bay 2012
) ) ] Wolfand et
San Diego River During storm events nd- 492 nd- 253
al., 2019
South African Seawater samples collected seasonally Bollmohr et
] 0.33-2.78 na
estuary during 2002 and autumn 2003 al., 2007
New Brunswick, Ernst et al.,
Near aquaculture centers na nd- 400
Canada 2014
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Puyuhuapi Fjord,

A total of seven stations were sampled

i . ] nd 0.013- 0.049 This study
Chile during an active salmon culture.
Organism
River Basin, Spain: .
o Fish samples:
Guadalquivir river, )
. Were collected specimens as barbel
Jucar river, Ebro ) ] ) Corcellas et
) (Barbus guiraonis and Luciobarbus 3.82 - 1520 LOQ - 96.2
river, Llobregart ) ) ) al., 2015
] sclateri), carp (Cyprinus carpio) and
river
o trout (Salmon trutta)
(ng g lipid wb)
River Basin, Spain: .
L Fish samples:
Guadalquivir river, )
o A total of 59 specimens were )
Jucar river, Ebro o ) ) Pico et al.,
) distributed in 13 species (barbell, carp nd- 92 nd- 21
river, Llobregart ) 20109.
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river
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North-western ) o
Sea urchin (Paracentrotus lividus):
(NW) Portuguese . ) . Rocha et al.,
. These range values consider six-station nd- 3.7 nd- 1.8
Atlantic coast ) . 2018.
o with a total of 120 specimens
(ng g lipid gdw)
Salmon farming A total of 39 salmon farming samples
samples come from | (oncorhynchus mykiss and Salmo nd- 4.42 nd- 2.21
Norway, Chile, salar).
Spain, Denmark,
Aznar-
and Scotland.
Wild sal Alemany et
ild salmon ;
A total of 12 wild salmon samples (O. al 2017a.
samples come from | 55 5cha; O. keta, O. kisutch, and O. nd- 0.04 nd
Alaska and the nerka).
Pacific Ocean.
(ng gww?)
A total of 20 sponges specimen
Puyuhuapi fjord, samples were distributed in 7 species
Aysen Region, (Cliona chilensis, Axintella crinite, )
nd- 1.76 nd This study

Chile.
(ng g lipid dw™?)

Amphilectus rugosus, Tedania spinata,
Biemna sp, Unidentified D and
Unidentified S).
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A total of 6 bivalves specimen samples
were distributed in 2 species (Mytilus nd- 1.04 nd

chilensis, Chlamys patagonica).

Mediterranean coast | Dolphin (Stenella coeruleoalba):

of A total of 27 male and 10 female Aznar-
Andalusia (Alboran | stranded animals liver samples were nd nd- 78 Alemany et
Sea, Spain) collected with different maturity states al., 2017b
(ng g lipid dw) (calves, juvenile and adult)

Deltamethrin concentration in Puyuhuapi fjord (0.01 to 0.05 ng L), were two orders of
magnitude lower than the No Observed Effect Concentration (NOEC) value for invertebrates and
three orders of magnitude lower for fish with values of 4.1 ng L™ and >32 ng L, respectively
(Table 1). While, half-maximal Effective Concentration (ECso) values were five orders of
magnitude higher than our deltamethrin concentration, with values of 560 ng L™ and 260 ng L™
invertebrates and fish, respectively. These results suggested that measured deltamethrin
concentration in Puyuhuapi fjord did not have an effect on the non-target organisms and neither at
the ecological level where deltamethrin concentrations of no-observed ecosystem adverse-effect
concentration value (NOEAEC) reaches a value of 3200 ng L (Table 1). The presence of
deltamethrin concentrations in our study area suggests i) the possible incorporation in the water
column from marine sediment by resuspension processes, where this compound can be
accumulated; ii) a possible particle transport from the adjacent fjord during their medication
processes applied in December 2016.

Cypermethrin was not used in our study area, however, we found it in the majority of the
benthic filter-feeding organisms collected in march 2017, ranging from no detected to 1.8 ng g lipid
dw in sponges and 1.0 ng g lipid dw in bivalves, where the major concentrations were observed
in sites 3 and 4 (Figure 3). Our values were from two to three orders of magnitude lower (3.8 to
1520 ng g lipid dw, respectively) than those reported by Corcellas et al. (2015) in fish collected
in four rivers in Spain and almost two times lower than in sea urchin collected at the Portuguese
Atlantic coast with a value of 3.7 ng g lipid dw (Rocha et al., 2018) (Table 4).
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Figure 4. Comparison of cypermethrin concentration (ng g) of invertebrates (sponges’ and
bivalves’), River fish (from Spain), and salmon for human consumption (several countries). The

values correspond to the average of all data reported by the authors.

A comparison of the average of cypermethrin concentrations in ng g* (Figure 5),
considering all organism and sampling stations, shows that our values were two orders of
magnitude lower than those reported from river fish collected in Spain (Pico et al., 2019) and one
order of magnitude lower than farmed salmon approved for human consumption, collected from
supermarkets and markets (Aznar- Alemany et al.2017a) with several countries as sources (e.g.,
Norway, Chile, Spain and others). However, our average cypermethrin values (0.04 and 0.05 ng
g, sponges and bivalves respectively) were similar to those obtained from wild salmon (0.04 ng
g?l) collected in Alaska and the Pacific Ocean (Aznar- Alemany et al.2017a). The similar
concentration of cypermethrin between wild fish and our organisms suggests that our samples have
had an indirect exposition.

Several studies have indicated that sponges and bivalves are appropriate bioindicators of
contamination by organic and inorganic compounds. (e.g., Khazri et al., 2015; Brooks et al., 2019;
Girard et al., 2021). Gowland et al., (2002) have demonstrated that mussels (M. edulis) can
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bioconcentrate cypermethrin under laboratory conditions, but they suggested that is a low
probability of this process occurring under natural conditions.

Our results suggest that Puyuhuapi fjord has an indirect exposition to cypermethrin
considering that; i) this compound was not used in Puyuhuapi fjord according to official reports of
the Undersecretariat of Fisheries and Aquaculture (SERNAPESCA); ii) a possible input of organic
particles derived from adjacent localities connected to our study area (Figure 1) that applied
cypermethrin in December 2016, considering the high affinity with organic particles; iii) and,

eventuality, that cypermethrin was applied without informing the authorities in charge.

3.2 Input of pesticides to Puyuhuapi Fjord

The Puyuhuapi fjord has massive and extensive salmon farms since 2001 (Sernapesca,
2016c¢) and these activities have been considered one of the major sources of pesticide inputs in
this zone. The Chilean government maintains specific annual monitoring of salmon infections
caused by ectoparasitic C. rogercresseyi in the austral zone, through the Risk Disease Monitoring
Program (Sernapesca, 2016a; 2017). These sanitary reports indicate that 20% of active farms in the
Puyuhuapi fjord received pesticide treatments during 2016 and 67% in 2017, while in the Jacaf
fjord, 71% of active farms were treated with pesticides in 2016 and 40% in 2017 (Figure 1).
According to government information, the pesticides azamethiphos, emamectin benzoate and
deltamethrin have been used as treatments in the Puyuhuapi fjord during 2015 and 2016
(Sernapesca, 2016b). Similar compounds were reported for treatments in the Jacaf fjord during
2015, however, during 2016, cypermethrin was added to the other treatments used so far
(Sernapesca, 2019).

A total of 0.3 kg of the active ingredient in deltamethrin was applied (bath treatments) in
April and May 2016 at the Puyuhuapi fjord, while 0.16 kg were applied during September and
October 2017, after our samples were collected (March 2017). The dissolved phase of this
compound has a half-life time of 48 d (Table 1) and dispersion of 39 km? (Parson et al., 2020), but
this compound (as well as cypermethrin) has a high affinity for particles and tends to be deposited
into marine sediments. Cypermethrin was not used at the Puyuhuapi fjord, according to official
reports from Sernapesca, but was reported that a total of 1.5 kg of its active ingredient was applied
in the adjacent fjord during April and May 2016. However, the amount of cypermethrin applied in
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the adjacent fjord, by itself, is not sufficient to explain the presence of this compound in our study

area.

3.3 Residence time of pyrethroids in the marine environment

The persistence of these pesticides after being released in the water column should
correspond to at least 22 days for cypermethrin and 48 days for deltamethrin (Table 1) and having
a dispersion rate of almost 39 km? (Parson et al., 2020), having an important impact on non-target
organisms around the treated salmon farms (Urbina et al., 2019). Besides, these compounds have
a high affinity with organic particles which increases the protection against degradation processes
(Urbina et al., 2019; Méjanelle et al., 2019), and therefore it increases their residence time
especially in sediments (Hamaotene et al., 2018; Hamoutene and Salvo, 2020). Degradation
processes depend on factors such as light, temperature, pH, organic matter content, and oxygen
concentrations (Farghaly et al., 2013; Meyer et al., 2013; Benskin et al., 2016). Under conditions
of high organic carbon content and low dissolved oxygen concentrations, the residence time in
sediments can be extended at least by 9 months for deltamethrin (Benskin et al., 2014) and more
than two years for cypermethrin (Hamaotene et al., 2018). The Puyuhuipi fjord has a high primary
production with an average value of 1.4 gC m? d (Daneri et al., 2012) and limitation on ventilation
due to the presence of the Jacaf and Puyuhuapi sills (Figure 1), which yielded hypoxia conditions
below 120 m (Schneider et al., 2014; Silva and Vargas 2014). These characteristics of our study
area can promote the persistence of cypermethrin and deltamethrin, considering for example that
the last deltamethrin treatment was applied at least a year before. While the presence of
cypermethrin can be associated with a major persistence in sediments and a major bioavailability
to the benthic filter-feeding organisms.

The trophic transference of contaminants has been a major concern, especially when marine
organisms were used for human consumption (e.g., Burridge et al., 2010). Mussels, oysters, and
sponges can bioconcentrate contaminants, due to their high filtering capacity and, by depredation,
they can transfer these contaminants to high trophic levels (e.g., Wulff, 2006; Brooks et al., 2019;
Rosado and Otero, 2020; Almeida et al., 2021). Despite that sponges have not a direct human
concern (i.e., to be consumed), we can not deny the ecological level importance in different
ecosystems (e.g, tropical, temperate, and polar; Bell et al., 2019). Several studies on sponges have

described the capacity of accumulation of trace metals (e.g., Rosado and Otero, 2020) and organic
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contaminants like polychlorobiphenyl (PCBs’ 38.2 ng L), polycyclic aromatic hydrocarbons
(Perez et al., 2003; Batista et al., 2013), but have no reported bioconcentration of pyrethroids. The
effect of these contaminants in sponges was not clear, but some studies suggested an eventual
impact on the endosymbiotic microorganisms and fungi sponges (e.g., Yarden et al., 2014; Thomas

et al., 2016; Rosado and Otero, 2020; Konstantinou et al., 2021) and finally to the sponge itself.
4.0 Conclusion

The pyrethroids cypermethrin and deltamethrin (applied by bath treatments) tend to be
deposited into the marine sediments and bioconcentrated into non-target benthic organisms due to
a high affinity with organic particles and lipid content, respectively. Very low deltamethrin
concentration values (0.01 to 0.05 ng L) suggested that this compound does not have an effect on
non-target organisms (NOEC, LCso and ECsp; Table 1) and neither at the ecological level according
to the value of the concentration of no-observed ecosystem adverse-effect concentration value
(NOEAEC; 3200 ng L) at the Puyuhuapi fjord. The last deltamethrin bath treatment in the
Puyuhuapi fjord was applied in April and May 2016, therefore the presence of deltamethrin in the
water column can be associated with the incorporation in the water column from marine sediment
by resuspension processes or a possible external input from the adjacent fjord.

Cypermethrin was not used as sea lice treatment in our study area, however, low
concentrations of it were observed in sponges and bivalves collected in March 2017. Our results
suggest an indirect exposition of cypermethrin considering that; i) this compound was not used in
Puyuhuapi fjord according to official reports of the Undersecretariat of Fisheries and Aquaculture
(SERNAPESCA); ii) a possible input of organic particles derived from adjacent localities
connected to our study area (Figure 1) that applied cypermethrin in December 2016, considering
the high affinity with organic particles; iii) and, eventuality, that cypermethrin was applied without
informing the authorities in charge. Our results were the first reports of pyrethroids in marine
sponges, suggesting that this group was an appropriate bioindicator of compounds used in

aquaculture activities.
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3.4 Chapter IV: The impact of antibiotics and pyrethroids used in aquaculture

activities on marine community respiration

In this chapter, we show preliminary results of respiration experiments in the water column
and marine sediments conducted at LECOB laboratory. This study aimed to establish the effects
of antibiotics (Florfenicol, Flumequine, and Oxytetracycline) and pesticides (Cypermethrin and
Deltamethrin) on community respiration in the water column and marine sediments. Sediments
from regions where there is some aquaculture activity may recede microorganisms with resistance
genes against antibiotics. As our target was the response of benthic ecosystems in a more general
way, we targeted the response of ecosystems with no previous aquaculture activity. This is why
samples were collected in Banyuls bay (France), an area without aquaculture activity.

Our preliminary results suggest some impact on carbon cycling in both water column and sediments
experiments because significant differences in dissolved oxygen concentration were observed
between treatments. Along with this, we also observed differences in parameters such as dissolved
organic carbon, nutrients, and ammonium, both in the water column and in the sediment
supernatant. These differences may be associated mainly with the microbial component, since there
are no significant differences in the meiofauna (ANOSIM, p= 0.055), which will be corroborated

once the results of the DNA studies in both experiments are obtained.
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3.4.1 Respiration experiments in marine sediment microcosms

Fifteen sediment cores were collected in the MESO sampling station to conduct respiration
experiments, according to section 2.2. Three cores were processed to retrieve baseline information.
Three cores were used for each treatment, adding a final concentration of 500 ng L™ of each
compound as described in Figure 8 (section 2.2). Dissolved oxygen concentration was measured
during the experiment with a microelectrode. Overlying water was collected for nutrients and
dissolved organic carbon (DOC) measurements. The top 3 cm of sediments were collected for
analysis of abundance and diversity of meiofauna and microbial communities, and elemental
analysis (CHN).

3.4.1.1 Dissolved oxygen in sediment cores

The depletion of dissolved oxygen in the microcosm was observed in the first 24 h after
adding the compounds (antibiotics and pesticides) with values ranging from 157 to 139 uM for
Pesticides and Antibiotics + Pesticides, respectively (Figure 1). Anova test (p= 0.0001) results
suggest significant differences in oxygen concentration values, while the Tukey test showed
significant differences between treatments at 24 h, 120 h and 144 h. During the first 24 h, highly
significant differences were observed between control (solvent only) and the treatments, while a
minor significant difference was observed between pesticide and antibiotics + pesticides
treatments. As the experiment progresses, and after supplying oxygen during 72 h, oxygen
concentration decreased after 5 and 6 days (120 and 144 h) with no significant differences between
treatments. However, on days 7 (168 h) and 8 (192 h) of the experiment, significant differences
could be observed between treatments. On day 7 (168 h), a highly significant difference was
observed between control solvent and antibiotics + pesticides treatments, while less significant
differences were observed between control solvent and pesticides treatments, and between
antibiotics and antibiotics + pesticides. On day 8 (192 h), highly significant differences were
observed between control solvents and antibiotic + pesticides treatments, and between antibiotics
and antibiotics + pesticides treatments. A less significant difference was observed between

pesticides and antibiotics + pesticides.

86



Anova, p=<0.0001

* %
M
Dissolved Oxygen (uM) x
* . *':'* Treatments
* k% ok (|
250 I 1 $ Control Solvents
4 EEkx
[ P -
**ﬁ** -- - .-é ,ﬂ| * % %k %k Anubioncs
- |L| Pesticides
C - -
(=] - & E Antibiotics + Pesticides
2004
Ta

24 48 72 96 120 144 168 192 216
Time (h)

Figure 1. Dissolved oxygen concentration (average + standard deviation; uM) in overlying water
(1 cm over the sediment surface) and the sediment (every 0.5 cm) at the beginning (baseline) and

the end of the respiration experiment in sediment microcosms.

3.1.1.1 Nutrients and DOC in bottom water

Overlying water was collected at the beginning and the end of the experiments (Figure 2).
Dissolved organic carbon shows that the values of pesticide treatment (217 + 55 uM) were near
baseline values (170 £ 9), while the concentration in control solvents (1573 = 208 uM), antibiotics
(1213 £ 337 uM), and antibiotics + pesticides (1323 = 310 uM) treatments were 825, 614 and
678% higher than baseline values. Anova tests with a p= < 0.0001 suggest very high significant
differences in our experiments. Turkey tests results showed highly significant differences have
been observed between pesticides and the control solvents, and between pesticides and antibiotics
+ pesticides treatments. Minor but significant differences were observed between antibiotics and
pesticides’ treatments. In contrast, no significant difference was observed between baseline and
pesticide treatment.

Phosphate concentration decreased from 81 to 88 % between baseline (0.35 £ 0.04 uM) and

treatment values (range of 0.04 + 0.002 uM to 0.07 £ 0.01 uM). Similar concentrations of
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phosphate were observed between control (0.04 £ 0.002 uM) and pesticide treatments (0.04 + 0.02
uM), followed by antibiotic treatments with a value of 0.06 + 0.004 uM, while the highest
concentrations were observed in the antibiotics + pesticides treatment (0.07 = 0.01 uM). Very high
significant difference in our experiment according to Anova test (p= <0.0001), where we can
assume were produced by differences between baseline and the treatments. However, Turkey test
suggests no significant differences between treatments (Figure 2, Phosphate).

Nitrogen components (nitrate, nitrite, and ammonium) showed a major variation in
concentration between treatments and baseline. Ammonium was almost depleted in the control
solvents and antibiotic treatments (near the detection limit of 9 uM), decreasing by ~99% compared
with baseline values (762 £ 261 uM), while in the pesticides (4227 = 3061 uM) and in the
antibiotics + pesticides (4012 + 3818 uM) treatments ammonium concentration increased by 400%.
Despite of depletion and increase of ammonium concentration, Anova test suggests no significant
differences in our experiment with p=0.081 (Figure 2).

Nitrate concentration decreased by 77% in the pesticide treatments with a value of 0.8 + 0.4
uM compared to baseline (3.4 + 0.2 uM), while in the control and the antibiotic and Antibiotics +
pesticides treatment showed a very low concentration (~ 0.04 £ 0.03 uM). According to Anova test
(p= <0.0001) our experiment present a very high significant difference. A comparison between
treatments (Turley test) suggest low significant differences between pesticides and the other
treatments (Figure 2)

Similar tendencies were observed in nitrite concentration between treatments and baseline
where the values decreased on 20, 54, and 65% for antibiotics + pesticides, antibiotics, and control
treatments (0.113 £ 0.016, 0.077 £ 0.014, 0.059 + 0.026, uM, respectively) compared to baseline
(0.167 £ 0.006). While pesticide treatments were increased by 4% with a value of 0.174 = 0.06
uM. Statistical analysis suggests significant differences in our experiment (Anova p= 0.003). A
low significant difference was observed between pesticides and antibiotics treatments, while a
middle significant difference has been observed between antibiotics and pesticides treatments
(Figure 2).
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Figure 2. Dissolved organic carbon and nutrient concentration (average * standard deviation; uM)

in the overlying water at the beginning (baseline) and the final respiration experiment in the
sediment microcosm.
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3.4.1.2 Organic carbon and total nitrogen in sediments cores

Carbon and nitrogen were analyzed in sediment cores by elemental analysis (CHN) at
baseline and the end of the respiration experiments in the sediment microcosms (Appendix 2,
Figure 1). No significant differences were observed in the experiments according to Anova test,
although it is possible to observe some differences in the percentage of nitrogen and carbon.
Organic carbon showed a small decrease when total carbon is considered, while organic carbon
shows an increase in the antibiotic and pesticide treatments compared to the control treatment. A
similar condition is observed with organic nitrogen, while total nitrogen shows an increase in the

control and antibiotic + pesticide treatments compared to baseline.

3.4.1.3 Meiofauna abundance and diversity in sediment cores

The abundance and diversity of meiofauna were obtained from the top 3 cm of sediment
cores at the beginning (baseline) and the final respiration experiment. Abundance (Appendix 2,
Figure 2) showed no significant differences according to Anosim test (R= 0.2193; p= 0.055).
However, antibiotic treatments (390 + 45 indv. 10cm) were less abundant than the control and the
pesticide treatments (508 + 182 indiv. 10cm?, 511 + 205 indiv. 10cm?). Antibiotics + pesticides
treatments (617 + 77 indiv. 10cm) had a similar abundance value at baseline (604 + 88 indiv.
10cm).

Nematodes, copepods, and polychaetes were the most abundant groups while kinorhynkes
and ostracodes were less abundant (Appendix 2, Figure 3). More than 60% of meiofauna
corresponded to the nematode group, followed by copepods (range 12 to 23%) and polychaetes
(range 13 to 20%). A similar presence of groups was observed between baseline and pesticide
treatments, as it was between control and antibiotics + pesticides treatments, while in antibiotic
treatments were observed a minor presence of copepods, an increase of polychaetes group, and an

absence of the kinorhynkes.
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3.4.2 Respiration experiments in water column microcosms

Dissolved oxygen concentration was measured during the experiment with a microelectrode.
Water subsamples were collected for nutrients, dissolved organic carbon (DOC), flow cytometry
analyses (phytoplankton and microorganisms), and microbial diversity by DNA analysis. Samples

were collected at the beginning (baseline) and final respiration experiments.
3.4.2.1 Dissolved oxygen measurements

Figure 3 shows the dissolved oxygen concentration in the water column microcosms during
six days of experiments. During the first 24 h, the values of dissolved oxygen showed a slight
increase in all the treatments (range of 219 £ 0. 6 to 222 + 0.9 uM) compared to baseline (212 uM).
Dissolved oxygen concentration decreases slowly between 24 and 120 h with a range of ~ 220 to
~118 uM. According to Anova test (p=<0.0001) very high significant differences were observed,
but only the last measurement at 144 h shows significant differences between treatments (Turkey
test).
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Figure 3. Dissolved oxygen concentration (average + standard deviation, uM) in the water column

at the beginning (baseline) and the final respiration experiments in the water column microcosm.
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The lowest oxygen value was observed in the pesticide treatment (124 + 6 uM), followed
by the antibiotic + pesticide treatment (140 + 13.1 uM) and finally the antibiotic treatment (148 £
7.4 uM), while the highest concentration was observed in the control treatment with a value of 169
+ 7.4 uM. If we consider the respiration rate of the microcosms, estimated from the slope of the
linear regression curve, it is possible to point out that the highest respiration rate was observed in
the pesticide treatment with a value of 0.69 pM h* (R2 = 0.81), followed by the antibiotic and
antibiotic + pesticide treatments (0.59 uM h, R, =0.97, and 0.57 uM h!, R, = 0.81, respectively).
The lowest respiration rate was observed in the control treatment with a value of 0.41 uM (R2 =
0.96).

3.4.2.2 Nutrients and dissolved organic carbon (DOC) measurements

Dissolved organic carbon and nutrient concentrations were measured at the beginning
(Baseline) and the final respiration experiment (Figure 4), according to section 2.2. The DOC
concentration in treatments increased by 362 to 900% compared to the baseline concentration. The
highest concentrations of DOC were observed in the control and antibiotic + pesticide treatments
with values between 2729 + 67 uM and 2771 £ 37 uM (respectively), followed by the pesticide
treatment with a value of 1666 + 106 uM, and the antibiotic treatment with a concentration of 1278
+ 47 uM. Very high significant difference was observed in our experiments according to Anova
test (p=< 0.0001). A comparison between treatments shows a very high significant difference
between control solvents and Antibiotics treatments; control solvents and pesticides treatments;
Antibiotics and Antibiotics + Pesticides treatments; Pesticides and Antibiotics + Pesticides
treatments. Less significant differences were observed between Antibiotics and Pesticides
treatments.

Phosphate concentration was very low and similar between treatments; however, we
observed a decrease of 86 and 89 % between baseline (0.074 £ 0.014 uM), and treatments ranged
from 0.08 £ 0.003 uM to 0.01 £ 0.005 uM. According to Anova test (p=< 0.0001) very high
significant differences were observed in our experiments, but no significant differences were
observed between treatment, only between baseline and the treatments. While in the nitrogen

components (nitrate, nitrite, and ammonium) was possible to observe a major variation in
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concentration between treatments and baseline, with an increment in ammonium and a decrease in
nitrite and nitrate. No significant differences have been observed according to Anova test for
ammonium (p= 0.48), Nitrate (p=0.56), while, nitrite show a significant difference with p=0.042,
however, no significant differences were observed between treatments.

The ammonium concentration shows an increase of ~905 to ~1550 % compared with
baseline (58 + 84 uM). However, the difference between treatments is not clear, according to
standard deviation, where the highest value was observed in pesticide treatments (956 = 713 uM),
followed by antibiotics + pesticides treatment (749 £+ 84 uM), and finally by antibiotic treatments
(582 + 220 uM).

Nitrate concentration decreased between 26 to 65% compared with the baseline which
reaches a concentration value of 0.34 £ 0. 021 uM. Similar concentrations were observed in control
and pesticide treatments with values of 0.12 + 0.13 uM and 0.13 + 0.16 uM (respectively), and
antibiotics and antibiotics + pesticides treatments with values of 0.22 + 0.17 uM and 0.24 + 0.20
uM, respectively. Nitrite concentration decrease from ~22 to 48% compared with a baseline which
concentration value was 0.052 + 0.007 uM. Control and antibiotic treatments were similar with
values of 0.040 £ 0.003 uM and 0.041 + 0.015 uM (respectively), followed by pesticide treatment
(0.032 £ 0.008 uM) and finally, antibiotics + pesticides treatments with a lower value (0.027 +
0.006 uM).
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Figure 4. Nutrients and DOC concentration (average + standard deviation, uM) at the beginning

(Baseline) and the end of respiration experiments in the water column microcosms.

94



3.4.2.2 Phytoplankton and bacterial abundance measurements

The abundance of phytoplankton and bacteria (cells mL™*) was measured by flow cytometry
at the beginning (baseline) and the final respiration experiment. Anosim test suggest no
significarive differences (R=0.1156, p=0.217).

Phytoplankton abundance decreased between 93 to 95 % when we compared the baseline
and treatments, which were conducted under dark conditions (Appendix 2, Figure 4). The highest
abundance, without considering the baseline, was observed in the control treatment with a value of
839 + 90 cells mL™?, while a lower value was observed in antibiotic treatments with a value of 605
+ 86 cells mL™. The largest abundance decrease was observed in Synechococcus and Nanoplankton
with > 94%, followed by Picoplankton with a range of 84 to 91%, and finally, Cryptophyceas with
a range of 52 to 72%.

Synechococcus showed a lower abundance in antibiotic treatments (417 + 70 cells mL™),
while the higher abundance was observed in the control and pesticides treatments (567 + 70 cells
mL?® and 579 + 33 cells mL™, respectively). Nanoplankton abundance was highest in control
treatments with a value of 109 + 7.5 cells mL™, while similar but lower values were observed in
the other treatments with a range of 77 + 2.2 to 82 + 5.6 cells mL™. A similar tendency has been
observed in Picoplankton abundance where control treatment showed the highest value (159 + 15.6
cells mL™Y), while the lower abundance was observed in antibiotics + pesticides treatment with a
value of 95 + 2.4 cells mL™. Cryptophyceas abundance showed the highest abundance in the control
treatment with a value of 8.2 + 3.9 cells mL™, while the lower value was observed 2.3 + 2.1 cells

mLL.

The major contribution to total phytoplankton abundance in baseline and treatments was
Synechococcus, Nanoplankton, and Picoplankton, while the presence of Cryptophyceas was

negligible (Appendix 2, Figure 5).

Total bacterial abundance decreased between ~24 to 54% compared with baseline
abundance with a value of 350 + 92 103 cells mL* (Appendix 2, Figure 6). Control, antibiotic, and
pesticide treatments showed similar values with a range of 219 + 24 to 223 + 34 103 cells mL™,
while a lower value was observed in antibiotics + pesticides treatments with a value of 161 + 29

103 cells mL™%. The abundance of high acid nucleoid content (HNA), with a major contribution to

95



total bacterial abundance, decreased between 37 to 56 % compared with baseline (253 + 28 103
cells mL™). The lower value was observed in antibiotics + pesticides treatments (155 + 27 103 cells
mL-1), while the control, antibiotics, and pesticides treatments were similar with a range of 214 +
25 to 222 + 14 10° cells mL™. Despite the minor contribution (~33%) to the total bacterial
abundance of the low acid nucleoid content (LNA), they decreased ~98% compared to baseline
with the treatments. The LNA abundance was similar between treatments and not superior to 7 +
2 10°cells mL™.
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4.0 DISCUSSION

In the last decades, aquaculture activities have supported high food fish demands, because
natural fishing has reached a limit at ca. 90 million tons since the early *90s (Ottinger et al., 2016;
FAQ, 2020). The extensive and massive salmon and trout production have long been known to
generate local impacts on the water column and marine sediments (e.g. Cromey et al., 2002;
Buschmann et al., 2006), where occurrence, fate, and impact of antibiotics and pesticides (released
into the environment), have been poorly studied and understood in areas such as the Patagonia
fjords. Some studies on antibiotics and pesticides used in marine aquaculture suggest that they may
provoke local negative consequences on the environment (Neori et al., 2004; Nash et al., 2005;
Willis et al., 2005; Gaw et al., 2014; Price et al., 2015), however, few studies attempt to understand
the consequences along to areas with high pressure from aquaculture activities (e.g., Kim et al.,
2017; Chen et al., 2019).

Understanding the impact of aquaculture at the scale of the fjord is not trivial because

besides toxicological effects, other impacts may exist, at low levels. (Rain et al., Valentina). The
way to estimate such impacts does not exist at date. Therefore, we set up an approach on the basis
(mixing) three strategies (Figure 3, chapter I). The first one is to assess the occurrence of antibiotics
and pesticides in the environment, during the rest period and at the onset of aquaculture activity
(when treatments have not started yet). Second, a model was developed to predict the fate of
antibiotics. Third, experiments were carried out to assess specific missing understanding, like the
partition of antibiotics on one hand, and the change in mineralization on the other.
In this work, we have focused on the occurrence and fate of antibiotics in the Puyuhuapi fjord
(chapter I, section 3.1), and their partitional behavior through an experimental approach (chapter
I1, section 3.2). Besides, we evaluated pesticide occurrence in the water column and sessile filter-
feeding organisms, which results were discussed in chapter 111-B (section 3.3.2). Finally, we
showed preliminary results from community respiration experiments, in which we sought to
evaluate the impact of antibiotics and pesticides on the sediment biota and the remineralization
function of this ecosystem (chapter IV, section 3.3.4).

In chapters 3.1 and 3.2 we showed the results of a study of the occurrence and fate of
antibiotics in the Puyuhupi fjord and their coefficient partitional constant (Kg and Koc) under
laboratory conditions simulating fjord conditions of temperature and salinity. First, we know that
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the occurrence, fate, and persistence of antibiotics in coastal areas, derived from aquaculture
activities, are a growing concern due to their possible impacts, especially on bacterial populations,
because of their capacity to develop antibiotic resistance and, eventually, to be transferred to
humans (Burridge et al., 2010; Yang et al., 2013; Miranda et al., 2018). Second, several studies
clearly showed local impacts of antibiotics mainly through their occurrence and the presence of
resistant genes in marine sediments (Bjorklund et al., 1991; Herwing et al., 1997; Schmidt et al.,
2000; Miranda and Zemelman, 2002; Miranda and Rojas, 2007; Buschmann et al., 2012; Tomova
etal., 2015). Finally, few studies have focused on understanding the dynamic and fate of antibiotics
along the coastal area with high aquaculture pressure (e.g., Kim et al., 2017). The Puyuhaupi fjord
is an area under aquaculture pressure since 2001 (Sernapesca, 2016a), where the use of ca. 20 tons
of florfenicol was reported during 2015, and ca. 4 tons during 2016 (Sernapesca, 2016c), as a
treatment for an outbreak of Piscirickettsiosis in 2016 (Rozas and Enriquez, 2014, Sernapesca,
2017a). In consideration of the above, several questions arose that are described and answered
below.

First, the rest period aims at the recovery of background fjord conditions. Is it possible to
detect antibiotics in the fjord after several months without treatments, even far away from culture
centers? Our results showed that florfenicol was detected only in the particulate phase (trace to
23.1 ng LY, while flumequine was present in one sample at trace concentration. These very low
concentrations were detected ca. 180 days after concerted medication with florfenicol, and ca. 360
days after treatment with flumequine at sampling sites located between 2 and 23 km from the
nearest farm. Despite being detected in a relatively small proportion of samples, they are in general
agreement with previously published studies in a range of marine environments under human
influence around the world (Table 2, section 3.1). Second, what concentration would you expect
six months after the last treatments? In what compartment would we find it? and what concentration
would you expect six months after the last treatments? For to respond to these questions we use the
fugacity model (Level I11) developed to determine the fate and concentration of antibiotics after
one day of medication. Thus, our results suggested that >90% of the antibiotics (florfenicol and
flumequine) may be lost in the water column by advective flow, and antibiotics deposited in the
surface sediments below the cages may undergo near-total degradation. (Fig. 2, section 3.1). Third,
how long are the antibiotics florfenicol and flumequine in sub-Minimal Inhibiting Concentrations

(sub-MIC)? Our result, using this model, also predicted that flumequine should theoretically
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remain in surface sediments at sub-minimal inhibitory concentrations (sub-MIC) that have
previously been shown to promote the selection of antibiotic resistance in bacteria, which can
become a risk for human health through the consumption of marine products, such as described for
florfenicol, oxalic acid, oxytetracycline, and quinolones in the Chiloé archipelago in northern
Patagonia (Miranda and Zemelman, 2002; Miranda and Rojas, 2007; Buschmann et al., 2012;
Tomova et al., 2015).

The partitioning behavior of antibiotics can help understand their fate because sorption
processes are driven by physicochemical characteristics and particle composition (Lang et al.,
2018; Vasudevan et al., 2009; Feng et al., 2016). These parameters, partition constants coefficient
(Kg and Koc), have a key role in fugacity models but their published values suffer large differences
(Kotodziejska et al., 2013). Establishing its value in the environmental conditions of the Puyuhuapi
Fjord would be useful to better predict the fate of antibiotics. The partitioning behavior of
antibiotics was estimated through bath experiments under temperature conditions similar to those
reported in the Puyuhuapi Fjord (chapter Il; section 3.2). Partition constants Kq and Koc derived
from batch experiments point to a sorption capacity of flumequine twice higher than that of
florfenicol (Table 2, section 3.2), suggesting that flumequine has a greater tendency to sorb to
sediments than florfenicol. Besides being mostly associated with the dissolved phase, dissolved
florfenicol may in part be complexed to cations, as shown by concentration differences between
seawater and pure water treatments, and similarly to what was observed for sulfamethazine (Wegst-
Uhrich et al., 2014). In contrast, dissolved flumequine showed no tendency to form a complex
(similar concentrations in seawater and pure water). Under the experimental conditions, the
protonated form of flumequine tends to dominate, which may not favor complex formation. When
sediments were added, flumequine concentrations were significantly different in pure and seawater,
suggesting that a significant portion of flumequine was complex. Under saline conditions, the
sorption seemed lower than in freshwater treatments suggesting that some cations prone to complex
formation, were not present in seawater, and were released by sediments. This hypothesis in line
with observations in soils, where flumequine is sorbed to copper ions (Il) and the proportion of
sorbed flumequine was up to 70% (Gaita et al., 2011).

In this work, the occurrence of pesticides used in aquaculture in the Puyuhuapi fjord after
the rest period was assessed in benthic filter feeder organisms, and in particles, sampled along the

fjord, and not in the vicinity of aquaculture cages, as previously assessed. Along with the use of
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antibiotics in the salmon farming industry, the use of pesticides is also necessary to control
outbreaks of ectoparasitic infections caused by C. rogercresseyi, which can generate severe skin
damage and increase salmon susceptibility to suffering a bacterial and viral infection (Bravo, 2003;
Johnson et al., 2004; Lhorente et al., 2014; Dresdner et al., 2019) and, as a consequence, severely
reduced salmon production (FAO, 2020). Once pesticides have been released in the water column,
and because of their high affinity for particles and their lipids, they can be deposited in marine
sediments and eventually incorporated by non-target benthic organisms (Tucca et al., 2017; Urbina
et al., 2019; Méjanelle et al., 2020). Bivalves and sponges have been reported to be suitable
pollution bioindicators for organic and inorganic compounds (e.g., Khazri et al., 2015; Brooks et
al., 2019; Rosado and Otero, 2020; Girard et al., 2021), due to their high filtration capacity and, in
turn, an eventual transfer of these contaminants to high trophic levels (e.g., Wulff, 2006; Brooks et
al., 2019; Rosado and Otero, 2020; Almeida et al., 2021). When we considered these evidence,
we wonder if pyrethroids, used in aquaculture, could be detected in the sessile filter-feeding
organism in the Puyuhuapi Fjord? As an answer, we evaluate the occurrence of cypermethrin and
deltamethrin in suspended particles and benthic filter-feeding organisms in the Puyuhuapi Fjord
(see chapter 3.3.2).

Deltamethrin was detected in total suspended solids with a concentration ranging from 0.01
to 0.05 ng L. These values were lower than NOEC, LCso, and ECso (Table 1, section 3.2.2)
suggesting no effect on non-target organisms. They were also below the ecological level according
to NOEAEC concentration value (3200 ng L™). The presence of deltamethrin concentrations in our
study area, after more than 12 months since the last medication, suggested possible incorporation
from resuspension of marine sediment where deltamethrin would be stored, or from allochthonous
particles, coming from the adjacent fjord. The adjacent fjord has not the same periodicity of culture
and rest periods.

Despite the non-use of cypermethrin in our study area, very low concentrations were
observed in almost all of our benthic filter-feeding organisms, with a maximum value of 1.8 ng g
lipid dw* for sponges and 1.0 ng g lipid dw* for bivalves (Table 2, section 3.3.2). Average values
(considering all stations) were similar to those reported by Azar-Alenmany et al. (2017) in wild
salmon without direct exposure to cypermethrin (Figure 5; section 3.3.2). These results suggest
that organisms of Puyuhuapi have indirect exposure to cypermethrin, probably from external input

from adjacent locations with active salmon cultures or resuspension of sediments with
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cypermethrin accumulated by treatments applied and not reported officially. The Puyuhuapi fjord,
with hypoxia characteristics and high primary production, has the favorable conditions to allow
long residence time of deltamethrin in marine sediments at least for 9 months (Benskin et al., 2014)
and more than two years for cypermethrin (Hamaotene et al., 2018).

Exposure of bivalves to pesticides may be of immediate concern because they are used for
human consumption, unlike sponges which are ecologically important in different ecosystems (e.g,
tropical, temperate, and polar; Bell et al., 2020). Sponges capacity to accumulate trace metals (e.g.,
Rosado and Otero, 2020) and organic contaminants such as polychlorobiphenyl (PCBs’) and
polycyclic aromatic hydrocarbons (Perez et al., 2003; Batista et al., 2013) was well known, but our
study was the first to report pyrethroids’ accumulation. Our study suggests that sponge groups can
be an appropriate bioindicator of pesticides used in aquaculture activities. In terms of aquaculture
impacts, it shows that the exposure expected by current knowledge (pyrethroid residence time, rest
period set-up) fails to explain the occurrence of deltamethrin and of cypermethrin. Even though the
levels are of no environmental concern, more research is needed to reconcile in-situ observations
with scientific knowledge and official information.

An important impact to take into account in the salmon industry is the possible impact of
antibiotics and pesticides on biogeochemical cycles, due to their possible effect on microorganisms
and non-target organisms that play a key role in these cycles. We know that organic matter
degradation processes are key steps in marine biogeochemical cycles, where meiofauna and
microbial populations play fundamental roles in both the water column and marine sediments (e.g.
Azam et al., 1983; Azam and Malfatti, 2007; Nascimiento et al., 2012; Bonaglia et al., 2014).
Aquaculture not only increases the organic matter content in the water column and sediments near
the salmon cage (Fodelianakis et al., 2015; Kamjunke et al., 2017), but may also affect their
degradation processes, due to the impact on biological communities when antibiotics and pesticides
have been applied (e.g., Friberg-Jensen et al., 2003; Van Geest et al., 2014a, Valdés-Castro and
Fernandez, 2021). Those effects are observed at a concentration of antibiotics and pesticides much
lower than concentrations causing toxicological responses, and the impacts targetted here are
different. Several studies have reported changes in the taxonomic diversity, composition, and
function of bacterial communities in sediments in different areas with active aquaculture. (e.g.,
Christensen et al., 2000; Holmer et al., 2003; Bissett et al., 2007, 2009; Castine et al., 2009;
Hornick and Buchmann, 2018).
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Antibiotics released into the environment can affect the degradation of organic matter,
inhibiting some bacterial biochemical processes (e.g., Chellosi et al., 2003; Marti et al., 2014) or
causing changes in microbial communities, which promotes the presence of genetic resistance (e.g.,
Dang et al., 2007; Nogales et al., 2011; Tomova et al., 2015). The impact of pesticides in the water
column and marine sediments has been poorly understood because not only does it have noxious
effects in non-target crustaceous communities (Mazzola and Sara, 2001; Van Geest et al., 2014a,
b; Norambuena- Subibabre et al., 2016) but rather in bacterial activities as photo and
chemoautotrophic carbon fixation (Rain-Franco et al., 2018) and as chemo and photoautotrophic
ammonium uptake (Valdes-Castro and Fernandez, 2021). The close relationship between
meiofauna and the microbial community has significant relevance in biogeochemical cycles
because their interaction can stimulate the degradation of organic matter (Bonaglia et al., 2014)
and also compete for the consumption of organic matter (e.g., Nascimento, 2010). Copepods
(arthropods), which are the second most abundant group in the meiofauna (e.g., Coull, 1999; Sajan
et al., 2010; El-Serehy et al., 2015) and the preferred prey of invertebrates and fish (Coull, 1999),
could also be affected by pesticides which in turn, would affect both the degradation process and
the trophic structure of the sediment. Based on these antecedents we wonder if is it possible that
antibiotics and pesticides at a concentration well below NOEC have an impact on the carbon cycle?
To answer this question, we seek to establish the effects of antibiotics and pesticides on community
respiration, through community experiments with the exposition of antibiotics and pesticides in
seawater and sediments microcosms. The exposure concentrations were 500 ng L™, which
corresponds to the treatment situation, close to aquaculture centers during acitive medication
periods (section 2.4).

Chapter 3.4 were described our preliminary results suggesting that exposure to pesticides
(cypermethrin and deltamethrin) and antibiotics (oxytetracycline, florfenicol, and flumequine)
produce changes in mineralization processes in both sediments and the water column, in an area
without aquaculture activity (Banyuls Bay, France). Significant differences in dissolved oxygen
values were observed during community respiration experiments 24 h after to inoculate antibiotics
and pesticides and after 168 h and 192 h of the respiration to and times on sediments (Figure 1,
section 3.4.1) and at the end of water column experiments (Figure 3, section 3.4.2).

Significant differences in DOC concentration (+ 900% in the water column experiments

+antibiotics + pesticides, whilst it was +600% in the control) suggested that aquaculture related
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treatments may have an impact on mineralization close to culture centers, and during the treatment
period. Ammonium, nitrate, and nitrite concentrations suggested that this effect also concerned the
nitrogen cycle in sediments (~ + 450% in the pesticide and antibiotic + pesticide treatments, while
ammonium almost disappeared in the control and antibiotic treatments). Nitrate

The concentrations of nitrate were not detected in the control and antibiotic treatments and
have a very low concentration in the antibiotic + pesticide treatment, while in the pesticide
treatment it shows the highest concentration among the treatments. While the nitrite concentration
does not show changes in the pesticide treatment, with a value similar to starting time, it shows its
lowest concentration in the control and the antibiotic treatments. In addition, impacts observed in
the seawater differed from the impacts observed in the sediment mesocosms.

The impact on nitrogen compounds and DOC in the sediment experiments, coupled to the
small difference between meiofaunal abundance, suggests that exposure to antibiotics and
pesticides during salmon treatments may affect the mineralization by the microbial community.
This will be further evaluated by microbial diversity analyses in the sediments, once pandemic
conditions allow it. The same conclusion can be drawn for the water column experiments. A
significant difference in total bacterial abundance and HNA bacteria (103 cells mL*) was observed
in the antibiotic + pesticide treatment. Bacterial diversity will help relate it to the changes in
nitrogenous species’ concentrations. The abundance of phytoplankton decreases by at least 93%
where Synechococcus, with the highest contribution to the total abundance, seems to be more

sensitive to antibiotics than to pesticides (Figure 4, Appendix 2).
4.1 Perspectives for future research.

Future research would gain in including the study of the fjords and canals adjacents to our
study area, with and without aquaculture activity. This will allow the authorities to better evaluate
the sanitary rests considering the interconnection of farming neighborhoods. It is also suggested to
use both sponges and bivalves to evaluate the environmental conditions of an area, with or adjacent
to aquaculture activity. On the other hand, it is necessary to make modifications to the fugacity

model used in our study, incorporating the presence of at least two layers in the water column.
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5.0 CONCLUSION

This thesis work concludes that the Puyuhuapi fjord shows the occurrence of antibiotics
(florfenicol and flumequine) and pesticides (deltamethrin and cypermethrin) derived from
aquaculture activities in particulate phases and benthic filter-feeding organisms during the sanitary
rest period. Experimental studies mimicking the treatment period evidenced no toxicological
impacts, however supporting changes in the mineralization functions of the ecosystem. Specific

evidence and conclusions were:

1. Low florfenicol and flumequine levels were detected about 180 days and 360 days after
concerted medication, respectively, at sampling locations between 2 and 23 km from the
nearest farm. The results of the fugacity model predicted that high flumequine contents may
remain in sediments for up to 2 months before being completely degraded to a sub-
Minimum Inhibitory Concentration (sub-MIC), which may promote the selection of
bacteria with antibiotic resistance and eventually become a risk to human health through
the consumption of seafood products.

2. Flumequine has a higher sorption tendency than florfenicol, and therefore flumequine fate
will be more associated with processes like particle transport and deposition to the seafloor.
In contrast, a smaller portion of florfenicol bounds to particles, and the fate of this antibiotic
is to a higher extend related to hydrodynamic processes like dilution and transport by
currents. The discrepancy between Koc and Kow shows that absorption into the organic
carbon phase is not the dominant process driving sorption of florfenicol and that other
surface-driven processes, like ion exchange, cation and hydrogen binding, and complex
formation also mitigate its partition (Tolls 2001). The present study provides experimental
partition constants of flumequine showing that absorption by diffusive processes to
hydrophobic organic carbon is an important driver of this compound association to
sediment.

3. Low deltamethrin concentration values (0.01 to 0.05 ng L) in total suspended solids, found
in our study, did not affect non-target organisms and or had any effects on an ecological
level (NOEC, LCso, ECso, NOEAEC; Table 1). In addition, considering that the last
treatments were applied more than a year ago, the presence of deltamethrin in the water
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column could be associated with sediment resuspension processes or a possible external
input from the adjacent fjord with active aquaculture.

Despite cypermethrin not being used as sea lice treatment in our study area, low
concentrations were observed in sponges and bivalves (1.8 and 1.0 ng g lipid dw™* for
sponges and bivalves, respectively). Our results, as total average values (0.04 and 0.05 ng
g1), were similar to those reported in wild salmon without direct exposure to cypermethrin
(Figure 5; section 3.3.2), suggesting a possible external input to our study area and/or by
resuspension of cypermethrin accumulated in the sediments from non-reported treatments
applied, considering that the Puiyuhuapi fjord may promote its persistence. Besides, our
study is the first to report the presence of pyrethroids in marine sponges, suggesting that
this group is an appropriate bioindicator to evaluate compounds used in aquaculture
activities.

Despite that preliminary result not showing clear differences in dissolved oxygen
concentrations during community respiration experiments, we can observe some
differences between treatments in DOC and nitrogen components (ammonium, nitrate, and
nitrite) concentrations, suggesting some changes in biological components, however, we

must wait for DNA analysis to determine variations in bacterial diversity.
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Abstract As a consequence of their increasing use, pyrethroid insecticides are
recognized as a threat for nontarget species and ecosystem health. The present
chapter gives a state-of-art overview of individual pyrethroid occurrence in waters
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impact on the marine environment remains difficult to appraise due to lack of
comprehensive studies. Nevertheless, aquaculture arises as an important but poorly
understood environmental burden. Owing to their large organic carbon pool, sedi-
ments may act as a sink for pyrethroids and impair nontarget aquatic species.
Partitioning potential of pyrethroids is compared to that of other well-known legacy
pollutants in the light of their position in the phase space defined by key physico-
chemical properties (Kow and H' ). The transport and partition of pyrethroids away
trom their source are strongly dependent on their halt-life, but their quasi constant
emissions in urban and agricultural area may compensate for their degradation,
therefore sustaining the occurrence and behavior of some individual pyrethroids as
“quasi persistent organic pollutants.”™

Keywords Air, Freshwater, Marine, Partition, Pyrethroids, Sediment, Transport,
Water

1 Introduction

A major change in the use of pesticides over the last 20) years has been the gradual
replacement of organophosphate and organochlorine pesticides by synthetic pyre-
throids. The regulation and the ban of formerly used active agents have been
followed by an increased use of a wide variety of current-use pesticides such as
pyrethroids in agriculture and aquaculture [1]. Pyrethroids are also extensively used
in urban and industrial areas and livestock tarms to control pests such as mosquitoes,
lice, and wood-destroying dwellers. In addition, synthetic pyrethroids have the
advantage of low cost, low mammalian toxicity, and shorter persistence in the
environment than other classes of pesticides [2].

The exposure mechanism leading to acute neuronal toxicity to insects and
crustaceans 1s through dissolved water in the water column and through pore water
in the sediments [3]. Other impacts have been reported and are related to trophic
transter in food webs. Even though pyrethroids are degraded faster than other
pesticides, they have been shown to occur in water bodies, allowing their transter
to the aquatic food webs [4]. Pyrethroids have hydrophobicities in the same range as
legacy organochlorine pesticides (log Kqy from 4.8 to 7.0) and thus tend to sorb on
organic particles and sediments. Insecticides sorbed in particles may be consumed
by filter feeders and be transterred to higher trophic levels, or alternatively, particles
may consist in a reservolr for these pollutants, probably reducing their biodegrad-
ability in natural waters. As a result of biomagnification at high trophic levels,
negative impact of pyvrethroids has been suggested causing immunity and estrogenic
disruption to mammalians [4].

The impact of pyrethroids is the result of both the exposure to dissolved pyre-
throids and to particle-associated ones. A comprehensive understanding of pyre-
throid impact to nontarget species starts with the understanding of pyrethroid
occurrence In the various environmental phases: dissolved water phase, particles,
and sediments. This chapter reviews the current knowledge on the occurrence of
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pyvrethroids in water, particles and sediments of freshwater and marine
environments, and the underlying partition and transport processes between those
phases. Pyrethroids are often applied to water bodies, and after introduction to the
dissolved phase, they partition between the different environmental compartments,
being subjected to a number of sinks, particularly degradation. The elucidation of the
occurrence, partition, and sinks of pyrethroids will allow to identify research lines
that would help to better constraint the environmental nisk associated to pyrethroids
and to orientate protection measures.

2 Pyrethroid Sources and Emissions in Surface and Marine
Water Bodies

Because of their wide spectrum of targets, pyrethroids are used in a variety of
applications; agriculture and wban householding pest control compose two of the
major market shares. Accurate estimates of their use are made difficult becaunse
nonprofessional uses are often not reported and by off the counter sales. The use of
pyrethmids by aquaculture activities leads to important amounts of pyrethroids
directly released to the marine environment, which can be important in specific
marine areas [3. 6]. Overall, pyrethroids represent more than one third of the
insecticide market, with a worldwide annual use of active ingredients around
T000 tons per year between 1990 and 2013 (with peaks above 12,000 tons in
1997 and 2012) [7].

Structural and householding usages constitute an important part of the pyrethroid
market. Several studies report that these compounds are not completely eliminated in
conventional wastewater treatment plants (WWTPs) [8, 9], and thus they can be
introduced into the environment through WWTPs effluents. Pyrethroids from urban
sources were identified as the cause of toxicity in 80% of river sediments in the
vicinity of the city of Salinas in Southern California [10].

3  Occurrence and Composition of Various Pyrethroids
in Water Ecosystems

In order to estimate the potential impact of pyrethroids on aquatic environments,
research projects and monitoring programs have surveved pyrethroid occurrence
mostly in the vicinity of agncultural and urban areas concerned by pyrethroid
primary use. California is the world location from which more data are available
as a result of numerous monitoring programs setup at the municipal to state level
[11]. As a result of their affinity for organic matter, pyrethroids have been detected
both in the water phase and in the sediments. Table | reviews water concentrations of
pyrethroid in the cument literature, and Table 2 reports their levels in sediments.

119



L. Méjanelle et al.

SPIDAD WL O]
[1z] {2 e Thu SOz 19E—x 06— TEgpu Lti-1 d| Lz Fump saary ofg uey
FPISAD WLO)E
[1z] TTepu T i-pu Fespu | Tospu 6'5s—pu £0E-pu 6T P FOT-1 s | LT Fump saary ofong uey
SLOPUe
MO O] SIBATY [SUEE)
[0g] pu pu pu pu #1-pu pu pu G sa ] 110z ury pu sajaiuy soq
BRUGfiTeg wayme g
paEEIEN DALY
£10T ELE FWIES DU SEujey
[61] LBEPU pu pu I'Ll-pu L 1 1-pu ism | 10T ) O URIP P {3000
GOOT P24 uLos g Aau
[51] %10 G 5i-0 FETH) 0% & L) g 1Z-0 d| 800z | -Auwop puv ssary seues
HNT o
[L1] §T 9—u pu pu 1Z-Pu pu G1—pu pa su LEA ) CLOOT | Pun s pus openg 20

HO0T
[g1] pu pu pu pu pu pu SH-pu Fpu =10 | 0T 1241y O UBUEDEG
[51] i S £ UL [T (DM Y
sraary wmbeop uey
[1] e S| Loz | o ey yaany ouang
poysiamm umbeop ueg
[#1] 1" g-pu pu pu 11 11— pu g 6pu d| Looz 2] UL SURIp P {3000
pouysiam s umbeop ueg
[#1] 1'g-pu L 67T 1'1-pu #'61-pu GT-pu §'¢1-pu s | LT 1 U SURIp P {00
LI I
uwops s pajdunes
[£1] & 6P sa | rioz | sumip deg oosioueg uey
010z D
[z1] pu pu o | aug-pu 11— pu pu a0 1-pu S| 600z POOY S3ATY LSy
BRI WAL 0N
Al

uuypurnyag | onmapauag | uppunad | wwpngly | swgewsg | upgopyloy | ungedarduay | umpuopg addy|  awap

MDY spranygorid mprapay | 21ues

IPIMPLIOM SUDTIEIO] TU2IR1IP WOL I8 U1 spromisd mapiapu jo ] Su ul safues suslenuasued 10 uonas|as MNsTeyxa-uoN | ajqe 1,

120



{ penunuo)
EUNY MOy 18 2
[5Z] ¥1F 0T LT 6 [ W0 F H0 d — | wegen ‘ Lnmgsa saary (arag
BUNY MOy 1 2
[£T] EF& EFF FOF L0 £0F E0 5] — | uegin Arms raary By
£00T
[+l BLIFEND HLTEE0 4| -t Arempes ueayy QInog
L10T
[t pu pu - pu pu pu s | 9100 By [EFmog g
=18 gz L1 EIRIEY b
[zil pu pu —pu LS G0 | ses usuwngomD JuurmEy
AR
[1£] pu (o 1—pu H3-pu 4l eoog | Aweusey enussy sweans
[1£] pu U So—pu sl | G007 | Awauaany penua)y ueanyg
uedg
~empunard puae 1ayew am)
[ 0] =] g ‘ppy Apped wiouae s
[ &3] i+ =i w00 umds ‘wIpE saary oy
GO0T
[%7] 45T pu TEE—ELD pu pu pu s | R0 umds wpp sy oy
L] M1 ey aE
[i1] 005 £ —pu d| 9661 JROUNH 2 UL ER AT
Bl T
[az] H1-pu L £01-p Tepu =10 s oAy gD
L]
[£3] oL F 00T wTLF 06 o T ET HEOF 0 d T S fUREAnS gl
L]
[57] LTS LEFLE| 650 F IS0 STOFRTO 1] T ST Cwnans gl
FOOT BULLY T
[vT] §T9—pu 6F 1P s 00 sy wipumey Suiliag
i S2010 dEIUmURL A, EIE|
[£z] 6E % sl -1 yfnanp Fursssed soary
amymaude 200
[zzl s 0100 aunddyppyg ‘pueps mda

oISy

121



f N l.'\'l.l:Jl.I.I.II:rII:- L oan

proEn pouodal 51 uomAsp prEpss pue 2FeDar ) S0UDD R M) UL S|QEIEAR 00 5 Fn RO IR0 M) WD,

pomdan jou anjes wnwu ¥ s wieynemb sopg by papaep jon pu
L W pawpa st addy spdws s pue topdues Aoam SUDON00 FIRP 2 W) PAUNSSE 5|1 0NN o panjyad s s 2 1 nep up squssap o swop uondussap
POUIAL ) UDLAY CEY U0 PADaf[od pue Dyes aip ul papuadsms sopned 1oy oy spuns g womenyyard saye paedpe ssvyd pasjossip oy spuws ey Yeaprued + ssmyd pasosap) odumg
D[ AN, OF SEAAT 4 FMO(0) S o) pauagas $1ad A apdung S ana D LR WO FjED S wed puooos s puE Spog 1ML WO UoEQUXOU0 SMataal JqE) 24 jo wed sy s,

EPEUE) Y OLM SUTLIE] Map

[£] 0F—u d] 010 ‘s armnombe map
FPRUE) Y3 S MO
[5] (r—pu sicy| oo wIaues amrombe may
AEmaop
[t] pu pu sl Flog | uewman B spom -]
AN WD
[5£] 0 F 1I'T == = SUNOE DS 2 o) 20
20y e ney
[5£] LOF Er =10 - s nowEs o) o)
agampnaenbe nowres A PO KE AR 0]

uuypwEa | g | uogpuesdy | uagapds | supensg | uwgepyday | uugedaduag | umpeegpg adiy|  weap

BRIBPY spraipeiid [mpapay | 2Mues

(panunuoo) | ajqe

122



o

samkhpg e
Qi ;] @ wommImno 307y

e

OvE e

1nx HOATH TERTER S

Y

EF0

I

&T0

EEap
£68l TR KDL R

ey

FH-TF

K e My wany
-1 ST R AR

iy

&1

T

wpead

[ 4 AT R CERSEE Y

Ll

EirpE

-

ER-PE

WEIL
ESEEEETEOE ST 2

- s weEndom gy

WAL Y we s Sy

KIEIAD W HE
LI Bemamp amry of oy wyg

13 ]

RO RO
- R A BOrE

LM

Ly

Lo LAeE |
L] L1 NI [PEE DAY oy

e
I

L

TR

La-e

LT

AE

Arawn alempy

R R R

TR

L¥e

L

Frire

-

Fim

A

s &, b
LR S T W EERAD PEE S

w0

Fil

AE

LR DAY Ay FTERY 3

Fo

FiE-e

BE RIS A, 32T
SRl E R 0

'EFAIOTE ) [FRIRER )

Ti¥Fh

(333

RO amad PO

R TR B Y

MR R AL ]

alu_H_ Hﬂgﬁ_yuﬂhﬂn_gu&.ﬁ .uu.ﬂ._ﬂhu_ i .n_ By

Wiy

bngrang | whnamy | winp

i | way

s e

aldy Ty
by

IPIMPLOM SUOTEDO] JUULIP

wiog suRunpes unc 3 Suut 'sjaas)] pronaid Eipiapun o uonasEs JANSTEYN-uoN T ajqe |,

123



ANITO BN EREED T B SR T AR

(5]  + “Faf w0 pro Agewndes® anw, sogmens Teg) sod,
P s 8 Ren ) T E pee afenar X1 WEanR A W e 10 8 aRin Semnmm o0 T w,

0 i o B o g sow P

g pan ey oo s 200d aop GUEE ST RaE i ap o sargd paos p o0 REDE (G Saopg Be o pasp @ add ader g
RN X G W [N I R 6 A m] JEO0 I O [V A O 300 AR Al STENETOC e p po amd mag ol

fiug s oot I AW ED Dary jang
P W
e BLI-PR ] - TE-pE ] EEI-PR s T R
ey
il Ay
= ] = = = = = = g [ -0 RO BEE o
aaloirny
AT Ary
SMEEFORT il i Aammeojy weg e ERog
TP Brare s AT T R W e
AT “wan
e Jo1-1 ST PEIE LS SOEE g | -iig | reomeh L pen sy
vpuiyTiy wag
SPNAMIT MIIE],
AT
THLELD s nay | s wap amig ke
AT
e e EULTE e e e L ™ e e s wnp | wmw wap AT ke
i T
g g [ -Seel | Sy o oany
aaloirny
ST
1 Hi EPE-PR [l Wi oHEg [ -0 L LR ]
L]
L e EE91 FE L1 e e ST Es Wi AP WATH ST
R I
L9FE 95 F o EFI1 159 s = | moudump w pan sy
aEa L] T L]
LT “PEROT | LEROPE g [ -fir | CmesEay wEm ey
T L]
THi-PE Ei-m R A | —fir | CsesEay wEm Pelog
U
e L B —HL gy Ty e
L]
TP e L ] | FEERED LEI-EED I FETRED = | e e oAy g
yemral | awapweay | meapasy | megemndd | smed n Y { | womy | wd L L W W A add may,
speopid e | FETE

(pomunuos) g ajge,

124



Many studies reported pyrethroid concentrations in total water samples: the water
collected is directly adsorbed on a SPE cartridge or is directly solvent-extracted,
without previous filtration [12, 17, 22, 30]. Therefore, in these reports. both
dissolved and particle-bound pyrethroids are jointly extracted and reported. A
filtration step before pre-concentration was the preterred approach in some studies
|26, 28, 29, 31, 33, 48], and the concentrations reported herein are that of dissolved
pyrethmoids, which includes the truly dissolved form and the colloidal-associated
pyrethmids as part of the dissolved organic carbon pool. Pollutants associated to
dissolved organic carbon are also retained in the adsorbents designed for sampling
truly dissolved pollutants, together with pollutants associated to colloids, as known
to occur for other hydrophobic chemicals [56]. Distinguishing concentrations of
dissolved active compounds trom those of particulate ones 1s important because both
modes of occurrence are affected by distinct processes of transport and degradation
rates (see later), in turn shaping differently the ultimate fate of pesticides. A strong
recommendation for futures studies i1s to analyze separately the dissolved and
particulate phases [21], and in any case, to state clearly which phase 1s characterized.
The first part of Table | reviews dissolved and particle-bound pyrethroid concentra-
tion ranges. Whereas dissolved pesticides are bioavailable, it is not clear if the sorbed
pyrethmids are toxic through feeding intake or as a transient repository, being
desorbed later on and supporting the dissolved phase levels [31].

Pyrethroids dissolved in fresh and manne waters have been measured in a number
of studies worldwide with the objective to check whether their concentrations were
below thresholds of water quality guidelines. The dissolved form of pesticides is the
torm that is bioavailable and represents a threat for arthropods and fish. Dissolved
pyrethroids were detected in agricultural drains, creeks, streams, and also in their
collecting large rivers downstream agricultural land (Table 1). For example, in seven
counties of Calitornia, 65153 metnc tons ot pyrethroids were sold for licensed use
between 1999 and 2008 [52], and 422 tons for the whole California state in
2010 [18].

The occurrence of individual pyrethroids varies geographically and seasonally as
a response to agricultural use [19], and the consequent emission to the water, but
probably also to different seasonal and site degradation potential. In Hospital Creek,
a tributary of the San Joaguin River (Central California), bifenthrin was responsible
for the greatest part of the toxicity of particles, whereas cyhalothrin was the
prominent toxicant of particles in Ingram Creek, another tributary located less than
50 km away from the former [14]. Estenvalerate and permethrin occurred in some
water samples of tributaries of the Sacramento River after storm events in 2003
[15]. Intributaries of the San Joaquin River, cyfluthrin and cyhalothrin were the most
frequent pyrethroids detected atter winter storms, whereas bifenthrin and cyhalothrin
were only identified in samples collected in March [17]. In central California, several
surveys also reported bifenthrin as the main pyrethroid detected, its occurrence being
related to storm events [13, 14, 16], while cyvhalothrin and esfenvalerate dominated
in the San Joaquin watershed [16]. Another study in Southern California sampled
San Diego River during storm events and showed that six pyrethroids were present
tor 80% of the particle samples: bitenthrin, A-cyhalothnn, permethrin, deltamethrin,
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cypermethrin, and cyfluthrin [21]. Even though the same compounds were also
detected in the dissolved phase, their relative abundance differed from that of the
particles. Comparison of the suspended/dissolved concentration ratio to the soil-
water partition constant showed that bifenthrin was not at equilibrium and in excess
in the particles [21]. In contrast, dissolved+particulate samples collected in two
others rivers of Southern California during low flow period showed much lower
concentrations, and only bifenthrin and pemethrin were detected [20].

Generally, the past and on-going water survey programs setup in California have
vielded an important and valuable amount of data on the occurrence of pyrethroids.
These studies demonstrated that one or two pyrethroids were trequently present in
whole water samples, and that the dominant active compound ditfered in space and
time (both years and seasons), reflecting the distinct agricultural targets, shifts in
usages, and emissions from urban pest control [11, 19]. A metadata analysis gave the
integrated view that cyhalothrin and bifenthrin were the compounds most frequently
exceeding Regulatory Threshold Levels in surface freshwater of the USA and
reached higher maxima in concentration [2].

In developing countries, the impact of cuwrrent-use pesticides on freshwater
quality is a growing concem, and an increasing literature documents pyrethroids in
Asilan water bodies, whereas reports on Africa are still too scarce [34]. Together with
hundreds of other micro-pollutants, two pyrethroids were monitored in rivers and
canals lowing through Vietnamese large cities and showed occasionally very high
permethrin concentrations [23]. Cypermethrin and permethrin also dominated in the
dissolved phase and in suspended particles of an urban creek, close to Guangzhou
{Southern China, [25]). In GuanTin reservoir close to Beijing, deltamethrin was the
more frequently detected pyrethroid insecticide in spring [24]. In streams and nvers
of a rice cultivation area in the Philippines, cyhalothrin, cypemethrin, and
deltamethrin were frequently detected, at concentrations exceeding water quality
thresholds in half of the samples [4%]. In Pakistan, deltamethrin and permethrin were
close to water quality threshold in winter samples [26].

In European Rivers, permethnn was detected in the UK [27], cyhalothrin and
cypermethrin in dissolved water and suspended particles of seven streams of Central
Gemnany, especially after rain events [31]. Cypermethrin was the most frequently
detected pyrethroid in the dissolved phase of the Ebro Delta (Spain), where rice is
cultivated [28, 29]. Cypermethrin and deltamethrin concentrations varied in space
and fime, with peaks in concentration at the end of May followed by an apparent
removal within 3 weeks [28, 29]. This finding demonstrated, by in situ observations,
the fast degradation of pyrethroids in freshwater. In another Spanish nce paddy area,
cypermethrin, bifenthrin, esfenvalerate, and cyhal othrin were present in most surface
and groundwater total water samples analyzed [30], with the number of pyrethroids
detected and their concentrations exceeding those measured in the Ebro Delta. In
addition to broadcast on paddy fields, urban emissions through waste water treat-
ment plant emissaries were likely responsible for this contamination. Despite a more
restricted literature on European waters than tor American ones, pyrethroid residues
occur in agncultural freshwater environments and their concentrations may exceed
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threshold values especially in suspended particles after rain events (in 80% of the
samples in Germany [31]).

Because pyrethroid pesticides have been quite often detected in streams, creeks,
and receiving rivers, they should also reach marine coastal waters. However,
research addressing the occurrence of pyrethroids in estuarine and manne envimon-
ments 1s limited. Due to the dilution of river water into the sea, pesticides often fall
below detection limits. For instance, in seawater off Portugal, only two of the nine
targeted pyrethroids could be detected, and only one could be guantified, whereas
five were present in ovsters [33]. Analytical difficulties may be a reason for the
scarcity of published data in seawater (Table 1).

A specific risk for the marine environment is associated with aquaculure treat-
ment of salmon against ectoparasites [5, 57]. Formulations used in aquaculture
contain deltamethrin or cypermethrin together with emulsifiers for bath treatment
of caged fish. Once the treatment is over, the bath water is released into the seawater,
where pyrethroids are diluted by currents. In a case study in Canada, the deltamethrin
plume could be detected up to 5.5 h after emission and the plume extended a few km
away trom the cages [5]. In this study, deltamethrin was emitted as a dissolved
pesticide, and it was monitored both in the dissolved phase and in the suspended
particles. Interestingly, deltamethrin concentration in the particle phase was approx-
imately three to four times greater than in the aqueous phase, which demonstrates the
quick partition of pyrethroids to organic carbon in seawater and, thus, their affinity
tor particles [5]. Variable responses of natural marine microbial communities to the
input of anti-lice pesticides have been evidenced in Southern Chile [38]. At some
locations and season, deltamethrin inputs resulted in an increase of carbon fixation
by photosynthesis, likely resulting from a decrease in arthropod grazing pressure;
however increase in carthon fixation was also observed at other sites and seasons. The
diverse responses observed evidenced complex relationships between environmental
tactors (nutrient levels, zooplankton abundance, etc.) and pesticide impacts. These
responses of marine organisms, distinct from toxicity alone, need further research to
understand the overall impact of aquaculture and, more generally, of pyrethroid
emissions, on marine ecosystems. More detailed information on the effect of salmon
industry in the marine environment is presented elsewhere [6].

However ditficult it is to detect pyrethroids in the marine environment, this task
should not be overlooked because marine crustaceans and fish have been reported to
be more susceptible to pyrethroids than freshwater ones [29, 34, 48].

4 Occurrence and Composition of Pyrethroids in Sediments

Table 2 documents pyrethroid occurrence in sediments. The solid phase of sediments
acts as a sorbent for pesticides and likely integrates over time water pyrethroid
concentrations in the overflowing water and also the accumulation of sinking
particles in sea and river beds. Because of their quick association to river sediment,
pyrethmid contamination of riverbed sediment has emerged as an important envi-
ronmental threat to benthic organisms, and the literature reporting sediment toxicity
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of pyrethroids has developed in the recent decade. Sediment toxicities toward the
benthic amphipod Hyalella azteca, toward the cladoceran Ceriodaphnia dubia, and
toward the midge of the Diptera Chironus dilutus are common tools to survey
environmental quality of freshwater sediments. When pesticides are also measured,
it allows to identify which toxicant causes the observed impairment [11, 38, 49, 539].
Recent monitoring studies document the occurrence of several pyrethroids in
riverbed sediments (Table 2) and have been reviewed at the global scale by Stehle
and Schulz [60)]. Their residual occurrence in sediments 1s presently recognized as a
threat to diversity of sediment-dwelling invertebrates and also as the cause of a
decrease of diversity in aguatic environments at a global scale. Table 2 reports
sediment pyrethroid concentrations at sites covenng several continents. In some
studies, sediment pore water concentrations are also given together with solid phase
sediment concentrations. The occurrence of pyrethroids in sediments evidences
clearly the propensity of pyrethroids to sorb onto and into particles. Owing to the
large organic carbon pool comprised in sediments, sediments have the potential to
act as a sink for pyrethroids. Organic carbon content, silt, and clay fractions are
sediment bulk characteristics that usually correlate with pesticide levels [11, 24].
The concern about pyrethroid sorption to sediments in Californian streams
exposed to agricultural and urban emissions led to the development of monitoring
programs addressing the benthic environment in addition to water-based surveys.
The considerable amount of data generated by those programs points to bifenthrin
being the most commonly found residues in the sediments (Table 2). In Del Puerto
Creek, a northern California stream flowing through agricultural land. it was the
main contributor to sediment toxicity, with a smaller contribution of cyhalothrin,
estenvalerate, and cyfluthrin [37]. In sediments from the Santa Maria River (central
California), the pesticide chlorpyrifos was the main contributor to the toxicity to the
benthic amphipod Hyalella azfeca, while cyhalothrin and permethrin also contrib-
uted to sediment toxicity in some locations in June 2002, but not in May 2003
[3%]. In sediments collected in California from 2008 to 2012, the most frequent
pvrethmoid detected was bifenthrin; the other active compounds cyfuthrin,
cvhalothrin, cypemmethrin, deltamethrin, esfenvalerate/fenvalerate, fenpropathrin,
or permethrin, occwrred in one fifth to one third of the samples [11]. Bifenthrin
was also the main pyrethroid in sediments of rivers alimenting Salton Sea in southern
California [41]. In an wban estuary of southern California (Ballona Creek, Los
Angeles), permethrin dominated over bifenthrin, while cypermethrin and cyfluthrin
werme next in abundances [52]. In Minnesota, permethnn and bifenthrin were at the
top of pyrethroid sales, permethrin for animal care, structural applications, home and
garden holding, while bifenthrin was mostly used as crop chemical [44]. In this state,
33% of sediments of stormwater ponds contained permethrin and 20% bifenthrin;
this pattern was in line with results from other urban locations statewide as reviewed
by Crane [44]. Another nationwide study addressed metropolitan streams in the USA
and found bifenthrnn detected in 47% of the bed sediments followed by cvhalothrin,
while permethrin, resmethrin, and cypermethrin occurred with much lower tre-
quency [43]. Recent observations in Y9 streams across Midwest USA also found
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bitenthrin responsible for most of the toxicity in halt of sediments and also attributed
urbani zation rather than agriculture as responsible for its emission [59].

In Southern Amenca (Argentina), cyhalothrin was the dominant pyrethroid in
sediments of rivers Howing through large monocultural horticultural fields [45]. The
percentage of detected herbicides and pesticides varied seasonally according to their
application, while pyrethroid residues were consistently detected in sediments,
attesting for an environmental risk for the benthic biota.

An increasing body of literature evidences pyrethroid occurrence in Asian river-
bed sediments and shows the prevalence of cypermethrin at many sites (Table 2). In
large cities of Vietnam, permethrin was the dominant pyrethroid, and its geograph-
ical repartition brings evidences that it is sourced by structural and householding
uses and disease vector controls rather than agricultural spraying [47]. Deltamethrin
was only detected once In this study but at very high levels from an undetermined
source. In Southern China, cypermethrin, cyhalothrin, permethrin, and deltamethrin
dominate over other pyrethroids in sediments ot the Pearl River; their concentrations
may reach notably high values in small creek sediments collected upstream in the
river [49]. Cypermethrin and permethrin also dominate in sediments from an urban
creek, close to Guangzhou (Southem China, [25, 61]). In Beljing GuanTin reservoir,
tenvalerate and deltamethrin were the dominant pyrethroids [24]. In Pakistan
deltamethrin and permethrin were the dominant pyrethroids, with deltamethrin
present in all samples and reaching concentrations above environmental quality
thresholds (namely, NOEC of Hvalella azteca [26]).

Australia’s state Queensland has a low population and sugarcane and cotton
cultivation dominate its agricultural activities. Ametryn and prometryn were the
most frequent pyrethroids detected in sediments from irrigation drains and channels,
reaching high concentration levels, while bifenthrin occurred in only one cotton
production area [46].

In Europe, cyhalothrin and cypermethrin are ubiquitous at large nver mouths,
whereas riverbed sediment also showed frequent amounts of bifenthrin and
tefluthnn, together with cypermethrin and cyfuthrin in some rivers of Italy and
France [62]. In sediments of the Ebro Delta (Spain), cypermethrin was detected in
some sediments, whereas deltamethrin, detected in the water, was below detection
limits in the sediments [28]. In contrast, cypermethrin, cyfluthrin, and estenvalerate
were abundant in the paddy fields of Albufera de Valencia [30]. These paddy fields
are filled with water coming from a lake receiving agricultural and urban etuents,
and both surface water and groundwater contained high levels of dissolved phase
pyrethroids.

Similarly to the reports of seawater concentrations, pyrethroid abundances in
marine sediments are evaluated by a limited number of comprehensive studies. In an
intensely urbanized estuary in Southern Califomia, bifenthrin and cyfluthrin were
the most frequently detected pyrethroids with their highest concentrations at 132 and
635 ng/g, respectively, at sites located near sources of runoff emissions from urban
watersheds. They accounted for a part of the toxicity of the sediments to a standard
amphipod Eohaustorius estuarius; however they were not the major toxicant at all
the studied stations [52]. Samples with the highest concentrations of pyrethroids
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were located in close proximity to river mouths and cities, whereas samples located
more oftshore showed lower concentrations, or pyrethroids were below detection
limits. This distribution supports urban pyrethroid emissions. In another area of
Southern California, sediments from the Monterey continental shelf were analyzed
together with suspended solids in the three rivers flowing into this marine region.
Whereas pyrethroids were found in almost all nvers particles (sampled atter rain
events), with bifenthrin and permethrin as the dominant pyrethroids, they could not
be detected in the estuary nor in the deeper sediments of the Monterey canyons (from
100 to 300 m depth). A similar situation was observed in marine coastal waters oft
Portugal, whereas no pyrethroid could be detected in sediments, while cypermethrin
was detected in the dissolved phase and tetramethrin, bifenthrin, cyhalothrin,
tenvalerate, and permethrin occurred at low concentrations in some samples of
oysters collected in the same area [33]. In marine sediments, contaminated river
particles are diluted by the autochthonous manne particles and by older nverine
particles in which pyrethroids have had the time to be degraded. As a consequence of
dilution, pyrethroids are often below detection limits in marine sediments (Table 2).

A recent review documented the occurrence of pyrethroids in sediments world-
wide and showed significant correlations between pyrethroid occurrence and sedi-
ment toxicity [7]. The good correlations obtained proved that pyrethroids were the
main cause of toxicity and strongly suggested potential ecological risk to nontarget
aquatic species. Nevertheless, at some locations, such as in sediments from the Pearl
River Delta (China), other pollutants than pyrethroids likely contributed to the
overall toxicity of sediments. The authors concluded that the frequent occurrence
at high concentrations of pyrethroids in sediments from agricultural and residential
areas constitute a threat to freshwater ecosystems [7].

5 Pyrethroid Degradation

A characteristic feature of pyrethroid contamination in water and benthic ecosystems
15 that a few compounds of the pyrethroid family may be present but not all the
series, in concentrations generally under the 1(X) ng/L range for water samples or
under the 100 ng/g range for sediments. Pyrethroid occurrence is highly vanable in
time and space, so that samples from a given area may show detectable amounts of
one or several pyrethroids while others do not or comprise other active compounds.
This feature is much different from other ubiquitous pesticides classes and is a
consequence of their higher lability. The moutes of degradation of pyrethroids may
be abiotic (hydrolysis, photolysis, and oxidation) or mediated by bacteria and fungi.
Pyrethroids degradation by microorganisms and fungi have been studied in soils
[63, 64]. Vanous carboxylesterases may induce the degradation of pyrethroids;
generally one gene exists in one pyrethroid-degrading microorganisms, with the
exception of Ochrobactrum anthropi, that possesses two pyrethroids degrading
genes [63). Optimal conditions of pyrethroid biodegradation are between 30 and
35°C. Organic matter and clay content are also important parameters controlling
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pyrethroid bioavailability to microorganisms. Halt-lives of bitenthrin, cypermethrin,
and permethnn in soils were 12-1.410, 14-106, and 5-55 days respectively, under
temperature conditions between 25 and 30°C (Table 2 in [63]). The biodegradation
rates in freshwater sediments have been seldom determined, and they are longer than
in soils [ 1#]. Depending on conditions, long persistence was observed for bifenthrin
and permethrin. Under both aerobic and anaerobic conditions, and the half-lite of
bifenthrin in sediment of drainage channels ranged from & to 17 months at 20°C,
while that of cis and trans permethrin varied between 2 to 13 months [65]. In liquid
media, bacteria (Bacillus, Brevibacillus, Ochrobactrum, Pseuwdomonas, Serratia,
and Sphingobium) and fungl (Cladosporium, Candida) degrade efficiently pvre-
throids. At temperatures ranging from 27 to 38°C, most strains degraded pyrethroids
within 5 days, with the fastest degradation observed tor pemmethnn in 3 days
[63]. However, the experimental conditions at which the experiments were carried
out were not the same as natural field conditions, where lower temperatures and
lower bacteria or fungi abundance can be expected to increase halt-life of
pyrethroids.

6 Pyrethroid Occurrence in the Atmosphere

Because of their relatively low vapor pressure, pyrethroids are assumed to have low
tendency to volatilize during application, as well to revolatilize from soils or water
bodies [7]. During application, 20-30% ot the applied doses can be emitted as
aerosols and dritt away from their source by atmospheric transport [66]. Post-
application emissions have also been reported to occur via volatilization [67]. For
deltamethrin, having one of the lowest Henry's law constant values among pyre-
throids, it was experimentally demonstrated that 70% of deltamethrin sprayed on the
surtace of the water was quickly emitted as aerosols [68]. Taken as a whole, these
evidences point to likely atmospheric emissions of pyrethroids, at least during and
shortly after application by spray broadcasting.

The widespread occurrence of pyrethroids in some areas also questions whether
their volatilization to the gas phase is possible, ensuing a likely atmospheric trans-
port to proximate or remote ecosystems (see Sect. 7). A tew reports have recently
evidenced that pyrethroids were present in the atmosphere, both as aerosols and as
vapors in the gas phase. The particle-bound fraction is susceptible to be atmospher-
ically deposited or to be washed out by rain or snow whereas gas-phase pyrethroids
will be removed by photodegradation or air-soil, air-vegetation, or air-water diffu-
sive exchange, probably resulting in longer atmospheric residence times
[69]. Table 3 reviews the concentrations of pyrethroid insecticides bounds to asro-
sols or as vapors. The first repornt of pyrethroids in the gas phase of Brazilian alpine
reserves showed that cypermethrin was the second pesticide in abundance, whereas
2as phase concentrations of legacy pollutants, such as chlordane, chlorinated cyvclo-
dienes and hexachlorobenzene, were around background levels [70]. In agrosols and
in the gas phase of Guangzhou (south China), eight pyrethroids were detected, and
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cypermethrin was the dominant one [71]. Concentrations of aerosol-bound
cypermethrin were comparable to those measured in a horticulture area in Malaysia
[72]. Li et al. measured allethrin and tetramethrin in higher proportions in the gas
phase whereas bifenthrin, cyhalothrin, permethrin, cyfluthrin, and cypermethrin
were predominantly associated with the aerosols [71]. Bifenthrin was also detected
in almost all samples of fine aemosols in Northern Brazil [73].

The recent recognition of pyrethroid occurrence in agrosols and in the gas phase
opens achallenging view of their biogeochemical cycle and prompts further research
to assess the relevance of atmospheric transport and occurrence of pyrethroid
insecticides.

7 Key Physicochemical Properties of Pyrethroids,
Transport Processes, and Modelling

Legacy pollutants like polychlorinated biphenyls (PCBs), chlorinated pesticides
such as p.p'-dichlorodiphenylirichloroethane (DDT), lindane, and organophosphate
pesticides persist long enough in the environment to be transported by advective and
diffusive processes and undergo long-range transport far away from their primary
emission regions. Diffusive transport of pesticides results in an environmental
partitioning of these pollutants among the different environmental matrices, such
as water, particles, air, soils, biota, and sediments. For instance, water-particle
partitioning is the result of a net quantity of pesticides transferred from the dissolved
water phase to the organic part of the particles. Meanwhile the quantities of water, of
particles, and of organic carbon do not change concurrently when pesticides partition
among these phases. A change of any of these quantities would induce a
re-partitioning of the chemical. Other relevant diffusive processes are air-water
exchange, water-sediment partitioning, gas-agrosol partitioning, bloconcentration
in organisms at different trophic levels, etc. Organic carbon occurrence in water
stretches from truly dissolved organic carbon to particulate organic carbon, with a
continuum in particle sizes. The division of dissolved and particle phase is opera-
tional, usually the dissolved phase refers to the pesticides passing through the filter
cut-off size (e.g., 0.7 pm for a GE/F filter), but this dissolved phase can also include
the colloidal phase. In Fig. | relevant diffusive (partitioning) processes for pyre-
throids are represented by the wide gray arrows. Diffusive partitioning is always
dnven by a fugacity gradient among the two phases and 1s always a hidirectional
process. In contrast to diffusive processes, an advective transport consists In the
movement or flux of the phase itself, transporting the pesticides which it contains.
Advective transport processes of pyrethroids in aquatic environments are
represented by the thin black arrows in Fig. |. For example, the transter of atmo-
spheric pesticides to soils or aguatic ecosystems can be by air-water exchange
(partitioning) or by wet and dry deposition, which are advection transport processes.
In dry deposition there is a settling of aerosol-bound pesticides. while in wet
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deposition by rain or snow, there is a scavenging of gas and aerosol phase pesticides
by the rain drops or snowflakes. In terms of primary sources, atter pesticide
application on agriculture fields (rice, cotton, wineyard, etc.) by spraying, pyre-
throids may reach surface aquatic environments through edge of field runoft, which
i1s an advective soil to water input of Irrigation water or rain water, entraining
dissolved pyrethroids and also pesticides bound to particles or that have
re-partitioned to the run-off water. Storm events after pesticide treatment have
been shown to release high amount of pyrethroids into freshwater streams in the
vicinity of fields [37]. Despite degradation and dilution processes, pyrethroids
sorbed to river suspensions are effectively transported to the lower stretches of fvers
[ 18, 63]. Particle vertical settling and sediment resuspension are advective processes
transporting pyrethroids between water and sediment, which transport chemicals in
parallel to the water-sediment diffusive partitioning. Nevertheless, the latter may
only be eftective for sediment pore water and benthic waters, while settling of
organic carbon-bound pyrethroids is an advective flux affecting all the water
column. Soils may act as transient repositories for pyrethroids that may gradually
be desorbed into irrigation or rain water by leaching. In addition, sorption to soils,
particle, and sediment may lower their degradability and thus increase their persis-
tence In the environment [65]. Similarly to diffusive sediment-water exchange,
particle-water exchange (or partitioning) continuously occurs, with a distribution
of the chemical between organic carbon and the dissolved phase depending on
temperature and quality of the organic matter.

The key condition for pyrethroids to be transported away from their source 1s that
they persist long enough in the environment before being degraded. Their potential
for being transported is also dictated by their physicochemical properties. The
octanol-water partitioning coefficient, Ky, characterize the potential of compounds
tor being absorbed into organic matter, either in sediments or in suspended particles.
Even though, conceptually, it does not take into account surface adsorption, it is a
common practice to use Kgw as a surrogate for adsorption/absorption, as experi-
mentally it 1s very difficult to discern organic pollutants adsorbed or absorbed to
particulate organic carbon. Henry's law constant (H) or the dimensionless Henry's
law constant (H = Kaw=H/RT) of a given pollutant characterizes its air-water
ditfusive partitioning and thus its potential to accumulate in water or being volatil-
ized to the atmosphere facilitating their long-range transport. Each pyrethroid has
specific values tor these physicochemical constants. Figure 2 shows the phase space
tor organic chemicals and compares the values of both constants for pyrethroids to
the values of these partitioning constants for other pollutant classes which behavior
in the environment is better studied and understood. The phase space shown in Fig. 2
provides a simplified view of environmental partitioning and transport potential.
Compounds in the upper area of the plot space have a higher potential to partition to
the gas phase relatively to water than compounds on the bottom area of the plot.
Similarly, compounds plotted on the right area of the plot have a greater potential to
partition to organic carbon relatively to water than those plotted on the left side.
Permethrin is plotted very close to PCB 101, thus have the similar partition charac-
teristics than PCB 101 and bifenthrin have an even higher K, . Theretore, both
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Fig. 1 Scheme of the geochemical cycle of pyrethroids in the environment. Boxes represent the
environmental phases. The soil box represents both the solid phase of soils (plants and soil particles)
amd the soil porous water. Amows represent the fluxes between phases, thin black arrows stands for
fluxes of key wansport (advective) processes and large gray amow show key partiion (diffusive)
fluxes. Gray stars symbolize pyrethroid direct emissions to the environment; A is the emission that
remains as acrosol during spray application, mostly to cropland; B is the emission that is deposited
on soils and plant during spray application. See text in Sect. 7 for more explanation

compounds have a potential for long-range transport through grasshopping. that is,
successive volatilization and deposition steps. In the case of pyrethroids, the poten-
tial for long range transport is limited by their potential degradation in the envimon-
ment. It has to be underlined that in the case of cold environments with snow
deposition events, even chemicals with high Ka.w partition coefficients can be
deposited due to the high sorption capacity of snow [74]. More importantly, the
physicochemical characteristics of the other pyrethroids are similar to that of high
molecular weight polycyclic aromatic hydrocarbons (PAHs), DDT and its
degradation products (DDE and DDD), and hexachlorobenzene; theretore pyre-
throids can be expected to have the same environmental behavior. In contrast,
organophosphosphate pesticides have a greater solubility in water (lower Kaw)
and will behave more as “swimmers,” tending less to sorb on particles and with
limited atmospheric transport [75].

In the case of legacy persistent organic pollutants (POPs), their important emis-
sions combined to analvtical progresses made it possible to quantity their
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Fig. 2 Comparison of the parition behavior of current-use pyretroid insecticides and of other
legacy pollutants. Ky is the air-water partition coefficient, and Ko is the octanol-water partiion
coefficient

abundances in water, suspended particles, sediments, atmospheric gas, and aersols
phases from regional to a global scales. Scientific efforts addressing pollutant
detection in several environmental compartments brought quantitative appraisals
and understanding of transport fluxes between air, seawater, soils, etc. This holds
true for PCBs [76] and PAHs [77] but also for pesticides like lindane [78]. In contrast
to legacy pollutants, pyrethroids are cumrent-use pesticides, and they have been used
and emitted to the environment for only the last few decades, and scientists have
been able to quantify pyrethroids at environmental levels only for a decade [7TY]. Asa
consequence, the occurrence of pyrethroids in environmental phases relevant to the
understanding of their biogeochemical cycle is still incompletely understood.

A comprehensive assessment of pyrethroid cycle in an urban area of Southern
China used a tugacity-based model coupled to concentrations measured in different
environment phases to calculate the diffusive and advective fluxes [25]. Sinking of
suspended particles accounted for the higher fluxes, and resulted in water bed
sediments fluxes 1 or 2 order of magnitude higher than air-water diffusive exchange.
The higher fugacity of pyrethroid in water than in the gaseous atmosphere drove
volatilization fluxes from the water to the air, permethrin, and cypermethrin having
the higher fluxes. Despite this work, pyrethroids have received less attention in terms
of their fate, transport, and blogeochemistry, and how these processes ought to be
modelled. The comparison with other families of POPs with simular properties
provide clues of their environmental fate and point to potential research efforts to
be carried out in the future. Unless pyrethroids are efficiently degraded in the
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atmosphere, some of them have the potential for long range transpont as
pentachonnated PCBs, 4-5 rings PAHs and DDD (Fig. 2). In comparison to those
legacy pollutants and hydrocarbons, current-use pesticides such as pyrethroids are
often reported in one environmental phase, chiefly dissolved freshwater phase or
riverine sediments. Both dissolved phase and suspended particles [3 1] or suspended
particles and sediments [ 14] or dissolved water phase and sediments [24, 27, 28, 33]
are considered jointly in order to assess combined risks for the water ecosystem and
tor the benthic ecosystem. Future research efforts should address their multiphase
partitioning, including the atmosphere, to elucidate their capacity to affect proximate
or distant ecosystems from their primary sources. The advective transport of pyre-
throids has been largely addressed only in relation to their dispersion by river flow
notably during storm events. However, the partition between dissolved pyrethroids
and particles 1s specifically addressed by one study, showing that for this particular
site, a ditfusive flux of bifenthrin existed trom the particles toward the dissolved
water [21].

8 Future Research Integration

Because of their rapid decay. pyrethroids are reported above detection levels in areas
and at times closed to their point sources, and a global appraisal is still missing. It can
be foreseen that pyrethroids might threaten biodiversity in some geographical areas
where data is still lacking to date. Most croplands are indeed not studied for
pyrethroids (Africa, Brasil, etc., see review [62]). In African market, esfenvalerate
was the highest pesticide residue in fruits and vegetables, and allethrin was also
detected, attesting for their use [80-83]. Ukraine, Pakistan, Turkey, Paraguay, and
India registered the larger pyrethroid use while environmental informations on
pyrethroid occurrence are mainly lacking for those countries [7, 26].

Pyrethroids are degraded in the environment so that they are not conspicuously
detected, with the exception of some agricultural or urban areas. Their high degra-
dation rates with respect to legacy pollutants support the belief that they are unlikely
to persist in the environment. However, extension of cropland and of urbanized
space will likely result into an increase in pyrethroid uses and emissions, because
better alternatives to control pests are still lacking. In the case where the rate of
inputs of pyrethroids would compensate for their degradation, pyrethroid occurrence
may become more continuous and their behavior may then be assimilated to that of
“quasi persistent organic pollutants”, with secondary transport evading them away
trom their application area. In California, past and current monitorings have dem-
onstrated that there s a persistent threat to aguatic ecosystems because of current-use
pesticides, with an increasing share by pyrethroids [19].

In conclusion, the shift to current-use pesticides demands a better understanding
of the occurrence of pyrethroids in developing countries where the market shares are
the highest. The partition, transport, and degradation fluxes of pyrethroids need to be
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better appraised locally, regionally, and globally, taking into account the so far
underestimated importance of atmospheric transport.

River flow efficiently transports pyrethroids to river mouths and estuaries. It is
difficult to detect pyrethroids in the marine environment because of dilution. How-
ever aquaculture is a locally direct source that likely constitutes an important
environmental burden for seawater, which it 1s very poorly surveyed and compre-
hensively understood.
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Figure 6. Bacterial abundance (average + standard deviation, 10° cells mL™) at the beginning
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Figure 1. Total carbon, Total nitrogen, Organic carbon, and organic nitrogen (%) in the sediments

at the beginning (baseline) and final respiration experiment in sediment microcosms.
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Figure 2. Total abundance of meiofauna (average + standard deviation; Indiv. 10cm) in the top 3

cm of the sediments, at the beginning (baseline) and the final experiment, in sediment microcosms.
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Figure 3. Diversity of meiofauna (average, %) in the sediment at the beginning (baseline) and the

final respiration experiment in sediment microcosms.
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Figure 4. Phytoplankton abundance (average + standard deviation, cells mL™) and diversity (by

flux cytometry) at the beginning (baseline) and the final respiration experiment in water column
microcosms.
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Figure 5. Abundance distribution (%) of phytoplankton group in water column microcosms for the

beginning and the final respiration experiment.
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Figure 6. Bacterial abundance (average + standard deviation, 10° cells mL™) at the beginning
(baseline) and the final respiration experiment in water column microcosm. HNA: High acid
nucleoid content, and LNA: Low acid nucleoid content.
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