

UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS QUÍMICAS DEPARTAMENTO CIENCIAS DE LA TIERRA

CONDICIONES DESENCADENANTES DE LA ERUPCIÓN TRAQUIDACÍTICA H2 (3,9 KA CAL AP) DEL VOLCÁN HUDSON, REGIÓN DE AYSÉN, CHILE.

Constanza Valeria Perales Moya

Profesor Patrocinante:Dra. Verónica Laura Oliveros ClavijoProfesional Guía:Dr. Álvaro Mauricio Amigo RamosProfesores Comisión:Dra. Laura Beatriz Hernández OlguínDr. Óscar Enrique Figueroa Arriagada

Concepción, 2020

AGRADECIMIENTOS

En primer lugar, quiero agradecer al Dr. Álvaro Amigo Ramos (SERNAGEOMIN) por integrarme a este proyecto de investigación, permitiéndome progresar en mi comprensión de la volcanología. También, la Dra. Verónica Oliveros Clavijo, del Departamento Ciencias de la Tierra (Universidad de Concepción) por confiar en mis capacidades y aceptar ser parte de este trabajo como guía. Gracias a ambos por su valioso aporte al desarrollo de esta memoria.

A todos los profesionales y trabajadores del Servicio Nacional de Geología y Minería que me ayudaron de una u otra forma, por su voluntad y buena disposición siempre. Mención especial a Leonardo Zúñiga y Gabriela Pedreros, quienes fueron un gran apoyo en el trabajo de campo y muy gratos compañeros de terreno.

A don Pedro (Departamento Ciencias de la Tierra, Universidad de Concepción) por darme acceso al laboratorio de sedimentología y preocuparse de mi seguridad en él. También, a los demás trabajadores y trabajadoras del Departamento, por apoyar a los estudiantes durante el transcurso de la Carrera, siempre de una manera cordial y familiar, ya sea en la Universidad, en el desierto, en la playa o en la cordillera.

A los profesionales y académicos de *Earth Observatory of Singapore*, quienes me dieron la oportunidad de realizar mis análisis en los laboratorios de *Nanyang Technological University*, donde pude crecer bastante en el ámbito profesional, y conocer culturas muy diferentes a la cual estoy inmersa. Gracias a Fidel Costa y Helena Albert por ello.

También, quiero agradecer a Pablo Salas (Universidad de Concepción) y Eduardo Morgado (*University of Leeds*, UK) por su ayuda en el tratamiento y análisis de mis muestras y ampliar mi conocimiento.

A mi prima, mis amigas y amigos, los que vienen desde la infancia y los que llegaron después, por su cariño y apoyo siempre. Dado que esta memoria es el término de una etapa, quisiera agradecer de manera especial a quienes fueron parte importante de mi vida universitaria y continúan siéndolo: Javier C. y Francisca S., por convertir la presión de la Universidad en risas y a Concepción en una ciudad con los mejores recuerdos.

Finalmente, quiero agradecer a las mujeres fundamentals en mi vida, mi madre, mi abuela y mi tía, que por ellas soy mucho de lo que soy y, en gran parte, gracias a ellas me encuentro escribiendo estas palabras.

ÍNDICE

RESUMEN

Página

1. INTRODUCCIÓN	1
1.1. Planteamiento del problema	1
1.2. Hipótesis de trabajo	1
1.3. Objetivos	1
1.3.1. Objetivo General	1
1.3.2. Objetivos Específicos	1
1.4. Ubicación y accesos	2
1.5. Metodología de trabajo	4
1.5.1. Etapa pre-terreno	4
1.5.2. Etapa de terreno	4
1.5.3. Análisis sedimentológico	4
1.5.4. Análisis petrográfico	5
1.5.5. Análisis geoquímicos	5
1.5.6. Etapa de gabinete	5
1.6. Geomorfología	5
1.6.1. Generalidades	5
1.6.2. Unidades geomorfológicas principales	6
1.6.3. Geomorfología local	8
1.7. Clima, flora y fauna	9
1.8. Trabajos anteriores	11

Marco	geológico regional
2.1.1. Pa	aleozoico
2.	1.1.1. Complejo Metamórfico Oriental de Aysén (DC4, Pérmico tardío)
2.	1.1.2. Complejo Metamórfico Bahía Mansa (PzTr4, Devónico - Triásico)
2.1.2. M	lesozoico
2.	1.2.1. Complejo Metamórfico Archipiélago de Chonos (Tr4, Triásico tardío – Jurásico temprano)
2.	1.2.2. Grupo Ibáñez (J3a, Jurásico medio a superior)
2.	1.2.3. Grupo Coyhaique (JKlm, Berriasiano – Aptiano)
2.	1.2.4. Formación Cerro Colorado (Kilm, Cretácico inferior)
2.	1.2.5. Grupo Divisadero (Kia3, Cretácico medio)
2.	1.2.6. Grupo Ñirehuao (Ks3i, Cretácico)
2.	1.2.7. Batolito Norpatagónico (Jsg, Kig, KTg, Eg, Mg Cretácico – Terciario)
2.1.3. C	enozoico
2.	1.3.1. Formación Ligorio Márquez (PE1c, Paleoceno – Eoceno inferior)
2.	1.3.2. Basaltos Balmaceda (E3b, Eoceno)
2.	1.3.3. Formación San José (E1c, Eoceno)
2.	1.3.4. Formación Traiguén, sector occidental (OM2m, Ks4, Ks2m, Eoceno tardío – Mioceno)
2.	1.3.5. Gabros Bandurrias (Og, Oligoceno)
2.	1.3.6. Formación Guadal (OM1m, Oligoceno superior – Mioceno temprano)

2.1.3.7. Formación Cholchol? (M1m, Mioceno)	21
2.1.3.8. Formación Río Frías (M2c, Mioceno)	21
2.1.3.9. Ofiolitas de la Península de Taitao (M3o, Mioceno)	21
2.1.3.10. Formación Las Dunas (M1c, Mioceno inferior a medio)	21
2.1.3.11. Formación Galeras (MP1c, Mioceno – Plioceno inferior)	22
2.1.3.12. Basaltos de la Meseta de Chile Chico (MP3, Mioceno - Plioceno)	22
2.1.3.13. Plutón Río de las Nieves (Pg, Plioceno)	22
2.1.3.14. Estratos de Potrero Alto? (PPl1c, Mioceno – Pleistoceno)	22
2.1.3.15. Secuencias y centros volcánicos parcialmente erodados (PPl3, Plioceno – Pleistoceno)	22
2.1.3.16. Depósitos glaciales (Q1g, Q1g1, Pleistoceno – Holoceno)	23
2.1.3.17. Depósitos cuaternarios (Q1, Pleistoceno – Holoceno)	23
2.1.3.18. Depósitos vol <mark>cánicos (P3</mark> i, Q3i, Cuaternario)	23
2.1.4. Contexto volcano-tectónico	23
2.1.5. Paleoclima de la región: glaciaciones (Holoceno)	26
2.2. Marco geológico local	27
2.2.1. Generalidades	27
2.2.2. Basamento y estructuras principales	29
2.2.3. Volcanismo monogenético	29
2.2.4. Historia eruptiva Holocena del volcán Hudson	29
2.2.4.1. Erupción H0	29
2.2.4.2. Erupción H1	30
2.2.4.3. Erupción H2	30
2.2.4.4. Erupciones menores holocenas	31
2.2.4.5. Erupciones históricas y actividad actual	32

3. AFLORAMIENTOS Y MUESTRAS	34
3.1. Generalidades	34
3.2. Caracterización de depósitos	35
3.2.1. Depósitos proximales	35
3.2.2. Depósitos distales	41
4. CARACTERIZACIÓN GEOQUÍMICA DE EVENTOS ERUPTIVOS	44
4.1. Generalidades	44
4.2. Geoquímica de roca total	45
4.3. Composición química de minerales	56
4.4. Composición geoquímica de vidrios e inclusiones	58
5. CONDICIONES PRE-ERUPTIVAS DE LA ERUPCIÓN H2	63
5.1. Generalidades	63
5.2. Petrología y geoquímica	63
5.2.1. Análisis petrográfico	63
5.2.2. Características y evolución magmática	64
5.2.2.1. Contenido de H ₂ O (<i>wt</i> .%)	64
5.2.2.2. Geotermobarometría	67
5.2.2.3. Compresibilidad del magma	70
5.2.2.4. Perfiles de composición en cristales	72
5.2.2.5. Litogeoquímica	74
6. DISCUSIÓN	77
6.1. Eventos eruptivos en la zona	77

6.2. Erupción H2 (3,9 ka cal AP)	78
6.3. Procesos desencadenantes de la erupción H2	79
7 CONCLUSIONES	82
	02
8. REFERENCIAS	83

ANEXOS

ÍNDICE DE FIGURAS

Figu	ra		Página
1.	1.	Ubicación volcán Hudson	2
1.	2.	Mapa vial de Aysén	3
1.	3.	Unidades geomorfológicas de la región	6
1.	4.	Relieve volcán Hudson y alrededores	8
1.	5.	Morfologías glaciales y volcánicas	9
1.	6.	Pastizales de coirón	9
2.	1.	Mapa geológico regional	16
2.	2.	Zona de Falla Liquiñe – Ofqui (ZFLO)	24
2.	3.	Cronología de glaciaciones en Patagonia	26
2.	4.	Mapa geológico local del volcán Hudson	28
2.	5.	Pulsos de la erupción H2	31
3.	1.	Mapa con puntos de afloramientos	35
3.	2.	Pulsos eruptivos escoriáceos al norte del Volcán Hudson	36
3.	3.	Afloramiento en cono Desplayado Oeste	37
3.	4.	Fisura de fase 1, erupción 1991 A.D.	38
3.	5.	Ignimbrita en parte superior de valle Sorpresas	39
3.	6.	Afloramiento en río Frío	39
3.	7.	Afloramiento camino a El Remanso	42
4.	1.	Esquema de eventos eruptivos estudiados	44
4.	2.	Diagrama Total Álcalis (TAS) para roca total	46
4.	3.	Diagramas de series para roca total, según Irvine y Baragar (1971)	47
4.	4.	Diagrama Harker (óxidos vs. SiO 2 wt%) de roca total	48
4.	5.	Diagrama Harker (óxidos vs. SiO 2 wt%) de roca total (FONDECYT N° 11130671)	49
4.	6.	Diagrama Harker (óxidos vs. MgO wt%) de roca total	51
4.	7.	Diagrama Harker (óxidos vs. MgO wt%) de roca total (FONDECYT	
		N° 11130671)	52

4.	8.	Diagrama de variación (elementos traza vs. SiO 2 wt%) para roca total	54
4.	9.	Diagrama Spider de eventos eruptivos	55
4.	10.	Olivino en corte transparente de muestra AA-260217-1B	56
4.	11.	Plagioclasas en ignimbrita de H2 y evento posterior	57
4.	12.	Piroxenos en ignimbrita de H2	57
4.	13.	Diagrama Total Álcalis (TAS) de vidrios	58
4.	14.	Diagrama de variación (óxidos vs. SiO 2 wt%) de vidrios	59
4.	15.	Diagrama Total Álcalis (TAS) de inclusiones	60
4.	16.	Diagramas de variación de inclusiones fundidas	61
5.	1.	Cúmulos cristalinos en muestras de H2	64
5.	2.	Gráfico SiO 2 vs. H ₂ O (<i>wt</i> .%)	66
5.	3.	Gráfico de resultados geotermobarométricos	69
5.	4.	Solubilidad del agua en magma de H2	71
5.	5.	Contenido de cristales vs. P (MPa)	71
5.	6.	Perfiles composicionales en plagioclasas	72
5.	7.	Perfiles de composición en olivino	73
5.	8.	Diagramas PER de elementos conservativos	74
5.	9.	Gráfico Fe/Ti vs. Ca/Ti	75
5.	10.	Diagrama PER relación magmática H1-H2, con feldespatos	76
6.	1.	Procesos desencadenantes de evento H2	80
6.	2.	Temporalidad entre erupciones y glaciaciones	81

ÍNDI<mark>CE DE</mark> TABLAS

Tabla		Página	
2.	1.	Eventos eruptivos holocenos del volcán Hudson	32
5.	1.	Contenido de H ₂ O (<i>wt.</i> %)	65
5.	2.	Resultados de geotermobarometría	68

RESUMEN

El volcán Hudson es una caldera volcánica de casi 10 km de diámetro, cubierta por un importante casquete glacial, ubicado a 280 km al noreste del punto triple de placas tectónicas y corresponde al límite meridional de la Zona Volcánica Sur.

Los productos eruptivos del volcán Hudson abarcan composiciones basálticas a silíceas (en un rango de 51 a 67 SiO₂ wt.%) y alto contenido de álcalis. Durante el Holoceno, este volcán presentó dos eventos plinianos de IEV igual a 6, que corresponden a H1 (7,9 ka cal AP, de carácter traquiandesítico) y H2 (3,9 ka cal AP, de composición traquidacítica). El segundo de ellos presenta una mineralogía consistente en plagioclasa, piroxenos, óxidos de Fe-Ti y olivino, principalmente, cuya abundancia de fenocristales, en total, corresponde a cerca del 10 vol.% de los componentes de piroclastos. Además, la ocurrencia en esta erupción de cristales en cúmulos da indicios de la presencia de un *mush* cristalino en el reservorio. Por otro lado, la homogeneidad en las composiciones de los cristales y química de roca total, junto a la ausencia de texturas de desequilibrio, indican que un proceso de mezcla de magmas asociado a un *input* máfico es poco plausible como mecanismo desencadenante de la erupción. En cuanto al análisis litogeoquímico de muestras asociadas a los eventos H1 y H2, éste establece la existencia de un proceso de diferenciación magmática dominado por el fraccionamiento de plagioclasa durante el período de tiempo entre ambos, el cual coincide con etapas de glaciaciones. Dadas las condiciones preeruptivas de presión y temperatura (1 kbar y 960-997°C, respectivamente) el magma se encontraba incompresible, subsaturado en agua (con 1,5 H₂O wt.%), a una profundidad somera, previo a la erupción H2, por lo cual estaba en un estado crítico, susceptible a cambios litostáticos, y la erupción fue desencadenada por la pérdida de la carga glacial, posiblemente junto a una sobrepresión de volátiles favorecida por las condiciones y procesos antes mencionados, lo que, además, pudo estar potenciado por removilización de volátiles que desestabilizaron al mush.

Conocer las causas de la erupción holocena más diferenciada del volcán Hudson permite comprender mejor los factores que afectan la dinámica interna del mismo y aportar en su monitoreo, considerando que se trata de un volcán activo con varios episodios eruptivos en las últimas décadas.

1. INTRODUCCIÓN

1.1. Planteamiento del problema

La erupción denominada H2 (3,9 ka cal AP) es el segundo evento de mayor explosividad durante el Holoceno que ha presentado el volcán Hudson, y el más diferenciado de las erupciones ocurridas en la misma época, con una composición *ca*. 66 SiO₂ *wt*.%. Durante los 4.000 años previos hubo un período de glaciación menor que coincide con el intervalo de tiempo entre H2 y el evento conocido como H1 (7,9 ka cal AP), de composición menos diferenciada (*ca*. 62 SiO₂ *wt*.%). La magnitud y las características geoquímicas de ambas erupciones, en el contexto de la historia eruptiva del volcán, permiten suponer que están relacionadas por un proceso de diferenciación magmática asociada a la presencia de un cuerpo glacial y que la erupción H2 tuvo lugar si las condiciones magmáticas pre-eruptivas se encontraban en estado crítico. La falta de certeza con respecto a lo anterior, impide comprender de mejor manera cómo funciona el sistema magmático asociado al volcán Hudson.

1.2. Hipótesis de trabajo

La generación del magma de composición traquidacítica que originó la erupción del volcán Hudson datada en 3,9 ka cal AP fue favorecida por factores exógenos (presencia de extensos casquetes glaciares) que permitieron un tiempo de diferenciación suficiente para alcanzar dicha composición.

1.3. Objetivos

1.3.1. Objetivo general

Determinar las condiciones que desencadenaron la segunda erupción de mayor magnitud del volcán Hudson en el Holoceno (H2: 3,9 ka cal AP), a partir del análisis composicional de fenocristales, y la relación con un proceso de diferenciación magmática.

1.3.2. Objetivos específicos

-Establecer condiciones pre-eruptivas de presión, temperatura y contenido de agua en la cámara magmática, a partir de modelos propuestos en bibliografía.

-Correlacionar las condiciones pre-eruptivas con la presencia de un cuerpo glaciar de dimensiones importantes, mayores a la actual.

-Describir la erupción dacítica (*ca.* 3,9 ka cal AP), mediante levantamiento tefroestratigráfico y análisis químicos.

1.4. Ubicación y accesos

El volcán Hudson está ubicado en la Región de Aysén a los 45°55'39" latitud S y 72°58'6.85" longitud W, al este del Sistema de Falla Liquiñe – Ofqui (Cembrano y otros, 1996) y 280 km al noreste del punto triple de placas tectónicas (Nazca-Antártica-Sudamericana), donde además subduce la Dorsal Chile bajo la placa Sudamericana (Fig. 1.1). El área de estudio abarca valles de los ríos aledaños al volcán: Sorpresas, Ibáñez, Chiflón, Desplayado, Frío, y sectores entre la ciudad de Coyhaique y el lago Zenteno (Fig. 1.2).

Figura 1.1:Ubicación volcán Hudson. En línea negra segmentada está representada la Zona
de Falla Liquiñe – Ofqui según Naranjo y Stern (1998).

El acceso a los valles de los ríos Ibáñez y Frío es posible vía terrestre desde Coyhaique, al sur por la Carretera Austral (Ruta 7) hacia Villa Cerro Castillo, desde la cual se prosigue por la misma ruta 39 km hacia el este hasta la intersección con la ruta X-726. A lo largo de esta última, se recorre el valle del río Ibáñez hacia el NW hasta la propiedad privada de Adalicio González. A partir de este punto, para acceder a la confluencia de los ríos Ibáñez y Frío es necesario el uso de caballos para optimizar el tiempo, pues no hay caminos disponibles para vehículos.

Para acceder a los sectores entre los lagos Atravesado y Zenteno desde Coyhaique, es necesario recorrer 44 km por la ruta X-608 hasta la intersección con la ruta X-610, cerca del puente "Don Dago". El final de la ruta X-610 está en el borde occidental del lago Zenteno (Fig. 1.2).

A las zonas de difícil o nulo acceso por vía terrestre, como el sector de los conos Desplayados (norte del volcán), cabecera del río Sorpresas Norte y fisura de la erupción P1 de 1991 (borde noroccidental de la caldera) es necesario el transporte en helicóptero para llegar a dichos lugares de forma rápida. En este trabajo se contó con el servicio de la empresa Ecocopter S.A. para el transporte por vía aérea, el cual se realizó desde el Aeródromo Teniente Vidal ubicado a 6.8 km desde la plaza de armas de Coyhaique. La ruta para llegar al aeródromo corresponde a la X-600. Cabe señalar que las condiciones climáticas y de vegetación en la región suelen obstaculizar el acceso a los lugares de interés antes mencionados u otros sectores cercanos al volcán, ya sea por vía terrestre o aérea.

Figura 1.2: Mapa vial de Aysén. Principales rutas en la zona.

1.5. Metodología de trabajo

1.5.1. Etapa pre-terreno

Revisión bibliográfica sobre las características geológicas del volcán Hudson y alrededores, y de los métodos utilizados en el estudio de condiciones pre-eruptivas, recopilación de datos y muestras disponibles. Definición de puntos de interés mediante imágenes satelitales, basados en la morfología de la zona (asociadas a ignimbritas, acceso viable, posibles afloramientos) y la información recopilada anteriormente.

1.5.2. Etapa de terreno

Campaña febrero 2017: Descripción y muestreo de depósitos ubicados al oeste de la caldera (parte superior del valle Sorpresas), y al este de la misma en cercanías de las confluencias del río Ibáñez con río Frío y con río Chiflón, además de depósitos distales en el sector de Villa Cerro Castillo.

Campaña febrero 2018: Descripción y muestreo de depósitos proximales al norte del volcán (conos Desplayados), distales al noreste (zonas entre Coyhaique y lago Zenteno) y en otros afloramientos cercanos a la confluencia del río Chiflón y el río Ibáñez.

1.5.3. Análisis sedimentológico

El análisis sedimentológico de los depósitos de H2 consta de una primera etapa de secado de muestras en dependencias de SERNAGEOMIN y Departamento Ciencias de la Tierra (Universidad de Concepción), para posteriormente ser tamizadas en este último. La observación de los componentes en las fracciones separadas se realizó con lupa binocular Zeiss Stemi 2000-C en muestras bañadas con vaselina USP dispuestas en cápsulas de Petri.

Simultáneamente, se efectuó la separación de cristales de piroxenos y plagioclasas con pinza, a partir de las mallas de tamizaje #18, #35 y #60 *U.S. STD. Sieve*, los cuales se reservaron en tubos Eppendorf, para posterior análisis detallado en microsonda electrónica.

Por otro lado, se construyen columnas estratigráficas utilizando *software* Adobe Illustrator CC 2017 con los datos tomados en terreno, para la correlación de los distintos eventos eruptivos.

1.5.4. Análisis petrográfico

Observación de cortes transparentes correspondientes a pómez asociadas a H2 mediante microscopio óptico en laboratorio del Departamento Ciencias de la Tierra (Universidad de Concepción) y SEM (*Scanning Electron Microscope*) en laboratorios de *Earth Observatory of Singapore - Nanyang Technological University* (Singapur), para determinar porcentaje de componentes, texturas y presencia de zonación composicional en cristales.

1.5.5. Análisis geoquímicos

Los cristales separados fueron montados en resina epoxy y cubiertos con 15 nm de carbono en el recubridor de alto vacío LEICA EM ACE600, lo mismo fue realizado para cortes transparentes. La composición química de minerales, vidrio e inclusiones se obtuvieron utilizando EPMA, *Electron Probe Micro-Analyzer* (modelo JEOL-JXA-8530F), en condiciones de voltaje: 15 kV, *beam current*: 20 nA y *beam size*: 3 µm para los cristales, y 15 kV, 5 nA y 10 µm para vidrios e inclusiones. Estos análisis fueron realizados en dependencias de *Nanyang Techonological University* (Singapur). Los puntos correspondientes a los perfiles composicionales se realizaron cada 3 µm.

Análisis químicos de roca total se obtuvieron mediante XRF (X-Ray Fluorescence) para elementos mayores y ICP-MS (*Inductively Coupled Plasma Mass Spectrometry*) para elementos traza en laboratorios de WSU (*Washington State University*).

1.5.6. Etapa de gabinete

Recopilación, análisis, interpretación y discusión de resultados a partir de los datos obtenidos trabajados con métodos propuestos en bibliografía. Generación de un esquema que sintetice los condiciones desencadenantes de la erupción H2 y redacción del texto.

1.6. Geomorfología

1.6.1. Generalidades

La Región de Aysén es parte de la quinta agrupación regional definida por Borgël (1983), denominada "Región Patagónica y Polar del Islandsis Antártico", la cual posee una longitud aproximada de 1.600 km y ancho este-oeste variable. Comprende desde morfologías litorales

asociadas a golfos, fiordos, estuarios, islas y archipiélagos hasta montañas y ventisqueros. El modelado geomorfológico de la región de Aysén es resultado de una serie de procesos tectónicos y glacioeustáticos que permitieron el solevantamiento o hundimiento de sectores continentales (Borgël, 1983; Martinić, 2005), los que junto a la erosión provocada por retroceso glacial conformaron el paisaje actual de la región. Debido a lo escarpado de los terrenos y al clima de la zona, los sectores alzados son altamente vulnerables a presentar eventos de remoción en masa, mientras que en bloques hundidos impera la sedimentación (Börgel, 1983).

1.6.2. Unidades geomorfológicas principales

A escala regional, en la zona donde se encuentra emplazado el volcán Hudson se pueden distinguir las siguientes subregiones morfológicas (Fig. 1.3), de oeste a este, definidas por Börgel (1983):

Figura 1.3: Unidades geomorfológicas de la región. Principales unidades geomorfológicas de la región de Aysén. Modificado de Börgel (1983).

- a. <u>Cordillera de la Costa, afectada por tectónica de hundimiento:</u> se extiende desde el Golfo del Corcovado por el norte hasta el Golfo de Penas en el sur, delimitada al este por los canales Moraleda, Costa y estuario Elefantes y por el Océano Pacífico en el lado occidental. Abarca islas, archipiélagos y penínsulas, como la Isla Guafo, archipiélago de los Chonos y las penínsulas Sisquelán, de Taitao y de Tres Montes. Las principales alturas alcanzan los 1.690 m s.n.m., 1.290 m s.n.m. en las islas Cuptana y James, respectivamente. No obstante, predominan alturas inferiores a 1.000 m s.n.m., las cuales se encuentran dispersas y evidencian la denudación de la orografía costera entre los 400 y 850 m s.n.m.
- b. <u>Llano Central, afectado por tectónica de hundimiento:</u> las principales morfoestructuras que representan al Llano Central en la zona son los canales Moraleda y Costa, estuario Elefantes, laguna San Rafael, istmo de Ofqui y llano aluvial del río San Tadeo. En el sector oriental, el Llano Central se ha sumergido alcanzando las mayores profundidades y se pone en contacto con las cordilleras patagónicas en el frente de falla causante del hundimiento, mientras que en el lado occidental aparecen numerosas islas y relieves positivos como el área comprendida entre la laguna San Rafael, lago Presidente Ríos y las lenguas occidentales de los ventisqueros San Rafael y San Quintín.
- c. <u>Cordilleras Patagónicas del Pacífico con ríos y fiordos de control tectónico:</u> consiste en un relieve andino positivo, al este de la zona insular y de los canales australes. Presentan numerosos ventisqueros, algunos aislados y otros encadenados. En ella se emplazan el Campo de Hielo Norte, y los centros volcánicos Macá, Cay y Hudson (Niemeyer y otros, 1984, en Bertin, 2014). Se encuentra disectada por profundos valles de origen glacial (Mañihuales, Aysén, Exploradores, León y Baker) y fiordos. De estos últimos, tienen importancia los fiordos Quitralco y Cupquelán, pues se asocian a dos grandes penínsulas.
- d. <u>Ventisqueros patagónicos del Pacífico:</u> Ubicados en sectores definidos entre la península de Taitao y el lago General Carrera, al sur del río Pascua hasta la cordillera Sarmiento de Gamboa y en la cordillera Darwin. En el primer sector, se encuentran los ventisqueros del monte San Valentín (4.058 m s.n.m.), cerro Bonete (3.000 m s.n.m.) y cerro Pared Norte (2.987 m s.n.m.) y comprende un conjunto morfológico glacial de 130 km de largo en dirección norte-sur y 65 km en el eje este-oeste, abarcando los ventisqueros San Rafael y

San Quintín, además de pequeñas lenguas de hielo que alimentan los ríos Baker, de la Colonia y tributarios del lago General Carrera.

e. <u>Cordilleras Patagónicas orientales con ríos y lagos de control tectónico y hundimiento:</u> se encuentran en territorio continental, en su mayor parte al este de los cordones andinos principales, con redes de drenaje características de control tectónico, como rectangulares y en bayoneta, y lagos con formas irregulares, los que tienen tendencia a digitaciones en ángulos rectos y bordes costeros rectilíneos. Existen numerosas cadenas transversales, como cumbre Lisa, los cordones Huemules, Quemado y Nevados, además de cumbres aisladas importantes, siendo el cerro Alto Nevado el de mayor altura (2.030 m s.n.m.). Los sistemas hidrográficos están orientados EW (ríos Cisnes y Simpson) y NS (ríos Mañihuales y Blanco), siendo la confluencia entre los ríos en ángulo recto.

1.6.3. Geomorfología local

El Volcán Hudson corresponde a una estructura volcánica de tipo caldera, la cual alcanza alturas cercanas a 1.905 m s.n.m. y un diámetro aproximado de 9 km (Fuenzalida y Espinosa, 1974), además de estar truncada en el borde noroeste por el valle Huemules (Fig. 1.4). Las redes hídricas alrededor del volcán se disponen de manera radial y están controladas por la litología y estructuras presentes, pues el edificio volcánico está ubicado en la intersección de dos sistemas de lineamientos regionales NW y NE, además de emplazarse en rocas del Batolito Norpatagónico (Gutiérrez, 2005).

Figura 1.4: Relieve volcán Hudson y alrededores. Centros eruptivos y principales valles principales de origen glacial.

Morfologías de ambiente glacial son típicas de encontrar en el área de estudio, como circos glaciales, valles en "U", lagos glaciales y morrenas, además de relieves asociados a centros volcánicos menores al norte y suroeste del volcán Hudson (Fig. 1.5).

Figura 1.5: Morfologías glaciales y volcánicas. (a) Relieves glaciales al norte del volcán Hudson, asociados al retroceso del glaciar; (b) Valle en "U" y cono monogenético Desplayado, fotografías por Gabriela Pedreros.

1.7. Clima, flora y fauna

El área de estudio se ubica en la Patagonia chilena, la cual comprende las dos regiones más australes de Chile continental: Aysén y Magallanes, incluyéndose en algunos casos la provincia de Palena, abarcando cerca un tercio de la superficie nacional, siendo la región de Aysén el 14,2% del territorio continental (Hepp y Stolpe, 2014). Esta región está dominada por climas templados húmedos y fríos, con mayor pluviometría en la vertiente occidental de la Cordillera de los Andes. En algunos sectores orientales de Aysén, se encuentran estepas con pastizales de coirón (Fig. 1.6) asociadas a zonas más secas.

Dadas las características geográficas y geomorfológicas de la región, Hepp y Stolpe (2014) distinguen cuatro zonas agroclimáticas con biomas característicos y contrastantes, es decir, regiones que comparten clima, flora y fauna, además de una zona de microclima limitada a riberas de grandes lagos.

- a. <u>Zona litoral o insular</u>: corresponde al sector más occidental de la región, asociada a islas y archipiélagos, cuyo clima predominante es el templado húmedo litoral con precipitaciones promedio que superan los 3.000 mm/año. La vegetación consiste de bosque siempreverde con presencia de mañío (*Podocarpus* sp.), canelo (*Drimys winteri*), arrayán (*Luma apiculata*), chilco (*Fuchsia magellanica*), tepú (*Tepualia stipularis*), entre otras especies.
- b. <u>Zona húmeda:</u> Comprende la vertiente occidental de la cordillera de los Andes, con clima templado húmedo costero, caracterizado por altas precipitaciones (promedio anual de 2.640 mm entre 1960 y 2013 en el sector de Puerto Aysén) que aumentan en invierno. La temperatura media anual bordea los 10°C. En esta zona el bosque también es siempreverde, con importante abundancia de coigüe (*Nothofagus dombeyi*), tepa (*Laureliopsis philippiana*) y mañío, acompañado de sotobosque: canelo, sauco (*Sambucus* sp.), notro (*Embothrium coccineum*), y variedad de helechos.
- c. <u>Zona intermedia</u>: ubicada en la vertiente oriental de la cordillera de los Andes, abarca laderas montañosas y valles orientados hacia el este de la región. En los sectores más altos predomina el clima andino boreal, con bajas precipitaciones y T° media anual 3,3 7,2°C. En sectores bajos (<500 m s.n.m) existe un clima templado húmedo intermedio, representado por las condiciones climáticas observadas en Coyhaique: precipitación promedio anual 1.149 mm (1961 2013) y T° media anual de 8,1°C. Predominan los bosques de *Nothofagus* (lenga y ñirre), además de vegetación arbustiva: calafate (*Berberis microphylla*), michay (*Berberis darwinii*) y zarzaparrilla (*Smilax aspera*).
- d. <u>Zona esteparia:</u> esta zona abarca algunos sectores orientales de la región, limítrofes con Argentina, con clima de estepa fría, representado en la localidad de Balmaceda. La precipitación promedio anual es de 588 mm (1961 – 2009), ocurriendo mayoritariamente en invierno), y T° promedio anual de 6,4°C. El pastizal de coirón (*Andropogon argenteus*) es el único ambiente de herbáceas nativas de la región y consiste de diferentes especies gramíneas.

e. <u>Zona de microclima:</u> limitada a pequeñas localidades en las costas de los lagos General Carrera (Chile Chico, Bahía Jara, Puerto Ibáñez, Fachinal) y Cochrane (borde sur). El clima es templado seco estival, con pluviometría baja (por ejemplo, Chile Chico tiene <250 mm/año). Los valles presentan zonas de estepa, sin embargo, por las condiciones climáticas se genera un ambiente propicio para el desarrollo de cultivos.

En cuanto a la fauna de la región de Aysén, pueden encontrarse aquellas especies que habitan en la zona costera y central de la región, representada por mamíferos como zorro gris (*Pseudalopex griseus*), puma (*Puma concolor*), güiña (*Oncifelis guigna*) y coipo (*Myocastor coypus*). Otras especies predominan en zonas esteparias y cordilleranas, como la vizcacha (*Lagidium wolffsohni*), huemul (*Hippocamelus bisulcus*), guanaco (*Lama guanicoe*) y zorro culpeo (*Pseudalopex culpaeus*), según Osgood (1943), en Mella (1999). Algunas especies endémicas de la Patagonia chilena son rana arbórea (*Hylorina sylvatica*), lagartija de Fitzinger (*Liolaemus fitzingeri*), martineta o perdiz copetona (*Eudromia elegans*), perdiz austral (*Tinamotis ingoufi*), chingue patagónico (*Conepatus humboldtii*), además de una variedad de especies que también son comunes en el resto del país (Mella, 1999).

1.8. Trabajos anteriores

Fuenzalida y Espinosa (1973) fueron los primeros en identificar el cerro Hudson como un centro volcánico de tipo caldera de aproximadamente 9 km de diámetro y entregan los primeros antecedentes del mismo.

Naranjo y Stern (1998) estudian depósitos de caída de los eventos holocenos del volcán Hudson y establecen al menos dos eventos de alta explosividad en tiempos prehistóricos: H1 de 6.700 años AP y H2 de 3.600 años AP.

Orihashi y otros (2004) obtuvieron 29 edades radiométricas K-Ar para determinar y comparar la evolución de la actividad eruptiva de los volcanes Hudson y Lautaro, postulando que el volcán Hudson se ha desarrollado desde hace 1 Ma hasta el presente.

Gutiérrez (2005) realiza el estudio petrogenético del complejo volcánico Hudson, el que incluye al volcán homónimo y al cono Ibáñez, ubicado a 15 km al sureste de la caldera. Establece que el magma parental de ambos es tipo MORB con una componente calcoalcalina.

Kratzmann y otros (2009) determinan las variaciones composicionales de las fases eruptivas ocurridas en agosto de 1991 y genera un modelo de los mecanismos desencadenantes de ambas.

Kratzmann y otros (2010) postulan que ocurre diferenciación de magmas derivados del manto en el reservorio del volcán Hudson, en niveles medios y superficiales de la corteza bajo condiciones de magma hidratado, explicado por la presencia de anfíbol críptico.

Carel y otros (2011) estudian la tefroestratigrafía de testigos de sedimentos marinos obtenidos en el archipiélago de Chonos – Taitao, complementada con análisis geoquímicos, de isótopos estables (δ^{18} O) y dataciones radiométricas ¹⁴C. Postulan que tefras de edad entre 16,1 ka y 20 ka AP pueden pertenecer al volcán Hudson por geoquímica de elementos mayores en vidrio.

Wilson y otros (2011) determinaron el impacto de la removilización de ceniza en las comunidades, luego de la erupción de 1991 A.D.

Amigo y otros (2012) estudian la actividad eruptiva presentada por el volcán Hudson durante octubre y noviembre de 2011, la cual estuvo asociada a tres cráteres nuevos al sureste de la caldera que emitieron gases y piroclastos escoriáceos en columnas eruptivas débiles.

Stern y Weller (2012) otorgan una nueva edad para H1 de 7.430 ± 250 ¹⁴C años AP, mediante la datación de tefra bajo y sobre el depósito de H1.

Amigo (2013) evalúa los peligros de lahar y caída de tefra utilizando los *softwares* LAHARZ y Tephra2, para el volcán Hudson.

Watt y otros (2013) estudian la relación entre desglaciaciones y volcanismo, mencionando los eventos eruptivos post-glaciales en la Zona Volcánica Sur, entre ellos los del volcán Hudson.

Amigo y Bertin (2014) realizan el mapa de peligros volcánicos asociados al volcán Hudson.

Bertin (2014) caracterizó e interpretó los depósitos de los eventos eruptivos holocenos mediante análisis tefroestratigráficos, geoquímicos, morfología de partículas y geocronológicos.

Delgado y otros (2014) utilizan InSAR e imágenes termales para caracterizar la actividad del volcán Hudson entre 2004 y 2011. Establecen una tasa de deformación de 2 y 3 cm/año entre 2004 y 2010 e incremento de actividad termal los meses previos a la erupción de 2011.

Weller y otros (2014) describen y caracterizan la erupción H0 a partir de depósitos presentes en testigos lacustres, comparándola con los otros eventos holocenos e históricos que ha presentado el volcán.

Stern y otros (2015), basados en la petrografía y química de tefras obtenidas en la parte superior del valle del río Cisnes, identifican nueve eventos del volcán Mentolat, cuatro del volcán Melimoyu, y una del volcán Hudson (evento H0, 17.340 años cal AP).

Weller y otros (2015) realizan la tefrocronología de la Zona Volcánica Sur, identificando depósitos de los volcanes Hudson, Mentolat, Macá o Cay y centros eruptivos monogenéticos a partir de testigos de sedimentos lacustres.

Hepp (2016) caracterizó la tefra producida por el volcán en 1991 en cuanto a la mineralogía, geoquímica y estado de alteración, determinando la influencia de factores exógenos en los materiales volcánicos presentes en el suelo.

Stern y otros (2016) estudian tefras en los alrededores de la localidad de Cochrane provenientes de los volcanes Hudson y Mentolat, identificando los eventos H1 y MEN1, respectivamente. Además, descartan la existencia del supuesto volcán Arenales, que estaría ubicado al oeste de dicha localidad.

Weller y otros (2017) analizan la tefrocronología holocena en testigos de sedimento obtenidos en el valle del río Cisnes, atribuyendo el origen de las tefras a los volcanes Melimoyu, Mentolat, Hudson, y probablemente Macá, Cay y centro eruptivos menores.

1.9. Marco teórico

En el último tiempo diversos estudios han discutido acerca de la relación entre desglaciación e incremento en la actividad volcánica. Aunque hay evidencia de aumento en el volcanismo debido al retiro de los hielos en cordilleras oceánicas y campos volcánicos continentales (Rawson y otros, 2016) como Islandia (McLennan y otros, 2002), Europa continental (Nowell y otros, 2006, en Watt y otros, 2013) y al este de California, Estados Unidos (Glazner y otros, 1999, en Watt, 2013), éstos no poseen configuraciones de arco volcánico (Watt y otros, 2013), el cual es el caso de los volcanes chilenos, como el volcán Hudson perteneciente a la Zona Volcánica Sur (Stern y otros, 2007).

Aunque la influencia de la descarga glacial en volcanes de zona de subducción es poco clara, Rawson y otros (2016) sugieren que en el caso del volcán Mocho – Choshuenco (39,9° S) las variaciones en el campo de *stress* cortical asociadas al deshielo provocan cambios en las escalas de tiempo de almacenamiento de magma, es decir, durante los períodos de glaciación el magma se incuba y diferencia hasta formar reservorios corticales evolucionados y de gran tamaño. Ejemplos de otros volcanes que pueden presentar un comportamiento similar en cuanto a la temporalidad de sus eventos holocenos y retroceso glacial, junto a la variabilidad composicional de los productos eruptivos, son los volcanes Villarrica (39,2° S), Puyehue – Cordón Caulle (40,6° S) y Calbuco (41,3° S), no obstante, los mismos autores mencionan que no hay suficientes datos para establecer una tendencia.

Otros factores a considerar en la respuesta de un sistema magmático a las variaciones en el campo de esfuerzos cortical, son las características intrínsecas del reservorio, como la forma, profundidad, compresibilidad del magma y si éste se encuentra en un estado crítico que puede desencadenar una erupción (Albino y otros, 2010). En este sentido, diversas características internas y la evolución de los reservorios magmáticos pueden ser inferidas a partir del estudio petrológico de los productos eruptivos, donde los cristales tienen un rol importante en registrar información acerca de procesos magmáticos y volcánicos, como composiciones de magma parental, profundidad y temperatura de almacenamiento, tasas de ascenso magmático, entre otros procesos y condiciones pre-eruptivas a partir de composiciones, texturas, existencia de inclusiones fundidas, zonaciones, coexistencia con otros cristales o minerales, entre otras características (Morgan y otros, 2004; Ginibre y otros, 2007; Ruprecht y Wörner, 2007; Putirka, 2008; Costa y otros, 2008; Ruprecht y Bachmann, 2010; Costa y otros, 2013; Jay y otros, 2014).

Por otro lado, datos recientes relacionados con la formación, almacenamiento y diferenciación de magma en la corteza terrestre plantean que el magma normalmente es almacenado en reservorios tipo "*mush*", donde existe una baja fracción fundida en los intersticios de una red permeable y porosa de cristales, lo que implicaría un cambio en el paradigma de una cámara magmática con alta fracción de fundido, como se ha aceptado por más de un siglo (Jackson y otros, 2018).

2. MARCO GEOLÓGICO

2.1. Marco geológico regional

Las rocas presentes en la Región de Aysén entre los 45°S y 47°S abarcan edades desde el Paleozoico hasta el Cenozoico, siendo las más antiguas aquellas pertenecientes al basamento metamórfico y las más jóvenes asociadas a procesos plutónicos y de formación de cuencas, además de diversos depósitos (volcánicos, fluviales, glaciales, de remoción en masa) formados durante el Holoceno (Fig. 2.1).

2.1.1. Paleozoico

2.1.1.1. Complejo Metamórfico Oriental de Aysén (DC4, Pérmico tardío)

Consiste en una sucesión turbidítica polideformada, con cuerpos menores de caliza y metabasitas (Hervé y otros, 2008) que afloran en el sector oriental de la región, en sectores entre el lago General Carrera y el lago O'higgins, presentando un grado de metamorfismo asociado a la facie esquistos verdes y metamorfismo de alto grado en las aureolas de contacto con los intrusivos mesozoicos – cenozoicos (Calderón, 2000, en Hervé y otros, 2008).

Hervé y otros (1999), proponen que las metabasitas fueron originalmente basaltos eruptados en un contexto intraplaca, asociados a una zona de fallas transformantes, y la secuencia turbidítica en un ambiente de margen pasivo, el que tuvo lugar durante el Devónico tardío a Carbonífero temprano, cuya edad de metamorfismo corresponde al Pérmico tardío (Hervé y otros, 2008).

2.1.1.2. Complejo Metamórfico Bahía Mansa (PzTr4, Devónico - Triásico)

Aflora desde los 39°S hasta el extremo sur del Archipiélago de Chiloé (42°S), principalmente, encontrándose en zonas al sur del fiordo de Aysén. Conformado por esquistos pelíticos, metagrauvacas y esquistos máficos de afinidades oceánicas, milonitas y escasos cuerpos intrusivos traquíticos e intercalaciones de metaignimbritas (Duhart y otros, 2001). Éstos presentan un metamorfismo pervasivo de la facie esquistos verdes, asociado a una foliación regional con rumbo preferentemente NW-SE (Duhart y Adriasola, 2008), la que es dúctil y penetrativa (S₂) obliterando parcial a completamente a una foliación previa, S₁ (Duhart y otros, 2001).

Figura 2.1: Mapa geológico regional. Relación espacial de las unidades geológicas presentes en la región.
Modificado de SERNAGEOMIN (2003).

Duhart y otros (2001) verifican al menos dos episodios de sedimentación y eventos de metamorfismo en este complejo metamórfico, cuya evolución fue durante el Devónico – Triásico

en el margen sur-occidental de Gondwana, lo que difiere de otros complejos metamórficos hacia el sur de edades Triásico – Jurásico y Jurásico – Cretácico, evidenciando un diacronismo en la acreción en el borde continental de Gondwana y Sudamérica.

2.1.2. Mesozoico

2.1.2.1. Complejo Metamórfico Archipiélago de Chonos (Tr4, Triásico tardío – Jurásico temprano)

Aflora al oeste del Batolito Norpatagónico de norte a sur, en el archipiélago homónimo. Está compuesto por lutitas negras, pizarras, areniscas grises y radiolaritas hacia el este (Formación Potranca) y por una serie monótona de filitas y "cuarcitas" con intercalaciones de metabasitas (Formación Canal King), en el lado occidental (Hervé y otros, 2010). Hervé y otros (1981) reconocen estas diferencias en dos fajas (Occidental y Oriental), donde existe un aumento en el grado metamórfico de este a oeste.

La edad depositacional corresponde al Triásico tardío, según la fauna fósil (Fang y otros, 1998, en Hervé y otros, 2008) y edades U-Pb en circón detrítico (Hervé y Fanning, 2000, en Hervé y otros, 2008). Las condiciones de metamorfismo son de alto P/T, que tuvieron lugar en el Jurásico temprano, durante la orogenia Chonide (Hervé y otros, 2008).

2.1.2.2. Grupo Ibáñez (J3a, Jurásico medio a superior)

Secuencia de rocas volcanoclásticas y volcánicas con un espesor máximo de 1.900 m, cuya localidad tipo se ubica en los alrededores de Puerto Ibáñez, abarcando el área entre Península de Levicán y Cordillera Castillo. Consiste de tobas líticas, brechas volcánicas, tobas de cristales, tobas de lapilli, que predominan al oriente y flujos de lava andesíticos y riolíticos que se encuentran mayoritariamente hacia el oeste (Niemeyer y otros, 1984). Las rocas presentan una alteración generalizada producto de metamorfismo de bajo grado (Baker y otros, 1981, en Niemeyer y otros, 1984).

2.1.2.3. Grupo Coyhaique (JKlm, Berriasiano – Aptiano)

Lahsen (1966) la define como una secuencia de lutitas y areniscas fosilíferas marinas, principalmente, que afloran de manera discontinua entre los 45°S y 47°S, desde el flanco oriental

de la Cordillera Principal hasta Lago Fontana (Argentina). Su localidad tipo está en las riberas del río Coyhaique en el sector de Coyhaique Alto. Se distinguen tres asociaciones litológicas en la precordillera: psamítica (al este), pelítica (zona central) y volcano-sedimentaria, al oeste (Skármeta, 1976, en Niemeyer y otros, 1984). El espesor máximo estimado es cerca de 900 m, en las nacientes de Arroyo Rivera (Niemeyer y otros, 1984).

2.1.2.4. Formación Cerro Colorado (Kilm, Cretácico inferior)

Compuesta por areniscas, limolitas, coquinas conglomerados e intercalaciones de niveles carbonosos, inicialmente denominada "Primer nivel marino con *Ostrea*" (Niemeyer y otros, 1984; Suárez y de la Cruz, 2000). Aflora al sur de Chile Chico y en las nacientes del río Chacabuco, sobreyaciendo al Grupo Ibáñez y bajo las Tobas Flamencos de manera concordante. Posee facies de ambiente marino somero con intercalaciones de origen continental, existiendo en su base evidencia de actividad volcánica asociada al Grupo Ibáñez en las primeras etapas de la transgresión marina (Suárez y de la Cruz, 2000).

2.1.2.5. Grupo Divisadero (Kia3, Cretácico medio)

Corresponde a una secuencia de rocas piroclásticas y epiclásticas intercaladas con lavas de composición andesítica a riolítica, cuya localidad tipo es el Cerro Divisadero. Se dispone en una franja casi continua de dirección norte-sur, adyacente a la frontera Chile-Argentina. Se estima un espesor total cercano a los 900 m (Niemeyer y otros, 1984).

El ambiente de depositación es continental, principalmente, con una mayor presencia de lavas al oeste de la precordillera, por lo cual se infiere que los centros volcánicos se encontraban en dicha zona o en parte de la Cordillera Principal.

2.1.2.6. Grupo Ñirehuao (Ks3i, Cretácico)

Compuesta principalmente por secuencias volcánicas (tobas y lavas), con importante presencia de rocas basálticas, que afloran al este de Coyhaique y en la cuenca del río Ñirehuao, las cuales fueron depositadas en el trasarco, en un régimen extensional, del arco asociado al Batolito Patagónico durante el Albiano – Campaniano, con un aparente apogeo en el Cretácico tardío (Parada y otros, 2001).

2.1.2.7. Batolito Norpatagónico (Jsg, Kig, KTg, Eg, Mg Cretácico - Terciario)

Se extiende cerca de 100 km entre los 38°S y 48°S y corresponde a una extensa franja de rocas graníticas ubicada en el eje de la Cordillera Patagónica, intruyendo al Basamento Metamórfico y las Formaciones Ibáñez y Traiguén. Compuesto por granitos, granodioritas, tonalitas, dioritas cuarcíferas, dioritas, gabros y peridotitas, con variaciones composicionales este-oeste, desde ácidas a básicas, respectivamente (Niemeyer y otros, 1984).

Pankhurst y otros (1999) establecen un carácter metaluminoso y calcoalcalino predominante, con edades que varían de oeste a este desde Cretácico tardío, Cretácico temprano, Eoceno, Mioceno temprano y Cretácico medio, para los plutones respectivos ubicados en la Cordillera Principal. Estos autores, además, proponen un origen relacionado a la fusión de la parte inferior de la corteza y de la corteza máfica subplaca, lo que generó episodios discretos de magmatismo asociados a cambios significantes en la cinemática de subducción.

2.1.3. Cenozoico

2.1.3.1. Formación Ligorio Márquez (PE1c, Paleoceno – Eoceno inferior)

Corresponde a una sucesión de areniscas y limolitas fluviales, ricas en cuarzo, que aflora al sur de la localidad de Chile Chico y del lago General Carrera. Posee flora característica de clima tropical a subtropical, cuya depositación ocurrió en la etapa inicial del óptimo climático del Paleoceno superior – Eoceno inferior (Suárez y otros, 2000).

2.1.3.2. Basaltos Balmaceda (E3b, Eoceno)

Depósitos basálticos de aproximadamente 150 m de espesor compuesto de flujos de lava subhorizontales con frecuente disyunción columnar, que se encuentran en la cuenca de Balmaceda. En su base, presentan *pillow lavas* con sedimentos y hialoclastitas intersticiales, que revelan un ambiente subacuático durante las primeras erupciones, las cuales se exponen en el valle del río Oscuro. Demant y otros (1996), reconocen una señal geoquímica similar a la de basaltos tipo OIB y establecen un contexto geodinámico asociado al cese progresivo de la subducción, como consecuencia de la colisión de una dorsal oceánica con la placa continental y la correspondiente generación de un *slab window*.

2.1.3.3. Formación San José (E1c, Eoceno)

Sucesión sedimentaria volcanoclástica, con una potencia mínima de 120 m, compuesta por limolitas y areniscas finas con intercalaciones de granulometría más gruesa y conglomerados, con menor presencia de ceniza y lapilli, además de contenido florístico propio de clima tropical a subtropical durante el Eoceno inferior, el cual fue reconocido en la zona de Mina Furioso (De la Cruz y otros, 2003). Flint y otros (1994), en De la Cruz y otros (2003), asignan a esta Formación un ambiente de depositación asociado a abanico aluvial en una llanura de inundación.

2.1.3.4. Formación Traiguén, sector occidental (OM2m, Ks4, Ks2m, Eoceno tardío – Mioceno)

Sucesión volcano-sedimentaria que aflora en la parte oriental de la Cordillera de la Costa entre los 43°30'S y 46°S, en las islas del Valle longitudinal y borde costero de la Cordillera Principal, caracterizada por la presencia de cherts y lutitas con microfósiles marinos, otorgándole un carácter marino a su ambiente de depositación (Fuenzalida y Etchart, 1975, en Silva y otros, 2003).

En el área de estudio se encuentra el sector occidental de la Formación Traiguén, asociada a la Etapa 1 (36 a 17 Ma) de la evolución de esta secuencia, según Silva y otros (2003). En este contexto, los mismos autores proponen un desarrollo relacionado a régimen de cuencas extensionales limitadas por el basamento metamórfico al oeste y el Batolito Norpatagónico al este, cuya corteza estaba adelgazada y termalmente debilitada por el plutonismo cretácico del batolito. De acuerdo a las facies volcano-sedimentarias y metamórficas de sus lavas, los centros de emisión volcánicos se situaban a lo largo de uno o más ejes de expansión ubicados en el sector occidental de los lineamientos principales N-S de la Zona de Falla Liquiñe – Ofqui (Silva y otros, 2003).

2.1.3.5. Gabros Bandurrias (Og, Oligoceno)

Corresponde a un cuerpo intrusivo de menor tamaño y aislado que aflora en las cercanías de Coyhaique, con afinidades alcalinas y patrones similares a los basaltos tipo OIB, el cual se habría generado debido a bajas tasas de fusión parcial y emplazado en un ambiente tectónico extensional o trastensional durante dos posibles etapas: un período de acomodación mayor entre las placas de

Nazca y Sudamérica con una subducción más lenta y oblicua, o durante un período de convergencia más rápida y menos oblicua (Morata y otros, 2005).

2.1.3.6. Formación Guadal (OM1m, Oligoceno superior – Mioceno temprano)

Secuencia sedimentaria marina con contenido fosilífero de aproximadamente 100 m de espesor, que aflora al sureste del pueblo homónimo. Compuesta por limolitas y areniscas, con presencia de fauna fósil de origen marino, relacionados a un ambiente cálido somero con facies mareales, representando registros transgresivos-regresivos (De la Cruz y otros, 2003).

2.1.3.7. Formación Cholchol? (M1m, Mioceno)

Secuencias sedimentarias marinas transgresivas plataformales con areniscas finas, arcillolitas y limolitas que se encuentran en la Península de Taitao y en las islas Hereford y Crossier, siendo correlacionables con la Formación Cholchol (SERNAGEOMIN, 2003) descrita por García (1968) en la Provincia de Cautín, Región de La Araucanía.

2.1.3.8. Formación Río Frías (M2c, Mioceno)

Ubicada a lo largo del río Cisnes, consiste de tobas dacíticas y riolíticas, limolitas y areniscas con abundante fauna fósil en la parte inferior de la secuencia, y conglomerados volcánicos en la parte superior, depositados en sistemas fluviales de alta energía (Marshall y Salinas, 1990).

2.1.3.9. Ofiolitas de la Península de Taitao (M3o, Mioceno)

Rocas ultramáficas y gabros expuestos a lo largo de la costa norte de Bahía Barrientos en una sección de 3 km de largo, con serpentinización parcial a total. El origen de las peridotitas es oceánico y el de los gabros posiblemente relacionado a una zona de expansión oceánica activa, además de harzburgitas que resultaron de la obducción de fragmentos de origen mantélico (Le Moigne y otros, 1996).

2.1.3.10. Formación Las Dunas (M1c, Mioceno inferior a medio)

Secuencias sedimentarias de abanicos aluviales, pedimento o fluviales, compuesta de gravas, arenas y limos con ignimbritas intercaladas, del Mioceno inferior a medio (SERNAGEOMIN, 2003).

2.1.3.11. Formación Galeras (MP1c, Mioceno – Plioceno inferior)

Compuesta por conglomerados y areniscas con intercalaciones de lutitas y tobas que afloran aisladamente en la Precordillera y en la Zona Extraandina de la región, cuya localidad tipo es el cerro Galera, al sureste del lago Polluk. Su ambiente de depositación es continental, asociado a un medio fluvial de alta energía, cuya dirección de transporte fue de oeste a este según la imbricación de clastos en los conglomerados (Niemeyer y otros, 1984).

2.1.3.12. Basaltos de la Meseta de Chile Chico (MP3, Mioceno – Plioceno)

Secuencia basáltica de aproximadamente 400 m de espesor, de carácter alcalino y en menor medida toleíticos, asociados a cuellos volcánicos, diatremas, remanentes erodados de maares, y dispuestos en paraconcordancia sobre la Formación Guadal. De la Cruz y otros (2003) identifican la participación de sedimentos subductados o de fundidos derivados de la litósfera oceánica subductada en la fuente de los magmas que originaron los basaltos, junto a un leve aporte de arco o corteza.

2.1.3.13. Plutón Río de las Nieves (Pg, Plioceno)

Corresponde a una monzonita cuarcífera que aflora en las nacientes del río de Las Nieves y en cerros al sur del lago General Carrera, la cual fue exhumada rápidamente debido a alzamiento tectónico (Morata y otros, 2002, en De la Cruz y otros, 2003).

2.1.3.14. Estratos de Potrero Alto? (PPl1c, Mioceno – Pleistoceno)

Corresponde a una secuencia de conglomerados, areniscas, limolita y arcillolita, generalmente consolidados, con facies aluviales y en menor medida lacustres y eólicas (SERNAGEOMIN, 2003), que pueden correlacionarse con secuencias ubicadas en Chile Central definidas como Estratos Potrero Alto (Gana y otros, 1996, en Encinas y otros, 2003).

2.1.3.15. Secuencias y centros volcánicos parcialmente erodados (PPI3, Plioceno – Pleistoceno)

Secuencia de basaltos, tobas y conglomerados correlacionables con la Formación Malleco, asociadas a una depositación en un contexto de margen continental activo (SERNAGEOMIN, 2003).

2.1.3.16. Depósitos glaciales (Q1g, Q1g1, Pleistoceno – Holoceno)

Depósitos morrénicos, fluvioglaciales y glacilacustres asociados a las principales glaciaciones del Pleistoceno (de más antigua a más reciente: Caracol, Río Llico, Santa María y Llanquihue) y el Holoceno. Se caracterizan por presentar depósitos diamictos de bloques y matriz de limo/arcilla, gravas y arena (SERNAGEOMIN, 2003).

2.1.3.17. Depósitos cuaternarios (Q1, Pleistoceno – Holoceno)

Depósitos no consolidados asociados a eventos aluviales, coluviales y de remoción en masa; en menor proporción fluvioglaciales, deltaicos, litorales o indiferenciados (SERNAGEOMIN, 2003).

2.1.3.18. Depósitos volcánicos (P3i, Q3i, Cuaternario)

Secuencias de origen volcánico asociadas a estratovolcanes y complejos volcánicos, que comprenden flujos de lava basáltica, depósitos piroclásticos andesíticos-basálticos a dacíticos, principalmente calcoalcalinos y en algunos casos adakíticos (SERNAGEOMIN, 2003). En la Región de Aysén, entre los 45°S y 48°S, estos depósitos provienen de los volcanes Hudson, Macá, Cay y centros eruptivos menores.

2.1.4. Contexto volcano-tectónico

El ambiente sismotectónico de la región está caracterizado por la presencia de la Zona de Falla Liquiñe – Ofqui, que consiste en un set complejo de lineamientos intra-arco con tendencia NNE de *ca*. 1.000 km de largo entre los 38°S y 47°S, presentando una deformación transcurrente dextral, principalmente. Esta deformación absorbe la componente paralela a la fosa de la convergencia oblicua entre las placas Nazca y Sudamericana (Agurto-Detzel y otros, 2014; Cembrano y otros, 1996).

Cembrano y otros (1996) identifican tres tipos de lineamientos bien definidos en este sistema de fallas: 1) dos de tendencia NNE, largamente rectos de cientos de kilómetros; 2) al menos cuatro de tendencia NE de decenas de kilómetros, rectos y en echelón, siendo en estos últimos donde se encuentran los centros volcánicos, y 3) tres de orientación NNW, curvados con cientos de kilómetros y cóncavos al suroeste (Fig. 2.2).

Figura 2.2: Zona de Falla Liquiñe – Ofqui (ZFLO). Principales estructuras de la ZFLO y centros volcánicos ubicados en ella. Modificado de Cembrano y otros (1996).

La deformación asociada a la Zona de Falla Liquiñe – Ofqui pudo iniciarse o reactivarse durante el Eoceno – Mioceno en un régimen transtensional, permitiendo el desarrollo de cuencas representadas, por ejemplo, por la Formación Traiguén, además de emplazamiento sintectónico de cuerpos plutónicos en el Mioceno – Plioceno (Cembrano y otros, 1996). En 2007 A.D., una serie de sismos evidenciaron la reactivación de este sistema de fallas en la Región de Aysén, la cual ha presentado bajos niveles de sismicidad en tiempos históricos, alcanzando una magnitud máxima con un evento M_w 6,2 el 21 de abril del mismo año, el que generó un tsunami asociado a desprendimiento de laderas (Agurto-Detzel y otros, 2014).

Por otro lado, la zona de estudio pertenece a la *Southern South Volcanic Zone (SSVZ*), que comprende centros volcánicos entre los 41,5°S y 46°S, y cuya orientación general tiende a ser NNE, con algunos grupos de centros eruptivos menores orientados N50°-70°E (López-Escobar y otros, 1995).

Cembrano y Lara (2009) proponen dos categorías principales para las interacciones volcanotectónicas entre los centros volcánicos ubicados a lo largo de la Zona de Falla Liquiñe – Ofqui: una donde existe una evidente relación espacio-temporal con estructuras de segundo orden derivadas de la cinemática transpresional dextral del arco volcánico (asociaciones cinemáticamente acopladas) con lineamientos de orientación NE y ENE; y otra en la cual los volcanes o grupos de volcanes están asociados espacio-temporalmente a estructuras antiguas, algunas de alcance litosférico, donde la relación cinemática con el campo de esfuerzos en el intraarco no es necesaria, denominándose asociaciones cinemáticamente desacopladas.

Además, el tipo de régimen que controla zonas de la corteza influye en el grosor de la misma, pudiendo interferir en el grado de diferenciación que alcanzan los magmas, ya que en una corteza delgada, principalmente relacionada a asociaciones cinemáticamente acopladas, los magmas alcanzan más fácilmente la superficie que en una corteza gruesa, en la que predominan asociaciones cinemáticamente desacopladas, generalmente. Así, los productos eruptivos serán menos diferenciados en el primer caso debido al menor tiempo de residencia de tales magmas, mientras que en una corteza gruesa este tiempo es mayor (Cembrano y Lara, 2009). Por esta razón, es común encontrar centros eruptivos de composición primitiva en lineamientos de orientación NE y ENE, mientras que en aquellos de tendencia NW la composición de los

productos eruptivos abarca un rango amplio desde basaltos a riolitas, como es el caso de la cadena volcánica Villarrica – Quetrupillán – Lanín (Cembrano y Lara, 2009).

2.1.5. Paleoclima de la región: glaciaciones (Holoceno)

Diversos estudios del paleoclima holoceno en la Patagonia chilena se han realizado con base en la geomorfología, dataciones de morrenas con nucleidos cosmogénicos o radiocarbono, y palinología, principalmente (Glasser y otros, 2004; Mardones y otros, 2011; Bravo, 2014; Bourgois y otros, 2016; Moreno y Videla, 2016; Thorndycraft y otros, 2019) que han permitido tener nociones de los períodos glaciales en la región (Fig. 2.3).

Figura 2.3: Cronología de glaciaciones en Patagonia. Períodos glaciales y no glaciales en Patagonia, según varios autores.

A nivel global, se establece que *Last Glacial Maximum (LGM)* termina a fines del Pleistoceno, pero el retroceso de los glaciares en la Patagonia chilena pudo haber sido posterior dadas las condiciones climáticas de la región (Watt y otros, 2013). Además, se han identificado algunos episodios de avance glacial durante el Holoceno, denominados Neoglaciaciones, que corresponden a períodos donde las condiciones climáticas permitieron este proceso.

Asociadas a los primeros re-avances glaciales posteriores al LGM se encuentran una serie de morrenas en el borde de la Cordillera Patagónica a la altura de los 47°S. Estos avances ocurrieron entre 12,8 y 11 ka AP, coincidente con el intervalo climático *Northern Hemisphere Younger Dryas* (Glasser y otros, 2012, en Thorndycraft y otros, 2019). Sin embargo, en los valles Colonia

y Tranquilo se han obtenido edades más antiguas que éstas, que pueden asociarse al *Antarctic Cold Reversal* (ACR) de edad 14,5 – 12,8 ka AP (Thorndycraft y otros, 2019). Luego, un período con déficit de precipitaciones y retroceso glacial fueron contemporáneos al establecimiento del lago General Carrera como una cuenca endorreica, hasta 10,9 \pm 1,3 ka AP, tiempo en el cual ocurre un nuevo avance glacial (Bourgois y otros, 2016), temporalmente similar a lo observado por Mardones y otros (2011) en la morrena frontal del lago Elizalde, cuya edad es 10,7 a 10,48 ka cal AP. Bourgois y otros (2016) sugieren que, luego de un re-avance glacial a los 7,9 \pm 1,1 ka AP, ocurrió un alzamiento en el área del río Las Dunas a una tasa entre 15 y 33,5 mm/año debido a la pérdida de carga glacial. Con base en evidencia palinológica encontrada en el sector del lago El Salto (Región de Los Lagos, 41°38'S), Moreno y Videla (2016) establecen que entre 7,6 y 5,3 ka AP las condiciones climáticas fueron más frías y húmedas que las actuales, contrario al contexto climático previo (seco/cálido), imperante entre los 11 y 7,6 ka AP.

El período desde el Holoceno medio hasta el presente, se caracteriza por presentar una alternancia de condiciones húmedas/frías y cálidas/secas, a escala de siglos y milenios (Moreno y Videla, 2016). Durante este intervalo de tiempo ocurrieron varios episodios de neoglaciaciones: según la cronología tipo Mercer, uno ocurre en 4,7 - 4,2 ka AP, otro en 2,7 - 2 ka AP y otro contemporáneo a *Little Ice Age (LIA)* entre 1.600 y 1.700 A.D. (Glasser y otros, 2004). Ésta última también es considerada en la cronología tipo Aniya, la que por su parte propone avances glaciales a los 3,6 ka AP, 2,3 ka AP y 1,6 – 1,4 ka AP (Glasser y otros, 2004). Mardones y otros (2011) también identifican un avance glacial, en el valle del río Quetro (45°S), a 2.340 – 2.150 años cal AP. Por otro lado, Bravo (2014) propone que durante el Holoceno medio existen condiciones más frías respecto a los últimos siglos, dado que los frentes de morrena formados en el primer caso se ubican más lejos del frente actual. Además, la misma autora señala que los glaciares en la región son más sensibles a los cambios de temperatura del aire que a las variaciones en las tasas de precipitación.

2.2. Marco geológico local

2.2.1. Generalidades

El Volcán Hudson consiste en una estructura volcánica de tipo caldera, emplazada sobre rocas intrusivas con un casquete glacial anidado al interior de la caldera (Fig. 2.4). Corresponde al

Figura 2.4: Mapa geológico local del volcán Hudson. Unidades geológicas principales y estructuras en la zona del volcán. Modificado de Orihashi y otros (2004).

límite meridional de la Zona Volcánica Sur (ZVS), encontrándose al norte del *gap* volcánico (46°- 49°S) entre dicha zona y la Zona Volcánica Austral (ZVA) (Stern y otros, 2007). Debido a las condiciones de difícil acceso, este volcán fue descrito por primera vez recién en la década de los setenta (Fuenzalida y Espinosa, 1974) como consecuencia de la erupción en 1971 A.D.

Se estima que la actividad eruptiva del volcán Hudson comenzó en el Pleistoceno, hace al menos 1 Ma, tiempo desde el cual la caldera se formó de manera gradual y no asociada a un solo evento eruptivo (Orihashi y otros, 2004). La composición de los productos eruptivos varía desde basaltos a traquidacitas, siendo aquellos de carácter intermedio los que predominan (Bertin, 2014; Weller y otros, 2014; Kratzmann y otros, 2009; Gutiérrez, 2005; Naranjo y Stern, 1998; Fuenzalida, 1976). Características geoquímicas distintivas del volcán Hudson con respecto a otros volcanes de la Zona Volcánica Sur son su contenido medio – alto de K₂O, ser relativamente enriquecido en TiO₂, Na₂O e incompatibles, y poseer una alta razón ⁸⁷Sr/⁸⁶Sr (Naranjo y Stern, 1998).

2.2.2. Basamento y estructuras principales

El basamento en el cual se emplaza el volcán Hudson corresponde a rocas antiguas del Batolito Norpatagónico, de edad Cretácico inferior y composición granítica (Bertin, 2014), como cuarzo monzodiorita de biotita y anfíbol, según Gutiérrez (2005). La estructura circular que representa el borde de la caldera del volcán se ubica en la intersección de dos sistemas de lineamientos regionales de rumbos NW y NE, los que se prolongan más de 60 y 40 km, respectivamente, coincidiendo con los valles Huemules e Ibáñez (lineamientos NW) y los valles Sorpresas y Desplayado, de orientación NE (Gutiérrez, 2005). Según Gutiérrez (2005), la tendencia más frecuente de los lineamientos es NE-EW, seguidos por aquellos de orientación NW y de menor ocurrencia los lineamientos NNE-NS, con longitudes entre 3 y 4,3 km, menores a 2,3 km y 1,8 a 3,5 km, respectivamente.

2.2.3. Volcanismo monogenético

En los sectores aledaños a la caldera se encuentran al menos cuatros conos monogenéticos: dos a *ca*. 4 km al norte del volcán (conos Desplayados), cono Sorpresas a 10 km hacia el suroeste y el cono Ibáñez, a 15 km al sureste. De estos centros eruptivos, sólo el cono Ibáñez ha sido caracterizado petrográfica y petrológicamente, el cual presenta escorias basálticas alcalinas, xenolitos de agregados cristalinos (cuarzo, albita y titanita) dispersos en el vidrio basáltico y patrones geoquímicos afines a los basaltos tipo MORB, similar a otros conos monogenéticos de Aysén (Gutiérrez, 2005), evidenciando la influencia de la subducción de la Dorsal Chile.

2.2.4. Historia eruptiva Holocena del volcán Hudson

2.2.4.1. Erupción H0

La historia eruptiva holocena del volcán Hudson ha sido bien estudiada por distintos autores en las últimas décadas, quienes se enfocan en las dos grandes erupciones de este período (H1 y H2) o en las ocurridas durante el siglo XX, pues la falta de registro o el difícil acceso a afloramientos en la región ha obstaculizado la reconstrucción de la historia eruptiva de este volcán previo a 10.000 años AP. No obstante, Weller y otros (2014) logran identificar en testigos lacustres un evento eruptivo más antiguo perteneciente al volcán Hudson, el cual denominan H0, cuya edad modelada (obtenida mediante métodos estadísticos y no con mediciones radiométricas directas)

es 18.459 cal años AP (Weller y otros, 2019). Esta erupción corresponde a la de mayor magnitud de este volcán, posiblemente responsable de la formación de gran parte de la caldera, con un volumen estimado de tefra superior a los 20 km³ de composición bimodal (pómez traquiandesítica basáltica y traqui-dacítica), que se dispersó hacia el noreste (Weller y otros, 2014).

2.2.4.2. Erupción H1

Durante el Holoceno, el volcán Hudson ha presentado varios episodios eruptivos de los cuales se pueden destacar dos eventos de explosividad considerable (IEV=6): a los 6,7 ka AP (H1) y a 3,6 ka AP (H2) (Naranjo y Stern, 1998). El primero de ellos es de composición traqui-andesítica y posee una importante cantidad de lapilli acrecionario (Bertin, 2014), cuya formación está asociada a la interacción magma - agua/hielo durante una erupción freatomagmática de grandes proporciones, dejando incluso una capa de >10 cm de espesor a más de 900 km hacia el sur, en Tierra del Fuego (Stern, 1991). Dadas las características explosivas de la erupción, Naranjo y Stern (1998) proponen que posiblemente contribuyó a la generación de la caldera del volcán junto a una columna eruptiva que sobrepasó los 55 km de altura con gran dispersión hacia el SSE de los depósitos, beneficiada por los fuertes vientos imperantes en la región de Aysén (Stern, 1991).

2.2.4.3. Erupción H2

Corresponde al segundo evento del volcán Hudson de gran explosividad (H2) durante el Holoceno, el cual ocurrió hace aproximadamente 3.600 a 4.000 años cal. AP (Naranjo y Stern, 1998; Bertin, 2014; Weller y otros, 2018), de carácter pliniano, pero con menor intensidad que H1, presentando cuatro pulsos composicional y texturalmente similares, pero con diferencias granulométricas (Fig. 2.5). Según Bertin (2014), en el primero de ellos predomina el tamaño ceniza gruesa, con alto contenido de cristales y líticos, con moderado exceso de material juvenil tamaño lapilli y escaso material tamaño ceniza fina. En el segundo pulso se depositan pómez de tamaño superior y en mayor cantidad, lo cual permite inferir que corresponde al pulso paroxismal, es decir, el de mayor intensidad en el evento H2, el cual posee una selección muy pobre y una disminución en el contenido de líticos y cristales a medida que se aleja del volcán.

Figura 2.5: Pulsos de la erupción H2. Columna estratigráfica y fotografía de los cuatro pulsos asociados al evento H2. Modificado de Bertin (2014).

El tercer pulso posee una bimodalidad en cuanto a la granulometría, pues un 40% de los fragmentos son ceniza fina y una segunda moda corresponde a ceniza gruesa, denotando una intensa fragmentación. Además, se encuentran estructuras concéntricas tipo lapilli acrecionario, asociadas a procesos freatomagmáticos. Por último, el cuarto pulso es similar al primero en términos granulométricos y también por contener una alta proporción de material lítico y cristalino de tamaños ceniza gruesa. Por otro lado, los piroclastos asociados a este pulso presentan bandeamiento moderado y color más grisáceo con respecto a los piroclastos de los otros pulsos, por lo que podría reflejar la presencia de un magma menos diferenciado o un proceso de mezcla de magmas, donde el magma resultante es más máfico.

En general, la composición de los productos volcánicos asociados a este evento es traqui-dacítica, donde se encuentran pómez con textura vesicular fluidal, hialopilítica y agregados glomeroporfídicos de plagioclasa, clinopiroxeno (augita), ortopiroxeno (hipersteno), magnetita y/o titanomagnetita (Bertin, 2014).

2.2.4.4. Erupciones menores holocenas

Siete erupciones menores ocurridas en el Holoceno se han reconocido y atribuido al volcán Hudson (Naranjo y Stern, 1998; Bertin, 2014), las que no contemplan a los eventos que tuvieron lugar desde el siglo pasado (Tabla 2.1). Las erupciones menores consisten de emisión de cenizas y tefras escoriáceas, algunas de carácter freatomagmático, con un rango composicional desde andesitas basálticas a traqui-dacitas.

Evento eruptivo	Edad	Referencia
E6	<214 ± 57 años AP, 1891 AD	Bertin (2014), Naranjo y Stern (1998).
E5	i?	Bertin (2014)
Τ7	1.144 ± 75 años cal AP	Naranjo y Stern (1998).
E4	1.703 ± 81 años AP	Bertin (2014), Naranjo y Stern (1998).
E3 (H2)*	4.061 ± 171 años AP	Bertin (2014), Naranjo y Stern (1998).
T4	4.690 ± 86 años cal AP	Naranjo y Stern (1998).
Т3	7.194 ± 116 años cal AP	Naranjo y Stern (1998).
E2 (H1)*	7.359 ± 49 años AP	Bertin (2014), Naranjo y Stern (1998).
E1	7.886 ± 36 años AP	Bertin (2014), Naranjo y Stern (1998).

Tabla 2.1:Eventos eruptivos holocenos del volcán Hudson. Según Bertin (2014) y Naranjo y Stern (1998).*No corresponden a erupciones menores.

2.2.4.5. Erupciones históricas y actividad actual

Erupciones menores de composición basáltica, andesítica-basáltica y algunas con alto contenido de K₂O, han ocurrido en tiempos históricos. La primera (IEV= 3 – 4), de composición traquiandesítica, tuvo lugar en 1971 A.D. y generó una columna eruptiva de 12 km de altura, así como lahares hacia los ríos Huemules y Cupquelán (Bertin, 2014). En 1991 A.D. se produce un nuevo episodio eruptivo, dividido en dos fases (Kratzmann y otros, 2009): P1 iniciada el 8 de agosto del mismo año, con emisión de lavas basálticas y una erupción freatomagmática (IEV= 3) proveniente del sector noroeste de la caldera, y P2 (12 de agosto), correspondiente a la fase paroxismal (IEV= 4 - 5) de tipo pliniana, generada 4 km hacia el SSE del primero y composición de carácter traqui-andesítico, a la cual se asocian los lahares en el río Huemules y Sorpresas. Esta erupción es el segundo evento eruptivo de mayor explosividad ocurrido en el país a nivel histórico, sólo superado por la erupción del volcán Quizapu ($35^{\circ}38^{\circ}S$) en 1932 (Hildreth y Drake, 1992). La última actividad considerable del volcán Hudson tuvo lugar en 2011 A.D. con la emisión de gases y cenizas traqui-andesíticas en tres cráteres alineados NNW-SSE dentro de la caldera, junto a columnas eruptivas débiles (<10 km de altura) y lahares hacia los ríos Huemules, Cupquelán y Sorpresas (Amigo y otros, 2012).

Hasta la fecha, el volcán Hudson se ha mantenido en niveles estables de actividad, no presentando señales superficiales de emisión de gases o cenizas en los últimos ocho años. En

cuanto a la actividad sísmica, ésta también se ha mantenido en niveles considerados normales para el volcán, a excepción de los últimos meses (noviembre – diciembre) del año 2016, donde se incrementó la magnitud de los eventos, paulatinamente, en los meses previos, asociados a la fuente de emisión del año 2011. Alcanzó un M_L máximo de 3,6 y un desplazamiento reducido de 2.930 cm² el 14 de noviembre de 2016 (REAV Aysén 2016/11/14; RAV Aysén 2016/11/15; RAV Aysén 2016/12/01), lo que mantuvo la alerta técnica en nivel amarillo hasta los primeros días de enero de 2017 (RAV Aysén 2017/01/04).

3. AFLORAMIENTOS Y MUESTRAS

3.1. Generalidades

Los afloramientos descritos al sureste del volcán abarcan sectores en el valle del río Ibáñez y la confluencia de éste con los ríos Chiflón y Frío, donde se encuentran los depósitos del evento eruptivo H2 mejor preservados. En el primer caso, los depósitos asociados a este evento están en la parte superior de la pared expuesta sobre depósitos escoriáceos y del evento eruptivo H1, por lo que su descripción y toma de muestras no fue posible.

En Villa Cerro Castillo y en el área entre el lago Zenteno y lago Atravesado se encuentran depósitos volcánicos con cierto grado de retrabajo, por lo que el uso de estas muestras para análisis geoquímicos no es conveniente, además de corresponder a depósitos en los que predominan granulometrías menores, con tamaño desde ceniza fina a lapilli fino. Al norte del volcán, en el sector del cono Desplayado Este predominan los niveles escoriáceos, mientras que en la ladera oriental del cono Desplayado Oeste se encuentra un depósito ignimbrítico de 15 m de espesor, aproximadamente, en el cual se describe la parte inferior del mismo. Al oeste del borde de la caldera se encuentra un único depósito pumíceo asociado a flujo piroclástico (punto AA-260217), sobre rocas graníticas, el que es fácilmente atribuido a la erupción H2 por la coloración blanco amarillenta y características de las pómez. Las muestras de este punto son ideales para análisis geoquímicos, debido al grado de preservación y la cercanía con el volcán.

Aunque el volcán Hudson ha presentado eventos escoriáceos de composición máfica, los depósitos descritos al norte de la caldera no están necesariamente asociados a este centro eruptivo, ya que pueden provenir de los conos Desplayados u otro centro monogenético, dado el contexto volcano-tectónico de la región.

Este trabajo enfatiza en la descripción de los niveles asociados al evento eruptivo H2, junto con el análisis geoquímico de los productos eruptivos del mismo. De esta manera, las muestras seleccionadas para análisis de esta erupción corresponden a las recolectadas en los puntos AA-260217 y AA-250218, dada su ubicación con respecto al volcán (Fig. 3.1), el estado de conservación de los productos eruptivos y la granulometría de los mismos (tamaños lapilli). No obstante, se consideran muestras obtenidas de la ignimbrita en el punto AA-220218 y de los depósitos escoriáceos de mayor espesor en los puntos AA-190218 y el mencionado anteriormente

para análisis químicos de roca total, debido a la escasa información disponible en afloramientos de este sector.

Figura 3.1: Mapa con puntos de afloramientos. Ubicación de puntos descritos durante las campañas de febrero 2017 y 2018.

3.2. Caracterización de depósitos

Los depósitos descritos en este trabajo se pueden dividir en depósitos proximales y distales. Los primeros corresponden a aquellos que se encuentran en los valles aledaños a la caldera de volcán dentro de la isópleta 10 cm de pómez de H2 (Bertin, 2014), mientras que los afloramientos pertenecientes al segundo grupo abarcan sectores ubicados a una distancia mayor que 35 km desde el centro de la caldera del volcán, en los cuales se encuentran depósitos retrabajados de las erupciones respectivas y con isópletas menores a 10 cm de pómez de H2.

3.2.1. Depósitos proximales

Se consideran depósitos proximales aquellos ubicados en los puntos AA-250217, AA-260217 (1 y 2), AA-190218 (1 y 2), AA-220218 (1 y 2), AA-240218 y AA-250218 (Fig. 3.1). En el sector del

cono Desplayado Este, al norte del volcán, predominan los depósitos escoriáceos de caída de piroclastos tamaño lapilli fino a medio, en el que se identifican al menos 16 pulsos (Columna Desplayado Este II, Anexo I) compuestos por material máfico, principalmente. Además, se encuentran dos depósitos matriz soportados con menor presencia de pómez tamaño lapilli medio, presentando en uno de ellos lapilli acrecionario de 2 cm, aproximadamente (Columna Desplayado Este I, Anexo I). Los pulsos eruptivos escoriáceos pueden estar relacionados a seis eventos eruptivos, que pueden provenir tanto del volcán Hudson como de centros monogenéticos, definidos por cambios en intensidad dados por variaciones granulométricas, (Fig. 3.2).

Pulsos eruptivos escoriáceos al norte del Volcán Hudson. Se distinguen 6 eventos escoriáceos y un evento pumíceo (tramo 3), de acuerdo a sus componentes y granulometría. En este sector, la fuente del evento escoriáceo más antiguo puede ser atribuida al cono Desplayado Este, dado el espesor de su depósito (cerca de 5 m, tramos 1 y 2 en Fig. 3.2) y la ubicación con respecto al centro eruptivo. En cuanto a los depósitos que contienen escorias y pómez, éstos provienen del volcán Hudson ya que se caracteriza por presentar ambos productos en sus depósitos.

En la ladera noreste del cono Desplayado Oeste se encuentra un depósito ignimbrítico de gran espesor (15 m aproximados) sobreyaciendo a un depósito clastosoportado de escorias tamaño lapilli medio a grueso, con selección moderada a buena. Éste último puede ser fácilmente asociado al cono monogénetico mencionado, por su ubicación con respecto a dicho centro.

Inmediatamente sobre las escorias provenientes del cono Desplayado Oeste se distinguen diversos niveles de depósitos volcánicos con selección variable, compuestos por escorias, pómez y líticos, en los que predominan los tamaños ceniza gruesa – arena media, que representan la granulometría de una posible matriz. La redondez de los clastos y líticos aumenta hacia la parte superior de esta secuencia, así como el gradiente granulométrico (Columna Desplayado Oeste, Anexo I). Las secuencias sobreyacientes comienzan con un tramo matriz soportado de ceniza gruesa de color gris pardo claro, de selección moderada a buena, con clastos de escorias angulosas y pómez redondeadas, que denotan la base del flujo piroclástico asociado a la ignimbrita. Los primeros cuatro metros descritos de esta secuencia son matriz soportados con selección media a buena, compuestos por escorias angulosas de tamaño lapilli fino a medio, pómez redondeadas con bandeamiento y núcleos de vidrio más oscuro, las que tienen mayor tamaño con respecto a las escorias (hasta 5 cm), y líticos volcánicos y graníticos que alcanzan dimensiones entre 0,5 y 2 cm, además de cristales de plagioclasa de tamaño milimétrico en matriz (Columna Desplayado Oeste, Anexo I). A mayor escala, se observa estratificación cruzada en la parte inferior y media del depósito, con tendencia a laminación paralela hacia techo, sector en el cual se observa un nivel de coloración más clara, pudiendo corresponder a otro evento eruptivo de menor edad (Fig. 3.3).

Figura 3.3: Afloramiento en cono Desplayado Oeste. Depósito de escorias bajo ignimbrita, al norte del volcán Hudson. En el borde occidental de la caldera (punto AA-220218-2) se encuentra el centro de emisión fisural de la fase 1 de la erupción de 1991 A.D., el que consiste de un depósito de escorias tamaño lapilli y bombas, las que alcanzan varias decenas de centímetros, sobre lavas pahoehoe que afloran en algunos sectores (Fig. 3.4). Estos productos eruptivos poseen coloración rojiza con matices oscuros dado el carácter máfico de los mismos, rodeados por parte del casquete de hielo que se encuentra en el borde la caldera.

Figura 3.4: Fisura de fase 1, erupción 1991 A.D. a) Lava tipo pahoehoe y b) Bomba con forma aerodinámica.

Hacia el oeste, en el punto AA-260217, se encuentra un único depósito asociado a flujo piroclástico (Fig. 3.5) sobre basamento granítico, el cual consiste de pómez muy fibrosas de coloración pardo amarillenta con tendencia granodecreciente y laminación paralela, clastosoportadas principalmente y de hasta 5 cm en la base, con mayor porcentaje de matriz de ceniza hacia techo (Columna Valle Sorpresas, Anexo I). Los líticos representan menos del 1 vol% del depósito, son angulares a muy angulares, volcánicos de coloración negra a rojiza y graníticos, con tamaños milimétricos principalmente y en menor proporción hasta 1,5 cm. De dimensiones y proporciones similares a éstos últimos se presentan cristales de plagioclasas y piroxenos, siendo euhedrales los primeros y con forma anhedral a subhedral los segundos. Algunos piroxenos son de color pardo y otros verde oliva, asociados a cristales de magnetita – titanomagnetita de dimensiones considerablemente inferiores con respecto a los piroxenos. Los líticos y monominerales forman parte tanto de la matriz de ceniza fina del depósito como de los componentes de las pómez; en ambos casos en un porcentaje menor al 10 vol% para los minerales.

Figura 3.5: Ignimbrita en parte superior de valle Sorpresas. Depósito asociado a flujo piroclástico de erupción H2.

Al sureste del volcán, en la confluencia del río Ibáñez con el río Frío (punto AA-250217) se encuentra una pared de aproximadamente 20 m de alto, cuyos primeros cinco metros corresponden al depósito de flujo piroclástico de la erupción H1, matriz soportado con clastos oscuros angulosos y redondeados de diversos tamaños, en una matriz de color pardo claro. Sobre este depósito se encuentra una secuencia de escorias y retrabajo, identificándose al menos tres eventos eruptivos menores (Columna Río Frío, Anexo 1) entre las erupciones mayores del volcán Hudson: H1 y H2. Ésta última aflora en gran parte de la pared, presentando coloración más clara que el depósito basal, cuya descripción detallada no fue posible debido a su ubicación con respecto al piso, mismo caso para los depósitos observados sobre esta secuencia (Fig. 3.6).

Figura 3.6:

Afloramiento en río Frío. Erupciones H1 y H2, junto a eventos de menor explosividad, en cercanías de la confluencia entre ríos Ibáñez y Frío. Fotografía: Álvaro Amigo. En el valle del río Chiflón (puntos AA-240217, AA-250218 {1 y 2}) se ubica una secuencia ignimbrítica de color oscuro, compuesta de escorias y líticos graníticos disgregados, con una parte soldada hacia la base (Columna Río Chiflón I, Anexo I), la cual no fue estudiada en detalle en este trabajo. Sobre este depósito, se reconoce una serie de depósitos fluviales, volcanosedimentarios y volcánicos (Columna Río Chiflón II). Comienza con cerca de dos metros de sedimentos fluviales asociados al transporte y sedimentación de material volcánico por parte del río homónimo, el que consiste de escorias retrabajadas principalmente de tamaño arena media, con selección moderada a buena, excepto en la base de la secuencia donde la selección es mala, encontrándose un nivel conglomerádico. Los líticos asociados a estos depósitos tienen granulometría variable, están redondeados y provienen del basamento granítico, teniendo tamaños que van desde 1-2 mm hasta más de 23 cm. Sobreyace a esta secuencia volcanosedimentaria una serie de depósitos de caída de piroclastos relacionada con el evento eruptivo H2, en la que se identifican los cuatro pulsos que conforman este evento: el primero consiste en un nivel granodecreciente, mal seleccionado de pómez pardo amarillentas de hasta 3 cm subangulosas que disminuyen hacia techo, donde el nivel adquiere buena selección y consiste de ceniza. El siguiente nivel corresponde al pulso paroxismal del evento H2, con 53 cm de material clastosoportado, en el cual las pómez están muy mal seleccionadas, con granulometría desde arena gruesa hasta clastos de 10 cm, vesículas ovaladas y fibrosas. También, presenta cristales de plagioclasa euhedrales de 2 mm y líticos (volcánicos, de coloración rojiza) con dimensiones milimétricas hasta 1,5 cm. El tercer pulso está representado por 4 cm de ceniza gruesa, principalmente, con algunos clastos subredondeados de pómez de 3,2 cm y líticos oscuros en la matriz fina. El cuarto pulso posee 31 cm de espesor y tendencia granodecreciente con pómez de 5 cm en la base, subangulosas a subredondeadas, con mala selección y cristales de plagioclasa y silicatos máficos en la matriz, siendo este nivel el único donde se pueden observar estos minerales a simple vista. Además, contiene una pómez de 12 cm y líticos alargados subredondeados de 2,5 cm, aproximadamente. El depósito que está sobre el evento H2 se distingue por cambio en la coloración, con tres sectores de diferente granulometría: base de ceniza media pardo claro grisáceo con pómez de 4 mm y líticos de 2 mm, matriz soportado y selección moderada a buena. La parte central es similar al anterior, pero más anaranjado y con pómez de 2,5-3 cm, las que poseen vesículas muy fibrosas y bandeamiento de vidrio más oscuro. El techo de la secuencia tiene mayor grado de consolidación y alto porcentaje de líticos redondeados oscuros, de un milímetro de diámetro. Siguen a estos depósitos volcánicos dos niveles retrabajados de material volcanosedimentario y los depósitos de las erupción de 1991 A.D. del volcán Hudson.

Cercano a este sector, hacia el sureste (punto AA-240218), en la ribera de un río secundario aflora una secuencia de depósitos similar a la descrita anteriormente, pero no se reconocen las erupciones mayores holocenas del volcán Hudson, a excepción de la caída de piroclastos de 1991 A.D. que se encuentra a nivel del suelo actual (Columna Las Vertientes, Anexo I). La base de esta secuencia corresponde a un conglomerado fluvial seguido por 275 cm, aproximadamente, de niveles fluviales tamaño arena gruesa y niveles volcanosedimentarios retrabajados. Sobre ellos se encuentran 13 cm de material escoriáceo con sectores más consolidados, similar a la parte soldada de una ignimbrita, la que está bajo un nivel granocreciente de escorias con tamaño modal entre 3 y 4 mm, con mejor selección hacia techo. Los siguiente dos niveles son similares entre sí, con granulometría ceniza media y coloración pardo oscura, bien seleccionados, en los que no se observan pómez ni escorias mayores, pero con contacto claro entre ambos, dado por el leve retrabajo presente en el nivel inferior. Sobreyaciendo, se encuentra un depósito escoriáceo de 9 cm de espesor, bien consolidado, con partículas tamaño lapilli y secciones que parecen soldadas o escorias de 9 a 10 cm. El último nivel de la columna corresponde a un depósito volcanosedimentario granodecreciente retrabajado, con secciones escoriáceos y otras con material fino, presentando estratificación cruzada.

3.2.2. Depósitos distales

Los depósitos distales descritos en este trabajo se ubican al noreste del volcán (puntos AA-210218 y AA-230218 {1 y 2}) y en la localidad Villa Cerro Castillo, al sureste (punto AA-270217-1). La columna descrita al sureste del lago Zenteno (Fig. 3.7) consta de un depósito conglomerádico basal de origen fluvial, sobre el cual hay un nivel de 32 cm matriz soportado, cuya matriz es arenosa y presenta retrabajo, con clastos de hasta 2,5 cm de pómez en la base que disminuyen su proporción hacia la parte superior del depósito, donde aparecen cristales de plagioclasa de 1 mm, además de líticos entre 2 y 3 mm (Columna Camino a El Remanso, Anexo I). Las pómez de este nivel son subredondeadas, poseen vesículas ovaladas y redondeadas con vidrio más oscuro en su interior. 40 cm de suelo separan a este depósito de un nivel de ceniza gruesa escoriácea, con cristales de plagioclasa y minerales máficos menos de 10 vol%. La mitad inferior del nivel posee gradación normal, es decir, una disminución en la intensidad de la erupción, la cual aumenta posteriormente, ya que la mitad superior es granocreciente. Sobre estas escorias se encuentran 2 cm de suelo,

seguido por otro nivel escoriáceo clastosoportado, de 5 cm de espesor, compuesto por pómez de hasta 8 mm (menos de 30 vol%), cristales de plagioclasa y minerales máficos, líticos rojizos y escorias subangulosas tamaño lapilli. El último nivel de origen volcánico es un depósito retrabajado de ceniza fina pardo amarillento de 8 a 10 cm de espesor, con clastos de pómez tamaño lapilli grueso, que infrayace a suelo actual.

Figura 3.7: Afloramiento camino a El Remanso. Depósitos de caída de piroclastos distales del volcán Hudson, al sureste del lago Zenteno.

Al sureste del afloramiento anterior, en el borde nororiental del lago Atravesado (punto AA-230218-2), el conglomerado basal está más expuesto que en camino a El Remanso, pero los depósitos volcánicos presentan mayor grado de retrabajo (Columna Lago Atravesado, Anexo I). No obstante, es posible correlacionar estratigráficamente dichos depósitos. En este punto, los dos últimos niveles de escorias presentan laminación paralela, denotando el carácter secundario de tales niveles, lo cual explica el aumento de su espesor con respecto a los depósitos observados en el punto de muestreo anterior.

Al suroeste de la ciudad de Coyhaique (punto AA-210218) existe un afloramiento de gran espesor, en el cual sólo se reconocen depósitos fluviales asociados al río Simpson, a excepción de un depósito retrabajado de ceniza, de espesor variable con clastos angulosos y redondeados de pómez, ubicado bajo el suelo actual.

En Villa Cerro Castillo (punto AA-270217-1) se encuentra un nivel matriz soportado de medio metro de espesor con clastos de pómez subangulosas, granodecreciente, sobre el cual yace una capa

de ceniza fina sin continuidad lateral, seguida por 7 cm de suelo. Sobreyaciendo a este nivel, se encuentra una capa de ceniza media a fina de tonalidad más clara que ceniza inferior, con clastos de pómez fibrosas, líticos oscuros y monominerales. Entre este nivel y el depósito de la erupción de 1991 A.D. (con espesor entre 1 y 4 cm) existe una capa de trabajo de 10 cm. Cubre a esta secuencia 6 cm de suelo actual (Columna Villa Cerro Castillo, Anexo I).

4. CARACTERIZACIÓN GEOQUÍMICA DE EVENTOS ERUPTIVOS

4.1. Generalidades

Las muestras de los eventos eruptivos del volcán Hudson analizadas en este capítulo provienen de trabajos anteriores (Kratzmann y otros, 2010; Weller y otros, 2014; Tablas III.p y III.q, Anexo III), del proyecto FONDECYT N°11130671 y de las campañas de terreno realizadas en este estudio. Estos eventos se ordenan en orden ascendente de edad en la Fig. 4.1, junto a la simbología asignada para los distintos diagramas de este capítulo. Además, se consideran depósitos provenientes de otros centros monogenéticos presentes en la zona (Conos Desplayados e Ibáñez).

Las muestras del volcán Hudson están simbolizadas con triángulos, siendo de colores y borde negro las muestras obtenidas en este trabajo, sin borde aquellos datos del proyecto FONDECYT N°11130671 y sin relleno las muestras analizadas en trabajos anteriores.

Figura 4.1:

Esquemadeeventoseruptivosestudiados.Simbología,ordencronológicoyfuentedeloseventoseruptivosanalizados.

Las muestras de este trabajo seleccionadas para análisis geoquímicos corresponden a pómez mayores de depósitos proximales, las que presentan mejor grado de conservación, y escorias provenientes de conos Desplayados (Tabla III.r, Anexo III), para obtener caracterizar geoquímicamente tales centros eruptivos. Los eventos eruptivos a analizar son la ignimbrita al norte del volcán Hudson (sector Desplayado Oeste, muestra AA-220218-1M), segundo pulso (paroxismal) de la erupción H2 (muestra AA-250218-1J, cuarto pulso (ignimbrita) del mismo evento (muestra AA-260217-1B) y el evento pumíceo sobre H2, encontrado en el valle del río Chiflón (muestra AA-250218-1M). Éste último no fue considerado para análisis de vidrio o inclusiones, en cortes transparentes, dado el nivel de alteración que presentan las muestras. Por otro lado, los eventos eruptivos ocurridos entre H2 (3,9 ka cal AP) y la erupción de 1971 A.D. son todos de carácter máfico y menor relevancia para este estudio, por lo cual se agrupan con la misma simbología en los diagramas multielementales.

4.2. Geoquímica de roca total

Considerar datos geoquímicos de las erupciones H0 (Weller y otros, 2014), 1991 A.D. Fase 1 (Kratzmann y otros, 2010), eventos eruptivos escoriáceos asociados a centros monogenéticos de la zona y al volcán Hudson permite comparar las características geoquímicas de los depósitos descritos con los eventos principales del volcán y centros eruptivos menores, para obtener correlaciones genéticas y observar la evolución de los eventos mayores del volcán Hudson.

Los productos eruptivos más diferenciados del volcán Hudson corresponden al evento H2, de composición traquidacítica, mientras que la fase 1 de la erupción de 1991 A.D. es el evento menos diferenciado del volcán, de carácter traquiandesita basáltico. Por otro lado, 1991 A.D. es similar composicionalmente a las muestras más primitivas de la zona, provenientes de los conos Desplayados Este y Oeste, de composición basáltica y traquibasáltica, respectivamente. En cuanto a la muestra obtenida de la ignimbrita en el sector del cono Desplayado Oeste (muestra AA-220218-1M), ésta se correlaciona geoquímicamente con otras muestras del evento eruptivo H1 cuyos productos eruptivos son traquiandesitas a traquitas, con *ca*. 62 SiO₂ *wt*.%, de composición similar a la erupción de 1971 A.D. (Fig. 4.2). Composicionalmente, sólo existe un evento entre las erupciones H1 y H2, el cual tiene una edad de 4,7 ka AP (Amigo, Á. comunicación personal, 2019) y se ajusta a la tendencia dada por los otros productos eruptivos del volcán. Por el contrario, el depósito escoriáceo previo a este evento, atribuido a un centro monogenético (muestra MC-ib, Amigo, Á. comunicación personal, 2019), contiene menos álcalis que las erupciones del volcán Hudson y es de composición andesita basáltica. De forma similar, el depósito sobre H2 encontrado

en el valle del río Chiflón (muestra AA-250218-1M) tiene menor alcalinidad que otros eventos, pero con un porcentaje en peso de sílice cercano a 57%, otorgándole un carácter andesita basáltico a andesítico, lo que difiere de la composición traquiandesita basáltica de los eventos escoriáceos holocenos más jóvenes del volcán Hudson (muestras ib-escoria, Atrav-escoria y evento de 2,1 ka AP). Según los datos obtenidos por Weller y otros (2014), el evento con mayor rango composicional es la erupción H0, cuyos productos comprenden traqui-andesitas (*ca.* 56 *wt.*%).

Figura 4.2: Diagrama Total Álcalis (TAS) para roca total. Clasificación de productos eruptivos de volcán Hudson y centros monogenéticos (Le Maitre y otros, 1989). *Datos Tabla III.r (Anexo III).

La mayoría de los eventos eruptivos ocurridos en la zona y que están considerados en este trabajo se clasifican dentro de las series subalcalina y calcoalcalina en los diagramas propuestos por Irvine y Baragar (1971), diferente a lo observado en ambos conos Desplayados y en la fase 1 de la erupción 1991 A.D., que tienen una leve afinidad alcalina y toleítica en los gráficos respectivos (Fig.4.3). El evento posterior a H1 y más antiguo que 4,7 ka (muestra MC-ib) no sigue el *trend* formado por las demás muestras en el triángulo AFM, no obstante, la tendencia que forman las rocas calcoalcalinas no necesariamente indican una evolución, pues puede formarse un *trend* incluso entre rocas no cogenéticas. En los diagramas Harker de variación de elementos mayores versus SiO₂ *wt*.% (Fig. 4.4) se observa que H2 disminuye su contenido en Al₂O₃, CaO, TiO₂, MgO,

FeO, MnO y P₂O₅, con respecto a H1, de manera inversa para K₂O y sin variación considerable en Na₂O *wt*.%.

Figura 4.3:

Diagramas de series para roca total, según Irvine y Baragar (1971). Correspondencia a series Alcalina/Subalcalina (arr.) y Calcoalcalina/Toleítica en triángulo AFM (ab.) de productos eruptivos del volcán Hudson y centros monogenéticos. *Datos Tabla III.r (Anexo III).

Un comportamiento similar presenta el miembro más diferenciado de la erupción H0 en comparación con los términos menos evolucionados de tal evento. El depósito sobre H2 no forma parte de ningún *trend*, excepto en el caso del CaO, MgO y K₂O, sino que posee un porcentaje en peso considerablemente mayor de Al₂O₃ que las otras muestras y menor en el caso del Na₂O y P₂O₅. Por otro lado, el porcentaje en peso de los elementos mayores en ambos conos Desplayados y la erupción 1991 A.D. son similares excepto en TiO₂, P₂O₅ y MnO, donde el último evento posee menor contenido en dichos elementos.

Se considerarán sólo las tendencias observadas entre H1 y H2 (segundo y cuarto pulso), ya que es

Figura 4.4: Diagrama Harker (óxidos vs. SiO₂ *wt%*) de roca total. Diagrama de variación para eventos eruptivos del volcán Hudson y centros monogenéticos.

menos probable que todas las muestras/eventos del volcán Hudson estén involucrados en el mismo proceso de diferenciación magmática. En este contexto, la muestra con química de roca total más diferenciada de H2, correspondiente al cuarto pulso (ignimbrita), sigue las tendencias generales con respecto al segundo pulso y a H1 en CaO, MgO, K₂O y FeO. Sólo en el caso del Na₂O crece levemente su contenido desde el segundo al cuarto pulso de H2, mientras que en Al₂O₃, TiO₂, MnO y P₂O₅ existe un *trend* horizontal entre ambas muestras.

Al sobreponer los datos de éstos y otros eventos eruptivos, tanto del volcán Hudson como de centros monogenéticos (Fig. 4.5), se observan las mismas tendencias entre H1 y H2, junto a la erupción de 4,7 ka AP que sigue tales *trend*, excepto en Al₂O₃ *wt*.% donde aumenta con respecto a H1 y luego decrece en H2.

A excepción del diagrama de Al₂O₃ *wt.*%, los eventos escoriáceos (2,1 ka AP, Ib-scoria y Atravscoria) presentan *trend* similares pero de pendientes diferentes a las tendencias generadas por los productos eruptivos de los eventos H1, 4,7 ka AP y H2 en TiO₂, Na₂O, MnO y P₂O₅, siendo el término más diferenciado de estas tendencias el evento sobre H2 (muestra AA-250218-1M).

Figura 4.5: Diagrama Harker (óxidos vs. SiO₂ wt%) de roca total (FONDECYT N° 11130671).
Diagrama de variación para eventos eruptivos del volcán Hudson y centros monogenéticos.
*Datos Tabla III.r (Anexo III).

Figura 4.5:Diagrama Harker (óxidos vs. SiO2 wt%) de roca total (FONDECYT N° 11130671).
Continuación.

Al comparar las tendencias del contenido en elementos mayores versus SiO₂ wt.% en las muestras (Fig. 4.4) con los diagramas de variación donde el MgO wt.% es la abscisa (Fig. 4.6) se observan que los *trend* se comportan de manera inversa al primer caso, lo que es consistente con el hecho que mayor porcentaje en peso de MgO implica menor grado diferenciación, contrario a mayor porcentaje en peso de SiO₂. Por esta razón, los conos Desplayados presentan el mayor contenido de MgO wt.%, mientras que los productos eruptivos de H2 y el miembro más diferenciado de H0 aparecen cerca del origen en cada gráfico.

En los diagramas de CaO, TiO2 y P2O5 la muestra más diferenciada de HO se correlaciona de

manera precisa con el segundo pulso de H2, por lo cual se traslapan en los gráficos.

Figura 4.6:Diagrama Harker (óxidos vs. MgO wt%) de roca total. Diagrama de variaciónpara eventos eruptivos del volcán Hudson y centros monogenéticos.

En el caso de los diagramas de variación para los otros eventos eruptivos ocurridos en la zona (Fig. 4.7), se observa que la muestra con mayor MgO *wt*.% corresponde a la del cono monogenético Ibáñez (código MC-ib), el que además está fuera de cualquier tendencia en cada gráfico.

En el diagrama de variación del Al_2O_3 , el evento eruptivo de 4,7 ka AP se encuentra en un *trend* creciente entre H2 (menor $Al_2O_3 wt.\%$) y H1, lo que difiere a lo observado en dichas erupciones cuando se grafica SiO₂ wt.% en la abscisa. De manera similar ocurre para las escorias post-H2, pero la tendencia es a decrecer en Al_2O_3 . El cambio de pendiente en los *trend* de estas muestras con respecto a aquellos formados por H1, 4,7 ka AP y H2 son menos notorios que en la figura 3.11, para los diagramas de TiO₂, Na₂O, FeO, MnO y P₂O₅.

Figura 4.7: Diagrama Harker (óxidos vs. MgO wt%) de roca total (FONDECYT N° 11130671). Diagrama de variación para eventos eruptivos del volcán Hudson y centros monogenéticos. *Datos Tabla III.r (Anexo III).

Figura 4.7: Diagrama Harker (óxidos vs. MgO *wt%*) de roca total (FONDECYT N° 11130671). Continuación.

En cuanto a los diagramas de variación para los elementos traza (en ppm) versus $SiO_2 wt.\%$ (Fig. 4.8), las variaciones entre los eventos H1 y H2 comprenden un rango con bajo contenido de Ni y Cu, con respecto a los otros eventos, existiendo una relación entre H1 y H2 (*trend* creciente o decreciente) en todos los elementos traza. Por lo tanto, y como es más probable que exista un proceso de diferenciación entre ambos, se considerarán las tendencias formada entre estos eventos para cada diagrama.

Aquellos elementos traza que exhiben un aumento en su concentración desde H1 a H2, como el Rb, Ba, Zr, Pb, La y Th, indican un comportamiento incompatible, ya que se acumulan en los estadios más evolucionados de la diferenciación, siendo en este caso el cuarto pulso de H2. Por el contrario, el Sc, V, Cu, Zn y Sr se concentran en H1, por lo que tienen un carácter geoquímico compatible. El Zr, Y, Nb y Cr se mantienen relativamente constantes entre ambas erupciones, excepto el Cr, el cual presenta un leve aumento en el segundo pulso de H2 y una disminución en el cuarto pulso de la misma.

Tendencias similares se observan entre los miembros menos diferenciados y los productos eruptivos más evolucionados de la erupción H0, salvo en algunos casos: Ni (decrece), Nb y Ce (aumentan). Cabe mencionar que no está disponible la información de todos los elementos traza para los eventos H0 y 1991 A.D. en los trabajos de Weller y otros (2014) y Kratzmann y otros (2010), respectivamente, razón por la cual los gráficos de Sc y Nd no cuentan con todos los datos.

Figura 4.8:Diagrama de variación (elementos traza vs. SiO2 wt%) para roca total. Diagrama
de variación para eventos eruptivos del volcán Hudson y centros monogenéticos.

De acuerdo al diagrama multielemental de elementos traza normalizado al manto primitivo según Sun y McDonough (1989), para los eventos H0, H1, H2, post-H2, 1991 A.D. y de los conos Desplayados (Fig. 4.9), los productos provenientes del volcán Hudson poseen mayor concentración de elementos incompatibles que los productos eruptivos de los conos Desplayados, mientras que la concentración de elementos compatibles es similar en todos ellos. Se observan anomalías negativas en Nb, Ta y Sr en todos los eventos eruptivos, excepto el Pb que exhibe una anomalía positiva. En el caso de Zr, también existe una anomalía positiva en los productos holocenos del volcán Hudson, pero menos marcada con respecto al Pb, y levemente negativa en aquellos generados por los conos Desplayados. En ningún caso se observa anomalía de Eu.

Según los datos obtenidos por Kratzmann y otros (2010) para la erupción de 1991 A.D., estos presentan una considerable anomalía positiva en U, y menos marcada en Th, además de un comportamiento dual en la concentración de La, es decir, presenta la mayor y menor concentración de este elemento con respecto a los demás eventos eruptivos graficados. Por otro lado, debido a la falta de información no se puede apreciar una anomalía en Eu u otros elementos, para este evento eruptivo.

Figura 4.9: Diagrama Spider de eventos eruptivos. Diagrama multielemental normalizado al manto primitivo para elementos traza, en log(ppm), de los distintos eventos eruptivos, según Sun y McDonough (1989).

4.3. Composición química de minerales

Las texturas que presentan tanto las pómez del evento H1 como el evento H2 son vesicular, vitrofírica y glomeroporfírica. Los fenocristales de plagioclasa en el evento H1 alcanzan hasta 3 mm de largo, mientras que en H2 1,8 mm. En ambos casos, los minerales máficos tienen tamaños inferiores a 1 mm de largo.

La mineralogía presente en los eventos H1 y H2 es similar y consiste en labradorita, augita y enstatita, con ilmenita, titanomagnetita y apatito como minerales accesorios, además de presentar inclusiones de sulfuros en los piroxenos (Tablas III.c y III.e, Anexo III). El contenido cristalino es cercano a 15 vol.% en H1 (muestra AA-220218-1Ma, Anexo II) y menor a 10 vol.% en las muestras de H2 (AA-260217-1B, AA-250218-1Ja, AA-250218-1Lb, Anexo II). En corte transparente del segundo pulso de H2 (muestra AA-250218-1J) y de la ignimbrita del mismo evento (muestra AA-230217-1B) se observan dos cristales de olivino de grandes dimensiones, sin zonación composicional marcada ni texturas de desequilibrio. El porcentaje de forsterita para cada olivino es cercano al 83%, existiendo una leve disminución hacia el borde: hasta *ca*. 67 %Fo y 75 %Fo, para las muestras de la ignimbrita y el segundo pulso, respectivamente (Tablas III.f y III.h, Anexo III). El cristal de olivino presente en la muestra AA-260217-1B (ignimbrita del valle Sorpresas) está rodeado por una masa fundamental con textura intersertal con un contenido cristalino de aproximadamente 50 vol.% (Fig. 4.10).

Figura 4.10: Olivino en corte transparente de muestra AA-260217-1B. Cristal rodeado por masa fundamental intersertal. Aumento 50x. La mineralogía también difiere a la del resto del corte transparente, ya que contiene bitownita, diópsido y olivinos como mineralogía predominante, los que no se encuentran en la masa fundamental de la pómez (Fig. 4.11).

Figura 4.11: Composición de plagioclasas y piroxenos. Plagioclasas (izq.) y piroxenos (der.) en H1, segundo y cuarto pulso de H2 y en masa fundamental de olivino (muestra AA-260217-1B).

Los cristales individuales de piroxenos de la ignimbrita de H2 también son homogéneos composicionalmente, es decir, sin zonación, y tampoco presentan texturas de desequilibrio (Cristales individuales, sección 2, Anexo III). Corresponden a augita (clinopiroxeno) y enstatita (ortopiroxeno), al igual que los presentes en corte transparente de pómez (Fig. 4.12).

Figura 4.12:

Piroxenos en ignimbrita de H2. Clino- y ortopiroxenos de muestra AA-260217-1B (Tabla III.n, Anexo III).

4.4. Composición geoquímica de vidrios e inclusiones

La composición del vidrio presente en pómez de H1 es traquidacítica, en un rango entre 64 y 67 $SiO_2 wt.\%$ y el de H2 es riolítica, siendo el segundo pulso más diferenciado con respecto al cuarto pulso, con contenido de $SiO_2 wt.\%$ cercanos a 71% y 70%, respectivamente. El vidrio presente en la masa fundamental que rodea al olivino en la muestra proveniente de la ignimbrita posee una composición similar al vidrio de H1, pero levemente menos alcalino (Fig. 4.13).

Figura 4.13: Diagrama Total Álcalis (TAS) de vidrios. Composición de vidrios para eventos H1, H2 y matriz circundante a olivino en AA-260217-1B. Clasificación según Le Maitre y otros (1989).

La composición de roca total de las respectivas muestras es menos silícea que la de los vidrios en sus pómez, existiendo una diferencia más marcada en la muestra del segundo pulso de H2 (AA-250218-1J), la que es levemente menos diferenciada con respecto al cuarto pulso, según la geoquímica de roca total.

Estas variaciones composicionales se observan de mejor manera en diagramas Harker de elementos mayores (Fig. 4.14), siendo más clara la correlación entre la composición del vidrio de H1 y la matriz de olivino en cuanto al porcentaje de sílice, además de la diferencia entre el segundo y cuarto pulso de H2. La mayoría de los diagramas presentan una tendencia decreciente con respecto a SiO₂ *wt*.%, excepto el Na₂O que se mantiene constante, el cual posee un *trend* horizontal, y el K₂O que

Figura 4.14: Diagrama de variación (óxidos vs. SiO₂ wt%) de vidrios. Diagrama de variación de elementos mayores para vidrios de H1, H2 y matriz circundante a olivino en AA-260217-1B (ignimbrita de H2).

aumenta levemente su contenido junto al aumento de sílice en las muestras. El contenido de Al_2O_3 del vidrio de H2 es menor que el vidrio de H1, pero es invariante con respecto al vidrio de la matriz del olivino. De forma similar, pero menos evidente ocurre con el contenido de MnO.

En cuanto a las inclusiones fundidas, éstas se obtuvieron de cristales de plagioclasas y piroxenos de las muestras AA-220218-1M (evento H1), AA-250218-1J (segundo pulso de H2), AA-260217-1B (cuarto pulso de H2) y del olivino presente en la última muestra mencionada (Cortes transparentes, secciones 2, 3 y 4, Anexo III). Las inclusiones fundidas presentes en los cristales de plagioclasa y piroxeno asociados al cuarto pulso de la erupción H2 contienen el mayor contenido en sílice, de composición riolítica, por el contrario, aquellas menos diferenciadas pertenecen a los cristales del evento H1, las que son traquidacíticas. La inclusión fundida presente en el olivino de la muestra proveniente de la ignimbrita de H2 tiene una composición considerablemente más máfica que las demás, con aproximadamente 53 SiO₂ *wt*.%, de carácter andesita basáltica (Fig. 4.16).

Figura 4.15:Diagrama Total Álcalis (TAS) de inclusiones. Composición de inclusiones en plagioclasas
(izq.) y minerales máficos (der.) para eventos H1 y H2. Clasificación según Le Maitre y otros
(1989).

Los diagramas de variación (Harker) para las inclusiones fundidas en plagioclasas y piroxenos de las tres muestras, en general, exhiben una correlación en las tendencia de ambos minerales (Fig. 4.16), disminuyendo con el aumento de sílice en el caso del Al₂O₃, CaO, TiO₂, MgO, FeO, MnO,

Figura 4.16: Diagramas de variación de inclusiones fundidas. Composición de inclusiones en plagioclasas y piroxenos para eventos H1 y H2.

 SO_3 , P_2O_5 , y aumentando en el caso del K_2O . Sólo el Na₂O presenta una diferencia en las tendencias, donde el porcentaje en peso disminuye con el contenido de sílice en las inclusiones de las plagioclasas y aumenta en aquellas contenidas en los piroxenos.

En los diagramas de variación de elementos mayores en inclusiones fundidas de las respectivas muestras (Diagramas Harker inclusiones fundidas, Anexo III) se observa que el vidrio que representa al evento H1 (muestra AA-220218-1M) es levemente menos diferenciado que la composición de las inclusiones en plagioclasas y piroxenos, no obstante, se mantiene constante en cuanto al contenido de Al₂O₃, K₂O, MnO y P₂O₅. Por su parte, el CaO, MgO, TiO₂ y FeO tienen una tendencia decreciente a mayor porcentaje en peso de SiO₂. En el caso de SO₃, las inclusiones en ambos minerales poseen mayor contenido con respecto al vidrio.

Las diferencias más claras entre el vidrio y las inclusiones fundidas se aprecia en los diagramas Harker del segundo pulso de la erupción H2, donde el vidrio es más diferenciado y con menor porcentaje en peso de Al₂O₃, CaO, TiO₂, MgO, FeO, SO₃, P₂O₅ y levemente de MnO. El K₂O *wt*.% es mayor en el vidrio, con respecto a las inclusiones, mientras que el Na₂O se encuentra de manera similar en ambos casos.

Finalmente, no se observan tendencias crecientes o decrecientes con el SiO2 *wt*.% en los elementos mayores del vidrio con respecto a las inclusiones contenidas en plagioclasas y piroxenos del cuarto pulso (asociado a ignimbrita) del evento H2, ya que la mayoría se encuentra dentro del mismo rango de contenido en sílice (69 a 70 SiO₂ *wt*.%). Sólo existe una considerable disminución del contenido de elementos mayores (Al₂O₃, CaO, TiO₂, MgO, FeO, SO₃ y P₂O₅) con respecto a la inclusión fundida presente en el cristal de olivino, y un aumento de Na₂O y K₂O. El MnO *wt*.% del olivino no aumenta ni decrece con respecto a las inclusiones fundidas o el vidrio.

5. CONDICIONES PRE-ERUPTIVAS DE LA ERUPCIÓN H2

5.1. Generalidades

Los productos eruptivos del evento H2 (3,9 ka cal AP) se caracterizan por presentar homogeneidad en la composición química de roca total, con una variación entre $66 - 67 \operatorname{SiO}_2 wt.\%$ y un bajo contenido cristalino (menor a 10 vol.%), el cual consiste en plagioclasa (labradorita) predominantemente, augita, enstatita y minerales accesorios como apatito, ilmenita-titanomagnetita y olivino. Los cristales no presentan cambios composicionales considerables, encontrándose rodeados por una masa fundamental compuesta principalmente por vidrio riolítico, con menor porcentaje de microlitos.

Las características geoquímicas de los cristales, vidrio y roca total permiten obtener condiciones pre-eruptivas como temperatura y presión, mediante la aplicación de diversos métodos geotermobarométicos, que a su vez dependen de parámetros como el contenido de H₂O *wt.*%, el cual se puede obtener con higrómetros basados en la composición química de plagioclasas y fundido. El conocimiento, además, del contenido de volátiles da indicios de la compresibilidad del magma, la cual depende del estado de saturación del mismo en tales componentes.

Por otra parte, la relación del magma asociado al evento H2 con un proceso de diferenciación magmática a partir del magma que originó la erupción H1 (*ca.* 4 ka antes) es evaluada litogeoquímicamente mediante diagramas PER (*Pearce Element Ratios*).

5.2. Petrología y geoquímica

5.2.1. Análisis petrográfico

Las pómez mayores del segundo y cuarto pulso de H2 poseen textura vesicular vitrofídica, con una proporción de cristales de 10 y 7 vol.%, respectivamente (muestras AA-260217-1B, AA-250218-1J, AA-250218-1L, Anexo II). Las vesículas de mayor tamaño en el segundo pulso son alargadas, mientras que las de menor dimensión son redondeadas a ovaladas. Por el contrario, la ignimbrita asociada al cuarto pulso de H2 presenta preferentemente vesículas redondeadas, sólo con algunos sectores donde existen vesículas alargadas.
En ambos casos los fenocristales de plagioclasa y piroxeno se encuentran en cúmulos cristalinos (*clots*) principalmente, alcanzando hasta 1,6 mm de largo las plagioclasas y 0,5 mm los piroxenos, con formas subhedrales y anhedrales, respectivamente (Fig. 5.1). No obstante, un porcentaje menor (< 3 vol.%) se encuentra en forma de microlitos dispersos en la masa fundamental vítrea, siendo de tamaño menor a 0,4 mm en el segundo pulso y <0,1 mm en el cuarto.

Figura 5.1: Cúmulos cristalinos en muestras de H2. Fotomicrografías de muestras de segundo y cuarto pulso, AA-250218-1J (arr.) y AA-260217-1B (ab.), respectivamente.

Por otra parte, los cristales de las muestras de H2 no presentan texturas de desequilibrio ni cambios composicionales considerables, al contrario que las texturas de adsorción que poseen los cristales de plagioclasa presentes en la muestra de H1, AA-220218-1M (Anexo II).

5.2.2. Características y evolución magmática

5.2.2.1. Contenido de $H_2O(wt.\%)$

De los volátiles presentes en los magmas, el que se encuentra en mayor proporción y con una importante influencia en las propiedades reológicas corresponde al H₂O. Los magmas generados

en zonas de subducción se caracterizan por presentar agua en su composición, debido al aporte de fluidos provenientes de la desestabilización de minerales hidratados en la corteza subducida.

Algunos parámetros obtenidos en este trabajo (secciones siguientes) requieren el conocimiento de la concentración de agua en el fundido asociado al evento eruptivo H2. En el caso del geotermobarómetro de Masotta y otros (2013) se consideran dos métodos para calcular dicha concentración: uno correspondiente a H2O *wt.% by difference* postulado por Devine y otros (1995), donde se obtiene el contenido de agua restando a 100 la suma total de los porcentajes en peso medidos analíticamente de los óxidos mayores y menores presentes en el vidrio, excluyendo volátiles como el Cl, SO₃ u otros (Tabla III.a, Anexo III). Recientemente, Masotta y Mollo (2019) desarrollaron un nuevo higrómetro específico para sistemas traquíticos basado en la reacción de intercambio de anortita entre plagioclasas y líquido, cuyos resultados obtenidos para el segundo y cuarto pulso del evento H2 se presentan en la Tabla 5.1, además de la muestra que representa a la ignimbrita de H1 al norte del volcán y los datos pertenecientes a la matriz circundante al olivino de la muestra AA-260217-1B.

 Tabla 5.1:
 Contenido de H2O (wt.%). Concentración obtenida con higrómetro Plagioclasa-Líquido (Masotta y Mollo (2019).

Muestra	H2O (wt.%) calculado con composición	H ₂ O (<i>wt.</i> %) calculado con composición	
	de plagioclasas y roca total.	de plagioclasas y vidrio.	
AA-260217-1B (H2)	1,63	1,67	
Matriz olivino (en muestra AA-260217-1B)	3,86	3,40	
AA-250218-1J	1,46	1,27	
AA-220218-1M	0,57	0,56	

La diferencia entre el contenido de agua calculado con la composición de roca total y aquella obtenida con la composición del vidrio es menor, con excepción de la matriz circundante al olivino de la muestra correspondiente a la ignimbrita del cuarto pulso de H2 y en el segundo pulso de la

misma erupción (AA-250218-1J), aún cuando en todas las muestras existe una diferencia similar en SiO₂ *wt*.% entre sus respectivas composiciones de vidrio y roca total (Fig. 5.2).

Figura 5.2: Gráfico SiO₂ vs. H₂O (*wt.*%). Contenido de agua de los eventos eruptivos de acuerdo a SiO₂ *wt.*% en roca total y vidrio.

Según el gráfico anterior, el contenido de agua que presenta mayor diferencia entre las dos formas de obtenerlo es el correspondiente a la matriz del olivino de la ignimbrita de H2. Además, la inversión entre el porcentaje en peso de sílice presente en el vidrio y roca total de ambos pulsos de H2 (segundo y cuarto) es observable, pues la composición de roca total de la ignimbrita (AA-260217-1B) es levemente más diferenciada que la del segundo pulso (AA-250218-1J), contrario a lo observado en las composiciones de los respectivos vidrios. Sin embargo, en ambas muestras el contenido de H₂O *wt*.% es cercano a 1,5, tanto para el cálculo con roca total como con el vidrio. Por otro lado, la masa fundamental circundante al olivino de la ignimbrita (H2 IV) presenta el mayor contenido de agua (3,5 - 4 wt.%), por lo que el magma asociado a dicha masa fundamental estaba más enriquecido en volátiles con respecto al magma principal asociado a la erupción de H2.

Por su parte, la ignimbrita asociada a la erupción H1 (7.9 ka cal AP) presenta menor contenido de $H_2O wt.\%$ con respecto a H2, con un valor aproximado de 0,5 *wt.*%.

5.2.2.2. Geotermobarometría

En los sistemas volcánicos, así como el contenido de agua en los magmas controla sus propiedades reológicas, las condiciones de presión y temperatura también influyen en las características que éstos presentan previo a una erupción, ya que procesos como la cristalización de ciertas fases cristalinas, exsolución de volátiles (dependiente de la solubilidad de los mismos), viscosidad, entre otros, están directamente relacionados con las condiciones termobarométricas del reservorio. Por esta razón, se han postulado diversos métodos para establecer estas variables a lo largo del tiempo, basados en reacciones de intercambio en equilibrio entre dos fases, ya sean ambas cristalinas o cristal-líquido. Del primer caso, se consideran en este trabajo los geotermobarómetros de Dos Piroxenos (clinopiroxeno-ortopiroxeno; Putirka, 2008) y de Óxidos de Fe-Ti (Ilmenita-Magnetita; Ghiorso y Evans, 2008), además del geotermobarómetro Clinopiroxeno-Líquido para magmas diferenciados de Masotta y otros (2013). Debido a que estos geotermómetros son sensibles a las condiciones de equilibrio entre las fases involucradas, no fue posible obtener resultados para todas las muestras con cada método (Tabla 5.2), excepto para el geotermobarómetro de Masotta y otros (2013).

En el caso del geotermobarómetro de Dos Piroxenos, los pares clinopiroxeno-ortopiroxeno que poseen #Mg menor a 0.75 otorgan una temperatura dada por la ecuación n°37 (Putirka, 2008), la cual es para sistemas menos diferenciados, mientras que la ecuación n°39 para calcular presión es más precisa que la ecuación n°38, porque es dependiente de la temperatura. No obstante, los cristales deben estar en equilibrio químico, con una constante de equilibrio (K_D) igual a 1,09 ±0,14, lo que no se cumple en todos los cristales. Por otro lado, el método para calcular temperatura propuesto por Ghiorso y Evans (2008) considera el intercambio de Fe-Ti entre ilmenita y titanomagnetita, los cuales deben estar adyacentes para que el geotermómetro funcione. En cuanto al geotermobarómetro propuesto por Masotta y otros (2013), se requiere que el contenido de Jadeíta en los clinopiroxenos deber ser distinto de cero, pudiendo utilizarse de tres maneras (Masotta, M., comunicación personal, 2019): 1) utilizar melt inclusions con composición del centro de cristal, lo que hará referencia al magma donde cristalizó; 2) usar composición del borde de cristal con composición de líquido intersticial, cuyo equilibrio entre clinopiroxeno y líquido, $K_D^{\text{Fe-Mg}}=0.28 \pm$ 0,08 (Putirka, 2008 en Mollo y otros, 2013), debe ser testeado previamente con el método de Mollo y otros (2013); y 3) con composición de roca total y centro del cristal, previa prueba de equilibrio ya mencionada.

			AA-260217-1B	AA-260217-1B	AA-250218-1J	AA-220218-1M
			(H2 IV)	MF Olivino (H2 IV)	(H2 II)	(H1 ignimbrita)
2 Piroxenos	(Putirka, 2008).	T (° C)	925,44 ± 1,01	-	-	-
		P (kbar)	4,57 ± 1,44	-	-	-
2 Óxidos	y .	Т (°С)	968	-	-	-
	hiorso	oz, P (kbar)	-	-	-	-
	<u> </u>	Δ NNO	0,495	-	-	-
Clinopiroxeno - líquido, magmas diferenciados		T (°C) ¹	967,12	-	981,91	1014,20
	s, 2013).	P (kbar) ¹	0,87	* * * *	1,27	2,90
		Τ (°C) ²	960	947	996	1041
		P (kbar) ²	1	1,1	1,10	3
	t y otre	H ₂ O <i>wt</i> .% ²	1,63	3,86	1,46	0,57
	lasotta	T (°C) ³	960	950	997	1027
	(N	P (kbar) ³	1,0	1,1	1,1	2,7
		H ₂ O <i>wt</i> .% ³	1,67	3,40	1,27	0,56
		T (°C) ⁴	$1002, 46 \pm 9, 34$	-	-	-

Tabla 5.2:Resultados de geotermobarometría. Condiciones termobarométrica pre-eruptivas, obtenidas según
los métodos de Putirka (2008), Ghiorso y Evans (2008) y Masotta y otros (2013).

¹ Obtenido con *melt inclusions* y centro del cristal. Contenido de agua por diferencia (Devine y otros, 1995).

³ Obtenido con *melt inclusions* y centro del cristal. Contenido de agua calculado con composición vidrio circundante (Masotta y Mollo, 2019).

⁴ Obtenido de cristales separados de clinopiroxeno y composición de roca total. Contenido de agua a partir de composición de plagioclasas separadas y roca total (Masotta y Mollo, 2019).

² Obtenido con *melt inclusions* y centro del cristal. Contenido de agua calculado con composición de roca total (Masotta y Mollo, 2019).

Tabla 5.2:	Resultados de	geotermobarometría.	Continuación.
------------	---------------	---------------------	---------------

P (kbar) ⁴	$1,45 \pm 0.33$	-	-	-
H ₂ O <i>wt</i> .% ⁴	1,72*	-	-	-

*Obtenido con composiciones de plagioclasas separadas y de roca total para la muestra AA-260217-1B.

La ventaja de este último geotermobarómetro con respecto al de Putirka (2008) es que está calibrado específicamente para magmas de composición traquítica, utilizando las ecuaciones presentes en el geotermobarómetro de dos piroxenos, el cual entrega valores de temperatura y presión cerca de 40°C menos y 4 kbar más con respecto a los resultados obtenidos con el método de Masotta y otros (2013) para la muestra del cuarto pulso del evento eruptivo H2 (Fig. 5.3).

Figura 5.3: Gráfico de resultados geotermobarométricos. Los números en el método de Masotta y otros (2013) se correlacionan con los superíndices de la Tabla 5.2.

Además, la similitud entre los valores de temperatura entre los geotermómetros de Masotta y otros (2013) y Ghiorso y Evans (2008) implican un buen ajuste entre tales métodos y las condiciones del cuarto pulso de la erupción H2 (con una temperatura de 960°C aproximadamente). Además, la temperatura del segundo pulso del mismo evento, obtenidas con el geotermobarómetro de clinopiroxeno-líquido, es entre 20 y 30°C mayor que el cuarto pulso. No obstante, las presiones obtenidas en ambos casos es similar, cercano a 1 kbar. Por otra parte, los resultados de temperatura calculados mediante Masotta y otros (2013) con cristales separados y composición de roca total, para el cuarto pulso de H2, difieren considerablemente, mientras que el resultado de presión obtenido con el mismo método para cristales separados es levemente mayor.

La masa fundamental del olivino en la muestra de la ignimbrita presenta igual presión que las otras muestras de la erupción H2, y una temperatura levemente menor comparada con el resto de la pómez de la muestra AA-260217-1B. En cambio, la muestra que representa a la ignimbrita de la erupción H1 (AA-220218-1M) obtiene la mayor temperatura con el geotermobarómetro de Masotta y otros (2013), entre 1020 y 1040 °C y también mayores presiones, cercanas a 3 kbar.

5.2.2.3. Compresibilidad del magma

Una de las características pre-eruptivas importantes corresponde a la compresibilidad del magma, ya que la respuesta del magma ante cambios externos (como la carga litostática, por ejemplo) depende de esta variable (Albino y otros, 2010). En este sentido, los volátiles cumplen un rol fundamental en el comportamiento compresible de un magma, ya que al estar subsaturado en volátiles actúa como un cuerpo incompresible y la compresibilidad total del sistema es la suma de la compresibilidad de la roca caja más aquella del magma en el reservorio, mientras que al estar saturado en volátiles, tiene lugar la exsolución de los mismos y el magma se vuelve compresible (Huppert y Woods, 2002).

Considerando la curva de solubilidad del agua para magmas riolíticos obtenida con VolatileCalc 2.1 (Newman y Lowenstern, 2002) a temperaturas de 960°, 996°C y 997°C, correspondientes a los resultados del evento eruptivo H2 en la Tabla 5.2 (Fig. 5.4) y el valor cercano a 1,5 H₂O *wt.*% calculado previamente, el magma que dio origen a esta erupción se encontraba subsaturado en volátiles y por lo tanto en un estado incompresible.

Aunque este método para calcular la solubilidad del agua está ajustado para magmas de composición riolítica, también funciona para aquellos magmas dacíticos cuyo vidrio presente en pómez sea de composición riolítica (Newman y Lowenstern, 2002), el cual es el caso de las muestras de la erupción H2. Además, el contenido de cristales (*ca.* 10 vol.%) y la presión (1 kbar, aproximadamente) obtenidos para este evento también implican un estado subsaturado en agua según el diagrama de Huppert y Woods (2002; Fig. 5.5).

Figura 5.5:

Contenido de cristales vs. P (MPa). Gráfico modificado de Huppert y Woods (2002). Línea y punto rojo representan condiciones de erupción H2. Línea roja es N=1,5 H₂O *wt.*% (estimado), donde N es el contenido de agua.

5.2.2.4. Perfiles de composición en cristales

Los perfiles de composición trazados en cristales permiten observar si existen variaciones en el crecimiento de los minerales, los cuales responden a cambios en las condiciones de equilibro entre el cristal y el magma, dando indicios de los procesos que interfirieron en su cristalización y en algunos casos la escala temporal en que éstos ocurrieron (Costa y Chakrabory, 2004; Costa y Dungan, 2005; Costa y otros, 2008; Costa y Morgan, 2011; Millet y otros, 2014).

Las imágenes BSE de cristales de plagioclasas y piroxenos, que corresponden a las fases minerales predominantes, no exhiben zonación evidente en la mayoría de los casos (secciones 1 y 2, Anexo III). No obstante, los cristales 26pg45-Pg3 y 26pg45-Pg4 de la muestra AA-260217-1B presentan una leve señal de zonación en las imágenes al tener variaciones en los tonos grises, sin embargo, estos no poseen cambios composicionales importantes (Fig. 5.6).

Figura 5.6: Perfiles composicionales en plagioclasas. Variaciones de An% desde el borde hacia el centro en las respectivas muestras. Situación similar ocurre en los cristales de olivino presentes en las muestras AA-260217-1B y AA-250218-1J, los que no poseen variaciones observables en imágenes SEM ni de carácter considerable en el contenido de forsterita (Fig. 5.7).

Figura 5.7: Perfiles de composición en olivino. Variación de Fo% desde el borde hacia el centro en cristal de olivino de muestra AA-260217-1B.

Estas características impiden establecer con certeza la ocurrencia de un proceso de mezcla de magmas, ya que el estado de equilibrio del magma no fue fuertemente afectado o este no está registrado en los cristales, así como la temporalidad de dicho proceso si efectivamente ocurrió.

5.2.2.5. Litogeoquímica

La evaluación de la existencia de un proceso de diferenciación entre el magma que originó el evento eruptivo H2 (3,9 ka cal AP) a partir del magma asociado a la erupción de 7,8 ka cal AP (H1) no es suficiente con el análisis de diagramas Harker (ver capítulo 3, sección 3.3), los que pueden exhibir una relación de procesos de diferenciación entre ambos eventos sin que existan realmente, sólo por presentar rocas cogenéticas. Para corroborar esta relación es necesario utilizar un análisis litogeoquímico (Morgado, E., comunicación personal, 2019), el cual se basa en la conservación de la concentración de elementos (elementos conservativos) en el fundido durante la evolución magmática de las rocas, es decir, entre los productos finales de la diferenciación y su roca parental, en este caso proveniente de H2 y H1, respectivamente, mediante diagramas PER (*Pearce Element Ratio*; Pearce, 1968 en Nicholls y Russell, 2016).

De acuerdo a la metodología propuesta por Nicholls y Russell (2016), los elementos conservativos entre los respectivos magmas de H1 y H2 que más se ajustan a la recta corresponden a Ti y Fe (Fig. 5.8). Estos fueron obtenidos al comparar todas las composiciones no normalizadas de las respectivas muestras de H1 y H2, en diagramas óxido vs. óxido (wt.%), a partir de análisis de roca total para muestras de proyecto FONDECYT N°11130671 y este trabajo (Tablas III.p y III.r, Anexo III). Otros elementos que parecen comportarse como conservativos dada la intersección de la recta cercana al origen en sus respectivos gráficos (versus TiO₂ y FeO, wt.%) son Ca, Sr y Sc (Anexo IV, *Assemblage Test Diagram* por elemento).

Figura 5.8: Diagramas PER de elementos conservativos. Fe y Ti se ajustan a la recta que pasa por el origen, siendo la de TiO_2 en el eje Y aquella que más se acerca.

La recta generada con la concentración de TiO_2 en el eje Y es la que más se acerca al origen del gráfico, por lo que dicho elemento es más factible de usar como conservativo con respecto a aquellos mencionados anteriormente. La tendencia que forman el Fe y Ca, ambos normalizados al Ti, es casi horizontal (Fig. 5.9), por lo cual se comprueba que tanto el Fe como el Ti son elementos conservativos, siendo éste último el denominador seleccionado.

Según la mineralogía presente en ambos eventos eruptivos (plagioclasa, augita, enstatita, óxidos de Fe-Ti, olivino, apatito) se consideran Si, Al, Ca, Na, Fe, Mg y P para los numeradores de los "diagramas PER de prueba de conjunto" (*assemblage test diagrams*) de los distintos minerales mencionados. Los coeficientes de cada elemento en los numeradores de los ejes X e Y fueron obtenidos con los procedimientos indicados en Nicholls y Russell (2016); Stanley y Russell (1989); Morgado, E., comunicación personal (2019). Los diagramas PER en base a un conjunto mineralógico (plagioclasa + clinopiroxeno \pm apatito \pm olivino) poseen pendiente cercana a $\frac{1}{2}$, mientras que los diagramas PER individuales para olivino, augita, enstatita y apatito presentan pendientes negativas o muy distintas a 1 (Anexo IV). Sólo el diagrama basado en la estequiometría general de los feldespatos tiene una pendiente cercana a 1 entre las muestras de H1 y H2 (Fig. 5.10). En este caso, la concentración de Al no es afectada de manera considerable como el silicio por otras fases minerales, razón por la cual se considera sólo el primer elemento normalizado a Ti en el eje de las abscisas.

El gráfico anterior evidencia una relación de diferenciación magmática entre el magma que originó el evento H2 y aquel asociado a la erupción H1, dominada principalmente por el fraccionamiento de plagioclasa, el que además corresponde al mineral de mayor abundancia con respecto a las otras fases cristalinas en los productos eruptivos de ambos eventos. La diferencia en la precisión de los datos entre las erupciones puede ser consecuencia de la heterogeneidad química en los productos eruptivos de H1, el cual abarca un rango más amplio de SiO₂ wt.% que H2, lo que también es observable macroscópicamente en pómez del primer evento que presentan vidrios de distinta coloración (taquilita y sideromelana; Kratzmann y otros, 2010).

con

ambas

6. DISCUSIÓN

6.1. Eventos eruptivos en la zona

Las tendencias marcadas por los productos eruptivos escoriáceos provenientes del norte del volcán en diagramas Harker difieren de aquellas marcadas por las erupciones holocenas más importantes del mismo, ya que tales rocas no son cogenéticas. No obstante, la similitud entre la geoquímica entre las escorias de los conos Desplayados y los productos eruptivos del evento 1991 A.D. del volcán Hudson permiten asociarlas a fuentes de características parecidas, probablemente provenientes de niveles más profundos, como el manto (Kratzmann y otros, 2010). Además, presentan una leve afinidad toleítica en diagrama AFM, por lo que su fuente magmática tendría características anhidras, producto de una fusión del manto por descompresión adiabática similar a lo que ocurre en dorsales oceánicas, lo cual no es atípico en el volcanismo presente en la región dado el contexto geológico. Sin embargo, en el diagrama multielemental de los eventos eruptivos de la zona predomina la señal geoquímica de subducción. De esta manera, se corrobora la influencia de la ventana astenosférica bajo la placa continental en el volcanismo de la zona, tanto en centros monogenéticos como en el volcán Hudson.

En cuanto a la edad del cono Desplayado Oeste, esta es superior a 7,9 ka cal AP pues se encuentra estratigráficamente bajo la ignimbrita asociada a tal evento (H1). No obstante, se requiere un trabajo de campo de mayor detalle en el área para establecer la presencia o ausencia de flujos de lava asociados a estos centros monogéneticos que puedan contener material orgánico carbonizado y así restringir su edad. Sin embargo, debe considerarse que la abundante vegetación presente en el sector dificulta el análisis de imágenes satelitales y el acceso a tales sectores puede ser imposibilitado.

Por otro lado, el depósito pumíceo de composición andesita basáltica que se encuentra estratigráficamente sobre H2 en la ribera del río Chiflón presenta *trends* en diagramas Harker formados por escorias provenientes de centros monogenéticos, implicando que dicho evento no pertenece al volcán Hudson, sino a otro centro eruptivo. Además, trabajos anteriores de la tefroestratigrafía del volcán no señalan erupciones asociadas a pómez de tal composición posteriores a 3,9 ka AP, sino eventos escoriáceos.

En el sector de Las Vertientes (punto AA-240218; Capítulo 3; Fig. 3.1), a excepción del depósito de la erupción de 1991 A.D. no se observan depósitos de caída asociados a H2, a pesar de la distancia con respecto al volcán. Además, en el mismo afloramiento predominan depósitos volcánicos secundarios. Esto puede ser explicado por erosión fluvioglacial presente en la zona, que removilizó el material asociado a los eventos holocenos del volcán Hudson. No obstante, es necesario un mayor análisis del depósito escoriáceo que presenta indicios de soldamiento (Tramo 8, Columna Las Vertientes, Anexo I) para correlacionarlo con la ignimbrita de composición máfica ubicada en el río Chiflón y así establecer la temporalidad de los depósitos bajo y sobre él, pues este evento es previo a la erupción H2 (3,9 ka cal AP).

6.2. Erupción H2 (3,9 ka cal AP)

El geotermobarómetro de Putirka (2008) es frecuentemente utilizado para obtener condiciones preeruptivas, pero este funciona de mejor manera para magmas menos diferenciados. Por otro lado, considerando que el geotermobarómetro de Masotta y otros (2013) es un modelo actualizado de las fórmulas utilizadas por Putirka (2008) y ajustado a magmas de composición traquítica, los resultados obtenidos para el evento H2 con este método son más fidedignos, además de una buena correlación con la temperatura calculada con el termómetro de dos óxidos de Ghiorso y Evans (2008). Situación similar para la obtención del contenido de agua (H₂O *wt.*%) con el higrómetro propuesto por Masotta y Mollo (2019), el que también es específico para magmas diferenciados y con resultados más precisos que aquellos propuestos anteriormente (Waters y Lange, 2014, en Masotta y Mollo, 2019).

La diferencia entre las composición del vidrio circundante al cristal de olivino (en pómez de ignimbrita H2) y la inclusión fundida contenida en él, traquítica y andesita basáltica, respectivamente, implica que este se formó en un magma de composición primitiva que podría asociarse a un *input* máfico. No obstante, para que el vidrio que rodea al cristal alcance tal composición, además, de ser similar al vidrio presente en productos eruptivos de H1, debió haber estado en estado de equilibrio por un período de tiempo para no generar variaciones composicionales en el olivino. Para corroborar esta hipótesis se requiere un análisis más detallado de mayor cantidad de muestras de H2 que presenten este tipo de casos.

Los *trends* formados por H1 y H2 en diagramas Harker implican cristalización de plagioclasa cálcica, corroborado con la tendencia observada en CaO, consecuente con la mineralogía de H2, ya que no presenta plagioclasas sódicas (tendencia horizontal en Na₂O) ni feldespato potásico (tendencia creciente en K₂O). El hecho que no fraccione feldespato potásico también explica que la recta del diagrama PER donde se considera la estequiometría de los feldespatos totales se ajuste menos a la pendiente igual a 1 que aquella para las plagioclasas.

Aunque los diagramas PER (Anexo IV) de las fases minerales no exhiben una correlación magmática de diferenciación entre H1 y H2, a excepción de las plagioclasas, este efecto puede estar presente pero a una escala considerablemente menor comparada con ellas, ya que las plagioclasas corresponden a la fase mineral de mayor abundancia, siendo el mineral que controla el fraccionamiento.

6.3. Procesos desencadenantes de la erupción H2

A diferencia de los eventos 7.9 ka cal AP (H1) y 1991 A.D. del volcán Hudson, que poseen evidencia de mezcla de magmas como posibles desencadenantes eruptivos (Kratzmann y otros, 2010), la erupción traquidacítica H2 (3.9 ka cal AP) no presenta evidencia suficiente para aseverar que un proceso similar ocurrió previo a este evento, como pómez con sideromelana y taquilita, texturas de desequilibrio, composiciones de roca total dentro de un amplio rango en sus productos eruptivos. Procesos alternativos como desencadenantes de esta erupción son: 1) la sobrepresión de volátiles causada por el fraccionamiento de una pequeña cantidad de minerales (Tait y otros, 1989), o 2) la removilización de fundidos ricos en volátiles que pueden desestabilizar el *mush* cristalino presente en los sistemas magmáticos, ambos procesos propuestos para la erupción Mm-2 (1,6 ka AP) del volcán Melimoyu, ubicado en la comuna de Puerto Cisnes, por Geoffroy y otros (2018).

Las condiciones pre-eruptivas del evento H2 que favorecen el desarrollo del primer escenario son la profundidad somera en la cual se encontraba el reservorio, ya que la presión calculada es de 1 kbar (100 MPa), aproximadamente, junto al fraccionamiento de un bajo porcentaje de minerales durante el tiempo de diferenciación desde el evento H1 (*ca.* 4.000 años). Según Tait y otros (1989), el tiempo de reposo para alcanzar la sobrepresión de volátiles dependerá de la periodicidad eruptiva de cada sistema volcánico, a una escala de cientos a miles de años, siendo considerablemente mayor en magmas de composición traquítica a riolítica. Por otro lado, el hecho que el reservorio

magmático del volcán Hudson presentara un magma en estado incompresible (subsaturado en agua) y con ello susceptible a los cambios litostáticos de la roca circundante previo a la erupción H2, permiten suponer que ambos procesos en conjunto favorecieron la exsolución de volátiles suficiente para generar una erupción con la intensidad que presentó este evento (Fig. 6.1).

Figura 6.1: Procesos desencadenantes de evento H2. Modelo esquemático de los procesos que generaron el magma y desencadenaron la erupción de 3,9 ka cal AP.
 *Según Kratzmann y otros (2010) para H1.

En cuanto a la removilización de volátiles como desencadenante eruptivo, la existencia de aglomerados de minerales o "*clots*" y la matriz de diferentes características petrográficas en la muestra AA-260217-1B pueden considerarse indicios de la presencia de un *mush* cristalino, que además tiene mayor contenido de agua. Sin embargo, es necesario un estudio más detallado y mayor cantidad de muestras con evidencias de dicho *mush* para corroborar su contenido de agua. Casos similares donde se han observado volcanes de la Zona Volcánica Sur Sur con productos eruptivos que poseen material proveniente del *mush*, son los Complejos Volcánico Puyehue – Cordón Caulle (Jay y otros, 2014) o Quetrupillán (Brahm y otros, 2018).

De esta manera, es posible establecer litogeoquímicamente que el magma parental de H2 se generó a partir de aquel asociado a la erupción H1, en un período de *ca*. 4.000 años, posiblemente favorecido por la presencia de un casquete glacial anidado en la caldera del volcán dadas las condiciones glaciales imperantes entre ambas erupciones, ya que el tiempo entre ambas erupciones coincide con épocas glaciales (Glasser y otros, 2004; Moreno y Videla, 2016), cuyas desglaciaciones son contemporáneas a los mismos eventos eruptivos (Fig. 6.2).

Figura 6.2: Temporalidad entre erupciones y glaciaciones. Eventos glaciales en Patagonia según distintos autores y su relación temporal con los eventos eruptivos H1 y H2, modificado de Figura 2.3 (Capítulo 2).

Sin embargo, es necesario considerar la erupción de 4,7 ka cal AP, el cual es el evento eruptivo entre ambas erupciones mayores, pues establecer sus mecanismos desencadenantes y cómo éstos interfirieron en el proceso mencionado anteriormente entregará más detalle de la relación magmática entre tales eventos eruptivos.

7. CONCLUSIONES

La temperatura de la ignimbrita generada en la erupción H2 es cercana a 960°C, siendo menor a la del pulso paroxismal previo, con un valor de 997°C, ambas obtenidas con composiciones de *melt inclusions* en clinopiroxeno y de roca total-vidrio. Además, la presión de ambas es cercana a 1 kbar (100 MPa), por lo que el magma que originó el evento H2 se encontraba a una profundidad somera previo a la erupción. Esto, más la falta de evidencia fehaciente sobre procesos de mezcla de magmas, descarta la aseveración de un evento de *input* máfico como mecanismo desencadenante de la erupción, implica que procesos alternativos como sobrepresión de volátiles pudieron llevarse a cabo previo a la erupción de H2.

El estudio litogeoquímico aplicado a sistemas volcánicos permite evaluar relaciones de diferenciación magmática entre eventos eruptivos, siendo en el caso de las erupciones H1 y H2 establecida por el fraccionamiento de plagioclasa, principalmente.

Por lo tanto, la generación del magma eruptado en el evento H2 a partir de la diferenciación de aquel asociado a la erupción H1, junto a los procesos que ello implica, y la contemporaneidad con las glaciaciones – desglaciaciones ocurridas en la región permiten establecer una relación entre éstas y la ocurrencia de una erupción con las características del evento en estudio, 3,9 ka cal AP.

Por otro lado, en el sector al NNE del volcán, donde se ubican los conos monogenéticos Desplayados, predominan los depósitos escoriáceos provenientes de los mismos. El depósito de escorias ubicado bajo la ignimbrita de H1 en el cono Desplayado W posee una edad superior a 7.9 ka cal AP por relación estratigráfica, no obstante, se requiere un mayor trabajo de campo en el área para constreñir de mejor manera las características eruptivas de dichos centros monogenéticos. A su vez, el depósito pumíceo sobre H2 en el río Chiflón preliminarmente no proviene del volcán Hudson; mayor cantidad de análisis del mismo y comparación de su carácter geoquímico con productos eruptivos de otros volcanes de la Zona Volcánica Sur Sur o Sur Austral son necesarios.

Finalmente, la comprensión de la dinámica interna del volcán Hudson y su respuesta a factores ambientales, como desglaciaciones, exige aumentar el estudio de volcanes, de la Zona Volcánica Sur Austral, por ejemplo, que puedan tener respuestas similares al contexto climático actual, para desarrollar planes de disminución de riesgo volcánico.

ANEXO I

COLUMNAS TEFROESTRATIGRÁFICAS

Columna Río Chiflón I (18 G 4.898.150 N / 677.530 E)

Tramo 1: 100 cm. Base no expuesta de capa escoriácea, clastosoportada, con clastos redondeados a subangulosos, mal seleccionada, no se observa gradación. Tamaño máximo de 60 cm. Se encuentran líticos blancos cristalinos (graníticos o aglomerados de cristales). Hay algunos clastos redondeados juveniles con núcleo cristalino.

Tramo 2: 70 - 100 cm. Parte soldada de ignimbrita. Corresponde a la zona más maciza. En la parte inferior hay gradación a una zona menos soldada. Aún se distinguen clastos.

Tramo 3: 10 – 15 m. Depósito no consolidado, clastosoportado en la base y matriz soportado hacia techo. Mal seleccionado, matriz de ceniza escoriácea gruesa y cristales. Hay líticos redondeados volcánicos, graníticos? subangulosos a redondeados. Se observa estratificación en la mitad superior del depósito. Fragmentos de lavas antiguas, algunas con textura fluidal.

Columna Río Frío (18 G 4.906.143 N / 669.240 E)

Tramo 1: 5 cm. Lapilli escoriáceo, clastosoportado, clastos subangulosos. No se observa gradación.

Tramo 2: 7 cm. Capa de ceniza gruesa, color negro, muy bien seleccionada, sin gradación.

Tramo 3: 38 cm. Nivel de retrabajo.

Tramo 4: 3,5 cm. Lapilli fino con intercalaciones de mayor granulometría. Abundante olivino. Clastos angulosos a subangulosos. Sin gradación.

Tramo 5: 6 cm. Nivel de retrabajo.

Tramo 6: 3 cm. Capa granodecreciente de escorias, desde lapilli en la base a material fino hacia techo. El color es más pardo en la base del depósito.

Tramo 7: 6 cm. Escorias bien seleccionadas de color rojizo tamaño lapilli.

Tramo 8: 10 cm. Nivel de ceniza escoriácea, con cristales de olivino. Bien seleccionado, matriz soportado. Hay intercalaciones de tamaños más gruesos con otros más finos.

Columna Valle Sorpresas (18 G 4.910.755 N / 649.405 E)

Tramo 1: 18 cm. Capa de pómez pardas, de tamaño máximo 5 cm, redondeadas, muy fibrosas, con cristales grandes. Selección media. Matriz soportado en la base y clastosoportado a techo. Matriz gruesa. No se observa gradación evidente.

Tramo 2: 4 cm. Capa de pómez pardas de hasta 2 mm, clastosoportada, clastos redondeados a subangulosos, selección media.

Tramo 3: 5,5 cm. Nivel de pómez pardas, clastosoportadas, selección media, con gradación inversa incipiente, sin líticos oscuros. Clastos redondeados a subangulosos.

Tramo 4: 1,5 cm. Capa de pómez pardas de hasta 2 mm, clastosoportada, clastos redondeados a subangulosos, selección media. Similar al nivel superior pero con clastos más pequeños.

Tramo 5: 9 cm. Depósito clastosoportado de pómez pardas de <1 cm, redondeadas a subangulosas, selección media, granocreciente. Se observan líticos oscuros de hasta 1,5 cm.

Tramo 6: 29 cm. Capa granocreciente de pómez de hasta \sim 2 mm en el techo y <1 mm en la base. Clastosoportado, selección moderada. Presenta nivel de granulometría fina en el centro.

Tramo 7: 4 cm. Nivel de ceniza gruesa, con clastos de pómez en la base.

Tramo 8: 9 cm. Capa granocreciente, con un nivel fino en el centro, de pómez de hasta \sim 2 mm en el techo y <1 mm en la base. Clastosoportado. Selección moderada.

Tramo 9: 6 cm. Intercalación de ceniza gruesa y capas con clastos <1 mm. Se observan 4 intercalaciones.

Tramo 10: 5 cm. Nivel granocreciente de pómez redondeadas y líticos de <2 mm. Buena selección.

Tramo 11: 8 cm. Nivel de ceniza gruesa, pardo clara, con cristales sueltos en menor cantidad. Muy bien seleccionada, matriz soportada.

Columna Villa Cerro Castillo (18 G 4.888.509 N / 719.620 E)

Tramo 1: ~50 cm. Nivel retrabajado con líticos de pómez subangulosas, granodecreciente, matriz soportado, con selección moderada a mala.

Tramo 2: <2 cm. Capa de ceniza, sin continuidad lateral. De coloración clara, pero más oscura que nivel de ceniza superior.

Tramo 3: 7 cm. Suelo color pardo.

Tramo 4: 2-5 cm. Depósito de ceniza media a fina de color claro. Se observan clastos de pómez fibrosas pequeñas, líticos oscuros y cristales sueltos. Espesor variable.

Tramo 5: 10 cm. Nivel de retrabajo.

Tramo 6: 1 – 4 cm. Depósito de 1991 A.D.

Tramo 7: 6 cm. Suelo actual.

Columna Desplayado Este I (18 G 4.922.700 N / 663.177 E)

Tramo 1: >50 cm. Base no expuesta. Nivel con clastos de pómez de tamaño centimétrico (en general <1,5 cm) sin cristales visibles en matriz de ceniza media a gruesa. Se observa lapilli acrecionario de tamaños ~ 2 cm. La matriz tiene selección buena y pómez no tienen distribución preferencial. No se observa gradación ni estructuras sedimentarias.

Tramo 2: >216 cm. Depósito granocreciente, desde ceniza fina en la base a ceniza gruesa a techo. Color pardo claro con menos del 1% de pómez que van desde los 0,7 cm a 4,3 cm de color blanco, menos fibrosas que las pómez del tramo anterior. Poseen vesículas redondeadas (~20% de vesículas).

Tramo 3: 100 cm. Depósito secundario de escorias.

Columna Desplayado Este II (18 G 4.922.592 N / 663.419 E)

Tramo 1: >62 cm. Depósito escoriáceo, con clastos angulosos de 0,3 - 2 cm, clastosoportado, selección moderada a buena, con vesículas redondeadas. No se observa gradación ni estructuras sedimentarias.

Tramo 2: ~500 cm. Intercalación de niveles escoriáceos rojizos y negros, los cuales tienen espesores entre 10 y 16 cm. Clastosoportados. Los niveles rojizos tienen escorias de tamaño modal de 0,2 cm, a 1,5 - 2 cm, sin gradación. Los niveles negros tienen escorias de tamaño de 0,5 - 0,7 a 3 cm, en proporciones similares.

Tramo 3: 30 – 150 cm. Depósito matriz soportado con clastos de pómez, líticos y escorias. Matriz de ceniza fina y clastos pumíceos y escoriáceos de 2 mm, aproximadamente. Pómez muy angulosas de 3 cm, con baja vesicularidad. Moda de líticos y pómez entre 0,5 y 1 cm. Contacto inferior discordante.

Tramo 4: 41 cm. Nivel escoriáceo granodecreciente, con escorias 0,1 a 1,5 cm, selección moderada, clastos redondeados a subangulosos, sin líticos visibles. Hacia la parte superior, hay lentes con escorias de 0,2 a 1 cm. Sobre este nivel hay una capa de escorias de 2 cm (moda) a 6 cm, porosas y fibrosas.

Tramo 5: 12 cm. Capa de material fino (arcilloso) con pocos clastos de escoria, color pardo, sin estructuras internas. Las escorias tienen tamaño de 1 a 3 mm, pero se encuentra una de 8 x 6 x 6,5 cm.

Tramo 6: 2 cm. Capa granocreciente de lapilli fino y medio. Los clastos alcanzan 2,5 cm y son poco vesiculares.

Tramo 7: 4 cm. Capa de ceniza fina, con porcentaje menor de lapilli fino, subangulosos. Se observan líticos subangulosos de 1,5 cm. Depósito matriz soportado. Se encuentra una escoria de 2 cm.

Tramo 8: 65 cm. Escorias de tamaño lapilli fino a medio, con tamaño modal de ~2 mm, algunas alcanzan los 3 cm, subangulosas y con poca vesicularidad. Hay una leve tendencia granodecreciente. Se observan cristales sueltos de plagioclasa y olivino, de tamaño 1 – 5 mm. Líticos de 1 – 5 mm, angulosos a subangulosos, volcánicos y graníticos (muy alterados, de <1 cm y poco abundantes). Hacia techo, hay un nivel matriz soportado, con matriz de ceniza.

Tramo 9: ~80 cm. Depósito clastosoportado de escorias grises, líticos y cristales. Gradación inversa tenue, excepto en el techo donde el tamaño de los clastos aumenta abruptamente, con tamaños de 1 mm en la base a 2 cm en la

parte superior, con moda de 1 - 5 mm. Escorias pequeñas son subredondeadas, muy angulosas, densas. Escorias mayores de 9 cm. Líticos máficos, subredondeados de 1 cm, mientras que líticos blancos y rojizos son menores a 0,5 cm. Cristales subhedrales a euhedrales de 1 a 5 mm de plagioclasa y olivino, encontrándose de manera aislada. **Tramo 10:** 53 cm. Nivel de escorias grises, mal seleccionadas, con tamaño de 2 mm a 5 cm, con moda de 2 mm a 1 cm, angulosas, densas, con vesículas alargadas. Se encuentran escorias mayores de 4,8 – 5 cm. Hay escorias bandeadas y alargadas (1,5 cm). No se observan cristales. Hay líticos (<0,5 cm) rojizos, bien consolidados, otros volcánicos del mismo tamaño y líticos graníticos muy alterados de 2 cm. El depósito es clastosoportado, con selección moderada a mala, sin gradación. Contacto inferior es levemente irregular, con presencia de material fino, y el superior es irregular erosivo. Se observan pómez con vesículas alargadas en el contacto superior.

Tramo 11: 25 cm. Depósito matriz soportado, con matriz de ceniza fina gris pardo y clastos angulosos de pómez con textura vesicular alargada. Pómez muy fibrosas (reticulitas) poco densas, de 5,5 cm, algunas de color claro al centro y más oscuro hacia el borde. Hay clastos de escoria redondeados, de tamaño 0,5 - 1 cm (lapilli acrecionario?). No se observan estructuras sedimentarias. Contacto inferior irregular erosivo y superior concordante.

Tramo 12: Desde base a techo: *4 cm. Nivel de ceniza media a lapilli medio. Ceniza escoriácea y clastos pumíceos. Pómez de 1 - 2 mm, subredondeados. Escorias mayores angulosas. Cristales de plagioclasa <1 mm. Secciones con lentes de escoria más gruesa y pómez de 1 - 2 cm, con cristales de plagioclasa.

*1 – 3 cm. Nivel con espesor y selección variable, clastosoportado, sin continuidad lateral. Clastos pumíceos de 2 mm - 1 cm, y líticos volcánicos.

*1,5 cm. Escorias y pómez bien seleccionadas, tamaño lapilli medio, sin continuidad lateral. No se observan líticos, pero sí cristales aislados euhedrales de ~ 1 mm.

*1,5 cm. Espesor variable, capa de ceniza media a gruesa, con cristales de plagioclasa aislados de ~1 mm. Se observan pómez de 0,5 cm, redondeadas, muy bien seleccionadas, además de líticos rojizos.

Tramo 13: 17 cm. Nivel clastosoportado de escorias y material pumíceo fino. Presenta retrabajo. En general, muy bien seleccionado. Ceniza media y clastos de pómez y escorias <1 cm, moda 2 – 5 mm. Espesor ligeramente variable. **Tramo 14:** 15 cm. Nivel muy bien seleccionado, clastosoportado, máfico, de tamaño lapilli medio, polimíctico, con

fragmentos rojizos, cristales (1 – 3 mm) de plagioclasa y olivino. Se observan dos bandas de coloración rojiza.

Tramo 15: 6 cm. Nivel de ceniza gruesa, coloración oscura, matriz soportado, con líticos volcánicos de < 1 mm, rojizos. No presenta gradación. Contacto inferior y superior irregulares.

Tramo 16: 3 – 4 cm. Capa de coloración rojiza, con clastos de escoria de 1 cm, matriz soportado, pero con gran cantidad de clastos. Líticos máficos. No se observan líticos graníticos, gradación ni estructuras sedimentarias. **Tramo 17:** 4 cm. Retrabajo.

Tramo 18: 6 cm. Nivel con coloración anaranjada, mal seleccionado, con clastos angulosos de escorias negras, con importante cantidad de ceniza. Líticos <1 mm de color claro. No hay estructuras sedimentarias ni gradación. Matriz soportado. La moda de los clastos es de 1 - 2 mm, algunos de 1 cm.

Columna Desplayado Oeste (18 G 4.922.106 N / 662.217 E)

Tramo 1: >400 cm. Nivel de escorias, sin base expuesta, con espesor variable y acuñado al norte. Presenta escorias angulosas de tamaño lapilli medio a grueso, algunas muy vesiculares, con vesículas ovaladas y redondas (éstas últimas predominan). Las escorias con menor vesicularidad poseen tamaños de 2 a 3,5 cm, las que son ovaladas y subredondeadas. Se observan cristales de plagioclasa de ~3 mm y olivino o piroxeno de < 1mm. No se observan líticos, gradación ni estructuras sedimentarias. Es clastosoportado, de selección moderada a buena.

Tramo 2: ~80 cm. Depósito volcánico clastosoportado, mal seleccionado, con posible matriz. Escorias angulosas, mal seleccionadas, de hasta 7 cm, pero la moda es de 0,7 - 1 mm. Los clastos más grandes tienen vesículas de <1 a 5 mm, ovaladas, alargadas y fibrosas. También, tienen cristales de plagioclasa y olivino de ~2 y 1 mm, respectivamente. Los líticos (10 – 20%) son angulosos y principalmente redondeados, polimícticos (líticos rojizos, granitoides), de tamaños que van desde <1 mm hasta 5 cm. No hay gradación, ni estructuras sedimentarias. Contactos inferior y superior poco claros.

Tramo 3: ~20 cm. Depósito volcánico polimíctico, con abundantes líticos, selección moderada, clastosoportado, con mayor porcentaje de arena gruesa (posible matriz). Escorias <0,5 - 2,5 cm, angulosas y con vesículas grandes. Hay escorias mayores de 3,5 cm en gran cantidad. Los líticos son angulosos y tienen tamaño modal de ~0,5 cm, graníticos y volcánicos. Hay granos pequeños que pueden ser cristales de plagioclasa o líticos blancos.

Tramo 4: 26 cm. Depósito de material volcánico, clastosoportado, selección media a buena, con alto porcentaje de líticos tamaño arena gruesa, escorias y pómez <0,5-1 cm. Clastos en general son subredondeados, escorias y pómez densos, con vesicularidad ~20%. Cristales de plagioclasa <1 mm. Levemente granodecreciente, sin estructuras sedimentarias. Contacto inferior gradual y difuso.

Tramo 5: 18 cm. Depósito volcánico pardo medio, matriz soportado, con selección media, matriz de tamaño arena fina a media, con clastos de pómez de 0,8 - 1 cm, bandeadas y redondeadas. Se observan líticos rojizos y graníticos de hasta 1 mm, y cristales de plagioclasa pequeños. Presencia de lentes con granulometría más gruesa (moda 2 - 3 mm) y clastos de pómez subredondeadas de 1 cm. Contacto superior muy irregular (erosivo?).

Tramo 6: 30 cm. Depósito volcánico de espesor variable, clastosoportado, mal seleccionado, con pómez subredondeadas a angulosas con fragmentos escoriáceos o vidrio básico en su interior, tamaño arena media a 3 cm, principalmente. Hay escorias mayores de 18 cm, pero en general tienen tamaño 1 - 6 cm, muy vesiculares, fibrosas y angulosas. La moda de las pómez es 1 - 1,5 cm, se encuentran algunas bandeadas y con *fiammes*. Tiene tendencia granocreciente, sin estructuras sedimentarias. No se observan líticos. Contornos irregulares.

Tramo 7: 28 cm. Depósito de ceniza gruesa de color gris pardo claro, selección media a buena, matriz soportado, con cristales de plagioclasa en matriz, escorias pequeñas y angulosas, sin gradación evidente. Hay algunos clastos de pómez de moda 0,5 - 0,8 cm, muy redondeadas, densas y poco fibrosas. Lentes de granulometría arena gruesa - lapilli medio con cristales de plagioclasa, fragmentos pumíceos y más escoriáceos que el resto del depósito, líticos volcánicos angulosos. Contacto superior sinuoso, definido e irregular.

Tramo 8: 18 - 25 cm. Depósito volcánico de espesor variable, bien seleccionado, matriz de ceniza gruesa - arena media, cristales de plagioclasa, fragmentos claros y otros oscuros, subredondeados. Líticos de ~2 mm. Clastos de pómez (moda 5 - 6 mm), de color oscuro al centro y más claro hacia el borde. Escorias de 0,5 cm. Líticos mayores graníticos de 3,5 cm, aislados y bien consolidados. Hay lentes con granulometría mayor, pero misma matriz que el resto del depósito. Sin gradación evidente ni estructuras sedimentarias. Contacto superior concordante y regular.

Tramo 9: 23 cm. Depósito matriz soportado, con matriz de arena media a gruesa, polimíctica, selección media, con cristales de plagioclasa de ~1 mm, granos escoriáceos y pumíceos tamaño lapilli medio. Clastos mayores de pómez poseen vidrio volcánico negro, tamaño 1 - 2 cm, muy redondeadas, con poca vesicularidad (~10%). Líticos volcánicos angulosos de 1 cm, graníticos subangulosos de 1,5 cm. No hay fragmentos mayores de escoria. Se observa leve tendencia granodecreciente en los clastos pumíceos y líticos máficos. En la parte superior hay un nivel de material fino. Contacto inferior regular difuso y superior regular. 6 cm, Nivel de espesor variable, bien seleccionado, con matriz de ceniza gruesa, cristales de plagioclasa de 1 - 2 mm, pómez redondeadas de ~3 mm, líticos máficos sin cristales, angulosos y densos, de 1 - 1, 2 cm. Se observa laminación de flujo.

Tramo 10: 66 cm. Nivel dividido en dos segmentos: la parte inferior con tendencia granocreciente, menor proporción de clastos y líticos que la parte superior. Matriz soportado, con alto porcentaje de matriz en la base, de arena fina polimíctica, pardo claro, con fragmentos más oscuros, cristales de plagioclasa, líticos máficos angulosos muy pequeños y pómez redondeadas <1 cm. Alto porcentaje de matriz. Sin estructuras sedimentarias. En la parte superior aumenta el tamaño de pómez, redondeadas. Líticos + pómez <5 %, pómez mayores de ~2 cm. Alto

porcentaje de líticos máficos densos de 1 - 1,5 cm, hacia techo. Algunas pómez presentan bandeamiento. Contacto superior regular marcado por cambio de coloración.

Tramo 11: 24 cm. Nivel matriz soportado con matriz de arena media, selección buena a media, con clastos de pómez subangulosos, pómez mayores de 3 - 5 cm, fibrosas, con baja vesicularidad. Líticos máficos muy redondeados de 2 cm. Sin gradación evidente ni estructuras sedimentarias. Escorias en matriz pumícea con cristales de plagioclasa de 3 mm. Predominan pómez redondeadas de 1 - 2 cm (moda). Se diferencia del nivel anterior por el color y proporción de líticos (disminuye en este caso), y por la gradación. Contacto superior difuso dado por nivel milimétrico de ceniza blanca.

Tramo 12: 54 cm. Nivel matriz soportado con alto porcentaje de pómez angulosos (70%) muy fibrosas y vesiculares, con vidrio más oscuro en ellas. Tamaño modal de 2 - 3,5 cm, matriz de ceniza gruesa a arena fina. Líticos de 0,5 - 1 cm, son escasos, algunos rojizos de ~5 cm. Predominan las pómez. Sin estructuras sedimentarias ni gradación. Contacto superior irregular (se mezclan?) con concentración de pómez grandes. Hay más pómez mayores en la parte superior de la capa. Se encuentra carbón.

Tramo 13: 100 cm. Nivel más oscuro que el anterior, con gran cantidad de lentes clastosoportados, con pómez y escorias muy angulosas de moda ~ 2 cm, pero también hay más grandes. Depósito en general matriz soportado, con alta cantidad de pómez redondeadas con mala selección, matriz de arena media a gruesa. Clastos van de $\sim 0,5 - 3$ cm. No se observa lapilli acrecionario. Lentes de 15 cm de ancho por 70 cm de largo que siguen dirección de flujo. Escorias <2 cm, densas, subangulosas a subredondeadas, líticos volcánicos angulosos y densos <1 cm. En base hay pómez fibrosas y angulosas, bandeadas, de hasta 9 cm, acumuladas en el nivel inferior. Tendencia granodecreciente en parte superior. Contacto superior sinuoso, regular y muy marcado. Sin laminación como niveles inferiores. Se encuentra carbón, pero parece más materia orgánica.

Tramo 14: 75 cm. Nivel matriz soportado, de coloración clara, matriz de ceniza fina a muy fina, bien seleccionado, excepto clastos pumíceos que van de 1 a 5 cm, fibrosas, un poco oscuros pero al parecer pumíceos. 90% de ceniza. Líticos máficos angulosos, densos, de 0.5 - 1 cm. Pómez de 1 cm muy redondeadas y de 4 cm redondeadas. Leve tendencia a laminación paralela. Contacto superior nítido y regular.

Columna Camino a El Remanso (18 G 4.942.162 N / 695.382 E)

Tramo 1: 32 cm. Nivel pardo amarillento, sobreyace a depósito fluvial (mezclándose un poco) en contacto irregular. Matriz soportado, con matriz arenosa al parecer retrabajada. En base de la capa hay pómez de mayor tamaño (<1-2,5 cm), el resto del depósito tiene matriz arenosa. No se observan cristales, pero sí líticos de 2 – 3 mm y pómez de 2,2 cm, subredondeadas con vesículas con vidrio más oscuro, baja densidad, las vesículas son redondeadas y ovaladas. No hay líticos mayores, estructuras sedimentarias ni lapilli acrecionario. En la parte superior hay arena gruesa en la matriz, con más líticos, cristales de plagioclasa de 1 mm, menor cantidad de pómez, selección media. Sobre esta capa hay un nivel de material fino, pero parece lente porque no tiene continuidad lateral, es bien seleccionado. Contacto superior sinuoso pero claro con nivel de suelo, distinguible por cambio de color y presencia de materia orgánica.

Tramo 2: 40 cm. Nivel de suelo.

Tramo 3: 18 cm. Nivel de escorias muy bien seleccionadas, con tamaño arena gruesa, cristales de plagioclasa, olivino o piroxeno, subangulosas de 1 cm. Presenta gradación normal en la mitad inferior y gradación inversa en la mitad superior. Coloración negra, con partes rojizas. Líticos <1% y cristales ~10%. No hay estructuras sedimentarias. Contacto inferior irregular.

Tramo 4: 1 - 2 cm. Nivel de suelo.

Tramo 5: 5 cm. Escorias subangulosas con cristales de olivino, selección media, clastosoportadas, tamaño de 1-5 mm, 30% pómez, líticos rojizos, cristales de plagioclasa y olivino <1 mm euhedrales a subhedrales. Pómez alcanzan los 8 mm. Sin gradación ni estructuras sedimentarias. Contactos irregulares y marcados.

Tramo 6: 8 - 10 cm. Depósito de espesor variable, de origen volcánico pero presenta retrabajo, de ceniza fina con clastos de pómez de 3 - 5 mm, consolidado y con raíces. Color pardo amarillento. Sin estructuras sedimentarias. Infrayace a suelo.

Columna Lago Atravesado (18 G 4.937.163 N / 713.265 E)

Tramo 1: 15 cm. Correlacionable con tramo 1 de columna camino a El Remanso. Sobreyace a nivel conglomerádico.

Tramo 2: 35 cm. Nivel de suelo.

Tramo 3: 15 Cm. Nivel de material fino, escoriáceo, bien seleccionado, presenta retrabajo, tiene raíces, cristales de plagioclasa <1 mm. Sin gradación ni estructuras sedimentarias.

Tramo 4: 11 cm. Depósito de escorias tamaño lapilli medio, clastosoportado, angulosas, de 1 - 5 mm (moda), selección media, con leve gradación normal, tenue laminación paralela, color pardo oscuro.

Tramo 5: 14 cm. Similar al anterior, pero más rojizo, con un poco de retrabajo, selección media a buena, tamaño modal ~1 mm, sin gradación clara pero sí laminación paralela. Sin líticos ni cristales.

Columna Las Vertientes (18 G 4.897.423 N / 678.347 E)

Tramo 2: 67 cm. Intercalación o lentes de material arcilloso de color gris, en capa de arena fina a media, con secciones de arena media a gruesa. No todos los niveles son continuos, son irregulares (de flujo?). Hay lentes de mayor granulometría, clastos rojizos, de origen volcánico, con líticos. Muy buena selección en los lentes.

Tramo 3: 54 cm. Gran paquete con dos secciones granocrecientes, correspondientes a depósitos conglomerádicos, matriz soportados. En la parte inferior se observa una granulometría menor con alto porcentaje de clastos tamaño arena media a gruesa, y líticos mayores de ~1 cm, subangulosos a subredondeados, mal seleccionados. No hay estructuras sedimentarias, pómez ni escorias. Los líticos en la parte superior son redondeados de ~5 cm. La matriz podría ser de origen volcánico, retrabajada, pero los clastos no. Contacto superior es irregular, contacto inferior regular y un poco sinuoso.

Tramo 4: 85 cm. Depósito fluvial de limo - arcilla, color gris parduzco, con menos niveles pero similar a tramo 1. Lentes de arena.

Tramo 5: 22 cm. Depósito de origen volcánico, matriz soportado, retrabajado, matriz de arena fina, bien seleccionada, clastos subredondeados de ~3 mm y máficos. No hay pómez ni escorias, tampoco estructuras sedimentarias ni gradación. Color pardo oscuro.

Tramo 6: 20 cm. Depósito de igual coloración que tramo 5, matriz soportado, con matriz de ceniza media, \sim 80% de clastos máficos de 2 – 3 mm, subredondeados y subangulosos, selección media. No se observan escorias, estructuras sedimentarias ni gradación. Matriz retrabajada, fluvial pero de origen volcánico. Contacto inferior continuo, contacto superior irregular pero nítido.

Tramo 7: 23 cm. Depósito volcanosedimentario, con matriz de origen volcánico de coloración anaranjada, tamaño ceniza gruesa, pumícea?, granodecreciente, con concentración de clastos en la zona inferior. Clastos máficos en su mayoría subangulosos a subredondeados de 3 - 4,5 cm, los más grandes son subangulosos, mala selección. Líticos graníticos. No hay escorias ni pómez. Muchas raíces. Contacto superior un poco difuso e irregular. Sin estructuras sedimentarias.

Tramo 8: 13 cm. Nivel escoriáceo de espesor irregular. Corresponde a parte soldada de una ignimbrita. Vesículas angulosas (~40%) de 1 - 2 mm, con cristales de plagioclasa de <1 mm. Hay sectores más arenosos donde las escorias son subredondeadas. Sin gradación o estructuras sedimentarias. Contacto superior es más irregular que el inferior.

Tramo 9: 50 cm. Nivel granocreciente de ceniza gruesa en la base a arena fina - media a techo. Coloración pardo rojiza. Clastos mayores de 1 - 2 mm, escoriáceos. Moda de 3 - 4 mm. Lentes escoriáceos bien seleccionados, con clastos angulosos de 1 - 5 mm, donde los más grandes son más angulosos, densos, con poca vesicularidad. No se observan pómez grandes. En general, mal seleccionado, de arena fina a media a lapilli medio. En la parte superior mejor la selección. Contacto superior sinuoso, pero claro.

Tramo 10: 6 - 7 cm. Depósito muy bien seleccionado, color pardo oscuro de ceniza media. Sin estructuras sedimentarias ni líneas de flujo. No tiene pómez ni escorias mayores. Quizás con leve retrabajo. Se observan cristales <<1 mm.

Tramo 11: 17 cm. Depósito de ceniza de color pardo oscuro, de tamaño arena fina - ceniza gruesa, con cristales <<1 mm de plagioclasa, muy buena selección. No se observan pómez o escorias mayores, ni líticos, tampoco estructuras sedimentarias o gradación. Contactos claros, el superior más sinuoso.

Tramo 12: 9 cm. Depósito escoriáceo, bien consolidado, quizás de caída, con clastos subredondeados, presenta clastos aglomerados de 3 - 7 mm de partículas tamaño lapilli con vesículas alargadas y redondeadas, y secciones que parecen soldadas o escorias de 9 - 10 cm.

Tramo 13: 36 cm. Depósito volcanosedimentario con retrabajo. Presenta secciones escoriáceas con clastos ~1 mm y otras de ceniza (lentes en material retrabajado, fluvial volcánico?). Presenta estratificación cruzada. Granodecreciente.

Columna Río Chiflón II (18 G 4.898.109 N / 677.470 E)

Tramo 1: >100 cm. Capa escoriácea de color negro, sobreyace a lava más densa. Posee textura de lava aa, con bloques macizos de ~40 cm y secciones con pequeños aglomerados de 1,5 - 3 cm. Secciones con fragmentos de escorias, mal seleccionadas y clastosoportadas, altamente vesiculares (>40%), pequeñas y redondeadas. Podría ser una ignimbrita consolidada, pero hay clastos que en que no se observan bordes (parecen macizos), cristales de plagioclasa <1 mm. Bloques de ignimbrita (soldados?) >40 cm y aglomerados de cristales ~2 cm en su mayoría. Clastos subredondeados, en general, escoriáceos de 1 - 3 mm, moda 1,5 mm, mal seleccionados, sin gradación ni estructuras sedimentarias. Clastos mayores tienen aglomerados de cristales (o xenolitos graníticos?), hay cristales de plagioclasa sueltos que van de 1 mm a 1 cm. Corresponde a depósito volcanosedimentario, presentando cobertura muy rugosa y escorias concentradas en ella.

Tramo 2: 11 - 23 cm. Depósito conglomerádico fluvial de espesor muy variable, con contactos irregulares. Los clastos mayores que presenta son >23 cm, subredondeados a redondeados, con pésima selección.

Tramo 3: 34 cm. Depósito fluvial de arena fina a media, granocreciente, color pardo grisáceo, de origen volcánico pero retrabajado. Bien seleccionado, sin estructuras sedimentarias. Hay pequeños bancos de arena más gruesa, de color anaranjada. Clastos redondeados, con componentes cristalinos, máficos. Contactos irregulares, el superior es sinuoso dado por cambio de coloración y granulometría.

Tramo 4: 36 cm. Depósito fluvial bien seleccionado, granodecreciente, de color pardo amarillento con la parte superior más anaranjada. Contactos sinuosos, el inferior dado por cambio de color y el superior, además, por la granulometría. Tiene clastos de 1 mm máficos, subangulosos a subredondeados, cristales <1 mm de plagioclasa y cuarzo?. Arena de origen volcánico, pero fluvial. Hacia techo se vuelve limoso. Sin estructuras sedimentarias.

Tramo 5: 23 cm. Depósito fluvial, pardo oscuro, de limo, bien seleccionado, sin gradación ni estructuras sedimentarias. Contacto inferior sinuoso, dado por cambio de color. Contacto superior irregular dado por variación en la granulometría.

Tramo 6: 17 cm. Depósito volcanosedimentario clastosoportado con partículas pequeñas entre sí, de tamaño arena media a 2 cm. Escoriáceo principalmente, de color pardo rojizo y negro, con clastos subangulosos, siendo los más pequeños subredondeados. Líticos de color blanco (graníticos) de 1 - 2 mm. Clastos más grandes densos, con poca vesicularidad. Al centro del nivel predomina la granulometría menor (tamaño arena), selección media a mala. Contacto superior regular, dado por cambio de color y granulometría. No se observa gradación ni estructuras sedimentarias.

Tramo 7: 13 – 20 cm. Depósito fluvial de espesor variable, color pardo anaranjado, de arena media a gruesa, bien seleccionada, con partes limosas, seccionas más anaranjadas y otras más pardas. Clastos mayores de 3 mm de escoria, redondeados a subredondeados, cristales de plagioclasa y cuarzo. Contacto inferior regular y superior irregular y sinuoso.

Tramo 8: cm. Depósito gris oscuro, muy bien seleccionado, de tamaño ceniza gruesa a media, si estructuras sedimentarias, se observan manchas más anaranjadas. Granocreciente de ceniza fina a arena fina. Retrabajado, pero de origen volcanosedimentario. Líticos blanquecinos, subredondeados de 5 mm. Se encuentran pómez de 1 - 2 mm y de 1 cm. Contacto inferior irregular y superior levemente sinuoso y muy marcado.

Tramo 9: 10 - 16 cm. Depósito clastosoportado, mal seleccionado, granodecreciente de tamaño arena gruesa (1 cm) a arena fina - ceniza gruesa, de color blanco grisáceo. Se encuentran pómez de 3 mm a 3 cm, con vesículas (~20%) rellenas con vidrio más oscuro, subangulosas. Líticos subangulosos a angulosos de color negro, de ~2 mm, volcánicos. La parte superior es muy bien seleccionada y no hay pómez de mayor tamaño. Sin estructuras sedimentarias. Cristales de plagioclasa <1 mm en las pómez. Se podría subdividir en dos niveles: mitad inferior más grueso (pómez de 3 – 4 cm), mitad superior de ceniza. Contacto inferior irregular.

Tramo 10: 53 cm. Depósito clastosoportado, con muy mala selección, aparente gradación inversa, poca matriz, volcánico, compuesto por pómez de color pardo amarillento. Las pómez tienen tamaño arena media, con pómez mayores de 9 - 10 cm, angulosas, pero también redondeadas las más pequeñas. Vesículas ovaladas, con cristales de plagioclasa muy pequeños, vesículas fibrosas de 1 - 1,5 cm, una pómez tiene un cristal de 2 mm de plagioclasa. Líticos ~30% de la población de tamaño <0,5 cm (clastos de pómez o líticos?). Hay niveles con acumulación de ceniza, muy irregulares pero continuos, con espesor de 2 cm, separado por 10 cm del otro nivel. Líticos (~10%) volcánicos redondeados a subredondeados <3 mm rojizos, algunos 0,5 – 1,5 cm, selección media a buena, con cristales de plagioclasa de 1 mm euhedrales. No se observa lapilli acrecionario. Contactos irregulares.

Tramo 11: 4 cm. Nivel con espesor variable, de material fino, selección media a buena, con clastos de 2 mm a 3,2 cm de pómez en matriz de ceniza gruesa. Pómez subangulosas a subredondeadas (las más grandes). Predomina ceniza gruesa - arena fina. Líticos máficos muy pequeños, angulosos. La composición del depósito es la misma que nivel anterior.

Tramo 12: 31 cm. Depósito granodecreciente, con mala selección en la base, mejorando un poco hacia techo (selección media). Hay pómez de 5 cm en la base, subangulosas a subredondeadas, vesículas redondeadas y fibras, con cristales de plagioclasa ~2 mm. En este segmento parece aumentar la cantidad de líticos, de ~2,5 cm, alargados y subredondeados. En general, arena fina mal seleccionada, monominerales de plagioclasa 1 – 2 mm y otros cristales más amarillos (olivino, piroxeno?). Se encuentra una pómez de 12 cm. Contacto difuso, gradual.

Tramo 13: 12 - 17 cm. Depósito con espesor variable, volcánico asociado a flujo/oleada o parte más fluida de flujo piroclástico. Secuencia de niveles, siendo la parte inferior más fina, matriz soportado con clastos pequeños. El segmento central tiene matriz un poco más gruesa con clastos pumíceos de mayores dimensiones. Parte superior más consolidada, similar al inferior. Contactos irregulares. Parte inferior: 7 cm de ceniza media, color pardo claro grisáceo, selección media a buena, con clastos de pómez de 4 mm, líticos subredondeados de 2 mm, no se observan cristales a simple vista. Parte central: 6 cm, matriz de ceniza media, anaranjado, con moda de clastos de 2 - 3 mm, mala selección, clastos redondeados de pómez 1,5 mm, pómez mayores son abundantes y de 2,5 - 3 cm, subangulosas y con bandeamiento de vidrio más oscuro, vesículas alargadas y muy fibrosas; cristales de plagioclasa y líticos volcánicos; similar al depósito de flujo en el sector de los Desplayados (día 2). Parte superior: muy consolidada, con alto porcentaje de líticos, aglomerados con más líticos oscuros, redondeados de 1 mm. Se toma muestra.

Tramo 14: 10 - 17 cm. Depósito retrabajado con espesor variable, volcanosedimentario de color pardo rojizo (escorias retrabajadas?) de tamaño arena fina a media, con escasos clastos de pómez, redondeados de ~5 mm. Contactos irregulares.

Tramo 15: 24 cm. Depósito de espesor variable, se pierde en algunos sectores, de color rojizo y negro. Mala selección en general en el depósito, pero hay aglomerados escoriáceos de igual granulometría (buena selección), muy redondeados, de 1 - 3 mm. Hay zonas más consolidadas y otras con retrabajo de lo mismo. Levemente granocreciente, clastos rojizos, pocos cristales de plagioclasa <1 mm, no se observan líticos.

ANEXO II

PETROGRAFÍA CORTES TRANSPARENTES

A	A-260217-1	В		112				
Coordenadas	18 G 4.910.755	N / 649.405 E	PLG	1				
Localidad	Valle Sorp	resas	PX	S STATISTICS				
Clasificación	Pómez		PX					
Textura	Vesicular,	vitrofídica	City of	0,5 mm				
Índice de	<3		Aumento: 10X	Luz: LPP				
color	0/			The second secon				
Composicion	70	Alteracion	Tamano (mm)	Forma				
renocristates	/	- * *	$\star \star \star$	-				
Plagioglasa	4 - 0,4 a 1,8 Euhedral							
Plagioclasa Pirovenos	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Plagioclasa Piroxenos	4 1 	- Chl (leve)	0,4 a 1,8 0,5	Euhedral Subhedral				
Plagioclasa Piroxenos Óxidos de Fe-Ti	4 1 i <1 1	- Chl (leve)	0,4 a 1,8 0,5 0,3	Euhedral Subhedral Euhedral Anbedral				
Plagioclasa Piroxenos Óxidos de Fe-Ti Olivino Matriz/MF	4 1 i <1 1 93	- Chl (leve)	0,4 a 1,8 0,5 0,3 1,9	Euhedral Subhedral Euhedral Anhedral				
Plagioclasa Piroxenos Óxidos de Fe-Ti Olivino Matriz/MF Vidrio	4 1 i <1 93 ~90	- Chl (leve)	0,4 a 1,8 0,5 0,3 1,9 -	Euhedral Subhedral Euhedral Anhedral -				
Plagioclasa Piroxenos Óxidos de Fe-Ti Olivino Matriz/MF Vidrio Piroxeno	4 1 i <1 93 ~90 <1	- Chl (leve)	0,4 a 1,8 0,5 0,3 1,9 - - <0,1	Euhedral Subhedral Euhedral Anhedral - - Anhedral				
Plagioclasa Piroxenos Óxidos de Fe-Ti Olivino Matriz/MF Vidrio Piroxeno Plagioclasas	4 1 i <1 93 ~90 <1 <1	- Chl (leve) Sericita	0,4 a 1,8 0,5 0,3 1,9 - - <0,1 <0.06	Euhedral Subhedral Euhedral Anhedral - - Anhedral Anhedral				
Plagioclasa Piroxenos Óxidos de Fe-Tri Olivino Matriz/MF Vidrio Piroxeno Plagioclasas Óxidos de Fe-Tri	$ \begin{array}{c c} 4 \\ 1 \\ i < 1 \\ 93 \\ \sim 90 \\ <1 \\ <1 \\ i < 1 \end{array} $	- Chl (leve) Sericita -	0,4 a 1,8 0,5 0,3 1,9 - - <0,1 <0,06 0,08	Euhedral Subhedral Euhedral Anhedral - - Anhedral Anhedral Subhedral				
Plagioclasa Piroxenos Óxidos de Fe-Ti Olivino Matriz/MF Vidrio Piroxeno Plagioclasas Óxidos de Fe-Ti Vesículas	$ \begin{array}{c c} 4 \\ 1 \\ \hline 1 \\ 93 \\ \sim 90 \\ <1 \\ <1 \\ i <1 \\ 50 \\ \end{array} $	- Chl (leve) Sericita	0,4 a 1,8 0,5 0,3 1,9 - - <0,1 <0,06 0,08 Variable	Euhedral Subhedral Euhedral Anhedral - - Anhedral Anhedral Subhedral Redondeadas. En algunos				
Plagioclasa Piroxenos Óxidos de Fe-Tri Olivino Matriz/MF Vidrio Piroxeno Plagioclasas Óxidos de Fe-Tri Vesículas	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Chl (leve) Sericita	0,4 a 1,8 0,5 0,3 1,9 - - <0,1 <0,06 0,08 Variable	Euhedral Subhedral Euhedral Anhedral - - Anhedral Anhedral Subhedral Redondeadas. En algunos sectores predominan las				
Plagioclasa Piroxenos Óxidos de Fe-Tri Olivino Matriz/MF Vidrio Piroxeno Plagioclasas Óxidos de Fe-Tri Vesículas	$ \begin{array}{c ccccc} $	- Chl (leve) Sericita	0,4 a 1,8 0,5 0,3 1,9 - - <0,1 <0,06 0,08 Variable	Euhedral Subhedral Euhedral Anhedral - - Anhedral Anhedral Subhedral Redondeadas. En algunos sectores predominan las ovaladas y alargadas				
Plagioclasa Piroxenos Óxidos de Fe-Tri Olivino Matriz/MF Vidrio Piroxeno Plagioclasas Óxidos de Fe-Tri Vesículas	4 1 i <1 93 ~90 <1 i <1 i <1 50 DNES: Plag	- Chl (leve) Sericita ioclasas present	0,4 a 1,8 0,5 0,3 1,9 - - <0,1 <0,06 0,08 Variable an inclusiones fundidas	Euhedral Subhedral Euhedral Anhedral - - Anhedral Anhedral Subhedral Redondeadas. En algunos sectores predominan las ovaladas y alargadas y de apatito. Los piroxenos				
Plagioclasa Piroxenos Óxidos de Fe-Tri Olivino Matriz/MF Vidrio Piroxeno Plagioclasas Óxidos de Fe-Tri Vesículas OBSERVACIO y olivino tamb	4 1 3 93 ~90 <1 <1 <1 <1 50 ONES: Plag	- Chl (leve) Sericita ioclasas present	0,4 a 1,8 0,5 0,3 1,9 - - <0,1 <0,06 0,08 Variable an inclusiones fundidas didas. Los fenocristales	Euhedral Subhedral Euhedral Anhedral - - Anhedral Anhedral Subhedral Redondeadas. En algunos sectores predominan las ovaladas y alargadas y de apatito. Los piroxenos s de piroxeno aparecen en				
Plagioclasa Piroxenos Óxidos de Fe-Tri Olivino Matriz/MF Vidrio Piroxeno Plagioclasas Óxidos de Fe-Tri Vesículas	4 1 i <1 93 ~90 <1 <1 i <1 50 DNES: Plagién tienen i	- Chl (leve) Sericita ioclasas present nclusiones fun plagioclasas. És	0,4 a 1,8 0,5 0,3 1,9 - <0,1	EuhedralSubhedralEuhedralAnhedralAnhedralAnhedralSubhedralRedondeadas. En algunos sectores predominan las ovaladas y alargadasy de apatito. Los piroxenos s de piroxeno aparecen en como cristales individuales,				

A	A-22	20218-1M	la	· · · · · · · · · · · · · · · · · · ·	
Coordenadas	18 4.9	G 22.106 N	/ 662.217 E	1000	
Localidad	Co	no Despla	yado (Oeste)		PX PLG PX
Clasificación	Ρόι	nez			PLG
Textura	Ve	sicular, gl	omeroporfírica	19 P.	0,5 mm
Índice de	<6			Aumento: 10X	Luz: NC
color					
Composición		%	Alteración	Tamaño (mm)	Forma
Composición Fenocristales		% ~15	Alteración	Tamaño (mm)	Forma
Composición Fenocristales Plagioclasa		% ~15 9	Alteración -	Tamaño (mm) 0,6 a 3,5	Forma Subhedrales
Composición Fenocristales Plagioclasa Piroxenos		% ~15 9 5	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7	Forma Subhedrales Subhedrales a anhedrales
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti		%₀ ~15 9 5 <1	Alteración - Chl (leve) -	Tamaño (mm) 0,6 a 3,5 0,7 0,3	Forma Subhedrales Subhedrales a anhedrales Anhedrales
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF		% ~15 9 5 <1	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3	Forma Subhedrales Subhedrales a anhedrales Anhedrales -
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF Vidrio	i	•% ~15 9 5 <1 ~85 82	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 -	Forma Subhedrales Subhedrales a anhedrales Anhedrales -
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF Vidrio Plagioclasa		•% ~15 9 5 <1 ~85 82 1	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - -
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF Vidrio Plagioclasa Piroxeno		% ~15 9 5 <1	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - - Euhedral a anhedral Anhedral
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Tri Matriz/MF Vidrio Plagioclasa Piroxeno Apatito	i	% ~15 9 5 <1	Alteración Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - Euhedral a anhedral Anhedral Euhedral
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF Vidrio Plagioclasa Piroxeno Apatito Vesículas	i 	% ~15 9 5 <1	Alteración Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - - Euhedral a anhedral Anhedral Euhedral Redondeadas la mayoría,
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF Vidrio Plagioclasa Piroxeno Apatito Vesículas	l	% ~15 9 5 <1	Alteración Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - Euhedral a anhedral Anhedral Euhedral Redondeadas la mayoría, algunas ovaladas.
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Tri Matriz/MF Vidrio Plagioclasa Piroxeno Apatito Vesículas OBSERVACIO		% ~15 9 5 <1	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - - Euhedral a anhedral Anhedral Euhedral Redondeadas la mayoría, algunas ovaladas. utilo, epídota y apatito. Éste
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF Vidrio Plagioclasa Piroxeno Apatito Vesículas OBSERVACIO último también	DNE se ei	% ~15 9 5 <1	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - - Euhedral a anhedral Anhedral Euhedral Redondeadas la mayoría, algunas ovaladas. utilo, epídota y apatito. Éste os cristales de gran tamaño
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Ti Matriz/MF Vidrio Plagioclasa Piroxeno Apatito Vesículas OBSERVACIO último también aparecen en ag	DNE se ei rega	% ~15 9 5 <1	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - - Euhedral a anhedral Anhedral Euhedral Redondeadas la mayoría, algunas ovaladas. utilo, epídota y apatito. Éste os cristales de gran tamaño entan inclusiones fundidas.
Composición Fenocristales Plagioclasa Piroxenos Óxidos de Fe-Tri Matriz/MF Vidrio Plagioclasa Piroxeno Apatito Vesículas OBSERVACIO último también aparecen en ag Cristales de pla	DNE se ei regaa giocl	% ~15 9 5 <1	Alteración - Chl (leve)	Tamaño (mm) 0,6 a 3,5 0,7 0,3 - <0,07	Forma Subhedrales Subhedrales a anhedrales Anhedrales - - Euhedral a anhedral Anhedral Euhedral Euhedral Redondeadas la mayoría, algunas ovaladas. utilo, epídota y apatito. Éste os cristales de gran tamaño entan inclusiones fundidas.

AA	A-250218-1J	a					
Coordenadas	18 G 4.898.109	N / 677.470 E	P	KS PLG			
Localidad	Río Chifló	n					
Clasificación	Pómez						
Textura	Vesicular,	vitrofídica	OXIDOS Fe-Fi	1 mm			
Índice de	<4		Aumento: 5X	Luz: LPP			
Composición	0/2	Alteración	Tamaño (mm)	Forma			
Fenocristales	10	Anteración		-			
Plagioclasa	7	_	06216	Subhedral			
Piroxeno	2	-	0.4	Anhedral			
Olivino	1	- 24	0,1	Anhedral			
Matriz/MF	90	-	-				
Vidrio	87	_	15				
Plagioclasa	1	-					
Óxidos de Fe-Ti	i 1	_	<0.2				
Piroxenos	<1	_	<0.2	Anhedral			
Vesículas	40	-	0,08 a >1	Alargadas las más grandes. Vesículas de menor tamaño son redondeadas y ovaladas.			
OBSERVACIO apatitos. Los cri donde predomin	DNES: Crist istales de m	ales de plagiocl ayor tamaño de	asa presentan inclusion piroxeno y plagioclasa	es fundidas de color pardo y a se encuentran en cúmulos,			

A	A-25	50218-1L	b		100	- NY	
Coordenadas	18 4.8	G 98.109 N	I / 677.	.470 E		14. 2. 2. 2. 2.	
Localidad	Río	o Chiflón					PXS
Clasificación	Póı	mez			PXS		
Textura	Ve	sicular, v	itrofíd	ica	A TO A	and the second s	1000 1 mm
Índice de	<3				Aumento: 5X		Luz: LPP
color				* * *	* *		
color Composición		%	Alt	eración	Tamaño (mm)		Forma
color Composición Fenocristales		% 5	Alt	eración	Tamaño (mm)	-	Forma
color Composición Fenocristales Plagioclasa		% 5 3	Alt - -	eración	Tamaño (mm) - 0,4 - 1	- Subł	Forma
colorComposiciónFenocristalesPlagioclasaPiroxenos		% 5 3 2	Alt - - -	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2	- Subł Anho	Forma nedral edral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MF		% 5 3 2 95	Alt - - - -	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 -	- Subł Anho	Forma nedral edral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrio		% 5 3 2 95 ~92	Alt - - - -	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 - - -	- Subl Anho -	Forma nedral edral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxeno		% 5 3 2 95 ~92 <1	Alt	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 <0,8	- Subh Anho - - Anho	Forma nedral edral edral – Subhedral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxenoPlagioclasas		% 5 3 2 95 ~92 <1	Alt	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 <0,8 0,1 - 0,2	- Subł - - - Anho Subł	Forma nedral edral edral – Subhedral nedral – Euhedral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxenoPlagioclasasÓxidos de Fe-Tri		% 5 3 2 95 ~92 <1	Alt - - - - - - - - - -	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 - <0,8	- Subł Anho - - Subł Subł	Forma nedral edral edral – Subhedral nedral – Euhedral nedral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxenoPlagioclasasÓxidos de Fe-TriVesículas	 	% 5 3 2 95 ~92 <1	Alt	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 <0,8 0,1 - 0,2 <0,2 ~0,1 a ~1	- Subł - - Anho Subł Subł Redo	Forma nedral edral edral – Subhedral nedral – Euhedral nedral – Euhedral nedral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxenoPlagioclasasÓxidos de Fe-TiVesículas		% 5 3 2 95 ~92 <1	Alt	eración	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 - <0,8	- Subr - - Subr Subr Redo (alar	Forma nedral edral – Subhedral nedral – Euhedral nedral – Euhedral nedral – Dehedral nedral – Euhedral
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxenoPlagioclasasÓxidos de Fe-TiVesículasOBSERVACIO		% 5 3 2 95 ~92 <1	Alt	e menor	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 - <0,4 - 1,2	- Subł - - Subł Subł Reda (alar das, n	Forma nedral edral – Subhedral nedral – Euhedral nedral – Euhedral nedral ondeadas y ovaladas gadas) nientras que las más
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxenoPlagioclasasÓxidos de Fe-TriVesículasOBSERVACIOgrandes son mát	i DNE is re	% 5 3 2 95 ~92 <1	Alt - - - - - - - ulas d as. Se	e menor observa	Tamaño (mm) - 0,4 - 1 0,4 - 1,2 - <0,8	- Subł Anho - Subł Subł Redo (alar das, n esícula	Forma nedral edral – Subhedral edral – Subhedral nedral – Euhedral nedral ondeadas y ovaladas (gadas) nientras que las más as muy alargadas en
colorComposiciónFenocristalesPlagioclasaPiroxenosMatriz/MFVidrioPiroxenoPlagioclasasÓxidos de Fe-TriVesículasOBSERVACIOgrandes son máalgunas zonas, e	i DNE ás re espec	% 5 3 2 95 ~92 <1	Alt - - - - - - - ulas d as. Se rodean	e menor observa ndo a las	Tamaño (mm) - $0,4 - 1$ $0,4 - 1,2$ - - $<0,8$ $0,1 - 0,2$ $<0,2$ $<0,1$ a ~1 tamaño son ovalade textura fibrosa y v	- Subł - - Subł Subł Redo (alar das, n esícula	Forma nedral edral – Subhedral edral – Euhedral nedral – Euhedral nedral ondeadas y ovaladas gadas) nientras que las más as muy alargadas en o. Se observa cúmulo

ANEXO III

GEOQUÍMICA DE MINERALES, VIDRIO Y ROCA TOTAL

CORTES TRANSPARENTES.

Sección 1: Composición de vidrio.

<u>AA-260217-1B</u>

AA-220217-1M

<u>AA-250217-1J</u>

Punto	TOTAL	Si02 wt%	Al2O3 wt%	CaO wt%	TiO2 wt%	Na2O wt%	MgO wt%	K20 wt%	Cl wt%	FeO wt%	MnO wt%	SO3 wt%	P205 wt%	H2O wt% by difference*
26glass-1	100	69,2636985	15,3990661	1,77186064	0,6233814	5,27047102	0,61416957	3,72153817	0,15977354	2,9017935	0,12306312	0,01244911	0,1387353	0,172222647
26glass-2	100	69,5857747	15,378707	1,65319824	0,63059861	5,14838451	0,64028516	3,57986544	0,1328607	2,93026588	0,12774638	0,01883624	0,17347709	0,151696935
26glass-3	100	69,7657957	15,3801075	1,61551294	0,69543299	5,12858072	0,62008044	3,5436249	0,13845337	2,85957265	0,10705828	0,00846848	0,13731199	0,146921853
26glass-4	100	69,5066225	15,2842445	1,53583284	0,6681654	5,36707284	0,61733629	3,65361211	0,14314623	2,9103342	0,14410442	0,01675255	0,15277612	0,159898784
26glass-5	100	69,808748	15,3107779	1,62072071	0,57035255	5,2429679	0,63140387	3,52667171	0,14226709	2,8873685	0,13612674	0,01450619	0,10808891	0,156773289
26glass-6	100	69,5554536	15,2982295	1,62241818	0,6317651	5,31635846	0,62972617	3,59631754	0,137397	3,00239845	0,07307895	0,00340133	0,13345568	0,140798331
26glass-7	100	69,3447818	15,4914935	1,60181892	0,67501864	5,25718208	0,64659238	3,57858268	0,13582894	2,99979668	0,11089158	0,02462913	0,13338371	0,160458066
26glass-8	100	69,6497008	15,4431294	1,62235637	0,57248184	5,10289552	0,58123623	3,65766652	0,15434597	2,98725267	0,09827124	0,00512485	0,12553858	0,159470818
26glass-9	100	69,6271153	15,5512587	1,66926785	0,61433563	4,94213574	0,62812413	3,77018916	0,14916582	2,92536944	0,06764995	0,04266828	0,01272002	0,1918341
26glass-10	100	69,7502165	15,5005559	1,50474186	0,66022505	5,10844505	0,5934987	3,62187854	0,11294678	2,84690268	0,14496134	0	0,15562767	0,112946776
26glass-11	100	69,5449813	15,3934524	1,54528748	0,61060347	5,41613305	0,55654138	3,65333118	0,13036366	2,93285046	0,10599539	0	0,11046023	0,130363657
26glass-12	100	69,4917717	15,5686083	1,58299078	0,65958153	5,29184011	0,58058005	3,57979251	0,15025689	2,88270802	0,09558721	0,01006396	0,1062189	0,160320856
22glass-1	100	65,5678244	15,8490821	2,66638301	1,04852031	5,47115653	1,14434166	3,15082104	0,13031621	4,45117507	0,2029341	0,05237514	0,26507044	0,182691357
22glass-2	100	65,8127874	15,7206965	2,65945026	1,14362339	5,20996585	1,18440869	3,09708474	0,12140498	4,51847147	0,17105852	0,04589098	0,31515721	0,16729596
22glass-3	100	66,2787386	15,7415174	2,43273999	1,04531701	5,14478064	1,10351061	3,27142932	0,13135843	4,41097477	0,1302735	0,04684426	0,26251542	0,178202693
22glass-4	100	66,0570379	15,6813007	2,50743753	1,05639326	5,42568735	1,08337258	3,2321855	0,13120188	4,27139538	0,17190159	0,05959131	0,32249499	0,19079319
22glass-5	100	65,5416326	15,9113325	2,64475894	1,12743231	5,04968448	1,33378004	3,19777532	0,10869489	4,49378368	0,1362025	0,08962725	0,3652955	0,198322135
22glass-6	100	65,1558319	15,9024582	2,79554026	1,16535916	5,26701373	1,2872498	2,96301339	0,11333988	4,82116763	0,15959133	0,0768243	0,29261041	0,19016418
22glass-7	100	65,1769608	15,9964984	2,84164107	1,1589776	5,54759701	1,28593361	2,89539731	0,11262408	4,53854949	0,12494309	0,03341524	0,28746234	0,146039323
22glass-8	100	65,1382069	15,9758353	2,8500224	1,15107773	5,28099392	1,30978129	3,00133736	0,12838808	4,60504778	0,15231928	0,04859621	0,35839368	0,176984296
22glass-9	100	65,9751078	15,855138	2,50477537	1,08359231	5,38162034	1,18300214	3,06533608	0,12381381	4,39665265	0,12808818	0,01974204	0,28313128	0,143555848
22glass-10	100	65,0487855	15,7173001	2,86486612	1,11462072	5,49705659	1,27506907	3,18055413	0,11931597	4,65146006	0,13429354	0,0508512	0,34582697	0,170167173
22glass-11	100	64,2958965	15,8707625	3,36411219	1,20894029	5,22977262	1,44036185	2,92534005	0,13629121	5,00005201	0,17455014	0,08223099	0,27168967	0,218522196
22glass-12	100	65,8530586	15,7383277	2,6457369	1,15458437	5,34521493	1,1810658	3,04804784	0,13098786	4,46321729	0,17096602	0,01922413	0,24956857	0,15021199
25glass-1	100	70,7134722	15,488039	1,20560228	0,51447051	5,00118981	0,48499329	3,66948338	0,16286846	2,54576169	0,10351818	0,01610294	0,09449822	0,178971407
25glass-2	100	70,6958553	15,5661087	1,26639563	0,51264965	5,20029839	0,46397071	3,66240169	0,14102124	2,37363545	0,10510973	0	0,01255346	0,141021244
25glass-3	100	70,558266	15,4051737	1,24147629	0,49060168	5,36614935	0,44901043	3,6506654	0,17620382	2,49759908	0,08435563	0,03044909	0,05004956	0,206652912
25glass-4	100	70,7854072	15,3259625	1,2356708	0,51214206	5,13018306	0,46560354	3,70873697	0,15499217	2,47061389	0,11618531	0,01146791	0,08303465	0,166460077
25glass-5	100	70,6807094	15,4637157	1,24456068	0,47606889	5,11091254	0,45397417	3,64202126	0,17992722	2,57054234	0,09058108	0,00408996	0,08289674	0,184017172
25glass-6	100	70,7958168	15,4367339	1,20859842	0,53364792	5,1204394	0,47951101	3,63237932	0,16284433	2,49832342	0,10668502	0,00412408	0,02089639	0,166968406
25glass-7	100	70,403831	15,3913639	1,2712384	0,50504415	5,32016594	0,44339801	3,66813004	0,18035621	2,56830822	0,06229343	0,02719523	0,15867549	0,207551442
25glass-8	100	70,575382	15,1053462	1,32142832	0,52770973	5,4371399	0,44519669	3,76142547	0,16726907	2,44637823	0,11701736	0,01993605	0,07577095	0,187205126
25glass-9	100	70,5821701	15,4114934	1,26362791	0,48944902	5,30958924	0,47493975	3,72860973	0,16875724	2,37578539	0,10973405	0,03087092	0,05497315	0,199628166
25glass-10	100	70,5794749	15,280661	1,29417006	0,43777064	5,41824304	0,44352271	3,62676489	0,17728117	2,49985217	0,09279875	0,04111322	0,10834745	0,218394388
25glass-11	100	70,9027197	15,3707908	1,15163978	0,47143363	5,21737977	0,44359428	3,65696017	0,14975705	2,48183962	0,05796966	0,00823931	0,08767625	0,157996354
25glass-12	100	70,6264179	15,4643521	1,22870253	0,48696986	5,17244419	0,45340154	3,66470315	0,15398177	2,56149387	0,08773014	0,02057248	0,07923044	0,174554248

Tabla III.a: Composición normalizada de vidrios de muestras: AA-260217-1B, AA-220218-1M y AA-250218-1J.

*H₂O wt.% by difference: Total de volátiles igual a 100 wt.% menos total de elementos mayores medidos analíticamente (Devine y otros, 1995).

Sección 2: Inclusiones fundidas en plagioclasas.

AA-220218-1M

AA-250217-1J

0	TOTAL	Si02 wt%	Al2O3 wt%	CaO wt%	TiO2 wt%	Na20 wt%	MgO wt%	K20 wt%	Cl wt%	FeO wt%	MnO wt%	SO3 wt%	P2O5 wt%
	100	69,802892	15,474317	1,5215003	0,5871722	4,934461	0,6021814	3,7814749	0,1611353	2,8171755	0,1261674	0,05541146	0,1361124
	100	70,52919	15,193599	1,2851581	0,3693952	5,0596132	0,5978214	3,8553504	0,1472524	2,6993067	0,1085913	0,03044561	0,124277
	100	69,59087	15,550545	1,4926946	0,5971479	5,2349361	0,6403798	3,5231172	0,1654987	2,9455008	0,1213527	0,03118818	0,1067694
	100	68,601252	15,562697	1,6484446	0,8733712	5,3132098	0,6925853	3,5849085	0,1757167	3,234002	0,1308776	0,02523925	0,1576954
	100	69,841935	15,482468	1,5933987	0,6098884	5,125459	0,6249146	3,6030767	0,1790134	2,8042297	0,0648224	0,02367145	0,047123
	100	69,236574	15,452233	1,5599658	0,7880419	4,9788428	0,6573481	3,9380885	0,1871491	2,9500777	0,1380284	0,02232168	0,091329
	100	69,68342	15,487152	1,5644625	0,5832121	5,3418747	0,5635721	3,5868459	0,1704927	2,780107	0,1112959	4,1008E-06	0,1275609
	100	69,662458	15,526973	1,4591527	0,6069943	5,3235483	0,5736285	3,5506898	0,1613129	2,8194079	0,1229539	0,05639905	0,1364817
` 0	100	69,604085	15,511721	1,5252095	0,6431288	5,4110075	0,5693545	3,565504	0,1675201	2,6941809	0,1117968	0,059846	0,1366455
7	100	69,304225	15,537294	1,5834114	0,6470604	5,218139	0,6360807	3,6049119	0,1790105	3,0050792	0,0728108	0,05332669	0,1586508
-	100	65,651182	16,044961	2,4929844	1,2837118	5,4044455	0,993245	3,0231507	0,1712307	4,2761181	0,1669751	0,09378579	0,3982107
÷	100	65,360215	16,192326	2,5047588	1,2647582	5,6043663	0,9892792	3,0563839	0,161777	4,3546469	0,1300534	0,10266141	0,2787733
1	100	66,679955	15,783166	2,3767924	0,9182123	5,3441685	1,0069555	3,0476701	0,1440244	4,170711	0,1631846	0,06023893	0,3049206
Ţ.	100	66,478502	15,911063	2,3245175	0,9372646	5,5074028	0,9718907	3,2054101	0,1405863	3,9066037	0,1460065	0,08323878	0,387514
	100	67,148701	15,975027	2,2468916	0,8842362	5,2718455	0,9444393	3,1988551	0,1209352	3,8278328	0,0969173	0,02861881	0,2557001
5	100	67,706462	15,553965	2,1514009	0,8738521	5,4975968	0,9291575	3,2235359	0,1252761	3,5828371	0,1111886	0,04811151	0,1966162
5	100	66,410322	15,762543	2,3850606	1,0115156	5,3800881	1,0690437	3,1288051	0,1681252	4,2412029	0,1257689	0,0467981	0,2707269
5	100	66,270301	15,986202	2,3501191	1,0773459	5,4410685	0,9941417	3,1063088	0,1559142	4,1598061	0,16711	0,06863564	0,2230472
2	100	66,538938	15,855609	2,2754296	0,9612063	5,3386098	1,0205411	3,2049632	0,1395471	4,1409659	0,1302728	0,07835515	0,3155625
2	100	66,230685	15,851558	2,2871572	1,4894008	5,3892569	1,0000702	3,1145075	0,1492477	4,0418684	0,1146927	0,10289813	0,2286573
5	100	64,833223	16,069923	2,5159827	1,2569644	5,4871229	1,1523277	3,0682595	0,1764507	4,6654444	0,15048	0,1029935	0,5208273
÷,	100	69,391816	15,625883	1,4883643	0,6224492	5,3313109	0,6202742	3,4806358	0,1737897	2,9820244	0,1042196	0,05072763	0,1285052
	100	67,367048	16,164137	1,9537078	0,930334	5,2928381	0,7645686	3,4565323	0,1957675	3,4424222	0,1160197	0,06977315	0,2468523
2	100	68,630547	15,380665	1,7460372	0,857948	5,2436815	0,7562206	3,5255348	0,1730624	3,2399186	0,1146354	0,05187496	0,2798742
Ω,	100	69,740788	15,482159	1,5783035	0,6213168	5,2270898	0,5599891	3,5134122	0,154098	2,8733224	0,0949154	0,03110084	0,1235048
Ω,	100	69,27853	15,502503	1,6514218	0,8244438	4,9543167	0,6695246	3,4921867	0,1840302	3,0342074	0,1284399	0,04130815	0,2390872
ŝ	100	69,4356	15,534046	1,6941398	0,7040698	5,0782462	0,6657968	3,5055006	0,1658497	2,9688973	0,1034401	0,03298798	0,1114259
4	100	69,871153	15,424057	1,6559515	0,6736281	4,959445	0,684806	3,5191296	0,1400346	2,7728542	0,1176113	0,02134116	0,159988
2	100	67,499888	16,040756	1,9239284	0,9685471	5,1989144	0,7378868	3,4555487	0,2185222	3,5333031	0,1446016	0,05438451	0,2237186
2	100	69,39272	15,345814	1,5723844	0,8167698	5,1450223	0,6602286	3,4055238	0,1585344	3,0691526	0,1037555	0,04881058	0,2812837
9	100	69,060945	15,514129	1,7414964	0,6889505	5,2120364	0,6709522	3,570534	0,1580858	3,1985382	0,0622548	0,03637008	0,0857068

Tabla III.b: Composición normalizada de inclusiones en plagioclasas de muestras: AA-260217-1B, AA-220218-1M y AA-250218-1J.

Nota: primer número del código corresponde al primer número de la muestra, el segundo al número de inclusión y el tercero al número de la plagioclasa respectiva.

	TOTAL	L SiO2 wt%	Al2O3 wt%	CaO wt%	Na2O wt%	K20 wt%	FeO wt%	%An	%Ab	%Or
26pg1	100	60,414733	24,971946	6,425587	7,2196561	0,5374958	0,430583	47,246956	48,045371	4,7076736
26pg2	100	58,083679	26,463709	8,2317992	6,3635528	0,38471	0,4725491	56,93617	39,887105	3,1767244
26pg3	100	60,742856	24,663776	6,3424497	7,2575639	0,5510563	0,442298	46,754285	48,408457	4,8372574
26pg4	100	59,122353	25,755544	7,1448448	7,0134038	0,4791709	0,4846834	50,809718	45,132364	4,0579176
26pg5	100	58,773917	25,963069	7,5117012	6,8491594	0,4514248	0,4507291	52,725748	43,501462	3,7727905
26pg6	100	59,224828	25,803516	7,3183986	6,765187	0,449475	0,4385959	52,367723	43,80248	3,8297967
26pg7	100	59,144522	25,728751	7,4584448	6,7205411	0,4407625	0,5069786	53,028757	43,239023	3,7322198
22pg1	100	58,499703	26,255292	7,8946682	6,4749503	0,3933551	0,4820314	55,50903	41,197057	3,2939131
22pg2	100	57,199685	27,053351	8,6569696	6,2782115	0,3497792	0,4620036	58,666442	38,509396	2,824162
25pg1	100	57,382248	27,004863	8,578522	6,2274468	0,3497876	0,4571321	58,637014	38,515981	2,8470048
25pg2	100	58,706042	26,145703	7,8440125	6,4484957	0,3928115	0,4629356	55,445392	41,248072	3,306536
25pg3	100	58,630462	26,082527	7,7068146	6,7068112	0,4169279	0,4564566	54,00231	42,519264	3,4784258
25pg4	100	58,818826	25,893997	7,5891063	6,7912156	0,4303932	0,4764616	53,271528	43,131305	3,5971674
25pg5	100	57,774195	26,669196	8,4360339	6,2518215	0,3549953	0,5137585	58,113037	38,974508	2,9124547
25pg6	100	60,334704	24,987278	6,5772399	7,1313868	0,5037192	0,4656726	48,258037	47,341253	4,4007105

Tabla III.c: Composición de plagioclasas con inclusiones de las muestras respectivas.

Sección 3: Inclusiones fundidas en piroxenos.

X 800 15.0KV COMPO NOR WD 10.9mm 21:29:30

Tabla III.d: Composición de inclusiones	en <mark>piroxenos</mark>	de las	respectivas	muestras.

	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	TiO2 wt%	Na2O wt%)
26inc-1px1	100	69,807892	15,353495	1,1044942	0,6700639	5,4573564	-
26inc-1px2	100	69,813619	15,355876	1,4287535	0,6673555	5,2765051	_
22inc-1px1	100	64,907082	16,109365	2,9740287	1,2060216	5,1804483	-
22inc-2px1	100	65,017468	16,199997	2,8700503	1,1386876	5,0569802	
22inc-1px2	100	67,628073	15,310664	1,8874505	0,8409378	5,3490324	_
25inc-1px1	100	68,465477	15,894977	1,7901659	0,7642398	5,2446756	-
25inc-1px2	100	69,20204	15,608863	1,9934166	0,557661	5,2577436	
	MgO wt%	K2O wt%	Cl wt%	FeO wt%	MnO wt%	SO3 wt%	P2O5 wt%
26inc-1px1	MgO wt% 0,50301	K2O wt% 3,7219876	Cl wt% 0,1691647	FeO wt% 2,904926	MnO wt% 0,1336875	SO3 wt% 0,037122	P2O5 wt% 0,1368011
26inc-1px1 26inc-1px2	MgO wt% 0,50301 0,5104	K2O wt% 3,7219876 3,5237322	Cl wt% 0,1691647 0,1843475	FeO wt% 2,904926 2,9854133	MnO wt% 0,1336875 0,1104263	SO3 wt% 0,037122 0,0147626	P2O5 wt% 0,1368011 0,1288092
26inc-1px1 26inc-1px2 22inc-1px1	MgO wt% 0,50301 0,5104 1,318008	K2O wt% 3,7219876 3,5237322 2,6999119	Cl wt% 0,1691647 0,1843475 0,145207	FeO wt% 2,904926 2,9854133 4,9100056	MnO wt% 0,1336875 0,1104263 0,1537066	SO3 wt% 0,037122 0,0147626 0,121223	P2O5 wt% 0,1368011 0,1288092 0,2749922
26inc-1px1 26inc-1px2 22inc-1px1 22inc-2px1	MgO wt% 0,50301 0,5104 1,318008 1,247376	K2O wt% 3,7219876 3,5237322 2,6999119 2,6515366	Cl wt% 0,1691647 0,1843475 0,145207 0,1415394	FeO wt%2,9049262,98541334,91000565,0307229	MnO wt% 0,1336875 0,1104263 0,1537066 0,1577478	SO3 wt% 0,037122 0,0147626 0,121223 0,1077093	P2O5 wt% 0,1368011 0,1288092 0,2749922 0,3801846
26inc-1px1 26inc-1px2 22inc-1px1 22inc-2px1 22inc-1px2	MgO wt% 0,50301 0,5104 1,318008 1,247376 0,893583	K2O wt% 3,7219876 3,5237322 2,6999119 2,6515366 3,3833233	Cl wt% 0,1691647 0,1843475 0,145207 0,1415394 0,1580215	FeO wt%2,9049262,98541334,91000565,03072294,1563726	MnO wt% 0,1336875 0,1104263 0,1537066 0,1577478 0,1711859	SO3 wt% 0,037122 0,0147626 0,121223 0,1077093 0,0365028	P2O5 wt% 0,1368011 0,1288092 0,2749922 0,3801846 0,184854
26inc-1px1 26inc-1px2 22inc-1px1 22inc-2px1 22inc-1px2 25inc-1px1	MgO wt% 0,50301 0,5104 1,318008 1,247376 0,893583 0,706699	K2O wt% 3,7219876 3,5237322 2,6999119 2,6515366 3,3833233 3,2489	Cl wt% 0,1691647 0,1843475 0,145207 0,1415394 0,1580215 0,1713118	FeO wt%2,9049262,98541334,91000565,03072294,15637263,385215	MnO wt%0,13368750,11042630,15370660,15774780,17118590,1142365	SO3 wt% 0,037122 0,0147626 0,121223 0,1077093 0,0365028 0,0508798	P2O5 wt% 0,1368011 0,1288092 0,2749922 0,3801846 0,184854 0,1632224

	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	K2O wt%	MgO wt%	Na2O wt%	TiO2 wt%	Cr2O3 wt%	FeO wt%	MnO wt%
26px1	100	51,512297	1,5949874	20,310302	0	15,316979	0,3956143	0,616477	0,000867	9,6498294	0,6026465
26px2	100	51,780316	1,7517366	19,401361	0	15,167266	0,4169157	0,7135522	0,0054561	10,128413	0,6349834
22px1	100	50,132932	3,6373664	19,448555	0,0040585	14,179376	0,480472	1,2595766	0	10,405717	0,4519459
22px2	100	52,636853	0,5592386	1,5196452	6,842E-05	24,719287	0,0374136	0,3144629	0,0007608	19,098913	1,113358
25px1	100	51,441848	1,4205392	20,152857	0,0040333	15,421255	0,3958825	0,6133989	0,0040487	9,9409361	0,6052019
25px2	100	49,616412	2,8579107	19,639785	0,0013177	14,331945	0,4665224	1,1391662	0,0026111	11,291624	0,6527062
					0/ 337-	0/ T	0/ T -				
					% WO	%En	%re	_			
				26px1	% W0 41,31919	%En 43,357401	%Fe 15,323408	-			
				26px1 26px2	41,31919 40,07666	%En 43,357401 43,592794	%Fe 15,323408 16,330541	_			
				26px1 26px2 22px1	% W0 41,31919 40,07666 41,11771	43,357401 43,592794 41,71069	%Fe 15,323408 16,330541 17,171601	-			
				26px1 26px2 22px1 22px2	% W0 41,31919 40,07666 41,11771 2,990172	%6En 43,357401 43,592794 41,71069 67,676868	%Fe 15,323408 16,330541 17,171601 29,33296	-			
				26px1 26px2 22px1 22px2 25px1	% W0 41,31919 40,07666 41,11771 2,990172 40,82039	%En 43,357401 43,592794 41,71069 67,676868 43,462515	%Fe 15,323408 16,330541 17,171601 29,33296 15,717097	-			
				26px1 26px2 22px1 22px2 25px1 25px2	% W0 41,31919 40,07666 41,11771 2,990172 40,82039 40,58162	%En 43,357401 43,592794 41,71069 67,676868 43,462515 41,205813	%Fe 15,323408 16,330541 17,171601 29,33296 15,717097 18,212568	- - -			

Tabla III.e: Composición de piroxenos con inclusiones de las respectivas muestras.

Sección 4: Olivino de muestra AA-260217-1B.

X 82 15.0KV COMP N0 X 82 N0 N0

<u>Composición (n</u>	<u>ormalizada)</u>
SiO2 wt%	53,06292
Al2O3 wt%	18,447681
CaO wt%	12,59209
TiO2 wt%	1,3197799
Na2O wt%	3,3055221
MgO wt%	2,7149334
K2O wt%	0,809938
Cl wt%	0,0494411
FeO wt%	6,8954971
MnO wt%	0,1146624
SO3 wt%	0,3874142
P2O5 wt%	0,3001206
TOTAL	100

Inclusión fundida

Perfil composicional

Tabla III.f: Perfil composicional (flecha roja) normalizado en olivino de la muestra AA-260217-1B.

Distancia desde el borde	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	MgO wt%	MnO wt%	Cr2O3 wt%	FeO wt%	NiO wt%	%Fo	%Fa
0	100	36,677026	0,031407	0,342978	33,463152	0,501243	0,036738	28,93344	0,014018	67,338193	32,661807
3	100	37,522877	0,023079	0,343557	36,050276	0,439771	0,019074	25,55803	0,043337	71,545702	28,454298
6	100	38,503868	0,690182	0,625613	34,03347	0,428783	0,035463	25,65279	0,029827	70,282071	29,717929
9	100	38,242766	0,598281	0,315566	36,505432	0,348977	0,023737	23,91743	0,047814	73,124098	26,875902
12	100	38,546626	0,035897	0,248714	39,965007	0,369505	0,019786	20,75468	0,059785	77,43968	22,56032
15	100	38,863058	0,03732	0,26447	41,536319	0,268678	0,016587	18,92053	0,093038	79,647305	20,352695
18	100	39,494099	0,031587	0,254803	43,662857	0,217341	0,019072	16,22474	0,095498	82,750325	17,249675
21	100	39,481509	0,032179	0,242274	44,166471	0,21099	0,033709	15,73181	0,101059	83,346073	16,653927
24	100	39,546865	0,029515	0,241914	44,241012	0,255068	0,035578	15,52149	0,128557	83,555237	16,444763
27	100	39,702709	0,024229	0,247742	44,31395	0,230418	0,002996	15,36261	0,115345	83,718589	16,281411
30	100	39,68917	0,033978	0,237693	44,257172	0,226771	0,012024	15,44268	0,100514	83,630066	16,369934
33	100	39,606682	0,039697	0,243622	44,30463	0,255845	0,022835	15,40659	0,120099	83,676714	16,323286
36	100	39,77921	0,038434	0,237241	44,346304	0,220825	0,026749	15,23781	0,113429	83,839359	16,160641

ación.	ΟT	10
Tabla III.f: Continua	Distancia desde el borde	ç

istancia desde		Si02	AI2O3	CaO	MgO	OnM	Cr203	FeO	NiO		
el borde	IUIAL	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	70F0	%0Fa
42	100	39,685404	0,043606	0,219919	44,177233	0,248742	0,021395	15,5129	0,090797	83,543014	16,456986
45	100	39,724365	0,008806	0,231702	44,323055	0,221319	0,005274	15,35271	0,132774	83,730178	16,269822
48	100	39,749327	0,019907	0,238011	44,404017	0,218825	0,025186	15,24654	0,09819	83,849219	16,150781
51	100	39,532827	0,028773	0,236141	44,439506	0,245386	0,017689	15,38579	0,113888	83,736597	16,263403
54	100	39,562411	0,030173	0,24423	44,370557	0,232041	0,011266	15,41742	0,131907	83,687426	16,312574
57	100	39,585386	0,024061	0,23855	44,378326	0,225563	0,023325	15,42237	0,102415	83,685428	16,314572
60	100	39,424325	0,02404	0,237363	44,419252	0,247822	0,024405	15,4967	0,12609	83,632299	16,367701
63	100	39,627096	0,038472	0,22483	44,353908	0,261382	0,016573	15,36657	0,111172	83,727364	16,272636
99	100	39,439967	0,027294	0,232859	44,376846	0,228869	0,034956	15,52383	0,135378	83,59525	16,40475
69	100	39,442266	0,030495	0,236107	44,382815	0,227703	0,036056	15,52832	0,116234	83,593127	16,406873
72	100	39,631592	0,02435	0,227458	44,323139	0,246287	0,038377	15,37919	0,129608	83,706711	16,293289
75	100	39,500491	0,024381	0,224519	44,413235	0,231602	0,027102	15,44492	0,133747	83,676214	16,323786
78	100	39,437535	0,025236	0,245842	44,501758	0,216036	0,021428	15,43916	0,11301	83,708487	16,291513
81	100	39,514885	0,046455	0,252402	44,437315	0,243788	0,02865	15,38002	0,09649	83,741036	16,258964
84	100	39,473227	0,012614	0,216153	44,371204	0,275157	0,023296	15,51993	0,108423	83,596956	16,403044
87	100	39,578782	0,021784	0,238927	44,418115	0,258472	0,027183	15,35094	0,105798	83,760906	16,239094
06	100	39,57402	0,019105	0,226086	44,325985	0,234811	0,035415	15,46647	0,118103	83,630255	16,369745
93	100	39,502042	0,045857	0,227512	44,558242	0,242257	0,017451	15,28268	0,123956	83,864101	16,135899
96	100	39,402857	0,049159	0,219532	44,418123	0,251297	0,012062	15,52878	0,118192	83,603627	16,396373
66	100	39,390531	0,033486	0,245839	44,333683	0,234468	0,014288	15,63866	0,109047	83,480519	16,519481
102	100	39,394084	0,038948	0,242349	44,56927	0,22959	0,027973	15,38979	0,107996	83,772732	16,227268
105	100	39,41325	0,030533	0,235961	44,678894	0,238635	0,037613	15,23508	0,130038	83,942756	16,057244
108	100	39,371188	0,050295	0,223308	44,603021	0,208784	0,006063	15,426	0,111338	83,751061	16,248939
111	100	39,253512	0,046807	0,243721	44,547987	0,211437	0,003035	15,59308	0,100422	83,586996	16,413004

Matriz circundante.

Tabla III.g: Composición normalizada de minerales y vidrio en masa fundamental que roda a olivino de la muestra AA-260217-1B.

Model constraints Constraints <th>TOTAL SiO2 wt% Al2O3 wt% CaO wt% MgO wt% MnO wt% 100 38,62977 0,3782818 0,3945107 37,748863 0,3815946 100 37,983654 0,0349461 0,361911 37,950802 0,4238854 100 37,983654 0,0349461 0,361911 37,950802 0,4238854 100 37,983654 0,0349461 0,361911 37,950802 0,4238854</th>	TOTAL SiO2 wt% Al2O3 wt% CaO wt% MgO wt% MnO wt% 100 38,62977 0,3782818 0,3945107 37,748863 0,3815946 100 37,983654 0,0349461 0,361911 37,950802 0,4238854 100 37,983654 0,0349461 0,361911 37,950802 0,4238854 100 37,983654 0,0349461 0,361911 37,950802 0,4238854
Solution Number of the system	100 38,527999 0,3684454 0,4778781 36,564197 (100 38,375635 0,007606 0,3460451 37,581143 (100 38,346583 0,1143554 0,3373076 38,227701 (100 38,346583 0,1143554 0,3373076 38,227701 (100 38,346583 0,1143554 0,3373076 38,227701 (
357528 $0,4553743$ $2,701798$ $0,043371$ $11,769065$ $0,1743964$ $46,638999$ $33,744924$ $19,616077$ 349529 $0,402838$ $2,6741779$ $0,2291553$ $9,8897132$ $0,1485762$ $45,77891$ $37,413481$ $16,807608$ 349289 $0,0195807$ $13,529607$ $0,2072025$ $46,449692$ $30,445393$ $23,104915$ 001104 $0,4748749$ $2,5987168$ $0,0195807$ $13,529607$ $0,2072025$ $46,449692$ $30,445393$ $23,104915$ 550075 $0,8554572$ $0,070935$ $0,220134$ $77,277175$ $21,587084$ $1,135741$ $20,445395$ $1,72712$ 285221 $1,2849637$ $0,118263$ $0,1738061$ $72,317415$ $25,955465$ $1,72712$ 285521 $1,2849637$ $0,118263$ $0,1738061$ $72,317415$ $25,955465$ $1,72712$ 200 w' MO MO MO MO MO MO 961221 $0,0085812$ $1,0761572$ $30,446614$ $29,596937$ $0,2370198$ 961221 $0,0085812$ $1,0761572$ $30,446614$ $29,596937$ $0,2370198$ 501068 $1,4486497$ $3,1554224$ $0,106288$ $5,1995752$ $0,0947927$ $0,0603615$ 501058 $1,4486497$ $3,1554224$ $0,106288$ $5,1995752$ $0,0947927$ $0,0636155$ 501058 $1,4286497$ $3,1554224$ $0,106286144$ $5,1995752$ $0,0947927$ $0,0261445$ 50105881 $1,4214875$ $3,226212981$ <	100 44,432063 6,5198791 21,914455 0 100 45,657417 6,8811974 21,743244 0.0208705
549359 $0,4023535$ $2,0741179$ $0,2297168$ $0,0195807$ $13,529607$ $0,2072025$ $46,449692$ $30,445393$ $23,104915$ 001104 $0,4748749$ $2,5987168$ 0.0195807 $13,529607$ $0,2072025$ $46,449692$ $30,445393$ $23,104915$ 550075 $0,8554572$ $0,070935$ $0,2200134$ $77,277175$ $21,587084$ $1,135741$ 285221 $1,2849637$ $0,118263$ $0,1758061$ $72,317415$ $25,955465$ $1,72712$ 285221 $1,2849637$ $0,118263$ $0,1758061$ $72,317415$ $25,955465$ $1,72712$ 20 w' $Na2O$ w' NaO w' NaO w' 961221 $0,0085812$ $1,0761572$ $30,446614$ $29,596937$ $0,2370198$ 803 w' 20 w' MO w' MO w' MO w' Na 20 w' MO w' MO w' Na Na' 20 w' MO w' MO w' Na' Na' 20 w' MO w' Na' Na' Na' Na' 20 w' MO w' Na' Na' Na' Na' 2165366 $0,0669444$ $5,199572$ $0,0649465$ 0 $0,0603615$ 2165386 $1,4214875$ $3,1554224$ $0,106288$ $5,1995752$ $0,0947927$ $0,0634277$ $0,2139433$ 2164288 $1,4214875$ $3,2122981$ $0,10628$	100 45,204572 6,3737422 21,841211 0,0205604 1
O wt% FeO wt% T/O2 wt% MgO wt% %An %Ab %Or 550075 0,8554572 0,070935 0,2200134 77,277175 21,587084 1,135741 285221 1,2849637 0,118263 0,1758061 77,271175 21,587084 1,135741 285221 1,2849637 0,118263 0,1758061 77,27115 21,587084 1,12712 285221 1,2849637 0,118263 0,1758061 77,27115 21,5712 961221 0,0085812 1,0761572 30,446614 29,596937 0,2370198 961221 0,0085812 1,0761572 30,446614 29,596937 0,2370198 961221 0,0085812 1,0761572 30,446614 29,596937 0,2370198 961221 0,0085814 4,2360345 0,10628 5,199575 0,0044965 0 200 wt% MgO wt% MBO wt% MD wt% SO3 wt% 8,0503655 0,10503615 214288 1,4214875 3,1554224 0,106288 5,1995752 0,09	100 45,03726 6,8848855 21,230554 0,0162136 1
550075 0,8554572 0,070935 0,2200134 77,27175 21,587084 1,135741 285221 1,2849637 0,118263 0,1758061 72,317415 25,955465 1,72712 285221 1,2849637 0,118263 0,1758061 72,317415 25,955465 1,72712 20 wt% Na2O wt% TiO2 wt% Cr2O3 wt% FeO wt% MinO wt% 261221 0,0085812 1,0761572 30,446614 29,596937 0,2370198 20 wt% MgO wt% K20 wt% C1 wt% FeO wt% MinO wt% SO3 wt% P2O5 wt% 716536 0,0967944 4,2360345 0,10746 0,0649465 0 0,0603615 501058 1,421487 3,1554224 0,106288 5,1995752 0,0944965 0 0,0603615 214288 1,4214873 3,1554224 0,106288 5,1995752 0,0924145 0,2139433 244288 1,4214873 3,1554229 0,0968044 5,1995752 0,09256145 0,1767343 244288	TOTAL SiO2 wt% Al2O3 wt% CaO wt% Na2O wt% F
Common Na2O wt% TiO2 wt% Cr2O3 wt% FeO wt% MinO wt% MinO wt% Partial State Partin State Partial State P	100 52,510743 29,75267 12,558053 3,8771211 0,1 100 54,328362 27,951506 11,39322 4,5193575 0,2
961221 0.0085812 1.0761572 30,446614 29,596937 0,2370198 20 wt% MgO wt% K20 wt% C1 wt% FeO wt% MnO wt% SO3 wt% P2O5 wt% 716536 0,0967944 4,2360345 0,1280057 0,70746 0,0649465 0 0,06603615 501058 1,4486497 3,1554224 0,106288 5,1995752 0,0947927 0,0633615 244288 1,4214875 3,2312391 0,1062804 5,5189551 0,1277713 0,0926145 0,1767343 474448 1,3803321 2,3212981 0,1336733 4,5939931 0,1016155 0,3314571	TOTAL SiO2 wt% Al2O3 wt% CaO wt% K20 wt% M
20 wt% MgO wt% K20 wt% Cl wt% FeO wt% MnO wt% SO3 wt% P2O5 wt% 716536 0,0967944 4,2360345 0,1280057 0,70746 0,0649465 0 0,06603615 501058 1,4486497 3,1554224 0,10628 5,1995752 0,0947927 0,0634277 0,2139433 244288 1,4214875 3,2463159 0,0968044 5,5189651 0,1277713 0,0926145 0,1767343 474448 1,3803321 2,3212981 0,1336733 4,5933931 0,1016155 0,3314571	100 0,0431122 25,626951 0 0,0034074 12
716536 0.0967944 4.2360345 0.1280057 0.70746 0.0649465 0 0.0603615 501058 1,4486497 3,1554224 0,10628 5,1995752 0,0947927 0,0634277 0,2139433 244288 1,4214875 3,2463159 0,0968044 5,5189651 0,1277713 0,0926145 0,1767343 447448 1,3803321 2,3212981 0,1336733 4,5939331 0,1016155 0,0555573 0,3314571	TOTAL SiO2 wt% Al2O3 wt% CaO wt% TiO2 wt% Na ²
501058 1,4486497 3,1554224 0,10628 5,1995752 0,0947927 0,0634277 0,2139433 244288 1,4214875 3,2463159 0,0968044 5,5189651 0,1277713 0,0926145 0,1767343 447448 1,3803321 2,3212981 0,1336733 4,5993931 0,1016155 0,0555573 0,3314571	100 78,386585 12,854261 0,7244351 0,0694626 2,6
244288 1,4214875 3,2463159 0,0968044 5,5189651 0,1277713 0,0926145 0,1767343 447448 1,3803321 2,3212981 0,1336733 4,5993931 0,1016155 0,0555573 0,3314571	100 64,996165 15,431305 3,9773617 0,8629714 4, ²
447448 1,3803321 2,3212981 0,1336733 4,5993931 0,1016155 0,0555573 0,3314571	100 64,10505 15,517059 4,0795796 0,8931896 4,
	100 65,832973 15,472509 3,6313389 0,995108 5

Tabla III.h: Perfil composicional (flecha roja) normalizado en olivino de la muestra AA-250218-1J.

Distancia desde el borde (micrones)	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	MgO wt%	MnO wt%	Cr2O3 wt%	FeO wt%	NiO wt%	%Fo	%Fa
0	100	39,093107	0,7210922	0,5176196	37,688735	0,3941747	0,0195963	21,513605	0,0520699	75,745005	24,254995
3	100	39,867977	0,0267464	0,2735281	43,555557	0,2355578	0,0253542	15,881342	0,1339365	83,018889	16,981111
6	100	39,708771	0,0340244	0,2665813	44,198743	0,2614125	0,0317242	15,365157	0,1335863	83,680813	16,319187
9	100	39,705109	0,0271531	0,266857	44,284246	0,2265303	0,0071202	15,319538	0,1634464	83,747699	16,252301
12	100	39,777813	0,0418163	0,2519235	44,35041	0,2166446	0,0221602	15,197533	0,1416997	83,876438	16,123562
15	100	39,642879	0,0378352	0,2668888	44,334602	0,2321342	0,0175493	15,330691	0,1374203	83,753261	16,246739
18	100	39,752247	0,0055354	0,2602363	44,275988	0,2584697	0,0115925	15,317506	0,1184243	83,746966	16,253034
21	100	39,773631	0,0626335	0,2664909	44,121572	0,2334016	0,0104257	15,381499	0,150346	83,642395	16,357605
24	100	39,519543	0,0252913	0,2521683	44,187118	0,2434289	0,0331425	15,608913	0,1303949	83,4611	16,5389
27	100	39,864757	0,0463749	0,255314	44,308163	0,2206929	0,022721	15,126891	0,1550874	83,926496	16,073504
30	100	39,802092	0,0220744	0,2483309	44,187831	0,2347436	0,024237	15,327092	0,153599	83,711291	16,288709
33	100	39,77788	0,0423457	0,2424692	44,003256	0,2041168	0,0215814	15,569541	0,1388097	83,438392	16,561608
36	100	39,655456	0,02066	0,255048	44,24221	0,2149238	0,0242556	15,437955	0,1494919	83,629624	16,370376
39	100	39,696412	0,0484967	0,2428677	44,10641	0,2302022	0,0201125	15,519342	0,1361571	83,515232	16,484768
42	100	39,73235	0,0163461	0,2502202	44,256837	0,2441514	0,0003761	15,330247	0,1694715	83,729753	16,270247
45	100	39,789547	0,0304856	0,2506941	44,159031	0,226332	0,0339195	15,341605	0,1683863	83,689484	16,310516
48	100	39,897126	0,0345571	0,2723474	44,181867	0,231934	0,0186596	15,237807	0,1257018	83,788964	16,211036

Sección 6: Sulfuros

AA-220218-1M

<u>AA-260217-1B</u>

AA-250218-1J

Tabla III.i: Composición normalizada de sulfuros de las respectivas muestras (AA-260217-1B, AA-220218-1M y AA-250218-1J).

	TOTAL	S wt%	Fe wt%	Cu wt%
26sulf-1	100	38,4235018	61,5764982	0
26sulf-2	100	39,1598872	60,7943441	0,04576875
26sulf-3	100	38,7902331	61,2068571	0,00290987
26sulf-4	100	39,1907529	60,8034233	0,00582374
26sulf-5	100	39,4129462	60,5291172	0,05793662
22sulf-1	100	39,129833	60,870167	0
22sulf-3	100	39,05089	60,9148233	0,03428675
22sulf-4	100	37,7605628	62,2347897	0,00464757
22sulf-5	100	37,8286492	62,1429383	0,02841256
22sulf-6	100	37,7712533	62,1875894	0,04115722
22sulf-7	100	38,9621954	61,0378046	0
25sulf-1	100	39,06824	60,4193638	0,51239619
25sulf-2	100	38,974568	60,5348443	0,49058773
25sulf-4	100	39,5961439	59,96065	0,44320609
25sulf-5	100	39,2636295	60,3017474	0,43462313

CRISTALES INDIVIDUALES

Sección 1: Plagioclasas.

AA-260217-1B

<u>AA-250218-1M</u>

		TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	Na2O wt%	K2O wt%	FeO wt%	%An	%Ab	%Or
	26pg45-Pg1	100	58,8328998	25,8693443	7,8328992	6,60331021	0,38975374	0,4717927	54,8836	41,8645	3,2519
	26pg45-Pg2	100	58,8397328	25,9680706	7,7721543	6,54346119	0,40038246	0,4761987	54,8522	41,7835	3,36434
	26pg45-Pg5	100	60,4615179	24,8313322	6,3298037	7,4052044	0,53676725	0,4353745	46,3064	49,0178	4,67582
	26pg45-Pg6	100	58,9856045	25,7278759	7,5277426	6,82983539	0,43063777	0,4983037	52,8494	43,5297	3,62093
e٩	26pg45-Pg7	100	58,3746743	26,0357547	7,9542936	6,77068962	0,39990318	0,4646846	54,6438	42,0851	3,27109
7-1	26pg45-Pg9	100	59,8888791	25,1079756	6,8827378	7,14128447	0,51197771	0,4671453	49,3215	46,3087	4,36978
021	26pg45-Pg10	100	59,5713714	25,3916735	7,0466441	7,03787684	0,47797129	0,4744629	50,3881	45,5414	4,07048
-26	26pg45-Pg12A	100	59,5935696	25,4997881	6,9552054	7,03663907	0,47197567	0,4428222	50,0924	45,8599	4,04776
¥.	26pg45-Pg12B	100	58,8446176	25,895041	7,6508748	6,69824772	0,43441778	0,4768011	53,7699	42,5945	3,63557
7	26pg14-Pg1A	100	59,0842033	25,7325797	7,4174785	6,86589694	0,43714998	0,4626917	52,4171	43,9043	3,67865
	26pg14-Pg1B	100	59,5559412	25,4233833	7,0652392	7,00422452	0,4775134	0,4736984	50,5652	45,3646	4,07018
	26pg14-Pg2A	100	58,8012847	25,9412371	7,6269508	6,73776776	0,4293968	0,4633629	53,5808	42,8269	3,59223
	26pg14-Pg2B	100	59,9166544	25,1067008	6,8622476	7,14332544	0,49766865	0,4734032	49,3039	46,4375	4,25859
	26pg14-Pg2C	100	59,9036711	25,145247	6,7818473	7,2225274	0,50266763	0,4440395	48,7355	46,9633	4,30123
	25pg60-Pg2	100	58,401787	26,0744117	7,9282168	6,69213258	0,39647547	0,5069764	54,8467	41,8876	3,26568
	25pg60-Pg4	100	45,9515358	34,5155525	17,577949	1,36219495	0,03219915	0,5605684	93,2576	6,53895	0,2034
	25pg60-Pg5A	100	60,0232781	24,9916679	6,5171279	7,49846843	0,54594726	0,4235103	46,7123	48,6284	4,65927
	25pg60-Pg5B	100	59,6937812	25,389415	7,0634709	6,92571189	0,47269087	0,45493	50,8441	45,1045	4,05142
	25pg18-Pg1	100	59,0291966	25,8159767	7,5301064	6,69314543	0,42917042	0,5024044	53,4159	42,9592	3,62493
	25pg18-Pg2	100	57,8787931	26,5562248	8,4197838	6,36556944	0,36616216	0,4134667	57,6077	39,4095	2,98284
	25pg18-Pg4	100	58,665768	26,0145077	7,813599	6,56328905	0,41084643	0,5319898	54,8523	41,7112	3,43653
	25pg18-Pg5	100	59,9810574	25,3051246	6,7613451	7,00882517	0,50555547	0,4380923	49,3326	46,2748	4,39264
	25pg18-Pg6A	100	58,7061757	25,8816843	7,7143705	6,7655231	0,41807416	0,5141722	53,8239	42,7034	3,47262
	25pg18-Pg6B	100	57,3534987	26,9402747	8,7735486	6,08066732	0,32684182	0,5251688	59,8277	37,5183	2,65398
<u>AA-250218-1M</u>	25pg18-Pg/A	100	58,8345223	25,8083669	7,4989365	6,90839684	0,47633388	0,4734435	52,3847	43,655	3,96036
	25pg18-Pg/B	100	59,0976969	25,7506612	7,2429991	6,99836268	0,47973803	0,4305422	51,1987	44,7637	4,03/61
	25pg18-Pg8	100	58,1065744	26,406843	7,9999037	6,58536808	0,41036255	0,4909483	55,5/38	41,2441	3,38216
	25pg18-Pg9A 25pg18 Dg0D	100	59,3707882	25,5859352	7,201307	6,84408201	0,45520207	0,4700248	51,8800	44,2408	3,8720
	25pg10-rg9D	100	59,3234332	25,5264555	7,1459277	0,9034883	0,43042131	0,442274	54 25 41	44,0200	2,42226
	25pg18-rg10A	100	68 045777	18 668776	2 0176204	1.26468705	0,41046556	0,4429713	26 6246	42,2127	26 9299
	25pg10-1 g10D 25pg18-2 g10	100	45 055966	35 1/80061	18 17583	4,20408703	2,70364035	0.432787	20,0340 94 3718	5 42052	0 20771
	25pg10-1 g12	100	60 1816917	25 0735583	6 6994391	7.08219601	0.50323281	0,459882	48 8524	46 7729	4 37471
	25ng18-Pg16	100	59 259402	25,0735505	7 4843645	6 60098075	0 4269054	0.4305033	53 587	42 7723	3 64078
	25ng18-Pg17	100	57 0281205	27 1498168	9 2587141	5 8064506	0.24581071	0 5110874	62 5371	35 486	1 97684
	25pg18-Pg18	100	60.127732	25.0731081	6.8237745	7.029423	0.49299948	0.4529629	49.5499	46.1876	4.26253
	25ng18-Pg19A	100	59.1771678	25.7159698	7.5720669	6.64818084	0.42297539	0.4636392	53,7353	42.6904	3.57436
	25pg18-Pg19B	100	61.4126482	24.3286283	6.2440519	6.69996439	0.7021937	0.6125135	47.3979	45.9696	6.63252
	25pg18-Pg20	100	58,6833241	26,1073968	7,8363869	6,50242577	0,40545193	0,4650145	55,1715	41,4285	3,40008
	25pg18-Pg21	100	59,1952199	25,7212511	7,449679	6,73417252	0,43760943	0,4620681	52,9703	43,3249	3,70488
	25pg18-Pg22A	100	57,8004761	26,5964276	8,2406454	6,47634972	0,38943618	0,4966649	56,5825	40,2336	3,18389
	25pg18-Pg22B	100	60,193766	25,0261997	6,637944	7,17706529	0,50641867	0,4586063	48,3269	47,2825	4,39068
	25pg18-Pg23	100	60,2141172	25,0322729	6,7051112	7,07608092	0,5087917	0,4636261	48,8969	46,6856	4,41752
	25pg18-Pg24	100	61,4691888	24,2265484	5,7368961	7,51359037	0,62703572	0,4267406	43,1939	51,184	5,62206
	25pg18-Pg25A	100	57,6942796	26,7133827	8,6307048	6,0927822	0,3404527	0,528398	59,3237	37,8897	2,78661
	25pg18-Pg25B	100	59,842363	25,2316293	6,9872055	7,02510701	0,47046426	0,4432309	50,2484	45,7214	4,0302

Tabla III.j: Composición normalizada de plagioclasas en muestras AA-260217-1B y AA-250218-1M.

	Distancia desde el borde (micrones)	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	Na20 wt%	K20 wt%	FeO wt%	%An	%Ab	%Or
26pg45-Pg3	0	100	58,787696	25,960176	7,8093677	6,5744814	0,4067606	0,4615186	54,83211	41,767289	3,4006014
26pg45-Pg3	б	100	58,770871	25,97411	7,7581937	6,5721308	0,4056462	0,5190485	54,68254	41,913117	3,404343
26pg45-Pg3	9	100	58,921841	25,878679	7,7871459	6,5165623	0,3919142	0,5038569	55,032752	41,669392	3,2978565
26pg45-Pg3	6	100	59,038291	25,883874	7,7297869	6,4872448	0,3922085	0,4685946	54,951799	41,728269	3,3199318
26pg45-Pg3	12	100	58,815249	26,022349	7,7962034	6,4747211	0,3952821	0,4961959	55,19346	41,474506	3,3320341
26pg45-Pg3	15	100	58,940422	25,860746	7,8439599	6,4987108	0,3818454	0,4743156	55,322161	41,471207	3,2066316
26pg45-Pg3	18	100	58,909418	25,946077	7,808794	6,4438769	0,4084038	0,4834301	55,281397	41,276035	3,4425688
26pg45-Pg3	21	100	58,771458	25,934026	7,9228486	6,513902	0,3912411	0,4665246	55,472363	41,265986	3,2616514
26pg45-Pg3	24	100	58,701743	25,95267	7,9273445	6,5272138	0,4052437	0,4857854	55,375069	41,254382	3,370549
26pg45-Pg3	27	100	58,936634	26,118183	7,7216663	6,3429873	0,4109484	0,4695808	55,351838	41,140594	3,5075681
26pg45-Pg3	30	100	58,904701	25,990768	7,7086458	6,4819186	0,3990047	0,5149613	54,871205	41,747039	3,3817558
26pg45-Pg3	33	100	58,921599	26,018575	7,781452	6,4078299	0,3943195	0,4762246	55,388694	41,269305	3,3420006
26pg45-Pg3	36	100	58,730847	26,005914	7,7957659	6,568708	0,4060849	0,49268	54,812155	41,788207	3,3996383
26pg45-Pg3	39	100	58,696657	26,048723	7,8471062	6,5081787	0,4172894	0,4820457	55,134697	41,374297	3,491006
26pg45-Pg3	42	100	58,614019	26,046349	7,9821492	6,4871751	0,3805636	0,489744	55,800029	41,032303	3,1676681
26pg45-Pg3	45	100	58,642708	25,985325	7,8001052	6,6691094	0,4017643	0,5009879	54,49766	42,160032	3,3423082
26pg45-Pg3	48	100	58,619395	26,143501	7,7776159	6,528193	0,4130665	0,5182295	54,863897	41,666675	3,4694284
26pg45-Pg3	51	100	58,778923	25,984926	7,8066542	6,5279786	0,407918	0,493601	54,980642	41,598654	3,4207041
26pg45-Pg3	54	100	59,052297	25,85979	7,6636639	6,5449159	0,3996668	0,4796665	54,501334	42,114384	3,3842824
26pg45-Pg3	57	100	58,917595	25,916724	7,6440844	6,6319944	0,4069003	0,4827025	54,101145	42,46986	3,4289949
26pg45-Pg3	09	100	58,755181	26,065288	7,762704	6,5351607	0,4101305	0,4715357	54,805499	41,746789	3,4477117
26pg45-Pg3	63	100	59,060511	25,93848	7,6546511	6,4636426	0,4162753	0,4664398	54,68135	41,777924	3,5407259
26pg45-Pg3	99	100	58,754834	25,998997	7,7845813	6,5391782	0,4082695	0,5141407	54,869708	41,703861	3,4264319
26pg45-Pg3	69	100	58,981621	25,857908	7,6807045	6,6143805	0,4060684	0,4593176	54,284667	42,298112	3,4172214
26pg45-Pg3	72	100	58,842914	25,820874	7,6372088	6,7929688	0,4178235	0,4882114	53,478004	43,038373	3,4836232
26pg45-Pg3	75	100	59,109975	25,917827	7,5252063	6,5646487	0,4147891	0,4675547	53,910019	42,551832	3,5381496
26pg45-Pg3	78	100	59,00087	25,791279	7,682308	6,6381206	0,4022885	0,4851334	54,224781	42,394247	3,3809714
26pg45-Pg3	81	100	59,262183	25,700744	7,6302279	6,5116985	0,4172557	0,4778912	54,428243	42,027813	3,5439439
26pg45-Pg3	84	100	58,969399	25,917766	7,6474508	6,570935	0,4272119	0,467237	54,231274	42,161493	3,6072335
26pg45-Pg3	87	100	58,947617	25,888325	7,6671605	6,6045422	0,4086614	0,4836941	54,263184	42,293062	3,4437545
26pg45-Pg3	90	100	59,095296	25,804657	7,5537665	6,6381985	0,4189533	0,4891289	53,729451	42,722315	3,5482341
26pg45-Pg3	93	100	59,087462	25,781774	7,6918541	6,5509142	0,4195139	0,4684819	54,480005	41,982057	3,5379382
26pg45-Pg3	96	100	58,958622	25,643591	7,7412891	6,695699	0,4161886	0,5446097	54,15325	42,380186	3,4665639
26pg45-Pg3	66	100	59,179423	25,666707	7,5300539	6,7355809	0,4210894	0,4671459	53,306958	43,143618	3,5494243
26pg45-Pg3	102	100	59,155117	25,676881	7,5307043	6,7393876	0,4265439	0,4713663	53,271627	43,135665	3,5927079

Tabla III.k: Perfiles composicionales (flechas rojas) normalizados en plagioclasas de muestra AA-260217-1B.

	Distancia desde el borde (micrones)	TOTAL	Si02 w%	Al2O3 wt%	CaO wt%	Na2O wt%	K20 wt%	FeO wt%	nA%	%Ab	%Or
26pg45-Pg3	105	100	59,207723	25,840683	7,4991366	6,5810025	0,4184462	0,4530088	53,749897	42,678988	3,5711146
26pg45-Pg3	108	100	59,039444	25,782738	7,716751	6,5684442	0,4156369	0,476986	54,51679	41,986918	3,4962916
26pg45-Pg3	111	100	59,292021	25,678585	7,3472023	6,801097	0,4109513	0,4701438	52,516803	43,985643	3,4975543
26pg45-Pg3	114	100	59,026115	25,855906	7,6067366	6,6178852	0,4169154	0,4764417	53,982722	42,494363	3,5229145
26pg45-Pg3	117	100	59,183744	25,762	7,4918409	6,662889	0,4104604	0,4890666	53,478022	43,033341	3,4886374
26pg45-Pg3	120	100	59,185008	25,778042	7,4514494	6,6735452	0,4227547	0,4892007	53,250941	43,151792	3,5972674
26pg45-Pg3	123	100	60,923047	24,628921	6,1018191	7,3609102	0,5386337	0,4466685	45,524539	49,690509	4,7849514
26pg45-Pg3	126	100	59,771905	25,350061	6,9576672	6,9801436	0,4728047	0,4674195	50,285573	45,645693	4,0687346
26pg45-Pg3	129	100	60,035377	25,137502	6,9297503	6,9376168	0,4991429	0,460611	50,210946	45,482761	4,3062927
26pg45-Pg3	132	100	59,996438	25,17775	6,8085201	7,0501134	0,5023499	0,464829	49,388459	46,272669	4,3388722
26pg45-Pg3	135	100	59,249606	25,844605	7,4037545	6,6432479	0,4259725	0,4328139	53,180983	43,175811	3,6432055
26pg45-Pg3	138	100	59,291799	25,805362	7,4824853	6,5602411	0,4304766	0,4296362	53,711825	42,608823	3,679352
26pg45-Pg3	141	100	58,96947	25,819742	7,7383918	6,6268558	0,4196079	0,4259325	54,36541	42,12454	3,5100509
26pg45-Pg3	144	100	59,526733	25,721667	7,3128263	6,5735782	0,4315647	0,4336307	53,089591	43,179902	3,7305065
26pg45-Pg3	147	100	57,173868	27,012113	9,1864811	5,8499611	0,2393705	0,5382067	62,219729	35,849871	1,9304
26pg45-Pg3	150	100	57,118868	27,082728	9,2921437	5,7658238	0,2418059	0,4986302	62,797426	35,256808	1,945766
26pg45-Pg3	153	100	56,910787	27,237269	9,2035843	5,8906389	0,2521923	0,5055288	62,044874	35,93081	2,0243166
26pg45-Pg3	156	100	56,908959	27,267157	9,3526471	5,7193787	0,2498742	0,5019839	63,08657	34,906549	2,006881
26pg45-Pg3	159	100	60, 191049	25,046301	6,8279135	6,9849868	0,4859561	0,4637934	49,742217	46,042449	4,2153337
26pg45-Pg3	162	100	60,283402	24,95441	6,8026009	7,0205998	0,4854549	0,4535323	49,535028	46,255921	4,2090506
26pg45-Pg3	165	100	60,037285	25,223922	6,7035159	7,1040152	0,4993776	0,4318847	48,838524	46,829493	4,3319826
26pg45-Pg3	168	100	59,999192	25,067799	6,9610677	7,0080902	0,5012093	0,4626413	50,083887	45,622339	4,2937731
26pg45-Pg3	171	100	59,278439	25,716587	7,4901721	6,6387789	0,4369292	0,4390942	53,435472	42,853051	3,7114768
26pg45-Pg3	174	100	59,367906	25,619564	7,5130003	6,6052889	0,4188481	0,4753923	53,709459	42,725277	3,5652638
26pg45-Pg3	177	100	59,130989	25,621424	7,71637	6,6473825	0,4274644	0,4563695	54,188215	42,237497	3,5742882
26pg45-Pg3	180	100	58,931337	25,906304	7,5687253	6,7012731	0,4086599	0,483701	53,607932	42,945665	3,4464033
26pg45-Pg3	183	100	58,42644	26,229739	7,9561346	6,5273537	0,3849468	0,4753856	55,557746	41,241584	3,2006704
26pg45-Pg3	186	100	58,725897	26,115648	7,800703	6,4974375	0,4056417	0,4546738	55,079523	41,510144	3,4103329
26pg45-Pg3	189	100	58,651398	26,022904	7,9634871	6,4837557	0,4118699	0,4665857	55,609236	40,966229	3,4245344
26pg45-Pg3	192	100	58,929562	26,061297	7,6252227	6,5011561	0,4193494	0,4634128	54,439338	41,995871	3,5647911
26pg45-Pg3	195	100	59,195152	25,625696	7,4767982	6,7863326	0,4452441	0,470777	52,849788	43,402868	3,7473439
26pg45-Pg3	198	100	59,409485	25,614234	7,3590595	6,7240691	0,4363829	0,4567695	52,705372	43,573299	3,7213295
26pg45-Pg3	201	100	59,21157	25,698802	7,520791	6,6540815	0,4299766	0,4847788	53,515755	42,841232	3,6430129
26pg45-Pg3	204	100	58,964673	25,946272	7,4420671	6,7722068	0,4388341	0,435947	52,810139	43,482013	3,7078481
26pg45-Pg3	207	100	57,725529	26,711591	8,2409293	6,4463532	0,3864565	0,4891404	56,701898	40,132037	3,1660646

Tabla III.k: Continuación.

	Distancia desde el borde (micrones)	TOTAL	Si02 wt%	Al2O3 wt%	CaO wt%	Na20 wt%	K20 w%	FeO wt%	∿An	%Ab	%Or
26pg45-Pg3	210	100	57,824092	26,54579	8,2028302	6,58619	0,3863093	0,4547882	56,099116	40,755126	3,1457576
26pg45-Pg3	213	100	58,045587	26,51716	8,1184355	6,4105382	0,3917561	0,5165231	56,436063	40,321303	3,2426339
26pg45-Pg3	216	100	57,851806	26,531902	8,2781767	6,396506	0,3955428	0,5460662	56,946565	39,813591	3,2398442
26pg45-Pg3	219	100	60,254404	25,021639	6,7340749	7,0344016	0,5033552	0,4521246	49,160342	46,464343	4,3753146
26pg45-Pg3	222	100	60,277552	24,938097	6,6822761	7,1189726	0,5136089	0,469494	48,651034	46,896526	4,4524395
26pg45-Pg3	225	100	60,20855	24,932919	6,6728114	7,2101734	0,5166038	0,4589426	48,312617	47,233825	4,453558
26pg45-Pg3	228	100	60,115963	25,236437	6,7312823	6,9407761	0,5015989	0,4739432	49,463484	46,147761	4,3887542
26pg45-Pg4	0	100	61,49701	24,114795	5,7691387	7,587683	0,6249251	0,4064483	43,122096	51,316113	5,5617906
26pg45-Pg4	3	100	61,452792	24,233013	5,6966152	7,561229	0,6410682	0,4152822	42,827263	51,434144	5,7385937
26pg45-Pg4	9	100	61,271145	24,285168	5,8159181	7,5511709	0,6126478	0,4639496	43,474599	51,072521	5,45288
26pg45-Pg4	6	100	61,655808	24,273217	5,6659124	7,3542786	0,6295018	0,4212822	43,351673	50,913362	5,7349652
26pg45-Pg4	12	100	57,745207	26,763899	8,5913393	5,9997017	0,3467903	0,5530629	59,526379	37,612651	2,8609701
26pg45-Pg4	15	100	57,688445	26,794388	8,6284759	6,0135961	0,3412423	0,5338525	59,605678	37,587505	2,8068176
26pg45-Pg4	18	100	57,653291	26,658564	8,6683354	6,1696265	0,3318175	0,5183658	59,186718	38,115632	2,6976501
26pg45-Pg4	21	100	57,690176	26,636679	8,6346688	6,1882045	0,3419607	0,5083108	58,976092	38,242886	2,7810213
26pg45-Pg4	24	100	60,567531	24,822739	6,37418	7,2742434	0,5369682	0,4243385	46,885091	48,412105	4,7028034
26pg45-Pg4	27	100	60,393168	24,895468	6,4299439	7,3429072	0,5299458	0,4085675	46,917275	48,478518	4,6042069
26pg45-Pg4	30	100	60,581028	24,913611	6,3192768	7,2758846	0,5464625	0,3637373	46,625682	48,573491	4,8008264
26pg45-Pg4	33	100	60,430447	24,877506	6,291624	7,3899446	0,5488581	0,4616206	46,154659	49,051202	4,7941392
26pg45-Pg4	36	100	60,569812	24,803095	6,3392993	7,3373475	0,534531	0,4159148	46,562378	48,762805	4,674817
26pg45-Pg4	39	100	59,952171	25,119941	6,684471	7,2690306	0,5226744	0,4517114	48,145559	47,371963	4,4824785
26pg45-Pg4	42	100	60,270581	24,929017	6,5843864	7,2510419	0,5251826	0,4397917	47,815143	47,643785	4,5410711
26pg45-Pg4	45	100	61,66767	24,120171	5,6237824	7,5264181	0,6384494	0,423509	42,624019	51,614287	5,7616938
26pg45-Pg4	48	100	61,549908	24,155172	5,6299004	7,6432086	0,6327666	0,3890449	42,333413	52,001274	5,6653132
26pg45-Pg4	51	100	60,606305	24,686269	6,4218387	7,3162055	0,5445674	0,4248143	46,908981	48,354645	4,7363745
26pg45-Pg4	54	100	60,144193	25,027821	6,5686577	7,3511502	0,5303656	0,3778125	47,421908	48,01903	4,5590624
26pg45-Pg4	57	100	60,211291	24,980743	6,5963366	7,2966851	0,5340636	0,3808807	47,680935	47,722508	4,5965575
26pg45-Pg4	60	100	59,860858	25,170692	6,6361003	7,4185189	0,5297105	0,38412	47,471436	48,016702	4,5118619
26pg45-Pg4	63	100	59,875778	25,185853	6,7665993	7,2423864	0,5340968	0,3952867	48,486972	46,956098	4,5569302
26pg45-Pg4	66	100	60,035447	25,1284	6,6617638	7,266184	0,5233531	0,3848522	48,066741	47,437035	4,4962247
26pg45-Pg4	69	100	60,018689	25,089417	6,5932277	7,4024533	0,5092895	0,386924	47,442098	48,194468	4,3634336
26pg45-Pg4	72	100	60,067076	25,176948	6,570482	7,2398605	0,5365967	0,4090371	47,750341	47,606378	4,6432815
26pg45-Pg4	75	100	59,95817	25,27636	6,6276447	7,2197159	0,5083164	0,4097937	48,14735	47,455765	4,3968852
26pg45-Pg4	78	100	59,842855	25,160298	6,7220216	7,3710923	0,5109178	0,3928155	48,015205	47,639416	4,3453796
26pg45-Pg4	81	100	59,962189	25,262783	6,6293017	7,2182632	0,5183149	0,4091485	48,116576	47,404039	4,4793853

Tabla III.k: Continuación.

	Distancia desde el borde (micrones)	TOTAL	Si02 wt%	Al2O3 wt%	CaO wt%	Na20 wt%	K20 wt%	FeO wt%	%An	%Ab	%Or
26pg45-Pg4	84	100	59,489174	25,346171	6,9467288	7,3146172	0,4996327	0,4036761	49,058999	46,739669	4,2013316
26pg45-Pg4	87	100	59,830052	25,127787	6,8897831	7,2107197	0,5143845	0,4272745	49,119549	46,513941	4,36651
26pg45-Pg4	90	100	59,404992	25,474341	6,8780344	7,3492216	0,4965681	0,3968432	48,715035	47,097268	4,1876973
26pg45-Pg4	93	100	59,457461	25,247465	7,1349865	7,2831485	0,4751334	0,4018059	49,927964	46,113232	3,9588042
26pg45-Pg4	96	100	59,349601	25,647228	7,1234577	6,9786672	0,4982342	0,4028121	50,76927	45,002667	4,2280624
26pg45-Pg4	66	100	59,331736	25,657079	7,0757929	7,012008	0,4847655	0,4386181	50,550378	45,326	4,1236215
26pg45-Pg4	102	100	59,323311	25,668988	7,1595933	6,9513681	0,4798299	0,4169094	51,064946	44,860128	4,0749255
26pg45-Pg4	105	100	59,437482	25,347414	7,1904462	7,091241	0,4899403	0,4434762	50,672585	45,216315	4,1111009
26pg45-Pg4	108	100	59,675992	25,406273	6,8771355	7,0673404	0,4961624	0,4770961	49,609687	46,128636	4,2616776
26pg45-Pg4	111	100	59,742449	25,26106	7,0287632	7,0468451	0,4882285	0,4326544	50,25527	45,58827	4,1564602
26pg45-Pg4	114	100	59,510561	25,4116	7,1319984	7,0127168	0,485899	0,4472243	50,740956	45,142894	4,11615
26pg45-Pg4	117	100	59,271195	25,689189	7,3066011	6,8532506	0,4685367	0,4112282	51,947534	44,086117	3,966349
26pg45-Pg4	120	100	59,202704	25,716973	7,1431054	7,0199993	0,4805591	0,436659	50,779016	45,153351	4,0676333
26pg45-Pg4	123	100	59,208776	25,512211	7,2627346	7,0985737	0,4864477	0,4312577	50,913761	45,025837	4,0604015
26pg45-Pg4	126	100	59,099403	25,831867	7,1795653	6,956998	0,4802081	0,4519583	51,11437	44,814901	4,0707288
26pg45-Pg4	129	100	59,169188	25,554082	7,3320789	7,0272055	0,4824313	0,4350138	51,399928	44,573192	4,0268798
26pg45-Pg4	132	100	59,191853	25,582263	7,283224	7,032797	0,4816224	0,4282418	51,218145	44,749073	4,032782
26pg45-Pg4	135	100	59,030672	25,72559	7,3580809	6,968159	0,4747394	0,4427579	51,714833	44,312303	3,9728636
26pg45-Pg4	138	100	59,601222	25,316576	6,9807254	7,1537212	0,4949302	0,4528256	49,710474	46,093008	4,196518
26pg45-Pg4	141	100	59,682473	25,3591	6,9861244	7,053835	0,4972856	0,421182	50,04175	45,716942	4,2413084
26pg45-Pg4	144	100	59,770547	25,338385	6,874261	7,1063588	0,4919946	0,418454	49,49089	46,291587	4,2175223
26pg45-Pg4	147	100	59,372435	25,444338	7,1673402	7,1178355	0,4640621	0,4339893	50,616249	45,481584	3,9021669
26pg45-Pg4	150	100	59,408967	25,533428	7,1914359	6,9625306	0,4607372	0,4429015	51,221883	44,870689	3,9074285
26pg45-Pg4	153	100	59,299251	25,629928	7,1468799	7,0250461	0,4662549	0,4326408	50,837257	45,213747	3,9489968
26pg45-Pg4	156	100	59,16613	25,631682	7,2376283	7,0886154	0,4761253	0,3998187	50,903362	45,109426	3,9872115
26pg45-Pg4	159	100	59,012	25,648627	7,3967757	7,0828923	0,4632175	0,3964873	51,520452	44,637879	3,8416688
26pg45-Pg4	162	100	59,097626	25,796756	7,3198623	6,9153964	0,461801	0,4085584	51,815363	44,292318	3,8923181
26pg45-Pg4	165	100	58,89586	25,82904	7,4456188	6,9187081	0,4658075	0,4449651	52,212064	43,89861	3,8893262
26pg45-Pg4	168	100	59,282174	25,633508	7,3295806	6,8875131	0,453714	0,41351	51,976653	44,192373	3,8309735
26pg45-Pg4	171	100	59,285343	25,796879	7,3348678	6,6913386	0,4666171	0,4249551	52,599193	43,416569	3,9842375
26pg45-Pg4	174	100	59,003241	25,649965	7,4384454	6,9999322	0,4557331	0,4526831	51,96381	44,245422	3,7907682
26pg45-Pg4	177	100	59,308884	25,762836	7,2022552	6,8397862	0,4588738	0,4273646	51,676066	44,4037	3,9202337
26pg45-Pg4	180	100	59,380912	25,488234	7,1474268	7,0524792	0,4607137	0,4702337	50,773354	45,329784	3,896862
26pg45-Pg4	183	100	59,50821	25,405015	7,1695763	7,0130978	0,4717718	0,4323292	50,931842	45,077673	3,9904847
26pg45-Pg4	186	100	59,58851	25,333283	7,1751894	6,9797232	0,4815542	0,4417401	51,018604	44,90442	4,0769758

Tabla III.k: Continuación.

ación.	
ontinu	
ŭ	
III.k:	
Tabla	

	Distancia desde el	TOTAL	SiO2 wt%	A12O3 wt%	CaO w‰	Na20 w%	K20 w ⁶ %	FeO w ⁰ %	0% An	0% Ah	%Or
	borde (micrones)		0/11 - DIG		C40 m / 0				111.70/	01X70/	10.07
26pg45-Pg4	189	100	59,310444	25,443284	7,1948976	7,1350651	0,4833007	0,4330093	50,574941	45,37999	4,0450692
26pg45-Pg4	192	100	59,175031	25,683598	7,3001682	6,91629	0,4699583	0,4549549	51,70953	44,326824	3,9636461
26pg45-Pg4	195	100	59,090338	25,767387	7,1956438	6,996391	0,4771572	0,4730827	51,054049	44,914886	4,0310651
26pg45-Pg4	198	100	59,155776	25,694422	7,2299145	7,0027317	0,4756961	0,44146	51,1583	44,83386	4,0078399
26pg45-Pg4	201	100	59,121181	25,639618	7,3507894	7,0046938	0,4728014	0,4109161	51,57855	44,471318	3,9501326
26pg45-Pg4	204	100	59,160634	25,662111	7,1832113	7,0801891	0,459192	0,4546626	50,814423	45,317809	3,867768
26pg45-Pg4	207	100	59,190219	25,499854	7,3661031	7,0161146	0,4786617	0,4490475	51,567952	44,442088	3,9899598
26pg45-Pg4	210	100	59,505825	25,398661	7,1237881	7,0891581	0,4923514	0,3902163	50,436252	45,413207	4,1505414
26pg45-Pg4	213	100	59,9263	25,106578	6,6339608	7,3728655	0,5034881	0,4568072	47,710979	47,97748	4,3115402
26pg45-Pg4	216	100	60,346297	24,820893	6,4798464	7,4079067	0,5447364	0,4003209	46,849559	48,460958	4,6894833
26pg45-Pg4	219	100	60,544139	24,881199	6,3051004	7,2700109	0,5562703	0,4432803	46,547918	48,562273	4,8898088
26pg45-Pg4	222	100	60,618638	24,823078	6,3227731	7,2056785	0,5451474	0,4846852	46,864455	48,324408	4,8111368
26pg45-Pg4	225	100	60.35116	24.835655	6. 4356709	7.4369572	0.5262675	0.4142901	46.664722	48.791687	4.5435906

	vistancia desde el orde (micrones)	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	Na20 wt%	K20 wt%	FeO wt%	%An	%Ab	%Or
25pg60-Pg1	0	100	64,580841	22,309812	5,0654785	5,1470685	1,5941671	1,3026321	43,590004	40,075789	16,334207
25pg60-Pg1	ŝ	100	60,567531	24,822739	6,37418	7,2742434	0,5369682	0,4243385	46,885091	48,412105	4,7028034
25pg60-Pg1	6	100	60,393168	24,895468	6,4299439	7,3429072	0,5299458	0,4085675	46,917275	48,478518	4,6042069
25pg60-Pg1	6	100	60,581028	24,913611	6,3192768	7,2758846	0,5464625	0,3637373	46,625682	48,573491	4,8008264
25pg60-Pg1	12	100	60,430447	24,877506	6,291624	7,3899446	0,5488581	0,4616206	46,154659	49,051202	4,7941392
25pg60-Pg1	15	100	60,569812	24,803095	6,3392993	7,3373475	0,534531	0,4159148	46,562378	48,762805	4,674817
25pg60-Pg1	18	100	59,952171	25,119941	6,684471	7,2690306	0,5226744	0,4517114	48,145559	47,371963	4,4824785
25pg60-Pg1	21	100	60,270581	24,929017	6,5843864	7,2510419	0,5251826	0,4397917	47,815143	47,643785	4,5410711
25pg60-Pg1	24	100	61,66767	24,120171	5,6237824	7,5264181	0,6384494	0,423509	42,624019	51,614287	5,7616938
25pg60-Pg1	27	100	61,549908	24,155172	5,6299004	7,6432086	0,6327666	0,3890449	42,333413	52,001274	5,6653132
25pg60-Pg1	30	100	60,606305	24,686269	6,4218387	7,3162055	0,5445674	0,4248143	46,908981	48,354645	4,7363745
25pg60-Pg1	33	100	60,144193	25,027821	6,5686577	7,3511502	0,5303656	0,3778125	47,421908	48,01903	4,5590624
25pg60-Pg1	36	100	60,211291	24,980743	6,5963366	7,2966851	0,5340636	0,3808807	47,680935	47,722508	4,5965575
25pg60-Pg1	39	100	59,860858	25,170692	6,6361003	7,4185189	0,5297105	0,38412	47,471436	48,016702	4,5118619
25pg60-Pg1	42	100	59,875778	25,185853	6,7665993	7,2423864	0,5340968	0,3952867	48,486972	46,956098	4,5569302
25pg60-Pg1	45	100	60,035447	25,1284	6,6617638	7,266184	0,5233531	0,3848522	48,066741	47,437035	4,4962247
25pg60-Pg1	48	100	60,018689	25,089417	6,5932277	7,4024533	0,5092895	0,386924	47,442098	48,194468	4,3634336
25pg60-Pg1	51	100	60,067076	25,176948	6,570482	7,2398605	0,5365967	0,4090371	47,750341	47,606378	4,6432815
25pg60-Pg1	54	100	59,95817	25,27636	6,6276447	7,2197159	0,5083164	0,4097937	48,14735	47,455765	4,3968852
25pg60-Pg1	57	100	59,842855	25,160298	6,7220216	7,3710923	0,5109178	0,3928155	48,015205	47,639416	4,3453796
25pg60-Pg1	60	100	59,962189	25,262783	6,6293017	7,2182632	0,5183149	0,4091485	48,116576	47,404039	4,4793853
25pg60-Pg1	63	100	59,489174	25,346171	6,9467288	7,3146172	0,4996327	0,4036761	49,058999	46,739669	4,2013316
25pg60-Pg1	99	100	59,830052	25,127787	6,8897831	7,2107197	0,5143845	0,4272745	49,119549	46,513941	4,36651
25pg60-Pg1	69	100	59,404992	25,474341	6,8780344	7,3492216	0,4965681	0,3968432	48,715035	47,097268	4,1876973
25pg60-Pg1	72	100	59,457461	25,247465	7,1349865	7,2831485	0,4751334	0,4018059	49,927964	46,113232	3,9588042
25pg60-Pg1	75	100	59,349601	25,647228	7,1234577	6,9786672	0,4982342	0,4028121	50,76927	45,002667	4,2280624
25pg60-Pg1	78	100	59,331736	25,657079	7,0757929	7,012008	0,4847655	0,4386181	50,550378	45,326	4,1236215
25pg60-Pg1	81	100	59,323311	25,668988	7,1595933	6,9513681	0,4798299	0,4169094	51,064946	44,860128	4,0749255
25pg60-Pg1	84	100	59,437482	25,347414	7,1904462	7,091241	0,4899403	0,4434762	50,672585	45,216315	4,1111009
25pg60-Pg1	87	100	59,675992	25,406273	6,8771355	7,0673404	0,4961624	0,4770961	49,609687	46,128636	4,2616776
25pg60-Pg1	06	100	59,742449	25,26106	7,0287632	7,0468451	0,4882285	0,4326544	50,25527	45,58827	4,1564602
25pg60-Pg1	93	100	59,510561	25,4116	7,1319984	7,0127168	0,485899	0,4472243	50,740956	45,142894	4,11615
25pg60-Pg1	96	100	59,271195	25,689189	7,3066011	6,8532506	0,4685367	0,4112282	51,947534	44,086117	3,966349
25pg60-Pg1	66	100	59,202704	25,716973	7,1431054	7,0199993	0,4805591	0,436659	50,779016	45,153351	4,0676333
25pg60-Pg1	102	100	59,208776	25,512211	7,2627346	7,0985737	0,4864477	0,4312577	50,913761	45,025837	4,0604015

Tabla III.I: Perfiles composicionales (flechas rojas) normalizados en plagioclasas de muestra AA-250218-1M.

Dis	stancia desde el orde (micrones)	TOTAL	Si02 wt%	Al2O3 wt%	CaO w%	Na20 wt%	K20 wt%	FeO wt%	%An	%Ab	%Or
25pg60-Pg1	105	100	59,099403	25,831867	7,1795653	6,956998	0,4802081	0,4519583	51,11437	44,814901	4,0707288
25pg60-Pg1	108	100	59,169188	25,554082	7,3320789	7,0272055	0,4824313	0,4350138	51,399928	44,573192	4,0268798
25pg60-Pg1	111	100	59,191853	25,582263	7,2832224	7,032797	0,4816224	0,4282418	51,218145	44,749073	4,032782
25pg60-Pg1	114	100	59,030672	25,72559	7,3580809	6,968159	0,4747394	0,4427579	51,714833	44,312303	3,9728636
25pg60-Pg1	117	100	59,601222	25,316576	6,9807254	7,1537212	0,4949302	0,4528256	49,710474	46,093008	4,196518
25pg60-Pg1	120	100	59,682473	25,3591	6,9861244	7,053835	0,4972856	0,421182	50,04175	45,716942	4,2413084
25pg60-Pg1	123	100	59,770547	25,338385	6,874261	7,1063588	0,4919946	0,418454	49,49089	46,291587	4,2175223
25pg60-Pg1	126	100	59,372435	25,444338	7,1673402	7,1178355	0,4640621	0,4339893	50,616249	45,481584	3,9021669
25pg60-Pg1	129	100	59,408967	25,533428	7,1914359	6,9625306	0,4607372	0,4429015	51,221883	44,870689	3,9074285
25pg60-Pg1	132	100	59,299251	25,629928	7,1468799	7,0250461	0,4662549	0,4326408	50,837257	45,213747	3,9489968
25pg60-Pg1	135	100	59,16613	25,631682	7,2376283	7,0886154	0,4761253	0,3998187	50,903362	45,109426	3,9872115
25pg60-Pg1	138	100	59,012	25,648627	7,3967757	7,0828923	0,4632175	0,3964873	51,520452	44,637879	3,8416688
25pg60-Pg1	141	100	59,097626	25,796756	7,3198623	6,9153964	0,461801	0,4085584	51,815363	44,292318	3,8923181
25pg60-Pg1	144	100	58,89586	25,82904	7,4456188	6,9187081	0,4658075	0,4449651	52,212064	43,89861	3,8893262
25pg60-Pg1	147	100	59,282174	25,633508	7,3295806	6,8875131	0,453714	0,41351	51,976653	44,192373	3,8309735
25pg60-Pg1	150	100	59,285343	25,796879	7,3348678	6,6913386	0,4666171	0,4249551	52,599193	43,416569	3,9842375
25pg60-Pg1	153	100	59,003241	25,649965	7,4384454	6,9999322	0,4557331	0,4526831	51,96381	44,245422	3,7907682
25pg60-Pg1	156	100	59,308884	25,762836	7,2022552	6,8397862	0,4588738	0,4273646	51,676066	44,4037	3,9202337
25pg60-Pg1	159	100	59,380912	25,488234	7,1474268	7,0524792	0,4607137	0,4702337	50,773354	45,329784	3,896862
25pg60-Pg1	162	100	59,50821	25,405015	7,1695763	7,0130978	0,4717718	0,4323292	50,931842	45,077673	3,9904847
25pg60-Pg1	165	100	59,58851	25,333283	7,1751894	6,9797232	0,4815542	0,4417401	51,018604	44,90442	4,0769758
25pg60-Pg1	168	100	59,310444	25,443284	7,1948976	7,1350651	0,4833007	0,4330093	50,574941	45,37999	4,0450692
25pg60-Pg1	171	100	59,175031	25,683598	7,3001682	6,91629	0,4699583	0,4549549	51,70953	44,326824	3,9636461
25pg60-Pg1	174	100	59,090338	25,767387	7,1956438	6,996391	0,4771572	0,4730827	51,054049	44,914886	4,0310651
25pg60-Pg1	177	100	59,155776	25,694422	7,2299145	7,0027317	0,4756961	0,44146	51,1583	44,83386	4,0078399
25pg60-Pg1	180	100	59,121181	25,639618	7,3507894	7,0046938	0,4728014	0,4109161	51,57855	44,471318	3,9501326
25pg60-Pg1	183	100	59,160634	25,662111	7,1832113	7,0801891	0,459192	0,4546626	50,814423	45,317809	3,867768
25pg60-Pg1	186	100	59,190219	25,499854	7,3661031	7,0161146	0,4786617	0,4490475	51,567952	44,442088	3,9899598
25pg60-Pg1	189	100	59,505825	25,398661	7,1237881	7,0891581	0,4923514	0,3902163	50,436252	45,413207	4,1505414
25pg60-Pg1	192	100	59,9263	25,106578	6,6339608	7,3728655	0,5034881	0,4568072	47,710979	47,97748	4,3115402
25pg60-Pg1	195	100	60,346297	24,820893	6,4798464	7,4079067	0,5447364	0,4003209	46,849559	48,460958	4,6894833
25pg60-Pg1	198	100	60,544139	24,881199	6,3051004	7,2700109	0,5562703	0,4432803	46,547918	48,562273	4,8898088
25pg60-Pg1	201	100	60,618638	24,823078	6,3227731	7,2056785	0,5451474	0,4846852	46,864455	48,324408	4,8111368
25pg60-Pg1	204	100	60,35116	24,835655	6,4356709	7,4369572	0,5262675	0,4142901	46,664722	48,791687	4,5435906
25pg60-Pg1	207	100	60,318371	24,894559	6,4219852	7,4020708	0,5318222	0,4311914	46,696311	48,699242	4,6044471

Tabla III.l: Continuación.

ón.	
nuaci	
Conti	
I.I : C	
la II	
Tab	

Ω Ă	istancia desde el orde (micrones)	TOTAL	Si02 wt%	Al2O3 wt%	CaO wt%	Na20 w%	K20 wt%	FeO wt%	%An	%Ab	%Or
25pg60-Pg1	210	100	60,469653	24,825449	6,3278709	7,4001	0,5283369	0,4485904	46,349155	49,043053	4,6077926
25pg60-Pg1	213	100	60,490431	24,806242	6,2752804	7,4507868	0,5429837	0,4342769	45,927918	49,340262	4,7318203
25pg60-Pg1	216	100	60,567617	24,799079	6,2940783	7,36786	0,5439262	0,4274394	46,25206	48,988709	4,7592304
25pg60-Pg1	219	100	60,709944	24,649612	6,3523969	7,3215008	0,5365524	0,429994	46,654584	48,653323	4,6920932
25pg60-Pg3	222	100	60,043343	25,072428	6,7649107	7,1217574	0,5211182	0,4764429	48,917544	46,595657	4,4867991
25pg60-Pg3	225	100	59,734415	25,143523	7,0005648	7,1608115	0,5028372	0,4578478	49,725446	46,021794	4,2527593
25pg60-Pg3	228	100	59,403339	25,487142	7,1195643	7,0708939	0,4775686	0,4414926	50,543585	45,419531	4,0368836
25pg60-Pg3	231	100	59,425377	25,525119	7,2601473	6,8288681	0,46548	0,4950082	51,883423	44,155785	3,9607915
25pg60-Pg3	234	100	59,491322	25,31294	7,0340632	7,2033951	0,4847125	0,4735671	49,784992	46,130176	4,084832
25pg60-Pg3	237	100	59,965447	25,241493	6,7728016	7,0483503	0,484124	0,4877836	49,340582	46,459988	4,19943
25pg60-Pg3	240	100	59,656836	25,354588	6,8158975	7,2103214	0,5071864	0,4551708	48,881403	46,787618	4,3309784
25pg60-Pg3	243	100	59,785591	25,394097	6,7620647	7,1514393	0,4744186	0,4323894	49,00893	46,896999	4,0940712
25pg60-Pg3	246	100	59,701493	25,433899	6,954879	7,0003325	0,4676799	0,4417171	50,23138	45,746713	4,0219073
25pg60-Pg3	249	100	59,230359	25,816568	7,2879801	6,7844631	0,4386178	0,4420116	52,247844	44,008075	3,7440809
25pg60-Pg3	252	100	59,127293	25,634197	7,4903179	6,8292346	0,438727	0,4802302	52,779046	43,540059	3,6808955
25pg60-Pg3	255	100	59,130511	25,702791	7,4448605	6,8185475	0,4335662	0,4697237	52,686207	43,660423	3,6533697
25pg60-Pg3	258	100	59,171914	25,536403	7,4930045	6,9010057	0,4352736	0,4623985	52,562739	43,80161	3,6356508
25pg60-Pg3	261	100	58,907095	26,056927	7,2417309	6,9148	0,441033	0,4384142	51,640266	44,615052	3,7446822
25pg60-Pg3	264	100	59,074982	25,749312	7,5355959	6,760644	0,4425147	0,4369514	53,144048	43,140065	3,7158872
25pg60-Pg3	267	100	58,74073	25,933341	7,6663658	6,8084862	0,4215405	0,429537	53,503751	42,993316	3,5029328
25pg60-Pg3	270	100	58,731678	26,156155	7,6069402	6,6040691	0,4280749	0,473083	53,980373	42,402668	3,6169582
25pg60-Pg3	273	100	58,657748	25,926141	7,6989013	6,7778718	0,4254571	0,5138801	53,695221	42,771643	3,5331364
25pg60-Pg3	276	100	58,765843	25,96094	7,6605492	6,7040446	0,4386585	0,4699644	53,763079	42,571291	3,6656294
25pg60-Pg3	279	100	58,862873	25,79981	7,7732015	6,6481756	0,4251585	0,4907821	54,378037	42,080586	3,5413776
25pg60-Pg3	282	100	58,906416	25,966164	7,5805387	6,6433486	0,4416902	0,4618425	53,696428	42,578276	3,7252965
25pg60-Pg3	285	100	58,843339	25,853249	7,5892099	6,797422	0,432164	0,4846155	53,242169	43,147844	3,6099865
25pg60-Pg3	288	100	59,343004	25,57793	7,2159297	6,9156261	0,4627094	0,4848005	51,453505	44,617977	3,9285185
25pg60-Pg3	291	100	59,529641	25,343026	7,2157027	6,96819	0,4730015	0,4704386	51,234196	44,766894	3,9989098
25pg60-Pg3	294	100	59,710434	25,403561	6,8796032	7,031437	0,4863322	0,4886325	49,777306	46,032841	4,1898536
25pg60-Pg3	297	100	59,640685	25,369016	6,9497213	7,101645	0,4880104	0,4509219	49,795932	46,040617	4,1634504
25pg60-Pg3	300	100	59,783286	25,067379	6,9235507	7,2624608	0,4852161	0,4781066	49,199457	46,695059	4,1054844
25pg60-Pg3	303	100	60,021704	24,887672	6,9537368	7,1862946	0,4961432	0,4544492	49,504436	46,289937	4,2056269
25pg60-Pg3	306	100	59,889237	25,264756	6,7895269	7,0744325	0,5053183	0,4767298	49,227311	46,410249	4,3624398
25pg60-Pg3	309	100	59,972391	25,206996	6,7821758	7,0501138	0,5039969	0,4843272	49,284529	46,35466	4,3608111
25pg60-Pg3	312	100	59,904446	25,20581	6,7467581	7,205438	0,5038086	0,4337388	48,656271	47,017525	4,3262043

Tabla III.l: Continuación.	

Ϊ	stancia desde el orde (micrones)	TOTAL	Si02 w%	Al2O3 wt%	CaO wt%	Na20 wt%	K20 wt%	FeO w%	%An	%Ab	%Or
25pg60-Pg3	315	100	59,909684	25,189977	6,6991566	7,2704484	0,5009409	0,4297938	48,285796	47,415044	4,2991596
25pg60-Pg3	318	100	59,981017	25,031784	6,810241	7,1986986	0,5052652	0,472994	48,905584	46,774123	4,3202926
25pg60-Pg3	321	100	59,819537	25,153418	6,8712335	7,2155245	0,5006558	0,4396315	49,094226	46,646527	4,2592466
25pg60-Pg3	324	100	60,078635	25,140159	6,6940092	7,1398711	0,4849231	0,4624027	48,748929	47,046232	4,2048393
25pg60-Pg3	327	100	59,940617	25,097598	6,828445	7,1908053	0,4914852	0,4510502	49,055142	46,740779	4,2040799
25pg60-Pg3	330	100	59,988038	25,148916	6,5947034	7,316699	0,5074302	0,4442134	47,721688	47,906166	4,3721462
25pg60-Pg3	333	100	60,130116	24,936004	6,6869571	7,3034338	0,5079608	0,4355286	48,107696	47,541055	4,3512494
25pg60-Pg3	336	100	60,143953	24,995521	6,6443149	7,2281896	0,5098775	0,4781445	48,17677	47,421219	4,4020112
25pg60-Pg3	339	100	60,129439	24,972053	6,7043746	7,2488949	0,5021163	0,4431217	48,368324	47,318423	4,3132523
25pg60-Pg3	342	100	60,000349	24,965461	6,7776903	7,2820622	0,502253	0,4721851	48,534889	47,182657	4,2824537
25pg60-Pg3	345	100	60,152244	25,005786	6,7268267	7,1521184	0,4991419	0,463883	48,771869	46,919087	4,3090441
25pg60-Pg3	348	100	59,960389	25,0575	6,794059	7,2708759	0,5012508	0,4159257	48,634503	47,093135	4,2723617
25pg60-Pg3	351	100	59,924671	25,36676	6,5608134	7,1724054	0,4879291	0,4874215	48,130069	47,607932	4,2619983
25pg60-Pg3	354	100	60,175491	24,965976	6,9619352	6,9782315	0,4877517	0,4306139	50,242578	45,56622	4,1912014
25pg60-Pg3	357	100	60,208127	25,216054	6,7015472	6,9315967	0,508719	0,4339557	49,352193	46,187064	4,4607426
25pg60-Pg3	360	100	59,913647	25,135543	6,845338	7,1714113	0,4778716	0,45619	49,236151	46,67126	4,0925896
25pg60-Pg3	363	100	59,952935	25,281515	6,8246683	6,9813087	0,4947945	0,4647786	49,704271	46,004964	4,2907655
25pg60-Pg3	366	100	60,095006	25,040953	6,8052593	7,099462	0,4911677	0,4681511	49,264474	46,501858	4,2336676
25pg60-Pg3	369	100	59,723957	25,183531	6,6996537	7,4069844	0,50615	0,4797235	47,840292	47,856242	4,3034669
25pg60-Pg3	372	100	60,055809	25,026858	6,6477393	7,3148009	0,5059735	0,4488193	47,933486	47,722506	4,3440079
25pg60-Pg3	375	100	60,147819	25,085002	6,5967666	7,2037515	0,5023668	0,4642944	48,106181	47,531791	4,3620287
25pg60-Pg3	378	100	59,988755	25,193582	6,7213551	7,1225537	0,5035727	0,4701814	48,827592	46,816603	4,3558052
25pg60-Pg3	381	100	60,179722	24,982902	6,8660048	7,0396059	0,5004437	0,4313215	49,640859	46,051017	4,3081237
25pg60-Pg3	384	100	59,778444	25,170061	6,8975938	7,2282028	0,4989397	0,4267586	49,156871	46,609307	4,2338212
25pg60-Pg3	387	100	59,9553	25,215956	6,72944	7,1395074	0,4868238	0,4729725	48,873962	46,916172	4,2098657
25pg60-Pg3	390	100	59,763707	25,241269	7,0041857	7,0861699	0,4697709	0,4348976	50,118864	45,878671	4,0024646
25pg60-Pg3	393	100	59,775695	25,275622	6,9346968	7,1118564	0,4650999	0,4370306	49,806277	46,216311	3,9774122
25pg60-Pg3	396	100	59,695638	25,405467	7,0133198	6,9914093	0,4738754	0,4202905	50,443091	45,498647	4,0582618
25pg60-Pg3	399	100	59,583322	25,371079	7,094323	7,0532194	0,4599848	0,4380716	50,587666	45,506849	3,905485
25pg60-Pg3	402	100	59,618868	25,292701	7,1185472	7,0463436	0,4736631	0,4498772	50,636591	45,351599	4,0118107
25pg60-Pg3	405	100	59,834239	25,278188	7,1224032	6,8534622	0,4836097	0,4280983	51,242935	44,614205	4,1428595
25pg60-Pg3	408	100	59,666412	25,382356	7,0099869	7,0310098	0,4748219	0,4354132	50,297478	45,645966	4,0565563
25pg60-Pg3	411	100	59,636615	25,301305	7,0854288	7,0562765	0,4758383	0,4445369	50,478356	45,485225	4,0364191
25pg60-Pg3	414	100	59,576035	25,438827	7,1228938	6,9849369	0,4458157	0,4314915	50,973435	45,227816	3,7987486

	Distancia desde el borde (micrones)	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	Na20 wt%	K20 wt%	FeO wt%	TiO2 wt%	MgO wt%	%An	%Ab	%Or
25pg18-Pg3P	0	100	60,427781	24,900885	6,6666419	7,0158964	0,5019913	0,4417628	0,0187102	0,0263316	48,974826	46,634211	4,3909629
25pg18-Pg3P	3	100	60,263295	25,009808	6,6010487	7,0465683	0,5236557	0,4625156	0,0516216	0,0414878	48,535911	46,879569	4,5845199
25pg18-Pg3P	9	100	60,346048	24,97497	6,7020869	6,9080303	0,5094512	0,4392203	0,0889667	0,0312267	49,428647	46,09763	4,4737223
25pg18-Pg3P	6	100	60,055436	25,191391	6,647337	7,1028352	0,4754682	0,4619322	0,0374148	0,0281855	48,733563	47,115944	4,1504936
25pg18-Pg3P	12	100	59,879366	25,28352	6,7766459	7,0324712	0,4897819	0,4688429	0,0481699	0,0212029	49,38221	46,368109	4,2496805
25pg18-Pg3P	15	100	59,726447	25,354143	7,0814378	6,8444936	0,47484	0,4473538	0,0404459	0,0308384	51,167324	44,747448	4,0852288
25pg18-Pg3P	18	100	59,585383	25,455373	7,0680042	6,9142499	0,4621678	0,4468881	0,0327603	0,0351729	50,942922	45,090787	3,9662908
25pg18-Pg3P	21	100	59,50335	25,51902	7,1505216	6,8612872	0,4674384	0,4489903	0,0202533	0,0291389	51,386292	44,613968	3,9997398
25pg18-Pg3P	24	100	59,695813	25,381777	6,9753966	6,9086001	0,4655692	0,4747084	0,0591644	0,0389718	50,61718	45,360182	4,0226389
25pg18-Pg3P	27	100	59,819121	25,201531	7,0538361	6,9053438	0,4672179	0,4506061	0,0653358	0,0370088	50,900286	45,085393	4,0143212
25pg18-Pg3P	30	100	60,016351	25,256536	6,9468754	6,7893235	0,4646105	0,4427553	0,0545799	0,0289676	50,91858	45,026581	4,0548389
25pg18-Pg3P	33	100	59,933105	25,256386	6,9967223	6,8134853	0,4676544	0,4492398	0,0572237	0,0261831	51,002325	44,938684	4,0589915
25pg18-Pg3P	36	100	59,95773	25,35403	6,9540493	6,7752225	0,4660783	0,4409746	0,0139864	0,0379291	50,985502	44,945705	4,0687933
25pg18-Pg3P	39	100	60,063801	25,170717	6,7743916	6,9870926	0,468804	0,4643969	0,0467689	0,0240278	49,612679	46,299316	4,0880053
25pg18-Pg3P	42	100	59,714844	25,441997	6,9550997	6,9003251	0,4774648	0,4321158	0,0404846	0,0376681	50,519826	45,350673	4,1295013
25pg18-Pg3P	45	100	59,898808	25,248041	6,9637862	6,8980484	0,4749469	0,4409077	0,0374402	0,0380208	50,569594	45,323764	4,1066428
25pg18-Pg3P	48	100	59,983324	25,358512	6,8302807	6,8640061	0,4601664	0,4273021	0,0421033	0,0343057	50,264075	45,70382	4,0321049
25pg18-Pg3P	51	100	60,09374	25,376339	6,7196598	6,842171	0,4651195	0,4274422	0,0468761	0,0286529	49,907189	45,979627	4,1131843
25pg18-Pg3P	54	100	59,792491	25,276895	7,0367887	6,8547902	0,468299	0,4624187	0,0777552	0,030562	51,003622	44,954832	4,0415463
25pg18-Pg3P	57	100	60,084142	25,149638	6,9090233	6,85288	0,4768436	0,4453768	0,0435537	0,0385427	50,514433	45,334377	4,1511901
25pg18-Pg3P	60	100	60,121982	25,21649	6,8574978	6,8475605	0,4659477	0,4270875	0,032732	0,0307028	50,393087	45,529917	4,0769955
25pg18-Pg3P	63	100	59,99173	25,199081	6,8324766	6,8821581	0,471421	0,4725532	0,1219658	0,0286143	50,162033	45,716957	4,1210099
25pg18-Pg3P	66	100	59,993156	25,137378	6,8811729	6,9460775	0,4632709	0,4650976	0,0767564	0,0370915	50,162951	45,815869	4,0211795
25pg18-Pg3P	69	100	59,875672	25,417667	6,8193044	6,8711544	0,4469694	0,434289	0,0966769	0,0382673	50,258091	45,819602	3,9223063
25pg18-Pg3P	72	100	59,891631	25,240859	7,0171354	6,8848048	0,4697265	0,4586956	0,0125089	0,0246389	50,827265	45,121571	4,0511633
25pg18-Pg3P	75	100	59,816239	25,31642	6,860704	7,0670465	0,4706782	0,415453	0,0233706	0,030089	49,659671	46,283778	4,0565516
25pg18-Pg3P	78	100	59,914664	25,329563	6,7702782	7,012033	0,4771295	0,4283393	0,0453044	0,0226884	49,479765	46,368256	4,1519789
25pg18-Pg3P	81	100	59,766331	25,296353	6,8223633	7,1185353	0,4688177	0,4384328	0,0420925	0,0470747	49,3606	46,600646	4,0387541
25pg18-Pg3P	84	100	60,074564	25,004157	6,7904243	7,1370534	0,4652081	0,4442969	0,0374465	0,04685	49,198865	46,787821	4,0133146
25pg18-Pg3P	87	100	60,009947	25,152895	6,8907102	6,9760463	0,4534381	0,4309513	0,0606645	0,0253477	50,141295	45,930018	3,9286867
25pg18-Pg3P	06	100	60,15199	25,037365	6,9553666	6,8996167	0,4712769	0,4228813	0,0357913	0,0257124	50,550192	45,371532	4,0782768
25pg18-Pg3P	93	100	59,765657	25,443641	6,9135392	6,9332585	0,4696555	0,4177485	0,031092	0,0254087	50,294882	45,636934	4,0681837
25pg18-Pg3P	96	100	60,015448	25,204419	6,8763585	6,9138123	0,4731046	0,414688	0,0685935	0,0335761	50,209475	45,677303	4,1132221
25pg18-Pg3P	66	100	59,766646	25,403311	7,1062391	6,7528205	0,4509729	0,4192648	0,0624542	0,0382911	51,669704	44,425985	3,9043107
25pg18-Pg3P	102	100	59,988578	25,306863	6,8231961	6,9138608	0,4595505	0,4386872	0,0484948	0,0207693	50,074523	45,909789	4,0156887

Tabla III.m: Perfiles composicionales normalizados con TiO₂ wt.% y MgO wt.% de las muestras AA-260217-1B y AA-250218-1M.

lación.
Continu
III.m:
Tabla

Tabla III.m: (Continuación.												
	Distancia desde el borde (micrones)	TOTAL	Si02 wt%	Al2O3 wt%	CaO w%	Na20 wt%	K20 wt%	FeO w%	TiO2 wt%	MgO w%	nA∿	dAb	%0r
25pg18-Pg3P	105	100	59,710237	25,304062	6,9630098	7,0591833	0,4675457	0,4261499	0,0342373	0,0355754	50,068722	45,928224	4,0030536
25pg18-Pg3P	108	100	59,973871	25,189865	6,976365	6,881313	0,4449036	0,4420487	0,0625604	0,0290731	50,802365	45,340024	3,8576114
25pg18-Pg3P	111	100	59,446117	25,715853	7,2833004	6,6894429	0,428293	0,3909476	0,0156724	0,0303738	52,602523	43,714347	3,6831306
25pg18-Pg3P	114	100	49,079616	32,469859	15,243807	2,6257832	0,0899617	0,4619609	0	0,0290118	85,993247	13,402489	0,6042635
25pg18-Pg3P	117	100	47,187238	33,973656	16,45296	1,8200583	0,0447404	0,4626399	0,0378257	0,0208813	90,634775	9,0717652	0,2934595
25pg18-Pg3P	120	100	47,149808	33,929628	16,67257	1,6658503	0,047495	0,4819463	0,0282417	0,024461	91,424709	8,2651875	0,3101032
25pg18-Pg3P	123	100	47,004534	34,157005	16,629305	1,6819023	0,0437451	0,4412522	0,0187737	0,0234837	91,353806	8,360053	0,2861406
25pg18-Pg3P	126	100	46,955205	34,189907	16,602595	1,6745719	0,0401881	0,4650705	0,0486979	0,0237645	91,395748	8,3408347	0,2634176
25pg18-Pg3P	129	100	46,877192	34,151708	16,748179	1,6781346	0,0397428	0,4525366	0,0267791	0,0257278	91,450705	8,2909051	0,2583898
25pg18-Pg3P	132	100	46,822831	34,208709	16,864151	1,6010071	0,0312433	0,4254021	0,0250979	0,0215598	91,902963	7,8943067	0,2027306
25pg18-Pg3P	135	100	46,720076	34,271194	16,880754	1,6350784	0,0309868	0,4432278	0,003122	0,0155614	91,757795	8,0416541	0,2005513
25pg18-Pg3P	138	100	46,847044	34,530105	16,569139	1,4961266	0,0334126	0,4511754	0,0582304	0,0147663	92,242288	7,53623	0,2214821
25pg18-Pg3P	141	100	46,68034	34,51961	16,716931	1,5430367	0,0418039	0,4577789	0,0299444	0,0105552	92,03911	7,6868395	0,2740501
25pg18-Pg3P	144	100	46,437963	34,420979	17,155639	1,4530592	0,0396395	0,4456293	0,0330421	0,0140484	92,645173	7,0999435	0,2548835
25pg18-Pg3P	147	100	46,246703	34,61108	17,194235	1,4188077	0,0304285	0,4398616	0,0377405	0,0211439	92,870465	6,9338431	0, 195692
25pg18-Pg3P	150	100	46,290927	34,464995	17,217701	1,489566	0,0415702	0,4713341	0,0031399	0,0207662	92,493857	7,2402433	0,2658996
25pg18-Pg3P	153	100	46,423368	34,393348	17,281212	1,3846088	0,0395961	0,4426637	0,020551	0,0146528	93,003938	6,742329	0,253733
25pg18-Pg3P	156	100	46,347851	34,439582	17,214779	1,445703	0,0407918	0,4881989	0,0015733	0,0215206	92,694953	7,0435147	0,2615326
25pg18-Pg3P	159	100	46,604915	34,211745	17,126902	1,4896446	0,0409712	0,4976793	0	0,0281437	92,460269	7,2763691	0,2633616
25pg18-Pg3P	162	100	46,720499	34,11363	17,158888	1,4579936	0,0389413	0,4894808	0	0,0205671	92,628292	7,1214073	0,2503008
25pg18-Pg3P	165	100	46,70278	33,961322	17,063568	1,7001132	0,0389018	0,479646	0,042479	0,0111904	91,502684	8,2489281	0,2483882
25pg18-Pg3P	168	100	47,103206	33,970781	16,555763	1,8036078	0,0477848	0,4763217	0,0219919	0,0205441	90,74348	8,9446641	0,3118558
25pg18-Pg3P	171	100	47,006833	33,949658	16,707898	1,7809631	0,0337618	0,4997213	0,0031417	0,0180228	91,003979	8,7770623	0,2189588
25pg18-Pg13P	0	100	70,554391	16,136772	1,5777218	3,8075605	3,541421	3,0017425	0,7533739	0,6270176	17,075737	37,286495	45,637768
25pg18-Pg13P	ю	100	67,153518	20,120879	3,9163952	4,3013738	2,0244495	1,7777225	0,3761937	0,3294675	38,32542	38,085818	23,588762
25pg18-Pg13P	9	100	60,573673	24,930407	6,5090995	6,9175466	0,5155747	0,4637131	0,0513899	0,0385969	48,640603	46,771988	4,5874088
25pg18-Pg13P	6	100	61,351006	24,31039	5,8966243	7,355933	0,5572102	0,4587941	0,0452234	0,0248184	44,618046	50,36172	5,0202341
25pg18-Pg13P	12	100	60,855286	24,865358	6,3062002	6,9709008	0,5285723	0,4056941	0,0406183	0,0273703	47,61955	47,627976	4,7524737
25pg18-Pg13P	15	100	60,459866	24,942792	6,6802281	6,9171956	0,5027046	0,4407993	0,0249075	0,0315072	49,346042	46,232437	4,4215214
25pg18-Pg13P	18	100	60,398331	24,999365	6,6434727	6,8862426	0,4990261	0,4548427	0,0886942	0,0300258	49,326465	46,261835	4,4116992
25pg18-Pg13P	21	100	60,890297	24,625138	6,4038667	7,008726	0,5338125	0,4363694	0,0763175	0,0254731	47,857868	47,392088	4,7500437
25pg18-Pg13P	24	100	61,263936	24,485947	6,0628885	7,1035871	0,55843	0,4338548	0,0655485	0,0258081	46,087477	48,858121	5,0544028
25pg18-Pg13P	27	100	60,383282	24,9621	6,6640131	6,9127774	0,5177376	0,4464495	0,0888119	0,0248286	49,234676	46,210803	4,5545215
25pg18-Pg13P	30	100	60,667749	24,866142	6,4829577	6,927926	0,5072749	0,4712129	0,0515	0,0252371	48,541861	46,935578	4,5225609
25pg18-Pg13P	33	100	60,526671	24,813346	6,6928629	6,9658031	0,5080186	0,4583818	0	0,0349169	49,21057	46,341849	4,4475815

ación.
Continu
III.m: (
Tabla

•

	Distancia desde el borde (micrones)	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	Na20 wt%	K20 wt%	FeO wt%	TiO2 wt%	MgO wt%	uA₀⁄⁰	dA₀	%Or
25pg18-Pg13P	36	100	59,74725	25,435827	7,1161403	6,7309518	0,461464	0,4211311	0,054827	0,0324086	51,731895	44,273724	3,9943812
25pg18-Pg13P	39	100	60,287928	25,147818	6,7127963	6,8667948	0,4880405	0,4006647	0,0704015	0,0255558	49,698572	45,999193	4,3022345
25pg18-Pg13P	42	100	60,951249	24,716197	6,3180106	7,0075464	0,5422576	0,4152241	0,0172067	0,0323082	47,489045	47,657885	4,85307
25pg18-Pg13P	45	100	61,679779	24,1388	5,7476439	7,3567753	0,6142331	0,4375703	0	0,0251985	43,756696	50,675478	5,5678266
25pg18-Pg13P	48	100	61,482082	24,163141	5,8638313	7,3751942	0,5962765	0,4181787	0,0856364	0,01566	44,265574	50,374854	5,3595721
25pg18-Pg13P	51	100	61,256277	24,379962	6,1782471	7,1662159	0,5523873	0,401391	0,0295292	0,0359904	46,383215	48,678945	4,9378404
25pg18-Pg13P	54	100	60,718695	24,727905	6,4590578	7,0906158	0,5289921	0,4164889	0,029476	0,0287695	47,828727	47,507186	4,6640867
25pg18-Pg13P	57	100	61,046848	24,468997	6,1851333	7,2552084	0,5383006	0,4222978	0,0435676	0,0396479	46,189973	49,023491	4,7865361
25pg18-Pg13P	60	100	61,534995	24,217975	5,8067992	7,2945599	0,5831907	0,4223285	0,1180214	0,0221303	44,322103	50,377701	5,3001962
25pg18-Pg13P	63	100	61,593076	24,098808	5,8501104	7,3571988	0,6020023	0,4205995	0,0450933	0,0331118	44,239427	50,340048	5,4205252
25pg18-Pg13P	99	100	61,479158	24,269258	5,9304853	7,2977451	0,5832598	0,4087262	0,0030959	0,0282719	44,832777	49,917151	5,2500715
25pg18-Pg13P	69	100	60,969247	24,624414	6,1922334	7,179049	0,5523232	0,4272644	0,0342308	0,0212374	46,399315	48,67286	4,9278255
25pg18-Pg13P	72	100	60,261529	24,992566	6,7438129	6,9876582	0,4992237	0,4487079	0,0388698	0,0276327	49,366487	46,282207	4,3513064
25pg18-Pg13P	75	100	60,086445	25,257263	6,8518768	6,8194823	0,4805335	0,4336752	0,0388419	0,0318827	50,402372	45,388783	4,2088451
25pg18-Pg13P	78	100	60,351099	25,141732	6,7299723	6,7800847	0,4931823	0,4314722	0,052916	0,0195416	50,03004	45,604572	4,365388
25pg18-Pg13P	81	100	60,268048	25,241639	6,7322464	6,7490701	0,4970668	0,4385012	0,040586	0,0328424	50,125805	45,467491	4,4067039
25pg18-Pg13P	84	100	60,13464	25,126466	6,7589573	6,9701071	0,4842561	0,4254269	0,0652811	0,0348654	49,544653	46,228759	4,2265887
25pg18-Pg13P	87	100	60,674854	24,779425	6,532966	6,955565	0,4985016	0,4524245	0,0733025	0,0329609	48,680944	46,896097	4,4229597
25pg18-Pg13P	90	100	60,826981	24,684944	6,2955871	7,1791781	0,5182145	0,4400245	0,0216395	0,033431	46,952611	48,445555	4,6018332
25pg18-Pg13P	93	100	60,855363	24,820923	6,3343034	6,971807	0,523439	0,4283154	0,0372643	0,0285842	47,749514	47,552259	4,6982269
25pg18-Pg13P	96	100	60,73021	24,738105	6,3330244	7,1775221	0,5125566	0,4403721	0,0371266	0,0310835	47,129177	48,329124	4,5416986
25pg18-Pg13P	66	100	61,07702	24,508907	6,0707741	7,2366609	0,5397516	0,4589519	0,080686	0,0272493	45,778374	49,375352	4,8462745
25pg18-Pg13P	102	100	61,411971	24,352492	6,11529	7,0992933	0,5573648	0,4049222	0,0232859	0,03538	46,319449	48,653843	5,0267083
25pg18-Pg13P	105	100	61,031003	24,554938	6,2121127	7,1421881	0,5569618	0,4331321	0,0389336	0,0307304	46,576017	48,45181	4,9721728
25pg18-Pg13P	108	100	60,820515	24,711781	6,2714727	7,1734802	0,5144085	0,4237538	0,0558809	0,0287082	46,890975	48,529445	4,5795802
25pg18-Pg13P	111	100	60,554077	24,928184	6,4555632	7,0616117	0,4976876	0,4214682	0,0575349	0,023873	48,041238	47,548802	4,4099598
25pg18-Pg13P	114	100	60,206401	25,043182	6,8046027	6,8830985	0,4938186	0,4915746	0,0496585	0,027664	49,958691	45,724394	4,3169153
25pg18-Pg13P	117	100	60,045396	25,271936	6,8818328	6,7887764	0,4835769	0,4379429	0,058911	0,0316278	50,601152	45,165153	4,2336952
25pg18-Pg13P	120	100	60,044229	25,071656	6,9536022	6,8859513	0,4881707	0,4557128	0,0746858	0,0259922	50,51539	45,261976	4,2226337
25pg18-Pg13P	123	100	59,909632	25,106489	7,1209731	6,8626747	0,4555979	0,4581496	0,0465512	0,0399322	51,330319	44,759345	3,9103362
25pg18-Pg13P	126	100	60,248392	25,117835	6,779148	6,8196875	0,4567196	0,4926596	0,0481619	0,0373968	50,240265	45,729556	4,0301787
25pg18-Pg13P	129	100	59,601461	25,590786	6,9527761	6,8087391	0,4511733	0,4810828	0,0742155	0,0397662	50,933948	45,130639	3,9354126
25pg18-Pg13P	132	100	59,654464	25,439193	6,9717188	6,8195628	0,4778404	0,488089	0,117766	0,0313664	50,847402	45,002966	4,1496322
25pg18-Pg13P	135	100	59,397611	25,30658	7,3897818	6,8318303	0,4449917	0,48321	0,0964127	0,0495825	52,405667	43,836856	3,7574768
25pg18-Pg13P	138	100	59,818156	25,30638	7,0374929	6,7740156	0,4509436	0,4840365	0,0900471	0,0389277	51,355071	44,72674	3,918189

-	
۰Ò	
.2	
2	
- 22	
=	
. _ _	
-12	
0	
(T	
<u> </u>	
•••	
- 8	
_ H	
I.m	
III.m	
III.m	
a III.m	
ola III.m	
ibla III.m	
abla III.m	

Ι	Distancia desde el horde (micrones)	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%]	Na2O wt%	K20 wt%	FeO wt%	TiO2 wt%	MgO w%	%An	%Ab	%Or
25ng18-Pg13P	141	100	59.891984	25.277885	6.8570064	6.9462605	0.459525	0.4986975	0.0310939	0.037548	50.090708	45.912335	3.9969577
25pg18-Pg13P	144	100	59.849662	25.247776	7.1775018	6.7168398	0.4481638	0.4520137	0.0834416	0.0246011	52.054016	44.075943	3.8700406
25pg18-Pg13P	147	100	59,631098	25,465364	7,1538412	6,7180366	0,4394469	0,4978115	0,0620271	0,0323747	52,006725	44,189417	3,8038588
25pg18-Pg13P	150	100	59,415239	25,575099	7,2957048	6,730249	0,4228112	0,4709858	0.0512563	0,0386552	52,529737	43,845478	3,6247849
25pg18-Pg13P	153	100	59.377469	25,542199	7,3627422	6,6719518	0,4325135	0,4960672	0,0809684	0,0360887	52,913958	43,384965	3,7010771
25pg18-Pg13P	156	100	59,417594	25,608706	7,2403295	6,7096961	0,4378704	0,4941662	0,0588496	0,0327875	52,342231	43,888672	3,769097
25pg18-Pg13P	159	100	59,515269	25,601116	7,2946355	6,6172493	0,435816	0,4746828	0,0342054	0,0270261	52,856284	43,383663	3,7600531
25pg18-Pg13P	162	100	59,206256	25,649269	7,4632059	6,6907375	0,4119706	0,4768845	0,0636128	0,0380632	53,279855	43,218262	3,501883
25pg18-Pg13P	165	100	59,351584	25,514413	7,3177753	6,8099275	0,4321007	0,4787014	0,0561217	0,0393764	52,292464	44,030966	3,6765696
26pg45-Pg4P	0	100	60,596337	24,690865	6,6496526	6,9774016	0,5259424	0,4663643	0,0601179	0,0333198	48,933782	46,457865	4,6083535
26pg45-Pg4P	33	100	60,393325	24,838179	6,7467355	7,0199128	0,5049618	0,4179451	0,0416685	0,0372721	49,247503	46,363686	4,3888111
26pg45-Pg4P	9	100	60,342567	24,816005	6,7249815	7,0931424	0,5085142	0,4315323	0,0585749	0,0246834	48,914705	46,681276	4,4040195
26pg45-Pg4P	6	100	60,201721	25,156946	6,7195045	6,9011245	0,5043767	0,4524321	0,0356407	0,0282537	49,538372	46,034141	4,4274869
26pg45-Pg4P	12	100	60,732903	24,678941	6,3305004	7,1889348	0,5580081	0,4611692	0,024711	0,0248332	46,894303	48,183938	4,9217591
26pg45-Pg4P	15	100	60,30534	24,912753	6,7550788	7,0562979	0,4869156	0,4506651	0,0092814	0,0236685	49,237324	46,536812	4,2258637
26pg45-Pg4P	18	100	60,142816	25,165143	6,7300905	6,9222834	0,5228297	0,4338038	0,0467282	0,0363048	49,428012	45,999945	4,5720431
26pg45-Pg4P	21	100	60,573925	24,639933	6,5261638	7,1706178	0,5506622	0,4540139	0,0589233	0,0257621	47,741292	47,462266	4,7964424
26pg45-Pg4P	24	100	60,768041	24,71829	6,3967987	7,0483909	0,5416682	0,4393947	0,0526607	0,0347562	47,669052	47,524713	4,8062347
26pg45-Pg4P	27	100	60,893572	24,498285	6,3063133	7,1685768	0,5552873	0,4643878	0,0792283	0,0343498	46,874326	48,211222	4,9144516
26pg45-Pg4P	30	100	60,313005	24,863187	6,7614714	7,0082078	0,5085967	0,4279886	0,0857018	0,0318413	49,324561	46,257768	4,417671
26pg45-Pg4P	33	100	61,116503	24,300708	6,1107324	7,3508396	0,6049565	0,4546247	0,0342632	0,0273724	45,324668	49,332601	5,3427309
26pg45-Pg4P	36	100	60,241263	24,912828	6,6184933	7,1684915	0,5384644	0,4474074	0,0374957	0,0355563	48,149436	47,186259	4,6643045
26pg45-Pg4P	39	100	60,384491	24,909873	6,7607068	6,9302802	0,4923312	0,4316194	0,0621685	0,0285292	49,647261	46,047885	4,3048534
26pg45-Pg4P	42	100	59,947399	25,065014	7,0565558	6,8788732	0,4824509	0,4621026	0,0666827	0,0409218	50,93128	44,922592	4,1461285
26pg45-Pg4P	45	100	60,067345	25,214276	6,7947519	6,9337527	0,4960811	0,4332461	0,0233481	0,0371993	49,745116	45,930469	4,3244149
26pg45-Pg4P	48	100	60,049072	24,904661	7,0177602	7,0439484	0,4945218	0,4324457	0,0357394	0,0218513	50,198602	45,589514	4,2118836
26pg45-Pg4P	51	100	59,915641	25,204823	7,001899	6,8928623	0,5068979	0,4453545	0,020279	0,0122431	50,583852	45,055868	4,3602799
26pg45-Pg4P	54	100	60,466098	24,748416	6,7428439	6,9717513	0,5249798	0,447534	0,0777951	0,020582	49,304152	46,125169	4,570679
26pg45-Pg4P	57	100	60,742197	24,690206	6,1830699	7,2737523	0,5653784	0,4177424	0,0902841	0,0373697	46,013212	48,977046	5,0097422
26pg45-Pg4P	60	100	61,625332	24,050659	5,7083111	7,5203378	0,615142	0,3849678	0,0639502	0,0313005	43,097195	51,372939	5,5298657
26pg45-Pg4P	63	100	61,536361	24,174872	5,7071236	7,5123367	0,6102426	0,3894357	0,0560758	0,0135529	43,134671	51,373595	5,491734
26pg45-Pg4P	99	100	61,451972	23,933178	5,9217046	7,6250458	0,5993553	0,3792851	0,0653157	0,0241434	43,752536	50,974696	5,2727675
26pg45-Pg4P	69	100	61,573332	24,107076	5,8547609	7,3944489	0,6082499	0,3741246	0,0655	0,0225074	44,121802	50,420319	5,4578795

Sección 2: Piroxenos en muestra AA-260217-1B.

Tabla III.n: Composición normalizada de piroxenos separados de muestra AA-260217-1B.

	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	K2O wt%	MgO wt%	Na2O wt%	TiO2 wt%	Cr2O3 wt%	FeO wt%	MnO wt%
26px135-px2	100	51,645911	0,4910721	1,4960073	0,0026348	24,514298	0,0253788	0,2686229	0,0002664	20,357172	1,1986368
26px135-px3	100	52,251023	1,2978357	19,963602	0,0001477	15,194477	0,3933039	0,5498815	0,0044123	9,7531678	0,5921486
26px135-px4	100	50,80443	1,8608601	19,886313	0,001832	15,098198	0,4196181	0,7864825	0,0052278	10,504512	0,632526
26px135-px5	100	51,654973	1,389505	20,284347	0,0003237	15,389553	0,3953516	0,5766603	0,0002362	9,7257705	0,5832792
26px135-px6	100	51,65731	1,1801558	20,33465	0,0170287	15,256674	0,4107431	0,5027691	0,0046004	9,9681578	0,6679107
26px135-px7A	100	52,893157	1,2610249	19,96507	0,0004927	14,830508	0,3891198	0,4913594	3,039E-05	9,5585827	0,6106546
26px135-px7B	100	51,525511	1,5719635	20,280117	0	15,514442	0,3732916	0,6354423	0,0008367	9,5764764	0,5219193
26px145-px1A	100	51,282534	1,353581	19,995624	0	15,19877	0,4038677	0,5590245	0,0020797	10,516964	0,6875552
26px145-px2	100	52,44314	1,2382837	19,729217	0,0022888	15,242713	0,3632945	0,4925411	0	9,8663135	0,6222099
26px145-px3	100	52,549584	1,3006648	19,693267	0,0018788	15,036639	0,3867093	0,5111002	2,356E-05	9,9026742	0,6174599
26px145-px4	100	51,112983	2,4458474	20,8736	0,0077238	15,437282	0,3261842	0,9755725	0,0113159	8,5662467	0,243245
26px145-px5	100	52,002479	1,4511124	20,071136	0,0013454	15,402263	0,3690028	0,6093359	0	9,5551585	0,5381664
26px235-px1	100	52,55796	0,4978665	1,354112	0,0003717	22,863886	0,0169394	0,2732596	0	21,131443	1,3041623
26px235-px2	100	52,137095	1,1057748	1,6775116	0	24,38625	0,0209084	0,4264641	0	19,32429	0,9217067
26px235-px3	100	52,273003	0,7084655	1,5891127	0,0030363	24,64501	0,0244795	0,3396957	0	19,377509	1,0396875
26px235-px4	100	52,041324	0,9486622	1,8209328	0,0013962	24,026873	0,0210224	0,3854924	0,0006429	19,719453	1,0341998
26px235-px5	100	53,25983	0,6352479	1,4200615	0,0004425	23,795206	0,018451	0,3266337	0,0023474	19,47868	1,0630995
26px235-px6	100	52,680902	0,5330285	1,4453514	0,0001706	24,201416	0,0151603	0,265237	0	19,764636	1,0940982

Tabla III.n: Continuación.

	TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	K2O wt%	MgO wt%	Na2O wt%	TiO2 wt%	Cr2O3 wt%	FeO wt%	MnO wt%
26px235-px7	100	52,339102	0,4621565	1,4555846	0,0015718	24,090745	0,0223384	0,257987	0,0008442	20,129164	1,2405072
26px235-px8	100	52,604311	0,5410504	1,4474754	0,0040792	24,293307	0,0143681	0,2737284	0	19,731755	1,0899265
26px245-px1	100	53,003679	0,6557525	1,4436803	0	24,04401	0,0261181	0,3148207	0	19,459996	1,0519437
26px245-px3A	100	52,859725	0,568192	1,4292959	0,0077591	23,112955	0,0330476	0,2945677	0,0033648	20,46303	1,2280626
26px245-px3B	100	52,783165	0,5925752	1,397667	0,0005905	23,542527	0,0334301	0,2885586	0,0017001	20,164441	1,1953463
26px245-px4	100	52,636362	0,588744	1,3439841	0,0006191	23,14257	0,0259615	0,2811808	0,00061	20,700163	1,2798065
26px245-px5	100	53,743458	0,2279497	0,9466754	0,0019458	24,362966	0,020177	0,0931297	0	19,43517	1,1685285
26px245-px6	100	53,203999	0,5551496	1,3841511	0,0007783	23,593156	0,0276234	0,2831065	0,0010985	19,79306	1,1578775
26px245-px7	100	53,135469	0,6824714	1,3879432	0,0042355	23,941405	0,0286542	0,3512549	0	19,406316	1,0622509
26px245-px8	100	52,577781	0,8302812	1,6279718	0,0011104	23,292789	0,0333104	0,4333055	0	20,048454	1,1549961
26px245-px9	100	51,97477	0,4869192	1,3779631	0	23,523156	0,0230836	0,2300825	0,0016855	21,045243	1,3370966
26px245-px10	100	52,463458	0,5889536	1,5835308	0,0014416	24,729283	0,0279439	0,321287	0,0019704	19,262811	1,019321
26px245-px11	100	52,183115	0,629732	1,573058	0,0014075	25,207439	0,0228507	0,3147613	0,0005477	19,074904	0,9921844
26px245-px12	100	52,901008	0,7698051	1,5335079	0	24,324173	0,0270901	0,351419	0,0007682	19,106182	0,9860468
26px245-px24A	100	52,854673	0,5283833	1,3845335	0,0090004	23,789019	0,0236427	0,2553486	0,0009544	19,985762	1,1686828
26px245-px24B	100	52,504917	1,2573745	1,5725665	9,862E-05	25,186155	0,0277968	0,4598166	0,0011988	18,079532	0,9105443
26px335-Px1	100	52,781375	0,6219179	1,4900567	5,7E-05	24,8587	0,0186954	0,3229469	0,0016371	18,913855	0,9907596
26px335-Px2	100	52,258507	1,3977636	20,15277	0,0012721	14,870673	0,3867779	0,5534628	0,0026107	9,7792441	0,5969178
26px335-Px3	100	51,48528	1,8626497	20,381597	0,0014391	15,10083	0,4044935	0,7181315	0	9,509658	0,5359209
26px335-Px4	100	51,475155	2,884252	20,825937	0,0010634	15,190202	0,318476	0,9788987	0,051236	8,0951385	0,1796418
26px335-Px5	100	52,086972	1,7139116	19,87842	0,0012361	15,083203	0,373437	0,6734638	0,0037105	9,6269371	0,5587089
26px335-Px6	100	50,268622	2,8595966	20,164186	0	14,401802	0,4271515	1,1992384	0,0033652	10,169096	0,5069417
26px335-Px8	100	52,75029	0,5900995	1,5814751	0	24,287701	0,0229607	0,3571773	0,0010636	19,372648	1,0365843
26px335-Px9	100	51,737913	1,5366747	20,23453	0,0050886	15,373648	0,3723956	0,6340416	0,0005112	9,590746	0,5144509
26px335-Px10	100	52,681713	1,2582295	19,639 <mark>813</mark>	0,0026457	15,122166	0,3751744	0,5184075	2,182E-05	9,8368091	0,5650204
26px335-Px11	100	51,732797	1,7981726	20,104275	0,0006633	14,59 <mark>8101</mark>	0,393628	0,7280428	0	10,0614	0,5829198
26px335-Px12	100	52,725362	1,5859081	19,692 <mark>3</mark> 08	0,0048161	15,0 <mark>6</mark> 9484	0,3709804	0,6320249	0	9,405845	0,5132716
26px335-Px13	100	53,032951	1,3435995	19,413 <mark>2</mark> 79	0,0004321	15,01 <mark>0194</mark>	0,3705551	0,5468219	0,0038459	9,7002137	0,5781083
26px335-Px14	100	52,665954	1,334501	19,731 <mark>1</mark> 17	0	15,02 <mark>1215</mark>	0,3810659	0,5414151	0	9,7249002	0,5998318
26px335-Px15	100	51,487786	1,6091471	20,015855	0,0024341	14,9 <mark>3</mark> 3843	0,4059792	0,6534856	0,0007635	10,274297	0,6164086

	%Wo	%En	%Fe	Mine ral	.55	%Wo	%En	%Fe	Mineral
26px135-px2	2,9051325	66,237996	30,856872	Enstatita (Opx)	26px245-px5	1,8927742	67,776557	30,330668	Enstatita (Opx)
26px135-px3	40,97796	43,395807	15,626233	Augita (Cpx)	26px245-px6	2,7871884	66,103158	31,109653	Enstatita (Opx)
26px135-px4	40,507279	42,791376	16,701345	Augita (Cpx)	26px245-px7	2,7843992	66,827885	30,387715	Enstatita (Opx)
26px135-px5	41,154083	43,444048	15,401869	Augita (Cpx)	26px245-px8	3,2764937	65,228452	31,495055	Enstatita (Opx)
26px135-px6	41,210609	43,021247	15,768144	Augita (Cpx)	26px245-px9	2,7267483	64,767464	32,505788	Enstatita (Opx)
26px135-px7A	41,540886	42,935122	15,523992	Augita (Cpx)	26px245-px10	3,1032866	67,431154	29,465559	Enstatita (Opx)
26px135-px7B	41,101296	43,749587	15,149118	Augita (Cpx)	26px245-px11	3,0524056	68,057191	28,890404	Enstatita (Opx)
26px145-px1A	40,516297	42,850291	16,633411	Augita (Cpx)	26px245-px12	3,0492301	67,297204	29,653566	Enstatita (Opx)
26px145-px2	40,56244	43,604221	15,833339	Augita (Cpx)	26px245-px24A	2,7644423	66,088511	31,147047	Enstatita (Opx)
26px145-px3	40,735034	43,276682	15,988284	Augita (Cpx)	26px245-px24B	3,0999655	69,081504	27,81853	Enstatita (Opx)
26px145-px4	42,56491	43,800282	13,634808	Augita (Cpx)	26px335-Px1	2,9308123	68,031577	29,037611	Enstatita (Opx)
26px145-px5	40,994997	43,771776	15,233227	Augita (Cpx)	26px335-Px2	41,571802	42,682301	15,745896	Augita (Cpx)
26px235-px1	2,7267285	64,059938	33,213333	Enstatita (Opx)	26px335-Px3	41,752321	43,04203	15,205649	Augita (Cpx)
26px235-px2	3,3092303	66,935713	29,755056	Enstatita (Opx)	26px335-Px4	43,13562	43,777033	13,087347	Augita (Cpx)
26px235-px3	3,1156279	67,230488	29,653885	Enstatita (Opx)	26px335-Px5	41,088608	43,379475	15,531918	Augita (Cpx)
26px235-px4	3,5954632	66,012055	30,392481	Enstatita (Opx)	26px335-Px6	41,886273	41,625637	16,48809	Augita (Cpx)
26px235-px5	2,8554075	66,573167	30,571425	Enstatita (Opx)	26px335-Px8	3,1318448	66,923046	29,945109	Enstatita (Opx)
26px235-px6	2,8594703	66,619723	30,520806	Enstatita (Opx)	26px335-Px9	41,201268	43,555873	15,242859	Augita (Cpx)
26px235-px7	2,8716477	66,130876	30,997477	Enstatita (Opx)	26px335-Px10	40,612634	43,5101	15,877265	Augita (Cpx)
26px235-px8	2,8577396	66,734903	30,407357	Enstatita (Opx)	26px335-Px11	41,65012	42,08005	16,26983	Augita (Cpx)
26px245-px1	2,8823049	66,792243	30,325452	Enstatita (Opx)	26px335-Px12	41,024301	43,681011	15,294687	Augita (Cpx)
26px245-px3A	2,8839234	64,888347	32,22773	Enstatita (Opx)	26px335-Px13	40,554203	43,628969	15,816828	Augita (Cpx)
26px245-px3B	2,8012911	65,653332	31,545377	Enstatita (Opx)	26px335-Px14	40,917068	43,341904	15,741027	Augita (Cpx)
26px245-px4	2,704056	64,787055	32,508889	Enstatita (Opx)	26px335-Px15	41,004052	42,567341	16,428607	Augita (Cpx)

Sección 3: Óxidos de Fe-Ti en muestra AA-260217-1B.

Tabla III.o: Composición normalizada de óxidos de Fe-Ti y nombre mineral en muestra AA-260217-1B.

TOTAL	SiO2 wt%	Al2O3 wt%	CaO wt%	K2O wt%	MgO wt%	Na2O wt%	TiO2 wt%	Cr2O3 wt%	FeO wt%	MnO wt%
100	0,0844034	2,0874826	0	0,0035988	2,6537223	0,0195286	14,405864	0,016792	79,83905	0,8895587
100	0,0199051	0,2286412	0	0,0003932	3,8132576	0,0109371	45,447578	0,0048277	49,507126	0,9673333
100	0,0540441	2,0494459	0,0059679	0,0045044	2,6319949	0,0169183	14,298407	0,0174921	80,041599	0,8796264
100	0,0162141	0,2225647	0,01 <mark>87315</mark>	0,0059894	<mark>3,9</mark> 085232	0,0212659	45,486058	0,0152796	49,327507	0,9778667
100	0,0565115	2,0608221	0,0 <mark>0</mark> 255	0,0008071	2, <mark>6</mark> 45613	0,0126047	14,356742	0,027589	79,940877	0,8958843
100	0,0035896	0,2349969	0,00 <mark>06865</mark>	0	3, <mark>8</mark> 268168	0,0090313	45,437785	0,0081389	49,529814	0,9491416
100	0,0651165	2,0194751	0,08 <mark>56297</mark>	0,0007442	2, <mark>6</mark> 185598	0,0054337	14,241949	0,0258109	80,020129	0,9171515
100	0,0597955	1,9697332	0,00 <mark>05968</mark>	0,0010341	2, <mark>6</mark> 72249	0,0096767	14,291436	0,0214245	80,075968	0,8980865
100	0,0045509	0,2206877	0,01 <mark>0</mark> 4291	0,0050499	3, <mark>8</mark> 322615	0,0073238	45,606709	0,013318	49,327872	0,9717979
100	0,0073019	0,2176354	0,0130802	0,0042454	3, <mark>8</mark> 033109	0,0034129	45,491227	0,0050654	49,478817	0,9759042
100	0,0542875	1,9301558	0,0868282	0,0003351	2,5515227	0,0008243	14,428926	0,0167005	80,048042	0,8823779
100	0,0244028	0,2286858	0	-0	3,8115274	0	45,721104	0,0051561	49,228863	0,98026
100	0,0137157	0,2344054	0,0758649	0	3,8024814	0,0030483	45,262009	0,0072149	49,618438	0,9828218
100	0,0137166	0,2264452	0,0560111	0,0022107	3,7643173	0,0048291	45,709198	0,0147068	49,23189	0,9766752
100	0,0668869	2,019646	0	0,0039191	2,6226702	0,00776	14,34674	0,021863	80,018196	0,8923195
100	0,0593692	1,9995506	0	0,0024764	2,6112643	0,001342	14,384548	0,0272666	80,015955	0,8982287
100	0,0061615	0,225947	0,0003867	0,0031235	3,7885651	4,834E-05	45,594816	0,0055789	49,412654	0,9627188
100	0,0588483	1,9572516	0,0006213	0,0028752	2,6685762	0,0164651	14,497703	0,0305102	79,8714	0,8957491
100	0,0003304	0,2130403	0	0,0015815	3,8614569	0,0114236	45,775773	0,0021528	49,137807	0,9964338
100	0,0509326	2,0169823	0	0,0037926	2,6777786	0,0246393	14,389611	0,0241213	79,911794	0,9003481
100	0,0108315	0,206684	0,0580713	0,0015821	3,8817188	0,0128915	45,464054	0,0052747	49,358196	1,0006957
100	0,0368733	2,0441762	0,0452435	0	2,6638842	0,0250896	14,405477	0,0246148	79,870313	0,8843284
100	0,0470281	2,0350079	0	0,0089094	2,6059453	0,0077342	14,453902	0,0182667	79,933693	0,889513
100	0,0038653	0,2319861	0,0030732	0,0008092	3,841106	0,0056083	45,60695	0,0014777	49,325641	0,9794829
	TOTAL 100	TOTAL SiO2 wt% 100 0,0844034 100 0,0199051 100 0,0540441 100 0,0540441 100 0,055115 100 0,055115 100 0,0055115 100 0,055115 100 0,055115 100 0,055115 100 0,055795 100 0,0045509 100 0,0073019 100 0,0137157 100 0,0137166 100 0,0137166 100 0,0593692 100 0,0593692 100 0,059364 100 0,0593692 100 0,0503304 100 0,0503304 100 0,0503304 100 0,0503304 100 0,0108315 100 0,0368733 100 0,0470281 100 0,038653	TOTALSiO2 wt%Al2O3 wt%1000,08440342,08748261000,01990510,22864121000,05404412,04944591000,0561152,04944591000,05651152,06082211000,00551052,01947511000,05979551,96973321000,005428751,96973321000,00730190,21763541000,00730190,21763541000,01371570,23440541000,01371660,22644521000,01371670,22644521000,05936921,99955061000,05936921,99955061000,00616150,2259471000,00503040,21304031000,0503040,21304031000,0030442,01698231000,0030450,2066841000,01083150,2066841000,03687332,04417621000,04702812,03500791000,00386530,2319861	TOTALSiO2 wsAl2O3 wsCaO ws1000,08440342,087482601000,01990510,228641201000,05404412,04944590,00596791000,01621410,22256470,01873151000,0551152,06082210,0025581000,06511652,01947510,0856291000,05511652,01947510,0059681000,05979551,96973320,0059681000,00570500,22068770,1042911000,00730190,21763540,01308021000,00730190,21763540,01308021000,01371570,23440540,0560111000,01371570,23440540,0560111000,01371570,2254740,0036871000,05936921,999550601000,05936921,999550601000,05936921,9195430,00616151000,05936922,016942301000,05936922,016982301000,05936922,016982301000,05936922,016982301000,0133150,20668430,05807331000,0133150,20668430,05807311000,0163150,20668430,05807311000,0163150,20668430,05807311000,0163150,20668430,05807311000,0163150,20668430,05807311000,0	TOTALSiO2 wsAl2O3 wsCaO wsK2O ws1000,08440342,087482600,00359881000,01990510,228641200,0039321000,05404412,04944590,00596790,00450441000,01621410,22256470,1873150,00598941000,0551152,06082210,002550,00080511000,00559162,01947510,00569680,00174421000,06511652,01947510,00569680,00174421000,05979551,96973320,00059680,00134141000,005979551,96973320,0059680,00134141000,00730190,21763540,11308020,0034511000,00730190,21763540,01308020,0034511000,01371570,23440540,075864901000,01371570,23440540,075864901000,01371570,22445250,00134150,00247641000,01371500,22454520,0013150,00247641000,00536921,999550600,00247641000,00530400,213040300,0247641000,0033040,213040300,0158151000,0033040,213040300,0158151000,0033040,213040300,0158151000,0183150,2066840,5807130,00158151000,0183150,20450450,0037920,003994 <th>TOTALSiO2 wsAl2O3 wsCaO wsK2O wsMgO ws1000,08440342,087482600,00359882,65372231000,01990510,228641200,00039233,81325761000,05404412,04944590,00596790,00450442,63199491000,01621410,22256470,01873150,0059843,90852321000,0551152,06082210,002550,00074422,6456131000,00559152,01947510,00569803,82681681000,0551052,01947510,0059680,00103412,6722491000,05979551,96973320,0059680,0013412,6722491000,00540990,22068770,1042910,0054993,83226151000,00730190,21763540,0138020,00424543,8031091000,00730190,21763540,0138020,00424543,8031091000,00730190,2268785003,81152741000,01371570,23440540,0138020,0033512,55152271000,01371570,23440540,0560110,0021703,80248141000,01371570,23440540,0560110,0021703,8145671000,0584831,95725160,00386750,0031253,8814561000,05936922,016982300,0158153,86145691000,0584831,95725160,0037020,00158153,8614569100<t< th=""><th>TOTALSiO2 wsAl2O 3 wsCaO wsK2O wsMgO ws/Na2O ws/s1000,08440342,087482600,00359882,65372230,01952861000,01990510,228641200,0039233,81325760,01093711000,05404412,04944590,00596790,00450442,63199490,01691831000,01621410,22256470,0173150,0059843,90852320,02126591000,0551152,06082210,00058503,82681680,00931311000,0055995,01947510,08562970,00074422,61855980,0054371000,05979551,96973320,00594980,0013412,6722490,00967671000,00540990,22068770,01042910,0054993,83226150,0034121000,00730190,21763540,01308020,00424543,8031090,0034121000,00730190,2163540,01308020,00424543,8031090,0034121000,00730190,226878003,811527401000,01371570,23440540,0586110,0021073,76431730,00482451000,01371670,2264520,5601110,0021073,76431730,0014821000,0584831,9575160,00386730,0013153,7885614,834E-051000,0584831,9575160,00031040,0131653,86145690,0144251000,0503660,0158153,861456<td< th=""><th>TOTALSiO2 wwAl2O3 wwCaO wwK2O wwMgO wkN2O wkTiO2 wk1000,0840032,087482600,0035982,6537230,0195861,4,058641000,01990510,228641200,00039233,81325760,010937145,4475781000,0540442,04944590,00596790,0450442,63199490,01691831,2984071000,01621410,2256470,01873150,0059843,90852320,02165945,4860581000,0551152,0608210,0025550,00080712,6456130,01260471,3567421000,05511652,01947510,8562970,00074422,61855980,00543371,42419491000,0597551,96973320,00058680,0013412,6722490,00967671,42914361000,00730190,21763540,01042910,00504993,83226150,00341245,4912271000,00730190,2165580,01034212,5152270,00084345,620091000,01311670,23440540,0036110,00217613,7815740,004829145,7917481000,01371670,2264520,0013610,00247643,8031090,00132145,470781000,01371670,2244520,0016110,00247640,0031213,7645141,0014211000,0161610,2259470,0036760,00247642,61126430,0013214,345481000,00583632,0164630,0024764<t< th=""><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%Na2O wt%TiO2 wt%Cr2O3 wt%1000,08440342,087482600,00359882,65372230,01952861,4,058640,0167921000,0190510,228641200,0039323,81325760,010937145,4475780,00482771000,05404412,04944590,00596790,00450442,63199490,016918314,2984070,01749211000,05651152,06082210,005550,00598943,9085230,021265945,4860580,0127961000,05651152,06082210,000686503,82681680,001303145,4377850,00813891000,0551512,0697320,00059680,0104412,6722490,009676714,211490,02581091000,0559951,96973320,00059680,0103412,6722490,009676714,211490,02142451000,00730190,21765540,01308020,00424543,8031090,003412945,4912270,0056541000,01371670,2340540,075864903,8115274045,7211040,00516511000,01371670,2440580,075864903,8115274045,7211040,0176831000,01371670,2440540,00567470,0034743,80248140,00348345,2620990,00721491000,01371670,2440540,00567470,00246743,6456740,00142214,345740,0</th><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%NaO wt%TiO2 wt%Cr203 wt%FeO wt%1000,08440342,087482600,00359882,65372230,019528614,4058640,01679279,839051000,01990510,228641200,0039283,81325760,010931145,4475780,004827749,5071261000,01621410,22256470,01873150,00598943,9085220,01265945,4860580,01527699,408771000,0551152,0608210,0025550,0008712,6456130,012604714,3567420,025810849,5298141000,05511652,01947510,8562970,00074422,61855980,005433714,2419490,025810849,5298141000,0551052,01947510,08562970,00074422,61855980,00733345,607090,0131849,327871000,0545090,22068770,01042910,00504993,8326150,00733345,607090,0131849,327871000,0045090,21763540,0130820,0042453,8031090,00348345,620090,0131849,327871000,0244021,2346460,0138200,0157569,0034512,5152270,0082431,44289260,01670549,4788171000,0244050,2266858003,76431730,00482345,201980,014706849,218861000,0137160,22644520,5601110,00217613,7645</th></t<></th></td<></th></t<></th>	TOTALSiO2 wsAl2O3 wsCaO wsK2O wsMgO ws1000,08440342,087482600,00359882,65372231000,01990510,228641200,00039233,81325761000,05404412,04944590,00596790,00450442,63199491000,01621410,22256470,01873150,0059843,90852321000,0551152,06082210,002550,00074422,6456131000,00559152,01947510,00569803,82681681000,0551052,01947510,0059680,00103412,6722491000,05979551,96973320,0059680,0013412,6722491000,00540990,22068770,1042910,0054993,83226151000,00730190,21763540,0138020,00424543,8031091000,00730190,21763540,0138020,00424543,8031091000,00730190,2268785003,81152741000,01371570,23440540,0138020,0033512,55152271000,01371570,23440540,0560110,0021703,80248141000,01371570,23440540,0560110,0021703,8145671000,0584831,95725160,00386750,0031253,8814561000,05936922,016982300,0158153,86145691000,0584831,95725160,0037020,00158153,8614569100 <t< th=""><th>TOTALSiO2 wsAl2O 3 wsCaO wsK2O wsMgO ws/Na2O ws/s1000,08440342,087482600,00359882,65372230,01952861000,01990510,228641200,0039233,81325760,01093711000,05404412,04944590,00596790,00450442,63199490,01691831000,01621410,22256470,0173150,0059843,90852320,02126591000,0551152,06082210,00058503,82681680,00931311000,0055995,01947510,08562970,00074422,61855980,0054371000,05979551,96973320,00594980,0013412,6722490,00967671000,00540990,22068770,01042910,0054993,83226150,0034121000,00730190,21763540,01308020,00424543,8031090,0034121000,00730190,2163540,01308020,00424543,8031090,0034121000,00730190,226878003,811527401000,01371570,23440540,0586110,0021073,76431730,00482451000,01371670,2264520,5601110,0021073,76431730,0014821000,0584831,9575160,00386730,0013153,7885614,834E-051000,0584831,9575160,00031040,0131653,86145690,0144251000,0503660,0158153,861456<td< th=""><th>TOTALSiO2 wwAl2O3 wwCaO wwK2O wwMgO wkN2O wkTiO2 wk1000,0840032,087482600,0035982,6537230,0195861,4,058641000,01990510,228641200,00039233,81325760,010937145,4475781000,0540442,04944590,00596790,0450442,63199490,01691831,2984071000,01621410,2256470,01873150,0059843,90852320,02165945,4860581000,0551152,0608210,0025550,00080712,6456130,01260471,3567421000,05511652,01947510,8562970,00074422,61855980,00543371,42419491000,0597551,96973320,00058680,0013412,6722490,00967671,42914361000,00730190,21763540,01042910,00504993,83226150,00341245,4912271000,00730190,2165580,01034212,5152270,00084345,620091000,01311670,23440540,0036110,00217613,7815740,004829145,7917481000,01371670,2264520,0013610,00247643,8031090,00132145,470781000,01371670,2244520,0016110,00247640,0031213,7645141,0014211000,0161610,2259470,0036760,00247642,61126430,0013214,345481000,00583632,0164630,0024764<t< th=""><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%Na2O wt%TiO2 wt%Cr2O3 wt%1000,08440342,087482600,00359882,65372230,01952861,4,058640,0167921000,0190510,228641200,0039323,81325760,010937145,4475780,00482771000,05404412,04944590,00596790,00450442,63199490,016918314,2984070,01749211000,05651152,06082210,005550,00598943,9085230,021265945,4860580,0127961000,05651152,06082210,000686503,82681680,001303145,4377850,00813891000,0551512,0697320,00059680,0104412,6722490,009676714,211490,02581091000,0559951,96973320,00059680,0103412,6722490,009676714,211490,02142451000,00730190,21765540,01308020,00424543,8031090,003412945,4912270,0056541000,01371670,2340540,075864903,8115274045,7211040,00516511000,01371670,2440580,075864903,8115274045,7211040,0176831000,01371670,2440540,00567470,0034743,80248140,00348345,2620990,00721491000,01371670,2440540,00567470,00246743,6456740,00142214,345740,0</th><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%NaO wt%TiO2 wt%Cr203 wt%FeO wt%1000,08440342,087482600,00359882,65372230,019528614,4058640,01679279,839051000,01990510,228641200,0039283,81325760,010931145,4475780,004827749,5071261000,01621410,22256470,01873150,00598943,9085220,01265945,4860580,01527699,408771000,0551152,0608210,0025550,0008712,6456130,012604714,3567420,025810849,5298141000,05511652,01947510,8562970,00074422,61855980,005433714,2419490,025810849,5298141000,0551052,01947510,08562970,00074422,61855980,00733345,607090,0131849,327871000,0545090,22068770,01042910,00504993,8326150,00733345,607090,0131849,327871000,0045090,21763540,0130820,0042453,8031090,00348345,620090,0131849,327871000,0244021,2346460,0138200,0157569,0034512,5152270,0082431,44289260,01670549,4788171000,0244050,2266858003,76431730,00482345,201980,014706849,218861000,0137160,22644520,5601110,00217613,7645</th></t<></th></td<></th></t<>	TOTALSiO2 wsAl2O 3 wsCaO wsK2O wsMgO ws/Na2O ws/s1000,08440342,087482600,00359882,65372230,01952861000,01990510,228641200,0039233,81325760,01093711000,05404412,04944590,00596790,00450442,63199490,01691831000,01621410,22256470,0173150,0059843,90852320,02126591000,0551152,06082210,00058503,82681680,00931311000,0055995,01947510,08562970,00074422,61855980,0054371000,05979551,96973320,00594980,0013412,6722490,00967671000,00540990,22068770,01042910,0054993,83226150,0034121000,00730190,21763540,01308020,00424543,8031090,0034121000,00730190,2163540,01308020,00424543,8031090,0034121000,00730190,226878003,811527401000,01371570,23440540,0586110,0021073,76431730,00482451000,01371670,2264520,5601110,0021073,76431730,0014821000,0584831,9575160,00386730,0013153,7885614,834E-051000,0584831,9575160,00031040,0131653,86145690,0144251000,0503660,0158153,861456 <td< th=""><th>TOTALSiO2 wwAl2O3 wwCaO wwK2O wwMgO wkN2O wkTiO2 wk1000,0840032,087482600,0035982,6537230,0195861,4,058641000,01990510,228641200,00039233,81325760,010937145,4475781000,0540442,04944590,00596790,0450442,63199490,01691831,2984071000,01621410,2256470,01873150,0059843,90852320,02165945,4860581000,0551152,0608210,0025550,00080712,6456130,01260471,3567421000,05511652,01947510,8562970,00074422,61855980,00543371,42419491000,0597551,96973320,00058680,0013412,6722490,00967671,42914361000,00730190,21763540,01042910,00504993,83226150,00341245,4912271000,00730190,2165580,01034212,5152270,00084345,620091000,01311670,23440540,0036110,00217613,7815740,004829145,7917481000,01371670,2264520,0013610,00247643,8031090,00132145,470781000,01371670,2244520,0016110,00247640,0031213,7645141,0014211000,0161610,2259470,0036760,00247642,61126430,0013214,345481000,00583632,0164630,0024764<t< th=""><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%Na2O wt%TiO2 wt%Cr2O3 wt%1000,08440342,087482600,00359882,65372230,01952861,4,058640,0167921000,0190510,228641200,0039323,81325760,010937145,4475780,00482771000,05404412,04944590,00596790,00450442,63199490,016918314,2984070,01749211000,05651152,06082210,005550,00598943,9085230,021265945,4860580,0127961000,05651152,06082210,000686503,82681680,001303145,4377850,00813891000,0551512,0697320,00059680,0104412,6722490,009676714,211490,02581091000,0559951,96973320,00059680,0103412,6722490,009676714,211490,02142451000,00730190,21765540,01308020,00424543,8031090,003412945,4912270,0056541000,01371670,2340540,075864903,8115274045,7211040,00516511000,01371670,2440580,075864903,8115274045,7211040,0176831000,01371670,2440540,00567470,0034743,80248140,00348345,2620990,00721491000,01371670,2440540,00567470,00246743,6456740,00142214,345740,0</th><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%NaO wt%TiO2 wt%Cr203 wt%FeO wt%1000,08440342,087482600,00359882,65372230,019528614,4058640,01679279,839051000,01990510,228641200,0039283,81325760,010931145,4475780,004827749,5071261000,01621410,22256470,01873150,00598943,9085220,01265945,4860580,01527699,408771000,0551152,0608210,0025550,0008712,6456130,012604714,3567420,025810849,5298141000,05511652,01947510,8562970,00074422,61855980,005433714,2419490,025810849,5298141000,0551052,01947510,08562970,00074422,61855980,00733345,607090,0131849,327871000,0545090,22068770,01042910,00504993,8326150,00733345,607090,0131849,327871000,0045090,21763540,0130820,0042453,8031090,00348345,620090,0131849,327871000,0244021,2346460,0138200,0157569,0034512,5152270,0082431,44289260,01670549,4788171000,0244050,2266858003,76431730,00482345,201980,014706849,218861000,0137160,22644520,5601110,00217613,7645</th></t<></th></td<>	TOTALSiO2 wwAl2O3 wwCaO wwK2O wwMgO wkN2O wkTiO2 wk1000,0840032,087482600,0035982,6537230,0195861,4,058641000,01990510,228641200,00039233,81325760,010937145,4475781000,0540442,04944590,00596790,0450442,63199490,01691831,2984071000,01621410,2256470,01873150,0059843,90852320,02165945,4860581000,0551152,0608210,0025550,00080712,6456130,01260471,3567421000,05511652,01947510,8562970,00074422,61855980,00543371,42419491000,0597551,96973320,00058680,0013412,6722490,00967671,42914361000,00730190,21763540,01042910,00504993,83226150,00341245,4912271000,00730190,2165580,01034212,5152270,00084345,620091000,01311670,23440540,0036110,00217613,7815740,004829145,7917481000,01371670,2264520,0013610,00247643,8031090,00132145,470781000,01371670,2244520,0016110,00247640,0031213,7645141,0014211000,0161610,2259470,0036760,00247642,61126430,0013214,345481000,00583632,0164630,0024764 <t< th=""><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%Na2O wt%TiO2 wt%Cr2O3 wt%1000,08440342,087482600,00359882,65372230,01952861,4,058640,0167921000,0190510,228641200,0039323,81325760,010937145,4475780,00482771000,05404412,04944590,00596790,00450442,63199490,016918314,2984070,01749211000,05651152,06082210,005550,00598943,9085230,021265945,4860580,0127961000,05651152,06082210,000686503,82681680,001303145,4377850,00813891000,0551512,0697320,00059680,0104412,6722490,009676714,211490,02581091000,0559951,96973320,00059680,0103412,6722490,009676714,211490,02142451000,00730190,21765540,01308020,00424543,8031090,003412945,4912270,0056541000,01371670,2340540,075864903,8115274045,7211040,00516511000,01371670,2440580,075864903,8115274045,7211040,0176831000,01371670,2440540,00567470,0034743,80248140,00348345,2620990,00721491000,01371670,2440540,00567470,00246743,6456740,00142214,345740,0</th><th>TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%NaO wt%TiO2 wt%Cr203 wt%FeO wt%1000,08440342,087482600,00359882,65372230,019528614,4058640,01679279,839051000,01990510,228641200,0039283,81325760,010931145,4475780,004827749,5071261000,01621410,22256470,01873150,00598943,9085220,01265945,4860580,01527699,408771000,0551152,0608210,0025550,0008712,6456130,012604714,3567420,025810849,5298141000,05511652,01947510,8562970,00074422,61855980,005433714,2419490,025810849,5298141000,0551052,01947510,08562970,00074422,61855980,00733345,607090,0131849,327871000,0545090,22068770,01042910,00504993,8326150,00733345,607090,0131849,327871000,0045090,21763540,0130820,0042453,8031090,00348345,620090,0131849,327871000,0244021,2346460,0138200,0157569,0034512,5152270,0082431,44289260,01670549,4788171000,0244050,2266858003,76431730,00482345,201980,014706849,218861000,0137160,22644520,5601110,00217613,7645</th></t<>	TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%Na2O wt%TiO2 wt%Cr2O3 wt%1000,08440342,087482600,00359882,65372230,01952861,4,058640,0167921000,0190510,228641200,0039323,81325760,010937145,4475780,00482771000,05404412,04944590,00596790,00450442,63199490,016918314,2984070,01749211000,05651152,06082210,005550,00598943,9085230,021265945,4860580,0127961000,05651152,06082210,000686503,82681680,001303145,4377850,00813891000,0551512,0697320,00059680,0104412,6722490,009676714,211490,02581091000,0559951,96973320,00059680,0103412,6722490,009676714,211490,02142451000,00730190,21765540,01308020,00424543,8031090,003412945,4912270,0056541000,01371670,2340540,075864903,8115274045,7211040,00516511000,01371670,2440580,075864903,8115274045,7211040,0176831000,01371670,2440540,00567470,0034743,80248140,00348345,2620990,00721491000,01371670,2440540,00567470,00246743,6456740,00142214,345740,0	TOTALSiO2 wt%Al2O3 wt%CaO wt%K2O wt%MgO wt%NaO wt%TiO2 wt%Cr203 wt%FeO wt%1000,08440342,087482600,00359882,65372230,019528614,4058640,01679279,839051000,01990510,228641200,0039283,81325760,010931145,4475780,004827749,5071261000,01621410,22256470,01873150,00598943,9085220,01265945,4860580,01527699,408771000,0551152,0608210,0025550,0008712,6456130,012604714,3567420,025810849,5298141000,05511652,01947510,8562970,00074422,61855980,005433714,2419490,025810849,5298141000,0551052,01947510,08562970,00074422,61855980,00733345,607090,0131849,327871000,0545090,22068770,01042910,00504993,8326150,00733345,607090,0131849,327871000,0045090,21763540,0130820,0042453,8031090,00348345,620090,0131849,327871000,0244021,2346460,0138200,0157569,0034512,5152270,0082431,44289260,01670549,4788171000,0244050,2266858003,76431730,00482345,201980,014706849,218861000,0137160,22644520,5601110,00217613,7645

	Mineral		Mineral
26px135-ox2A	Ti-Magnetita	26px235-ox1B	Ilmenita
26px135-ox2B	Ilmenita	26px235-ox1C	Ilmenita
26px135-ox2C	Ti-Magnetita	26px235-ox2	Ti-Magnetita
26px135-ox2D	Ilmenita	26px235-ox5	Ti-Magnetita
26px135-ox3	Ti-Magnetita	26px235-ox6	Ilmenita
26px135-ox6	Ilmenita	26px245-ox2	Ti-Magnetita
26px145-ox1	Ti-Magnetita	26px245-ox6	Ilmenita
26px145-ox2	Ti-Magnetita	26px245-ox9	Ti-Magnetita
26px145-ox3A	Ilmenita	26px245-ox19A	Ilmenita
26px145-ox3B	Ilmenita	26px245-ox19B	Ti-Magnetita
26px145-ox5	Ti-Magnetita	26px335-Ox5	Ti-Magnetita
26px235-ox1A	Ilmenita	26px335-Ox8	Ilmenita

muestras respectivas
las
de
traza
elementos
s y
mayore
mentos
ele
o de
Contenido
id
III.
Tabla

È
0
5
è
5
ć
<
<
-
<
<u> </u>
5
Ś
3
1
1
<
7
P
¢
٥
2
ΞÈ
ġ
<
<
Ę
ò
ž
2
2
ć
2
-
-
÷
ò
ĩ
2
ŭ
ć
~
-
÷
è
0
5
è
5
C
<
<
β
,
5
è
X
C.
<
<

	AA-20021/-1B							
Cl >/=	0,09	0,08	0,10	0,03	0,03	0,03	0,08	0,08
			Elemento	s Mayores sin no	rmalizar (wt%)	-		
Si02	64,37	60,31	64,45	53,64	49,11	50,60	60,31	60,26
Ti02	0,879	1,314	0,886	1,107	2,805	2,733	1,314	1,313
AI2O3	15,62	16,08	15,73	18,96	15,98	15,54	16,08	15,96
FeO*	3,77	5,77	3,96	6,40	12,09	11,52	5,77	5,67
MnO	0,124	0,162	0,125	0,131	0,236	0,227	0,162	0,162
MgO	0,92	1,65	1,05	2,75	3,96	4,18	1,65	1,66
CaO	2,12	3,47	2,46	6,22	7,98	8,49	3,47	3,47
Na2O	5,30	5,41	5,21	3,24	3,73	4,02	5,41	5,39
K20	3,06	2,42	3,04	1,54	0,93	1,05	2,42	2,42
P205	0,209	0,430	0,205	0,281	1,018	1,009	0,430	0,429
Sum	96,37	97,01	97,11	94,27	97,83	99,36	97,01	96,73
% IOJ	3,31	2,37	2,52	5,41	1,59	0,00	2,37	2,37
			Elemento	s Mayores norma	dizados ² (wt%)			
SiO2	66,79	62,17	66,37	56,90	50,20	50,92	62,17	62,29
TiO2	0,91	1,35	0,91	1,17	2,87	2,75	1,35	1,36
AI2O3	16,21	16,57	16,19	20,11	16,34	15,64	16,57	16,50
FeO*	3,91	5,94	4,08	6,79	12,35	11,59	5,94	5,86
MnO	0,13	0,17	0,13	× 0,14	0,24	0,23	0,17	0, 17
MgO	0.95	1,71	1,08	2,92	4,05	4,20	1,71	1,72
CaO	2,20	3,58	2,53	6,59	8,15	8,55	3,58	3,59
Na2O	5,50	5,57	5,36	3,43	3,82	4,04	5,57	5,57
K20	3,18	2,50	3,13	1,64	0,95	1,05	2,50	2,50
P205	0,22	0,44	0,21	0,30	1,04	1,02	0,44	0,44
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
			Elemen	tos Traza sin nori	malizar (ppm)			
ïZ	ю	0	S	23	13	11	0	2
C.	2	2	9	64	10	11	2	4
Sc	12	16	13	21	37	35	16	15
Λ	43	80	51	135	304	302	80	83
Ba	843	731	840	637	384	380	731	732
Rb	79	57	78	48	22	23	57	57
\mathbf{Sr}	229	338	239	466	494	507	338	337
Zr	488	439	486	266	212	203	439	436
Υ	49	49	49	35	45	44	49	49
ЧN	20,9	20,2	20,7	12,3	10,3	9,8	20,2	20,7
Ga	19	21	18	19	20	19	21	21
Cu	ю	7	7	31	31	29	7	7
Zn	75	93	74	73	107	111	93	96

GEOQUÍMICA DE ROCA TOTAL

	AA-260217-1B	AA-220218-1M	AA-250218-1J	AA-250218-1M	AA-190218-2BN	AA-220218-1A	AA-220218-1M	AA-220218-1M ¹
			Elemer	ntos Traza sin nor	malizar (ppm)			
Pb	17	14	16	6	7	9	14	13
La	50	45	48	31	30	31	45	46
లి	100	102	104	64	73	71	102	103
Π	6	7	6	5	33	б	7	7
PN	49	51	47	33	43	43	51	51
U	2	ŝ	2	2	1	ŝ	33	2
sum tr.	2094	2076	2115	1975	1847	1842	2076	2081
en %	0,21	0,21	0,21	0,20	0,18	0,18	0,21	0,21
sum m+tr	96,58	97,22	97,32	94,47	98,02	99,55	97,22	96,94
M+Tóxidos	96,62	97,26	97,37	94,51	98,06	99,60	97,26	96,98
c/LOI	99,93	99,64	99,89	99,93	99,65	99,60	99,64	99,35
Si Fe3+	100,35	100,28	100,33	100,64	100,99	100,87	100,28	86,98
	AA-260217-1B	AA-220218-1M	AA-250218-1J	AA-250218-1M	AA-190218-2BN	AA-220218-1A	AA-220218-1M	AA-220218-1M®
NiO	4,2	0,5	6,6	29,4	16,5	14,3	0,5	2,2
Cr203	3,0	2,8	9,2	93,4	14,2	15,9	2,8	5,2
Sc203	18,4	24,6	20,1	32,8	56,9	54,2	24,6	23,5
V203	63,0	117,4	75,7	198,7	447,8	444,7	117,4	121,7
BaO	941,1	816,5	93 <mark>8,3</mark>	710,9	428,9	423,7	816,5	817,2
Rb2O	86,5	62,2	85,7	52,5	23,9	25,2	62,2	62,5
SrO	270,3	400,2	282,8	551,6	584,1	599,7	400,2	398,3
Zr02	659,7	592,7	655,9	359,5	286,5	274,2	592,7	588,9
Y203	62,6	62,1	62,0	44,3	57,5	55,5	62,1	62,5
Nb2O5	29,9	28,9	29,6	17,6	14,7	14,0	28,9	29,6
Ga203	25,9	28,1	24,6	25,5	26,9	25,3	28,1	28,7
CuO	3,9	9,1	9,3	38,4	38,4	36,4	9,1	9,0
ZnO	93,0	116,1	92,2	90,4	133,5	138,7	116,1	119,5
PbO	18,0	15,3	17,3	9,9	7,4	6,4	15,3	13,7
La203	59,1	52,7	56,8	36,9	35,4	36,1	52,7	54,0
CeO2	123,2	125,3	127,8	78,7	90,1	87,5	125,3	126,1
ThO2	9,8	8,2	10,6	5,7	3,3	3,9	8,2	7,6
Nd2O3	57,5	59,2	54,8	38,6	50,2	50,2	59,2	59,4
U2O3	2,6	3,4	1,7	2,4	1,6	3,0	3,4	2,6
sum tr.	2532	2525	2561	2417	2318	2309	2525	2532
en %	0,25	0,25	0,26	0,24	0,23	0,23	0,25	0,25

Tabla III.p: Continuación.

¹Denota un duplicado hecho a partir del mismo polvo de roca.

²Elementos Mayores están normalizados sobre una base libre de volátiles, con Fe total expresado como FeO.

	AA-260217-1B	AA-220218-1M	AA-250218-1J	AA-250218-1M	AA-190218-2BN	AA-220218-1A	AA-220218-1M ¹
La	49,61	47,40	49,85	31,80	29,77	28,96	47,20
Ce	106,24	101,43	105,38	64,92	72,73	69,29	100,46
Pr	13,25	13,03	12,92	8,76	9,98	9,74	12,88
Nd	50,91	51,22	49,64	35,15	44,96	43,34	51,13
Sm	10,65	10,79	10,19	7,60	10,63	10,35	10,76
Eu	2,28	2,89	2,35	2,06	3,28	3,25	2,83
Gd	9,20	9,73	9,00	6,88	10,38	10,12	9,70
Tb	1,49	1,56	1,49	1,07	1,59	1,55	1,56
Dy	9,32	9,53	8,97	6,54	9,25	9,09	9,51
Но	1,88	1,95	1,85	1,33	1,82	1,80	1,93
Er	5,26	5,37	5,20	3,60	4,80	4,66	5,41
Tm	0,80	0,79	0,77	0,52	0,66	0,64	0,79
Yb	5,23	5,08	5,11	3,35	3,98	3,91	5,08
Lu	0,85	0,81	0,80	0,54	0,60	0,61	0,81
Ba	847	726	845	636	374	372	727
Th	9,48	7,43	9,44	5,38	2,99	2,86	7,37
Nb	20,14	20,06	19,94	11,58	9,54	9,16	19,91
Y	49,19	50,33	48,59	34,14	46,13	44,75	50,28
Hf	11,15	9,82	11,15	6,30	5,00	4,77	9,90
Та	1,25	1,28	1,24	0,76	0,66	0,63	1,29
\mathbf{U}	2,22	1,72	2,14	1,23	0,68	0,65	1,69
Pb	16,16	13,15	16,02	9,44	5,28	5,12	14,10
Rb	78,3	56,2	77,1	<u>46,6</u>	21,2	22,7	57,2
Cs	1,89	1,40	1,95	1, <mark>7</mark> 2	0,54	0,53	1,42
Sr	228	342	238	464	505	514	342
Sc	12,1	16,0	12,9	22,4	36,6	35,3	15,8
Zr	493	449	486	269	217	208	449

Tabla III.q: Contenido de tierras raras de las muestras respectivas.

Tabla III.r: Datos geoquímicos de proyecto FONDECYT Nº 11130671.

Erupción			7,9 ka			MC-ib	4,7 ka	3,9 ka
Muestra	AA-190114-2E	AA190114-2D	AA090308-1	AA230313-2D	AA110414-3A	AA190114-2C	AA190114-2B	AA140114-1A
cal años AP	7,876 +- 36*					3900-7561		3,906+-56
SiO2	62,33106392	62,20100627	61,98033995	59,92810717	60,72422795	53,48298083	63,87225549	66,32513805
Ti02	1,331165532	1,357843946	1,372107311	1,474429978	1,507815293	1,196907648	1,103002329	0,913309118
Al203	16,13657149	16,39310459	16,46528773	18,32849171	19,45428352	18,36211563	17,37150699	16,42906633
FeO*	5,680317041	5,794292313	5,928732337	6,551861063	5,470163238	8,108742941	4,522205589	3,915681623
MnO	0,172746672	0,174241175	0,174073316	0,168237581	0,161396896	0,175655389	0,143463074	0,132272355
MgO	1,818920841	1,824892775	1,812410403	1,860017973	1,657296981	5,524974724	1,299484365	0,976295954
CaO	3,719134234	3,660095678	3,624820807	3,709586407	3,639554155	8,394693573	3,0667831	2,236032669
Na2O	5,863225282	5,670570769	5,703460987	5,266567744	4,701090783	3,410982547	5,530605456	5,668815218
K20	2,479422823	2,464120752	2,477984845	2,204852766	2,047249212	0,929339556	2,692531603	3,191333011
P205	0,467432172	0,459831739	0,460782306	0,507847604	0,636921977	0,413607165	0,398162009	0,21205568
Sum	100	100	100	- 100 ×	100	100	100	100
101 %	0,37	2,08	1,36	3,67 ×	6,29	0,96	2,72	4,18
SiO2 (normalizado)	62,33	62,21	61,98	60,12	60,71	53,5	63,87	66,33
Zr/TiO2	316	315	322	313	309	139	410	543
Nb/Y (ICP)	0,39	0,4	0,39	0,41	0,4	0,28	0,41	0,43
mg#	36	36	35	34	35	55	34	31
N	4	4	4	9	6	63	2	7
La/Yb	9,39	9,53	9,5	9,68	8,96	11,64	9,72	9,83
F								
--------------------	-------------	-------------	-------------	-------------	----------------	-------------	-------------	------------------
Erupcion		3,9 ka		2,1 ka	Ib-escoria	Atrav-e	scoria	UN 171 AD
Muestra	AA200214-11	AA190114-2A	AA230313-3C	AA200114-1F	AA200114-1B	AA180114-2A	AA171013-1B	AA200114-1A
cal años AP				>2,126+-72	1971 AD - 2100	>1800		AD 1971
SiO2	66,7468616	66,69486891	67,40016045	54,13224403	54,81410867	56,62853928	56,40012004	62,12857362
Ti02	0,907847794	0,911070069	0,851227873	2,010859046	1,714905787	1,317790695	1,362916662	1,269370429
Al203	15,83335904	15,94114673	16,07643339	16,27838276	16,48986877	18,77200658	19,082903	16,81583389
FeO*	3,927495553	3,88984616	3,646631034	10,0848554	9,573453948	7,72964977	7,978805973	5,6461924
MnO	0,130573805	0,128973679	0,123985455	0,190491713	0,178488124	0,172927475	0,155229688	0,17388636
MgO	1,038421599	1,052425221	0,843934611	3,667220145	3,681317567	2,968935558	2,907969492	1,657034726
CaO	2,364722454	2,404069378	1,979599704	7,415934072	7,484331582	5,979540388	5,588268775	3,610699125
Na2O	5,665052487	5,602616618	5,584554955	4,095062496	4,086972395	4,271100277	4,305036686	5,860993198
K20	3,166671807	3,146957769	3,302805822	1,334460664	1,318378192	1,698022793	1,738572508	2,413951823
P205	0,218993862	0,228025465	0,190666708	0,790489676	0,658174959	0,461487176	0,480177169	0,42346443
Sum	100	100	100	100	100	100	100	100
% IOT	2,17	2,22	3,62	\sim 1	0,33	3,2	3	1,56
SiO2 (normalizado)	66,75	66,7	67,4	54,13	54,82	56,63	56,4	62, 14
Zr/TiO2	517	515	595	117	133	234	245	284
Nb/Y (ICP)	0,41	0,41	0,42	0,26	0,27	0,37	0,39	0,37
Mg#	32	33	29	39	41	41	39	34
Ni	2	5	3	10	11	21	18	3
La/Yb	9,73	9,89	9,69	8,58	9,05	8,79	9,25	8,79

Tabla III.r: Continuación.

DIAGRAMAS HARKER INCLUSIONES FUNDIDAS

AA-220218-1M (H1)

AA-250218-1J (H2 pulso 2)

AA-260217-1B (H2 pulso 4, ignimbrita)

ANEXO IV

DIAGRAMAS PER

Assemblage Test Diagram por elemento.

*Se consideran porcentajes en peso de óxidos en elementos mayores y ppm para elementos traza.

1. Calcio (*wt*.%).

2. Estroncio (ppm).

3. Escandio (ppm).

Assemblage Test Diagram por mineral.

*Puntos rojos corresponden a muestras de H1 (7,9 ka cal AP) y puntos azules a H2 (3,9 ka cal AP).

1. Feldespatos totales.

2. Olivino: (Fe,Mg)₂SiO₄.

3. Augita: (Ca,Mg,Fe)₂(Si,Al)₂O₆

4. Enstatita: MgSiO_{3.}

5. Apatito: Ca₅(PO₄)₃(F,Cl,OH).

Diagramas PER considerando evento 4,7 ka AP.

1. Diagramas PER de elementos conservativos considerando evento 4,7 ka AP.

2. Gráfico Fe/Ti vs. Ca/Ti considerando evento 4,7 ka AP (punto amarillo).

REFERENCIAS

AGURTO-DETZEL, H.; RIETBROCK, A.; BATAILLE, K.; MILLER, M.; IWAMORI, H. Y PRIESTLEY, K. 2014. Seismicity distribution in the vicinity of the Chile Triple Junction, Aysén Region, southern Chile. *Journal of South American Earth Sciences*. N°**51**: 1-11.

ALBINO, F.; PINEL, V. Y SIGMUNDSSON, F. 2010. Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. *Geophysical Journal International*. N°**181**: 1510-1524.

AMIGO, A.; SILVA, C.; OROZCO, G.; BERTIN, D. Y LARA, L. 2012. La crisis eruptiva del volcán Hudson durante octubre-noviembre 2011. Congreso Geológico Chileno N°13. Actas **4**: 51-53. Antofagasta.

AMIGO, A. (Enero, 2019). Borrador proyecto Fondecyt Nº 11130671 [PDF]

BERTIN, L. 2014. Granulometría, morfología, geoquímica y geocronología de los productos Holocenos del volcán Hudson, Región de Aysén, Chile. Memoria para optar al Título de Geóloga. Universidad de Concepción. Departamento Ciencias de la Tierra (Inédito): 278 pp., Concepción.

BRAHM, R.; PARADA, M.A.; MORGADO, E.; CONTRERAS, C. Y MCGEE, L.E. 2018. Origin of Holocene trachyte lavas of the Quetrupillán volcanic complex, Chile: Examples of residual melts in a rejuvenated crystalline much reservoir. *Journal of Volcanology and Geothermal Research*. N°**357**: 163-176.

BRAVO, C. 2014. Condiciones climáticas y neoglaciación durante el Holoceno medio en latitudes medias del Hemisferio Sur. Tesis para optar al grado de magíster en ciencias, mención geofísica. Universidad de Chile. Departamento de Geofísica (Inédito): 132 pp., Santiago de Chile.

BÖRGEL, J. 1983. Geomorfología y Geografía de Chile. Instituto Geográfico Militar. Vol. 2: 373 pp., Santiago de Chile.

BOURGOIS, J.; CISTERNAS, M.; BRAUCHER, R.; BOURLES, D. Y FRUTOS, J. 2016. Geomorphic records along the general Carrera (Chile)–Buenos Aires (Argentina) glacial lake (46–48 S), climate inferences, and glacial rebound for the past 7–9 ka. *The Journal of Geology*. N°**124**, (1): 27-53.

CEMBRANO, J.; HERVÉ, F. Y LAVENU, A. 1996. The Liquiñe-Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. *Tectonophysics*. N°**259**, (1-3): 55-66.

CEMBRANO, J. Y LARA, L. 2009. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. *Tectonophysics*. N°471, (1-2): 96-113.

COSTA, F. Y CHAKRABORTY, S. 2004. Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. *Earth and Planetary Science Letters*. N°227, (3-4): 517-530.

COSTA, F. y DUNGAN, M. 2005. Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. *Geology*. N°33, (10): 837-840.

COSTA, F. Y MORGAN, D. 2011. Time Constraints from Chemical Equilibration in Magmatic Crystals. Timescales of magmatic processes: from core to atmosphere. Anthony Dosseto, Simon P. Turner y James A. Van Orman. Blackwell Publishing: 125-159. Chichester.

COSTA, F.; DOHMEN, R. Y CHAKRABORTY, S. 2008. Time scales of magmatic processes from modeling the zoning patterns of crystals. *Reviews in Mineralogy & Geochemistry*. N°69: 545-594.

COSTA, F.; ANDREASTUTI, S.; DE MAISONNEUVE, C.B. Y PALLISTER, J.S. 2013. Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. *Journal of Volcanology and Geothermal Research*. N°**261**: 209-235.

DE LA CRUZ, R.; SUÁREZ, M.; BELMAR, M.; QUIROZ, D. Y BELL, M. 2003. Geología del área Coihaique-Balmaceda, Región de Aisén del General Carlos Ibáñez del Campo, escala 1:100.000. Carta Geológica de Chile, Serie Geología Básica, N° 80, Servicio Nacional de Geología y Minería, Santiago, Chile.

DEMANT, A.; HERVÉ, F.; PANKHURST, R.J. Y SUÁREZ, M. 1996. Geochemistry of Early Tertiary back-arc basalts from Aysén, southern Chile (44-46 S): geodynamic implications. Symposium International sur la Géodynamique Andine N°3. Saint-Malo.

DEVINE, J.; GARDNER, J.; BRACK, H.; LAYNE, G. Y RUTHERFORD, M. 1995. Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. *American Mineralogist*. N°**80**, (3-4): 319-328.

DUHART, P.; MCDONOUGH, M.; MUÑOZ, J.; MARTIN, M. Y VILLENEUVE, M. 2001. El Complejo Metamórfico Bahía Mansa en la cordillera de la Costa del centro-sur de Chile (39° 30'-42° 00'S): geocronología K-Ar, 40Ar/39Ar y U-Pb e implicancias en la evolución del margen sur-occidental de Gondwana. *Revista Geológica de Chile*. N°**28**, (2): 179-208.

DUHART, P. Y ADRIASOLA, A. 2008. New time-constraints on provenance, metamorphism and exhumation of the Bahía Mansa Metamorphic Complex on the Main Chiloé Island, south-central Chile. *Andean Geology*. N°35 (1).

ENCINAS, A.; FINGER, K.; NIELSEN, S.; SUÁREZ, M.; PETERSON, D. Y LE ROUX, J. 2003. Evolución tectono-sedimentaria de la cuenca Neógena de Navidad (33°40'S-34°15'S), Chile Central. Congreso Geológico Chileno N°10. Actas en CD-ROM. Concepción.

FUENZALIDA, R. 1976. The Hudson volcano. Symposium on Andean and Antarctic volcanology problems. Actas: 78-87. Santiago.

FUENZALIDA, R. Y ESPINOSA, W. 1974. Hallazgo de una caldera volcánica en la provincia de Aysén. *Revista Geológica de Chile*. N°1: 64 – 66.

GARCÍA, F. 1968. Estratigrafía del Terciario de Chile central. Symposio Terciario de Chile, Zona Central (Cecioni, G.; editor). Editorial Andrés Bello: 25-58.

GEOFFROY, C.A.; ALLOWAY, B.V.; AMIGO, A.; PARADA, M.A.; GUTIÉRREZ, F.; CASTRUCCIO, A.; PEARCE, N.J.; MORGADO, E.; MORENO, P.I. 2018. A widespread compositionally bimodal tephra sourced from Volcán Melimoyu (44°S, Northern Patagonian Andes): Insights into magmatic reservoir processes and opportunities for regional correlation. *Quaternary Science Reviews*. N°200: 141-159.

GHIORSO, M.S. Y EVANS, B.W. 2008. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. *American Journal of Science*. N°308, (9): 957-1039.

GINIBRE, C.; WÖRNER, G. Y KRONZ, A. 2007. Crystal zoning as an archive for magma evolution. *Elements*. N°3, (4): 261-266.

GLASSER, N.; HARRISON, S.; WINCHESTER, V. Y ANIYA, M. 2004. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. *Global and planetary change*. N°43, (1-2): 79-101.

GUTIÉRREZ, F.; GIONCADA, A.; FERRAN, O.G.; LAHSEN, A. Y MAZZUOLI, R. 2005. The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): an example of volcanism associated with ridge–trench collision environment. *Journal of Volcanology and Geothermal Research*. N°145, (3-4): 207-233.

HERVÉ, F.; NELSON, E.; KAWASHITA, K. Y SUÁREZ, M. 1981. New isotopic ages and the timing of orogenic events in the Cordillera Darwin, southernmost Chilean Andes. *Earth and Planetary Science Letters*. N°55, (2): 257-265.

HERVÉ, F.; AGUIRRE, L.; SEPÚLVEDA, V. Y MORATA, D. 1999. Contrasting geochemistry and metamorphism of pillow basalts in metamorphic complexes from Aysén, S. Chile. *Journal of South American Earth Sciences*. N°12, (4): 379-388.

HERVÉ, F.; CALDERÓN, M. Y FAÚNDEZ, V. 2008. The metamorphic complexes of the Patagonian and Fuegian Andes. *Geologica Acta: an international earth science journal*. N°**6**, (1): 43-53.

HERVE, F.; MPODOZIS, C.; DAVIDSON, J. Y GODOY, E. 2010. Observaciones estructurales y petrograficas en el basamento metamórfico del archipiélago de los Chonos, entre el canal King y el canal ninualac, aisen. *Revista Geológica de Chile*: 13-14.

HEPP, C. Y STOLPE, N.B. 2014. Caracterización y propiedades de los suelos de la Patagonia occidental (Aysén). Instituto de Investigaciones Agropecuarias. Centro de Investigación INIA Tamel Aike: 160 pp., Coyhaique.

HILDRETH, W. Y DRAKE, R. 1992. Volcán Quizapu, Chilean Andes. *Bulletin of Volcanology*. N°**54**: 93-125.

HUPPERT, H.E. Y WOODS, A.W. 2002. The role of volatiles in magma chamber dynamics. *Nature*. N°**420** (6915): 493.

IRVINE, T.N.J. Y BARAGAR, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks. *Canadian journal of earth sciences*. N°8, (5): 523-548.

JACKSON, M. D.; BLUNDY, J. Y SPARKS, R. S. J. 2018. Chemical differentiation, cold storage and remobilization of magma in the Earth's crust. *Nature*. N°**564**, (7736): 405.

JAY, J.; COSTA, F.; PRITCHARD, M.; LARA, L.; SINGER, B. Y HERRIN, J. 2014. Locating magma reservoirs using InSAR and petrology before and during the 2011–2012 Cordón Caulle silicic eruption. *Earth and Planetary Science Letters*. N°**395**: 254-266.

KRATZMANN, D.; CAREY, S.; SCASSO, R. Y NARANJO, J. 2009. Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. *Bulletin of Volcanology*. N°**71**: 419-439.

KRATZMANN, D.; CAREY, S.; SCASSO, R. Y NARANJO, J. 2010. Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile. *Contributions to Mineralogy and Petrology*. N°**159**, (2): 237.

LAHSEN, A. 1966. Geología de la región continental de Aysén. Instituto Investigación Recursos Naturales, Corfo, N°20: 1-20.

LE MAITRE, R.; BATEMAN, P.; DUDEK, A.; KELLER, J.; LAMEYRE, J.; LE BAS, M.; SABINE, P.; SCHMID, R.; SORENSEN, H.; STRECKEISEN, A.; WOOLLEY, A. Y ZANETTIN, B. 1989. A classification of igneous rocks and glossary of terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous rocks. *Blackwell Scientific Publications*. Londres.

LE MOIGNE, J.; LAGABRIELLE, Y.; WHITECHURCH, H.; GIRARDEAU, J.; BOURGOIS, J. Y MAURY, R. 1996. Petrology and geochemistry of the ophiolitic and volcanic suites of the Taitao Peninsula — Chile triple junction area. *Journal of South American Earth Sciences*. N°**9**, (1-2): 43–58.

LÓPEZ-ESCOBAR, L.; CEMBRANO, J. Y MORENO, H. 1995. Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37-46 S). *Andean Geology*. N°22, (2): 219-234.

MACLENNAN, J.; JULL, M.; MCKENZIE, D.; SLATER, L. Y GRÖNVOLD, K. 2002. The link between volcanism and deglaciation in Iceland. *Geochemistry, Geophysics, Geosystems*. N°3, (11): 1-25.

MARDONES, M.; GONZÁLEZ, L.; KING, R. Y CAMPOS, E. 2011. Variaciones glaciales durante el Holoceno en Patagonia Central, Aisén, Chile: evidencias geomorfológicas. *Andean Geology*. N°**38**, (2): 371-392.

MARSHALL, L. Y SALINAS, P. 1990. Stratigraphy of the Rio Frias Formation (Miocene), along the Alto Rio Cisnes, Aisen, Chile. *Revista Geológica de Chile*. N°1. Vol. 17: 57-87.

MARTINIĆ, M. 2005. De la Trapananda al Aysén: una mirada reflexiva sobre el acontecer de la Región de Aysén desde la prehistoria hasta nuestros días. Pehuén Editores: 539 pp., Santiago de Chile.

MASOTTA, M. (Julio, 2019). *Question about your paper Massota et. al, 2013*. Mensaje enviado a "Matteo Masotta" matteo.masotta@unipi.it

MASOTTA, M.; MOLLO, S.; FREDA, C.; GAETA, M. Y MOORE, G. 2013. Clinopyroxeneliquid thermometers and barometers specific to alkaline differentiated magmas. *Contributions to Mineralogy and Petrology*. N° **166**, (6): 1545-1561.

MASOTTA, M. Y MOLLO, S. 2019. A new Plagioclase-Liquid hygrometer specific to Trachytic Systems. *Minerals*. Vol. **9**: 375.

MELLA, J. 1999. Revisión bibliográfica sobre vertebrados terrestres posibles de encontrar en la XI Región de Aysén. Servicio Agrícola y Ganadero: 71 pp.

MILLET; M.A., TUTT, C.; HANDLER, M. Y BAKER, J. 2014. Processes and time scales of dacite magma assembly and eruption at Tauhara volcano, TaupoVolcanic Zone, New Zealand. *Geochemistry, Geophysics, Geosystems*. N°15, (1): 213-237.

MOLLO, S.; PUTIRKA, K.; MISITI, V.; SOLIGO, M. Y SCARLATO, P. 2013. A new test for equilibrium based on clinopyroxene–melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. *Chemical Geology*. N°**352**: 92-100.

MORATA, D.; OLIVA, C.; DE LA CRUZ, R. Y SUÁREZ, M. 2005. The Bandurrias gabbro: late Oligocene alkaline magmatism in the Patagonian Cordillera. *Journal of South American Earth Sciences*. N°18, (2): 147-162.

MORENO, P. Y VIDELA, J. 2016. Centennial and millennial-scale hydroclimate changes in northwestern Patagonia since 16,000 yr BP. *Quaternary Science Reviews*. N°**149**: 326-337.

MORGADO, E. (Marzo – Septiembre, 2019). Litogeochem. Mensaje enviado a "Eduardo Morgado" eeeem@leeds.ac.uk

MORGAN, D. J.; BLAKE, S.; ROGERS, N. W.; DEVIVO, B.; ROLANDI, G.; MACDONALD, R. Y HAWKESWORTH, C. J. 2004. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. *Earth and Planetary Science Letters*. N°222, (3-4): 933-946.

NARANJO, J. Y STERN, C. 1998. Holocene explosive activity of Hudson volcano, southern Andes. *Bulletin of Volcanology*. N°**59**: 291-306.

NEWMAN, S. Y LOWENSTERN, J. B. 2002. VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. *Computers & Geosciences*. N°**28** (5): 597-604.

NICHOLLS, J. Y RUSSELL, J.K. 2016. Pearce Element Ratio Diagrams: Linking geochemical data to magmatic processes. Geoscience Canada. Vol.43, (2): 133-146.

NIEMEYER, H. Y SKARMETA, J. 1984. Hojas Península de Taitao y Puerto Aisén: Región de Aisén del General Carlos Ibañez del Campo: Carta Geológica de Chile 1: 500.000. Servicio Nacional de Geología y Minería.

ORIHASHI, Y.; NARANJO, J.; MOTOKI, A.; SUMINO, H.; HIRATA, D.; ANMA, R. Y NAGAO, K. 2004. Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: New constraints from K-Ar ages. *Revista Geológica de Chile*. N°**31**, (2): 207-224.

PANKHURST, R. J.; WEAVER, S. D.; HERVÉ, F. Y LARRONDO, P. 1999. Mesozoic-Cenozoic evolution of the North Patagonian batholith in Aysen, southern Chile. *Journal of the Geological Society*. N°**156**, (4): 673-694.

PARADA, M.; LAHSEN, A. Y PALACIOS, C. 2001. Ages and geochemistry of Mesozoic-Eocene back-arc volcanic rocks in the Aysén region of the Patagonian Andes, Chile. *Revista Geológica de Chile*. N°28, (1): 25-46.

PUTIRKA, K. 2008. Thermometers and barometers for volcanic systems. *Reviews in mineralogy and geochemistry*. N°69, (1): 61-120.

RAWSON, H.; PYLE, D. M.; MATHER, T. A.; SMITH, V.C.; FONTIJN, K.; LACHOWYCZ, S.M. Y NARANJO, J. 2016. The magmatic and eruptive response of arc volcanoes to deglaciation: Insights from southern Chile. *Geology*. N°44, (4): 251-254.

RUPRECHT, P. Y BACHMANN, O. 2010. Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. *Geology* $N^{\circ}38$, (10): 919-922.

RUPRECHT, P. Y WÖRNER, G. 2007. Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. *Journal of Volcanology and Geothermal Research*. N°**165**, (3-4): 142-162.

SERNAGEOMIN, 2003. Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (CD-ROM, versión 1.0, 2003). Santiago de Chile.

SERNAGEOMIN. 2016a. Reporte especial de actividad volcánica, Región de Aysén, Volcán Hudson. Temuco, Chile.

SERNAGEOMIN. 2016b. Reporte de actividad volcánica, Región de Aysén, Volcán Hudson. Vol. 11. Temuco, Chile.

SERNAGEOMIN. 2016c. Reporte de actividad volcánica, Región de Aysén, Volcán Hudson. Vol. 12. Temuco, Chile.

SERNAGEOMIN. 2017. Reporte de actividad volcánica, Región de Aysén, Volcán Hudson. Vol. 13. Temuco, Chile.

SILVA, C.; HERRERA, C. Y HERVÉ, F. 2003. Petrogénesis de lavas y diques básicos de la Formación Traiguén, Región de Aysén (43 30'–46 S), Chile. Congreso Geológico Chileno N°10. Actas en CD-ROM. Concepción.

STERN, C. 1991. Mid-holocene tephra on Tierra del Fuego (54°S) derived from the Hudson volcano (46°S): Evidence for a large explosive eruptive. *Revista Geológica de Chile*. N°**18**: 139-146.

STERN, C.; MORENO, H.; LÓPEZ-ESCOBAR, L.; CLAVERO, J.; LARA, L.; NARANJO, J.; PARADA, M. Y SKEWES, M. 2007. Chilean Volcanoes. The Geology of Chile. Gibbons, W. y Moreno, T.: 147-178. Londres.

SUÁREZ, M. Y DE LA CRUZ, R. 2000. Geología de la zona del lago General Carrera, Región de Aysén, Chile. Congreso Geológico Chileno N°9. Actas **2**: 264-268. Puerto Varas.

SUÁREZ, M.; DE LA CRUZ, R. Y TRONCOSO, A. 2000. Tropical/subtropical upper Paleocene–lower Eocene fluvial deposits in eastern central Patagonia, Chile (46° 45′ S). *Journal of South American Earth Sciences*. N°13, (6): 527-536.

SUN, S.S. Y MCDONOUGH, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, Special Publications. $N^{\circ}42$, (1): 313-345. Londres.

TAIT, S.; JAUPART, C. Y VERGNIOLLE, S. 1989. Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. *Earth and Planetary Science Letters*. N°92: 107-123.

THORNDYCRAFT, V.R.; BENDLE, J.M.; BENITO, G.; DAVIES, B.J.; SANCHO, C.; PALMER, A.P.; FABEL, D.; MEDIALDEA, A. Y MARTIN, J.R. 2019. Glacial lake evolution and Atlantic-Pacific drainage reversals during deglaciation of the Patagonian Ice Sheet. *Quaternary Science Reviews*. N°203: 102-127.

WATT, S.; PYLE, D. Y MATHER, T. 2013. The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records. *Earth-Science Reviews*. N°122: 77-102.

WELLER, D.; MIRANDA, C.; MORENO, P.; VILLA-MARTÍNEZ, R. Y STERN, C. 2014. The large late-glacial Ho eruption of the Hudson volcano, southern Chile. *Bulletin of Volcanology*. N°**76**, (6): 831.

WELLER, D.; DE PORRAS, M.; MALDONADO, A.; MÉNDEZ, C. Y STERN, C. 2019. New age controls on the tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile. *Quaternary Research*. N°**91**, (1): 250-264.