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Resumen
Magnetic Fields in Close Binaries

by Felipe NAVARRETE

Las estrellas binarias cercanas post-common-envelope binaries (PCEBs) consisten en
una Enana Blanca (WD) y una estrella en la sequencia principal (MS). La naturaleza
de las variaciones de los tiempos de eclipse (ETVs) observadas en PCEBs aún no
se ha determinado. Por una parte está la hipotesis planetaria, la cual atribuye las
ETVs a la presencia de planetas en el sistema binario, alterando el baricentro de
la binaria. Así, esto deja una huella en el diagrama O-C de los tiempos de eclipse
igual al observado. Por otra parte tenemos al Applegate mechanism que atribuye las
ETVs a actividad magnética en estrella en la MS. En pocas palabras, el Applegate
mechanism acopla la actividad magnética a variaciones en el momento cuadrupo-
lar gravitatiorio (Q) en la MS. Q contribuye al potencial gravitacional sentido por
la primaria (WD), dejando así una huella igual a la observada en el diagrama O-C.
Simulaciones magnetohidrodinámicas (MHD) en 3 dimensiones de convección es-
telar se encuentran en una etapa donde puede reproducir un gran abanico de fenó-
menos estelares, tales como, evolución magnética, migración del campo magnético,
circulación meridional, rotación diferencial, etc. En esta tesis estudio el Applegate
mechanism con dos códigos numéricos. Primero con el código MESA, un código
para la evolución estelar en una dimensión. Usé este código para obtener perfiles
radiales de la estrella MS en PCEBs y además determiné dónde se espera que el dí-
namo magnético actúe en el marco de un modelo simple. Comparando esto con el
radio en donde la energía para que ocurra el Applegate mechanism se hace mínima,
encontré que tales radios son los mismo para algunos sistemas. También encontré
que la probabilidad de que el Applegate mechanism sea el responsable de las ETVs
escala con la rotación estelar. Luego, con el código PENCIL, un código que resuelve
las ecuaciones de la MHD en su formulación compresible, corrí dos simulaciones
de la zona convectiva tipo Sol con velocidades de rotación diferentes. Encontré que
el comportamiento de Q así como la actividad magnetica difieren entre ambas sim-
ulaciones. También hay diferentes soluciones del dínamo, momentum angular, y
tensor de estrés de Reynolds. Esta es la primera vez que se establece una relación
entre el dínamo y las variaciones en Q, lo cual sugiere que la solución del dínamo es
la responsable de las variaciones en Q. Creemos que ésto nos podría proveer de una
prometedora área para estudiar el dínamo estelar mediante ETVs, entregando una
nueva herramienta para estudiar fenónemos magnético estelares.
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Abstract
Magnetic Fields in Close Binaries

by Felipe NAVARRETE

Post-common-envelope binaries (PCEBs) are close binary systems consisting of a
White Dwarf (WD) and a main-sequence (MS) star. The nature of Eclipsing Time
Variations (ETVs) PCEBs is not yet determined. On the one hand we have the plane-
tary hypotheses, which states that the origin is a consequence of circumbinary plan-
ets which make the barycenter wobble. This will leave an imprint in the Observed-
minus-calculated (O-C) diagram of the eclipsing times, the same as the observed.
On the other hand we have the Applegate mechanism, which attributes the ETVs to
the magnetic activity of the MS star. Basically, the Applegate mechanism couples
the magnetic activity to gravitational quadrupole moment (Q) variations of the star.
Q contributes to the gravitational potential felt by the companion, commonly a WD,
and thus will a quasi-periodic variation of the Q will leave the same imprint in the
O-C diagram as the one observed. 3D MHD simulations of convection in stellar con-
vective regions are in a stage where they can reproduce a great amount of stellar
phenomena, such as magnetic field evolution, magnetic field migration, meridional
circulation, differential rotation, etc. In this thesis I study the Applegate mecha-
nism with two numerical codes. First I use the MESA CODE, a one-dimensional
stellar evolution code, to obtain radial profiles of MS stars in PCEBs and to deter-
mine where the magnetic dynamo is expected to take place. By comparing this to
the radius at which the required energy to drive the Applegate mechanism is min-
imal, I found that they match in some systems. I also found that the likelihood of
the Applegate mechanism being responsible of the ETVs scales with stellar rotation.
Then, with the PENCIL CODE, a fully-compressible code which solves the magneto-
hydrodynamic equations, I run two Sun-like convective-region simulations with dif-
ferent rotations and found that the behaviour of Q as well as magnetic activity is
different in both simulations. They also have a different dynamo solutions, angular
momentum and Reynolds stresses behaviours. This is the first time a link between
the dynamo and the Q variations is made and suggests that the dynamo solution
is the responsible of Q variations. We believe this will come to be a promising area
to study the stellar dynamo by means of ETVs, which is a new tool to study stellar
magnetic phenomena.
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1

Chapter 1

Introduction and Context

1.1 Importance of the study of binary stars

It is important to first state the value of studying binary systems. Important stellar
parameters such as radius and mass are very difficult to obtain from isolated stars
because spectroscopy will only reveal temperature. Fortunately, more than 50% of
all star systems in the sky actually consist of two or more stars, and as we know
classical mechanics with an exquisite precision, with the observation of eclipses and
orbits (in the case of eclipsing binaries) it is easy to obtain stellar parameters of the
stars in the system. This is reflected by the fact that most of our knowledge of stars
come from binaries.

They also serve as celestial laboratories to test astrophysics, e.g. stellar structure
and evolution, common-envelope evolution, and mass transfer, to name a few. They
come in a variety of types, some being closer than others, and give rise to a wide
range of physical processes.

1.2 Post-Common-Envelope Binaries

Post-Common-Envelope Binaries (PCEBs) are binary systems which normally con-
sist of a white dwarf (WD) primary and a main sequence (MS) star, commonly an M
dwarf (dM). For a binary system to reach the PCEB phase, it has to undergo a violent
evolution as follows (Paczynski, 1976):

1. A MS-MS binary starts originally at a separation of ∼ 1 AU.

2. As the more massive star evolves faster and the binary separation is short, the
secondary is engulfed by the envelope of the primary.

3. The orbital motion continues and the secondary spirals inwards towards the
core of the primary as orbital energy is lost to the envelope because of the
presence of frictional forces. This is known as the Common Envelope (CE)
phase.

4. The CE material gains sufficient energy, so it mostly gets expelled from the
system.
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FIGURE 1.1: NN Ser O-C diagram from Beuermann, Dreizler, and
Hessman (2013). Points are data, and the black line is the best fit
model which is the sum of dashed and dot-dashed lines, namely the
planets contributions. The horizontal dotted line marks the zero level
where the data would lie if no eclipsing-time-variations are present.

5. A close binary is revealed, consisting of a WD and a low-mass MS star, with a
separation of typically ∼ 1 R� and orbital periods of less than 3 hours.

The evolution of the CE phase is not yet well understood and is a current subject
of study. Apart from the common envelope evolution itself, these binaries are also
being investigated for another reason. When constructing the O-C diagram of the
eclipsing times, i.e. a diagram comparing the observed (O) eclipsing times with the
calculated (C) ones, an intriguing characteristic is observed: periodic variations on
timescales ranging from a few years to tens of years are obtained, suggesting the
existence of giant planets orbiting the binary (Beuermann et al., 2010; Nasiroglu et
al., 2017). There are two scenarios in which these hypothetical planets might have
formed. The first one explains it via the survival of the planets during the CE phase,
which were formed together with the binary (i.e. first-generation formation sce-
nario). The second scenario is where the planets form from the CE material that is
expelled from the system (i.e. second-generation formation scenario). Also a hybrid
scenario is possible, where the third body formed together with the binary and later
accreted material from the CE. Several studies have been carried out on this mat-
ter, some authors favoring one scenario over the other (see e.g., Völschow, Banerjee,
and Hessman, 2014; Schleicher and Dreizler, 2014; Bear and Soker, 2014; Schleicher
et al., 2015). In any case, these scenarios must take into account the fact that ∼90%
of PCEBs have observed apparent period variations (Zorotovic and Schreiber, 2013).
This implies that the hypothetical planets are very good at surviving the PCEB for-
mation process and/or the CE material is very efficient in forming planets, unless
the fluctuations are driven by magnetic activity.
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Figure 1.1 shows the O-C diagram of NN Ser (Beuermann, Dreizler, and Hes-
sman, 2013). Data points are in yellow, green, and cyan, and the best model is the
black line which is the sum of the contributions from the two planets, the dot-dashed
and dashed red lines. The variations are observed to be cyclic and for this particular
system Beuermann, Dreizler, and Hessman (2013) found a two-planet stable solu-
tion.

A critical condition for making a detailed and accurate analysis is to have several
data points spread across a wide range of time. For this reason it is common to find
in the literature some claims of initially stable planetary solutions which are then
proven to be unstable, or the other way around (see, e.g. Horner et al., 2012; Horner
et al., 2013; Beuermann, Dreizler, and Hessman, 2013; Pulley et al., 2018).

There is another explanation of the eclipsing time variations known as the Apple-
gate mechanism (Applegate, 1992), which will be explained in more detail in Chap-
ter 2. Basically, the idea is that the magnetic activity of the MS in PCEBs redistributes
the angular momentum within the star, thus changing the shape of the star, which
is measured by the quadrupole moment Q. This in turn produces a change of the
binary separation which translates into variations of the O-C diagram. Brinkworth
et al. (2006) extended the model by introducing a finite shell formalism, considering
the exchange of angular momentum between the core and the shell. Later, Völschow
et al. (2016) examined and applied this model to a sample of 16 close binaries, in-
cluding PCEBs, showing that the Applegate mechanism is energetically viable in
the shortest and most massive binary systems. In the first part of this thesis (Chap-
ter 4), we extend the analysis of Völschow et al. (2016) with a more detailed radial
profile using the MESA code (Paxton et al., 2011) and included a new PCEB system
to the data.

1.2.1 The case of V471 Tau

V471 Tau is a PCEB where the primary star is a white dwarf and the secondary
is a K2V star. The K2V star has a mass of 0.93 M�, radius of 0.96 R�, and a sur-
face temperate of 5040 K. The binary separation is 3.3 R� and the binary period is
0.522 days (Nelson and Young, 1970; Guinan and Sion, 1984; Hardy et al., 2015). The
eclipsing time variations (ETVs) as seen in the O-C diagram in V471 Tau have been
interpreted as caused by a circumbinary brown dwarf. While Hardy et al. (2015) re-
ported the non-detection of the proposed third body, Vaccaro et al. (2015) proposed
that the brown dwarf might have escaped detection or may have actually been seen.
The later study reported the following parameters of the brown dwarf: period of
30.1 years, eccentricity of 0.39, a mass of 0.035 M�, and an inclination of 30 deg.

More recently, Vanderbosch et al. (2017) studied the orbital period of the system
and the spin period of the white dwarf. If there is a third body in V471 Tau, the O-C
of the white dwarf spin period should have the same amplitude as the eclipsing time
O-C. However, the authors found a flat trend scattered around zero for the former,
whereas there is a clear non-linear trend for the later. They concluded that the third
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body hypothesis should be ruled out for V471 Tau. However, in a short research note
Marchioni et al. (2018) argued that the data covered by Vanderbosch et al. (2017) is
short (∼7 years) and it was taken at the minimum of the eclipsing times O-C diagram
so the effect of the third body is at its minimum. Marchioni et al. (2018) also added
new data to the eclipsing times O-C and presented a new third-body interpretation
analysis. After removing the 35.5 years period contribution to the proposed brown
dwarf, additional O-C oscillations with a semi-amplitude of ∼ 20 seconds and a
period of ∼ 9.5 years are remaining.

The case of V471 Tau reflects the difficulty of explaining the ETVs in general. This
difficulty comes from both observational and theoretical sides. Firstly, it is really
hard to obtain direct observations of a third body. Planets around stars in general
are inferred from the stellar luminosity variability, and this is by itself a problem be-
cause in principle the photometric footprint of the third body can also be interpreted
as magnetic activity, and disentangling between them is not trivial (Robertson, Roy,
and Mahadevan, 2015). Spectroscopic data can also be affected by magnetic phe-
nomena since they cause radial velocity variations that can be misinterpreted as a
planetary companion (Boisse, Bonfils, and Santos, 2012; Faria et al., 2016). Secondly,
simulations of magnetic activity are really expensive and the current computational
power is still way behind the needed power to cover all of the physical conditions
inside stars (see the thesis by Käpylä, 2006, Sect. 4.3), particularly in the convective
region where the Applegate mechanism should operate.

Overall it is energetically feasible to explain ETVs in at least some PCEBs with the
Applegate mechanism. This has to be confirmed with more detailed simulations and
with observations. If we remember that the Applegate mechanism is a process that
starts within the magnetically-active main-sequence star, then one can only probe
it through the consequences it has on the surface of the star, and the binary itself.
Another tool we can use is to look for the Applegate mechanism in action by means
of simulations that include all physical processes relevant to the time frame of tens
of years. Some of these processes are: magnetic field generation, convection, and
rotation. Ideally, this model has to be self-consistent in order to look what causes the
mechanism.

This thesis is structured as follows: Chapter 2 gives an overview of stellar mag-
netism in the Sun and other stars, followed by a section on the solar dynamo theory.
Later, in Chapter 2 the Applegate mechanism is presented from a theoretical point
of view and ordered by progress made over the years. Following, Chapter 3 intro-
duces the MESA CODE and PENCIL CODE together with the setups used in the two
papers of the thesis, which are included in Chapter 4 (Navarrete et al., 2018) with the
1D stellar evolution code MESA, and Chapter 5 with the 3D MHD PENCIL CODE.
Conclusions and future prospects are given in Chapter 6.



5

Chapter 2

Magnetism in Stars & the
Applegate Mechanism

In this chapter I will give an overview on our current understanding of stellar magnetism
and the dynamo theory.

2.1 Magnetism in the Sun

The Sun has been under intense study since the time of Babylonians. The amount of
observations of solar eclipses and solar phenomena in general has increased through
history. It is of no surprise how the Sun and solar phenomena was and still is the
central motivation for human religious beliefs.

There is a wide range of solar physics we can observe at its surface. For exam-
ple, the Maunder Minimum is a period of decreased magnetic activity, inferred by the
almost null report of sunspots (see Figure 2.1 for a picture of sunspots) noted by as-
tronomers, which occurred approximately from 1645 to 1715. Carbon-14 is produced
from the interaction of galactic cosmic rays (GCRs) with the earth’s atmosphere. This
interaction is modulated by the interplanetary magnetic field, which in turn is mod-
ulated by solar magnetic activity. C14 is then absorbed by trees and thus leaves an

FIGURE 2.1: Some typical sunspots. Image from NASA’s Goddard
Space Flight Center.
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FIGURE 2.2: Solar butterfly diagram. Image from the Solar Group at
the NASA Marshall Space Flight Center.

imprint in tree rings. Miyake et al. (2017) used this fact to study a long living tree
and identified a peculiar event of increased concentration of C14 around 5480 BC
and 5470 BC. This can be explained by a ”grand solar minimum, meaning the solar
activity rapidly decreased to an extremely low level, and then the solar activity be-
came gradually higher, in a similar way to other grand solar minima” (Miyake et al.,
2017).

It is clear that solar activity is quasi-periodic which means the activity level is not
constant over its period and has more than one periodicity. The most well known
and studied solar periodic magnetic activity is reflect in Figure 2.2, which shows the
sunspot migration. At the beginning of the cycle, sunspots appear at mid latitude
(± 30°) and move towards the equator until a solar minimum is reached. This cycle
lasts for 11 years and is followed by a flip of the magnetic field sign. This completes
the Sun’s 22-year cycle.

All solar surface phenomena start from within. The plasma contained in the last
30% of the solar interior (i.e. the convective zone) is heated by the inner radiative
core where the energy, created in the core, is carried by photons. The heating of the
bottom part of the convective zone makes the material move towards the surface,
gradually cooling down. This motion is known as convection and, together with
differential rotation, is responsible of the generation, amplification, and cyclic be-
haviour of the magnetic field. The dynamo theory, which explains the generation,
amplification, and reconstruction of the magnetic field is treated in Section 2.3.

2.2 Magnetism in other stars

From early observations, more modern tools like satellite solar observations, and
helioseismology we know a lot of what is happening inside and outside the Sun,
making this celestial object the one we know the most about. But when we put the
Sun in the bigger picture, that is compare it with other stars from an evolutive point
of view or their physical properties, this statement is no longer valid. How will the
solar magnetic field change over long periods of time? How will the magnetic field
cycle be affected when rotation changes? How do fully convective stars evolve their
magnetic fields, considering they are structurally different from the Sun?
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FIGURE 2.3: Visualization of the Ω effect in the Sun. The azimuthal
black lines represent angular velocity, where double arrows are faster
rotation. The perpendicular black line is the rotation axis marked
with the rotation vector ~Ω. The initially poloidal magnetic field lines,
in red, are twisted more are the equator because of faster rotation.

The final configuration is a toroidal field.
Image credits to my friend Pedro Diaz Puig.

Stars vary in mass, radius, rotation. A complete theory that captures the mag-
netic activity as a function of these properties is far from being finished.

2.3 The Solar dynamo

Sunspots and all surface phenomena of not only the Sun but all stars are conse-
quences of emerging magnetic fields from the stellar interior. The development of a
theory of magnetic field generation constrained only by surface phenomena obser-
vations is an incredibly challenging task. The central part of it is turbulent convec-
tion influenced by rotation and stratification.

2.3.1 The Ω effect

When studying the dynamo action in differentially rotating spheres such as stars,
the Ω effect is one of the contributions to the magnetic field generation. Its name
originates from the effect differential rotation has on the initially poloidal magnetic
field lines, namely a field line crossing from the north to the south pole. A Sun-like
star rotates faster on the equator and slower on the poles, so a poloidal field line
suffers more stretching at the equator. This effect is accumulative and the stretching
becomes stronger as the star rotates, up to a point where the initially poloidal field
line becomes a toroidal one. See Figure 2.3 for a visual representation.

Let us consider an axisymmetric magnetic field B in cylindrical coordinates (r, φ, z),
which is given by

B = ∇× ζ

r
φ̂ + rψφ̂, (2.1)
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where ζ = ζ(r, z, t) is the poloidal flux function and ψ = ψ(r, z, t) is the toroidal mag-
netic stream function. Accordingly, we define the axisymmetric velocity field U as

U = Up + rΩφ̂, (2.2)

where U = Up(r, z, t) is the poloidal velocity field in the (R, z) plane and Ω =

Ω(r, z, t)φ̂ is the axisymmetric toroidal differential rotation. Furthermore, the in-
duction equation can be written as

∂B
∂t

+ U · ∇B = B · ∇U + η∇2B, (2.3)

where η is the magnetic diffusivity and ∇2 is the Laplacian operator. The second
term on the LHS of Eq. 2.3 represents the advection term and the first term on the
RHS represents the stretching. By inserting Eqs. 2.1 and 2.2 into Eq. 2.3, and sep-
arating the poloidal (ζ) and toroidal (ψ) components respectively, we are led to the
equations

∂ζ

∂t
+ Up · ∇ζ = η

(
∇2ζ − 2

r
∂ζ

∂r

)
(2.4)

and
∂ψ

∂t
+ Up · ∇ψ = Bp · ∇Ω + η

(
∇2ψ +

2
r

∂ψ

∂r

)
. (2.5)

Looking into the toroidal field component equation (Eq. 2.5) we see a source term
Bp · ∇Ω which takes the poloidal magnetic field lines and transforms them into
toroidal lines by the action of differential rotation. This is know as the Ω effect. To
sustain the dynamo action, the toroidal components must then be transformed into
poloidal lines so the magnetic activity continues. In Eq. 2.4 there is no such term.
This means that there is no possible way to maintain dynamo action which is a con-
sequence of the restrictive geometric symmetry we have imposed. To summarize, a
purely axisymmetric magnetic field cannot be sustained by any dynamo and must
eventually decay. This is know as the Cowling’s anti-dynamo theorem (Cowling, 1933)
and it also tells us that the magnetic field in stars must be complex and an analytic
treatment that assumes axisymmetric magnetic fields is not feasible.

2.3.2 The α effect

The work by Steenbeck, Krause, and Rädler (1966) uses the mean-field magneto-hydrodynamics
approach to develop a theory in which the toroidal magnetic field is transformed
into a poloidal one, thus closing the magnetic field (re-)generation cycle. This math-
ematical theory has proven to be an extreme success in the study of dynamo theory.
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Mean-field theory

The central part of mean-field MHD is to split the velocity and magnetic fields into a
mean part plus their corresponding fluctuations. This is done by writing

U = U + u, (2.6)

B = B + b, (2.7)

where the overline denotes the statistical ensemble average, and the lowercase is the
fluctuating part with u = b = 0. By applying the Reynolds rules

P = P, (2.8)

P1 + P2 = P1 + P2, (2.9)

P1P2 = P1P2, (2.10)

Pp = 0, (2.11)

P1P2 = P1P2 + p1p2, (2.12)

∂P
∂t

=
∂P
∂t

, (2.13)

∂P
∂xi

=
∂P
∂xi

, (2.14)

to the induction equation (Eq. 2.3), we obtain the following equation for the evolu-
tion of B:

∂B
∂t

+ U · ∇B = B · ∇U +∇× ε + η∇2B, (2.15)

where
ε = u× b (2.16)

is the mean electromotive force (EMF) that drives the dynamo. By taking equation 2.3
and subtracting equation 2.15 from it, we obtain

∂b
∂t

= ∇× [(u× B) + (U× b) + (u× b− u× b)] + η∇2b. (2.17)

The third term inside brackets in the last equation is quadratic in fluctuations. An
analytic expression of this term contains correlations of higher order in fluctuations.
This is known as the closure problem. The second term inside brackets corresponds to
the contribution the large-scale velocity field has on the small-scale magnetic fluc-
tuations. And the first term is the contribution of the tangling and shearing of the
mean field due to small-scale velocity fluctuations.

The mean-field ansatz states that the mean magnetic field B varies slowly in
space and time. If this holds, and we think of an inhomogeneous, stratified, anisotropic,
and differentially rotating flow, then we can write the electromotive force as (Rädler,
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1980):

εi = αijBj + (γ× B)i − βij(∇× B)j − [δ× (∇× B)]i +
κijk

2
(∇jBk +∇kBj), (2.18)

where α and β are symmetric second-order tensors defined as

αij =
1
2
(aij + aji), (2.19)

βij =
1
4
(εijkbjkl + εjklbikl), (2.20)

and ε is the Levi-Civita pseudotensor. α is know as the α-effect, related to the Parker
mechanism (Parker, 1955), which can drive a large-scale dynamo by transforming a
toroidal field into a poloidal one, thus ending with the problem of Cowling’s anti-
dynamo theorem. β is a turbulent magnetic diffusion. For completeness, γ, δ, and κ

are given by

γi = −
1
2

εijkajk, (2.21)

δi =
1
4
(bjji − bjij), (2.22)

κijk = −
1
2
(bijk − bikj). (2.23)

The first term represents the turbulent pumping of the mean field. The last two are
a pseudovector and a pseudotensor, respectively.

2.3.3 Convection

Convection is the movement a flow has when the more internal hot layers rise to
the more external cooler layers. This process exchanges energy between the hotter
and cooler layers. The mass elements are called parcels, blobs, eddies or just mass ele-
ments. As the hotter mass elements rise they are dissolved into their new surround-
ing, whereas the cooler mass elements fall into the hotter layers. In the convective
region of stars the density stratification is very high, so convection is very efficient.

A realistic description of convection is extremely difficult and perhaps impos-
sible. This is because any “complete” model of convection must be non-local and
nonlinear as the full set of hydrodynamic equations must be included. It is one of
the stellar processes we have the least understanding of.

The stability criterion against convection is given by the Ledoux criterion

∇rad < ∇ad −
χµ

χT
∇µ, (2.24)

where ∇rad is the radiative logarithmic temperature gradient, ∇ad is the adiabatic
logarithmic temperature gradient, and ∇µ = (∂ ln µ/∂ ln P) is the logarithmic mean
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molecular weight gradient. Furthermore,

χµ =

(
∂ ln P
∂ ln µ

)
ρ,T

, (2.25)

χT =

(
∂ ln P
∂ ln ρ

)
T,Xi

, (2.26)

where Xi means that the composition is held constant. When the composition is
chemically homogeneous∇µ = 0, the Leudox criterion is replaced by the Schwarzschild
criterion for stability against convection

∇rad < ∇ad. (2.27)

The convection criterion can also be recasted in terms of the entropy: if entropy
decreases outward (with radius) at some point, then it is said that the fluid is con-
vectively unstable and convection will thus develop.

The Rossby number (Ro) serves as a measure of the influence rotation has on the
flow. It is defined as

Ro =
Prot

τc
, (2.28)

where Prot is the rotation period and τc is the convective turnover time. At the pho-
tosphere, Ro� 1 so photospheric convection is unaffected by rotation; at the bulk
of the convection zone, Ro ≤ 1 so there is a significant rotational influence; whereas
at the bottom of the convective region, Ro ∼ 0.1, meaning that convection is highly
influenced by rotation. This means we have another level of complexity when deal-
ing with the convection in stars as not only convection by itself can be studied, but
the influence of rotation must be included.

The Mixing Length Theory

The mixing length theory (MLT) is an analytic theory to treat convection. Here, the
central idea is to consider a fluid parcel in the cooler (hotter) parts of a fluid with
a temperature gradient; there is nothing special in physical terms about this fluid
element compared to its surrounding. This mass element will move to the hotter
(cooler) layers with the special constrain of moving a length l, i.e. the mixing length,
before losing its identity by merging into its new surrounding. During this motion,
the fluid parcel remains in pressure equilibrium with its surrounding. This idea was
first proposed by Prandtl in 1925 and in its stellar form by Biermann (1951), Vitense
(1953), and Böhm-Vitense (1958). Despite being very simplistic it has given many
useful insight in stellar convection.

For a more complete treatment of convection see the books by Kippenhahn,
Weigert, and Weiss (2012), and Hansen, Kawaler, and Trimble (2004).
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2.4 Original Applegate Model

Applegate (1992) proposed an alternative method to the planetary hypothesis to ex-
plain the ETVs. The model itself relates the evolution of the magnetic field, de-
scribed by the dynamo theory and explained in Chapter 2.3, to the orbital period
modulations. The basic idea of the model is that some amount of angular momen-
tum within the star is being continuously exchanged between an inner and outer
convective shell of the star. The torque necessary to redistribute angular momentum
is provided by a varying magnetic torque which changes together with the magnetic
activity cycle.

As angular momentum is exchanged within the star, the gravitational quadrupole
moment changes which can be seen as a measure of the oblateness of the star or the
level of deviation from a perfect sphere. The gravitational quadrupole moment, de-
noted by Q is related to the gravitational potential φ(x) outside the active star via
(Applegate, 1992)

φ(x) = −GM
r
− 3

2
GQik

xixk

r5 , (2.29)

where xi, xk = x, y, z denote Cartesian components and x = (x, y, z). The gravita-
tional quadrupole moment is calculated via

Qik = Iik −
1
3

δik Tr I, (2.30)

where ρ is the density,

Iik =
∫

d3xρ(x)xixk (2.31)

is the inertia tensor, Tr I its trace, and xi, xk are Cartesian coordinates measured from
the centre of mass of the star. For a close binary system we can assume that tidal
friction has synchronized the stellar spin with the binary spin, circularized the orbit
(Zahn and Bouchet, 1989), and brought the rotational and orbital angular momenta
into alignment. We can adopt the z-axis to lie in the direction of the angular mo-
mentum together with an x-axis pointing at the companion, and let this coordinate
system rotate about the z-axis with the angular velocity. In this coordinate system,
only the Qxx term contributes to the total quadrupole moment.

Then, following Applegate (1992), the variations in the binary period are related
to variations in the quadrupole moment via

∆P
P

= −9
(

R
abin

)2 ∆Qxx

MR2 , (2.32)

or,
∆P
P

= −9
∆Qxx

M a2
bin

, (2.33)

where M, R are the mass and radius of the magnetically active star, and abin is the
binary separation.
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Applegate worked with the assumption that variations of Q are only present on a
thin shell surrounding the stellar core with a mass of Ms = 0.1M�. The quadrupole
moment of the outer shell can be computed as

Qs =
1
9

MsR2 Ω2R3

GM
, (2.34)

where Ω is the angular velocity of the shell. The derivative of Qxx with respect to
the angular momentum J is calculated via

dQxx

dJ
=

1
3

ΩR3

GM
. (2.35)

For angular momentum transfer to take place, a torque of some nature must
be present. Applegate (1992) assumes this torque to be provided by a subsurface
magnetic field with a lever arm of 0.1R. The mean subsurface field is then

B2 ∼ GM2

R4

( a
R

)2 ∆P
Pmod

, (2.36)

where Pmod is the orbital period modulation. The calculations yield a magnetic field
strength of the order of a few kG. Applegate (1992) explained the binary period
variations with a good match for different close binaries. For a period modulation
with an amplitude of ∆P/P ∼ 10−5 the mechanism requires a magnetically active
star with a luminosity variation of ∆L/L ∼ 0.1 and a differential rotation variation
of ∆Ω/Ω ∼ 0.01

This work established the basis for future attempts to explain the variations of
the eclipsing times of several types of close binaries.

2.5 Brinkworth Model

Brinkworth et al. (2006) studied the eclipsing times of the PCEB system NN Ser with
photometric data and found that the binary period is decreasing at a rate of Ṗ =

(9.06± 0.06)× 10−12 s s−1.
The original Applegate mechanism is applied considering a thin outer shell of

mass Ms = 0.1 M� but the M dwarf in NN Ser has a mass of 0.111 M�, which is a
common number among PCEBs (see Table 1 of Völschow et al., 2016, for a summary
of relevant parameters of some PCEB systems). This raises the problem that a "thin"
shell of 0.1 M� is not a thin shell in this context because it is a major part of the
star. For this reason, Brinkworth et al. (2006) generalized the Applegate model by
splitting the star into an inner core and an outer shell, denoted by subscripts 1 and 2,
respectively, and including the back reaction of the core that arises from the angular
momentum exchange.
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The inertia momenta are calculated via

I =
2
3

∫
R2dM, (2.37)

where one integral is taken for the mass encompassed by the core and another en-
compassing the shell. An overall change in the quadrupole moment due to a change
in the angular frequencies of both the shell and the core is given by

∆Q = Q′1
[
2Ω1∆Ω1 + (∆Ω1)

2]+ Q′2
[
2Ω2∆Ω2 + (∆Ω2)

2] (2.38)

where the coefficients Q′ are given by integrals over shells of the form

Q′ =
1
9

∫ R5

GM(R)
dM, (2.39)

and M(R) is the mass inside the radius R (Brinkworth et al., 2006).
An orbital period change requires a change in the quadrupole moment which in

turn requires an angular momentum transfer of ∆J = I2∆Ω2. This leads to an energy
change of

∆E = ∆J (Ω2 −Ω1) +
1
2

(
1
I1

+
1
I2

)
(∆J)2 . (2.40)

Combining this with a stellar density profile obtained from the Lane-Emdem equa-
tion for an n = 1.5 polytrope to model the secondary star, stellar parameters of
M = 0.15 M�, R = 0.174 R� and ∆P = −0.00426 s, and assuming a differential rota-
tion of Ω2−Ω1 = 0 to obtain minimum energy, Brinkworth et al. (2006) obtained an
energy requirement of a few 1040 ergs, which is ∼10 times the energy budget of the
secondary in NN Ser obtained from L2 = 4πR2σT4

eff.
The main contribution of Brinkworth et al. (2006) model is that it includes the re-

action of the core to the angular momentum exchange between itself and the convec-
tive shell. This makes the generalized model less energetically feasible than the orig-
inal one. In the particular case of NN Ser it is then not viable to explain the eclipsing
time variations with the Applegate mechanism for this system. The Brinkworth et
al. model was further examined and systematically applied to PCEBs by Völschow
et al. (2016).

2.6 Lanza Model

The above models focus on the energetic feasibility of the mechanism rather than
trying to develop a detailed and consistent model of angular momentum transfer
and magnetic field variations.

Lanza (2005) developed a more detailed mean-field model with the basic as-
sumption that the angular velocity of a magnetically active star is a function only
of the distance from its rotation axis, thus the angular velocity is constant over cylin-
drical surfaces co-axial with the rotation axis. This is a consequence if one assumes
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the convection zone stratification to be strictly adiabatic, so the Taylor-Proudman
balance can be used1. This model enabled Lanza (2005) to establish constraints
to the amplitude and radial profile of the angular momentum variations that are
needed to explain orbital period variations in a class of close binaries known as
RS Canum Venaticorum (RS CVn), which present a typical relative amplitude of
∆P/P ∼ (1− 3)× 10−5 and time-scales of about 30-50 yr (Lanza and Rodonò, 2004).

The model is as follows. A cylindrical polar coordinate system (s, z, φ) is adopted,
with s the distance from the ẑ axis, z the coordinate along the rotation axis, and φ the
azimuthal coordinate. A mean-field description implies that a Reynolds decompo-
sition is made, so for the case of the velocity field V it can then be written as

V = v + v′, (2.41)

where v is the mean velocity and v′ the velocity fluctuations with respect to the mean
value at a given point and time. The anelastic approximation is adopted2, and as the
convection zone is strictly adiabatic, the energy equation reduces to the constancy
of the specific entropy, so only the mass continuity equation and the equation of
angular momentum conservation need to be considered. Lanza (2005) worked on
solving the angular momentum equation in the form

C(s)〈ρ〉s2 ∂ω

∂t
− ∂

∂s

[
C(s)s2〈ηt〉

∂ω

∂s

]
=

∂

∂s

{
C(s)

[
s
µ̃

(
〈BsBφ〉+ 〈Msφ〉

)
− s〈Λsφ〉

]}
,

(2.42)
where terms in 〈·〉 are averages of the quantity over the lateral surface of the cylinder
of radius s co-axial with the rotation axis ẑ, so for a generic function f it is written as

〈 f 〉 ≡
∫ 2π

0

∫ √R2−s2

−
√

R2−s2
s f (s, z, φ)dzdφ, (2.43)

R is the radius of the star, C(s) = 4πs
√

R2 − s2 is the lateral surface area of the
cylinder, ρ is the density, ω(s, t) ≡ vφ(s, t)/s is the angular velocity, ηt is the turbu-
lent dynamical viscosity, µ̃ is the magnetic permeability, Bs and Bφ are the s and φ

component of the magnetic field, Msφ = B′sB′φ is the Maxwell stress tensor with the
overline denoting averaging, and Λsφ = ρv′sv′φ the turbulent Reynolds stress tensor.
To solve Eq. 2.42, the stress-free boundary condition is applied, i.e.(

∂ω

∂s

)
s1,s2

= 0, (2.44)

so there is no angular momentum flux outside the domain [s1, s2], thus ensuring
angular momentum conservation.

1The Taylor-Proudman theorem states that if there is a balance between the Coriolis force, pressure
gradients, and buoyancy forces in a compressible medium, then the angular velocity is constant along
cylindrical surfaces co-axial with the rotation axis.

2The anelastic approximation filters out acoustic waves by eliminating the temporal derivative of
the density perturbation in the mass conservation equation.
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The application of this model to RS CVn systems led Lanza (2005) to reject the
Applegate hypothesis because the required angular velocity variations are one or
two orders of magnitude larger than the upper limits set by observations and the
mechanical energy dissipated in the turbulent convection zone during one cycle of
the modulation exceeds that supplied by the stellar luminosity.

Lanza (2006) extended his previous model to a more general one where the angu-
lar velocity depends on both radius and latitude. A spherical polar coordinate sys-
tem is adopted (r, θ, φ), where r is the distance from the origin placed at the centre
of the star, θ is the colatitude measured from the North Pole, and φ is the azimuthal
angle. In the model, all variables do not depend on φ. The Reynolds decomposition
is used, and the mean velocity field is assumed to be arising from stellar rotation
v = (0, 0, vφ) where vφ = vφ(r, θ, φ). The density fluctuations are neglected and φ

is assumed to depend only on r. In this case ω ≡ vφ/(r sin θ), and Eq. 2.42 can be
recasted as

∂ω

∂t
− 1

ρr4
∂

∂r

(
r4ηt

∂ω

∂r

)
− ηt

ρr4
1

(1− µ2)

∂

∂µ

[
(1− µ2)2 ∂ω

∂µ

]
= S, (2.45)

where ηt = ηt(t), µ ≡ cos θ, and S = S(r, µ, t) is a source term given by

S = − ∇ · τ
ρr2(1− µ2)

, (2.46)

and τ is a vector whose components are

τi = r sin θ

[
Λiφ +

1
µ̃
(BiBφ + Miφ)

]
. (2.47)

By applying the stress-free boundary condition, i.e.(
∂ω

∂r

)
rb,R

= 0, (2.48)

Lanza (2006) worked on solving Eq. 2.45 and applied the model to a typical active
component in a RS CVn system, and the author concluded that the results found in
Lanza (2005) are confirmed with the extension of an angular velocity dependence on
both radius and colatitude. This means the Applegate mechanism is insufficient to
explain the eclipsing time variations observed on RS CVn binaries.

However, Lanza (2006) did not apply his model to other systems like PCEBs so
this question remained open.

2.7 Völschow et al. (2018) model

Völschow et al. (2018) extended the Lanza (2006) model by assuming a time-dependent
magnetic field, and velocity and magnetics field fluctuations in the convective zone.
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FIGURE 2.4: Period variation amplitude as a function of secondary
stellar mass. The peak coincides with the transition from partially- to

fully-convective stars. Figure from Völschow et al. (2018)

The authors also considered superposition of angular momentum redistribution modes
and applied the model to a sample of stars with different masses.

A change in the quadrupole moment ∆Q is related to a variation of the quadrupole
moment potential ∆Φ12 via

∆Q = −R3∆Φ12(r)
3G

. (2.49)

Furthermore, ∆Φ12 depends upon the radial eigenfunctions (see Völschow et al.,
2018). The model was presented with special focus on the system HR1099, for which
they found that if the observed period variations are energetically and mechanically
feasible the expected activity cycle would be 70 yr. This contrasts significantly with
the magnetic activity period of 14.8 years found by Perdelwitz et al. (2018).

However, an important result is presented in one of their figures and is shown
here as Figure 2.4. By assuming typical PCEB parameters, namely abin = 1R�
and Mwhite dwarf = 0.5M�, magnetic and velocity fields fluctuations of the order of
10%, and with secondary masses between 0.1 M� and 0.7 M�, the authors found a
peak of ∆P/P as a function of mass right at the transition from partially- to fully-
convective stars (i.e. at 0.35 M�). This is attributed to the fact that when the radiative
zone appears, the convective zone bottom boundary is pushed towards the radial
direction, so the mass and angular momentum redistribution process zones are re-
duced as they are constrained to the convective region (Völschow et al., 2018). This
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peak is of the order of ∼ 6× 10−8 and is lower than the values from observations
(10−7 − 10−6).

Still, the chosen values of the fluctuations are somewhat conservative just like the
magnetic field strength. The authors close their study by saying that PCEBs with the
aforementioned parameters are the ideal Applegate candidates, but further studies
are needed to draw stronger conclusions.
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Chapter 3

Codes

The thesis work presented here consists of two parts. The first uses the MESA CODE,
and the second uses the PENCIL CODE. Here I will briefly introduce the two of them,
also explaining the setup I worked with.

3.1 MESA code

The MESA CODE1 (Paxton et al., 2011) is an open source 1D stellar evolution code
parallelized with OpenMP. It implements the stellar structure and evolution equa-
tions. It is highly modular with a wide range of applications. In particular, the
MESA STAR module solves the fully coupled structure and composition equations
simultaneously. With this module one can follow the evolution of a single star
throughout the evolutionary track.

Among the particularities of the MESA CODE is that it includes PGSTAR, a pro-
gram for visualizing plots on the fly. For example one can follow the evolutionary
path of the star while the code is running without having to manually make the plot.
One can also visualize radial profiles with this tool.

3.1.1 Files in the simulation directory

The files star_job and controls are the ones that control the simulation. The first one
is to specify parameters like stopping conditions, nuclear reactions, etc. The latter
controls the physical parameters such as the ones needed to implement the mixing
length theory, rotation, equation of state, etc.

1http://mesa.sourceforge.net/
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3.1.2 The Equations

MESA solves the stellar structure equations, namely the momentum equation, mass
conservation, energy conservation, and energy conservation, which respectively are

dP
dr

= −GMρ

r2 , (3.1)

dM
dr

= 4πr2ρ, (3.2)

dL
dr

= 4πr2ρε, (3.3)

dT
dr

= − 3κρLr

64πσr2T3 , (3.4)

where P is pressure, r is the radius, G is the gravitational constant, ρ is the density,
M is the mass, L is the luminosity, ε = ε(ρ, T, µ) is the nuclear energy generation rate
(with µ the molecular weight), T is the temperature, κ = κ(ρ, T, µ) is the opacity, and
σ is the Stefan-Bolzmann constant. Equation (3.4) is only appropriate where there is
radiative energy transport. For convection, this equation is replaced by

dT
dr

=

(
1− 1

γ

)
T
P

dP
dr

, (3.5)

where γ = cp/cv is the adiabatic index. An equation of state must also be specified,
adding a fifth equation. Finally, a nuclear reaction network must also be provided.
The mixing length theory of convection is used to treat convection.

3.1.3 The setup

In the work Navarrete et al. (2018) we have started with the very low mass test-suite.
We used the proton-proton reaction chain, changed the rotation parameter imple-
mented as the fraction between stellar to critical rotation velocities, and adjusted the
mass.

3.2 Pencil Code

The PENCIL CODE2 (Brandenburg and Dobler, 2002; Brandenburg, 2003) is a finite-
difference code written in Fortran 95. It implements a sixth-order spatial derivative
and third-order Runge-Kutta time integrator scheme, which makes the code partic-
ularly useful for studying weakly compressible turbulent flows. The PENCIL CODE

is highly modular, including self-gravity, chemical reactions, magnetic fields, etc.,
which can be easily switched on or off depending on the physical problem of inter-
est. The Message passing interface (MPI) is used to implement parallelization.

2http://pencil-code.nordita.org/
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The first and second derivatives of a field f can be written, in a centered finite
difference of 6th order, as

f ′i =
1

60 δx
(− fi−3 + 9 fi−2 − 45 fi−1 + 45 fi+1 − 9 fi+2 + fi+3) ,

f ′′i =
1

180 δx2 (2 fi−3 − 27 fi−2 + 270 fi−1 − 490 fi + 270 fi+1 − 27 fi+2 + 2 fi+3) .

For the timestepping, a high-order scheme is implemented in order to reduce
amplitude errors and to allow longer time steps. This time step is a Runge-Kutta
scheme (Williamson, 1980) named RK-2N, where the “2N" stands its memory con-
sumption of two chunks.

The time step is specified by the Courant time step given as

δt = min
(

cδt
δxmin

Umax
, cδt,v

δx2
min

Dmax
, cδt,s

1
Hmax

)
, (3.6)

where

δxmin = min(δx, δy, δz), (3.7)

Umax = max
(
|u|+

√
c2

s + v2
A

)
, (3.8)

Dmax = max(ν, γχ, η, D), (3.9)

Hmax = max

(
2νS2 + ζshock(∇ · u)2 + ...

cvT

)
, (3.10)

where u is the velocity of the flow, cs and vA are the sound and Alfvén speeds, ν is the
kinematic viscosity, χ the thermal diffusivity, γ the adiabatic index, η the magnetic
diffusivity, D the passive scalar diffusivity, S is the rate of strain tensor (defined in
Equation 3.18), and ζshock is the shock viscosity.

3.2.1 Modularity

All run directories contain the file “$RUN_DIR/src/Makefile.local” where modules
are to be chosen. For example

MPICOMM = mpicomm

HYDRO = hydro
DENSITY = densi ty
ENTROPY = entropy
MAGNETIC = magnetic
RADIATION = noradia t ion

EOS = eos_ idea lgas
GRAVITY = gravi ty_s imple
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The first line tells the code that we are going to use MPI communication. The 2nd
to 6th lines specify that we are going to use the modules of hydrodynamics, density,
entropy, magnetic fields, and no radiation, while the 7th and 8th lines say we are
applying an ideal gas equation of state and simple gravity modules. This file is to be
processed by make.

3.2.2 Files in the simulation directory

Initial and boundary conditions are set in the file start.in. In run.in the runtime pa-
rameters are set, like timestepping and file-storing conditions.

To check how the evolution of the simulation is going one can edit the file print.in
and add, for example, the lines it, t, brms, and urms. This will print the quantities
timestep number, time unit, rms magnetic field and velocity, respectively, every it1
timesteps (which is specified in run.in).

Both are Fortran namelists.

3.2.3 Snapshots, slices, and averages

A snapshot refers to a file, called var.dat in the case of the current snapshot or VARN
for a permanent snapshot, containing all the physical quantities necessary to restart a
simulation. In run.in the parameter isav specifies the number of time units between
the writing of the first, while dsnap controls the frequency of the latter.

Slice files (or video files) contain a series of values in a given plane. For example
one might be interested in studying the magnetic field evolution at the star surface.
In order to do so, the parameter dvid needs to be set to control the storing frequency
(in code time units) of the slice. slice_position determines the position where the slice
is taken, e.g. the combination of slice_position = ’s’ together with xtop_slice = 0.98
and ytop_slice = 1.57 will tell the code to take the slices in the surface of a sphere
located at r = 0.98R, where R is the radius of the star.

Averages can be one or two dimensional, and can be taken on the x, y, and z
directions, or all three planes. The quantities for which the averages are to be taken
are specified in e.g. yzaver.in. In this case the quantities are averaged over the y and
z directions and it will depend on the remaining one, this case being x.

3.2.4 The Model

The model we used in Chapter 5 is the same as in Käpylä et al. (2013) and is repro-
duced here for completeness. The computational domain is spherical but without
the poles, which allows to reach higher spatial resolutions but at the cost of omitting
connecting flows across the poles and introducing artificial boundaries at both poles.
The domain (r, θ, φ) denotes radial, colatitude, and longitude directions. The radius
extends from 0.7 R to 1.0 R, θ goes from π/12 to 11π/12, and φ from 0 to 2π. The
compressible magneto-hydrodynamic equations are solved in this domain, i.e.
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∂A
∂t

= u× B− µ0ηJ, (3.11)

D ln ρ

Dt
= −∇ · u, (3.12)

Du
Dt

= g − 2Ω0 × u +
1
ρ
(J × B−∇p +∇ · 2νρS) , (3.13)

T
Ds
Dt

=
1
ρ

{
−∇ ·

(
Frad + FSGS

)
+ µ0ηJ2

}
+ 2νS2. (3.14)

Here, A is the magnetic vector potential, u and B = ∇ × A are the velocity and
magnetic field, J = µ−1

0 ∇× B is the current density with µ0 being the vacuum per-
meability. D/Dt = ∂/∂t + u · ∇ is the convective derivative, ρ is the density, ν is the
kinematic viscosity, η is the magnetic diffusivity,

Frad = −K∇T, (3.15)

and
FSGS = −χSGSρT∇s, (3.16)

are the radiative and subgrid scale (SGS) fluxes. The first accounts for the flux com-
ing from the radiative core and the latter is added to stabilize the scheme and to
reduce the radiative background flux. K and χSGS are the radiative and turbulent
head conductivities. The last one represents the unresolved convective transport of
heat. s is the specific entropy, p is the pressure, and T is temperature. Furthermore,
the system of equations 3.11 - 3.14 is closed by assuming an ideal gas law,

p = (γ− 1)ρe, (3.17)

where γ = cP/cV = 5/3 is the ratio of specific heats at constant pressure and vol-
ume, and e = cV T is the specific internal energy. S is the rate of strain tensor and is
given by

Sij =
1
2
(ui;j + uj,i)−

1
3

δij∇ · u, (3.18)

where semicolons denote covariant differentiation. g = −GMr̂/r2 is the gravita-
tional acceleration where G is the gravitational constant, M is the stellar mass, and r̂
is the radial unit vector. The stellar rotation vector is given by Ω0 = (cos θ,− sin θ, 0)Ω0.
Note that the centrifugal force as been omitted in the Navier-Stokes equations (3.13)
because the increased luminosity in the model increases the centrifugal force, which
is of the same order as gravity, thus significantly altering the hydrostatic balance
(Käpylä et al., 2013).
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3.2.5 Initial and Boundary Conditions

The initial state is isentropic with a temperature gradient given by

∂T
∂r

= − GM/r2

cV(γ− 1)(nad + 1)
, (3.19)

where the polytropic index is

n = 2.5
(

r
r0

)−15

− 1, (3.20)

and takes the values of n = nad = 1.5 at the bottom and −1 at the top. This choice is
made to ensure that the energy flux at the bottom is the only responsible for supply-
ing energy to the system.

The fixed values that define a simulation are (i) the energy flux at the bottom,

Fb = −K
(

∂T
∂r

) ∣∣∣
r=r0

, (3.21)

where K = (n + 1)K0 is the radiative conductivity and K0 a constant (Käpylä et al.,
2013), (ii) the angular velocity Ω0, (iii) viscosity ν, (iv) magnetic diffusivity η. and
(v) turbulent heat conductivity χSGS.

The velocity and magnetic fields are initialized with a small-scale low amplitude
Gaussian noise.

Radial boundary

The radial boundaries are assumed to be impenetrable and stress-free for both bound-
aries, i.e at r = r0, R:

ur = 0, (3.22)

∂uθ

∂r
=

uθ

r
, (3.23)

∂uφ

∂r
=

uφ

r
. (3.24)

The bottom (r = r0 = 0.7R) is assumed to be a perfect conductor

∂Ar

∂r
= Aθ = Aφ = 0, (3.25)

and at the top (r = R) the magnetic field only has a radial component

Ar = 0, (3.26)

∂Aθ

∂r
= −Aθ

r
, (3.27)

∂Aφ

∂r
= −

Aφ

r
. (3.28)
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The value of ∂T/∂r is fixed at the bottom and the upper radial boundary has a black
body condition

σT4 = −K∇rT − χSGSρT∇rs, (3.29)

where σ is a modified value of the Stefan-Bolzmann constant (see Käpylä et al., 2013).

Latitudinal boundary

The latitudinal boundary is also assumed to be stress-free at θ = 15°, 165°

∂ur

∂θ
= uθ = 0, (3.30)

∂uφ

∂θ
= uφ cot θ, (3.31)

and a perfect conductor

Ar =
∂Aθ

∂θ
= Aφ = 0. (3.32)

Density and entropy are assumed to have zero first derivative on both boundaries,
thus suppressing heat fluxes through them.

3.2.6 Re-scaling of Qxx

We have to rescale the density fluctuations in the simulations. This is because sim-
ulations of stellar magneto-convection with a fully compressible formulation have
an increased luminosity to ensure the Mach number [defined in the RHS of Equa-
tion( 3.37)] is lower than unity, particularly important when the density stratification
is strong (Käpylä et al., 2013). Realistic energy fluxes are not possible because this
would imply extremely short timesteps. So the energetic flux coming from the bot-
tom is much higher than in the Sun. The ratio of fluxes Fr is

Fr =
Fsimulation

F�
= 807430. (3.33)

A variation in pressure can be written as

∆p =

(
∂p
∂ρ

)
s

∆ρ, (3.34)

where the subindex s indicates constant entropy. The above derivative equals the
square of the sound speed cs. Also, variations in pressure scale as

∆p ∼ ρu2, (3.35)

where u is the velocity vector. Then,

∆p = c2
s ∆ρ. (3.36)
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We can thus rewrite the variation in density ρ′ = 1
ρ ∆ρ as

ρ′ ∼ u2

c2
s
= Ma2. (3.37)

Here Ma is the Mach number, which scales as

Ma ∼ F1/3
r , (3.38)

thus,
ρ′ ∼ F2/3

r . (3.39)

All of the numbers given in Sections 5.2.4 and 5.3.4 are presented by doing this
rescaling, which is a factor of 8074302/3 = 8671, i.e.

Qxx =
1

8671
Qxx,sim, (3.40)

where the subindex ’sim’ denotes the crude quadrupole moment obtained in the
simulations.
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Chapter 4

Applegate mechanism in
post-common-envelope binaries:
Investigating the role of rotation

In this chapter we first use the Modules for Experiments in Stellar Astrophysics (MESA)
code to simulate the MS star for a sample of PCEBs. The simulations include rotation.
A simple analytical dynamo model is then applied, which relates activity cycle to rotation
period. This, together with the Applegate model provided by Völschow et al. (2016) and
implemented in the publicly available Applegate Calculator1, makes us conclude that the
PCEBs with higher rotation-to-critical-rotation ratio are the most likely to have their O-C
diagram shape explained via the Applegate mechanism.

This work led to the publication of the paper Navarrete et al. (2018).

4.1 Simulations and Calculations

We use the MESA code (Paxton et al., 2011) to simulate the secondary star for every
system under consideration (see table 4.1)

In particular, we use the module MESA star, which is a one dimensional stellar
evolution code to evolve a single star. Three main input parameters are of interest
for our simulations

1. Stellar mass. It is kept constant during the run, and equal to the mass of the
convective star in each system.

2. Rotation. Set as the fraction ΩZAMS/Ωcrit, where Ωcrit =
√

GM/R3 is the criti-
cal angular velocity. If this limit is exceeded, then the star can no longer sustain
hydrostatic equilibrium. ΩZAMS is the angular velocity of the star at the zero
age main sequence. This ratio is kept fixed during the run.

3. Maximum age. The simulation is stopped when the star reaches its corre-
sponding derived age.

1http://theory-starformation-group.cl/applegate/index.php
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Investigating the role of rotation

TABLE 4.1: Main stellar parameters together with the relative rotation
of the secondary star. Different radii Rd are calculated for different γ
in Eq. 4.1 for which the rotation period Prot is equal to the calculated
activity period Pcycle. The value γ = 0.86 is that found for the Sun.

Source: own work (Navarrete et al., 2018).

System Msec/M� Rsec/R� Ω/Ωcrit Rd/R
γ = 0.7 γ = 0.86 γ = 1.0

RX J2130.6+4710 0.555 0.534 0.116 0.67 0.86 0.92
HS 0705+6700 0.134 0.186 0.265 0.87 0.95 0.97

HW Vir 0.142 0.175 0.192 0.60 0.89 0.95
NN Ser 0.111 0.149 0.154 0.81 0.96 0.97

NSVS 14256825 0.109 0.162 0.208 0.88 0.94 0.98
NY Vir 0.15 0.14 0.155 0.88 0.96 0.98
HU Aqr 0.18 0.22 0.324 0.79 0.93 0.96
QS Vir 0.43 0.42 0.318 0.80 0.92 0.96
RR Cae 0.183 0.209 0.085 0.80 0.92 0.96
UZ For 0.14 0.177 0.262 0.82 0.94 0.97
DP Leo 0.1 0.134 0.288 0.78 0.93 0.97

V471 Tau 0.93 0.96 0.216 - 0.78 0.87

For every run we choose the ’ML1’ mixing length implementation, with the free
parameter αMLT = 1.5 and a basic reaction network. Metallicity is chosen to be equal
to the Solar metallicity. For stars with masses lower than 0.14 M� the ’very low
mass’ test-suite available in MESA is used as a guide to properly evolve them. In the
remaining of this chapter, all derived quantities described are obtained from the last
written MESA profile which corresponds to the age of the binary.

4.2 Analytical dynamo models

The MESA models are used as input for the stellar structure to explore the expec-
tations based on simple dynamo models. We use here a similar approach to that of
Schleicher and Mennickent (2017) and Perdelwitz et al. (2017).

The relation between magnetic activity cycle Pcycle and rotation period Prot is
given by (Soon, Baliunas, and Zhang, 1993; Baliunas et al., 1996)

Pcycle = Dγ Prot , (4.1)

where D is the dynamo number, and γ is a parameter that depends upon the activity
level of the star (Dubé and Charbonneau, 2013). As PCEBs are close binaries, we can
safely assume the secondary to be tidally locked (Zahn, 1989; Zahn and Bouchet,
1989) meaning that Prot is equal to the binary period. D is further related to the
Rossby number Ro via D =Ro−2, where Ro is refined as the ratio between the rota-
tion period and the convective turnover time Ro = Prot/τc. Following (Soker, 2000),
we can calculate Ro as
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Ro = 9
(

vc

10 km/s

)(
Hp

40 R�

)−1 ( ω

0.1 ωKep

)−1 (PKep

yr

)
, (4.2)

where vc is the convective velocity, Hp is the pressure scale height, ω and ωKep are the
angular and keplerian angular velocity, respectively. Finally, PKep is the Keplerian
orbital period. The convective velocity and pressure scale height can be obtained
from the MESA simulations.

To obtain the expected cycle period with equation 4.1 we must first calculate Ro
to then get D. We also need to obtain a value for γ. To do the latter, we run a
simulation for the Sun. Then use the relevant stellar parameters at r = 0.7R�, as
the solar dynamo is expected to be relevant at this position, together with the fact
that the magnetic cycle is equal to 22 year. With this, we obtain γ = 0.86. The Sun
is a slow rotator, with a rotation period at the equator of 24.5 days, and it has a
weak magnetic field of about ∼ 1 G. On the other hand, even single M dwarfs (dM)
have rotation periods of less than ten days (Somers et al., 2017), and in PCEBs their
rotation periods are less than three hours, with field strengths on the order of a few
kG (Johns-Krull and Valenti, 1996). This means that the actual value of γ may be
different for the case of dM in PCEBs. For this reason we also explore γ = 0.7 and
γ = 1.0 (see table 4.1). For a given value of γ, it is then possible to calculate the
fraction of the stellar radius Rd/R where the predicted activity period is equal to the
observed one.

4.3 The Applegate mechanism

Given an idea of the radius where the dynamo operates inside the star, it is also
important to find out whether it is energetically feasible to produce the observed
eclipsing time variations via magnetic activity. In this section I will briefly introduce
the formalism we employ. The reader is referred to Völschow et al. (2016) and to
the Applegate calculator2. The latter allows us to calculate the required energy ∆E
as a fraction of the available energy in the magnetically active star, Esec, to drive the
corresponding change of the quadrupole moment. The equation is given as

∆E
Esec

= k1
MsecR2

sec

P2
binPmodLsec

1±

√
1− k2G

a2
binMsecP2

bin
R5

sec

∆P
Pbin

2

, (4.3)

where Pbin, abin, and ∆P/Pbin are the orbital period, semi-major axis, and observed
relative change of the orbital period during one cycle of the binary, respectively; Pmod

is the observed modulation period of the binary; Msec, Rsec, Lsec, Tsec are the mass,
radius, luminosity, and temperature of the magnetically active star, respectively. The

2http://theory-starformation-group.cl/applegate/
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k1 and k2 parameters are defined as

k1 =
4π2

5
λ(γ + 1)(ξ3 − ξ−2)

1 + λ(ξ3 − 1)
( f − γ)2

(γ2/λ + f )2 , (4.4)

k2 =
15

36π2
ξ5

λ

(γ/λ + f )
( f − γ)2 . (4.5)

Both k1 and k2 depend on the stellar structure, particularly on the density. The first
one regulates the overall magnitude of the required energy to drive quasi-periodic
period variations. The latter affects the separation between low- and high-energy
solutions for the Applegate mechanism. Two mean densities enter the calculation
of k1 and k2: ρin from the bottom of the star to Rd, and ρout from Rd to the radius of
the star Rstar. The model assumes interchange of angular momentum between these
two zones. The additional parameters are defined as λ = ρout/ρin and ξ = Rstar/Rd.

An important parameter is r/Rcore, which is the radial position that separates the
core and shell between which angular momentum is exchanged. As a first approach,
we assumed that it corresponds to the scale where the dynamo model produces
an activity cycle that corresponds to the observed period. We also discuss other
choices and explore their implications. Note that k1 and k2 are explicitly evaluated
based on the stellar profiles obtained from MESA. As also discussed by Lanza (2006),
the angular velocity variations in the radiative core are confined to a thin layer, so
its contribution to the changes on the quadrupole moment are negligible. So we
have chosen to assume that the interchange of angular momentum is confined to
the convective zone, thus neglecting any contribution of the radiative cores found
in the secondaries of QS Vir and V471 Tau. The latter was taken into account when
calculating the mean density in the core and thus in the resulting stellar structure
parameters.

4.4 Results

In the following, I will present the results from our stellar structure calculations,
focusing initially on the resulting timescales for the magnetic activity cycles, and
subsequently assessing the implication for the feasibility of the Applegate mecha-
nism.

4.4.1 Stellar structure and dynamo timescales

To illustrate the stellar structure calculations, Figure 4.1 shows the convection veloc-
ity and density profile for DP Leo as simulated with MESA. As we are considering
rather rapidly rotating stars as a result of tidal locking, we have explored the impact
of varying the rotational velocity of the star, which is shown in figure 4.1, but fund
overall still moderate effects, with density changes of at most 20% even in strong ro-
tating scenarios. Figure 4.2 shows the dynamo number D calculated as a function of
radius for DP Leo based on equation 4.2 together with the relation D = Ro−2. Using
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FIGURE 4.1: Density profile (top) and convection velocity profile (bot-
tom) for DP Leo simulated by MESA for different rotation velocities.
The ratio 1.0 Ω/Ωcrit corresponds to the observed one and is ∼ 0.288

for DP Leo. Source: own work (Navarrete et al., 2018).
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γ = 0.86 and Prot = Pbinary we then calculate Pcycle using equation 4.1. Figure 4.2 also
shows the normalized period as a function of the radius. The horizontal gray line
corresponds to a ratio of one, and the intersection thus marks the point where the
calculated activity period equals the observed modulation period. This intersection
point provides a first estimate for the effective radius that produces the observed
modulation period.

This same analysis was pursued for the 12 PCEBs provided in the sample by
Völschow et al. (2016), and we summarize the obtained results together with the
main parameters of the secondary star in table 4.1. In particular, we provide the
calculated radii Rd/R for γ = 0.7, 0.86, and 1.0. Generally, we find a reduced ratio
of Rd/R when lowering γ. Specifically, for γ = 0.86 they range between 0.78 and
0.97, and for γ = 1.0 the ratios range between 0.87 and 0.98. While the correct value
of γ is not clear, we nevertheless note the general trend that the dynamo appears
to be driven within the outer parts of the star, corresponding to a radius of at least
60% of the stellar radius. Only in the case of V471 Tau, we have to note that the
observed activity cycle cannot be reproduced for γ = 0.7 or less, providing a stronger
constraint on dynamo models for that system.

4.4.2 Feasibility of the Applegate mechanism

We now assess whether the Applegate mechanism in these systems is capable of
driving the observed eclipsing time variations. For this purpose, the ratio of re-
quired to available energy is calculated using Eq. 4.3. The results of the calculation
are summarized in table 4.2 for different scenarios. Note that the results in Table 4.2
are different from those reported in the Völschow et al. (2016) two zone model (their
Table 4). While they determined the core radius based on radial density profiles
obtained with Evolve ZAMS3 that were rescaled to the stellar radius, we have em-
ployed here the radial profiles obtained via MESA star. More importantly, we varied
the position that is considered as the separation point between the core and the shell,
and we also explored the effect of choosing this position according to the radius
where the modulation period is reproduced by our dynamo model. The Völschow
et al. (2016) results are re-obtained by choosing the separation of the core and the
shell to be at r/R ∼ 0.88. To give an idea of the uncertainties in the energetics, we
provide error bars on ∆E/E in the case of RX J2130.6+4710 in Table 4.2, which are
evaluated adopting the upper and lower limits for secondary mass and radius, re-
spectively. The latter shows that the values of ∆E/E should be taken as indicative,
but come with uncertainties of about a factor of two. A more accurate determination
of stellar parameters would certainly help to reduce these errors, though we caution
the reader that intrinsic uncertainties are also present within the two-zone approxi-
mation of the model, and further theoretical developments will be necessary as well.

3http://www.astro.wisc.edu/ townsend/static.php?ref=ez-web
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TABLE 4.2: Results for the energy required to drive the Applegate
mechanism for all systems considered in this work. Rd/R denotes
the core-shell transition radius. ∆E/Esec is the necessary energy to
drive the change in the quadrupole moment to give raise to the ob-
served period, as a fraction of the available energy, calculated con-
sidering different shells including the point at which the observed
period matches the calculated, i.e., Rd/R. Results with ∆E/Esec < 1
are highlighted in bold. RX J2130.6+4710 is presented with errors, as
mentioned in section 4.4.2. Source: own work (Navarrete et al., 2018).

.
System ∆E/Esec

Rd/R(γ = 0.86) Rd/R = 0.85 Rd/R = 0.75 Rd/R = 0.65
RX J2130.6+4710 4.2−2.3

+7.6 3.6−1.8
+5.4 1.8−0.96

+2.5 1.7−0.93
+2.3

HS 0705+6700 1354 56 22 93
HW Vir 93 43 15 16
NN Ser - 24 9.5 6.7

NSVS 14256825 500.5 57 21 13
NY Vir - 54 19 12
HU Aqr 6.3 0.88 0.41 0.25
QS Vir 0.88 0.22 0.097 0.078
RR Cae 237.3 34 11 6.8
UZ For 12 1.5 0.56 0.34
DP Leo 0.98 0.21 0.081 0.049

V471 Tau 0.039 0.061 0.036 -

Particularly in the case of RX J2130.6+4710, we note that ∆E/E may still be less than
one if the error are taken into account.

If we first focus on our reference case, this is γ = 0.86, and adopt the radius Rd

as the radius that separates the shell from the core, we find that in three systems,
namely QS Vir, DP Leo, and V471 Tau, the Applegate mechanism is energetically
feasible; in two of them (QS Vir and DP Leo) though only marginally so. The system
RX J2130.6+4710 in principle yields values ∆E/E > 1. Considering the error bars,
it may however be consistent still with the scenarios where Applegate is marginally
feasible. We also note that, in case of RX J2130.64710, there is only a lower limit
available for the modulation period, translating into an upper limit on ∆E/E. As
we noted above, it is not clear that the normalization to γ = 0.86 is appropriate for
these type of systems, or if even a constant γ is justified, given the different types of
secondary stars in the sample. We thus explore how the energetic feasibility of our
results depends on the adopted ratio Rcore/R, exploring ratios of 0.85, 0.75, and 0.65,
which lie within the plausible range determined in the previous subsection. In par-
ticular, we find that the required energy at least initially decreases when adopting a
larger shell, only for some systems it starts increasing again at Rcore/R = 0.65. Ex-
ploring the results in this parameter space, we then find that in five systems, namely
HU Aqr, QS Vir, UZ For, DP Leo and V471 Tau, the Applegate mechanism is poten-
tially feasible, with ratios ∆E/E ranging from 0.036 to 0.98.

Figure 4.3 shows ∆E/E as a function of r/R. The curves end when there is no
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longer a physically meaningful solution, that is, when the required change in the an-
gular momentum violates angular momentum conservation within the star. For all
systems, we see that the required energy fraction follows an approximately parabolic
shape with a minimum near Rcore/R ∼ 0.6. While all curves are of similar shape and
share the same asymptotic behavior, the magnitude or normalization varies signifi-
cantly, and the systems can be roughly divided into two groups. In particular, there
is a first group of six systems with the minimum ∆E/E ∼ 60− 300, where the Ap-
plegate mechanism is not feasible. Another group consists of the systems identified
above, with minimum ∆E/E ∼ 0.03 − 0.9, where the mechanism becomes feasible.
While the gap between these groups appears striking within the figure and corre-
sponds to roughly two orders of magnitudes in ∆E/E, we cannot entirely exclude in
full that the latter is due to the relatively small number of systems in our sample.

While RX J2130-6+4710 appears to lie somewhat in between the gap, though to-
wards the lower end, it is important to note that the values of ∆E/E here represent
only an upper limit, and better constraints on the modulation period will be neces-
sary to evaluate whether the systems lies within the gap, or if it is part of the lower
group. Now, within the error bars, the system is now already consistent with poten-
tially driving the Applegate mechanism.

In order to determine if there is a physical origin of the bimodality that is indi-
cated in the plot, we examine whether the minimum value of ∆E/E depends criti-
cally on relevant physical parameters of the system. Let us introduce the parameters

α = k1
MsecR2

sec

P2
binPmodLsec

(4.6)

and

β = k2G
a2

binMsecP2
bin

R5
sec

∆P
Pbin

. (4.7)

Figure 4.4 shows ∆E/E as a function of both parameters. While ∆E/E shows no
correlation with α, it is clearly recognizable that the lowest values of ∆E/E can be
found for the lowest values of β with a clear trend, with the remaining scatter being
introduced by the dependence on α. The latter provides a first indication that β is
most relevant in determining the feasibility of the Applegate mechanism.

While α shows no correlation with ∆E/E, in Figure 4.5 one can see a clear depen-
dence of ∆E/E on β, with the remaining scatter being due to the dependence on α.
Consider the ratio of binary period vs critical period of the secondary star, where the
critical period is defined through the break-up velocity when the star reaches critical
rotation, i.e.

P2
crit = 4π2 R3

star
GMstar

, (4.8)

thus (
Pbinary

Pcritic

)2

=
Msec

Mtotal

(
abin

Rsec

)3

. (4.9)
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Under the assumption of tidal locking, which is highly plausible within these sys-
tems, this ratio thus describes the ratio of actual over critical rotation period of the
secondary star. Figure 4.5 shows how minimum ∆E/E depends on this quantity.
In this case, the correlation is less clear as the correlation with β, but low ratios
of Pbinary/Pcritic still yield the lowest ratios of ∆E/E, thus implying that high rota-
tion rates (relatives to breakup) are beneficial to drive the Applegate mechanism.
In the same figure, we also explore whether the parameter β is correlated with
Pbinary/Pcritic. Here we also find that low ratios of Pbinary/Pcritic imply low val-
ues of β, and vice versa. The latter strengthens our conclusion that rapid rotation
may play a central role in the feasibility of the Applegate mechanism in PCEBs.

In fact, one can show that

β = k2
4π2a2

bin
R2

sec

P2
bin

P2
critic

∆P
Pbin

, (4.10)

suggesting a quadratic dependence on the ratio of rotation period over critical pe-
riod. Furthermore, we note here that rapid rotation may frequently imply a short
binary period and thus also a lower value of abin, which strengthens this correla-
tion further. The remaining parameter Rsec depends primarily on the mass of the
secondary star, which is very similar in many of the PCEB systems (see Table 4.1),
and only occasionally introduces scatter when the secondary star is more massive.
Equation 4.10 can be rewritten using Eq. 4.9, leading to

β = k24π2
(

Pbin

Pcritic

)10/3 (Mtotal

Msec

)2/3 ∆P
Pbin

. (4.11)

This last equation provides evidence of a stronger dependence on the ratio of the
rotation period over critical period. It is then plausible overall that the main visible
dependence is due to rotation.

4.5 Discussion of selected system

4.5.1 HW Vir

Consisting of a primary of 0.485 M� and a secondary of 0.142 M�, this system was
first proposed to have a two-planet system by Lee et al. (2009) that was later proven
to be secularly unstable and replaced with another two-planet secularly-stable sys-
tem by Beuermann et al. (2012b). We find rather high values of ∆E/E for this system
(see Fig. 4.3), and thus HW Vir might be a good candidate to test the planetary
hypothesis using direct imaging.

4.5.2 NN Ser

This system consists of a white dwarf with a M4 companion (Parsons et al., 2010).
The planetary solutions that explain the eclipsing time variations were proven to be
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dynamically stable (Beuermann, Dreizler, and Hessman, 2013). This, together with
the recent detection of dust around NN Ser by Hardy et al. (2016) which was not
expelled from the common envelope phase, add credibility to the planetary hypoth-
esis. On the other hand, the most recent data require the subtraction of a quadratic
term from the ephemeris to obtain the planet solution (Bours et al., 2016). Based on
the calculations in this paper, we find that it is energetically difficult to explain the
observed ETVs based on the Applegate effect ones, as there are no solutions with
∆E/E < 1. However, there are solutions with ∆E/E 6 10, suggesting that relevant
fluctuations of the ETV could be induced by the Applegate mechanism, even if it is
not the entire signal.

4.5.3 HU Aqr

HU Aquarii is a system of particular interest. First discovered by Schwope, Thomas,
and Beuermann (1993), it has a strongly magnetized primary white dwarf and a
M4 secondary and it is constantly being monitored by several groups. Bours et al.
(2014) concluded that a planetary model with up to three members cannot explain
the observed ETVs as they are dynamically unstable over short periods of time.
Goździewski et al. (2015) revisited the planetary hypothesis and concluded that it
might be possible that a three-planet system is present. However, either one of these
planets must have a retrograde orbit or they should have high mutual inclinations.

In the calculations presented here. HU Aqr was found to indeed have solutions
that might trigger the Applegate mechanism, with ∆E/E ∼ 0.3. Such solutions re-
quire the dynamo to operate further in the interior of the star. The ratio of ∆E/E is
reduced compared to the value reported by Völschow et al. (2016) due to the evalu-
ation of the coefficients k1 and k2 from the stellar structure profiles.

4.5.4 QS Vir

Horner et al. (2013) performed a detailed dynamical study of the proposed planets
for QS Vir. The authors performed more than 180 thousand simulations of the pro-
posed planetary systems but found that none of them with long enough stability to
explain the eclipsing time variations. More recently, Parsons et al. (2016) used high-
resolution spectroscopy to study the magnetic activity of this PCEB and found that
the M dwarf is covered with a large number of star spots, thus indicating that it is a
very active star. We have found that the M dwarf on this system is among those with
the highest relative rotation, where the Applegate mechanism appears to be feasible
(see Table 4.2). The secondary dM star has a radiative core, which we assumed here
not to contribute to the Applegate mechanism.
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4.5.5 V471 Tau

It was predicted by Beavers, Lui, and Herczeg (1986) that a third body with a period
of ∼25 yr could exist in this system. Recently, Hardy et al. (2015) used direct imag-
ing to test the hypothesis, resulting in non-detection of the proposed brown dwarf.
Later, Vaccaro et al. (2015) analyzed the system and proposed several ways for the
third body to have avoided detection. However, Vanderbosch et al. (2017) studied
the eclipsing time variations with two independent clocks, namely the orbital period
of the binary and white dwarf spin period. They do not find the same magnitude
of variation of the O–C of the spin period as for the diagram based on the binary
period. The latter thus favors the Applegate mechanism as opposed to the presence
of a third body.

As the secondary of V471 Tau is a Sun-like star with a mass of ∼0.93 M� , it is
expected to have an αΩ-dynamo operating on the radiative-convective inter-phase.
As this star is rotating much faster than the Sun, one may expect that a strong mag-
netic field due to rapid rotation may trigger the Applegate mechanism, consistent
with our findings.

4.5.6 NSVS 14256825

For the system NSVS 14256825, the cyclic behavior of the O–C residuals was previ-
ously attributed to the presence of one or two Jupiter-like planets (Beuermann et al.,
2012a; Almeida, Jablonski, and Rodrigues, 2013; Wittenmyer, Horner, and Marshall,
2013), new data by Nasiroglu et al. (2017) revealed a systematic, quasi-sinusoidal
variation deviating from the older ephemeris by about 100 s. As the most plausible
explanation for this deviation, they propose a one-companion model to be the most
reliable explanation and propose that the Applegate mechanism is not energetically
feasible to drive the changes. We note here that while there are no solutions with
∆E/E < 1 that could explain the eclipsing time variations entirely, there are solu-
tions with ∆E/E ∼ 10, implying that magnetic activity could at least induce relevant
scatter in the observed variations.

4.5.7 RX J2130.6+4710

This PCEB consists of a red dwarf with a mass of 0.555 M� and radius 0.534 R� , and
a white dwarf of mass 0.554 M� and radius 0.0137 R� with a separation of 2–3 R�
(Maxted et al., 2004). The large O–C variations from a relatively long observational
baseline were detected by Bours et al. (2016). They identified this system to have
a lower limit for the period of the mechanism at work to be 30 yr and we adopted
this limit for our calculation together with an eclipsing time variation of 250 s. This
translates into ∆P/P = 1.6 × 10−6 . Considering the error bars, the system may
be able to drive the Applegate mechanism. In addition, if the modulation period
is greater, say 50 yr, then this would mean that ∆P/P ∼ 9× 10−7 and the system
will clearly fall bellow the line ∆E/E = 1. As noted by Bours et al. (2016), the
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observational baseline is yet too small to draw a more robust conclusion for this
system and further eclipsing observations will be crucial.

4.6 Conclusions

In this paper we have explored whether the Applegate mechanism can drive the ob-
served eclipsing time variations in a sample of 12 PCEB systems. For this purpose,
we have obtained radial profiles of the secondaries using the MESA code (Paxton et
al., 2011), and applied simple dynamo models following Soon, Baliunas, and Zhang
(1993) and Baliunas et al. (1996) to determine the radius at which the expected activ-
ity cycle matches the observed modulation period. This radius was found to depend
on the power exponent γ, but even for different choices of γ, we found that the dy-
namo can generally be expected to be driven in the outer layers, at radii Rd/R ∼ 0.6.

We subsequently explored whether the Applegate mechanism to drive the eclips-
ing time variations is also energetically feasible, employing the framework presented
by Völschow et al. (2016), which is now publicly available through the Applegate Cal-
culator. Based on this analysis, we show that the Applegate mechanism may be
energetically feasible in up to five systems, HU Aqr, QS Vir, UZ For, DP Leo and
V471 Tau. Plotting the required energy ∆E/E as a function of the assumed radius
of the core, we also find that the latter yields a characteristic shape for all systems
explored here, with a minimum at a core radius Rcore/R ∼ 0.6. The normalization of
the curves depends however on the system, which appears to be separated into two
groups, those with ∆E/E ∼ 0.03− 0.9 where the Applegate mechanism is clearly
feasible, and another group with ∆E/E ∼ 60− 300. Our current sample shows a
gap in between these groups of about two orders of magnitude in ∆E/E. It does,
however, remain to be explored whether the gap is of physical origin. In the case of
RX J2130.6+4710, whether or not it is part of the lower group, with ∆E/E < 1, or if
it indeed lies within the gap needs to be further explored. Such a determination is
currently not possible, as there is only a lower limit on its modulation period, and
observations over a longer baseline will be necessary to test this possibility.

We explore further what determines if the Applegate mechanism is feasible in a
particular system, focusing on the parameters α and β in our Applegate framework.
While the first parameter appears uncorrelated to the minimum ∆E/E, β shows clear
correlation for our sample. We also show that this correlation appears related to the
strength of rotation in the system, particularly the ratio of the rotation period of the
secondary star (which is equal to the binary period in the case of tidal locking) over
the critical breakup period of the secondary. In particular, we emphasize that all
systems with low minimum values of ∆E/E have low ratios of Pbin/Pcritic. The latter
suggests that rotation plays a relevant role in determining the feasibility of the Ap-
plegate mechanism. The effect that rapid rotation plays on the magnetic field of M
dwarfs is explored by Morgan et al. (2012) using WD+dM binaries and comparing
the activity level and strength to field dMs. The authors find that dMs have a higher
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activity fraction in the range of spectral types M0 to M7, when they are in a close
binary and it was attributed to the increment of stellar rotation in the paired dMs. In
the same study, it was also found that the activity is increased in WD+dM across all
spectral types when compared to the unpaired dM. This strengthens our main con-
clusion, namely higher rotation relative to critical rotation supports the Applegate
mechanism in PCEBs.

We also note that there may be other mechanisms that can change the quadrupole
moment of a star. A minor effect could be related to the side of the M dwarf facing
the white dwarf, which will be more deformed than the other side, and this effect
is expected to depend on the binary separation. The magnetic fields from the white
dwarfs in the systems, considered here, have been neglected so far, but it is also
straightforward to show that their expected contributions would be smaller than the
typical surface fields from M dwarfs required to drive the Applegate mechanism
(see Applegate, 1992). A generic remark, that is important to make, is that several
of the systems examined here cannot be explained under the Applegate hypothesis
(at least with the two-zone model adopted here), and it remains to be explored if
another mechanism is operating in them, or if the latter hints at a more fundamental
problem in our current understanding.

To make further progress on this topic, we encourage direct imaging attempts as
pursued by Hardy et al. (2015), particularly for cases where the presence of planets
appears plausible. In addition, other methods like radial velocity measurements
can be employed to determine independent constraints on the potential motion of
the secondary star (Oshagh, Heller, and Dreizler, 2017). The precise photometry
obtained via the Gaia satellite may further be valuable to determine if motions of
the center of mass of the systems can be confirmed in the plane of the sky. Such
independent constraints or measurements will be extremely valuable to confirm or
rule out the existence of planets.

At the same time, it will be important to probe the presence of magnetic activity
and in particular the duration of the magnetic cycle, as recently pursued for instance
by Perdelwitz et al. (2017). The latter is critical to understanding if the observed
modulation period is consistent with the activity cycle of the secondary star, and
provides an independently relevant test to probe the physics of the eclipsing time
variations. We also note here that stellar magnetism and the presence of planets are
not necessarily mutually exclusive alternatives, but may simultaneously occur. In
particular, we have identified several systems here, where we expect that magnetic
activity may not explain the observed eclipsing time variations, but include relevant
scatter in the observed eclipsing times, due to values of ∆E/E ∼ 10, corresponding
to fluctuations on the 10% level. The presence of such fluctuations may potentially
also explain that in some cases, the subtraction of approximately quadratic terms is
needed, as noted recently by Bours et al. (2016) in the case of NN Ser. They also
presented eclipsing times for a set of 67 close binaries. Besides the PCEBs from
Völschow et al. (2016) we have included RX J2130.6+4710. This is because this is
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the only new system with a long enough observational baseline to constrain the
modulation period, namely at least 30 yr, and with large O–C variations. Extending
the baselines will be important to extend the analysis presented in this paper.

We expect additional theoretical work to be necessary in the future, as the Ap-
plegate model employed here (Völschow et al., 2016), while being a significant im-
provement compared to the first version laid out by Applegate (1992), is still based
on a two-zone approximation. While some suggestions for generalizations exist
(e.g. Lanza, 2005; Lanza, 2006), the models require further exploration before ap-
plying them systematically to a larger sample of systems, and need to be linked
more strongly to the dynamo itself. We expect this to be a promising area for further
developments.
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Chapter 5

Applegate Mechanism from 3D
MHD Simulations

This chapter presents the results from the simulations performed with the PENCIL
CODE introduced in Section 3.2 together with the setup in Section 3.2.4. Based on
Navarrete et al. (In preparation).

We run two simulations with different rotation rates, namely run3x with 3 times
solar rotation, and run20x with 20 times solar rotation rate. Quantities with an over-
line indicate an average over the azimuthal angle; e.g. Br indicates an average of the
r component of B over φ and is given by

Br =

∫
Br(φ) dφ∫

dφ
. (5.1)

Other averages are presented inside angular brackets with subindexes and superindexes.
For example, 〈Br〉ki indicates an average of Br in regions denoted with i and k. The
subindex indicates the depth at which the quantity of interest is taken and the su-
perindex indicates the latitude where the average is further calculated with the fol-
lowing rules:

i = {s, m, b}, (5.2)

k = {np, eq, sp}, (5.3)

where

s = surface→ r = 0.98R, (5.4)

m = middle→ r = 0.85R, (5.5)

b = bottom→ r = 0.72R, (5.6)

and

np = north− pole 75◦ < θ < 0◦, (5.7)

eq = equator 20◦ < θ < −20◦, (5.8)

sp = south− pole 0◦ < θ < −75◦, (5.9)
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FIGURE 5.1: Density profile for run20x. Source: own work (Navarrete
et al., In preparation).

where θ is latitude. So for example, 〈Br〉eq
s indicates the average of the azimuthally-

averaged Br over 20◦ < θ < −20◦, i.e. the equator, at the surface of the computa-
tional domain.

A typical density and temperature profile is shown in Figures 5.1 and 5.2, re-
spectively, which correspond to run20x at the end of the run. The density at the
bottom is 181.8 kg m−3 and 13.6 kg m−3 at the surface. This corresponds to a density
stratification of

ρbottom

ρsurface
= 13.4. (5.10)

The density profile corresponds to an n = 1.5 polytrope (see Figure 5.1). The tem-
perature profile is shown in Figure 5.2. The temperature at the bottom is set to be
the same as the temperature at the bottom of the convective zone in the Sun, namely
T = 2× 105 K. At the surface the temperature is 1.9× 104 K.

The time-averaged rotation profile at six latitudes for run20x is shown in Figure
5.3. Overall the rotation is faster in the equator than in the poles, but between r =
0.90 and r = 0.95 we observe an increase in the rotation of the north pole (see the
cyan-dotted line in 5.3, where it becomes comparable to the rotation in the equator.
In Figure 5.4 we also show the time-averaged rotation profile for run3x. Closer to
the equator the radial variation of rotation is larger than in the case of run20x where
it doesn’t vary much with radius at low latitudes. The ratio of the rotation rate of
run20x to run3x at the surface’s equator is 6.3.

The simulations first have to go through a relaxation phase. The description that
follows corresponds to run20x but it is qualitatively similar run3x, with the only
difference being the exact timescales. On the one hand the system has to reach dy-
namo saturation, which is seen in Figure 5.5 where we plot the root-mean-squared
magnetic field for run20x. The seed magnetic field first decays very rapidly because



Chapter 5. Applegate Mechanism from 3D MHD Simulations 47

0.70 0.75 0.80 0.85 0.90 0.95 1.00
r / R

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Te
m

pe
ra

tu
re

 [1
05  K

]

FIGURE 5.2: Temperature profile for run20x. Source: own work
(Navarrete et al., In preparation).
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FIGURE 5.3: Rotation profile for run20x. Source: own work (Navar-
rete et al., In preparation).
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FIGURE 5.4: Rotation profile for run3x. Source: own work (Navarrete
et al., In preparation).

most of its magnetic energy is contained in the small scales and quickly gets dis-
sipated (Dobler, Stix, and Brandenburg, 2006). Following this the magnetic field
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FIGURE 5.5: Saturation of the dynamo. Brms grows exponentially up
to the saturation regime where the analysis is performed. Source:

own work (Navarrete et al., In preparation).

grows exponentially during the next three years, know as the kinematic stage. This
growth then becomes less violent until it reaches the saturation stage at the 22 years
mark.

The system also has to reach what is called the thermally saturated regime, which
is shown in Figure 5.6, where we plot the fraction of thermal to total energy. The only
energy source in the simulations is the energy injected from the bottom. This energy
is slowly carried to the surface, thus increasing the thermal energy. After ∼ 8 years
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FIGURE 5.6: Evolution of the thermal energy as a fraction of the total
energy of the system. Ethm is the thermal energy, Ekin is the kinetic
energy, Epot is the potential energy, and Emag is the magnetic energy.
The first exponential growth is because it takes time for the system
to carry the radiated energy coming from the bottom to the surface.

Source: own work (Navarrete et al., In preparation).

the thermal saturation is reached.
All of the presented analysis is performed in the saturated regime. The calcula-

tion and output of the gravitational quadrupole moment was implemented after the
beginning of the simulations, which is why the time axis does not start at 0.

First we show the gravitational quadrupole variations of a fully-hydro simula-
tion which will become useful when presenting the simulations with magnetic fields
included. The case of the slow rotator (run3x) is presented in Sect. 5.2 followed by
the analysis of the fast rotator (run20x) in Sect. 5.3.

5.1 Purely hydrodynamical simulation

In this section we present the variations in the gravitational quadrupole moment of
the same simulation as in run20x (i.e. 20 times solar rotation) but without magnetic
fields.

Figure 5.7 shows the gravitational quadrupole moment component Qxx in the
dotted line, together with the thermal energy as a fraction of the total energy of
the system as solid line. Here we can see very high frequency oscillations with a
period of 0.18 years. This might correspond to the sound-crossing time τsc, which
we calculate as

τsc =
2 rconv

〈cs〉vol
, (5.11)

where rconv is the radial extent of the simulations, and 〈cs〉vol corresponds to the
sound-speed, cs, averaged over the radial direction. The sound-speed is calculated
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FIGURE 5.7: Gravitational quadrupole moment (Qxx; dotted line)
variations together with the thermal energy of the system (solid line).
High frequency oscillations are obtained. The thermal relaxation
phase coincides with the phase of gravitational quadrupole moment
relaxation, marked with the dashed blued line. Source: Navarrete et

al. (In preparation).

as

cs =

√(
∂p
∂ρ

)
s

(5.12)

where the subscript ’s’ indicates the derivative is taken at constant entropy. By doing
this, we obtain

τsc = 0.182 years, (5.13)

confirming that these high frequency oscillations have a purely hydrodynamical na-
ture.

5.2 The case of the slow rotator (run3x)

5.2.1 Overview of convective and magnetic states

First we show two snapshots at the end of the simulation. Figure 5.8 shows a Moll-
weide projection (namely an equal-area map projection also known as homolographic
projection) of the surface radial velocity, i.e. the convection velocity at the top. The
colorbar is cut at ±90 m s−1 to improve visualization. At the equator we see elon-
gated cells (sometimes called banana cells). Their existence is due to the influence
that rotation has on the flow (see Käpylä et al., 2011; Viviani et al., 2018). At higher
latitudes the effects of rotation are smaller and thus the banana cells disappear, giv-
ing rise to more symmetric cells. It should be noted that these cells are much bigger
than the real ones observed in the Sun. The mean radial velocity is ± 60 m s−1, but
it can be as high as ∼ ± 1000 m s−1.
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FIGURE 5.8: Radial velocity at the surface for run3x. The colorbar is
cut at±90 m s−1 to improve visualization. Source: own work (Navar-

rete et al., In preparation).

In Figure 5.9 we plot the surface radial magnetic field at the end of the simulation.
The colorbar is cut at ±5 kG to improve visualization. Overall, there are no large

FIGURE 5.9: Radial magnetic field at the surface for run3x. The col-
orbar is cut at ±5 kG to improve visualization. Source: own work

(Navarrete et al., In preparation).

scale structures. The magnetic field strength at the equator is weaker than in the
poles, and no strong non-axisymmetric component is observed. The mean magnetic
field strength is 2.5 kG and the extrema are ± 90 kG. The length of these structures
is much larger than real sunspots.



52 Chapter 5. Applegate Mechanism from 3D MHD Simulations

5.2.2 Overview of the magnetic field evolution

We start the analysis by looking at the dynamo solution of the slow rotator. Figure
5.10 shows the evolution of the mean toroidal magnetic field (butterfly diagram) of
run3x at three radial depths labeled at each panel. At the northern hemisphere there
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FIGURE 5.10: Time evolution of the mean toroidal magnetic field Bφ

at three different depths, labeled at the lower-left corner of each panel.
There is no magnetic field migration nor polarity reversals. The mag-
netic field is changing its intensity and there are short periods where
the activity is much weaker. Color bars are cut to improve visualiza-

tion. Source: own work (Navarrete et al., In preparation).

is an overall positive polarity whereas in the southern hemisphere the dominant
polarity is negative, with no magnetic reversals. In each panel, the polarity of the
poles is opposite to the dominant polarity. At the bottom of the convective region
(third panel) there are weak polarity reversals at both poles. In the middle (second
panel), these reversals at the poles are stronger and thus easier to see. At the surface
no major reversals of Bφ are observed. Meanwhile, from the equator to mid latitudes
the magnetic field is evolving by increasing and decreasing its strength. At the three
reference depths there are episodes of decreased activity, for example at the equator
during the time frames of 56 to 57 years and 62 to 64 years. The extrema at the
bottom, middle, and surface are ± 20 kG, ± 7 kG, and ± 3 kG, respectively.

The evolution of the radial field is shown in Figure 5.11. At the bottom of the con-
vective zone (bottom panel) the behaviour of Br is similar to the one described for
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FIGURE 5.11: Time evolution of the mean radial magnetic field Br at
three different depths, labeled at the lower-left corner of each panel.
A poleward migration of the magnetic field is clearly seen at the sur-
face of the domain, but there is no activity at the equator in the surface
and middle of the domain. Sporadic activity is seen at the equator.

Source: own work (Navarrete et al., In preparation).

the toroidal field at the surface. At low latitudes and towards the equator the mag-
netic field is positive (negative) at the northern (southern) hemisphere, and there are
no signals of polarity reversals. In the middle of the convective region we start see-
ing hints of a poleward migrating dynamo wave (see second panel in Figure 5.11)
acting at latitudes of ±50◦ in both poles. Meanwhile, at mid latitudes (±30◦) a per-
sisting negative (positive) magnetic field is obtained with no migration. Whereas at
the equator, the mean radial magnetic field is weaker but with periods of increased
strength at t = 39, 43, 55, 51, and, 67 years. In the surface of the star (top panel) a dy-
namo wave is obtained with a poleward migration. In the equator the strength of Br

is weaker with periods of increased strength at the same times as in the middle of
the computational domain.

5.2.3 Origin of the Qxx fluctuations

Here we discuss the origin of the variations in Qxx, which is shown in Figure 5.12. As
a starting point we compare the average radial magnetic field at the surface averaged
over the north pole is shown in Figure 5.13. We can see peaks of the magnetic field
and how they relate to the quadrupole moment. The first peak of the magnetic field
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FIGURE 5.12: Evolution of the gravitational quadrupole moment in
run3x. The very high frequency oscillations with hydrodynamic ori-
gin are still present. The obtained large variations have a period of ∼

5 to 6 years. Source: own work (Navarrete et al., In preparation).
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FIGURE 5.13: Time evolution of the gravitational quadrupole mo-
ment component Qxx (black-dotted line) together with the absolute
value of the azimuthal-average of the radial magnetic field at the sur-
face averaged over the north pole (magenta-solid line). The variations
of Qxx can be interpreted as a reaction to the changes of the magnetic
field intensity (see text). Source: own work (Navarrete et al., In prepa-

ration).

at t = 40 years can be related to the minimum of Qxx at t = 41.7 years. Then, the
continuous increase in the magnetic field intensity from t = 45 years to t = 50 years
is reflected in a decrease of Qxx starting at the 45 years mark to t = 51 years.

To see this trend more clearly, we plot in Figure 5.14 the same figure but with
the right y-axis inverted and also the magnetic field average is shifted in time by
1.77 years. By doing this we see the trend more clearly and a very close correlation
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FIGURE 5.14: Same as Figure 5.13 but with the right y-axis inverted
and the averaged magnetic field is shifted 1.77 years in time. Source:

own work (Navarrete et al., In preparation).

is revealed due to a phase shift in the variation of Qxx and Br. A stronger (weaker)
magnetic field is related to an increase (decrease) in the absolute value of Qxx. This
figure shows how the magnetic field is intimately related to the overall density field
of the star, proving the first step of the Applegate mechanism.

Now, we explore the correlation between the Reynolds stress tensor component
Rrφ = u′ru′φ, which is known to trigger azimuthal differential rotation (Käpylä et al.,
2016). This is shown in Figure 5.15. The stress at the surface and middle of the com-
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FIGURE 5.15: Time evolution of the gravitational quadrupole mo-
ment component Qxx together with the mean averaged of the
Reynolds stress component Rrφ at the equator in the surface (dark-
red), middle (darkgreen), and bottom (darkblue). Source: own work

(Navarrete et al., In preparation).

putational domain is very well correlated to the changes on the quadrupole moment,
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whereas the one at the bottom is weak and thus has a small contribution and weak
correlation to Qxx. From this figure we can interpret how the speed-up (slow-down)
of the outer layers increase (decrease) Qxx. This is a key point in the Applegate
mechanism, as it was predicted by Applegate (1992) how Figure 5.15 should look
like but with analytic arguments.

Finally, we study how the angular momentum affects Qxx. In Figure 5.16, we plot
the angular momentum per unit volume averaged over the north pole at the surface
(darkred), middle (darkgreen), and bottom (darkblue). From this figure we see how
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FIGURE 5.16: Time evolution of the gravitational quadrupole mo-
ment component Qxx (black-dotted line) together with the angular
momentum per unit volume averaged over the north pole at the sur-
face (darkred), middle (darkgreen), and bottom (darkblue) . Source:

own work (Navarrete et al., In preparation).

the outer layers carry more angular momentum than the inner ones, and at the sur-
face there is an anticorrelation between the angular momentum and Qxx, whereas at
the bottom it turns into a clear correlation. When the angular momentum is larger
at the bottom than at the surface, the equatorial portion of the bottom is rotating as
fast as on the surface. As this happens the part in the middle is a transition, where
rotation is slower.

5.2.4 Gravitational quadrupole moment evolution

Figure 5.12 shows the time evolution of Qxx. There are very high frequency oscil-
lations, with a period of ∼0.18 years, which persist at every moment in the simula-
tions. These oscillations have a hydrodynamic origin rather than an hydromagnetic
one, confirmed by the purely-hydro run where these fluctuations are the only ones
present (see Section 5.1).

The variations in Qxx are not strictly periodic. There is an episode in its evolution
where it takes more time to reach a minimum from a maximum, taking place place
from t ∼ 44 yr to t ∼ 52 yr. Also, there is one episode when Qxx reaches a global
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minimum at t = 65 yr. This behaviour is to be expected to a certain degree as the
full set of MHD equations are highly non linear. Overall, these fluctuations have a
period of ∼ 5 to 6 years and semi-amplitudes of ∼ 2.4× 1040 kg m2.

Keeping in mind the rescaling (see Section 3.2.6), and that the parameters of the
magnetically active star in PCEB V471 Tau is close to the Sun, and in this simulations
we have the convective region of a Sun-like star, we can use the results from our
simulations to estimate the impact in V471 Tau. We take the Qxx semi-amplitude as

∆Qxx = 2.4× 1040 kg m2 (5.14)

and adopt a binary separation of 3.3 R�. Inserting this into Equation (2.33) yields

∆P
P

= 2.1× 10−8. (5.15)

Furthermore,

O− C =
∆P
P

Pmod

2π
, (5.16)

where Pmod is the modulation period of the O − C diagram (see Applegate, 1992).
Combining this equation with Equation (2.33) yields

O− C = 0.635 s. (5.17)

Marchioni et al. (2018) presented the most updated analysis of the eclipsing times of
V471 Tau. The authors reported two period variations, one with O− C = 151s and
Pmod = 35 years. The other contribution has a semi-amplitude of O− C = 20 s and
a modulation period of Pmod = 9.7 years. The semi-amplitude obtained from the
simulations in this case vary far from the observations in this case (but see the case
of run20x in Section 5.3). We must emphasize that in this simulation the rotation rate
if much lower than in V471 Tau.

As an exercise, if we change the binary separation from 3.3 R� to 2.0 R� the
numbers we obtain are

∆P
P

= 5.74× 10−8, (5.18)

and
O− C = 1.72 s. (5.19)

The peaks might be correlated to the appearance of the radial magnetic field at the
equator (see Figure 5.11).

5.3 The case of the fast rotator (run20x)

5.3.1 Overview of convective and magnetic states

Snapshots at the end of the simulation are shown in Figure 5.17 as a Mollweide
projection of the surface radial velocity, i.e. the convection velocity at the top, where
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colorbars are cut to improve visualization. The banana cells here are still present at

FIGURE 5.17: Mollweide projection of the radial velocity at the sur-
face for run20x. Colorbars are cut to improve visualization. Source:

own work (Navarrete et al., In preparation).

the equator but with a decreased azimuthal extent in comparison to run3x. At higher
latitudes the size of the convection cells are also reduced. The average convective
velocity is 19.4 m s−1, with extrema of 700 m s−1 and -561 m s−1.

In Figure 5.18 we plot the surface radial magnetic field at the end of run20x,
where colorbars are cut to improve visualization. The radial magnetic field is very

FIGURE 5.18: Mollweide projection of the radial magnetic field at
the surface for run20x. Colorbars are cut to improve visualization.

Source: own work (Navarrete et al., In preparation).

different from the one in run3x. It is stronger and is more organized. The mean of
the radial magnetic field is 4.5 kG, 1.8 times stronger than in run3x. The extrema are
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∼ ± 90 kG, the same as in run3x. These large size magnetic structures can cover up
to the full azimuthal extent and range from their respective pole to the equator.

5.3.2 Overview of the magnetic field evolution

We follow here the same approach as in the case of the slow rotator. Figure 5.19
shows the mean toroidal magnetic field, i.e. butterfly diagram, at three depths la-
beled at the lower left corner of each panel. The magnetic field in this case is much
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FIGURE 5.19: Time evolution of the mean azimuthal toroidal mag-
netic field Bφ. A poleward migration of the magnetic field is clearly
seen at the surface and middle of the domain. At the equator there
is an overimposed dynamo wave operating at the north-pole at lati-
tudes between ∼ 5◦ to ∼ 50◦. This non axisymmetric wave is slowly
vanishing. The colorbars are cut at ±2.5 kG for better visualization.

Source: own work (Navarrete et al., In preparation).

more complex. At the bottom of the domain the dynamo solution is cyclic and gen-
erally ranges from the equator to the poles at the beginning. The maximum ampli-
tudes are ±12 kG. At later times there is a standing magnetic field from 57 years to
76 years, covering most of the south pole. The dynamo solution at the middle of
the domain is persistently cyclic with a poleward migration. Here the extrema of the
magnetic field are±8 kG. At the surface and at the equator there is an axi-symmetric
dynamo wave at low latitudes with extrema of ±5 kG. Overimposed there is also a
non-axisymmetric dynamo wave operating at the north pole at latitudes between
∼ 5◦ to ∼ 50◦, which is slowly decaying in amplitude. The absence of a strong



60 Chapter 5. Applegate Mechanism from 3D MHD Simulations

toroidal magnetic field is due to the radial field boundary condition (see Käpylä et
al., 2016; Warnecke et al., 2016).

The same diagram as before but for Br is shown in Figure 5.20. Here, the presence
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FIGURE 5.20: Time evolution of the mean radial magnetic field Br.
The non-axisymmetric dynamo wave is clearly seen at the surface
and middle of the domain. It is also clearly seen the decrease of its
magnitude. Right before the 70 years mark this wave almost disap-
pears and starts to reappear by the end of the simulation. Source:

own work (Navarrete et al., In preparation).

of a non-axisymmetric dynamo wave with decreasing amplitude in time is clearly
visible and the magnetic fields have a poleward migration. At early times, the sur-
face extrema is±20 kG and at the bottom is±8 kG. At the stage of the disappearance
of the non-axisymmetric between 68 to 80 years the extrema are ±4 and ±3 kG re-
spectively.

In both diagrams the behaviour is very different from the case of run3x. This
is because the excited dynamo wave depends on the rotation rate of the simulation
(see e.g. Viviani et al., 2018). The major differences in the magnetic field evolution
between run3x and run20x is that first, the intensity of Br in the former is larger
by a factor of 2 at the surface. Second, the overall intensity of the magnetic field
in the latter is decaying, whereas in run3x it remains constant on the large scale.
And third, the magnetic field is migrating virtually everywhere in run20x, whereas
a weak migrating component was found only in specific parts in run3x (see Figure
5.11). We note in summary that the behaviour of the magnetic field is considerably
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more complex in the rapidly rotating case.

5.3.3 Origin of the Qxx fluctuations

Analogously, we explore the origin of the Qxx fluctuations. Figure 5.21 shows the
time evolution of the gravitational quadrupole moment component, Qxx. We first
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FIGURE 5.21: Time evolution of the gravitational quadrupole mo-
ment component Qxx in run20x. Source: own work (Navarrete et al.,

In preparation).

compare the mean radial magnetic field averaged at the north pole in the surface of
the domain, depicted in Figure 5.22. The sharp decrease of 〈Br〉np

s reflects how the
non-axisymmetric dynamo wave is vanishing (same as in Figure 5.20). It can also be
interpreted and seen how Qxx reacts to this by decreasing as well. This correlation
is not seen when the same average is taken but at the south pole (see Figure 5.23).
In this Figure it can be seen how the south pole has a weaker contribution to the
magnetic field when compared to the north pole, which is stronger by a factor of
. 10 at t ∼ 32 years and steadily decreases until they become nearly equal. This
quantity starts to increase at the 80 years mark (same as the north-pole component;
see Figure 5.22) which coincides with the weak increase in Qxx.

Finally, it can be seen from Figure 5.24 that the average magnetic field at the
equatorial portion of the surface of the star does not have important variations nor
correlations with Qxx.

Similarly, we plot the same averages the Reynolds stress component rφ (not the
absolute value) at the equator and at the three depths. Figure 5.25 shows such quan-
tities. The average of Rrφ at the surface is steadily increasing while Qxx decreases.
Meanwhile, the stress at the deeper layers is approximately constant compared to
the one at the surface. This hints at a strong anti-correlation between the Reynolds
stress at the outer layers. This makes sense as the speed-up/speed-down of the outer
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FIGURE 5.22: Time evolution of the gravitational quadrupole mo-
ment component Qxx (black-dotted line) together with the absolute
value of the mean radial magnetic field averaged at the north pole in
the surface of the domain (magenta-solid line). The overall decrease
in the averaged magnetic field is due to the characteristics of the dy-

namo wave. Source: own work (Navarrete et al., In preparation).
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FIGURE 5.23: Time evolution of the gravitational quadrupole mo-
ment component Qxx (black-dotted line) together with the absolute
value of the mean magnetic field component r averaged at the south
pole in the surface of the domain (magenta-solid line). Source: own

work (Navarrete et al., In preparation).

layers are the ones which have a larger impact on the changes on Qxx (see Applegate,
1992).

To investigate how the angular momentum transfer affects Qxx, we plot the
mean angular momentum per unit volume averaged over the north pole at the three
depths in Figure 5.26. We can see how the quadrupole moment reacts with a good
correlation to changes in Lz at the bottom, the same as in the case of the slow rotator.
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FIGURE 5.24: Time evolution of the gravitational quadrupole mo-
ment component Qxx (black-dotted line) together with the absolute
value of the mean magnetic field component Br averaged at the equa-
tor in the surface of the domain (magenta-solid line). Source: own

work (Navarrete et al., In preparation).
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FIGURE 5.25: Time evolution of the gravitational quadrupole mo-
ment component Qxx (black-dotted line) together with the mean av-
eraged Reynolds stress component Rrφ at the equator in the surface
(dark red line), middle (dark green line), and bottom (dark blue line)
of the domain. There is a clear anti-correlation between Qxx and the
stress at the equator whereas no correlation is seen between the other

two averages. Source: own work (Navarrete et al., In preparation).

While at early times Lz at the bottom increases and Qxx remains constant, the cor-
relation in both quantities after the 40 years mark is high. From this figure we can
infer that the angular momentum in the inner layers is correlated to the variations
in the quadrupole moment.
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FIGURE 5.26: Time evolution of the gravitational quadrupole mo-
ment component Qxx (black-dotted line) together with the angular
momentum per unit volume averaged over the north pole at the sur-
face (darkred), middle (darkgreen), and bottom (darkblue) for the fast

rotator. Source: own work (Navarrete et al., In preparation).

5.3.4 Gravitational quadrupole moment evolution

The purely-hydro oscillations in Qxx (see Section 5.1) are present, same as in run3x.
The differences in the overall behaviour of Qxx in this run are remarkably differ-
ent from the case of run3x, showing a more complex behaviour. At the beginning
from 29 to 37 years Qxx remains constant on larger scales with the presence of os-
cillations with a period of ∼1.9 years. After the 37 years mark, Qxx decreases from
−3.555 × 1042 kg m2 to −3.579 × 1042 kg m2. After this, the above described be-
haviour starts again but now the decrease is stronger and starts at 60 years. Qxx

changes from −3.579 × 1042 to −3.640 × 1042. Analogously to the case of run3x
where we rescaled the gravitation quadrupole moment (see Section 3.2.6), we take
the system parameters of the magnetically active component in the PCEB V471 Tau
and remember that this run has a rotation rate and stellar parameters similar to the
magnetically active star in this system, but now we take the maximum and mini-
mum of Qxx to obtain

∆Qxx = 1.042× 1041 kg m2 (5.20)

and adopt a binary separation of 3.3 R�. Inserting this into Equation (2.33) yields

∆P
P

= 9.153× 10−8. (5.21)

Furthermore,

O− C =
∆P
P

Pmod

2π
(5.22)
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where Pmod is the modulation period of the O-C diagram semi-amplitude (see Ap-
plegate, 1992) with (2.33). In our case Pmod = 50 years. Thus

O− C = 23 s. (5.23)

The semi-amplitude obtained from the simulations is closer to the second contribu-
tion found by Marchioni et al. (2018), whereas the modulation period is closer to
the first one. However, both semi-amplitude and modulation period are somewhat
arbitrary as the zero-level of the Qxx plot in the simulations cannot be determined as
the O− C diagram in observations. For this reason the numbers obtained from the
simulation should be taken as minimum/maximum values rather than precise.

As an example, if we change the binary separation from 3.3 R� to 2.0 R�, then
the results would be

∆P
P

= 2.942× 10−7. (5.24)

5.4 Discussion and conclusions

With the aim of searching for the Applegate mechanism in action, we have stud-
ied the gravitational quadrupole moment variations arising from magnetic activity
through directly solving the 3D MHD equations with the PENCIL CODE.

From the two simulations we have run we see two very different behaviours in
the quadrupole moment evolution. In the slow rotator, quasi-periodic oscillations
can easily be seen by eye. Meanwhile, in the fast rotator case the evolution is much
more complex. This complexity is also observed in the magnetic field evolution. The
slow rotator has a relatively simple magnetic field behaviour, showing no magnetic
field reversals at all and no migrating dynamo wave. Whereas the fast rotator has a
very complex magnetic field evolution. It has a poleward migrating magnetic field at
the equator, an overimposed non-axisymmetric dynamo wave which operates only
at the north pole. The latter is also decreasing its amplitude.

We establish a link between the magnetic activity and the gravitational quadrupole
moment by means of the Reynolds stress tensor and the angular momentum. In his
paper Applegate (1992) studied deformations of the star by transitions, which are
deformations in which the magnetic field causes the star to change its hydrostatic
configuration. He also noted that the quadrupole moment depends upon the distri-
bution of the angular momentum, specially in the outer layers of the star. While in
the original Applegate (1992) model the reaction of the quadrupole moment to the
changes in the angular momentum and magnetic field are instantaneous, this is not
what we see in our simulations. In the case of the slow rotator it takes the density
field∼1.77 years to react to the changes in the magnetic field (see Figure 5.14). When
plotting Figure 5.26 we can see how Qxx reacts almost immediately to the change in
angular momentum at the bottom, whereas at the outer layers there is no correlation.
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While in the case of the slow rotator it is relatively easy to observe, in the fast
rotator case the behaviour is much more complex. We attribute this to the differences
in their respective magnetic field evolution, with the fast rotator presenting a more
complex behaviour.

The work by Völschow et al. (2018), based on Lanza (2005) and Lanza (2006),
includes the most detailed analytic model of the Applegate mechanism. They ap-
plied their model to a set of stars with varying mass. The peak in ∆P/P was found
to lie exactly at the transition from partially- to fully-convective stars, with a value
of ∆P/P ∼ 5× 10−8. This then decreases with growing mass down to a mass of
0.5 M/M�, and then continues rising. The values of ∆P/P from our simulations
are 2.1× 10−8 and 9.1× 10−8 for the slow and fast rotator, respectively, but by de-
creasing the binary separation one can achieve ∆P/P = 2.9× 10−7. The numbers
for the period variations in our work seems to converge with the ones reported by
Völschow et al. (2018) (see Figure 2.4). From the results reported by Marchioni et al.
(2018) for V471 Tau we can obtain the following period variations for the system,
where the subindexes 1 and 2 indicates the primary O− C variations and secondary
(residuals after the subtraction of the primary contribution), respectively:

∆P
P

∣∣∣
1
∼8.6× 10−7, (5.25)

∆P
P

∣∣∣
2
∼4.0× 10−7. (5.26)

(5.27)

Our conclusions can be summarized as follows:

1. the complexity of the evolution of Qxx is linked to the complexity in the dy-
namo waves, angular momentum evolution, and Reynolds stress tensor;

2. the reaction of Qxx to the variations in the magnetic field is not instantaneous
and might take years;

3. the numbers of the O− C amplitude and ∆P/P depend upon the overall mag-
netic field evolution and complexity;

4. the angular momentum at the bottom of the star is more correlated to Qxx

rather than the surface’s,

5. ∆Qxx seems to have a strong dependence on stellar rotation; and

6. we have shown for the first time the evolution of the gravitational quadrupole
moment from 3D MHD simulations of convection in spherical wedges with
the aim of proving the Applegate mechanism.

However, to draw stronger conclusions, more simulations are required in order to
explore in more detail the parameter space. In particular, exploring how Qxx de-
pends on stellar rotation and mass is important as the magnetically active compan-
ion in PCEBs are rotating at a high fraction of their critical stellar rotation and this
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scales with the energetical feasibility of the Applegate mechanism (Navarrete et al.,
2018), and fully-convective stars produce a higher amplitude of ∆P/P (Völschow
et al., 2018). Following point (3) based on the analysis of the slow rotator, we en-
courage observers to look for correlations between the O−C diagram and magnetic
activity not only as it would be a 1:1 match, but also to consider a phase shift of the
magnetic activity indicators.

We end by emphasizing the limits of the model. While there are variations in
Qxx, this numbers should be taken as indicative rather than precise. With the current
computational power it is impossible to approach to real dimensionless parameters
that govern stellar plasmas. For example, the magnetic Prandtl number is 1 in the
simulations whereas in the Sun it is ∼ 10−5. The normalized flux in the bottom of
the Sun is ∼ 10−11 whereas in the simulation it is highly enhanced with a value
of 3.2 × 10−5. In the case of the Reynolds number this is more severe, as in the
Sun it ranges from 1012 to 1013 and in the simulations we have Re ∼ 40. However,
these simulations in previous studies have already proven to be of extreme success
in reproducing some of the solar phenomena (see e.g. Viviani et al., 2018; Käpylä
et al., 2016; Käpylä et al., 2013; Käpylä, Mantere, and Brandenburg, 2012). Further
development of 3D MHD simulations of fully-convective stars will prove to be of
great importance as we expect the Applegate mechanism to be an important tool for
studying M dwarfs dynamos through ETVs in PCEBs.





69

Chapter 6

Conclusions and Future Prospects

Unveiling the origin of eclipsing time variations (ETVs) in close binaries is a hard
task. Their origin is an important question to answer because particularly in the case
of post-common-envelope binaries (PCEBs), the answer to such questions may end
up revealing a new tool to study stellar magnetism, planetary formation, or both.
The Applegate mechanism was the focus of this thesis, explored with computational
tools, with both 1D and 3D numerical approaches.

By using the 1D stellar evolution MESA CODE we find how the energetics of
the Applegate mechanism scale with critical stellar rotation rate (work published
in Navarrete et al. (2018)). We see that the Applegate mechanism is energetically
feasible in at least some PCEBs, in concordance with Völschow et al. (2016).

The second part of the present thesis explores the Applegate mechanism from 3D
magneto-hydrodynamic (MHD) simulations for the first time. The MHD equations
were solved using the PENCIL CODE, a fully-compressible MHD code. We looked
for variations in the gravitational quadrupole moment Qxx arising from magnetic
activity, Reynolds stress, and angular momentum, without any prescription, in a set
of two simulations which only differ by the rotation rate: one with three times solar
rotation and another with twenty times solar rotation. It was found that the varia-
tions of Qxx are very well correlated to the three aforementioned physical quantities
for the case of the slow rotator. Whereas in the case of the fast rotator it was found
that this link is not trivial because there is complex behaviour of all the quantities
mentioned above.

We conclude that the changes in Qxx depend on the excited dynamo wave in the
simulations, together with the evolution of the Reynolds stress and angular momen-
tum.

Disentangling between the Applegate mechanism and the planetary hypothesis
is not an easy task. Combining theoretical studies with long eclipsing times cover-
age, magnetic activity measurements, and attempts to direct imaging the proposed
third bodies like the one by Hardy et al. (2015) is the only way to solve this problem.

The future work is the development of 3D MHD models of fully convective stars.
These models are highly desirable, not only to explore the Applegate mechanism but
also for studying the dynamo itself and its impact on their planetary systems. The
first step is to start with the model by Dobler, Stix, and Brandenburg (2006), where
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they presented a fully-convective model for convection in rotating spheres. This
setup did not produce magnetic cycles because it either did not run for long enough
or the parameter dependence was not explored in detail; it remained untouched for
the following years after the publication of the model.

The idea is to first obtain magnetic cycles with the previously cited model by
using more realistic setups and long simulations. Several physical processes can
be studied with the simulations, with the Applegate mechanism being only one of
them. The magnetic field generation is interesting enough by itself as how the mag-
netic field is generated in fully convective stars is not yet fully understood. The
density fluctuations during a magnetic cycle can be of particular importance in the
field of exoplanets as the light time travel effect (LTTE) is routinely used to infer the
presence of planets around binary stars (e.g., Borkovits et al., 2016).

We expect the Applegate mechanism to be a promising tool for the area of stellar
dynamos in the future.
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