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Chapter 1

Trapezoidal Kumaraswamy
Distribution

Authors: Juan Toledo-Balboa, Jorge Figueroa-Zuiiiga, Bernardo Lagos-Alvarez



Abstract

Models involving the Kumaraswamy distribution have been a very studied in the past years
in the analysis and modeling of bounded continuos variables. In this paper we focus on one
in particular: the Trapezoidal Kumaraswamy model. We present an estimation method for
its parameters based on bayesian approaches: the Stochastic EM algorithm (SEM), which
avoids the most common issues of the classical EM. Then, we apply this method to the
daily covid-19 cases in Chile using this model.
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1.1 Introduction

The Kumaraswamy distribution was seen for first time when prof. Kumaraswamy pro-
posed it under the name “double-bounded probability density function” (Kumaraswamy,
1980) for modeling hydrological processes. Later, it was renamed as “Kumaraswamy dis-
tribution” by Jones (2009).

The Trapezoidal Kumaraswamy (TK) model (Figueroa et al., 2020) is a new proposal, even
more flexible than it, being based on it and keeping its properties. The TK’s distinctive fea-
ture unlike others proposed previously, like Kumaraswamy Weibull distribution (Cordeiro
et al., 2010) or Kumaraswamy generalized Gamma distribution (de Pascoa et al., 2011)
among others, while they have been developed to be more flexible than their base models,
do not allow to fit scenarios where tail-area events occur.

Rewriting properly the TK model as a mixture, it will allow us to leverage the exist-
ing tools to work with, just like the EM algorithm by Dempster et al. (1977). However,
this algorithm may present some disadvantages at the step maximization. For example,
the dependence on initial values for multimodal likelihoods (Celeux and Govaert, 1992).
To solve this and other issues presented in the following sections, Celeux and Diebolt
(1985) proposed an alternative based on a bayesian approach: the Stochastic Expectation
Maximization (SEM) algorithm, by including a new step called S-step, which consists
in simulation methods like Gibbs Sampling and Metropolis-Hastings algorithms from the
posterior distribution of the parameters, i. e., it takes reasonable prior information and use
it in order to deal with these problems.

This article is organized as follows: Section 1.2 presents in a general way the TK model
and the EM algorithm applied to mixture models. In section 1.3 we describe how SEM
algorithm is implemented for the model and its main difference with EM: first, the pro-
posal of parameters as random variables and leveraging the prior information known about
them. Second, proposing joint prior distributions and third, through Gibbs Sampling and
Metropolis-Hastings we simulate them from their posterior distribution. Section 1.4 shows
how this algorithm works for 100 data sets at different scenarios. Finally, in section 1.5
we applied SEM algorithm to a real data set about new daily cases of Covid-19 disease in
Chile.
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1.2 Background

1.2.1 Trapezoidal Kumaraswamy Distribution

A random variable Y follows a Trapezoidal Kumaraswamy distribution with parameters
a, b, a, B if its probability density function (pdf) is given by

fr(y;a,b,0,8) =a+ (b—a)y+ <1 - GTM) fr(y;a,8), y€(0,1) (1.1

where 0 < a,b <2, a+b < 2and fx(a, ) is the Kumaraswamy’s pdf (Kumaraswamy,
1980) with parameters «, 5 > 0. Here, the expectation and variance of TK distribution are

EY)=my, Var(Y)=my—m?

where m,, denotes the k-th moment of the TK distribution, that is

a b—a a+b
= k+1+k+2+(1_ 2 )5B(Hk/o"5>7

where B(a*, %) is the Beta function of a* and 5*.

Figure 1.1: Examples of TK (solid line) and K (dashed line) pdf with («, ) = (5,13)
and different values of the parameters (a,b) in TK: (a,b) = (0.4;0.4), (a,b) = (0;0.7),
(a,b) = (0.7;0.0) respectively.
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1.2.2 EM Algorithm

EM algorithm is a general method for finding maximum likelihood estimates when there
are missing values or latent variables. It can be used for mixture density models, begin-
ning from an observed data set of random variable Y, that will be classified to a mixture
component according to a probability. The basic idea is assuming that the data set comes
from a non observable discrete random variable Z, which indicates what mixture compo-
nent generated the observation y; and fit these probabilities in each iteration until some
convergence criterion. The following describes in general the steps of the algorithm:

For each variable Y;, 1 < i < n, where n denotes the sample size; Z; = (Z;1, Zi2, Zi3)
is the vector indicating to which component Y; belongs, such that Z;; = {1,0} if ¥; be-
longs to the component j or not, respectively. Thus, the EM algorithm consists in repeating
the steps below until convergence:

)

1. E-step: Compute ZZ(; parameter estimates from initial values at t = 0.

2. M-step: Update the parameters estimates according to:

0" = argmazeL(OWY, Z,Y)

where ¢ indexes the ¢-th iteration, ZAZ(;) is the probability that the i-th observation comes
from the j-th component of the mixture and L is the loglikelihood function. Unfortunately,
EM algorithm has some disadvantages, like the dependence on initial values for the case
of multimodal likelihoods that may carry out to saddle points (Bouguila et al, 2006) and
slow convergence in several others (Celeux and Govaert, 1992). In order to avoid these
problems, a lot of extensions of the EM algorithm have been proposed, very many based
on bayesian approaches; SEM algorithm is one of them. For details regarding to classic
EM, see McLachlan and Peel (2004). In section 1.3 we give some necessary details to
deal with SEM, a very popular extension of the EM algorithm to estimate mixture model’s

parameters.

1.3 Bayesian estimation for the Trapezoidal Kumaraswamy
model

In this section we talk about how to estimate efficiently the parameters of the TK distribu-
tion through SEM algorithm.

1.3.1 The model

As mentioned in section 1.2.2 EM algorithm and its variants require to represent the model
as a mixture of densities. In order to satisfy this requirement, we rewrite the density

Degree of Master in Statistics 5 Juan Guillermo Toledo Balboa
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function of the equation (1.1) as follows

p_ath

+7) Fielyi s

fricta, b, 5) = 52 = 2) + S20) +

where f1(y) = fp(y;1,2) = 2 — 2y and fo(y) = fB(y;2,1) = 2y are the densities of
the Beta distribution fg(y; o, 8*) for random variable Y. Then, the model expressed as a
mixture is

a+b
2

fri(y;a,b,a, B) = ng(y; 1,2) + ng(y; 2,1) + (1 - ) fr(y;a,B)  (1.2)

and wy = § wy = g, wy =1— “+b represent the weights of each density they are next
to, respectively. Therefore, the parameters to estimate in this model are © = (w, §) where

w = (wy,ws,ws) and § = (v, B).

Such as the EM algorithm, SEM requires the model be a mixture and expressed in
terms of missing data. If, for each variable Y;, 1 < i < n; Z; = (Zn, Zi2, Zi3) is a
tridimensional vector indicating to which component j, where j = {1, 2,3} of the model
the i-th observed data from Y belongs, such that:

7 _ 1 if Y; belongs to component j
Y0 otherwise.

Then, the likelihood function for the complete data (Y, Z) es given by

n 3
Frz(y, z0) = [ [ T wi fi(ui; 6,))% (1.3)
=1 j=1
and the loglikelihood is
3 n
L(©,y,z Z Ziilog(w; f(vi10;)), (1.4)
j=1 i=1

where f; indicates the j-th density function from the TK model.

1.3.2 SEM algorithm

In this subsection we describe step by step the application of the algorithm to the TK model

from initial values for ©, i.e., for ¢ = 0, w©® = (w'” wéo),wé )), 00 = () 3O,

Degree of Master in Statistics 6 Juan Guillermo Toledo Balboa
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E-step

As Z;; represent the belonging of each observed data to some of the components of the
model, we can estimate the real value by its expectation (McLachlan and Peel, 2004), that
is, compute

wi ™ fi(latD, 5e1)
Z?:l wl(t_l)fz(yﬂoz(t—l)’ 5(75—1))

2 =P (Zy=1|Y; = y,007) =

v

(1.5)

In practical terms, ZZ(;) is the posterior probability that the i-th observation arises
from the j-th component of the model given the observations and the parameters in a
previous iteration.

S-step

The EM algorithm could present some problems after this point in the case of multimodal
likelihoods, what implies dependence on initial conditions and without guarantee of ob-
tain a local maximum, but to saddle points as we mentioned in subsection 1.2.2. As an
alternative specially for this inconvenient, it has been proposed a different approach based
on bayesian approach. In particular, the information of the complete data (Y, Z) is com-
bined with prior information about the parameters O, that is, assigning a prior probability
distribution 7(©) and according to Bayes theorem:

_ fly.2e)m(®)

[ [y, z1©)7(0)de
which implies that we could know the posterior distribution for each unknown parameter.
The inclusion of the S-step of SEM algorithm may be considered a bayesian extension of
the classical EM, since it consists in simulating Z, W, 6 from their posterior distribution as
indicated in equation (1.6). As the reader will observe in subsection 1.3.2, the simulation
techniques we are going to use are known as Gibbs Sampling and Metropolis-Hastings
algorithms (Casella and Robert, 2010). In the S-step, we simulate Z from it’s posterior
distribution, which we can assume intuitively as Multinomial of Z of size one with proba-
bilities (Z1, Zis, Zi3). Therefore, Zi(t) ~ M(1, Zi(f), 29, ZAZ%‘/)). This gives a vector with 1
as one of its components and two others as 0, i. e., the data has been assignated randomly
to a component indicating with the value of 1.

m(Oly, 2) o f(y, 2[0)7(O), (1.6)

M-step

The M-step depends on the form of the density and often its solution does not exist in
closed form. In addition, it is possible that the parameters can become too high during the
process, causing numeric problems (Bouguila et al, 2006). In order to avoid this issue, a

Degree of Master in Statistics 7 Juan Guillermo Toledo Balboa
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viable option could be simulating the parameters instead computing them.

According to Diebolt and Robert (1994) this method is one of the most used in bayesian
estimation for mixture models. The association of each observation from Y; with a non
observable variable Z; allows us to simulate W from its posterior distribution; 7 (w|y, z).
The reader can observe that W is independent of Y, that means 7(wly, z) = w(w|z). The
Gibbs sampler standard for mixture models is based on successive simulations of Z, W
and 0.

We know that
m(w|z) o w(z|w)m(w). (1.7)

Then, given the prior known information we have about w = (wy,wy, w3), 0 <
w; <1, Z?:l w; = 1, it is intuitive to assume that ¥ comes from a Dirichlet distribution,
1. e.,

F(Z?:N?j) & nj—1
Hlﬁ(m)ﬂ !

where 77 = (11,72, 73) is the parameter vector of the Dirichlet distribution. Besides, we
have that

m(w) = (1.8)

n

7r(z|w):H (zi|w) = sz’l 52w HHw Hw (1.9)

=1 1=1 j=1

where n; = " 1. _; are the number of observations assignated to component j in
S-step. This means that every n; is the sum of each zij = 1 simulated from Z; in every
iteration. Then, Assembling both of equations (1.8) and (1.9), we can prove that

m(w|z) o< D(ny 4 n1, 12 + 12, M3 + N3) (1.10)
where D is the Dirichlet distribution with parameters (7, 4 n1, 72 + n2, 13 + n3). Note that

1, M2, M3 are hyperparameters. Therefore, w® ~ D(n; + ngt), My + n(t) M3+ n(t)).

For the estimation of parameters from Kumaraswamy dlstrlbutlon 0 = («, ), itis
effective to simulate them from the joint posterior distribution 77 (0|2 y) = 7(a®), 3®)|2®)
For this case, we use Metropolis-Hastings algorithm as follows:

Given € ~ N (0, X942) , 3 = 02, and propose

(i) = (o)) + (2)

what means that o, 5 emulate each of them a Log-Normal distribution as indicated
below:

Degree of Master in Statistics 8 Juan Guillermo Toledo Balboa
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1. Generate the candidates o*, 5* from:

o ~ LN (log(a=V),0?) (1.12)
B~ LN (log(B=1),0?) (1.13)

where o is a hyperparameter. Also, we know that

7T(Oé(t)’ﬁ(t)‘z(t)’ y) = 7y, z(t)]a(t), 5(t))7_(_(oé(t)’ ﬂ(t)) (1.14)
n ﬂzi:S
= <H f(yi|oz,6)> m(aMNr(8Y).  (1.15)
=1

Then, with probability ¢ given by

o a(t—l) B . 7T(O_/*, ﬁ*\z(t), y)
’ ( <ﬁ*) ‘ (ﬁ“‘”)) x x {1’ (@D, G120 ¢) } (1.1

we accept or reject the new values of the parameters (both of them).

2. Accept/reject:

For a value u generated from U ~ Ujg 1

*

a if §>u,

(a(t)) -
®) = [at-D
b (gu—n) if §<u.

Summarizing the three basic steps, the application of the SEM algorithm to TK
model must consider:

(1.17)

1. Initialization: set arbitrary initial values for the parameters vector © = O
2. E-step: Compute Zf;) from equation (1.5).
3. S-step: Simulate a sample from Zi(t) ~ M(1; Zl-(f), 2}2‘”, 22(?) for each V;.
4. M-step:

(a) Simulate the weights from w ~ D(n; + ngt), m +nd ns + ngt)).

(b) Generate the candidates («*, 5*) from equations (1.12) and (1.13).

(c) Compute ¢ from equation (1.16), generate u from U ~ Uy ;) and accept or
reject (a*, %) according to equation (1.17).

5. Repeat E, S and M steps until some converge criterion is achieved.

Degree of Master in Statistics 9 Juan Guillermo Toledo Balboa
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1.4 Simulation Study

We perform a simulation study to compare the performance of the TK distribution under
different scenarios, conducting a brief discussion on the value of the o2 and the hyperpa-
rameters 7;, (i = 1,2,3). Then, we compare the TK distribution performance with the
Kumaraswamy distribution for samples generated from each of them.

1.4.1 Scenario of the simulations

We can observe that the o = log(«) and $* = log((3) parameters has been generated
from the Log-Normal distribution with variance o> and mean log(a*~") and log(3*~1)
respectively. Hence, the variance to o is equal to (exp(c?) — 1)exp(2a~ + o?) and
the assigned value to o hyperparameter should be done with care. For example, if we
consider log(a*=Y) = 5 and standard deviation equal to ¢ = 0.5, 1, then V(a*) =
8032.961, 102880.6 respectively, so a value to hyperparameter o = 1 may seem extremely
high to explore a new o* update as we can see in section 1.4.2 (analogous to 5*). In
addition, we have from equation (1.10) that w® oc D(n; + ngt), N2 + nét), N3 + ngt)),
where n; is the total number of data assignated to component j, then we suppose that 7);
(1 = 1,2, 3) hyperparameter can take, for example, values 1; = 0.1 or 1; = 1 indistinctly
and in fact if we have lift tails, both values achieve good results, but if the tails are not
lifted, then with ; = 0.1 the estimations of a and b achieve be more close to zero as we
can see in Kumaraswamy simulation, section 1.4.2. All the numerical calculations are
obtained considering 100000 Monte Carlo replications and discarding the first 40000 as
burn-in.

In order to capture the particular tail behavior of each one, we use a sample size
of 1000 and generate 100 sample sets in order to calculate the average of the deviance
information criterion (DIC) proposed by Spiegelhalter et al. (2002), the expected Akaike
information criterion (EAIC) introduced by Brooks (2002), and the expected Bayesian
information criterion (EBIC) given in Carlin and Louis (2001). First, we simulate from
the TK distribution with parameters given by © = (0.1,0.3,5, 10), that is, we simulate an
asymmetric distribution with independent lifting in both tails to capture the essence of the
proposed TK distribution. Second, we take a sample from the Kumaraswamy distribution
with parameters given by Ok = (5, 10), that is, an asymmetric distribution but without
lifted tails in its density.

1.4.2 Results of the simulations

In our first simulation from the TK distribution, we can observe in Table 1.1 that the TK
distribution achieves a better fit than the Kumaraswamy distribution and we can appreciate
that the value of o hyperparameter must be chosen carefully, delivering better results the
choice of o = 0.5 as commented in section 1.4.1. In Table 1.2, we consider results from
the TK model with (¢ = 0.5,7; = 0.1) hyperparameters and from the Kumaraswamy

Degree of Master in Statistics 10 Juan Guillermo Toledo Balboa



University of Concepcion

Faculty of Physical Sciences and Mathematics CHAPTER 1. TRAPEZOIDAL KUMARASWAMY DISTRIBUTION

Department of Statistics

model, and we can appreciate that the Kumaraswamy distribution tries to fit the model by
increasing the variance, that is, finding small values for « and 3 to overcome the inability
of this distribution to raise the tails.

Table 1.3 present the empirical relative bias (RelBias) and the root-mean-squared
error (v MSE) for each parameter estimator over the 100 simulated samples under the TK
distribution. They are defined as

1 0756 _ g ] oo
RelBias(0) = 7 > ; and  MSE(0) = - > (0" 0y,

i=1 =1

where 6 represents any particular parameter, and 01 is the posterior estimate of ¢ for the
1-th sample. Table 1.3 shows that the estimation of each parameter in each data set is good
when the TK distribution is adjusted.

Table 1.1: Comparison between the Mean DIC, mean EAIC and Mean EBIC of the TK and
Kumaraswamy distributions for 100 samples of size 1000 drawn from a TK distribution
with parameters (0.1, 0.3, 5, 10)

(o,m;) Mean DIC Mean EAIC Mean EBIC

Trapezoidal Kumaraswamy (0.5, 0.1)  -802.301 -794.466 -774.835
0.5, 1) -801.519 -794.616 -774.985

(1,0.1)  -780.712 -782.756 -763.125

(1,1)  -783.543 -783.138 -763.507

Kumaraswamy o =0.50  -526.796 -604.993 -595.177

In Table 1.2 we show the results of the estimation process for each parameter for
both models, where a and b come from w, with w; = % and wy = % according to the
definition of the model in section 1.3.1.

Table 1.2: Estimated posterior medians, means and credibility interval (CI) for 100 sam-
ples of size 1000 drawn from a TK distribution with parameters (0.1, 0.3, 5, 10)

Parameter True Mean Standard deviation Median 95% CI

Trapezoidal Kumaraswamy a 0.1  0.098 0.018 0.095 (0.077,0.117)
b 03 03 0.027 0.298 (0.263,0.335)

« 5 4.944 0.271 4.933 (4.637,5.237)

153 10 9.932 1.234 9.646 (8.303, 11.233)

Kumaraswamy « 3.006 0.154 2.996 (2.828,3.170)

153 3.139 0.327 3.097 (2.825,3.398)

Degree of Master in Statistics 11 Juan Guillermo Toledo Balboa
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Table 1.3: Relbias and root-squared error of each parameter under 100 samples of size
1000 drawn from a TK distribution with parameters (0.1, 0.3, 5, 10)

a b Q I}

RelBias -0.0041 -0.0283 -0.0174 -0.0231
VvMSE 0.0139 0.0212 0.2170 0.9884

In our second simulation from the Kumaraswamy distribution, we can observe in
Table 1.4 that the TK distribution achieve an equally good fit than the Kumaraswamy
distribution. In Table 1.5 we can appreciate that the TK distribution give similar estimates
for the parameters, compared to Kumaraswamy distribution.

Table 1.4: Comparison between the Mean DIC, mean EAIC and Mean EBIC of the TK and
Kumaraswamy distributions for 100 samples of size 1000 drawn from a Kumaraswamy
distribution with parameters (5, 10)

(0,m;) Mean DIC Mean EAIC Mean EBIC

Trapezoidal Kumaraswamy (0.5,0.1) -1257.515 -1321.922  -1302.291
(0.5, 1) -1232.631 -1311.324  -1291.693

Kumaraswamy o =0.5 -1257.887 -1326.381 -1316.566

When the true value to a and b parameters is zero, the hyperparameter n; = 0.1 may
be a better option than taking n; = 1. Then in conclusion, the hyperparameter combination
for (o, n;) equal to (0.5,0.1) delivers good results in different scenarios.

Table 1.5: Estimated posterior medians and means for 100 samples of size 1000 drawn
from a Kumaraswamy distribution with parameters (5, 10)

Parameter True Mean Standard deviation Median 95% CI

Trapezoidal Kumaraswamy a 0 5.58e-04 4.44e-04 2.65e-05 (3.52e-08, 6.32e-04)
b 0 7.98e-04 1.24¢-03 2.25e-04 (3.04e-05,1.12e-03)

@ 5 4.980 0.149 4.970 (4.715,5.249)

153 10 10.054 0.715 9.839 (8.666,11.272)

Kumaraswamy « 5 4971 0.152 4.963 (4.709,5.239)

I} 10 10.009 0.728 9.804 (8.641,11.214)

In summary and unsurprisingly, when the sample is generated from the Kumaraswamy
distribution, we see similar values on the mean DIC, mean EAIC and mean EBIC achieved
by the two adjusted distributions (Kumaraswamy and TK distribution). When the sample
is drawn from the TK distribution with a difference between the its two tails, « = 0.1 and

Degree of Master in Statistics 12 Juan Guillermo Toledo Balboa
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b = 0.3, the best fit in terms of the mean DIC, mean EAIC and mean EBIC is achieved by
the TK model. This can be explained by the fact that the data generated from the tails of
the distribution can not be capture only by using a Kumaraswamy distribution.

Degree of Master in Statistics 13 Juan Guillermo Toledo Balboa
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1.5 Empirical illustrations with real data

To illustrate the TK model in practice, we apply the proposed method to real dataset and
we compare the well of the fitting between the TK distribution and the Kumaraswamy
distribution. Codes used for fitting TK models in the simulated data example are presented
in the appendix. And if you need more detail contact with the author.

1.5.1 Covid-19 cases

The Coronavirus disease (COVID-19) has spread worldwide leading to a pandemic, which
remains to the last day of this paper’s writing. Note in figure 1.2 that there are two peaks:
the first and second massive outbreaks during June, 2020 and January, 2021.

The data that we analyze, contains the daily confirmed and probable cases in Chile
from the first one to be detected on march 2, 2020 to march 3, 2021 (366 records), where
every of them corresponds to the cases of the previous day. The data is available in Minis-
terio de Ciencia, Tecnologia, Conocimiento e Innovacion of Chile (www.minciencia.gob.cl/covid19).

We are interested in fitting the TK model to the new daily cases behavior in this
country and compare this with the fitting of the Kumaraswamy model. Due to this curve
corresponds a daily measures, we first must transform it in a probability model of a random
variable that takes values in the (0,1) interval, both 0 and 1 not included, i.e., taking from
day 1 to 366 to (0,1). Then, we consider all new cases at the day in which have been
observed and transform them in the value of their proper day, this means giving all days
a proportional weight according to the number of new cases recorded, achieving for our
distribution the shape and growing of the original data, resulting in the histogram shown
below in Figure 1.2.

Therefore, we use the equation (1.18) proposed by Smithson and Verkuilen (2006)

N-1y"—a 1

TN w2V

y* € [ar, as). (1.18)

Here N = 800569 represents the sum of the all new daily cases, a; = 1, ay = 366
are the first and last day of the observations and y € (0, 1). Now, for each y;, i = 1, ..., 366
we repeat its value as many times as indicates the total daily cases. For example, if the
last day (day 366, ys3s6 = 0.9999) there were 2747 new cases, in our sample the value ys346
is repeated 2747 times. Then, because of the required time in the processing this much
information and the shape of distribution is not affected nor our purposes, we take for all
approaches given below a proportion of the total sample (805 data).

To go back and know what day is represented by the value of any y, return from
transforming and solve the equation (1.18) for y™.
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Figure 1.2: The real daily data set in the left side and the histogram with the applied
transformation in the right.

The purpose is to show that a fit performed by the TK distribution gives us a better

one than the Kumaraswamy distribution, because sometimes we might have enough data
in the tails to be in the need of having a model that perform this behavior.
We can see in Figure 1.3 and Table 1.6 that the TK model achieves a better fit compared
to the Kumaraswamy distribution. It is clear that the distribution in this data set is lifted in
the right tail, captured by b (from w) which value is b = 1.3264. Moreover, in accordance
with Mean EAIC and Mean EBIC we conclude without a doubt that the TK distribution is
a better choice for this data.
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Figure 1.3: Fitting for both models taking the parameter’s mean. Solid line: TK distribu-
tion. Dashed line: Kumaraswamy distribution.

Table 1.6: Comparison between the Mean DIC, mean EAIC and Mean EBIC of the TK
and Kumaraswamy distributions and its mixture models for Daily confirmed Covid19 data
set.

Mean DIC Mean EAIC Mean EBIC
Trapezoidal Kumaraswamy  876.3951 -207.6895  -188.9261
Kumaraswamy  424.0051 428.0051 437.3868

In Table 1.7 are presented the mean, standard deviation, median and credibility in-
tervals for each model. We can see that § has high standard deviation compared with
the mean in both models (less in TK). This might be because there are too many data in
the right tail and causing the estimation have some trouble to assign the 3 value in every
iteration, assuming that the peak is in this side. Furthermore, the & standard deviation is
considered greater compared in the same way that £ in the Kumaraswamy model.
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Table 1.7: Estimated posterior means, medians and credibility interval (CI) for Daily con-
firmed Covid19 data set.

Parameter Mean Standard deviation Median 95% CI

Trapezoidal Kumaraswamy a 0.0009 0.0030 0 (0,0.0050)
b 1.3264 0.0487 1.3267  (1.2373, 1.4211)

« 2.4929 0.5118 2.4966  (1.4474,3.4459)

I} 12.9142 8.4907 10.7872 (1.5407,29.9875)

Kumaraswamy o 1.4027 0.5590 1.2789  (0.6033, 2.4522)

8 2.0127 7.5916 0.8599  (0.4080, 2.1823)

In conclusion, the TK model performs a better fitting for this data set.
The described situation above about the standard deviation made us think if we would can
get a better fitting than we already had. This would be possible if we consider a model
based on a mixture of two TK distributions, which can be justified because this data set is
actually bimodal. Therefore, we can have a model of two-mixture TK, which is defined as

2

Jj=1

where 0 < p; <1, > p,; = 1 are the weights for each individual TK distribution.
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Figure 1.4: Fitting for TK and two-mixture TK models taking the parameter’s mean.
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Table 1.8: two-mixture TK distribution’s Mean DIC, mean EAIC and Mean EBIC for
Daily confirmed Covid19 data set.

Mean DIC Mean EAIC Mean EBIC
Trapezoidal Kumaraswamy Mixture -603.6924  -585.6924  -543.4748
Trapezoidal Kumaraswamy  876.3951 -207.6895  -188.9261

Table 1.9: Estimated posterior means, medians and credibility interval (CI) in two-mixture
TK distribution for Daily confirmed Covid19 data set.

Parameter Mean Standard deviation Median 95% CI
TK Mix a 0.0013 0.0043 0 (0, 0.0081)
by 1.6641 0.1651 1.6680 (1.3678, 2)

aq 15.8136 6.8317 15.4616 (2.2682, 27.8903)

51 2.9145 2.5286 2.2340 (0.0589, 8.1871)

as 0.0026 0.0097 0 (0, 0.0162)

by 0.0938 0.01952 0 (0, 0.6082)

Qs 3.0370 0.4966 3.065 (2.0029, 3.9354)

B2 26.4600 15.5967 22.7700 (4.3897, 59.6894)

P 0.6120 0.0601 0.6248 (0.4671, 0.6994)
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1.6 Concluding remarks

TK distribution is a new proposal derived from Kumaraswamy distribution with the par-
ticularity of raising its tails, this means a generalization that allows to fit the accumulated
data in the extremes of the distribution by adding two very intuitive new parameters.

In particular, this paper’s effort was about a fitting comparison between these two mod-
els under an alternative estimation procedure than proposed before: a bayesian approach
based on simulation from the posterior distrubutions, justified in the intuitive nature of the
parameters, that achieved very good results in both simulation and real data application as
we saw above. Also, of equal importance, avoiding the dependence on initial values of the
classic EM algorithm, accomplishing more reliable results.

We can conclude the TK distribution is the model that performs the best adjustment for
data with some accumulation at the ends by far. Even more, by observing the real data
set a new propose came up: to consider two TK distributions, that is, taking a 9 parameter
mixture model, which could give the potential benefit of performing a bimodal distribu-
tion, and it did. The two TK mixture model achieved a better fit than the TK model. The
importance of this is the possibility of extension of the model for finite mixture of TK
distributions in future work.
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