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CONCEPCIÓN - CHILE

2022





Prefacio

Esta tesis es presentada como parte de los requisitos para optar al grado
académico de Doctor en Ciencias de la Ingenieŕıa con mención en Ingenieŕıa
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En la vida de un doctorante hay desaf́ıos:
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Pandemia mundial,
Trabajar y estudiar al mismo tiempo,
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pero hay que luchar hasta el final y ser resilientes...
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Abstract

Natural disasters, depending on both their size and magnitude, can produce large-
scale failures to the telecommunications network infrastructure. These failures
can lead to service interruptions due to disconnection of network nodes. To avoid
disconnection in the network, the proactive mechanism of having a route pair
between the nodes has the fastest response times. The region disjoint geo-diverse
routing algorithms are the most widely used to deal with large-scale geographic
disasters, but restricts a minimum separation between routes and assumes failures
can occur anywhere. In this work, we consider large-scale disasters are composed
by multiple independent failures. To achieve a reliable network, we propose the
following methodology. First, we consider a threat model based on a probability
distribution of geo-located failures obtained from historical records. Second, we
develop a risk model where the probability of link failure is proportional to the
intersection area between the probability distribution and the vulnerable zone
of the link. Finally, we compute a route pair between all couple of nodes in
the network using routing algorithms that minimize the failure probability of the
route pair. We apply our methodology in three real-world networks with fires
detected by NASA satellites. We observe our routing algorithms select different
route pair according to the hazard season. On average, algorithms proposed
managed to establish routes in more than 99.83% of the cases, outperforming all
the algorithms analyzed in the state of the art. Moreover, route pair solutions
proposed, were able to obtain an average ATTR higher than 99.9% in the analyzed
scenarios, despite the existence of multiple threat regions, taking advantage of the
knowledge where failures have historically occurred.
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Resumen

Las catástrofes naturales, dependiendo de su tamaño y magnitud, pueden pro-
ducir fallos a gran escala en la infraestructura de la red de telecomunicaciones.
Estos fallos pueden provocar interrupciones del servicio debido a la desconexión
de los nodos de la red. Para evitar la desconexión de la red, el mecanismo proac-
tivo de tener un par de rutas entre los nodos tiene los tiempos de respuesta más
rápidos. Los algoritmos de enrutamiento geo-diverso por regiones son los más uti-
lizados para hacer frente a los desastres geográficos a gran escala, pero restringen
una separación mı́nima entre las rutas y suponen que los fallos pueden ocurrir en
cualquier lugar. En este trabajo, consideramos que las catástrofes a gran escala
están compuestas por múltiples fallos independientes. Para conseguir una red con-
fiable, proponemos la siguiente metodoloǵıa. En primer lugar, consideramos un
modelo de amenaza basado en una distribución de probabilidad de fallos geolocal-
izados obtenida a partir de registros históricos. En segundo lugar, desarrollamos
un modelo de riesgo en el que la probabilidad de fallo del enlace es proporcional
al área de intersección entre la distribución de probabilidad y la zona vulnerable
del enlace. Por último, calculamos un par de rutas entre todos los pares de nodos
de la red utilizando algoritmos de enrutamiento que minimizan la probabilidad
de fallo del par de rutas. Aplicamos nuestra metodoloǵıa en tres redes del mundo
real con incendios detectados por satélites de la NASA. Observamos que nuestros
algoritmos de enrutamiento seleccionan diferentes pares de rutas en función de
la época de peligro. En promedio, los algoritmos propuestos lograron establecer
rutas en más del 99,83% de los casos, superando a todos los algoritmos analizados
en el estado del arte. Además, las soluciones de pares de rutas propuestas, fueron
capaces de obtener una media de ATTR superior al 99,9% en los escenarios anal-
izados, a pesar de la existencia de múltiples regiones de amenaza, aprovechando
el conocimiento de dónde se han producido históricamente los fallos.
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1
Introduction

Telecommunication networks are a fundamental backbone for computer systems.
Such networks are supported by an infrastructure deployed over large geographical
areas. This infrastructure is vulnerable to natural disasters such as earthquakes,
hurricanes, tsunamis, wildfire, etc., or to man-made disasters such as terrorist
attacks, weapons of mass destruction, and even accidents; eventually affecting
optical fibers which are responsible for providing connectivity between different
points through established routes where data is transmitted [1]. Network con-
nectivity, despite these infrastructure damages, can be maintained based on the
provisioning mechanisms that the network operator can take into account when
selecting routes to connect different locations [1]. For this purpose, several routing
algorithms have been developed for proactive risk management. One mechanism
is to compute disjoint alternative routes to maintain connectivity in case of fail-
ures [2, 3]. Thus, if one of the two routes is affected by a failure, the other is not.
This mechanism allows IT managers to react faster to disasters with a reliable
network.

To deal with large-scale failures in geographic network, region disjoint geo-
diverse routing algorithms focus on the selection of both, short and geographically
distant disjoint paths. Thus, the distance traveled by the routes and the distance
between the nodes that compose them are the key to determine their efficiency [4].
Unlike routing algorithms typical of ISP telecommunications networks, which are
based on network properties and network metrics such as delay, bandwidth, etc.;
geo-diverse routing algorithms use information corresponding to another domain,
the geographic information in which the network topology is located. To represent
the coverage of failures, geometric representations of different sizes are used, where
the disk is the most observed [3, 5]. Despite the existence of defined radius values
for each type of failure [6], the classification of ’large’ should be based on the
distribution of failure sizes and where they occur, rather than a fixed value [7].

1



2 1.1. Motivation

Even so, we have not identified techniques in the literature about how to solve
the failure size selection problem that could affect a network topology. Therefore,
better techniques are needed to help the network administrator to model threats
to face real failures and be able to use them as input into routing algorithms.

Among the notified disaster areas we could find simulations have used radius of
50 km up to 1000 km [3, 8, 9, 10, 11, 12, 13, 14]. In these works, synthetic random
threats models are used to generate the network failures, without considering
historical empirical data about geo-located failures [15, 16, 17, 18, 19].

From the accuracy of the failure detection techniques, confidence about the
area affected by the failure event can be determined. At higher resolution, it
is possible to detect small areas affected by failures. Conversely, the lower the
resolution, the larger the failure area detected, making invisible threat-free zones
within it, such as non-seismic zones for earthquakes or hydrographic zones for fires.
The above, coupled with risk models that do not consider multiple independent
failures and require distance to the center of failure, contributes to the error in
the failure probabilities of the network infrastructure.

1.1 Motivation

There are a large number of different hazards that can cause a network to lose
connectivity [20, 21]. A taxonomy of the different types of hazards, including
large-scale natural and man-made disasters, is established in [22]. These hazards
are classified and categorized by characteristics such as the spatial region covered
and the duration, which can last from seconds to hours, such as earthquakes or
fires, respectively. Additionally, in [22], it is suggested the scope of large-scale
catastrophes are both, non-local and non-repetitive catastrophic events. Never-
theless, there is evidence from large-scale natural catastrophes repeated in the
same geographical areas. For example, hurricanes, formed mainly by a tropical
phenomenon, in the United States have caused massive failures in power supplies
and cut cables due to the force of the wind [23, 24, 25, 26, 27]. In addition, coun-
tries near the Pacific belt are the most affected by earthquakes. In Taiwan [28, 29],
severe damage to multiple submarine cables has been reported causing service dis-
ruption in parts of Asia for weeks. Chile, despite being a highly seismic country
and having recorded the largest earthquake in global history [30], is also suscepti-
ble to other threats. In its central zone, the most prone to fires, there have been
fiber optic cuts in telecommunications networks due to multiple fires [31, 32].

Catastrophes caused by multiple independent sources, such as wildfires, have
resulted in telephone, Internet and cable outages at several companies. Telecom-
munications outages have worsened in recent years as disasters have become more
frequent and destructive. There are geographic areas with a higher probability of
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dangerous fire season, such as California from United Stated, and it is necessary
to prepare in advance to be able to fight the fire. The California Public Utili-
ties Commission report [33] revealed that 85 000 wireless customers and 160 000
cable customers lost service during the 2017 fires in the Northern California Bay
Area. This region is one of the most affected in United States by fires every year.
Based on empirical data collected, the existence of Fire Return Periods has been
determined [34]. As is well known, there are wildfires seasons, which are predicted
every year in order to fight them effectively.

Due to the major problems caused by natural disasters in telecommunication
networks, it is essential to be able to react in time to avoid loss of connectivity,
without having to rely on infrastructure modification, which is not always eco-
nomically viable. Determining where failures will occur and avoiding outages on
active routes to maintain network reliability is our main motivation for this work.

1.2 State-of-the-art

This Chapter contains the state-of-the-art in threat and risk models, routing al-
gorithms to face geographic failures and network performance metrics. A series of
works that support the main ideas developed in the thesis are presented. Finally, a
literature review matrix focusing on the main routing algorithms and performance
metrics is presented.

1.2.1 Threat models

In the literature we can find that most of the works considering failures in the
network, use natural failures generated by synthetic random failure models [3, 8, 9,
10, 11, 12, 13, 14]. Nevertheless, real failures may occur with different probabilities
distribution according to its geography. Thus, the use of historical failure data
can be used to predict the location of future failures. Within the available open
datasets associated with natural catastrophes, there is a great diversity of records
with a predominance of earthquakes, hurricanes and fires [15, 16, 17, 18, 19]. Due
to not all datasets use the same coverage, methods, tools and detection techniques,
interoperability between them is difficult.

A variety of failures detection techniques are presented in [35]. These include
human observation, satellite systems, digital cameras, and wireless sensor net-
works. Although data collected by sensor networks are more accurate and real-
time, satellite data have global coverage. For example, NASA provides global
data collected since 2001 related to geo-located fire hotspots identified by satel-
lite detection through Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors. MODIS can detect small-scale fires because they have a recognizable
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thermal signature. Each time the satellite detects a fire source, it marks the lo-
cation of the signal in the data set [36]. Each fire focus obtained from MODIS
has a pixel resolution of 1000 m2, and can even reach a resolution of 50 m2 under
ideal conditions. But considering that about 70 percent of the planet’s surface
is covered by clouds at any given time, these ideal circumstances are difficult to
achieve.

On the other hand, the large-scale failures are mostly modeled using a circular
area, represented by a disk shape, known as region failure [3, 5]. Authors usually
designate simple geometric figures to represent the total coverage of large scale
hazards, such as circles, lines, rectangles, among others [37, 38]. Other uses
irregular regions to represent floods, tornadoes and stars to represent volcano
eruptions [39, 40]. Most of these failure modeling approaches try to find the
right balance between accuracy and the number of Shared Risk Link Groups
(SRLG) [40]. The larger the size of a failure, the lower the accuracy of the SRLG
when considering the areas actually affected by a failure.

The impact of real failures on telecommunication networks has become in-
creasingly important, but few studies have considered modeling their historical
records. Savas et al. [41] joins real earthquake, tornado, and hurricane hazard
heat map for the territory of the United States, where it is observed that each
hazard contributes with different risk zones. From these, it is possible to estimate
the probability of a catastrophe occurring and the level of risk that a network
device will be damaged by such a catastrophe. From the risk level, they filter
out the areas of greatest hazard and assign to each one an equally sized disk,
representing a threat. In [42], from the empirical data of Japan Seismic Hazards
Information Station (J-SHIS) and International Best Track Archive for Climate
Stewardship (IBTrACS), the failures representing the greatest damage are chosen,
removing from the record areas where failures have occurred with less magnitude.
Then, data is merged and from Monte Carlo simulations, randomly generate a
fixed number of disaster events. In the same way, in [3], the Monte Carlo sim-
ulation is generated from empirical earthquake data. An uniform distribution
of disasters over the deployment region is considered. This allows for some un-
evenly distributed regional failures, for example, tsunamis, which affect only those
components of the network that are close to the sea.

To the best of our knowledge, there is no record of other work using fire to
represent large-scale failures as a failure factor in telecommunication networks. In
fact, we have also found no work that reflects the risk change in telecommunication
networks according to hazard seasons.
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1.2.2 Risk models

Different risk models are presented in [9, 43], deterministic models, Gaussian,
probabilistic functions, and compound component, where the greater the distance
between the link and the failure epicenter, the lower the probability of damage
to the link. The composite component model, unlike the rest of the risk models,
establishes a vulnerable zone around the link, represented by the hippodrome area
containing the link. The area of the vulnerable zone is restricted to the length of
the link and the radius of separation between the link and the hippodrome [3].
The value of the radius is a compromise between the cost and the robustness of
the link to a given type of threat. In [44], the probability of link failure contained
in the hippodrome is calculated as the area of the vulnerability zone divided into
the area of the plane in which the network topology is located. In this way, it is
considered that hazards can occur anywhere in the plane. Although the composite
component model is widely used, we did not identify techniques in the literature
on how to choose a value for this parameter.

A. Pašić et al. [45] proposes that high reliability and very high availability
are determined by the underlying network infrastructure, the appropriate failure
modeling and by the routing schemes used (i.e. the protection mechanism). In
the proposal, the key to the failure modeling approach is the distance to the
hazard epicenter, as in [46], where damage from large-scale hazards is considered
to be associated with the distance between the link and the failure epicenter.
B. Vass et al. [47] propose through historical data to determine the intensity
of earthquakes from the distance of their epicenters. However, failures that span
large territories originating from multiple, independent hazards, such as landslides
caused by rainfalls [48] or fires [49, 50] caused by several outbreaks at the same
time, do not follow a behavior consistent with the location where the failure
originated. Thus, how the threat is modeled is critical to generate an accurate
risk model.

Based on the analyzed works, it is obtained that a conditioning factor is to
determine the distance to the epicenter of the large-scale hazard. This assumes
that the fault originates at the center of mass of the figure and expands from that
point. Frankel, A. et al. [51] manage to simulate large earthquakes from records
of small earthquakes adjacent to the area of interest. This can also be achieved
thanks to the EMSC [52], which collects real-time parametric data provided by 65
seismological networks in the Euro-Mediterranean region. These data are more
accurate than large-scale failures, as they consider a smaller coverage. Based
on this fact, we believe that multiple small-scale areas where damage has been
evidenced following a deterministic model are more effective to represent large-
scale failures compared to a single failure.

To consider that the risk of failure is equal for all points that are at the same
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distance from the failure epicenter, we believe that geographic homogeneity among
all such points must be fulfilled. As mentioned in [9], the waves in an earthquake
depend on geographical characteristics and earth materials. When considering
large-scale failures, it becomes more difficult to maintain geographical homogene-
ity, especially if we know that the geography is irregular for large extensions of
land. In our work we do not follow these approaches, we consider that large-scale
threats can be represented by multiple independent small-scale failure events that
allow to highlight threat-free zones. Each point belonging to the area covered by
small-scale events has the same risk, without differentiating the risk by proximity
to an epicenter. This approach offers better advantages when modeling large-scale
hazard risk, as the higher resolution allows highlighting threat-free zones among
the threatened areas.

The dimensions of hazards, in addition to varying in size according to the
geographical area in which they occur, can also be determined by climatic condi-
tions. Carlson, A. R. et. al [53] shown, on the basis of empirical data, that fire
ignition zones differ spatially and according to seasonal variations. In addition,
the number of small fires is much larger than the number of large fires defined
by a threshold of 400 ha. Depending on the diversity of biophysical features or
ecoregions [54] that make up the geography, the spread of these disasters is not
homogeneous [55]. In fact, in [53], it is obtained that the environmental factors
driving the occurrence of a failure vary considerably between different regions. In
the U.S., 18 distinct ecoregions have been categorized [56], which supports the
fact that there is not a level playing field for hazards across geography. This indi-
cates that considering large-scale failures could be misleading based only on the
distance to the epicenter of the disaster. For this reason, we only consider records
of small-scale failures, whose damage is homogeneous throughout their area of
coverage.

1.2.3 Routing algorithms

To face natural catastrophes and maintain the communication routes, region dis-
joint geo-diverse routing algorithms have been developed. The origin of these
algorithms seek a solution to the path geo-diverse problem based on the geo-
diverse routing protocol (GeoDivRP) [4]. Considering that disasters may differ
according their remoteness, Pašić, A. et. al. [40] suggested geo-diverse routing
can be used to increase the network disaster survivability as long as disjoint paths
are kept spatially separated according to failure regions. Therefore, accurate fail-
ure models that better understand the study area are needed. These kind of
algorithms use the geographic diversity in which the network topology is located
to choose paths separated by a minimum distance between them. This distance
is calculated between the nodes that compose each path, also known as region
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disjoint routes. The aim of these algorithms is to prevent different routes from
sharing failure regions, determined by a diameter distance. Therefore, avoiding
Shared Risk Groups (SRGs) or probabilistic SRGs (p-SRG) is essential to prevent
network components from failing simultaneously because they are geographically
close [57]. Izaddoost, A. et al. [9] propose to calculate the paths from the fail-
ure probabilities associated with each link as a cost to be minimized, as well
as [3]. The k-shortest paths are calculated, using the Dijkstra’s algorithm, and
the resulting paths are ordered from lowest to highest cost. They consider that
all links have positive failure probability and that the path is safe from failures
when the failure probability of the path is below a threshold. Girão-Silva, R. et
al. [13] obtained, despite using randomized failures with SRLG routing algorithms
based with or without geodiversity constraints, similar results to those obtained
for routes separated at small distances. Despite these proposals, we consider that
there may be links with zero probability of failure, like shielded links [58], and
that in case there are several routes with the same probability, a tie-breaker is
necessary.

Since the region-disjoint paths problem is NP-hard, in [37] an optimization
problem was developed. Through an ILP formulation, an exact solution for a
geo-diverse path is found, and we denoted it as SRLGRA 1. This algorithm
selects a route pair separated by a diameter D, denoted as the minimum distance
among the nodes belonging to each route, and the sum of the distance traveled
by both routes should be the minimum possible. The larger the chosen diameter,
the higher the cost of the chosen routes, but the lower the probability that both
links will be affected by a single failure [59]. Also, a heuristic was implemented
to find a non-optimal solution, and we denoted it as SRLGRA 2. It also uses the
euclidean link length as the cost as SRLGRA 1, but the path pair selection is
calculated through two iterations of Dijkstra’s shortest path algorithm [60]. The
first iteration selects the shortest path between a couple of nodes. Next, nodes
with distance equal to or less than D are removed from nodes on the first path that
is not the source or destination. Finally, the second path is selected by running
Dijkstra’s algorithm on the pruned network.

By introducing more degrees of freedom in geo-diverse routing algorithms,
more diversity is achieved. Iterative WayPoint Shortest Path (iWPSP) [61], is a
heuristic for non-optimal solution which in addition to using a distance D between
the nodes composing the multiple paths, uses an additional distance δ to choose
central path nodes. The central nodes m, separated by D + δ among them, force
the paths separation delivering greater diversity of paths as δ varies.

In the same paper, also Modified Link Weight (MLW) is presented. This
heuristic statistically modifies the link weights and performs Dijkstra’s algorithm
to calculate the geo-diverse paths with the modified link weights in the network.
From the results, iWPSP performs better than MLW when dealing with couple of
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nodes near topology boundaries. A larger number of constraints can be found in
[59], where the Minimum Cost Pair of D-Geodiverse Path (MCPD-GP) problem
is presented. In addition to considering a minimum separation between the nodes
of both paths, it also considers the separation of the links on both routes.

All of these region disjoint geo-diverse routing algorithms recommend using
a larger separation radius than the failures, to prevent them from affecting both
routes. In [44], Gour et al. discuss about how to choose the hazard radius value
based on a real radius. If the network design radius is less than the real ra-
dius value, the network will be compromised. On the other hand, if the design
radius is larger than the real radius value, longer paths will be obtained, in agree-
ment with [13]. Despite obtaining longer paths, a reduction in the probability of
simultaneous failure is achieved, especially when the network covers a larger geo-
graphical area [3]. The above contrasts with works such as [62] where the choice
of a route is intended to reduce the route length. Thus, design radius selection
offers a trade-off between cost and robustness, but depends on solving the failure
size selection problem. In [59] the maximum distance problem D of geo-diverse
paths is solved. Nevertheless, to the best of our knowledge, we could not find a
solution to the failure size selection problem to deal with the real threats. Because
of this, it is still a problem to determine a realistic threat size for region disjoint
geo-diverse routing algorithms.

1.2.4 Performance metrics

To determine if the routing algorithms are successful in selecting routes between a
couple of nodes, the success rate of an algorithm is defined in [37] as the quotient
between the number of successful request of the algorithm, and the number of
successful request of the exact solution. To the best of our knowledge, even exact
solution algorithms can fail when the constraints cannot be met. Therefore, in
our work, we improve this metric so to be based on the number of distinct couple
of nodes in the network. Based on the EGPD metric, wich represent the Effective
Geographic Path Diversity, in [4] the compensated Total Geographical Graph
Diversity (cTGGD) is presented, which is useful as one global graph metric to
characterize the graph resilience to area-based challenges. This metric measures
the geographic route diversity normalized to the number of links in a network.
Although routes may have high geographic diversity, the network may have low
resilience to multiple failures.

Average Two-Terminal Reliability (ATTR) is used in several studies to mea-
sure the network reliability [9, 43, 58]. This metric represents the nodes probability
to remain connected after random independent link failures. Modiano et al. [58]
protect links to be resilient to failures of varying size. Using ATTR, the required
connectivity to minimize the number of links to protect is calculated. In addition
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to measuring the number of disrupted connections, in [9] also the network dis-
ruption time is calculated. In this work, we use ATTR to represent the number
of node pairs remain connected by at least one path after threats and we not
consider repairing the links.

Also, the routes chosen, depending on the type of routing algorithm used, may
vary in the costs associated with the links. To represent the costs associated to
the resulting routes, in [4], the number of links belonging to a path is counted,
since it reflects the hops number through which it transits. In addition, in [59]
the geographical distance between the nodes of each s-d node pair, is defined as
SD length, also known as path length in [13]. Considering that the shortest route
is generally the best route, metrics such as path stretch [3] are used to measure
the ratio of the route length to the shortest route. In this thesis we consider that
short routes are not necessarily the most resilient. This is why we limit ourselves
to comparing the average of both, length and links, to compare the performance
of the routing algorithms.

1.2.5 Literature Review Matrix

The literature review matrix is presented in Table 1.1, where from a chronologi-
cal organization the most relevant works in routing algorithms and performance
metrics are discussed in this thesis.
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Table 1.1: Literature review matrix

Ref year Purpose Threats Routing
algorithms

Performance
metrics

[43] 2013 Modeling network
vulnerability when the
event has a probabilistic
nature, defined by an
arbitrary probability
density function

Monte Carlo
algorithm to
generate a max
expected
damage
location

Predefined
routes

ATTR

[9] 2014 A probabilistic failure
model is proposed
based on wave energy
behaviour.

Probability of
failure of each
link according
to the distance
to the epicenter
of the failure.

Dijkstra’s
algorithm
using
failure
probabili-
ties

ATTR,
restora-
tion
time

[41] 2014 Re-assigning resources
among connections by
leveraging their
degraded-service
tolerance

Probability of
occurrence of a
disaster
through risk
maps

SRG-
disjoint
paths

BW,
Network
load

[37] 2015 Finding critical network
regions based on
polygons and finding
two region-disjoint
paths.

Finding a
critical region
that contains a
set of
predefined
nodes number

SRLG-
disjoint
routing
algorithm

Number
of discon-
nected
pairs,
average
shortest
path
length,
success
rate

[61] 2015 Proposing two
heuristics for solving
the path geodiverse
problem (PGD)

Finding a
critical region
that contains a
set of
predefined
nodes number

iWPSP and
MLW
algorithms

cTGGD
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Ref year Purpose Threats Routing
algorithms

Performance
metrics

[4] 2015 Considering delay-skew
requirement in
geographically
diversepaths

Artificial
threats to
generate SRLG-
disjointness
paths

iWPSP
with
delay-skew
constraint

Link
counts

[58] 2017 Increasing network
connectivity by
shielding links

A disk shaped
failure that can
occur anywhere
in the network.

Physical
connectiv-
ity

ATTR

[59] 2017 Determining the
minimum cost pair of
D-geodiverse paths

Artificial
threats to
generate SRLG-
disjointness
paths

Minimum
Cost Pair of
D-
Geodiverse
Path
(MCPD-
GP)

SD
length

[3] 2019 Finding the minimal
risk path between end
node pairs to tolerate
random regional failures

Monte Carlo
algorithm to
generate a
specific sized
area from
hazard maps

Local
Search
Algorithm
for nodes
with
minimal
vulnerable
area

Path
stretch

[42] 2019 Proposing a network
and disaster model
capable of modeling a
sequence of disasters in
time

Monte Carlo
algorithm to
generate a max
expected
damage
location

Physical
connectiv-
ity

ATTR

[13] 2020 Estimating the increase
of the path lengths
compared to simple
link-disjointness

Artificial
threats to
generate SRLG-
disjointness
paths

SRLG-
disjoint
path pairs
with
geodiversity
constraints

Path
length
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1.3 Hypothesis and research questions

The hypothesis is:
If empirical and geolocated data are used to model link hazards and link failure

risks, the optimal selection of geolocated route pairs between network nodes based
on minimizing the probability of multiple and independent link failures caused
by natural disasters will allow selection of a route pair in the totality of cases
and improve network reliability compared to the most widely used SRLG-based
optimal geo-diverse route selection algorithm in the literature.

The research questions driving this thesis are:

i) Will the history of geo-located threats in a geography help to increase network
reliability?

ii) How to model multiple independent threats?

iii) How to model the risk of network links to deal with multiple threats?

iv) Is it possible for threat-free areas to exist where the network is located?

v) Does the probability distribution of failure vary according to the hazard sea-
son?

vi) Is it feasible to increase network reliability through route pair selection based
on threat risk?

vii) Which metrics are the most accurate for measuring network reliability based
on route pair selection?

1.4 Objectives

General objective:

Propose a threat model and a risk model based on empirical data that allows,
through routing algorithms based on geo-located factors, external to the network,
to increase the network reliability to face multiple independent failures caused by
natural disasters.

Specific objectives:

i) To develop a threat model to determine the representation and occurrence of
threats in an area of geographic interest from geo-located historical records.
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ii) To develop a risk model to determine the probability of failure of all links
belonging to the network.

iii) To develop optimization problems and heuristics to allow selecting a pair of
disjoint and maximally disjoint paths between a couple of nodes with the
minimum probability of failure.

iv) To implement, and improve if necessary, solutions observed in the literature
to face geographic threats, through the selection of a route pair using geo-
diversity, to compare with our algorithms.

v) To use or improve metrics to determine the network reliability based on a
route pair selection between nodes.

1.5 Contributions

The main author contributions to the state-of-the-art of network reliability through
an optimal pair route selection are: The development of a threat model based on
a probability distribution of geo-located failures calculated from historical failures
in an interest area. The development of a risk model where the probability of
link failure is proportional to the intersection area between the probability distri-
bution and the vulnerability zone of the link. The development of optimization
problems and heuristics that allow the pair selection of disjoint and maximally
disjoint paths with the minimal probability of failure. Finally, the improvement
of performance metrics.

The following works contain results served as a basis to achieve the contribu-
tions mentioned above and part of them are described in the Chapter 2 and 3 of
the manuscript.

1.5.1 Network reliability improved through physical selec-
tion

A conference and a journal [63, 64] are the result of research on the concepts of cor-
related failures and reliability assessment through ATTR. These works addressed
the problem of having failures associated with the low diversity in hardware and
software of nodes used in the network, which can be concurrent, independent of
their remoteness or closeness in the physical network. The result was that the
optimal selection of different cultures of nodes location within the network, allows
reducing the impact of failures associated with the culture of the nodes. From
these works, which point to the moment of creation, relocation or updating of
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nodes in the network, which are infrequent processes, the need to solve the pro-
blem of improving reliability through more frequent processes, such as the optimal
selection of routes between nodes, was triggered.

1.5.2 Network reliability improved through the logical se-
lection

A conference and a journal [65, 66] contain the main ideas of this research. Threats
to the region in which the network is located and the risk associated with links
resulting from multiple independent threats external to the network are modeled.
Then, we seek to improve network reliability through the optimal paths selec-
tion to maintain connectivity between nodes in the presence of failures. This
new approach complements in parallel the one discussed in Sec. 1.5.1. The main
result was that based on empirical results of multiple small-scale failures, the pro-
posed solutions for route pair selection achieve higher reliability than geo-diversity
algorithms focused on large-scale threats, widely used in the literature to face ge-
ographic threats.

1.5.3 Journal papers, conference and seminar presenta-
tions.

The following journal papers, conference and seminar presentations were obtained
as a result of this thesis, and they allowed the dissemination of this research work:

� Boettcher, N. A., Prieto, Y., & Pezoa, J. E. (2018, September). Micro
Failure Region Models Inducing Massive Correlated Failures on Networks
Topologies. In International Conference on Information Technology in Dis-
aster Risk Reduction (pp. 130-141). Springer, Cham.

� Boettcher, N. (2021, December). Maximizando la resiliencia en redes de tele-
comunicaciones. ED740 PhD Seminar, Doctorado en Ingenieŕıa Eléctrica,
Universidad de Chile.

� Boettcher, Nicolás A., Yasmany Prieto, and Jorge E. Pezoa. Maximizing
the telecommunication network reliability through a pair of routes selection
by exploiting geo-located failure records. IEEE Transactions on Network
and Service Management, Manuscript submitted for publication.
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Materials and methods

This chapter presents the main ideas that support the development of this thesis.
For the selection of a route pair, a method capable of choosing the route pair with
the lowest probability of failure, based on historical geo-located failures records is
presented. The threat model and risk model that allows calculating the probability
of failure associated to each link is presented in Sec. 2.3. The mathematical
modeling of the proposed solutions for the selection of a route pair between a
couple of nodes is presented in Sec. 2.4. The real historical failures and the real-
world networks used to implement the proposed methodologies are introduced in
Sec. 2.5 and Sec. 2.6 respectively. Finally, the metrics to evaluate the performance
of the approach proposed are described in Sec. 2.7.

2.1 Problem statement

The reliability of a communication network is defined as its ability to maintain
connectivity through paths among all its nodes without interruptions in the pres-
ence of failures. A geo-located communication network is mathematically repre-
sented by the undirected graph G= (V,E), where V = {1, 2, . . . , n} is the set of
geo-located communication nodes and E = {e1, e2, . . . , eε} is the set of straight
communication links between nodes. The length, in kilometers, of each link, is
represented by the euclidean distance between the nodes compose it, by l(ei). In
addition, the geography in which G is located is susceptible to different types of
hazards, which generate network failures.

We denote a failure as a disk associated with the geographic coordinates of
the center of the disk that forms it and its diameter. The set of failures occurring
in an area of interest A, is denoted by f = {f1, f2, . . . , fς}, where ς corresponds
to the number of failures for a specific time window of measurement.

We consider a threatened area to be any geographic area in which historical

15
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failures have been detected. If no failure events have ever been recorded in an
area, we consider it to be a threat-free area. The longer the period of recorded
failures, the greater the reliability provided by the data with respect to the risk
of the threatened area.

In our methodology, we first consider a threat model based on a probability
distribution of geo-located failures obtained from historical failures in an area.
Second, we develop a risk model where the probability of link failure is propor-
tional to the intersection area between the probability distribution of geo-located
failures and the vulnerable zone of the link. Finally, we compute a route pair
between all couple of nodes belonging to the network through routing algorithms
that minimize the probability of the route pair failure.

2.2 Rationale

Through a simple case study, we explain the beneficial impact of determining
a route pair based on knowledge of geo-located failures records occurred in the
geography where the network topology is located. A telecommunication network
immersed in Italy, its infrastructure is at risk of failure, as there are records of
failures that are repeated every season in the same areas where they have been
historically recorded.
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Figure 2.1: Real-world network topology with geo-located failures records.

A representation of the geo-located network topology and their threats is
shown in Fig. 2.1, where each name corresponds to the city where the node is
located. The red circles correspond to the historical records where failures have
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occurred. Additionally, information corresponding to the length of the largest set
of failures detected, represented by D, is provided.

The network operator wants to establish a route pair, primary and backup
paths, to establish a connection between two nodes and maintain the connectivity
in case a failure interrupts the connection of one route. Thus, by keeping at
least one route active after the failure, it avoids incurring costs associated with
compensating customers for SLA non-compliance. The correct selection of a route
pair from among all available options requires a methodical process to maximize
the network reliability.

To select the routes, the operator must first choose a couple of nodes. For the
example, he uses PESC and PARM as source and destination nodes respectively.
Now, he must choose a route pair selection algorithm. For this, he uses two
different routing algorithms paradigms. The first one consists in using a region-
disjoint geo-diverse routing algorithm, which is widely used in the literature to deal
with geographical threats. The second one corresponds to the routing algorithm
proposed, based on the minimal probability of failure.

The region-disjoint geo-diverse routing algorithm is based on the selection of
the shortest route pair that are separated by a minimum distance D. For the
example, the length D is used, which corresponds to the largest failure recorded
in the network. Based on that distance, two routes will be chosen together,
using an exhaustive method until the route pair is found, whose nodes meet the
separation D and the sum of the length of both routes is the minimum possible.
As can be seen in Fig. 2.2a, the two selected routes (blue and green paths) meet
the requirements described above.

The following routing algorithm to be used corresponds to our proposal. From
the total number of geo-located failures recorded, a threat model is obtained to
represent the probability distribution of failure in the geographic plane. Addition-
ally, the vulnerable zone associated to each link is represented by a hippodrome.
Then, the sum of the areas intersected by the hippodromes with the failure proba-
bility distribution areas is divided by the total area of recorded threats. The result
is presented as the probability of link failure with respect to the total network
failures. Based on the above, the route pair having the minimum failure proba-
bility between the couple on nodes is calculated. As can be seen in Fig. 2.2b, the
two selected routes have the minimal probability of being affected by any threat,
since they are not intersected by any failure record.

Finally, let us assume that in each season the failures occur again in the same
areas, so that the links represented by the red lines fail. For the first case, we
would obtain that neither route remains active, since both fail, despite being ge-
ographically separated by D. This occurs because this algorithm is limited to
considering a single large-scale failure and considers that failures can occur any-
where. From the constraint of defining a threat size, using any of the algorithms
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discussed in the state of the art [37, 61], the same problem would have been
reached, since they are all based on the same principle. In the second case, both
routes will continue to be active, since the links are located over a geography that
has never reported this type of failures, being considered to be safe links. This
allows that, despite being close to threatened areas, they can have priority to
be selected over the rest of the links. This means that, despite the existence of
threat areas where the network is located, it is possible to select a route pair with
the minimal probability of failure. While the disjoint region model attempts to
separate the route pair based on D without knowing if failures are likely to occur
in the area, the proposed model selects the routes with the minimal probability of
failure based on the probability distribution generated from the historical data.

>D

(a) (b)

Figure 2.2: A route pair selection for different paradigms: (a) region-disjoint
geo-diverse routing, and (b) minimal risk-based routing.

Minimal probability of failure route selection requires historical geo-located
failure information to be effective. Despite this, it offers the network operator
clear advantages over regional-disjoint geo-diverse route selection algorithms by
eliminating the need to determine a failure size and avoids forcing route separa-
tion. Based on databases containing extensive historical data and accurate failure
detections, better network resilience will be achieved by using maximally disjoint
routes that share links with zero probability of failure on both routes.

The optimal design of a routing algorithm that avoids routes that may be
threatened involves prior knowledge of historical failures in the areas where the
links are located. In addition, it can be complemented by prior knowledge of the
safe geographical areas in which the network topology is located. This problem
represents a huge challenge in terms of modeling the main threats according to
their history and modeling the risk of the links belonging to the network.
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2.3 Threat model and Risk model

Major natural disasters are generally associated with adverse climatic conditions,
depending on the season of the year, determining the level of devastation they
achieve, and their occurrence. To better analyze the threats, we differentiate
them according to their seasonality within a year. We define a season as a time
window equal to a month, in order to be able to evaluate twelve different seasons
per year. The shape representing the failure area and the refresh failure detection
time may vary depending on the nature of the instrumentation used.

Considering the geo-located failure data and their frequency of occurrence,
year by year, in an area of interest A, will allow defining the likelihood that a threat
will induce a failure in the infrastructure. For this purpose, it will be considered
whether these zones are close to the infrastructure or not. For simplicity and
because of the shape of the data networks, we will use hippodromes to determine
zones under threat of failure.

To define the threat model, we first obtain the areas affected by failures during
a season. It is possible that there are failure areas intersecting with each others
in the same season, such as a hours-long failure. In these cases, we interpret it, as
the expansion of the failure in the geography during this season. Thus, as shown
Fig. 2.3, each season is composed by f and represented by ν =

⋃ς
i=1 fi.

(a) (b)

Figure 2.3: A season of ς = 5 is (a) composed by f , and (b) represented by ν.

We consider the threat areas as the union of the recorded failures areas, not as
a single disk representing the totality of the records. Thus, we avoid considering
hazards in areas where they have never occurred, i.e. tsunamis above 1000 m sea
level, earthquakes in non-seismic areas or fires in hydrographic areas. Also, we
define each geographic coordinate (x, y) ∈ ν has the same probability of failure
occurring in it. Now, in order to represent the frequency of occurrence of hazards,
we calculate ν for the same month in a set of years defined by ψ. Each intersec-
tion among ν represents that a failure has occurred again at the same location.
We determine for each time a geographic coordinate failure is detected at the
same location, its incidence factor increase. The greater the number of annual
intersections among ν, the greater the probability of failure in that area.
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Given an area of interest A, associated to the total network coverage, the region
R in which the failures occur are recorded every m-th month. The geographic
coordinate cumulatively record the existence of failures in a given m-th month as
shown in Eq. 2.1. This process considers all failures, in a month, with the same
probability at the same location, regardless of how long ago they occurred.

Rm
x,y =

|ψ|∑
i=1

Fm,i
x,y (2.1)

Fm,i
x,y =

{
1 if (x, y) ∈ ν
0 otherwise

, where Fm,i
x,y represent the failure existence at the geographic coordinates (x, y)

in the m-th month of i-th year belonging to the set ψ of historical recorded years.
The totality of the failures occurring in the area of interest A are represented by
the sum of the failures present in this area, denoted by ΓmA , is shown Eq. 2.2.

ΓmA =
∑

(x,y)∈A

Rm
x,y (2.2)

From ΓmA , a probability function g can be constructed to calculate the prob-
ability for a given coordinates presents a failure in a m-th month, according to
the incidence rate in the cumulative history, as shown Eq. 2.3. The more times a
failure has occurred at a coordinates, the higher the probability to occur again at
the same location, with respect to the area of interest.

gm(x, y) =
Rm
x,y

ΓmA
(2.3)

From now on, it is possible to determine the probability of failure occurring
in a geographical location belonging to an area of interest where the network is
located. In this work, as there are several failures that compose ν, it is not possible
to represent where the failure originates. Furthermore, the probability of failure
within each ν does not follow the behavior of a given distribution, since it only
depends on which failures areas intersect among them and not on an analytical
function.

Figure 2.4: Vulnerable area represented by a hippodrome.
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Each link ei has a vulnerable zone, as shown Fig. 2.4, which corresponds to
an area delimited by a hippodrome with distance h from any point of the link
around it [43, 67], denoted as ehi . If ehi 6 ∩ ΓA, then ei is safe from threat, otherwise
P (ei) > 0. The larger the data set from which the threat model is constructed,
the less error there will be in assuming a link cannot be affected by a threat.
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Figure 2.5: Annual threat model close to a hippodrome.

An example, as can be seen in Fig. 2.5, where the hippodrome, represented by
the blue color, is intersected by multiple ν corresponding to the same month in
|ψ| = 10 years. Each color represents the number of intersected ν per geographic
coordinate within the analyzed period. In ten years, only the red area managed
to record five failures in the same zone. Despite the link being close to threats
areas where failures have occurred more than two times, it is only affected by areas
that comprise one or two occurrences. The green area intersecting the hippodrome
registers two failure occurrences unlike the cyan color that only registers one failure
occurrence within the same period. The rest of the link is not affected by failures
in the analyzed period. The larger the h value from the hippodrome, the greater
the sensibility of the link to distant threats, can further increase its probability of
failure.

To calculate the link failure probability, we use Eq. 2.4, where the probability
of failure in the hippodrome ehi is equal to the sum of all probability of failure in
the region intersecting the hippodrome of i-th link. For simplicity, starting from
the probability of failure at the hippodrome, we consider P (ei) = P (ehi ).

P (ehi ) =
∑

(x,y)∈ehi

g(x, y) (2.4)
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2.4 Route pair algorithms

In this section we present two optimization problems to select the route pair
between a couple of nodes with the minimal probability of joint failure. Also,
two heuristics to select the route pair between a couple of nodes with the minimal
probability of non-joint failure are presented. Finally, we improve a region-disjoint
geo-diverse routing heuristic to compare the results of our proposal. We defined
the couple of nodes s and d as source and destination nodes respectively, also
called terminal nodes, where (s, d) ∈ V . For each link ei ∈ E, two variables
xi, yi ∈ {0, 1} are defined. If ei is on path P1, then xi = 1, otherwise xi = 0; if ei
is on path P2, then yi = 1, otherwise yi = 0;

2.4.1 Optimization problems

Two optimization problems are defined to solve the Minimal Probability of Joint
Failure route pair selection. The first, for disjoint route pair selection and the
second, for maximal disjoint route pair selection. For both, a route pair p is
selected from a set of all possible routes Ps,d between nodes (s, d) ∈ V .

Since the failure events are independent and the failure probabilities are very
small, we consider that selecting the paths with minimum failure probability with
−
∑

(i) log(1− pi) is equivalent to −
∏

(i) (1− pi), without affecting the optimal

solution, as posed in [68]. This property is feasible to use for both, disjoint
and maximally disjoint route pair selection, where only links with probability of
failure equal to zero can share both routes. A weight ωi = − log(1−P (ei)) + l(ei)

K

is defined for each link ei ∈ E and can be calculated beforehand. The value l(ei)
K

is a negligible value compared to the smallest failure probability in the network,
where we used K = 1010ΓiA. With this value we avoid that a link with P (ei) = 0
can be reused in the same path. Also, it is feasible to untie a choice of routes,
based on l(ei), when both routes have the same probability of failure.

The first proposed optimization problem, presented in Eq. 2.5, is defined as
Minimal Probability of Joint Failure for Disjoint Route Pair (MPJF-DRP).

p∗ = argmin
p∈Ps,d

ε∑
i=1

ωi(xi + yi), (2.5)

subject to:

(xi + yi) ≤ 1, ∀i ∈ 1, 2, . . . , ε (2.6)

The objective function is to minimize the probability of joint failure between
primary and backup routes. Constraint (2.6) states that ei is used by at most one
path.
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Moreover, we present a second optimization problem, depicted in Eq. 2.7,
defined as Minimal Probability of Joint Failure for Maximal Disjoint Route Pair
(MPJF-MDRP), where an additional variable is added to the constraints. For
each ei ∈ E, a variable bi ∈ {0, 1} is defined. If ei is on both paths, then bi = 1,
otherwise bi = 0. The difference with the first optimization problem is that
it allows sharing links between both routes, in case they are threat-free links,
allowing to further decrease the minimal probability of joint failure of the route
pair.

p∗ = argmin
p∈Ps,d

ε∑
i=1

ωi(xi + yi), (2.7)

subject to:

P (ei)bi = 0,∀i ∈ 1, 2, . . . , ε (2.8)

(xi + yi) ≤ 1 + bi,∀i ∈ 1, 2, . . . , ε (2.9)

The objective function is to minimize the probability of joint failure between
primary and backup routes. Constraint (2.8) prevents a link with a non-zero
failure probability from being chosen for use on both routes. Constraint (2.9)
states that link will be used by at most one path, unless it is enabled to be on
both routes. The proposed optimization problems were resolved using the Gurobi
optimizer solver 9.1.1 [69].

2.4.2 Minimal risk routing heuristics

In addition to the optimization problems, we present two heuristics. These use
the weights ωi, computed for the proposed optimization problems, to obtain the
shortest routes serially. Instead of selecting the route pair jointly as optimization
problems do, it selects them sequentially, as SRLGRA 2 [60] does. In this way,
we determine what advantages there are to using a solution generated from the
selection of the route pair with the minimal joint failure probability.

On Alg. 1, the pseudo code for the Minimal Probability of non-Joint Failure
for Disjoint Route Pair (MPnJF-DRP) is presented. From the network and the
terminal nodes, the primary path P1 is calculated running Dijkstra’s algorithm
to obtain the least weight route. Then, the links belonging to P1 are pruned
from the network and the backup path P2 between the same couple of nodes is
calculated using Dijkstra’s algorithm again. Both calculated routes, one after the
other, are the resulting pair of routes.

Unlike the disjoint process, the maximally disjoint route pair heuristic, only
prunes links whose probability of failure is greater than zero, thus allowing the
reuse of links that have never had a previous failure record. The pseudo code
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for the Minimal Probability of non-Joint Failure - Maximal Disjoint Route Pair
(MPnJF-MDRP) is presented in Alg. 2.

Algorithm 1 MPnJF-DRP
Input:
G := graph
s, d := source and destination node
ωi := the weight associated to ei

Output
P1,P2

1: function Dijkstra(G,m, n)
2: return pathm,n

3: function Prune(G,path)
4: Prune from G every links ∈ to path
5: return G’
6: procedure mpnjf-drp
7: Primary ← Dijkstra{G, s, d}
8: G′ ← Prune{G,Primary}
9: Backup ← Dijkstra(G′, s, d)
10: return Primary,Backup

2.4.3 SRLG algorithm

In this work we present the Double WayPoint Shortest Path (DWPSP) heuristic.
It is a simplified and improved version of iWPSP heuristic [61], since it considers
only two routes (k = 2), but it also solves nodes re-utilization problem in the
same path.

The iWPSP, as can be seen in Fig. 2.6, consists in the nodes choice Si, mi and
Ti, source neighbor, middle and destination neighbor respectively. Then, finds
the paths that link them using the Dijkstra’s algorithm. It uses a distance d
to establish a minimum separation between the neighbouring nodes of both, the
source and destination. Also, adds a δ to separate in d + δ the middle nodes mi

between them.
As can be seen in Fig. 2.7, iWPSP can present problems when choosing the

routes due to the mechanism of how the routes are built between both ends, using
only the information of the mi node, without previous knowledge of the nodes
used to build the route. Reused links may exist between Si − mi and mi − Ti
as can be seen in Fig. 2.7a, where the link Barcelona-Lyon is used twice. In
addition, a loop can be created within a route, unnecessarily lengthening the link
and bypassing the desired effect of moving the link away by (d+ δ) as can be seen
in Fig. 2.7b. In both cases a node reuse problem in the same path is detected, on
Lyon and Berlin respectively.



2. Materials and methods 25

Algorithm 2 MPnJF-MDRP
Input:
G := graph
s, d := source and destination node
ωi := the weight associated to ei

Output
P1,P2

1: function Dijkstra(G,m, n)
2: return pathm,n

3: function Prune(G,path)
4: Prune from G every links with P (ei) > 0 ∈ to path
5: return G’
6: procedure mpnjf-mdrp
7: Primary ← Dijkstra{G, s, d}
8: G′ ← Prune{G,Primary}
9: Backup ← Dijkstra(G′, s, d)
10: return Primary,Backup

Figure 2.6: iterative WayPoint Shortest Path (iWPSP) heuristic.

To solve this, a node memory buffer has been implemented in Alg. 3. Before
calculating Dijkstra’s algorithm between a couple of nodes, it prunes from the
network all links intersecting the nodes of the path already calculated, except for
the links intersecting the last node. In this way, it is impossible to reuse the same
nodes on the same path. In case it is not feasible to find a solution, the path is
computed in reverse order. If in both cases it is not possible to obtain a route,
a new mi node is searched for both paths that is φ farther away from (d + δ),
thus fulfilling the minimum distance requirements, and the feasibility of finding a
route pair is checked again.

SRLG algorithms require an input D, corresponding to the diameter of the
largest expected failure. A solution to the failure size selection problem, proposed
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Algorithm 3 Double WayPoint Shortest Path heuristic.
Input:
G := graph
S, T := source and target node
d := separation distance between paths
δ := delta distance when selecting waypoint node
φ := incremental distance

Output
P1,P2

1: function Prune(G,path,a)
2: N ← Select all nodes ∈ path less a
3: G’ ← Prune from G all ei ∩N
4: return G’
5: function Dijkstra(path, a, b)
6: G’ ← Prune{G,path,a}
7: return shortest path between a,b from G’

8: function CheckNodeTwice(path)
9: if exist a repeted node in the path then
10: return 1
11: return -1
12: function GetPair(δ)
13: [m1,m2]← GetMiddlePoint{δ}
14: Primary ← GetRoute{S, S1,m1, T1, T}
15: Backup ← GetRoute{S, S2,m2, T2, T}
16: if (Primary OR Backup) == -1 then
17: GetPair{δ + φ}
18: return path

19: function GetRoute(S, Sn,m, Tn, T )
20: path← ei ∩ {S, Sn}
21: path← path + Dijkstra(path, Sn,m)
22: path← path + Dijkstra(path,m, Tn)
23: path← path + Dijkstra(path, Tn, T )
24: if CheckNodeTwice{path} then
25: path← ei ∩ {T, Tn}
26: path← path + Dijkstra(path, Tn,m)
27: path← path + Dijkstra(path,m, Sn)
28: path← path + Dijkstra(path, Sn, S)

29: if CheckNodeTwice{path} then
30: return -1
31: return path

32: function GetMiddlePoints(δ)
33: Create a paralel segment separated by d+ δ above and below to L (L1, L2) respectively.
34: Choose m′ above L1 with a minimum distance greater than d+ δ to m.
35: Choose m′′ below L2 with a minimum distance greater than d+ δ to m.
36: return m′,m′′

37: procedure DWPSP
38: Create an imaginary straight line L intersecting S and T
39: m ← the middle point of L.
40: Create two paralels segments above and below to L, with a distance d.
41: Choose neighbour node S1, T1 above L with a minimum distance > d to L.
42: Choose neighbour node S2, T2 below L with a minimum distance > d to L.
43: Primary,Backup← GetPair{δ}
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(a) d=0 km and δ=400 km. (b) d=150 km and δ=600 km.

Figure 2.7: Issues detected in iWPSP heuristic in Nobel-EU, solved in DWPSP.

by us, from the empirical data approach, is described below. From the records
obtained by the data set, we compute the smallest circle [70] enclosing intersected
failures in ν to find the largest diameter to represent D for each hazard season,
as shown in Fig. 2.8.

Figure 2.8: Smallest sized circle from recorded data representing D.

To compare the performance of the proposed algorithms, we choose from the
literature SRLGRA 1 and SRLGRA 2, for which we will use the same mechanism
as for DWPSP to compute D.

The optimization problem describing the operation of SRLGRA 1 is explained
in Appendix A. When the constraint for the pair of disjoint routes with a specific
D value is not met, then it is not possible to establish communication between
both. To increase the DWPSP chance of obtaining routes, we set δ + φ = 0 to
relax the separation constraint on intermediate nodes.
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2.5 Empirical failures

In order to use the proposed threat model, records of geotemporal failures are re-
quired to calculate the effects they produce in different networks of the globe. Any
type of failure can be used with the proposed model, but for this work, we choose
fire as failure. Fire is a threat in most parts of the world, generally reported as
large-scale areas, representing regions containing multiple independent small-scale
failures. In addition, we have access to geolocated global fire events, which have
been recorded over time via NASA satellites. We considered that all fire events
recorded by MODIS may be of high risk to damage the network infrastructure, so
we did not filter out any events. We obtained the totally complete annual records
available from MODIS, comprising the range between the year 2001 and the year
2019. Records between the years 2001 and 2018 were used to import into the
threat model. While those for the year 2019, for each season we used each day’s
failures as a different scenario. The failures occurring each day will be considered
as unique failures to that day, i.e., each day starts with all its links active. To
represent the coverage of each recorded failure geographic coordinate, we use a
disk of diameter 1000 meter, since 500 meter is the radius of each fire focus derived
from the MODIS database [71].

MODIS instrumentation onboard two NASA satellites ensures at least 4 daily
measurements [72]. During an exploratory data analysis, we observed that in no
case did the fire outbreaks remain in the same place in a month, thus indicating
fire expansion or extinguishment. With the above, we eliminate the probability
of a fire reigniting at the same point of origin in the same month. For the risk
model, we consider hippodromes with a h = 40 m [73]. This value represents the
case where flammable material, such as wood, is found near the link, which could
cause the link to be damaged. The h value assigned to the hippodrome depend
on how close the threat must be to influence the performance of the link. We kept
the h independent of the geographical area and season of the threat. To select
the failures to be taken into account in the threat model proposed, we filter by
the geographic area in which the networks are located reported below. For each
network area, an additional 1 km buffer was established to ensure that the edge
links could also be affected by nearby failures of 500 m radius.

2.6 Real-world networks selection

In this work, we looked for topologies with different both, degrees of connectivity
and geographical coverage. Three real-world telecommunication networks used
in previous works on region disjoint geo-diverse route selection in networks were
chosen [61, 74]. AT&T, Nobel-EU and Italian main backbone, were obtained
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from InternetZoo [75], SDNLib [76], and based on what was published in [37],
respectively. In Fig. 2.9 the geo-located topologies can be observed, where the
associated name to each node corresponds to the name of the city where it is
located. The main graph properties of the real world telecommunication networks
to be used in this work are presented in the Table 2.1, where diversity in both
degree and diameter is demonstrated.

Table 2.1: Network properties of each topology chosen.

Topology Nodes Links Degree Diameter
Italy 32 60 3.75 7
Nobel-EU 28 42 3 8
AT&T 25 57 4.48 5

Otherwise, there are also geographical characteristics, less explored in the liter-
ature, that help us to better understand the sensibility of the network to different
types of hazards such as climate, difficulty of access to the terrain, altitude, etc.
The topologies analyzed in this work are located in the northern hemisphere at
similar latitudes, so they maintain the same hazard seasons characteristics in the
year [77]. The geographical properties of the topologies are shown in Table 2.2,
where the perimeter is defined as the sum of the links length belonging to the
edge network, coverage is the geographic area enclosed by the perimeter, and the
average cost per link is the average euclidean length from all links belonging to the
network. Also, the average annually fires detected by MODIS for each network
area is presented, calculated from the number of failures obtained between 2001
and 2018.

Table 2.2: Geographical network properties of each topology.

Perimeter Coverage Average cost Average annually
Topology [km] [km2] per link [km] fires detected
Italy 2613 420 996 76 5444
Nobel-EU 9985 3 958 080 184 25 293
AT&T 11 141 6 775 562 685 121 586

Infrastructures with different sized coverage areas were chosen to have geo-
graphic diversity and to increase the probability of finding safe links along the
records. As expected, for similar latitudes, the greater the geographic coverage,
the greater the number of fires recorded. Although the Italy network has more
nodes and links than the other topologies analyzed, Table 2.2 shows that it covers
a smaller geographical area. Indicators such as this show that, even if a network
has a high degree of connectivity, it can be highly affected by small-scale failures
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when the network has a small coverage area. This kind of information is relevant
when calculating routes to avoid failures of a specific size. The smaller the geo-
graphic coverage, the smaller the failures size to disable the connection between
a couple of nodes in the network, because the nodes are located closer to each
other.

(a) Italy backbone
(b) Nobel-EU

(c) AT&T

Figure 2.9: Real-world geo-located telecommunication network topologies.

2.7 Performance Metrics

The ability of a network to remain active after threats to a couple of nodes depends
initially on its ability to establish routes between them and whether at least one
route remains active after failures.

The ability of the network to provide a route pair between a couple of nodes,
given a particular routing algorithm, is measured with the success rate (SR). Next
to it, the ability to maintain at least one route after network failures occurred is
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calculated by Average Two Terminal Reliability (ATTR). In addition, as charac-
teristics of the selected route pairs, the connectivity between them are calculated
from the threat probability according to the historical record through Average
Connectivity (AC). Also, to represent the cost of resource consumption by each
routing algorithm, we calculated the path pair length (PPL).

2.7.1 Reliability and Feasibility

Average Two-Terminal Reliability quantifies how well the network is connected
after the occurrence of failure events. This metric represent the probability of
a randomly chosen couple of nodes remain connected. Unlike works seen in the
literature where they measure connectivity through active links, we will measure
connectivity based on pre-established working routes. Thus, the Two Terminal
Reliability between two nodes (s, d), is defined by Zs,d ∈ {0, 1}. If after failures
at least one route is available between (s, d), then Zs,d = 1, otherwise Zs,d = 0.
Therefore, the ATTR of a network after failures occur, calculated from previous
route pairs selected between two nodes (s, d) is given by:

ATTR =

(
n

2

)−1∑
s 6=d

Zs,d (2.10)

, where
(
n
2

)
is the binomial coefficient and n is the amount of nodes connected to

the topology. To calculate the ATTR, we use as active routes all the route pairs
selected by each routing algorithm.

However, achieving an ATTR = 1 is not always possible, since it will depend
on whether connectivity is achieved between the nodes prior to the failure. In our
case, it will depend on the feasibility of selecting a route pair by the chosen routing
algorithm, especially when there are constraints that prevent finding a solution.
To calculate the success rate of an algorithm to generate routes between all couple
of nodes in the network, we improve the SR presented in [37]. We measure the
reachability between two nodes (s, d) through Rs,d and a routing algorithm. If the
routing algorithm is able to deliver a solution for the node pair, then Rs,d = 1,
otherwise Rs,d = 0. The above is closely tied to the routing algorithm used, since
even if infrastructure exists to connect the two nodes, the algorithm may not be
able to deliver a solution. Instead of calculating SR as the reachability between
all nodes belonging to the network divided by the number of node pairs connected
by routes generated by a single solution routing algorithm, we propose to divide
it by the total number of node pairs in the network, as Eq. 2.11 shown.

SR =

(
n

2

)−1∑
s 6=d

Rs,d (2.11)
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, where
(
n
2

)
is the binomial coefficient and n is the amount of nodes connected to

the topology. Because prior to failures there will always be higher connectivity,
the ATTR ≤ SR condition must always be satisfied.

Finally, from the previously established routes and the detected failures, we
calculate the number of failed single routes and the number of both, the primary
and backup routes that failed. Single failed routes correspond to all routes con-
taining a failure that crosses the hippodrome belonging to a network. As a subset
of single failure are dual failed routes, which represent pairs of failed routes, where
connectivity between a couple of nodes ceased to exist. Failed dual routes are also
known as number of disconnected peers, a metric used in [37]. In both cases,
single and dual failures, the total number of failed routes are normalized with
respect to the total number of routes established by the routing algorithm. From
these metrics it is possible to determine how reliable each algorithm is in keeping
its routes available after a failure.

2.7.2 Average Connectivity

AC represents how well connected a couple of nodes (s, d) ∈ E remain after
the failure of links connecting them, due to failure events. To represent mathe-
matically the average connectivity we were based on [68]. It is computed from
the failure probability Pi,j associated to the j-th link belonging to the i-th path,
provided by the risk model discussed in Sec. 2.3. Since the failure events are in-
dependent, the failure probability of the i-th path, denoted by Pi, corresponds to
the multiplication of the failure probabilities of the k links that make up the path.
To allow compatibility with scenarios where there are safe links with Pi,j equal to
zero, we calculate Pi based on the complement of Pi,j. Then, the average connec-
tivity between (s, d) is calculated as the complement of the failure probability of
the two paths between these nodes as denoted by Eq. 2.12.

Pi = 1−
k∏
j=1

(1− Pi,j), , ACs,d = 1−
2∏
i=1

Pi (2.12)

Therefore, the average connectivity for a network, defined in Eq. 2.13, is the
average ACs,d among all couples of nodes belonging to the network.

AC =

(
n

2

)−1∑
s 6=d

ACs,d (2.13)

, where
(
n
2

)
is the binomial coefficient and n is the amount of nodes connected to

the topology. This metric allows to know what percentage of connectivity a route
has according to the historical records of its links. Thus, before a failure occurs,
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we can predict how connected the network will remain after the failure event.
The lower the failure probability of the links belonging to a route, the higher the
average connectivity value. Thus, with failure probabilities close to zero, it is
feasible to obtain average connectivity values higher than 99.999%. Although this
is a good indicator, there is still a probability that links may fail. To compare
high AC values, we propose the Average Annual Disconnectivity (AAD) metric.
In Eq. 2.14, AAD is defined as the complement to the annual average of the
average connectivity for each month of the year, where ACi is the AC value for
the i-th month. The smaller the value of AAD, the better the annual average
connectivity.

AAD = 1− 1

12

12∑
i=1

ACi (2.14)

2.7.3 Path Pair Length

PPL is a metric based on a single path length [78, 79], since the number of hops and
the distance covered by the routes are usually factors associated with economic
costs. Path Pair Length allow us to calculate the average of: number of links
used by both routes, and the distance, in kilometers, traveled by them for PPLl
and PPLd respectively. We defined them as show in Eq. 2.15 for each node pair
belonging to the network, represented as the k-th node pair in the m-th month.

PPLkl,m =
ε∑
i=1

xi + yi,PPLkd,m =
ε∑
i=1

l(xi)xi + l(yi)yi (2.15)

Generalizing, for a whole topology, we can obtain the monthly PPL as shown
in Eq. 2.16, representing the monthly PPL among each pair of distinct nodes
belonging the topology in the m-th month.

PPLl,m =

(
n

2

)−1 (n2)∑
k=1

PPLk
l,m,PPLd,m =

(
n

2

)−1 (n2)∑
k=1

PPLk
d,m (2.16)

where n is the number of nodes belonging to the network. Finally, the APPL value
corresponds to the average among every m-th PPL values as Eq. 2.17 shows.

APPLl =
1

12

12∑
m=1

PPLl,m,APPLd =
1

12

12∑
m=1

PPLd,m (2.17)

To achieve a fair comparison, the average PPL values among different routing
algorithms for the same network, must be obtained from the same couple of nodes
set. Since not all algorithms are able to select a route pair for all couple of nodes,
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to calculate PPL, we only consider the couple of nodes in the network where all
the routing algorithms were able to establish a route pair.



3
Results

This chapter presents a series of experiments that were carried out to evaluate the
performance of the proposed route pair selection algorithms. The results presented
below reflect the advantages of using empirical data as a basis for establishing the
risk of the links belonging to the network.

3.0.1 Route pair selection

To calculate the path pair between the nodes in each network, we first generate the
threat and risk model from the geo-located failure records as discussed in Sec. 2.3.
Twelve scenarios were analyzed, representing each month of the year, in which
the number of fire failures among the three topologies was recorded. In Fig. 3.1
percentage distribution of fires by month can be seen between 2001 and 2018,
including both years. The month with the lowest and the highest amount of fire
reported corresponds to December and August respectively. Also, we can observe
between May and November there are more fires detected, which belongs to the
fire season in the northern hemisphere. In addition, the results are in agreement
with [7], where the months of March and April, show an increase in fires caused by
humans. On the other side, between the months of June and September, a strong
component caused by lightning strikes. For each month, we calculate the threat
and the risk model, for every network topology in the range of years between 2001
and 2018, as detailed in Sec. 2.3. From the risk model, we obtained the number
of safe links per month. Fig. 3.2 shows the percentage of safe links, normalized
by the number of links by each network. Here, we can obtain the lowest safe
links value within the year, between the months of July and October, which is
consistent with the high fire season. On the other hand, between December and
January, the highest number of safe links is achieved. Despite this, there is no
clear correlation between the number of fires and the number of secure links that
would allow this information to be generalized to any network topology.

35
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Figure 3.1: Percentage of totally fire sources monthly registered between years
2001 and 2018 by MODIS.
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Figure 3.2: Network topology safe links % per month between 2001 and 2018.

Although Italy topology has smaller links than Nobel topology, there is no
clear difference between the safe links detected. This shows that links are affected
by threats according to their geographical location and not according to their
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length, even though their length may lead to an increased probability of failure.
Fig. 3.3 shows the safe (blue) links in the Italy topology, where 28% and 97%

of safe links are obtained for the month of August and December, respectively.
Although December is the month with the highest number of safe links, it is not
free from failures. On the other hand, in August, there is also a presence of safe
links. The above answers our research questions, where it is obtained that the
probability distribution of failure varies according to the season and it is feasible
that exist threat-free areas where safe links are located. Although many links are
not safe year-round, it is still feasible to use them seasonally.

(a) (b)

Figure 3.3: Safe links for Italy detected between the years 2001-2018 for the
months with the most and least threats, (a) August and (b) December respectively.

To calculate the largest failure size for each hazard station, we use the tech-
nique proposed in Sec. 2.4.3. Table 3.1 represents the largest diameter calculated
from each ν. Here, we can obtain that although the largest diameters are obtained
from the month with the highest frequency of fires (August), this does not allow
us to conclude that the diameter is directly proportional to the number of fires
detected. In cases such as the AT&T network, it is observed that in May, the
smallest circle diameter is greater than those obtained in months with fewer fires,
such as March.

Once we have the probabilities of failure for each link and the failure sizes for
each month, we proceeded to calculate the route pair between all couple of nodes
for each network topology. As in [44], we ignored the connectivity between two
points if a backup path between the two points was not feasible. This triggers
the SR value of the network to decrease and an ATTR equal to one cannot be
achieved. Despite using different routing algorithms, it is possible to find, in some
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Table 3.1: Maximum monthly fire cluster diameter registered in Km between 2001
and 2018.

Topology Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Italy 5 11 9 7 7 9 15 15 9 11 7 5
Nobel 9 11 11 9 11 23 25 37 13 11 9 7
AT&T 15 15 21 31 55 111 121 185 65 45 35 45

cases, equal solutions between them. In order to better compare the algorithms,
Fig. 3.4 shows the routes obtained with our algorithms are totally different from
those computed with the region disjoint geo-diverse routing algorithms.

(a) SRLGRA 1 & SRLGRA 2 (b) DWPSP

(c) MPJF-DRP (d) MPnJF-DRP & MPnJF-MDRP & MPJF-
MDRP

Figure 3.4: Pair routes between Raleigh and Sacramento for each algorithm.

3.0.2 Average Connectivity, Reliability & Feasibility

Because the AC has very high values in all cases, exceeding 99.999%, it is dif-
ficult to compare the values. For this reason, we calculate the average annual
disconnection rate, previously defined by AAD in Eq. 2.13.

Table 3.2 shows the AAD values obtained from the route pairs selected by
each algorithm associated to every network topology. The algorithm with the
smallest AAD for each network topology is MPJF-MDRP, since it minimizes the
routes probability of joint failure, being able to reuse safe links. In addition, it is
observed that the disconnection of the three SRLG-based algorithms in all cases
at least doubles the proposed algorithms. Even, for the smallest coverage network
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Table 3.2: AAD values for each network topology x 10−10

Algorithm Italy Nobel ATT Average
SRLGRA 1 620.68 21.971 7.36 216.67
SRLGRA 2 620.68 21.971 7.36 216.67
DWPSP 647.658 28.779 14.743 230.39
MPnJF-MDRP 36.33 10.096 3.375 16.60
MPnJF-DRP 45.292 9.815 3.319 19.48
MPJF-MDRP 36.31 9.019 3.295 16.21
MPJF-DRP 48.636 11.935 3.431 21.33

topology, the reached ADD values are up to 12 times higher than those obtained
by our algorithms.

In order to compare the ATTR results between each algorithm, it is first
necessary to know if all of them were able to choose a route pair between a couple
of nodes, prior to the existence of failures in the network. In this way, it can be
evaluated whether a small ATTR value is the product of a high link failure or the
product of an inability to select a route pair between a couple of nodes.

The following Tables 3.3, 3.4, 3.5 show the results obtained using the seven
routing algorithms used in this work, composed by three region disjoint geo-diverse
routing algorithms and four risk minimization routing algorithms. As can be seen,
in the three topologies, our proposed algorithms based on risk minimization are the
best prepared to avoid single failures in active routes. Moreover, given that each
topology is located in a different geographical area, it is possible to find scenarios
where all our algorithms obtain a better performance, as occurs in AT&T.

Table 3.3: Reliability for Italy topology

Algorithm SR Single Dual ATTR
failure failure

SRLGRA 1 1.000 00 0.020 26 0.000 51 0.998 85
SRLGRA 2 0.995 97 0.022 88 0.002 12 0.994 65
DWPSP 0.880 54 0.112 64 0.047 72 0.878 24
MPnJF-MDRP 1.000 00 0.009 68 0.002 21 0.992 20
MPnJF-DRP 0.999 50 0.011 45 0.000 29 0.999 41
MPJF-MDRP 1.000 00 0.008 54 0.001 74 0.993 64
MPJF-DRP 1.000 00 0.010 17 0.000 01 0.999 98
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Table 3.4: Reliability for Nobel topology

Algorithm SR Single Dual ATTR
failure failure

SRLGRA 1 1.000 000 0.018 881 0.000 086 0.999 829
SRLGRA 2 0.920 635 0.095 883 0.039 548 0.920 471
DWPSP 0.709 877 0.304 055 0.144 618 0.709 210
MPnJF-MDRP 0.999 780 0.011 300 0.001 036 0.997 912
MPnJF-DRP 0.981 041 0.033 467 0.009 534 0.981 041
MPJF-MDRP 1.000 000 0.010 934 0.000 982 0.998 014
MPJF-DRP 1.000 000 0.013 641 0.000 003 0.999 993

Table 3.5: Reliability for AT&T topology

Algorithm SR Single Dual ATTR
failure failure

SRLGRA 1 0.994 722 0.056 014 0.005 151 0.989 821
SRLGRA 2 0.987 222 0.063 064 0.008 763 0.982 606
DWPSP 0.666 667 0.379 247 0.169 667 0.661 258
MPnJF-MDRP 1.000 000 0.026 279 0.001 215 0.997 562
MPnJF-DRP 1.000 000 0.027 315 0.001 178 0.997 639
MPJF-MDRP 1.000 000 0.025 890 0.001 251 0.997 491
MPJF-DRP 1.000 000 0.026 247 0.001 096 0.997 805

Table 3.6: Average Reliability for geo-routing algorithms.

Algorithm SR Single Dual ATTR
failure failure

SRLGRA 1 0.998 241 0.031 721 0.001 917 0.996 166
SRLGRA 2 0.967 942 0.060 610 0.016 810 0.965 908
DWPSP 0.752 363 0.265 316 0.120 668 0.749 568
MPnJF-MDRP 0.999 927 0.015 755 0.001 489 0.995 890
MPnJF-DRP 0.993 512 0.024 079 0.003 669 0.992 696
MPJF-MDRP 1.000 000 0.015 123 0.001 323 0.996 380
MPJF-DRP 1.000 000 0.016 686 0.000 370 0.999 258
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Table 3.6 shows the average results among the three network topologies. As
can be seen from the above results, all SRLG-based algorithms were not able to
deliver an SR equal to one in all scenarios. Therefore, it is important to have an
effective mechanism to solve the failure size selection problem or to use techniques
such as ours that do not rely on path separation. This is a relevant point when
comparing different route selection algorithms, since without the SR value, an
ATTR of less than one could indicate failures in both routes, since they were
never established. Furthermore, from the tables it can be extracted that of all the
route pairs generated, there is a clear tendency for maximally disjoint routes to
have fewer single failed links, despite having a lower ATTR. In cases in which the
time to fix each link is very long and the costs associated to repairing are high,
an excellent alternative would be to consider maximally disjoint route selection,
to minimize the costs associated with repairing active links.

Although there are fewer single failure links in MPJF-MDRP, the number
of dual failure is higher than that obtained in MPJF-DRP. This occurs because
despite having safe links according to our records, some of them were affected by
failures in 2019. If we compare the percentage of single failure obtained by the
best region disjoint geo-diverse routing algorithm, we observe that our MPJF-
DRP algorithm was able to reduce by 47.4% the link failures belonging to the
selected routes. Finally, it is obtained that our MPJF-DRP problem is the one
that achieves a higher ATTR in all analyzed topologies. Also reports a lower
number of single and dual failures in the links belonging to the network topology,
compared to the region disjoint geo-diverse routing algorithms.

3.0.3 Route costs

The comparison of APPL values are exposed in the Table 3.7. Since SRLGRA 1
will always choose the combination of routes with the shortest distance traveled it
always get the smallest values. SRLGRA 2 being a non-optimal heuristic based on
SRLGRA 1, always obtains the same or a higher value than SRLGRA 1, being the
most similar to it. On the other side, DWPSP is the geo-diverse routing algorithm
analyzed that obtains highest PPL values, due to the fact that its mechanism of
obtaining the shortest route between intermediate points requires that both routes
have a node near the center of the imaginary line joining the two nodes (s, d) and
two neighbors. This also forces there to be at least five nodes on each route pair,
so there can be no direct links between origin and destination. Within the disjoint
algorithms analyzed, our proposals obtain higher APPL values. Additionally, the
results delivered by the maximally disjoint algorithms obtain on average less costs
than the disjoint proposals, reducing up to 12% the APPL value. This is largely
because a connection between two neighboring nodes can be achieved using the
same link for both routes (in case there are no threats in the hippodrome). For
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disjoint routes, it must necessarily have a minimum of three links, which increases
the APPL value (one for the primary path and two for backup or vice versa). Also,

Table 3.7: APPLl and APPLd values for each algorithm per topology.

Algorithm Italy Nobel AT&T
APPLl APPLd APPLl APPLd APPLl APPLd

SRLGRA 1 8.50 1 184.84 8.45 3 148.36 5.86 5 089.93
SRLGRA 2 8.68 1 218.42 8.48 3 175.06 5.86 5 340.86
DWPSP 10.88 1 528.59 10.32 3 973.66 8.33 6 743.22
MPnJF-MDRP 10.00 1 401.02 9.63 3 612.61 8.37 6 919.84
MPnJF-DRP 11.44 1 672.78 10.36 4 034.06 8.53 7 086.47
MPJF-MDRP 9.74 1 439.43 9.39 3 679.48 8.25 6 831.34
MPJF-DRP 10.96 1 640.63 10.08 3 986.44 8.36 6 939.05

the distance traveled is not directly correlated with the number of links used. It
is observed for different algorithms where the distance traveled increases, but the
number of links used decreases. This is because not all links are the same length.
Comparing the monthly PPLd values within a year serves to highlight the diversity
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Figure 3.5: PPLd for every month for AT&T network.

of routes that may exist within a network topology. If the value remains constant,
we consider that the routes selected from one month to another are the same.
Fig. 3.5 shows the PPLd calculated monthly for each routing algorithm in the
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biggest coveraged network, AT&T. The proposed algorithms, on average, obtain
a standard deviation 5 times higher than that obtained by the region disjoint
geo-diverse routing algorithms, which evidences a more accurate adjustment to
the changes occurring monthly in the network as a result of threats.





4
Conclusions and Future Work

In this work, it is proposed to improve network reliability through the idea of
selecting a route pair minimizing the risk on both routes, based on real geo-located
failure records. The methodology presented comprises a series of steps to bring
geotemporal knowledge of threats to the route pair selection method: a threat
model using the geographic and temporal properties of failures to represent the
probability of failure distribution in an interest area; a risk model that assing a
probability of failure to each link, and the algorithms for a route pair selection
between a couple of nodes based on minimal risk. This work is not only a con-
tribution to the theory of network reliability through threats. It also allows the
network operator, in addition to increase the availability of both routes, to achieve
greater dynamism in the routes according to the hazard season. In addition, it
avoids having to solve the failure size selection problem that delivers realistic fail-
ure diameters for a zone of interest, for which we do not evidence techniques to
facilitate its selection.

All these advantages greatly facilitate the work of the network operator, since
they allow the construction of a reliable network, independent of the network
operator expertise to face threats. The threat model presented allows to use em-
pirical data associated to a geographical and temporal dimension. Moreover, by
considering only the detected threat area, the proposed model does not modify
the probability of failure distribution, which occurs when clustering failures over
huge terrains as a simple geometric figure. The main idea exploited by the method
presented, is that it facilitates the identification of the regions where the greatest
number of failures have been located and at the same time detect the threat-free
areas. The solution of the optimization problem allows selecting a route pair with
the lowest probability of joint failure between a pair of nodes, as demonstrated in
the Sec. 2.4. In addition, by having knowledge of all the failures in the geograph-
ical environment where the network is located, it is able to be reliable to more
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than one failure region, adapting better to massive disaster scenarios. From the
results obtained in the three topologies, the reliability was increased with respect
to that achieved by the region disjoint geo-diverse routing algorithms. An aver-
age ATTR of more than 99.9% was achieved in the face of real threats. These
results allow us to validate that our hypothesis was correct. In addition, with
our optimization problems, 100% connectivity by paths was achieved in network
topologies tested, while no region disjoint geo-diverse routing algorithms achieved
the same. Although there are areas with no previous records of failure events,
this does not mean that it is a threat-free region. Climate change and human
intervention in the geography make the model much more difficult to predict, as
conditions where the network is located are not the same for all the time. The
network operator must determine the validity of the empirical data used to calcu-
late failure probabilities. Thus, the greater the certainty of the existence of safe
links, the more the ATTR can be increased.

4.1 Future Work

A limitation of this work is the number of empirical threats used to generate the
threat model. It is desirable that the threat model can continue to be powered
and that its performance can be measured with the most recent years uploaded
to the databases. Applying maximum entropy models to hazards would make
it possible to avoid relying on the fact that a threat-free zone only corresponds
to regions with no failure records. By applying these models, maximally disjoint
routes would be expected to improve their performance. It is also hoped to obtain
more global threats databases to compare with the observed fire performance.

The threat model can be improved as a multi-layer model, which considers
several types of threats at once. Apart from considering threats extracted from
databases, it could consider features of the geography that help to reinforce the
hypothesis of threat-free zones, like eco-regions. An example of this would be to
complement a fire safe area with a hydro graphic zone.

Test with a greater diversity of real-world network topologies, to determine if
there are geographical characteristics that help to minimize risks from different
threats.



A
ILP definition

The optimization problem defined as ILP is proposed to solve a geo-route pair
problem. For each link (i, j) ∈ L , two variables xij, yij ∈ {0, 1} are defined. If
a link (i, j) is on path P1, then xij = 1, otherwise xij = 0 ; if a link (i, j) is on
path P2, then yij = 1, otherwise yij = 0 . The distances d(i, j) between the nodes
can be calculated beforehand in polynomial time. The 0–1 ILP formulation is as
follows:

min
∑

(i,j)∈L

ω(i, j)(xi,j + yi,j)

subject to∑
j∈N

(xij − xji) =


1, if i ≡ s
−1, if i ≡ d

0, otherwise
(A.1)

∑
j∈N

(yij − yji) =


1, if i ≡ s
−1, if i ≡ d

0, otherwise
(A.2)

xij + ykl ≤ 1, if(d(i, k) ≤ D, i /∈M, k /∈M)or (A.3)

(d(i, l) ≤ D, i /∈M, l /∈M)or

(d(j, k) ≤ D, j /∈M, k /∈M)or

(d(j, l) ≤ D, j /∈M, l /∈M),whereM = {s, d}
xsd + ysd ≤ 1. (A.4)

The objective function represents the total weight of the region-disjoint paths.
The equality conditions (1) and (2) are ”conservation rules” and ensure that for all
the nodes (different from s and d) in both P1 and P2, the number of incoming and
outgoing links is the same. For the source node s, there is exactly one outgoing

47



48

link for both P1 and P2, while for the destination node d there is exactly one
incoming link for both P1 and P2. Condition (3) gives the region-disjointness
constraint, preserving two nodes different from s and d, one in link (i, j) ∈ P1 and
one in link (k, l) ∈ P2 to be on a distance at most D. If there is a direct link from
s to d, condition (4) states that link will be used by at most one path. Condition
(4) is not a sub-case of (3).
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[76] Orlowski, S., Wessäly, R., Pióro, M., & Tomaszewski, A. (2010). SNDlib
1.0—Survivable network design library. Networks: An International Journal,
55(3), 276-286.

[77] Csiszar, I., Denis, L., Giglio, L., Justice, C. O., & Hewson, J. (2005). Global
fire activity from two years of MODIS data. International Journal of Wild-
land Fire, 14(2), 117-130.

[78] Gomes, T., Santos, D., Girão-Silva, R., Martins, L., Nedic, B., Gunkel, M.,
Vass, B., Tapolcai, J., & Rak, J. (2020). Disaster-Resilient Routing Schemes
for Regional Failures. 483-506.

[79] Hayashi, Y., & Matsukubo, J. (2006). Geographical effects on the path
length and the robustness in complex networks. Physical Review E, 73(6),
066113.

https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
https://earthdata.nasa.gov/faq/firms-faq
https://earthdata.nasa.gov/faq/firms-faq
http://www.topology-zoo.org

	List of Figures
	List of Tables
	Abstract
	Resumen
	Introduction
	Motivation
	State-of-the-art
	Threat models
	Risk models
	Routing algorithms
	Performance metrics
	Literature Review Matrix

	Hypothesis and research questions
	Objectives
	Contributions
	Network reliability improved through physical selection
	Network reliability improved through the logical selection
	Journal papers, conference and seminar presentations. 


	Materials and methods
	Problem statement
	Rationale
	Threat model and Risk model
	Route pair algorithms
	Optimization problems
	Minimal risk routing heuristics
	SRLG algorithm

	Empirical failures
	Real-world networks selection
	Performance Metrics
	Reliability and Feasibility
	Average Connectivity
	Path Pair Length


	Results
	Route pair selection
	Average Connectivity, Reliability & Feasibility
	Route costs


	Conclusions and Future Work
	Future Work

	ILP definition
	Bibliography

