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Resumen

Los algoritmos cuénticos, como el algoritmo de Shor o el algoritmo de Grover,
prometen una mejora significativa de la complejitud temporal por sobre
sus equivalentes clasicos. Los aparatos cuanticos actuales, conocidos como
computadores NISQ (Noisy intermediate-scale quantum), se caracterizan por
presentar altos niveles de ruido en la realizaciéon fisica de qubits y operaciones
cuanticas. Por otro lado, el entrelazamiento es reconocido como uno de los
principales recursos en el estudio de la computacion cuéntica y la informacion
cuantica. Sin embargo, las actuales limitaciones técnicas dificultan la aplicacion de
métodos convencionales para caracterizar entrelazamiento. En esta tesis se propone
un algoritmo variacional para estimar la medida geométrica de entrelazamiento
de estados puros multi-qubit. El algoritmo es robusto ante ruido y requiere solo
de mediciones y compuertas de un qubit, por lo que es adecuado para aparatos
NISQ. Esto es demostrado aplicando el método con éxito en los computadores
de IBM Quantum para estados Greenberger-Horne-Zeilinger de 3, 4, y 5 qubits.
Simulaciones numeéricas con estados aleatorios muestran robustez y precision del
método. La escalabilidad del protocolo es demostrada numéricamente mediante

técnicas de matriz product states (MPS) hasta 25 qubits.
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Abstract

Quantum algorithms, like Shor’s algorithm or Grover’s algorithm, promise
a significant improvement in time complexity over their classical equivalents.
Current quantum devices, known as NISQ (Noisy intermediate-scale quantum),
are characterized for presenting high levels of noise in the physical realizations of
qubits and quantum operations. On the other hand, entanglement is recognized
as one of the core resources in the study of quantum computing and quantum
information. Nonetheless, current technical limitations difficult the applicability
of conventional methods to characterize entanglement. In this thesis, a variational
algorithm to estimate the geometric measure of entanglement of multi-qubit
pure states is proposed. The algorithm is robust against noise and requires only
single-qubit gates and measurements, so it is well suited for NISQ devices. This
is demonstrated by successfully implementing the method on IBM Quantum
devices for Greenberger-Horne-Zeilinger states of 3, 4, and 5 qubits. Numerical
simulations with random states show the robustness and accuracy of the method.
The scalability of the protocol is numerically demonstrated via matrix product

states (MPS) techniques up to 25 qubits.
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Chapter 1
Introduction

Entangled quantum states [!], which were first discussed as an argument against the
completeness of Quantum mechanics |2|, are considered nowadays a distinguishing
feature of this theory. Entanglement is also widely recognized as one of the
core resources in the study of quantum computing and quantum information
[3]; the success of quantum algorithms such as Shor’s algorithm [!] or Grover’s
algorithm [5] is tied to proper implementations of non-local gates in quantum
computers, while protocols like quantum teleportation [(], superdense coding [7]
and quantum key distribution ] rely on entangled states between two or more
parties. Entanglement is also needed for both quantum sensing [9] and quantum

metrology [10, 11].

Due to the role played by entanglement in the understanding of quantum mechanics
and its many feasible applications, several functions have been developed to
quantify it, known as entanglement measures. Nonetheless, they are generally
difficult to compute even for the bipartite case, and cannot be easily determined
experimentally. Some popular examples include the concurrence [12] and the
relative entropy of entanglement |13, [1]. A proper entanglement monotone is the
the geometric measure of entanglement (GME), first introduced by Shimony [17]
for bipartite pure states and later generalized by Barnum and Linden [16] to the
multipartite case. This measure characterizes the entanglement of a pure state [¢)
as the distance to the nearest separable pure state |¢). This entanglement measure
has been used, for example, to quantify the difficulty to distinguish multipartite

quantum states using local operations |1 7], to study quantum phase transitions in



spin models [18] and to quantify how well a state serves as the input to Grover’s

search algorithm [19].

The GME of a state |¢)) can be obtained by maximizing the fidelity F(|¢), |¢)) =
[{(|¢)|* in the set {|¢)} of separable pure states. This is an experimentally
accessible quantity since its evaluation only requires local measurements. In
particular, the fidelity can be efficiently measured in state-of-the-art quantum
devices, known as noisy intermediate-scale quantum (NISQ) [20] computers. This
class of devices is characterized by a low number of available qubits, limited
connectivity between qubits, low coherence times, and noisy entangling gates that
restrict the depth of the circuits. Within this adverse scenario, hybrid quantum-
classical variational algorithms are among the most popular [21, 22| strategies
to achieve quantum advantage, showing promising results in quantum chemistry
to find large Hamiltonian eigenvalues [23, 24, 25, 20], solving tasks of quantum

metrology [27, 25| and being applied in quantum machine learning [29].

In this thesis, the problem of experimentally measuring the amount of entanglement
of multi-qubit pure states in quantum hardware is addressed, proposing an
algorithm for the variational determination of geometrical entanglement (VDGE).
This variational quantum algorithm employs a quantum device to estimate the
fidelity between the target state |1)) and a trial state, which is used to optimize a
parameterized quantum circuit with a classical optimization method: the complex

simultaneous perturbation stochastic approximation (CSPSA) algorithm.

The algorithm is shown to correctly reproduce the value of the GME for
arbitrary superpositions of Greenberger-Horne-Zeilinger (GHZ) and W states. The
overall accuracy achieved by the method is studied using Monte Carlo numerical
experiments for states of n = 2,3,4,5,6 qubits. The feasibility of the VDGE
approach to characterize the entanglement of states of larger numbers of qubits
is also studied by means of matrix product state (MPS) techniques. Finally, the
experimental results are obtained by applying the method to the measurement
of the GME of a GHZ state in IBM Quantum Falcon Processors [30] ibmg_lima
and ibmq_bogota for n = 3,4, 5 qubits.

In chapter 2, the necessary mathematical tools and the foundations of quantum
mechanics are presented. In chapter 3, the basic definitions of entanglement and

measures of entanglement are presented, along with some common examples.



In chapter 4, the proposed algorithm to measure the geometric measure of
entanglement is explained, with the results of both the numerical simulations and
the experiments in quantum hardware. In chapter 5, the conclusions of this work

are presented, with possible extensions for future study.
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Chapter 2
Quantum Mechanics

The following chapter presents the fundamental tools to formulate the theory of
quantum mechanics, which are going to be relevant for the correct understanding

of this work.

2.1 Probability Theory

The theory of probability is essential for quantum mechanics, so the following

section is dedicated to present the basic notions of probability and random variables

51, 321,

2.1.1 Events and Probabilities

A probability model is constructed according to a particular situation or experiment,
whose results are known as outcomes and denote as w. The set of all possible
outcomes of an experiment is known as the sample space 2. The outcomes can be
either finite, countably infinite, or uncountably infinite. If €2 is countable, we call

it a discrete sample space; if it is uncountable, we call it continuous sample space.

An event E corresponds to a subset of 2. The set of events {E;}}_| is mutually
exclusive if any pair of events have no element in common, that is, if £; N E; = ()

for every 1, 7 satisfying i # j.

The probability P is a measure on the sample space that assigns to each event F

the likelihood for it to occur, and must satisfy the following axioms:
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1. P(E)>0, VE.
2. If E=Q, then P(F)=1.

3. If the events {E;};_, are mutually exclusive, then
P (U E) => P(E). (2.1.1)
i=1 i=1

The axioms of probability theorem imply a number of rules that are useful for

calculating probabilities, for example:

1. For any event F,
P(E)=1- P (E°) (2.1.2)

where the event E°¢ consists of all outcomes that are not in E.

2. For any two events A and B,

P(AUB) = P(A)+ P(B) — P(AN B). (2.1.3)

In some experiments, the probability of an event F; depends of the outcome
of another event E, that occurs before. In this case, if P(E;) > 0 then the

conditional probability that E; occurs given that E5 occurs is defined to be

P(E; N Ey)

P(EllEz) = P(Eg)

(2.1.4)
Two events E; and E, are said to be independent if P(E; N Ey) = P(FE,)P(Es).
A relationship between the conditional probabilities P (E;|Es) and P (Ey|E;) can

be obtained using the Bayes’ rule:

P (Esy|Ey) P (EY)
P (Es)

P (E\|E,) = (2.1.5)

2.1.2 Discrete Random Variables

A random variable X is a function that assigns a numerical value X (w) to each
element w of the sample space, and it is said to be discrete if its set possible

values is either finite or countably infinite. The set of possible values of X is called



6 2.1. Probability Theory

the range of X and is denoted by I. The probability mass function of a discrete
random variable X is defined by P(X = z) for x € I, where

P(X =2)=P{w: X(w) =z}). (2.1.6)

Let X and Y be two discrete random variables defined on a same sample space
with probability measure P. The joint probability mass function of X and Y is
noted by P(X = z,Y =y ), and corresponds to the probability assigned by P to
the intersection of the two sets A = {w : X(w) =z} and B ={w : Y (w) = y}.

The marginal probability mass function can be obtained from the joint probability

mass function by

The conditional probability mass function of X given that Y = y is defined by

P(X =zY =y)
P(Y =vy)

PX =z|Y =y) = (2.1.8)

for any fixed y with P(Y =vy) > 0.
For discrete random variables X and Y, the unconditional probability P(X = a)
can be calculated from

P(X=a)=Y P(X=a|Y =bPY =b). (2.1.9)

b
This rule is called the law of conditional probability. On the other hand, two
discrete random variables X and Y are said to be independent if and only if
P(X <2,Y <y)=PX <z)P(Y <y) (2.1.10)

for any two real numbers x and y, where P(X < z,Y < y) represents the
probability of occurrence of both event {X < x} and event {Y < y}.

The expectation value of a discrete random variable X corresponds to a weighted

average of its range I, where the weights are given by the probability mass function,
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and it is defined as

=Y 2P(X =), (2.1.11)

zel
and satisfy the following rules:

1. Linearity: For any two discrete random variables X and Y,
E(aX +bY) = aE(X) 4+ bE(Y), (2.1.12)

for any constants a, b provided that E(X) and E(Y') exist and are finite.

2. For any two random variables X and Y, the conditional expectation of X

given that Y = y is defined by

E(X|Y =b) = pr —z|Y =y) (2.1.13)

for each y with P(Y = y) > 0 (assuming that the sum is well-defined).

3. For any two independent discrete random variables X and Y,
E(XNY)=EX)E(Y), (2.1.14)

provided that E(X) and E(Y") exist and are finite.

4. Substitution rule: For any function g of the discrete random variable X,

=> g@x)P(X =) (2.1.15)

xzel

provided that >, |g(z)|P(X =) < oo,

2.1.3 Continuous Random Variables

The random variable X is said to be continuous if a function f(x) exists such that

= / f(z)dz  for each real number a, (2.1.16)
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where the function f(z) is known as the probability density function of X and

satisfies -
f(z)>0 forallxz and / f(z)dx = 1. (2.1.17)

The continuous random variables X and Y are said to have a joint probability
density function f(z,y) if the joint cumulative probability distribution function
P(X < a,Y <b) allows for the representation

a b
P(X <a,Y <bh) = / / f(z,y)dedy, —oo0 < a,b<oo, (2.1.18)
r=—00 Jy=—00
where the function f(x,y) satisfies

f(z,y) >0 forall z,y and / / f(z,y)dzdy = 1. (2.1.19)

From this, it is possible to define the marginal probability density functions of X
and Y as

fx(x) = /Oo f(z,y)dy, —oo << o0, (2.1.20)

fr(y) = /_oo flz,y)dz, —o0 <y < oo. (2.1.21)

Using the previous definitions, the conditional probability density function of X

given that Y = y is defined by

f(z,y)
fY(y) 7

fx(zly) = —00 < & < 00 (2.1.22)
for any fixed y with fy(y) > 0. The law of conditional probability for the random
variables X and Y that are continuously distributed with a joint density function
f(z,y) states that

Pex<a) = [ POC<alY =)y (2.1.23)

—00

where fy(y) is the marginal density function of Y. On the other hand, two

continuous random variables X and Y are said to be independent if and only if

f(z,y) = fx(x)fy(y) forall z,y. (2.1.24)
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The expectation value of a continuous random variable X with probability density
function f(z) is defined by

E(X) = /_OO xf(z)dx (2.1.25)

o0

provided that the integral [*_|z|f(x)dz is finite, and satisfy the following rules:

1. Linearity: For any two continuous random variables X and Y,
E(aX 4+ 0Y) = aE(X) + bE(Y) (2.1.26)

for any constants a, b provided that E(X) and E(Y) exist.

2. For any two random variables X and Y continuously distributed with joint
probability density function f(z,y), the conditional expectation of X given
that Y = y is defined by

E(X|Y =y) = /_OO zfx(x|y)dz. (2.1.27)

for each y with fy(y) > 0 (assuming that the integral is well-defined).

3. For any two independent continuous random variables X and Y,
E(XNY)=EX)E(Y), (2.1.28)
provided that E(X) and E(Y") exist and are finite.

4. Substitution rule: For any function g of the continuous random variable X

By = [ g(o)f(x)da, 2120

[0.9]
provided that the integral exists.

5. Two-dimensional substitution rule: If the random variables X and Y have a

joint probability density function f(z,y), then

E[g(X,Y)] Z/OO /oo 9(z,y) f(x,y)dzdy (2.1.30)

for any function g(x,y) provided that the integral is well-defined.
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2.2 Hilbert space and linear operators

In quantum mechanics a physical state is represented by a normalized state
vector in a complex vector space called Hilbert space |33]. Both the mathematical
properties and structure of Hilbert spaces and the understanding of linear operators
are essential for a proper understanding of the formalism of quantum mechanics
[34, 35, 30]. In this section and the rest of this work we will employ Dirac’s

notation [37].

A linear vector space consists of a set of vectors V' and scalar field F' (that can be

either real or complex), with a given addition (+) and multiplication rule (-).

Let |a),|b),|c) € V and «,,7 € F. The addition rule has the following

properties:

e Closure under addition: |a) + |b) € V.

e Commutativity: |a) + [b) = |b) + |a).

e Associativity: (|a) + |b)) + |c) = |a) + (|b) + |c)).

e Existence of a zero vector: |0) + |a) = |a) + |0) = |a).

e Existence of an inverse vector: |a) + |—a) = |—a) + |a) = |0).

Similarly, the multiplication of vectors by scalars satisfy the following properties:

e Closure under scalar multiplication: «|a) € V.

e Distributivity: a(|a) + |b)) = a|a) + a|b), (a+B)|a) = ala) + B]a).
e Associativity: «(f8|a)) = (ab) |a).

e Existence of an identity scalar: 1|a) = |a) 1 = |a)

e Existence of a zero scalar: 0a) = |a) 0 = |0)

where for simplicity we omitted the dot in the scalar multiplication.

A Hilbert space H is a linear vector space with a defined inner scalar product

(+,+) : H X H — C, which satisfy the following properties:
e Hermiticity: (|a),[b)) = (|b), |a))*.

e Linearity in the first argument: (|c),ala) + 510)) = a(|c),|a)) + 5(|c) ., |b)).
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e Positivity: (|a),|a)) > 0, where the equality holds only for |a) = |0).

The inner scalar product in the Dirac’s notation is (|a),[b)) = (a|b), where
(b| = |b)" is the dual vector of the vector |b) in the dual space H*. The norm of a

vector |a) is defined as:

la) || = v{ala) (2.2.1)

and satisfies the Cauchy-Schwarz inequality

[{alo)] <[} [I 1116 (2.2.2)

for any vectors |a) , |b) € H.

Finally, a Hilbert space is complete, that is, every Cauchy sequence {|¢;)},_, € H

converges to an element of H. For any |,,), the relation

i ) = )| = 0, (2.2.3)

defines a unique limit |¢)) of H such that

Tim [} — [ | =0 (22.4)

Given a Hilbert space H, a spanning set S = {|e;)}, is a set of vectors such that

each [¢)) € H can be written as a linear combination of elements of S,

v) = Zaz- ;) (2.2.5)

If the set S is also linearly independent, that is, for any set of n non-zero complex

numbers {«;} it satisfy that

Zai le;) = 0, (2.2.6)

then the set S is called a basis for H. The total number d of basis vectors is the
dimension of the Hilbert space. This dimension can be finite or infinite, while

the index 7 can be discrete or continuous. A basis is called orthonormal if each
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element is a unit vector, and distinct vectors in the basis are orthogonal, that is,

(eilej) = 0;;, where i and j are both chosen from the index set.

A linear operator between Hilbert spaces H and H’ is defined to be any function
A€ L(H,H'): H — H which is linear in its inputs, that is,

A <Z Q; |ei)> = ZaiA le:) . (2.2.7)

A linear operator A € L(H) is said to be defined on a Hilbert space H, if it maps
‘H into itself.

The space of bounded linear operators from H to H' is denoted by B (H,H'). A
linear operator A € B(H) = B(H,H) is said to be bounded if

[ADI < clllHIl, VIv) eH, ceR (2.2.8)

Let’s suppose that {|e;)}." is a basis for H and {|g;)}. is a basis for 7{'. Then for
each j in the range 1,...,m, there exist complex numbers A;; through A, ; such

that

Ales) =D Aij 93 (2.2.9)

The matrix whose entries are the values A;; is said to form a matriz representation
of the operator A. This matrix can also be represented using the outer product
representation. For two vectors [¢) = [ajay . .. a,)" and |¢) = [biby...b,]", the

outer product is denoted by |1)¢| and represented by a matrix given by

[ a0, | [ ab by ... abr |
a9 CLQb* agb* agb;';
R T T TR S | (2.2.10)
a, R R

A linear operator A with matrix elements A;; is the expansion
i?j

with matrix elements A;; = (e;|Ale;). An important result of the outer product
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representation is the completeness relation
> lee] =1 (2.2.12)

where [ is the identity operator.

An eigenvector of a linear operator A on a Hilbert space is a non-zero vector |¢)
such that

Al) = M), (2.2.13)

where A is a complex number known as the eigenvalue of A corresponding to |¢)).

The eigenvalues can be obtained with the characteristic function defined as
c(A) = det |A — M. (2.2.14)

The solutions of the characteristic equation ¢(A) = 0 are the eigenvalues of the
operator A. The eigenspace corresponding to an eigenvalue A is the set of vectors

which have eigenvalue A, and is degenerate if it is more than one dimensional.

A diagonal representation for an operator A on a Hilbert space is a representation
A =", \e;)(e;|, where the vectors |e;) form an orthonormal set of eigenvectors
for A, with corresponding eigenvalues ;. An operator is said to be diagonalizable

if it has a diagonal representation.

For a linear operator A on the Hilbert space H, there exist a unique linear operator

AT known as the adjoint operator of A, which satisfies that

(19), Ale)) = (WlAlg) = (@lAT[) = (AM[v),16)), VIv),10) € H. (2.2.15)

An operator is called Hermitian or self-adjoint if
A=A (2.2.16)

The eigenvalues of these operators are always real. This is an important property
in quantum mechanics, because physical observables are represented by self-adjoint

operators.

A special subclass of self-adjoint operators is the positive semidefinite operators.

A positive operator A is called positive semidefinite if it satisfies that
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(W[Al) >0, V) #0 (2.2.17)
which implies that A have non-negative real eigenvalues.
Another important type of self-adjoint operators are the projection operators,
whose action is to project the state along another state |a) :

P, = |a){al. (2.2.18)

The projection operator satisfy the following properties:
1. Idempotency: P2 = P,.
2. Mutual orthogonality: P,P, = §4,P%.
3. Completeness: > P, =>" |a)(a| =1

An operator is called normal if
NN' = N'N. (2.2.19)
The concept of normal operators is very useful because they have a spectral

decomposition, according to the following theorem:

Theorem 1. (Spectral decomposition) Any normal operator N on a Hilbert space
H is diagonal with respect to some orthonormal basis for H, that is, it can be

written as

N = Z A led) (el (2.2.20)

where {|e;)}, are the orthogonal eigenvectors of N with eigenvalues {\;},.

An operator U is called unitary if

UUt=UU =1 (2.2.21)

An important feature of unitary operators is that they preserve inner products

between vectors. Let 1), |¢) € H, then

(Ul),Ulg)) = (IUTUI9) = (¢l116) = (Wle) = (1¥), ]9)). (2.2.22)
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Let A be a normal operator with spectral decomposition A = ). \; |e;) (e;], where
A; are the eigenvalues of A and |e;) the corresponding eigenvectors, and f a
function from the complex numbers to the complex numbers. The function of the

normal operator f(A) is defined as

f(A) = Z f () les) (el - (2.2.23)

An important matrix function is the trace of a matrix. The trace of A is defined

to be the sum of its diagonal elements,

tr(A) = ZAii = (eilAle;) (2.2.24)

i

Let A, B,C be arbitrary matrices, the trace function satisfy the following

properties:
1. Invariance under cyclic permutations: tr(ABC) = tr(CAB) = tr(BCA)
2. Linearity: tr(aASB]) = atr(A) + Str(B), where a, § are complex numbers.

3. Invariance under the unitary similarity transformations A — UAUT:

tr (DAUY) = tr (UTUA) = tr(A) (2.2.25)

The commutator between two operators A and B is defined to be

[A,B] = AB — BA (2.2.26)

If [A, B] =0, that is, AB = BA, then we say A commutes with B. If two self-
adjoint operators A and B commute, it is possible to simultaneously diagonalize

both, that is, to write

A= Z a;lee|, B= Z by |e:)es| (2.2.27)

where |e;) is some common orthonormal set of eigenvectors for A and B.

Finally, we present two useful decompositions for operators: the polar and singular
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value decomposition.

Theorem 2. (Polar decomposition) Let A be a linear operator on a Hilbert space

H. Then there exists unitary U and positive operators J and K such that
A=UJ=KU, (2.2.28)

where the unique positive operators J and K satisfying these equations are defined

by J=VATA and K = v AAT. Moreover, if A is invertible then U is unique.

The expression A = U.J is known as the left polar decomposition of A, and
A = KU the right polar decomposition of A.

Corollary 2.1. (Singular value decomposition) Let A € R™*™ be any matriz.
Then there exist unitary matrices U € R™™ and V € R™", and a diagonal

matriz D € R™*"™ non-negative real numbers on the diagonal such that
A=UDV (2.2.29)

The diagonal elements D;; of D are called the singular values of A.

2.3 Postulates of Quantum Mechanics

The following section presents the postulates required for the construction of the

quantum theory [35, 38, 39].

Postulate 1. The state of a closed quantum mechanical system corresponds to a

unit vector ) in a Hilbert space H known as the state space.

A closed quantum system corresponds to a system which is not interacting in
any way with other systems i.e it doesn’t interchange information with another

system.
We can write a general d-dimensional quantum state i.e. a qudit as
d d
) = aile) =D (eilv) |e) (2.3.1)
i=1

i=1

where the complex coefficients «; are interpreted as probability amplitudes for the

state to be in the corresponding basis state |e;).
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As Hilbert spaces correspond to linear vector spaces, quantum states satisfy the
superposition principle: a quantum particle can be in a linear combination state of
any two other allowable states. Therefore, the state |¢) is said to be in a coherent

superposition of the basis states.

Because the state |¢) is unitary, and since probabilities must add to 1, we get

what is called the normalization condition
d
W) = loal* = 1. (2.3.2)
i=1

The simplest quantum mechanical system is the qubit, which has a two-dimensional
state space. Let |0) and |1) form an orthonormal basis for that state space known
as the computational basis. Then an arbitrary state vector in the state space can

be written as

) = al0) + b|1). (2.3.3)

Postulate 2. The evolution in time of a closed quantum system is described by a
unitary transformation. A state |Y(to)) in an initial time tq is related to the state

|(t)) at a time t by an unitary operator U,

(1)) = Ulto, ) (ko)) - (2.3.4)
A closed quantum system does not interchange information (i.e. energy and/or
matter) with another system.

Postulate 3. Quantum measurements are described by a collection {M,,} of
measurement operators acting on the state space. The index m refers to possible
measurement outcome. If the state of the system is |1) before the measurement,

the probability that the result m occurs is given by

p(m) = (| M} My | ¥), (2.3.5)
and the state of the system after the measurement |V') is

Male)
VI M, )

[¢) = (2.3.6)



18 2.3. Postulates of Quantum Mechanics

The measurement operators satisfy the completeness equation,

> MM, =1. (2.3.7)

An important class of measurements is the projective measurements. A projective
measurement is described by an observable, O on the state space of the system

being observed, with spectral decomposition,
O => "mlopmNdml =Y _ mPp, (2.3.8)

where P,,, = |¢ )& is the projector with eigenstate |¢,,) onto the eigenspace
of O with eigenvalue m. The probability of getting result m upon measuring the
state [¢), is given by

pm) = (GIPult) (2.3.9)

and the state of the system after the measurement [¢)) is

¥') = Puld) (2.3.10)
p(m)

The expected value of the observable O is defined as

E(0) =Y mp(m) (2.3.11)

= " m (@ |Py| ¥) (2.3.12)
= (¥ (Z mIPm) |¥) (2.3.13)
= (Y[O). (2.3.14)

On a different topic, let’s consider the state |¢)') = e¢¥|¢)), where [1)) is a state
vector, and 6 is a real number. We say that the state |1)) is equal to |¢), up to
the global phase factor €. It is easy to prove that the statistics of measurement
predicted for these two states are the same. Indeed, let M,, be a measurement

operator associated to some quantum measurement, the respective probabilities
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for outcome m occurring are

(| MMl ) = (]e™ M Mye® ) = (| M, M) (2.3.15)

The set of all states differing by a global phase is called a ray in Hilbert space.
Thus the space of quantum states of a system is the space of rays in Hilbert space,

also called the projective Hilbert space.

On the other hand, two states are said to differ by a relative phase in some basis

if each of the probability amplitudes in that basis is related by a phase factor e%.

Postulate 4. The Hilbert space of a composite system S s the tensor product of
Hilbert spaces of the component physical systems A, B,C .. ..

Hs =HAiQHp X H® -+ . (2.3.16)

If we have systems numbered 1 through n, and system number ¢ is prepared in
the state [1;), then the joint state of the total system |¥) € S is

(W) = [¢1) @ [1h2) @ -+~ @ [¢hn) = [¢h1) [¢ha) - -~ [thn) - (2.3.17)

States of S that can be represented in this form are called separable states or
product states, while those that can’t be written as a product of states of its
component systems are called entangled states. The study of entanglement is

tackled in the next chapter.

2.4 Density Matrix

A quantum system whose state 1)) € H is known exactly is said to be in a
pure state. The density matrix formulation provides a convenient description
of quantum systems whose state is not completely known. Let {p;,[¢;)} be an
ensemble of pure states, that is, a probability distribution in which a state |i;)
occurs with probability p;. The density matriz or density operator p € E(H) for

this system is defined as:
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p = an |¢n><¢n| ) (2'4‘1>

where E(H) corresponds to the convex set of density operators supported by H.
The sum over states in this expression looks similar to the superposition of states,
but it is considered an incoherent superposition, which comes from the fact that

the relative phases of the states |¢,,) are not available to us.

The density operator on a Hilbert space satisfies the following properties:
1. p is Hermitian.
2. p is a positive operator, that is, its eigenvalues are non-negative.
3. p has a trace equal to one.

4. Convexity: A set of operators {p;} form a convex set if
p=Ap1+(1L=XN)py, 0< A<, (2.4.2)

for every pair py, ps € {pi}.

The density operator of a pure state is simply p = |1, {¥,|. A pure state satisfies
tr (p?) = 1, while a mixed state satisfies tr (p*>) < 1. The quantity tr (p?) is known
as the purity of the state p.

The maximally mixed state 7 is the density operator corresponding to a uniform
ensemble of orthogonal states {%l, W}}, where d is the dimension of the Hilbert
space, and it is equal to

I. (2.4.3)

3
If

S

In general, the eigenvectors and eigenvalues of a density matrix just indicate one
of many possible ensembles that may give rise to a specific density matrix. For
a pure state, there is a unique decomposition of p in the form of (2.4.1), and it

consists of only one term.

On the other hand, a mixed state has no unique decomposition in terms of pure
states. According to the convexity property, a given density operator p can be
expressed as (2.4.2) in infinitely many ways, so that it is impossible to identify

any unique component density operators p; and ps.
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The expectation value of the observable O in the density matrix representation

can be obtained using the trace operation:

tr(p0) = Z (€ipOle:) (2.4.4)
= Z {e;] {an V0 XWn| O} le;) (2.4.5)
= > on (n[Oles) (erlit) (2.4.6)
= an <¢n|O|¢n> (2,4,7)
= (0),- (2.4.8)

We can reformulate the postulates defined earlier in terms of the density operator

formalism.

Postulate 5. The state of a closed quantum mechanical system is described by a

density operator in E(H) i.e. a positive Hermitian operator with unit trace.

Postulate 6. The evolution in time of a closed quantum system is described by a
unitary transformation. A state p(to) in an initial time ty is related to the state

p(t) at a time t by an unitary operator U,

p(t) = U(to, t)p(to) U’ (to, ). (2.4.9)

Postulate 7. Quantum measurements are described by a collection {M,,} of
measurement operators acting on the state space. If the state of the system is p

before the measurement, the probability that the result m occurs is given by

p(m) = tr (M} M,,p) (2.4.10)

and the state of the system after the measurement p' is

/ My p M},

o= P (2.4.11)
tr (MLMm )
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The measurement operators satisfy the completeness equation,

> MM, =1. (2.4.12)

Postulate 8. If we have systems numbered 1 through n, and system number i is

prepared in the state p;, then the joint state of the total system is p1 @ pa @ - py.

Suppose we have physical systems A and B, whose state is described by a density
operator pAZ. If subsystems A and B are given by Hilbert spaces spanned by
the bases {’ef‘>} and {’ef >} respectively, we define the partial trace of pAP with

respect to subsystem A as
pt = trap?f = Z (e [p"P] el (2.4.13)

which will be an operator on the Hilbert space of subsystem B alone. The density
operator p? is known as the reduced density operator for system A. If the quantum
system is a bipartite state i.e. is in the product state p*? = p ® o, where p is a

density operator for system A, and o is a density operator for system B. Then

Pt =trp(p®o) =ptr(o) =p, p° =o0. (2.4.14)

The partial trace can be understood as a way to obtain a marginal density
function in quantum mechanics: the density matrix p# describes the probability
distribution pa g of the combined systems A and B, while the density matrix p*

describes the marginal density function p of system A alone.

2.5 Schmidt Decomposition and purification

Two useful tools for the study of composite systems are the Schmidt decomposition

and purification.

Theorem 3. Every bipartite pure state |¢) in the Hilbert space Hap = Ha @ Hp

with No =dimH 4 and Ng = dim Hp can be expressed in the form:

) = Vil 1) (2.5.1)
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where {|e;)}X | is an orthonormal basis for Ha, {|fi)}ir, is an orthonormal basis
for Hp, and N < min{Na, Ng}.

The real numbers \; that appear in the Schmidt decomposition are known as the

Schmidt coefficients, and they satisfy:
d =1, N\ =0 (2.5.2)

The number of non-vanishing J; is called the Schmidt rank of the state [¢), and
it is equal to one if the state is separable. To obtain the Schmidt decomposition,

it is easier to express the pure state in the form:

Na Np

=>_> Cylé) IFy). (2.5.3)

i=1 j=1
where C is some complex valued matrix and the local bases are orthonormal bases
for the Hilbert’s space H 4 and Hp respectively. Let the singular values of C' be
v Ai. Following the singular value decomposition, there exist an unitary Na X Ny

matrix U and an unitary Ng X Ng matrix V' such that:

C=UDV, (2.5.4)

where D is a diagonal N4 X Np matrix with elements y/\;. The matrix elements

of C' can then be expressed as:

Eiii%VrﬂMy—zﬁh¢_% (2.5.5)

k=1 I=1

Replacing these elements in equation (2.5.3), we have:

Na Ng
ZZZwvwem (2.5.6)
i=1 j=1 =1

Using U and V to effect changes of the bases in H, 4 and Hp, we recover the
Schmidt decomposition. Indeed, by redefining the new basis for each subsystem

as:
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Na Np
ey =Y Uale), 1H) =) Vi1 1)) (2.5.7)
P =1

we obtain:

) =Y " VAle) 1) (2.5.8)

An important result of the Schmidt decomposition is at follows: Let |[¢)) be a

pure state of a composite system, AB. Then by the Schmidt decomposition
ph =2 Nileft Xeft| and p” = 30, N [fEXfP

are identical, namely \; for both density operators.

, so the eigenvalues of p? and p?

The process known as purification consists of the following: given a density matrix
p? for a mixed state of a system A, one can construct a bigger system AB, such

that ‘@Z)AB> is a pure state, and

pt = trp [P NP (2.5.9)

The proof is as follows. Let {‘ef>} be an orthonormal basis of p such that
pt = Zpi ‘ef‘><e§4| : (2.5.10)

Then, we introduce a system B which has the same state space as system A, with

orthonormal basis {|e,fB >}, and define the pure state for the combined system

[AB) = > Vpilel) |ef) (2.5.11)

The reduced density matrix of the pure state pA? = |ABYAB| will give p™.



2.5. Schmidt Decomposition and purification 25

Indeed:
trp pf = trBZ\/Ex/p_j(\efxefl)(!ef)(ef\) (2.5.12)
= Z VPiyD; e Xep'| (e |ef) (2.5.13)

= pilefXelt| = p?. (2.5.14)

If there exist two purifications |AB;) and |ABs) for the system A, then B; and

By are related by a unitary transformation Us:
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Chapter 3
Quantum Entanglement

The following chapter introduces the basis of quantum entanglement, focusing on
both its definition and characterization according to entanglement measures for
the bipartite and multipartite cases [35, 10, 41, 42, 43 11 15] focusing beforehand

in the notion of distance between states and the quantum operations formalism.

3.1 Entanglement

Let’s consider a system of n states. In the classical description, the total state
space of the system is described by the product state of the n separate systems.
On the other hand, in the quantum formalism the total Hilbert space H is a
tensor product of the subsystem spaces H = ®'_;H;. Following the superposition

principle, the total state of the system can be written as

) = Z Cirig.win [11) [i2) -+ [in) | (3.1.1)

i1,82..in

In general, such states cannot always be described as a product of states of
individual subsystems [¢)) # [11) |¢2) - -+ |¢). These kind of pure states are

known as entangled states.

Similarly, a mixed state of n systems is entangled if it cannot be written as a

convex combination of product states [1(]
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pED PPl @ ®p). (3.1.2)

For bipartite systems, the mazimally entangled state is given by:
[
0) =—= D> lei)|fi) (3.1.3)
Vid

where {|ei>}f:1 and {| fi>}f:1 are orthonormal families in H4 and Hp and d =
min {dim H 4,dim Hp}. These states satisfy that both the reduced states p4 and

pp are proportional to the identity matrix i.e. the maximally mixed state 7.

The family of Bell states |¢j{> are special cases of bipartite maximally entangled

states, which satisfy that
|07) =Ua® Up|¥), (3.1.4)

where Uy ® Up is a local unitary transformation. For d = 2, it is useful to define
a unit of bipartite entanglement called e-bit, which corresponds to the amount of

entanglement contained in a Bell state of two qubits |¢T).

Maximally entangled pure states are one of the key resources for quantum
computational tasks and for quantum communication. However, the coupling
with the environment produces decoherence, transforming these states into non-
maximally entangled mixed states. The following sections will establish a basic

ground to quantify the entanglement for arbitrary states.

3.2 Distance between Quantum States

Before reviewing the different ways to identify and measure the entanglement
between two states, it is necessary to establish the notion of distance or closeness
between quantum states, as it will become an important tool to quantify
entanglement. The following subsection presents the basic notion of a metric and

two common measures for quantum states.

A metric or distance function [17] on a set X is a function D that takes any pair
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(p, q) of points of a set X into the real line
D:XxX RS (3.2.1)

and satisfies the following properties for all z,y, z € X:
1. D(z,y) =0z =y.
2. Symmetry: D(z,y) = D(y, z).

3. Triangle inequality: D(x,y) < D(z,z) + D(z,y).
3.2.1 Trace distance
For two quantum states p and o, the trace distance is defined as
1
Dr(p,0) = 5tr|p— ol (3.2.2)

where |A| = VAT A is the positive square root of ATA. The trace distance for any

two density matrices satisfy the following bounds:

0 < Dr(p,0) < 1. (3.2.3)

For pure states, that is, if p = [} 1| and o = |¢)¢|, the trace distance simplifies
to:

Dr(p,o) = 1= [{¥])? (3.2.4)

The trace distance is invariant under unitary transformations

Dr(UpU', UoU") = Dyp(p, o). (3.2.5)

If A is a quantum channel’, the trace distance satisfies that

Dr(A(p), A0)) < Dr(p,o). (3.2.6)

This property states that a quantum channel makes two quantum states less

distinguishable from each other.

!Quantum channels are presented in the section about Quantum and LOCC operations
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The trace distance satisfy also the strong convezity property. That is, for two
ensembles {p;, p;} and {¢;, 0;}, where p; and ¢; are probability distributions, the
following inequality holds

Dr (Zpipu Z Qi0i> < %Z lpi — qi| + ZpiDT(Pz‘, ;). (3.2.7)

3.2.2 Fidelity

The fidelity is not a distance measure, but it can be used to define a metric from

it, as we will soon see. For two quantum states p and o, the fidelity is defined as

F(p, o) = (tr{m})2. (3.2.8)

The fidelity for any two density matrices satisfy the following bounds:

0< F(p,0) <1 (3.2.9)
If p = |[)¢| is a pure state, the fidelity becomes then:

F(p,a) = (¢lol). (3.2.10)

More so, if o = |p)(¢] is also a pure state, it is easy to see that the fidelity is given
by:

F(p,0) = (¥]o) {0y = [(]8)]*. (3.2.11)

The fidelity is invariant under unitary transformations

F(UpUY, UcU") = F(p,0). (3.2.12)

If A is a quantum channel, the fidelity satisfies that

F(A(p), A(0)) = F(p, o). (3.2.13)
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The fidelity behaves the opposite as the trace distance; as the quantum channel

makes states less distinguishable, the fidelity increases.

The root fidelity is given by

VF =tr {W} (3.2.14)

and satisfies the strong concavity property. That is, for two ensembles {p;, p;}
and {g;,0;}, where p; and ¢; are probability distributions, the following inequality
holds:

VF (Zpipi, qu) > Z VPiaiV'E (pi, i) . (3.2.15)

The following bound applies to the trace distance and the fidelity between two

quantum states p, o:

1 - F(p, 0) S DT(pv U) S V - F(p7 U) (3216>

Although the fidelity satisfies the symmetry property, it is not a distance measure
as it violates the triangle inequality and F'(p, p) = 1, whereas a distance measure

should be equal to zero when two states are equal.

Nonetheless, it is possible to build a metric from the fidelity. Indeed, the following

three functions

Dga(p, o) := arccos v/ F(p, o) (3.2.17)

Din(p,0) == /2 — 24/F(p,0) (3.2.18)
Dgin(p,0) :=+/1—F(p,0) (3.2.19)

correspond to metric on the space of density matrices, and are known in the

literature as the Bures angle, the Bures metric, and the Sine metric, respectively

[15].
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3.3 Quantum and LOCC operations

The quantum operations formalism corresponds to a general tool for describing
the evolution of quantum systems in a wide variety of circumstances, for example
a unitary time evolution, the post-measurement effect or the state interactions

with an environment.

The most general quantum operation A is a map from the set of density operators

of the input space H to the set of density operators for the output space H',

, Alp)
PP A )

which satisfies the following axioms:

peEH).pel(H) (3.3.1)

1. For the initial state p, the probability that the process represented by A
occurs is given by tr[A(p)]. Thus, 0 < tr[A(p)] <1 for any state p.

2. A is a linear map on the set of density matrices, that is, for probabilities

{pi},
A (ZW%> = sz'/\ (p:) (3.3.2)

3. A is a completely positive (CP) map. That is, if A maps density operators of
system H to density operators of system #H', then A(A) must be positive for
any positive operator A. If an extra system R of arbitrary dimensionality
is introduced, it must be true that (I ® A)(A) is positive for any positive

operator A on the combined system.

Any quantum operation can be expressed in the form:

Ap) =Y _Vilp)Vi', Y Vivi<I (3.3.3)

for some set of operators {V;} called Kraus operators.

The probability tr[A(p)] is equal to 1 if and only if the CP map A is trace-preserving,

which corresponds to ) . V;TV; = I. In this case, A is called a quantum channel.
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3.3.1 LOCC (Local Operations and classical

communication) operations

An important type of quantum operations in quantum information is the LOCC
(Local Operations and classical communication) operations or LOCC protocols,
where a product of local operations are made in a subspace of the system, and
the results are communicated classically to another party which usually realize

local operations conditioned to the received information.

Let’s consider an entangled state p shared by two observers Alice and Bob, which

can realize any quantum operations in their respective subsystems A and B:

Az B(Ha) — B(H,) (3.3.4)
Ap: B(Hp) — B(HYy) (3.3.5)

The final spaces H/; and H’; can include local ancillas i.e. be in a product
state with the environment, or can correspond to some subspace of H 4 and Hp,
respectively. Both Alice and Bob can communicate their measurement results
through classic communication, which can increase the classical correlations
between the subsystems A and B, but not the entanglement between both. This
process can be repeated several times, that is, a LOCC protocol can proceed in

several rounds.
There exist several classes of LOCC operations:

1. Class of local operations (C1): In this case no communication between Alice
and Bob is allowed. The mathematical structure of the map is elementary

A5 = Aa ®Ap with Ay, Ap being both quantum channels.

2. Class of one-way LOCC operations (Cs): These operations allow classical
communication from Alice to Bob (or similarly from Bob to Alice). In this
case, Alice makes measurements over the subspace A and Bob realizes local

operations depending on the ¢ result of Alice. The map has the form:

Anlp) =D 1a® Ay [(Ai ® IB)p(Aj ® IB)] (3.3.6)

- ZAi ®IB[(IA®A5§)> (p)]AI ® Ip. (3.3.7)
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3. Class of two-way LOCC operations (C3): In this case, both observers are
allowed to send classical information to each other, and are composed of

local operations and the following maps:

Nis(p) = (A ® IopAl © 1) @ leeil SAA=L (339

7

Nis(p) = (L@ Bipla @ BY) @ |fi) fil.a Z BIB; =15 (33.9)
where {|e;)} (respectively {|f;)}) is an orthonormal base for the ancilla state

of Bob (respectively the ancilla state of Alice).

4. Class of separable operations (Cy): Corresponds to the set of all the separable
quantum operations, that is, operations with product Kraus operators A;® B;,

and are given by:

AR (p) =D A;i@BipAl@ B, Y AlA; @ BIB;=1,&15 (3.3.10)

There is an order of inclusions C7 C Cy C C3 C Cy, where all inclusions are strict.

In cases where the LOCC operation are not achievable deterministically, but
rather only with some arbitrary probability, they are considered stochastic local
operations and denoted as SLOCC. Among the class of separable operations, this
implies that the Kraus operators satisfy that ). AZTAi ® BiT B <I,®Ig.

The set Sap of bipartite separable states is invariant under separable operations,
and every separable state can be converted into any other separable state by a
separable operation. More so, any separable state p = Y. p; [ {10:| @ |¢:)}¢:| can
be obtained from the classical state p. = >~ pjk [ej)e;] @ [ex)ex|. Indeed, let
the Kraus operators be A;jx = /i [¥:)(j| and Bjji = |¢;)(k|, then the separable

operation A% (p) returns:
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AR (pe) = Y A @ Bip. Al @ Bf (3.3.11)
= ijkm(w»(ej\ ® [@iXer])(lej)e;| @ ler)er])(le) il @ ler) i)

(3.3.12)

= me [i)Wi] @ [@i)(es] = Zn |[iXhi| ® |@i)dil = p  (3.3.13)

Furthermore, an arbitrary state p can be transformed into a classical state p. by

a measurement in the product basis {|e;)|ex)}, which is a local operation.

3.3.2 Classes of equivalence

Depending on the class of operations considered, it is possible to group entangled
states into different classes of equivalent entanglement. For the first class of local
operations (', it is possible to establish the local unitary (LU) equivalence, where
two pure states [i)) and |¢) are considered equivalently entangled if they differ

only by a local unitary basis change:

) ~wle) & |[9) = ©---®Uy)[P) (3.3.14)

for suitable (d; x d;) unitary matrices U;, with d; = dim #H;. Up to a global phase,
the unitary matrices can be chosen with determinant set to unity and the set
of states can be divided into orbits of the product group Gy = SU(d)®V, for N

d-dimensional quantum states i.e. N qudits.

More generally, two states are said to be LOCC-equivalent if they can be converted
into each other by a LOCC protocol. Similarly, two states are said to be LOCC,-
equivalent if they can be converted into each other using an LOCC protocol with
no more than 7 rounds. Finally, they are LOCC-equivalent if, starting from any
of them, it is possible to approximate the other one to arbitrary precision, as the
number of rounds r tends to infinity. For the bipartite case, Nielsen’s theorem

provides a simple criterion for the equivalence of bipartite pure states under

LOCC:

Theorem 4. Let |¢) and |¢p) be two pure states of the bipartite system AB and
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Ay = ()\qf, .. .,A;f) and Xy = (Xf, e ,A;ﬁ’) the vectors formed by the Schmaidt
coefficients of |¢) and |¢), respectively. Then, 1) can be transformed into |¢) by
a LOCC operation if and only if Ay is majorized by Xy (Ay < Ay), that is, if for
all 1 <1 < n we have that

n n

l l
SEED D S
=1 =1 =1 i

A (3.3.15)
1

where n denotes the number of non-zero Schmidt coefficients.

A direct consequence of these theorem is that there are incomparable states, i.e.
pairs of states such that neither can be converted into the other with certainty.
Even if the state transformation |1)) — |¢) is not possible with a LOCC operations,
the transformation [¢))|n) — |$)|n) may be possible using a suitable ancilla state
|n). This phenomenon is called entanglement catalysis, as the state |n) is returned

unchanged after the transformation.

The above result doesn’t work for multipartite pure states, as the Schmidt
decomposition exists only for the bipartite case, therefore Nielsen’s theorem
cannot be easily generalized. In fact, no tractable mathematical description of
LOCC-equivalence in the multipartite case has been identified so far. But it is
possible to treat states as equivalent, if with some non-zero probability they can
be transformed into each other by LOCC, that is, using a SLOCC protocol.

Let’s consider a SLOCC transformation acting on a N-partite state with Kraus

operators A;:

1) = (A1 ® - @ An) [¢)). (3.3.16)

Then, two states |¢) and |¢) are SLOCC-equivalent up to a normalization if and

only if the matrices are invertible, that is

[) ~sLoce @) = L1 @ Ly ® -+ @ L), (3.3.17)

where the matrices have unit determinant det L; = 1. Thus the group that governs
the SLOCC equivalence for N d-dimensional quantum states is the special linear
group composed with itself N times, G = SL(d, C)®N [19, 50].
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3.4 Axioms on entanglement measures

A measure of entanglement of a bipartite system AB is a function E : € (Hap) —
R such that:

1. E(p) =0 if and only if p is separable.
2. E is convex.

3. Monotonicity: E cannot increase under LOCC operations. If A is a LOCC
operation, then:

E(A(p)) < E(p) (3.4.1)

As any two separable states can be transformed into each others using LOCC
operations, the monotonicity property implies that E is constant in the set of

separable states Sap, and can be set to zero without loss of generality.

As any state p can be transformed into a separable state via a LOCC operation,

E(p) is then minimum for separable states and E(p) > 0.

The second condition is justified as it captures the notion of the loss of information
i.e. describing the process of going from a selection of identifiable states p; that
appear with probabilities p; to a mixture of these states of the form p = > p;p;.
Let’s suppose that two parties (Alice and Bob) share m pairs of particles in the
states p1 ... pn,. By classical communication, they can agree to keep the i-th pair

with probability p;, preparing thus the ensemble {p;, p;};" ;.

By erasing the information about which state p; was kept, the state becomes
p = Y. pipi, and the convexity axiom establishes that this local loss of information

does not increase the average entanglement:

E(p)=E <szpz> < szE (p:) (3.4.2)

Nonetheless, the convexity condition is not strictly necessary, it is a merely a
convenient mathematical property, as many entanglement measures are convex by

construction.

The monotonicity condition implies also that the entanglement measures are

invariant under conjugations by local unitaries i.e. E(U AU BPU,Z ® Ug) =
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E(p).

For pure states [¢), this implies that E(|¢)) only depends on the Schmidt
coefficients \; of |¢). Consequently, E(|1))) = f (pa) is a unitary-invariant function
of the reduced state p?* = trp(|v))(¥]) (or, equivalently, of p? = tr (|v)(¥]) ).
Given that a pure state is separable if and only if it has a single non-vanishing
Schmidt coefficient, one deduces from the first axiom that f (pA) vanishes if and

only if p# is of rank one.

From the above, a stronger monotonicity condition can be proposed [71]. Let
f & (Ma) — R be a concave’, unitary invariant function, such that f (p?) = 0 if

and only if p# is a pure state. Then,

Er(|9) = f (p”) (3.4.3)

defines an entanglement measure on the set of pure states of pure state AB, which

satisfies the stronger monotinicity condition:

4. Y, piB (|®) < E(J¢)), where p; = || A; @ Bil¢)|* and |@;) = p; /?A; @
B;|1) correspond the probabilities and conditional states of a separable

measurement with Kraus operators A; ® B;.

That way, there exist a correspondence between all the possible entanglement
measures for pure states characterized by Ey. The stronger condition is equivalent
to saying that the entanglement does not increase on average under LOCC

operations.

3.4.1 Convex Roof Construction

In general, it is easier to define entanglement measures for pure states, as the
generalization of such measures for mixed states are not straight-forward. Even
so, the convex roof construction allows to extend an entanglement measure for
mixed sates. More generally, one is often in the position to know a quantity for
pure states of a quantum system ¢, without a definite meaning in classical physics.

The quantity G denotes then the extension of g to all mixed states [52].

2A concave function satisfies that

f(p) = Af(p1) + (1 =N)f (p2),

for any A € [0, 1] and any pair of density matrices p1, p2 such that p = Ap; + (1 — A)pa.
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Mathematically speaking, let G’ be a real valued function on the compact convex
set E(H) of density operators supported by H. The density operator w € E(H) is

called a roof point of G, if there is at least one extremal convex decomposition

W = ijﬂ‘j, T € g(H)pure (344)

such that

Gw) = 3 piG (m) (3.4.5)

where E(H)P™ is the set of density operators of pure states. G is said to be a

roof if every w € £(H) is a roof point of G.

Let g be a real function acting on the set E(H)”™ . A roof G is called a roof
extension of g, if G(w) = g(m) for pure states. The objective of a roof extension is
to extend g “as linearly as possible” or, more correctly, “as affine as possible” to

all mixed states.

pure

If G is convex and coincides on £(H )" with g, then G is called a convex extension

of g. Between any convex or roof extension of a function g the following inequality
is valid
(Geonvex S Groof ) (346)

Indeed, with an optimal decomposition (3.4.4) for G™°f one obtains that
(Geonvex (Ld) < ijGconvex (ﬂ-j) _ ijGroof <7Tj> _ Groof (w> (347>

This property is also valid pointwise; let G"V** be a convex and G any extension

of g. If w is a roof point of GG, then

G (w) < G(w). (3.4.8)

The largest convex extension of g to £(H) is denoted as ¢“,

g” = largest convex extension of g from &(H)™™ to £(H) (3.4.9)

Finally, let G be an extension of g and w one of its roof points. If GG is convex,

then G(w) = g”(w). Indeed, because G is convex, G < g”. Because w is a roof
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point, (3.4.8) asserts G(w) > g”(w). Therefore, g”(w) is unique and it is known

as a convex roof extension.

How can one be sure that a convex extension for a given g exists at all? If there
is one then there is also a largest one, i.e. g“ exists. The answer to the question
is affirmative and has been given in [53] by a variational characterization which is
well known in quantum information theory as a recipe to construct entanglement

| ¢"(w) = int {Z ;9 (wj)} (3.4.10)

where the infimum is running over all extremal convex decompositions of w

w= ijﬂ'j, m; € E(H)P™ . (3.4.11)

3.5 Bipartite Entanglement

3.5.1 Entanglement Cost and Distillable Entanglement

For a given state p, the entanglement cost Ec(p) quantifies the maximal possible
rate r at which one can convert blocks of maximally entangled two qubits states
i.e. e-bits into output states that approximate n copies of p, such that the
approximations become vanishingly small in the limit of large block sizes n — oo.
Let A be a general trace preserving LOCC operation and &5, = (|p4 )Xo )*"",
then the entanglement cost may be defined as

Ec(p) = inf {r : lim [inf tr | p®" — A (@Fn) }] = 0} . (3.5.1)

n—oo L A

On the other hand, there exist a dual measure to the E¢(p) known as the distillable
entanglement FEp(p), which quantifies the rate at which one can convert copies of
p into e-bits with LOCC operations, and it is mathematically defined as

Ep(p) = sup {r : lim [inf tr|A (p®") — @3en

n—oo L A

} - 0}. (3.5.2)

For pure states, Ec = Ep, i.e. the entanglement transformations become reversible
in the asymptotic limit for pure states. Both of these entanglement measures are

monotone.



40 3.5. Bipartite Entanglement

3.5.2 Entanglement of formation and Concurrence

The von Neumann entropy of a quantum state is defined as

S(p)=—tr(plnp) = Z,uz In p1; (3.5.3)

where p; are the eigenvalues of p, and satisfies the following properties:
1. Non-negative: S(p) > 0, where the equality only holds if the state is pure.
2. Invariant under local unitary operations: S(UpUT) = S(p)
3. Additive: S(p® o) = S(p) + S(o)

4. Concavity [71]: Let p and o be two density matrices, then

SOp+ (1= No) = AS(p) + (1 - N)S(o), 0<A<1 (3.5.4)

5. If p? and p? are the reduced density operators of the pure state [1) of the

composite system AB, then
S (p*) =S (p”) (3.5.5)

These properties allows to define an entanglement measure that uniquely describes
the entanglement for bipartite pure states |¢)) around the von Neumann entropy
and that also satisfies the stronger monotinity conditions previously defined, as

follows

Es(lv) = S(p*) = S(p”) = - Z Ailn A (3.5.6)

where \; are the Schmidt coefficients of |¢)). This entanglement measure is known
as the entropy of entanglement. It can be shown that, for pure states, the entropy
of entanglement is equivalent to both the entanglement cost and the distillable
entanglement in the asymptotic case (n — o0): Eg/In2 = Ex = Ep [55]. This
measure is not applicable for mixed states, since the von Neumann entropy of a
subsystem can be non-zero even if the states are not entangled. Nonetheless, it is

easy to extend the above measure to mixed states via the convex roof construction.
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The entanglement of formation of a mixed state p € € (Hap) is given by

{pa, i)}

Ep(p) = inf {ZpiES (Wz))} ) (3.5.7)

%

where the infimum is taken over all ensembles {p;,|¢;)} for which p =
2 Pi i) (il

In practice, finding the best possible ensemble that minimizes equation (3.5.7) is
a difficult tasks. However, it is possible to compute the entanglement of formation

using concurrence for the two qubits case [12].

Let 0 be the antiunitary transformation defined as

0|Y) =0, ®0,)" (3.5.8)

where [1)" is the complex conjugate of |¢)) in the computational basis. The

concurrence for a two qubit pure space can be represented as:

C(ly)) = (¥16]y) - (3.5.9)

Defining p = #pf and the operator w = /py/p, the concurrence of a two qubit

mixed state is defined as:

C(p) = Imax {O, )\1 — )\2 — )\3 — )\4} (3510)

where A1, ..., Ay are the square roots of the eigenvalues of w in decreasing order.
Then, it can be showed that

1+/1-C?
Evlp) = H ( il - W) (3.5.11)
where H is the function H(z) = —zInz — (1 —z)In(1 — ).

3.5.3 Distance based measures of entanglement

Another convenient way to quantify entanglement is using some distance measure

between the bipartite state p and the closest state in the set of separable states
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S, as a well defined metric satisfies by definition the first axiom in entanglement

measures, needing only to satisfy convexity and monotonicity.

Using the trace distance as metric, it is possible to define the following measure

of entanglement:

: 1.
Er(p) = O1_I€1£f9 Dr(p,0) = 5 ;relgtr lp—al. (3.5.12)

Similarly, another useful measure of entanglement can be constructed using either

the Bures metric or the Sine metric previously defined:

Epu(p) = inf Dgym(p,0)? =2 —2y/Fi(p), (3.5.13)

B2 (p) = inf Dgn(p,0)* =1 — Fy(p), (3.5.14)
oc
where Fi(p) corresponds to the maximal fidelity between p and a separable state

Fy(p) = sup {F' (p,0)}. (3.5.15)

UES

If we consider a pure bipartite state [¢) with Schmidt decomposition [i) =
i1 Vi lei) | fi), then it is possible to obtain Egn(|1)) and Eg2(|)) as

Era([) =2 (1= v/ A (3.5.16)

Esin2(|¢>> =1- )‘maxv (3517)

where A\pa.x = max {\;} is the largest Schmidt coefficient of |¢)) [50], which can

easily be obtained as the largest eigenvalue of the reduced density matrix.

Neither of these measures are a convex roof, but it is possible to establish a
relationship between the Bures metric (and also the Sine metric) to another
measure of entanglement called the geometric measure of entanglement |15], which
can be extended to mixed states via the convex roof extension. The geometric

measure of entanglement is defined for pure states 1) as:

Ec(|v)) =1 — sup [(g|v)* = Ege(¥)), (3.5.18)

lpyeS
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and it is convex roof extension for mixed states p corresponds to:

{pi;| i

Ealp) = inf)}{ZpiEG(]wi))}, (3.5.19)
where the infimum is taken over all ensembles {p;,|¢;)} for which p =
> pi i) (Wil

The geometric measure of entanglement for a two-qubit state can also be related

to the concurrence as follows:

Eclp) = (1 /1= C(p)2) . (3.5.20)

DO | —

For the next measure of entanglement, let’s present first the quantum relative

entropy between two states p and o:

S(pllo) =trlp(lnp —Ino)] = —trplno — S(p). (3.5.21)

This function satisfies the following important properties:
1. Positivity: S(p|lo) > 0, where the equality only holds if p = o.
2. Invariant under local unitary operations: S(UpUT||[UcUT) = S(p||o)

3. Additivity for composite systems: S (p* @ p?|loc? @ 0?) = S (pA||o?) +
S (pP||o?).

4. Joint convexity: Let pg, p1 and og, 07 be two pairs of density matrices and
0 < A<, then

S (1= A)po+ Api[[(1 = A)oo + Aor) < (1= A)S (polloo) + AS (p1lon) -
(3.5.22)

5. Monotonicity under trace-preserving CP maps: For any quantum operation
A B(H) — B(H') one has S(p|lo) > S(A(p)||A(o)) for all states p,o €
E(H).

It is important to note that the quantum relative entropy is not a true metric, as it

is not symmetric and does not satisfy the triangle inequality, but rather a contrast
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function between two states. Nonetheless it may also be used to characterize

entanglement using the relative entropy of entanglement, defined as:

Er(p) = inf S(pllo) (3.5.23)

c€S

This measure has an appealing interpretation as distinguishability of p from
the closest separable state. For pure states it coincides with the entropy of
entanglement, and for mixed states p it is bounded from above by the entanglement
of formation, that is,

Er(p) < Er(p). (3.5.24)

A lower bound on the relative entropy of entanglement of a pure state |¢)) can be

obtained using a related quantity to the geometric measure of entanglement [57]

Er(|¢)) = —21In sup [(¢[e))]. (3.5.25)
BES

3.6 Multipartite entanglement

Although many of the axiomatic measures can be extended to the multipartite
case, the entanglement between more than two parties is far richer and more
complex than the bipartite entanglement, as the mere way of defining separable

states changes, and the notion of maximally entangled states ceases to be general.

3.6.1 Three qubits entanglement

Before generalizing for the n-qubit case, let’s consider a system of pure three-qubit
states. Any pure three-qubit state can be transformed by local unitary operations
to the state:

1) = Xo|000) + A€ |100) + Xg|101) + A3|110) + A4|111), (3.6.1)

where \; > 0,3, A? =1 and 0 € [0, 7]. Considering the normalization condition,
five real parameters are necessary to characterize the non-local properties of a
pure state. This corresponds to a generalization of the Schmidt decomposition to

three qubits states [75].
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There are two different types of separability:

1. Fully separable states, which can be written as
V%) aipic = 1) a @ 18)s @ [)e. (3.6.2)

2. Biseparable states, which can be written as a product state in the bipartite
system, that is, if two of the three qubits are grouped together to one party.
There are three possibilities of grouping two qubits together, hence there

are three classes of biseparable states:

|¢bS>A|BC = |O‘>A & |5>307 (3.6.3)
|¢bS>B\AC = |B>B ® |5>AO, (3.6.4)
|¢bS>C|AB = [7)c ®16)a, (3.6.5)

where |0) denotes a two-party state that might be entangled.

A pure state is called genuine tripartite entangled if it is neither fully separable
nor biseparable. The genuine entangled three-qubit states can be further divided
into two inequivalent classes, that is, states of each equivalence classes of genuine
tripartite entangled states cannot be transformed into another by SLOCC protocols:
the class of Greenberger-Horne-Zeilinger (GHZ) states |GHZ)

IGHZ) = Ao|000) + Ag|111), (3.6.6)
and the class of W states |W)

[W) = A;[100) + A2[010) + A3]001). (3.6.7)

The GHZ state is a maximally entangled states and a generalization of the Bell
states of two qubits, and have the appealing property that entanglement across
any bipartite cut assume the largest possible value of 1 ebit. On the other hand,

the entanglement of W states is said to be more robust against particle losses.

Indeed, considering the state p®"% = |GHZYGHZ|, and taking the partial trace

on the subsystem C, one gets:
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PR = tre (p%%) = |Aof* [00)X00] + [Aaf* [11)(11] = sz (il ® |iXi|, (3.6.8)

where py = |Mo|* and p; = |\g]*>. The reduced state p§H% corresponds to an

unentangled mixed state.

On the other hand, considering the state p™ = [W)XW|, and taking the partial

trace on the subsystem C', one gets:

P = tre (1) = [2al? [00)00] + |61, X, (3.6.9)

where |¢7; > = A1 |10) + A2 |01) corresponds to the two qubits Bell state when
A=A = 75. Therefore, the reduced state pz corresponds to a mixed entangled

bipartite state.

The five SLOCC-inequivalent subsets of three-qubit pure states are composed of
the class of fully separable states, the three inequivalent classes of bisebarable

states, and the two inequivalent classes of genuine entangled states [59].

3.6.2 Entanglement classes for the general case

Similarly, the classification of entanglement for the general multipartite case
follows a similar logic, distinguishing different types of entanglement for pure

states.

Let [1) be a pure N-partite state. This state is fully separable if it is a product

state of all parties, that is, if it can be written as

) = ® |6:) (3.6.10)

where |¢;) belongs to the i-th partition.

A mixed state is called fully separable if it can be written as a convex combination

of pure fully separable states, that is, if it can be written as

p=> pipi @@ p}. (3.6.11)
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If a pure state is not fully separable, it must contain some degree of entanglement,
although it doesn’t necessarily have to be true N-partite entanglement. Let
am = (Py,..., P,) denote a partition of {1,..., N} into m disjoint nonempty
subsets, with 1 < m < N. Such a partition corresponds to a division of the system
into m distinct subsystems, also called a m-partite split. A pure state is called

m-separable if it can be written as

) = Q160" (3.6.12)

There are m” /m! possible partitions of the N parties into m parts. For mixed
states, a quantum state p is m-separable under a specific m-partite split c,, if and

only if it is fully separable in terms of the m subsystems in this split, that is, if it

p= sz' ® Pt (3.6.13)
7 n=1

where pf" is a state of subsystem corresponding to P, in the split a,.

can be written as

More generally, a state p is called m-separable |60] if it can be written as a convex
combinations of pure m-separable states, which might belong to different partitions

af%) , such that

p=> Q" (3.6.14)
i n=1

() . ) .
where each state @, p "’ is a tensor product of m density matrices of the
subsystems corresponding to some such partition a%), i.e., it factorizes under this

split o).

Finally, a state is called truly N -partite entangled when it is neither fully separable,
nor m-separable, for any m > 1. Although there is a classification via equivalence
classes under SLOCC for three qubits, it has been shown that already for
four qubits there are infinitely many equivalence classes under SLOCC [61, (2].
Therefore, a classification of the pure truly N-partite entangled states is not

straightforward.
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3.6.3 Symmetric states

Because of the high complexity of multipartite entanglement, it is useful to study

families of interesting multi-qubit states with an arbitrary number of qubits.

For example, a family of states arise if we restrict ourselves to the symmetric
subspace Hgﬁ of the full Hilbert space H®¥. For N qubits this subspace is in
itself a Hilbert space of dimension N + 1, and many states of interest such as the
GHZ and W states, belong to it.

The symmetric subspace admits an orthonormal basis consisting of the symmetric

states

[N

Sk, N)) = < N ) S R0 (3615)

where >, P;{...} denotes the sum over all possible permutations of the qubits.
The basis states |S(k, N)) can be identified with the symmetric Dicke states, the

. . . . N N
angular momentum eigenstates with maximal eigenvalue 3 (5 -+ 1).

The N-qubit W state is an example of a symmetric state:

1
]WN>:\/—N(11oo...o>+|o1o...o>+...+yoo...o1>):15(1,N)>. (3.6.16)

Similarly, the N-qubit GHZ state, also known as Schridinger cat state, corresponds

to a superposition of symmetric states

1

1 QN QN
\/5(|5(0,N)>+|5(N7N)>)=—(|0> DY) (36.17)

|GHZy) = 7

3.6.4 Multipartite Entanglement Measures

For the multipartite case, it is not possible to define an analogue for the
entanglement cost and distillable entanglement. Although the GHZ states are
considered maximally entangled states, not every state can be obtained from the
GHZ state using LOCC alone, as is the case for W states. One may ask if in the
asymptotic setting of arbitrarily many identically prepared states, the same can

be said. To answer this question, is important to give a precise definition to the
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concept of asymptotic reversibility [63].

One says that [¢))®* is asymptotically reducible to |¢)®¥ under LOCC, if for all

0, > 0 there exist natural n, m such that

n i

moy

<6, tr|A([)e[™") = lo)Xel "] = 1 —e, (3.6.18)

where A is a LOCC operation. If both [¢)®* can be transformed into [¢)®V as
well as |#)®Y into |¢)®*, the transformation is asymptotically reversible. In the

bipartite case, it is always true that any |¢)) can asymptotically be transformed
into |¢+>®ES(W’>)‘

In the multi-partite setting, there is no single state to which any other state
can be asymptotically reversibly transformed. The same can be said about the
entanglement of formation, as the von Neumann entropy is a reliable measure

only of bipartite entanglement.

Let X denote a nontrivial subset of the parties of an N-partite pure state |¢),
and let X be the set of remaining parties. The reduced density matrix of subset

X of the parties is defined as

pz = trx (¥ )]). (3.6.19)

The partial entropy of subset X is the von Neumann entropy

Sx(|v)) = —tr(pzInp,). (3.6.20)

The partial entropies of a multipartite state of more than two components can
be unequal. Because partial entropies are conserved by asymptotically reversible
LOCC operations, and can therefore no longer be viewed as absolute entanglement
measures beyond the bipartite case, in which there is only one way of partitioning

the composite system.
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3.6.4.1 Schmidt measure

In general, any pure state vector can be written in the form
R
0y = ali”) @ ® ), (3.6.21)
i=1

YR
where, unlike the Schmidt decomposition, the vectors { |¢Z(j )>} are not required
to be orthogonal for each subsystem. The tensor rank Rumm(]1)) correspond to
the minimal number of product terms needed to express [¢). For the bipartite

case, it is equivalent to the matrix rank.

The Schmidt measure is the logarithm of the minimal number of terms in a product

decomposition

Es(|[¢)) = log Ruin([¥)) (3.6.22)

and corresponds to an entanglement monotone [(4]|. In the bipartite case, this
measure reduces to the Schmidt rank, i.e., the rank of either reduced density
matrix. The measure is zero if and only if the state is a full product. Therefore it

cannot distinguish true multipartite entanglement from bipartite entanglement.

3.6.4.2 Multipartie relative entropy of entanglement

The relative entropy of entanglement can be generalized to the multipartite case
following the same equation (3.5.23) as in the bipartite case. However, it is
possible to define the multipartite relative entropy of entanglement over the set

SY of m-separable states of an N-partite system as

EX(p) = inf S(pllo). (3.6.23)
oeSN

For the single copy setting, then it is clear that the set set SV does not increase
under LOCC, making E}}(p) a suitable entanglement monotone.
3.6.4.3 Geometric measure of entanglement (GME)

The geometric measure of entanglement was originally generalized to the

multipartite setting via projection operators of various ranks in [16]. Either
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way, distance of the pure state [¢)) can be minimized either using the set of fully

separable states or the set SV, such that it becomes

EZ(lv)) =1— sup [(gv)]°. (3.6.24)

peSH
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Chapter 4

Variational Algorithm for

Geometric Entanglement Measure

The previous chapter presented a global view of the properties of entanglement,
along with the different ways to characterize and measure entanglement for
bipartite and multipartite cases, using the axiomatic approach for entanglement
measures as basis. The following chapter presents an algorithm to measure
the geometric measure of entanglement (GME) using the fidelity as measure
of closeness as presented in [05], using a similar approach as the self-guided
tomographics method presented in [0, 67]. The main results of this work are
presented here, with numerical simulations for random states and higher dimension
matrix product states, and experimental results using IBM Quantum Falcon

Processors [30].

4.1 Complex Simultaneous Perturbation

Stochastic Approximation (CSPSA)

The complex simultaneous perturbation stochastic approximation (CSPSA) is an
algorithmic method for stochastic optimization of multivariate systems, introduced
in [67], being of the same family as the commonly used simultaneous perturbation
stochastic approximation (SPSA) algorithm [0, 69], but with the advantage that
it can be applied to real-valued target functions of complex variables. CSPSA is a

gradient-descent approximation method, which requires only two measurements
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of the target function regardless of the dimension of the optimization problem.
This feature allows for a significant decrease in the cost of optimization, especially
in problems with a large number of variables to be optimized, where the gradient

of the target function is not directly available.

Let f be a real function on complex variables, f : z € C? — R. It is clear that any
nontrivial function f cannot accomplish the Cauchy-Riemmann conditions, and
has a formal dependence upon z* € CP, where z* denotes the complex conjugate
of z [70]. The dependence of the non-holomorphic function f on z can be studied
using the Wirtinger calculus by considering = (z,z*)? € C? rather than only z.
In practice however, for the CSPSA method it is enough to consider as variable z,

establishing the following iterative rule

Zp1 = 2 — akgk(zk), (411)
where a;, = a/(k + A)® and the gradient estimator at iteration k is vector given by

b A b A LAk
gu(e) = 1E 0B —JE=bd) | (4.1.2)

20, '
/AL,

with by = b/k', and the k-th perturbation vector A;, is made up from p random
elements taken from the set {1, +i}, to span any possible direction in the complex
space. The values of a, A, s,b and t are known as the gain parameters, and they
are adjusted to optimize the rate of convergence and depend on the target function.
Two common gains set of gain parameters are the standard gains with a = 3,
b=0.1, A=0, s=0.602, and t = 0.101, and the asymptotic gains with a = 3,
b=0.1, A=0,s=1, and t = 0.166.

4.2 Variational quantum algorithms

To tackle the limitations of classical computing, quantum computing was suggested
as a potential alternative to simulate quantum systems, under the assumption
that a more natural simulation could be achieved using quantum resources
like entanglement or quantum superpositions [71]. Several algorithms has been

proposed, like Shor’s algorithm [1] for prime numbers factorization or Grover’s
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algorithm [5] for the unstructured search problem, showing substantial speedups

to their classical counterparts.

However, fault-tolerant quantum computers are not currently available. The state-
of-the-art quantum computers are known as Noisy Intermidiate-Scale Quantum
(NISQ) [20], which are characterized by noisy entangling gates, short coherence

times, limited connectivity between qubits and large sampling error.

The leading strategy to obtain quantum advantage on NISQ devices are the
variational quantum algorithms (VQA) [21, 22], which rely on classical optimization
algorithms to train a parameterized quantum circuit. In general, VQAs have three
basic elements: (1) a cost function C(0) that codifies the solution of the problem,
(2) a quantum circuit that prepares the state that best meets the problem’s
objective called ansatz, that depends on the set of parameters 6 and (3) a classical
optimization method in charge of minimizing the cost function, that is, solving

the following optimization task:

0" = argmin C(0). (4.2.1)

6
The cost function maps the values of a set of trainable parameters to a real number.
This cost defines a hyper-surface known as cost landscape such that the task of
the optimizer is to navigate through the landscape and find the global minima.

Without loss of generality, a cost function can be expressed as

C0) =Y fi (Tr [O:U(0)p:UT(0)]) (4.2.2)

where f; is a set of function that codifies a given task, U(8) is a parameterized
unitary operator, @ can either be continuous or discrete parameters, {py} are the

inputs states from a training set and {Oy} is a set of observables.

For a VQA to truly have a real advantage over classical alternatives, the cost
function must satisfy the following criteria. First, the minimum of C'(@) must
correspond to the solution of the problem. Second, one must be able to efficiently
estimate the cost using a quantum computer and possibly perform classical post-
processing, under the assumption that such cost should not be easily computable

using classical hardware. A third requirement is for the cost function to be
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operationally meaningful, that is, lower values of the cost indicate a better
solution quality. Finally, the cost function needs to be trainable, meaning that it
is possible to optimize efficiently the parameters 6 in a suitable computation time

lapse.

The ansatz is constructed using a parameterized quantum circuit as

4(8)) = U(0) [o) , (4.2.3)

where 6 are the variational parameters and [tg) is some initial state, which typically
correspond to a product state with all qubits in the |0) state, i.e. [00---0) = |0)®",

where n is the number of qubits.

The form of the ansatz dictates what kind of parameters @ are used, and how
they can be trained to minimize the cost. In general, there are two types of
ansitze. The problem-inspired ansdtze employ known information about the
underlying physics of the problem, for example the Suzuki- Trotter expansion [72]
or the Unitary Coupled Cluster (UCC) [73] ansatz, commonly used in quantum

simulation and quantum chemistry respectively.

On the other hand, the hardware-efficient ansdtze [20] are constructed taking in
consideration a limited set of quantum gates and a particular qubit connection
topology, such that it is ad-hoc to the available quantum device. The gate set
usually consists of a two-qubit entangling gate and up to three single qubit gates.
The ansatz is then constructed from layers of single-qubit gates and entangling

gates, which are applied to multiple or all qubits in parallel.

The quantum circuit of a hardware-efficient ansatz with L layers is usually given
by

L L
U0) =[] U (8) Wi = [ e w4, (4.2.4)

k=1 k=1
where 6 = (01, -+ ,01) are the variational parameters, W}, is an unparametrized

unitary and Hj is an hermitian operator.

The success of a VQA depends on the efficiency and reliability of the classical
optimization used. An effective optimizer should try to minimize the number

of measurements or the cost function evaluations. The optimizer must also be
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resilient to noisy data coming from the high amounts of noise sources on NISQ
computers and the limited number of shots in the measurement that introduce
statistical errors. The optimizers can be grouped into two classes: the gradient

descent methods and gradient free methods.

The gradient descent methods optimize the cost function via its gradient, i.e. the
change of the function with respect to a variation of its parameters. The gradient
indicates the direction in which the objective function shows the greatest change.
This include for example methods that rely on the parameter shift rule [71, 75],
or stochastic gradient descent (SGD) methods like SPSA and CSPSA.

The gradient free methods, as it names implies, don’t rely on gradients measured
on the quantum computer, and are typically methods already studied in machine

learning, like reinforced learning (RL) [70] and the sequential minimal optimization
(SMO) method [77].

The principal advantage of VQAs is that they grant a general framework that can
be used to solve a wide arrange of problems. Some examples include Variational
quantum eigensolvers (VQE) [23, 24, 25, 26], which find the ground and excited
states of a given Hamiltonian, dynamical quantum simulation [7%], solving tasks

of quantum metrology |27, 28| and applications in quantum machine learning [29].

4.3 Variational determination of geometrical

entanglement

Let us consider a n-qubit system described by the pure state

) = Z Cirig.nin [12) [i2) -+ [in) | (4.3.1)

i1,82..in

The geometric measure of entanglement (GME) can be obtained solving the

optimization problem

Eg(|¢)) =1 — sup [(g|)* =1 — sup F([¢),]¢)) =1 - A%,  (43.2)
|p)esS |p)es

2

- ax 15 known as the entanglement

where S is the set of fully separable states and A

eigenvalue.
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This optimization problem can be solved following a similar variational approach
as the self-guided quantum tomography [66, 67]. The variational determination of

geometrical entanglement (VDGE) requires two basic quantum steps:

1. A variational ansatz for separable states, which in this case is constructed
with n single-qubit unitary transformations acting on the separable state
|0)*" that is,

6(8)) = U1(61) @ -+ @ Up(6,) [0)°", (4.3.3)

where the vector @ = (64,...,0,) contains the parameters defining the

action of the unitary transformations.
2. Measuring the fidelity F'(0) as a function of 6.

Both steps can be naturally implemented in a quantum computer. Here, each
unitary U;(6;) is generated as a sequence of local quantum gates acting on the
i-th qubit and the fidelity is obtained applying the operator UIT(Ol) ®---@U(0,)
onto the entangled state |¢), followed by a projection onto the computational
basis {]0),[1)}*", as is shown in Fig. 4.3.1. Then, the fidelity (@) is estimated

F(6) = (6@ ~ T, (4.3.4)

where ng is the number of counts obtained when projecting onto the state |0)*™ and

N is the total number of copies of |1)) employed in the projective measurements.

0) — Ul(6,) HAA

0 — T

x

U3(62)

0) — U3 (603) 1A

Figure 4.3.1: VDGE quantum circuit example for an arbitrary three-qubit state.
The target state |¢) is prepared applying a unitary gate 17" onto the separable
state |0Y%. The fidelity F(0) = | (¢(0)|1) |? is obtained applying local unitary
gates UZ-T(HZ-) and measuring all qubits in the computational basis.
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Thereby, the calculation of the GME reduces to running an optimization loop
in which a classical optimizer is used to maximize F(0) by varying the ansatz’s
parameters @, or equivalently to minimize the GME as cost function of the
variational quantum algorithm. Once convergence is reached, the optima 0 is used
to estimate the GME as Eg = 1 — A2, (8).

max

Since the method uses experimental estimates of the fidelity in each step, it is
affected by several sources of noise. These include errors due to state preparation
and measurement (SPAM), decoherence, and stochastic fluctuations produced by
finite sampling. It has been proven that CSPSA is robust to noise and it only
requires two evaluations of the cost function per iteration, making it a suitable
classical optimization algorithm for this problem. Given that CSPSA works in the
field of complex variables, 0 is set to be a vector of 2n complex numbers, where
each pair of parameters defines a single qubit state. This is a linear scaling in
the number of parameters O(n), which makes the method well suited for large
numbers of qubits. CSPSA provides a sequence of estimates @, that converges
to the minimizer @ of the fidelity. At a given iteration k, a new estimate 0., is
generated from the fidelity values F'(6 1) at vectors 6y 4, which are generated
from the previous estimate 6 following the iterative rule (4.1.1). At the last
iteration the fidelity F(@) is measured, which leads to the estimate E¢ of the
GME. The optimization loop is presented in Fig. 4.3.2.

A drawback present in the evaluation of the GME is its landscape, which may
contain several local maxima. This can cause the optimization algorithm to be
trapped in a local maximum. Also, the maximum may not be unique. For example,
both states |00) and |11) maximize the entanglement eigenvalue for the Bell state
|o*) = (|00) +[11))/+/2, giving the same value for the GME. A small modification
in the parameters of this state gives us a landscape with local maxima in which the
optimization algorithm can get trapped. To overcome this problem, a multi-start
strategy is employed, where the algorithm is repeated several times. Since CSPSA
is a stochastic optimization method, it approaches 6 from different paths in search
space, which leads to a set of estimates {E%}. The highest value in {E%} is

selected as the final estimate Eg.
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Figure 4.3.2: Flowchart of the VDGE algorithm. At iteration k, the parameters
0. are used to prepare the separable states |¢(6y 1)) and estimate F'(6y ). The
gradient gy (zy) is then constructed from the fidelities following (4.1.2), to generate
a new estimate 6;,,. The optimization loop is repeated until the optima 0 is
obtained. Blue squares represent the steps that are performed on the quantum
computer, that is, the state preparation and the measurement of the fidelity, while
the rest of the algorithm is performed on a classical computer.

4.4 Numerical simulations

First, the performance of the method is tested with states of n = 3 qubits. Let
IGW (s, ¢)) be a superposition of GHZ and W states given by [65]

IGW (s, ¢)) = /s |GHZ) + e¥v/1 — 5|W), (4.4.1)

where s € [0, 1], ¢ is a relative phase.

For each one of the values ¢ = 0,7/4,7/2, 7, we generated 31 equally spaced
values of s, which leads to a total of 124 |GW (s, ¢)) states. The GME of each one
of these states is calculated 100 times with the VDGE algorithm, where each initial
condition is chosen according to a Haar-uniform distribution. Each repetition of
the algorithm consists of 150 iterations of CSPSA, where the values of the fidelity
are simulated employing a sample of N = 2! shots, a number commonly available

in open hardware like IBM Quantum.
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In order to estimate errors, the Bootstrap method [79] is employed as follows. For
each simulated state, a bootstrap sample is obtained by randomly sampling 5 times,
with replacement, from the original set of 100 VDGE repetitions. This process is
repeated 10000 times, to calculate the median and interquartile range for each
simulated state. These are summarized in Fig. 4.4.1, where the value of the GME
achieved by VDGE as a function of s for the values p = 0, 7/4, 7 /2, 7 from bottom
to top is shown. In this figure, points represent the median value of the GME and
bars correspond to the interquartile range. Solid lines correspond to the theoretical
solution of the optimization problem obtained using the Basin-hopping global
optimization algorithm [30]. As is apparent from this figure, VDGE generates
median values that are almost identical to the theoretical solutions and interquartile
ranges that are very narrow, with mean errors of 0.00011,0.00091,0.00022 and
0.00124 for the respective values of ¢ = 0, 7/4,7/2, 7. Thereby, these simulations
indicate that VDGE generates accurate values of the GME for all the simulated

states.

Figure 4.4.1: Geometric measure of entanglement Eq(s,¢) of the state
|IGW (s, ¢)) as a function of s for ¢ = 0,7/4,7/2, 7, from bottom to top. Solid
lines correspond to the theoretical solution of the optimization problem using a
classical optimization algorithm i.e. Basin-hopping. Dots represent the median
value of the GME obtained using VDGE with 5 repetitions and choosing the best
result, while error bars correspond to the interquartile range.
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Figure 4.4.2: Difference between the GME Es obtained with the Basin-hopping
optimization method and the estimated GME E¢ obtained with VDGE for 100
random pure states versus the number of iterations k. The curves show the results
for 3, 4, 5, and 6 qubits from bottom to top, using in each case a sample size of
5 different initial states. Solid lines denote the median difference, while shaded
areas represent the corresponding interquartile range
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Figure 4.4.3: Difference between the GME Eg obtained with the Basin-hopping
optimization method and the estimated GME E¢ obtained with VDGE for 100
random pure states versus the number of iterations k. The curves show the results
for 3, 4, 5, and 6 qubits from bottom to top, using in each case a sample size of
20 different initial states. Solid lines denote the median difference, while shaded
areas represent the corresponding interquartile range

The method was tested with randomly generated states in various dimensions.



62 4.4. Numerical simulations

10°
107t %
1072+ %

1073+

A

|Eq — Eq

1074+

107°+

—6 1 1 1
1073 5 5 6

Qubit number

Figure 4.4.4: Difference between the GME E obtained with the Basin-hopping
optimization and the estimated GME E¢ obtained with VDGE versus the number
of qubits, using a sample size of 5 initial states (blue) and 20 initial states (red).
Dots correspond to the median difference of the last value obtained with VDGE
and the theoretical value, while error bars represent the corresponding interquartile
ranges.

Similar to the previous simulation, for 3, 4, 5, and 6 qubits a set of 100 random
pure states is obtained according to a Haar-uniform distribution. For each state,
the GME is selected as the maximum value obtained over 5 and 20 repetitions of
the algorithm using N = 2'3 shots to simulate the measurement of the fidelity.
These results are compared with the value obtained using Basin-hopping. In
particular, the comparison is established using the median of |Eg — Ec;| between
the value Eg of the GME obtained via the Basin-hopping algorithm and the
value Fg of the GME estimated via VDGE. The results of these simulations are
presented in Figs. 4.4.2 and 4.4.3. These show the median of | Eg — Fg| (solid lines)
as a function of the number of iterations of CSPSA, using 5 and 20 repetitions,
respectively, for 3, 4, 5 and 6 qubits from bottom to top. Shaded areas represent
the interquartile range. As is apparent from Figs. 4.4.2 and 4.4.3, the error in
the estimation provided by VDGE decreases as the number of iterations of the
optimization algorithm increases. Each curve exhibits a rapid decrease within the
first tens iterations followed by approximately linear asymptotic behavior. This
holds for all simulated qubit numbers. However, the quality of the estimation

decreases as the number of qubits increases. This is depicted in Fig. 4.4.4, which
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shows the error in estimating the GME as a function of the qubit number for
5 and 20 repetitions. Here, the result at iteration & = 150 of the optimization
process is compared to the theoretical value of the GME. This behavior is to be
expected because the dimension increases exponentially with the number of qubits
and the measurement of the fidelity is simulated with a constant number N = 2!3
of shots. The main difference between Figs. 4.4.2 and 4.4.3 is that errors and
dispersion are slightly less pronounced for 20 repetitions, but in both cases, the

algorithm converges successfully when tested with random pure states.

The previous simulations are restricted to small qubit numbers. Tensor network
algorithms [%1]| are employed in order to extend the simulations to higher qubit
numbers. These have proven to be a useful tool for performing numerical
simulations in many-body quantum systems [32, 83, &1, 85, 86, 87]. In particular,
the simulations are carried out over matrix product states (MPS), that is, states

that can be written as

i) = Z Al Al AT Al i) i) - fin) (4.4.2)

Bl yeenyin
where Ap, are rank-3 tensors, with m = 1,...,n. Algorithms have been proposed
to compute efficiently the GME of MPS [958, 89]. The study is focused on

states in the neighborhood of GHZ and W states, which have an efficient MPS
representation. To generate the probe MPSs, tensors Ay, of GHZ and W states
are perturbed with random matrices generated by a Gaussian distribution of null
mean and variance A\, and then normalized. Figure 4.4.5 shows the median of
|Eq — EG| on a set of 103 perturbed GHZ and W states of n = 25 qubits, with
A = 0.1. VDGE is executed with 10* iterations of CSPSA simulating the fidelity
with a sample of N = 2!3 shots. The optimums of GHZ and W states without
perturbation are used as initial conditions, because the dimension of the space is
too large, and therefore an unattainable number of shots is required to converge
when a random initial condition is used. Figure 4.4.5 shows that with only 2 x 10*
fidelity evaluations, the average error in estimating the GME can be reduced by
about half of an order of magnitude. This number of evaluations is a thousand

times smaller than the dimension of the system d = 2%° ~ 3 x 107.
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Figure 4.4.5: Difference between the GME E obtained with the Basin-hopping
optimization method and the estimated GME E¢ obtained with VDGE in a
simulation based on matrix product states techniques for 10® perturbed W state
(upper orange curve) and GHZ state (lower blue curve) for 25 qubits, as a function
of the number of iterations k. Solid lines denote the median difference, while
shaded areas represent the interquartile range.

4.5 Experimental results

The experimental demonstration of VDGE are performed using IBM Quantum
systems ibmg_lima and ibmq_bogota. In particular, the geometric measure of
entanglement of a n-qubit GHZ state with n = 3,4,5 is measured. VDGE is
repeated 10 times for each state considering 150 iterations and N = 23 shots for

measuring the fidelity at each iteration.

The results of the experiment are illustrated in Figs. 4.5.1, 4.5.2 and 4.5.3 for 3,
4, and 5 qubits, respectively. In each inset are depicted the values Eg(ek,_,_) (blue
dots) and Eg(8y,_) (red dots) as functions of the number of iterations k. The value
of the final estimate is indicated as a green square at the last iteration. The values
of Eg(Ok,i) exhibit a rapid decrease within the first tens iterations followed by
approximately linear asymptotic behavior'. Also, the values of EG(ek,i) become

very close as the number of iterations increases, which shows the convergence of

!The terms EAg(Gk,i) correspond to the evaluations of cost function i.e. the fidelity with the
perturbations 8y + = 0}, & by Ay, which follows from the definition of the gradient estimator.
The estimated GME at each iteration Eg(O &) is not calculated, as it would require an additional
experiment on the quantum computer, and it is not necessary for the optimization loop.
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the algorithm toward the maximum. The final estimates E@ are 0.5029, 0.5184,
and 0.5640 for n = 3,4, 5, respectively. These figures can first be compared with
the value Eg = 0.5, which is the theoretical value of the GME for a GHZ state,
independently of the number of qubits. VDGE provides a value of the GME which
is close to the theoretical value with relative errors of 0.0058, 0.0368, and 0.128,
respectively. The relative error increases as the number of qubits increases, which
can be explained by the increase in the dimension of the search space. However,
as the algorithm enters and stay into the linear regime it is possible to reduce the
relative error by increasing the number of iterations. The GHZ state is generated
by concatenating several Control-Not gates. This gate has an error larger than
local gates and its impact on the generated state and the GME value can be
significant. Therefore, the generated state are reconstructed via standard quantum
tomography and forced purity and calculate its GME via Basin-hopping. This
leads to the GME values 0.48214, 0.48996, and 0.4868 for the generated states for
n = 3,4, 5 qubits, respectively, which in Figs. 4.5.1, 4.5.2 and 4.5.3 are indicated
with continuous black lines. With respect to these values, VDGE has the relative
errors of 0.0431, 0.0581, and 0.1586, correspondingly.

Overall, VDGE exhibits convergence and provides in this experiment errors in the
order of 1072. This is larger than what was observed in the numerical simulations
in Figs. 4.4.2 and 4.4.3. This can be explained by the single-qubit gate error and
readout assignment error, which are in the order of 10~* and 1072, respectively.
Since VDGE relies solely on single-qubit gates, its implementation in current

NISQ computers is feasible.
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Figure 4.5.1: Values of Eg(0; ) (blue dots) and Eg (6 ) (red dots) as functions
of the number of iterations k for a GHZ state of three qubits. The final estimate
E’g of the GME at k = 150 obtained via VDGE is indicated with a solid green
square. Solid black lines indicate the value of the GME obtained by reconstructing
the generated states with standard quantum tomography and then solving the
optimization problem via Basin-hopping.
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Figure 4.5.2: Values of (0 ) (blue dots) and E¢ (0 _) (red dots) as functions
of the number of iterations k for a GHZ state of four qubits. The final estimate
EY of the GME at k = 150 obtained via VDGE is indicated with a solid green
square. Solid black lines indicate the value of the GME obtained by reconstructing
the generated states with standard quantum tomography and then solving the
optimization problem via Basin-hopping.



4.5. Experimental results 67

1.0
*;7,{. »+ Eol6y)
09 [ .'\. L4 EG(O,)
"\‘. Tomographic Result
0..*.
0.8 '.Q'... "
S B
S~— ... [ )
<m(5 0.7+ ..'..‘.‘:“D.‘;.‘. . o® )
LK L]
° ° {0.%03'.30?.*#%0 ’“-.
06F *.q..’ rgl...
o e o.." s °8,
A7
05F
1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 4.5.3: Values of Eg(0y,,) (blue dots) and £(8), ) (red dots) as functions
of the number of iterations k for a GHZ state of four qubits. The final estimate
E@ of the GME at k = 150 obtained via VDGE is indicated with a solid green
square. Solid black lines indicate the value of the GME obtained by reconstructing
the generated states with standard quantum tomography and then solving the
optimization problem via Basin-hopping.
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Chapter 5
Conclusion

Multipartite entanglement plays a key role in quantum information and quantum
communication. However, the theoretical characterization of entanglement, as well
as its experimental determination and certification, appear to be difficult problems.
This is mainly due to the fact that most entanglement measures are not directly
related to physically measurable quantities and are difficult to calculate, especially
for higher-dimensional quantum systems. Here, the problem of measuring the
entanglement of multipartite pure states generated in NISQ computers is studied.
This class of devices is characterized by noisy quantum gates, which severely limit
their usefulness. In this context, a major research subject is the development of

algorithms that can work under such disadvantageous conditions.

This work revolves around the geometric measure of entanglement, which
characterizes the entanglement of a n-qubit pure state |¢)) as the distance to
the nearest separable pure state. This entanglement measure can be calculated
by maximizing the fidelity of |¢)) in the set of separable states. The fidelity can
be experimentally obtained in a NISQ computer by projecting |¢)) onto a set of
n local bases. The complex simultaneous perturbation stochastic approximation
algorithm is then used to solve the optimization problem in a classical computer.
Thereby, a variational determination of the geometric entanglement measure is
presented. In addition to its purity, the method does not require any a priori
information about the state |1)). The GME is well suited for being implemented
in NISQ computers, because the measurements necessary to evaluate the GME

are local and require a single unitary transformation acting on each qubit. Then,
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VDGE has circuit depth 1, which helps to decrease error accumulation.

Numerical simulations indicate that the method reproduces known results on
the geometric measure of entanglement of superpositions of 3-qubit GHZ and W
states. Simulations with randomly chosen states of 3, 4, 5, and 6 qubits show
that the algorithm can provide accurate values of the geometric entanglement,
which is controlled by the number of iterations and the size of the ensemble
used to measure the fidelity. The simulations are extended up to 25 qubits using
matrix product state techniques, where convergence towards the optimum with a
reasonable number of fidelity evaluations is also observed, despite the large size of

the dimension.

A demonstration of the method is also demonstrated using IBM Quantum
ibmg_lima and ibmqg_bogota devices. In particular, the geometric measure of
entanglement of a GHZ state for 3, 4, and 5 qubits is calculated, obtaining relative
errors in the order of 1072 for 3 and 4 qubits and in the order of 10! for 5
qubits. The demonstration uses 150 iterations and 10 repetitions. Following the
simulations results, an increase in these figures leads to a reduction of relative
error. Another important factor is the size of the ensemble used to measure the
fidelity, which is currently limited to 2!* shots. A consequence of this is that
the accuracy in the estimation of the fidelity decreases as the number of qubits

increases, which in turn reduces the convergence rate of VDGE.

These results find direct application in the entanglement quantification of high-
dimensional pure entangled states. Recently, two quantum-hardware platforms
have been used to generate high-dimensional entanglement. The IBM Quantum
ibmg_montreal device has reportedly generated [90] a 27-qubit GHZ state and
detected its genuine multipartite entanglement. On the IBM Quantum ibmq_rome
device, the generation of a three-qutrit GHZ state has been carried out for the first
time |91] and its genuine multipartite entanglement has also been demonstrated.
These quantum devices also allow the implementation of our method, which
makes it possible to characterize the entanglement of arbitrary states of a large
number of qubits and even qudits. Finally, we mention the recent demonstration
of a universal qudit quantum processor using trapped ions [92|. Here, local
qudits up to dimension 7 are created and accurately controlled. In particular, high
accuracy local gates are implemented, which is the basic resource for the variational

determination of the geometric measure of entanglement on any dimension.



70 Appendix A. Monte-Carlo Simulations

Appendix A
Monte-Carlo Simulations

Monte Carlo [93] is a form of quadrature or numerical integration, in which finite
summations are used to estimate definite integrals. Although Monte Carlo is
inherently involved with the concept of probability, it can be applied to problems

that have no apparent connection with probabilistic phenomena.

Significantly, it also can be applied to a great variety of problems for which the
integral formulation is not posed explicitly. Often, the complex mathematics
needed in many analytical applications can be avoided entirely by simulation.
Thus, Monte Carlo methods provide extremely powerful ways to address realistic

problems that are not amenable to solution by analytic techniques.

One of the fundamental basis for Monte Carlo analysis is the law of large numbers,

which has strong and weak forms.

Let’s consider a sequence of N random samples, denoted by X = { X7, Xs,..., X, },
such that all members of the random sequence are independent and identically
distributed, that is, each random variable has the same probability distribution
as the others and all are mutually independent. The expectation value of each

random variable satisfies that

p=EX,) =EX,) =... = E(Xy), (A.1)
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N N T N

The weak law of large numbers states that, for all positive values of €, no matter
how small,

dim P (| Xy —puf > ¢) =0. (A.3)
The weak law states that for any nonzero tolerance e, with a sufficiently large
sample there is a high probability that the sample average will be close to the
expected value, i.e., within the tolerance margin. This type of convergence for X y
is technically called convergence in probability or weak convergence of a random

variable.

The weak law is a statement about the limiting behavior of sums of random
variables. It is possible, however, to make a stronger statement and say something
about the behavior of the sum Zf\il X; on the way to the limit N — oo. The
strong law of large numbers states that for any small € > 0 and 0 < § < 1, a value

of n exists such that, for any specified m > 0,

P(|Xy —u| =€) <35, (A-4)
where N =n,n+1,...,n+ m. Equivalently, the strong law requires
P(MnXN:u):L (A.5)
N—oo

The strong law asserts that, for any specified ¢ > 0 and 0 < § < 1, one can
identify a number of trials n such that (A.4) holds for a sequence of values of
N > n of arbitrary finite length m, requiring that the sample mean approaches

the expectation value in a more demanding way.

The weak law states that ‘X N — u‘ eventually becomes small but that not every
value on the way is small. It may be that, for some N, the difference is relatively
large. The strong law says that the probability of such a large event, however, is
extremely small. Either form of the law is sufficient to form a basis for the Monte

Carlo method because both indicate that limy_,.. Xy = .
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Let’s consider a collection of n random variables X = {X;, X»,..., X,,}, where
each component can be either discrete or continuous. The function f(x) is the

joint probability density function of X if it obeys that

f(x)>0 forall xe€V and / f(x)dx =1, (A.6)
v

where V' defines the volume over which x is defined.

Then, let Z represent a stochastic process that is a function of the random variable
X, where X is governed by the joint probability density function f(x). Then Z(x)

is also a random variable and one can define its the expectation value as

E(Z) = /v () f(x)dx. (A7)

The heart of a Monte Carlo analysis is to obtain an estimate of the expectation

value E(Z). If one forms the estimate

N

-1
7 = N;z(xi) (A.8)
where the x; are suitably sampled from f(x), the law of large numbers states that,

as long as the mean exists and the variance is bounded,

lim Zy =E(Z). (A.9)

N—oo
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Appendix B

Haar Measure

To test the VDGE algorithm, the geometrical measure of entanglement of randomly
generated states was calculated for multiple dimensions using Monte Carlo
simulations. Monte Carlo simulations are made under the assumptions that
random samples are independent and identically distributed, so it is necessary to
ensure that the random states are taken uniformly from the Hilbert space and not
from a privileged region of the space state. This is solved by sampling uniformly

at random from the Haar measure [04].

Measure theory [95] is the study of measures. It generalizes to mathematical spaces
and even higher dimensions the intuitive notions of length, area, and volume. Let
Q2 be a set, and let Y be a family of subsets of €. Y is called a o-algebra if it is an
algebra of sets and is stable under the countable union operation, that is, for any

sequence A,,n € N, of elements of the algebra ¥ their union is an element of X.
A set function p : ¥ — R is called a measure if it satisfies the following conditions:
1. (Non-negativity): pu(A) > 0 for any A € X.

2. (Countable additivity): If A;, As,..., A, € P, the sets Ay are pairwise
disjoint, and (J;_, Ax € @, then pu(U;_, Ax) =D 1y it (Ax).

A triple (2,3, ) is called a measure space. If p is a probability measure, that is,
w(2) =1, then (2,3, p) is called a probability space. In probability theory the set
Q2 is referred to as the space of elementary events, the elements of the o-algebra X

as events, and u(A) as the probability of the event A taking place.
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Operations in quantum computing are described by unitary matrices, which can
be expressed in terms of a fixed set of parameters. An N x N unitary matrix

U = (uj) is defined by the relation UTU = UU' = I, which in terms of the matrix

elements reads
N N N N
T _ * _ T * _
E Ujp Ukl = E upjur = 05 and E Ujply, = E i = 01 (B.1)
k=1 k=1 k=1 k=1

For every dimension N, the set of unitary matrices of size N x N constitute
the unitary group U(N), which corresponds to a compact Lie group with real
dimension N2. Every compact Lie group has a unique (up to an arbitrary constant)
left and right invariant measure, known as the Haar measure. In other words, if

we denote the Haar measure on U(NV) by dun(U), we have

dpn(VU) = dus(UW) = dpu(U),  V,W € U(N). (B.2)

The U(N) group can then be made into a probability space by assigning duy(U)
as a distribution. Intuitively, the Haar measure tells us how to weight the elements
of U(N). For example, let f be a function that acts on elements of U(N). The

integral of f over the group is obtained as

/ FV)dug (V). (B.3)
VeU(N)

The sampling of random states of the Haar-uniform distribution can be made

using the QR' decomposition of complex-valued matrices with the following steps:

1. Generate an N x N matrix Z with complex numbers a + bi, where both a

and b are normally distributed with mean 0 and variance 1.
2. Compute a QR decomposition Z = QR.
3. Compute the diagonal matrix A = diag (Ry;/ | Riil)-

4. Compute Q' = QA, which will be a Haar-random matrix.

! Any complex square matrix Z may be decomposed as
Z =QR, (B.4)

where @) is a unitary matrix and R is an upper triangular matrix, R;; = 0if ¢ > j
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Appendix C

Matrix Product States (MPS)

As said before, matrix product states are a well-known representation of quantum
states, that is useful for performing numerical simulations in many-body quantum

systems.

Let’s consider a lattice of n sites with d-dimensional local state spaces {|i)} on
sites ¢ = 1,...,n. The most general pure quantum state on the lattice can be

written as

= Z Ciq.ip |Z1> |Zz> <. |Zn> , (Cl)

with exponentially many coefficients ¢;, ;. The left-canonical matriz product
state of [1) can be constructed as follows [J0]. First, the state vector with d"
components is reshaped into a matrix ¥ of dimension (d x d"~!), where the
coefficients are related as

Wi, (in.iin) = Cixoviin- (C.2)

Then, the singular value decomposition of ¥ gives

Ciy.in = Z1 (i2..0n) E Ull,alDal,m a17(12 din) E Ul1,a1ca122 dno (C3>

where the rank is r; < d. In the last equality, D and V' have been multiplied and

the resulting matrix has been reshaped back into the vector cg,i,. i, -

The matrix U can then be decomposed into a collection of d row vectors A% with

entries A;ll = Ui, a,- At the same time, the vector ¢,,4,. i, is reshaped into a matrix
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W (ayis),(is...in) Of dimension (r1d x d"~?), which gives
C’il...in ZA a17,2 (13 Zn) (C4>

The singular value decomposition is applied again, obtaining

71 T2

Cirvin = Z Z All a17’2 a2,a2 (VT)a%(is...in) (C5>
"o

- Z Z All AZZI az\lj(azis),(u--.in)a (06)
a1 as

where U is replaced by a set of d matrices A” of dimension (r; X ry) with entries
A2 = Ulayis).as- The matrices D and VT are multiplied and reshaped into a

ay,az

matrix ¥ of dimension (rod x d"~3), where 7y < rid < d*.

The singular value decomposition and reshaping is performed repeatedly, obtaining

ot = D ARAD e AdLaa AL = ARAY AT AR (C)

a1,..,Gn—1

where Afm] are (r,_1 X ) matrices with ro = r,, = 1 and satisfy that

ZA[m]Agﬂ =1, foralll<m<n. (C.8)

Moreover, if x = max,, 7, the MPS is said to have bond dimension x [97].

The arbitrary quantum state is now represented exactly in the form of a matrix

product state:

W)y = D ARAR AT AR i) lia) - i) - (C.9)

'il’“-vln

To cover all the states in the Hilbert space, x needs to be exponentially large
in the system size. The maximal dimensions of the matrices are reached
when, for each singular value decomposition done, the number of non-zero

singular values is equal to the upper bound. The dimensions may maximally be



7

(Ixd),(dxd?),..., (d"* 1 xd?), (d"/? xd*?71), ..., (d® x d),(dx 1), going
from the first to the last site. This shows that in practical calculations it will
usually be impossible to carry out this exact decomposition explicitly, as the

matrix dimensions grow up exponentially.

However, it is known that low-energy states of gapped local Hamiltonians in
one-diemnsional systems can be efficiently approximated with almost arbitrary

accuracy by a MPS with a finite value of D [35].

The |GHZy) and |Wy) states both can be represented with MPS with bond
dimension x = 2 for any number of qubits N. The |GHZy) state can be represented
by a MPS with the following matrices Afm]:

L 0
0 v
10 0 0 .
A?ﬂ = (0 O) , A[lj] = (0 1) , forall 1<j<N (C.11)

1 0
A0 = oAl = . C.12
(O) () 1



78

Bibliography

Bibliography

1]

2l

3]

4]

[5]

(6]

17l

8]

9]

[10]

E. Schrodinger. Discussion of probability relations between separated systems.
Mathematical Proceedings of the Cambridge Philosophical Society, 31(4):
555-563, 1935. doi: 10.1017/S0305004100013554.

A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description
of physical reality be considered complete? Phys. Rev., 47:777-780, 5 1935.
doi: 10.1103/PhysRev.47.777.

C. H. Bennett. Quantum information and computation. Physics Today, 48
(10):24-30, 1995. doi: 10.1063/1.881452.

P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484-1509,
October 1997. doi: 10.1137/S0097539795293172.

Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing - STOC '96. ACM Press, 1996. doi: 10.1145/237814.237866. URL
https://doi.org/10.1145/237814.237866.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters. Teleporting an unknown quantum state via dual classical and
einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895-1899, 3 1993. doi:
10.1103/PhysRevLett.70.1895.

Charles H. Bennett and Stephen J. Wiesner. Communication via one- and
two-particle operators on einstein-podolsky-rosen states. Physical Review
Letters, 69(20):2881-2884, November 1992. doi: 10.1103/physrevlett.69.2881.
URL https://doi.org/10.1103/physrevlett.69.2881.

C. H. Bennett and G. Brassard. Quantum cryptography: Public key
distribution and coin tossing. Theoretical Computer Science, 560:7-11, 2014.
doi: 10.1016/j.tcs.2014.05.025. Theoretical Aspects of Quantum Cryptography
— celebrating 30 years of BB84.

C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Rev. Mod.
Phys., 89:035002, 7 2017. doi: 10.1103/RevModPhys.89.035002.

V. Giovannetti, S. Lloyd, and L. Maccone. Quantum-enhanced measurements:


https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/physrevlett.69.2881

Bibliography 79

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Beating the standard quantum limit. Science, 306(5700):1330-1336, 2004.
doi: 10.1126/science.1104149.

V. Giovannetti, S. Lloyd, and L. Maccone. Advances in quantum metrology.
Nature Photonics, 5(4):222-229, 4 2011. doi: 10.1038 /nphoton.2011.35.

W. K. Wootters. Entanglement of formation of an arbitrary state of two qubits.
Phys. Rev. Lett., 80:2245-2248, 3 1998. doi: 10.1103/PhysRevLett.80.2245.

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight. Quantifying
entanglement. Physical Review Letters, 78(12):2275-2279, March 1997. doi: 10.
1103 /physrevlett.78.2275. URL https://doi.org/10.1103/physrevlett.78.2275.

V. Vedral and M. B. Plenio. Entanglement measures and purification
procedures.  Physical Review A, 57(3):1619-1633, March 1998. doi:
10.1103/physreva.57.1619. URL https://doi.org/10.1103/physreva.57.1619.

A. Shimony. Degree of entanglementa. Annals of the New York Academy of
Sciences, 755(1):675-679, 1995. doi: 10.1111/j.1749-6632.1995.tb39008 .x.

H Barnum and N Linden. Monotones and invariants for multi-particle
quantum states. Journal of Physics A: Mathematical and General, 34(35):
67876805, August 2001. doi: 10.1088/0305-4470/34/35/305. URL https:
//doi.org/10.1088/0305-4470/34/35/305.

M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani. Bounds on
multipartite entangled orthogonal state discrimination using local operations
and classical communication. Physical Review Letters, 96(4), February 2006.
doi: 10.1103/physrevlett.96.040501. URL https://doi.org/10.1103/physrevlett.
96.040501.

Romaéan Orus, Sébastien Dusuel, and Julien Vidal. Equivalence of critical
scaling laws for many-body entanglement in the lipkin-meshkov-glick model.
Physical Review Letters, 101(2), July 2008. doi: 10.1103/physrevlett.101.
025701. URL https://doi.org/10.1103/physrevlett.101.025701.

Ofer Biham, Michael A. Nielsen, and Tobias J. Osborne. Entanglement
monotone derived from grover’s algorithm. Physical Review A, 65(6), June
2002. doi: 10.1103/physreva.65.062312. URL https://doi.org/10.1103/
physreva.65.062312.

John Preskill. Quantum computing in the NISQ era and beyond. Quantum,
2:79, August 2018. doi: 10.22331/q-2018-08-06-79. URL https://doi.org/10.
22331/9-2018-08-06-79.

M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles. Variational
quantum algorithms. Nature Reviews Physics, 3(9):625-644, 9 2021. doi:
10.1038 /s42254-021-00348-9.

K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand,


https://doi.org/10.1103/physrevlett.78.2275
https://doi.org/10.1103/physreva.57.1619
https://doi.org/10.1088/0305-4470/34/35/305
https://doi.org/10.1088/0305-4470/34/35/305
https://doi.org/10.1103/physrevlett.96.040501
https://doi.org/10.1103/physrevlett.96.040501
https://doi.org/10.1103/physrevlett.101.025701
https://doi.org/10.1103/physreva.65.062312
https://doi.org/10.1103/physreva.65.062312
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79

80

Bibliography

23]

[24]

[25]

[26]

27]

28]

[29]

[30]
[31]

[32]

33

[34]

M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim,
L.-C. Kwek, and A. Aspuru-Guzik. Noisy intermediate-scale quantum NISQ
algorithms, 2021. URL https://arxiv.org/abs/2101.08448v1.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien. A variational eigenvalue solver on a
photonic quantum processor. Nature Communications, 5(1):4213, 7 2014. doi:
10.1038 /ncommsb213.

D. Wecker, M. B. Hastings, and M. Troyer. Progress towards practical
quantum variational algorithms. Phys. Rev. A, 92:042303, 10 2015. doi:
10.1103/PhysRevA.92.042303.

J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory
of variational hybrid quantum-classical algorithms. New Journal of Physics,
18(2):023023, 2 2016. doi: 10.1088/1367-2630/18/2/023023.

A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,
and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for
small molecules and quantum magnets. Nature, 549(7671):242-246, 9 2017.
doi: 10.1038 /nature23879.

R. Kaubruegger, P. Silvi, C. Kokail, R. van Bijnen, A. M. Rey, J. Ye,
A. M. Kaufman, and P. Zoller. Variational spin-squeezing algorithms on
programmable quantum sensors. Phys. Rev. Lett., 123:260505, 12 2019. doi:
10.1103/PhysRevLett.123.260505.

B. Koczor, . Endo, T. Jones, Y. Matsuzaki, and S. C. Benjamin. Variational-
state quantum metrology. New Journal of Physics, 22(8):083038, 8 2020. doi:
10.1088/1367-2630/ab965¢.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd.
Quantum machine learning. Nature, 549(7671):195-202, 9 2017. doi: 10.1038/
nature23474.

IBM Quantum, 2021. URL https://quantum-computing.ibm.com/.

Henk Tijms. Understanding Probability. Cambridge University Press,
2009. doi: 10.1017/cbo9781139206990. URL https://doi.org/10.1017/
cb09781139206990.

Venkatarama Krishnan. Probability and Random Processes. John Wiley &
Sons, Inc., November 2005. doi: 10.1002/0471998303. URL https://doi.org/
10.1002/0471998303.

J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge
University Press, September 2017. doi: 10.1017/9781108499996. URL https:
//doi.org/10.1017/9781108499996.

N. Zettili. Quantum Mechanics: Concepts and Applications. Wiley, 2009.
I[SBN 9780470026786.


https://arxiv.org/abs/2101.08448v1
https://quantum-computing.ibm.com/
https://doi.org/10.1017/cbo9781139206990
https://doi.org/10.1017/cbo9781139206990
https://doi.org/10.1002/0471998303
https://doi.org/10.1002/0471998303
https://doi.org/10.1017/9781108499996
https://doi.org/10.1017/9781108499996

Bibliography 81

[35]

[36]

[37]

[38]

[39]

|40]

[41]

42]

|43

[44]

[45]

[46]

[47]

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2009. doi: 10.1017/
cb09780511976667. URL https://doi.org/10.1017 /cbo9780511976667.

Vlatko Vedral. Introduction to Quantum Information Science. Oxford
University Press, September 2006. doi: 10.1093/acprof:0so/9780199215706.
001.0001. URL https://doi.org/10.1093/acprof:0s0/9780199215706.001.0001.

P. A. M. Dirac. A new notation for quantum mechanics. Mathematical
Proceedings of the Cambridge Philosophical Society, 35(3):416-418, July
1939. doi: 10.1017/s0305004100021162. URL https://doi.org/10.1017/
s0305004100021162.

Radhika Vathsan. Introduction to Quantum Physics and Information
Processing. CRC Press, August 2015. doi: 10.1201/b18767. URL https:
//doi.org/10.1201/b18767.

Mark M. Wilde. Quantum Information Theory. Cambridge University
Press, 2009. doi: 10.1017/cb09781139525343. URL https://doi.org/10.1017/
cb09781139525343.

Martin B. Plenio and Shashank Virmani. An introduction to entanglement
measures. Quantum Info. Comput., 7(1):1-51, jan 2007. ISSN 1533-7146.

Ryszard Horodecki, Pawet Horodecki, Michat Horodecki, and Karol Horodecki.
Quantum entanglement. Reviews of Modern Physics, 81(2):865-942, June
2009. doi: 10.1103/revmodphys.81.865. URL https://doi.org/10.1103/
revmodphys.81.865.

Otfried Giihne and Géza Té6th. Entanglement detection. Physics Reports,
474(1-6):1-75, April 2009. doi: 10.1016/j.physrep.2009.02.004. URL https:
//doi.org/10.1016/j.physrep.2009.02.004.

Dagmar Brufs and G. Leuchs, editors. Lectures on Quantum Information.
Wiley, November 2006. doi: 10.1002/9783527618637. URL https://doi.org/10.
1002/9783527618637.

Dominique Spehner. Quantum correlations and distinguishability of quantum
states. Journal of Mathematical Physics, 55(7):075211, July 2014. doi:
10.1063/1.4885832. URL https://doi.org/10.1063/1.4885832.

Gregg Jaeger. Quantum Information. Springer New York, 2007. doi: 10.
1007/978-0-387-36944-0. URL https://doi.org/10.1007/978-0-387-36944-0.

Reinhard F. Werner.  Quantum states with einstein-podolsky-rosen
correlations admitting a hidden-variable model. Physical Review A, 40
(8):4277-4281, October 1989. doi: 10.1103/physreva.40.4277. URL https:
//doi.org/10.1103/physreva.40.4277.

A. V. Arkhangel’skii and L. S. Pontryagin, editors. General Topology I.


https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1093/acprof:oso/9780199215706.001.0001
https://doi.org/10.1017/s0305004100021162
https://doi.org/10.1017/s0305004100021162
https://doi.org/10.1201/b18767
https://doi.org/10.1201/b18767
https://doi.org/10.1017/cbo9781139525343
https://doi.org/10.1017/cbo9781139525343
https://doi.org/10.1103/revmodphys.81.865
https://doi.org/10.1103/revmodphys.81.865
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1002/9783527618637
https://doi.org/10.1002/9783527618637
https://doi.org/10.1063/1.4885832
https://doi.org/10.1007/978-0-387-36944-0
https://doi.org/10.1103/physreva.40.4277
https://doi.org/10.1103/physreva.40.4277

82

Bibliography

48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

57|

[58]

[59]

Springer Berlin Heidelberg, 1990. doi: 10.1007/978-3-642-61265-7. URL
https://doi.org/10.1007 /978-3-642-61265-7.

Zhihao Ma, Fu-Lin Zhang, and Jing-Ling Chen. Fidelity induced distance
measures for quantum states.  Physics Letters A, 373(38):3407-34009,
September 2009. doi: 10.1016/j.physleta.2009.07.042. URL https://doi.
org/10.1016/j.physleta.2009.07.042.

Multi partite entanglement. Multi-partite entanglement, 2017.

Ingemar Bengtsson and Karol Zyczkowski. Geometry of Quantum States.
Cambridge University Press, 2017. doi: 10.1017/9781139207010. URL
https://doi.org/10.1017/9781139207010.

Guifré Vidal. Entanglement monotones. Journal of Modern Optics, 47(2-
3):355-376, February 2000. doi: 10.1080/09500340008244048. URL https:
//doi.org/10.1080/09500340008244048.

Armin Uhlmann. Roofs and convexity. Entropy, 12(7):1799-1832, July 2010.
doi: 10.3390/e12071799. URL https://doi.org/10.3390/e12071799.

Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press,
December 1970. doi: 10.1515/9781400873173. URL https://doi.org/10.1515/
9781400873173.

Edward Witten. A mini-introduction to information theory. La Rivista del
Nuovo Cimento, 43(4):187-227, March 2020. doi: 10.1007/s40766-020-00004-5.
URL https://doi.org/10.1007 /s40766-020-00004-5.

Charles H. Bennett, Herbert J. Bernstein, Sandu Popescu, and Benjamin
Schumacher. Concentrating partial entanglement by local operations. Physical
Review A, 53(4):2046-2052, April 1996. doi: 10.1103/physreva.53.2046. URL
https://doi.org/10.1103/physreva.53.2046.

Alexander Streltsov, Hermann Kampermann, and Dagmar Bruf. Linking a
distance measure of entanglement to its convex roof. New Journal of Physics,
12(12):123004, December 2010. doi: 10.1088,/1367-2630/12/12/123004. URL
https://doi.org/10.1088/1367-2630/12/12/123004.

T.-C. Wei, M. Ericsson, P. M. Goldbart, and W. J. Munro. Connections
between relative entropy of entanglement and geometric measure of
entanglement. Quantum Info. Comput., 4(4):252-272, July 2004. doi:
10.26421/QIC4.4-2.

A. Acin, A. Andrianov, L. Costa, E. Jané, J. I. Latorre, and R. Tarrach.
Generalized schmidt decomposition and classification of three-quantum-bit
states. Physical Review Letters, 85(7):1560-1563, August 2000. doi: 10.1103/
physrevlett.85.1560. URL https://doi.org/10.1103/physrevlett.85.1560.

W. Diir, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two


https://doi.org/10.1007/978-3-642-61265-7
https://doi.org/10.1016/j.physleta.2009.07.042
https://doi.org/10.1016/j.physleta.2009.07.042
https://doi.org/10.1017/9781139207010
https://doi.org/10.1080/09500340008244048
https://doi.org/10.1080/09500340008244048
https://doi.org/10.3390/e12071799
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1007/s40766-020-00004-5
https://doi.org/10.1103/physreva.53.2046
https://doi.org/10.1088/1367-2630/12/12/123004
https://doi.org/10.1103/physrevlett.85.1560

Bibliography 83

[60]

[61]

[62]

[63]

[64]

|65]

[66]

|67]

|68]

[69]
[70]

[71]

inequivalent ways. Physical Review A, 62(6), November 2000. doi: 10.1103/
physreva.62.062314. URL https://doi.org/10.1103 /physreva.62.062314.

Michael Seevinck and Jos Uffink. Partial separability and entanglement
criteria for multiqubit quantum states. Physical Review A, 78(3), September
2008. doi: 10.1103/physreva.78.032101. URL https://doi.org/10.1103/
physreva.78.032101.

F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde. Four qubits can
be entangled in nine different ways. Physical Review A, 65(5), April 2002.
doi: 10.1103/physreva.65.052112. URL https://doi.org/10.1103/physreva.65.
052112.

L. Lamata, J. Leén, D. Salgado, and E. Solano. Inductive classification of
multipartite entanglement under stochastic local operations and classical
communication. Physical Review A, 74(5), November 2006. doi: 10.1103/
physreva.74.052336. URL https://doi.org/10.1103 /physreva.74.052336.

Charles H. Bennett, Sandu Popescu, Daniel Rohrlich, John A. Smolin, and
Ashish V. Thapliyal. Exact and asymptotic measures of multipartite pure-
state entanglement. Physical Review A, 63(1), December 2000. doi: 10.1103/
physreva.63.012307. URL https://doi.org/10.1103/physreva.63.012307.

Jens Eisert and Hans J. Briegel. Schmidt measure as a tool for quantifying
multiparticle entanglement. Physical Review A, 64(2), July 2001. doi: 10.
1103 /physreva.64.022306. URL https://doi.org/10.1103/physreva.64.022306.

T.-C. Wei and P. M. Goldbart. Geometric measure of entanglement and
applications to bipartite and multipartite quantum states. Phys. Rev. A, 68:
042307, 10 2003. doi: 10.1103/PhysRevA.68.042307.

C. Ferrie. Self-guided quantum tomography. Phys. Rev. Lett., 113:190404, 11
2014. doi: 10.1103/PhysRevLett.113.190404.

A. Utreras-Alarcon, M. Rivera-Tapia, S. Niklitschek, and A. Delgado.
Stochastic optimization on complex variables and pure-state quantum
tomography. Scientific Reports, 9(1), November 2019. doi: 10.1038/
$41598-019-52289-0. URL https://doi.org/10.1038/s41598-019-52289-0.

J.C. Spall. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEFE Transactions on Automatic
Control, 37(3):332-341, March 1992. doi: 10.1109/9.119632. URL https:
//doi.org/10.1109/9.119632.

J.C. Spall. An overview of the simultaneous perturbation method for efficient
optimization. Johns Hopkins apl technical digest, 19(4):482-492, 1998.

Ken Kreutz-Delgado. The complex gradient operator and the cr-calculus,
2009.

Richard P. Feynman. Simulating physics with computers. International


https://doi.org/10.1103/physreva.62.062314
https://doi.org/10.1103/physreva.78.032101
https://doi.org/10.1103/physreva.78.032101
https://doi.org/10.1103/physreva.65.052112
https://doi.org/10.1103/physreva.65.052112
https://doi.org/10.1103/physreva.74.052336
https://doi.org/10.1103/physreva.63.012307
https://doi.org/10.1103/physreva.64.022306
https://doi.org/10.1038/s41598-019-52289-0
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/9.119632

84

Bibliography

[72]

73]

[74]

[75]

|76]

7]

78]

[79]

[30]

[81]

[82]

Journal of Theoretical Physics, 21(6-7):467-488, June 1982. doi: 10.1007/
bf02650179. URL https://doi.org/10.1007 /bf02650179.

Masuo Suzuki. Generalized trotter's formula and systematic approximants of
exponential operators and inner derivations with applications to many-body
problems. Communications in Mathematical Physics, 51(2):183-190, June
1976. doi: 10.1007/bf01609348. URL https://doi.org/10.1007 /bf01609348.

Andrew G. Taube and Rodney J. Bartlett. New perspectives on unitary
coupled-cluster theory. International Journal of Quantum Chemistry, 106
(15):3393-3401, 2006. doi: 10.1002/qua.21198. URL https://doi.org/10.1002/
qua.21198.

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning.
Physical Review A, 98(3), September 2018. doi: 10.1103/physreva.98.032309.
URL https://doi.org/10.1103/physreva.98.0323009.

Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan
Killoran. Evaluating analytic gradients on quantum hardware. Physical
Review A, 99(3), March 2019. doi: 10.1103/physreva.99.032331. URL https:
//doi.org/10.1103/physreva.99.032331.

Matteo M. Wauters, Emanuele Panizon, Glen B. Mbeng, and Giuseppe E.
Santoro. Reinforcement-learning-assisted quantum optimization. Physical
Review Research, 2(3), September 2020. doi: 10.1103/physrevresearch.2.
033446. URL https://doi.org/10.1103/physrevresearch.2.033446.

Ken M. Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal
optimization for quantum-classical hybrid algorithms. Physical Review
Research, 2(4), October 2020. doi: 10.1103/physrevresearch.2.043158. URL
https://doi.org/10.1103/physrevresearch.2.043158.

Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li, and Simon C. Benjamin. Theory
of variational quantum simulation. Quantum, 3:191, October 2019. doi:
10.22331/¢-2019-10-07-191. URL https://doi.org/10.22331/9-2019-10-07-191.

B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman
and Hall/CRC, 5 1994. doi: 10.1201/9780429246593.

D. J. Wales and J. P. K. Doye. Global optimization by basin-hopping and
the lowest energy structures of lennard-jones clusters containing up to 110
atoms. The Journal of Physical Chemistry A, 101(28):5111-5116, 1997. doi:
10.1021/jp970984n.

R. Orts. A practical introduction to tensor networks: Matrix product states
and projected entangled pair states. Annals of Physics, 349:117-158, 2014.
doi: 10.1016/j.a0p.2014.06.013.

A. Klumper, A. Schadschneider, and J. Zittartz. Equivalence and solution of
anisotropic spin-1 models and generalized t-j fermion models in one dimension.


https://doi.org/10.1007/bf02650179
https://doi.org/10.1007/bf01609348
https://doi.org/10.1002/qua.21198
https://doi.org/10.1002/qua.21198
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1103/physrevresearch.2.033446
https://doi.org/10.1103/physrevresearch.2.043158
https://doi.org/10.22331/q-2019-10-07-191

Bibliography 85

83

[84]

[85]

[36]

187]

88

[89]

[90]

91

[92]

193]

[94]

Journal of Physics A: Mathematical and General, 24(16):1.955-1.959, 8 1991.
doi: 10.1088/0305-4470,/24/16/012.

M. Fannes, B. Nachtergaele, and R. F. Werner. Finitely correlated states
on quantum spin chains. Communications in Mathematical Physics, 144(3):
443-490, 3 1992. doi: 10.1007/bf02099178.

A. Klimper, A. Schadschneider, and J. Zittartz. Matrix product ground
states for one-dimensional spin-1 quantum antiferromagnets. Europhysics
Letters (EPL), 24(4):293-297, 11 1993. doi: 10.1209/0295-5075/24/4/010.

Steven R. White. Density matrix formulation for quantum renormalization
groups. Physical Review Letters, 69(19):2863-2866, November 1992. doi: 10.
1103 /physrevlett.69.2863. URL https://doi.org/10.1103/physrevlett.69.2863.

F. Verstraete, D. Porras, and J. I. Cirac. Density matrix renormalization
group and periodic boundary conditions: A quantum information perspective.
Phys. Rev. Lett., 93:227205, 11 2004. doi: 10.1103 /PhysRevLett.93.227205.

J. J. Garcia-Ripoll. Quantum-inspired algorithms for multivariate analysis:
from interpolation to partial differential equations. Quantum, 5:431, April
2021. doi: 10.22331/q-2021-04-15-431.

B.-Q. Hu, X.-J. Liu, J.-H. Liu, and H.-Q. Zhou. Geometric entanglement
from matrix product state representations. New Journal of Physics, 13(9):
093041, sep 2011. doi: 10.1088/1367-2630/13,/9/093041.

P. Teng. Accurate calculation of the geometric measure of entanglement for
multipartite quantum states. Quantum Information Processing, 16(7), June
2017. doi: 10.1007/s11128-017-1633-8.

G. J. Mooney, G. A. L. White, C. D. Hill, and L. C. L. Hollenberg.
Generation and verification of 27-qubit greenberger-horne-zeilinger states in

a superconducting quantum computer. Journal of Physics Communications,
5(9):095004, 9 2021. doi: 10.1088/2399-6528 /ac1df7.

A. Cervera-Lierta, M. Krenn, A. Aspuru-Guzik, and A. Galda.
Experimental high-dimensional greenberger-horne-zeilinger entanglement with
superconducting transmon qutrits, 2021. URL https://arxiv.org/abs/2104.
05627.

M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. Schindler, and
T. Monz. A universal qudit quantum processor with trapped ions, 2021. URL
https://arxiv.org/abs/2109.06903.

William L. Dunn and J. Kenneth Shultis. Faploring Monte Carlo Methods.
Elsevier, Amsterdam, 2012. ISBN 978-0-444-51575-9. doi: https://doi.org/
10.1016,/B978-0-444-51575-9.00002-6.

Francesco Mezzadri. How to generate random matrices from the classical


https://doi.org/10.1103/physrevlett.69.2863
https://arxiv.org/abs/2104.05627
https://arxiv.org/abs/2104.05627
https://arxiv.org/abs/2109.06903

86 Bibliography

compact groups. Notices of the American Mathematical Society, 54(5):592 —
604, May 2007. ISSN 0002-9920.

[95] Vladimir Kadets. A Course in Functional Analysis and Measure Theory.
Springer International Publishing, 2018. doi: 10.1007,/978-3-319-92004-7.
URL https://doi.org/10.1007/978-3-319-92004-7.

[96] Ulrich Schollwock. The density-matrix renormalization group in the age of
matrix product states. Annals of Physics, 326(1):96-192, January 2011. doi:
10.1016/j.a0p.2010.09.012. URL https://doi.org/10.1016/j.20p.2010.09.012.

[97] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix product
state representations. Quantum Info. Comput., 7(5):401-430, jul 2007. ISSN
1533-7146.


https://doi.org/10.1007/978-3-319-92004-7
https://doi.org/10.1016/j.aop.2010.09.012

	AGRADECIMIENTOS
	List of Figures
	Resumen
	Abstract
	Introduction
	Quantum Mechanics
	Probability Theory
	Events and Probabilities
	Discrete Random Variables
	Continuous Random Variables

	Hilbert space and linear operators
	Postulates of Quantum Mechanics
	Density Matrix
	Schmidt Decomposition and purification

	Quantum Entanglement
	Entanglement
	Distance between Quantum States
	Trace distance
	Fidelity

	Quantum and LOCC operations
	LOCC (Local Operations and classical communication) operations
	Classes of equivalence

	Axioms on entanglement measures
	Convex Roof Construction

	Bipartite Entanglement
	Entanglement Cost and Distillable Entanglement
	Entanglement of formation and Concurrence
	Distance based measures of entanglement

	Multipartite entanglement
	Three qubits entanglement
	Entanglement classes for the general case
	Symmetric states
	Multipartite Entanglement Measures
	Schmidt measure
	Multipartie relative entropy of entanglement
	Geometric measure of entanglement (GME)



	Variational Algorithm for Geometric Entanglement Measure
	Complex Simultaneous Perturbation Stochastic Approximation (CSPSA)
	Variational quantum algorithms
	Variational determination of geometrical entanglement
	Numerical simulations
	Experimental results

	Conclusion
	Monte-Carlo Simulations
	Haar Measure
	Matrix Product States (MPS)
	Bibliography

