Sanhueza Matamala, NicolásMansilla Brito, Claudio Javier2023-10-202024-05-152024-08-282023-10-202024-05-152024-08-282023https://repositorio.udec.cl/handle/11594/11407Tesis presentada para optar al título de Ingeniero Civil Matemático.El proyecto se enmarca en el estudio de un problema contemporáneo en combinatoria extremal. Particularmente, este se enfoca en encontrar una propiedad en hipergrafos 3-uniformes. En una vaga explicación, un hipergrafo 3-uniforme es una colección de vértices y aristas, donde las aristas son conjuntos de 3 vértices. Dentro de este caso particular de hipergrafos existen muchas estructuras formadas por las aristas. En nuestro trabajo, encontramos una condición que nos asegura la abundancia de una estructura en particular, la cual son los ciclos hamiltonianos. Para lograr esto, nos apoyamos en la investigación previa realizada en el ámbito de los grafos desarrollada por Balogh, Pluhár, Jing y Csaba [Bal+20a], donde demostraron que se requiere un grado mínimo específico para asegurar la abundancia de ciclos hamiltonianos en grafos.spaCreative Commoms CC BY NC ND 4.0 internacional (Atribución-NoComercial-SinDerivadas 4.0 Internacional)Discrepancia de ciclos hamiltonianos en hipergrafos 3-uniformes.Tesis