Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.udec.cl/jspui/handle/11594/2642
Título : Una contribución al estudio de métodos numéricos eficientes para algunos modelos multi-especies en una dimensión
Autor : Bürger, Raimund , supervisor de grado
Rubio Ortega, Lihki José
Palabras clave : Cromatografía - Análisis Numérico.
Cinemática - Modelos Matemáticos
Fecha de publicación : 2017
Editorial : Universidad de Concepción .Facultad de Ciencias Física y matemáticas Departamento de Ingeniería Matemática
Resumen : En este trabajo se desarrollan métodos numéricos de alto orden para aproximar la solución de modelos de flujo cinemático multiespecies y sistemas de convección-difusión. Precisamente, se plantean esquemas numéricos para los modelos de tráfico vehicular, sedimentación polidispersa y cromatografía de líquidos. Los siguientes son los objetivos que nos planteamos en esta tesis. Las figuras con la excepción de Figure 5.1 son de elaboración propia. El primer objetivo de esta tesis es mostrar las ventajas en términos de eficiencia que el método PVM (Polynomial Viscosity Matrix) presenta al simular modelos de flujo cinemático multiespecies bajo una selección adecuada de la forma en que aproximamos la viscosidad del flujo numérico de Roe usando diferentes tipos de integración Gaussiana. El segundo objetivo de esta tesis es proponer un nuevo método PVM el cual no presente oscilaciones cuando aproximamos la matriz de viscosidad usando polinomios de grado cuatro, como por ejemplo en el modelo de Masliyah-Lockett-Bassoon (MLB) al tomar un gran número de especies y cuando el segundo autovalor es muy cercano a cero con respecto al mayor autovalor. Este modelo surge de las ecuaciones de balance del momento lineal y de continuidad para la especie sólida y el fuido respectivamente, para partículas de igual densidad las velocidades de este modelo están dadas por (3.5). El tercer objetivo de este trabajo es utilizar las técnicas mencionadas arriba para aproximar el termino convectivo de sistemas de convección-difusión en la simulación de sedimentación de gotas de diferentes diámetros dispersas en un fluido viscoso. Se propone utilizar esquemas Linealmente Implícitos-Explícitos Runge-Kutta para obtener una solución eficiente de estos sistemas de convección-difusión. Finalmente hacemos uso del método de lineas y de esquemas Linealmente Implícitos- Explícitos Runge-Kutta para obtener un solución ráp
Descripción : Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática Universidad de Concepción 2017
URI : http://repositorio.udec.cl/jspui/handle/11594/2642
Aparece en las colecciones: Ingeniería Matemática - Tesis Doctorado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Tesis_Una_contribucion_al_estudio_de_metodos_numericos.pdf6,02 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.