Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Burgos Rubilar, Felipe Ignacio"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Aplicaciones de Machine Learning en el campo de variabilidad estelar. Desarrollo de métodos para la identificación de señales planetarias.
    (Universidad de Concepción, 2022) Burgos Rubilar, Felipe Ignacio; Mennickent Cid, Ronald Enrique; Astudillo Defru, Nicola; Cerulo, Pierluigi
    La detección y caracterización de planetas extrasolares (exoplanetas) representa uno de los mayores desafíos en la astrofísica moderna y en el análisis de datos astronómicos. Espectroscopios como el High Accuracy Radial velocity Planet Searcher (HARPS) han recolectado observaciones desde el año 2003 y uno de los resultados más interesantes a aparecido en las estrellas de clase M. En particular, las enanas M son excelentes candidatos para encontrar planetas rocosos en la zona habitable. Usando observaciones de velocidad radial telescopio HARPS para estrellas de clase M con detecciones de exoplanetas confirmadas, hemos entrenado modelos de aprendizaje de máquinas de dos tipos (Máquinas de Vector de Soporte y Árboles Aleatorios) con el fin de crear herramientas automatizadas para detectar la presencia de señales planetarias con un alto grado de confianza. Hemos entrenado estos modelos con periodogramas de tipo Lomb-Scargle derivados de las observaciones de velocidad radial, consiguiendo una exactitud del 85 % y un Recall del 94 % con nuestro mejor modelo, demostrando que se puede utilizar el aprendizaje de máquinas de manera efectiva para la detección planetaria a partir de series de velocidad radial.
Síguenos en...