Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Guajardo Bravo, Juan Carlos"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Positive radial solutions for quasilinear equations = Soluciones radiales positivas para ecuaciones cuasilineales.
    (Universidad de Concepción, 2020) Guajardo Bravo, Juan Carlos; Mahadevan, Rajesh; Lorca, Sebastián
    The study of existence, multiplicity and non-existence of positive solutions to semi-linear and quasi-linear elliptic equations is relevant to many applications ranging from thermal iginition of gases [14], quantum field theory and statistical mehcanics [7], gravitational equilibrium of stars [19] etc. This work aims to study the existence, multiplicity and no-existence of positive radial solutions(other than the 0 solution) to the problem div(A(|∇u|)∇u) + λk(|x|)f(u) = 0, x ∈ Ω. (1.0.1) in symmetric exterior domains Ω ⊂ R n (complements of balls centered at the origin) for n ≥ 2. The non negative functions A, k and f satisfy certain properties that we will specify later and λ > 0 is a parameter. The class of functions A which we consider will include A(|p|) = |p| m−2 , m > 1 associated to the m-laplacian operator div (|∇u| m−2∇u) (non linear if m 6= 2 and coincides with the Laplacian for m = 2) applicable to diffusion problems. The class will also include slight perturbations .
Síguenos en...