Browsing by Author "Pineda Frias, Romel Tarquino"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Models of reactive settling for wastewater treatment.(Universidad de Concepción, 2023) Pineda Frias, Romel Tarquino; Bürger, Raimund; Diehl, Stefan; Careaga, JulioEn esta tesis, se pone especial énfasis en el proceso de lodo activado en la sedimentación reactiva, en tanques de sedimentación secundarios (SSTs, por sus siglas en inglés) y reactores por lotes secuenciales (SBRs, por sus siglas en inglés). Entre los temas tratados se encuentran el desarrollo de un modelo matemático unidimensional moderno y la implementación de esquemas numéricos para simular la sedimentación reactiva en los SBRs. El modelo gobernante consiste en un sistema acoplado de ecuaciones de leyes de conservación parabólicas de convección-difusión-reacción fuertemente degeneradas, siendo las incógnitas las concentraciones de los componentes sólidas (bacterias; lodos activados) y líquidos (substratos) en función de la altura y el tiempo. También es de interés desarrollar el ajuste de datos experimentales obtenidos de un SST piloto con área de sección transversal variable al modelo de sedimentación reactiva. La tesis tiene los siguientes objetivos: Primero, formular un modelo físico-matemático basado en ecuaciones de conservación de masa para modelar el proceso de sedimentación reactiva de los SBRs donde la superficie superior es una frontera móvil. Segundo, desarrollar un esquema numérico confiable (consistente y estable) para las ecuaciones gobernantes derivadas del primer objetivo, considerando una discretización espacial con un número fijo de celdas a través de las cuales se mueve la superficie, y demostrar que el esquema numérico es monótono y satisface una propiedad de región invariante (en particular, preserva la positividad) cuando se ejecuta en una formulación de división simple. Tercero, ajustar un modelo de sedimentación reactiva a datos experimentales de una planta piloto que tiene un área de sección transversal variable, donde las ecuaciones del modelo se extienden, incluyendo términos adicionales para la dispersión hidrodinámica y la mezcla heurística. Cuarto, realizar una transformación espacial adecuada de las ecuaciones gobernantes del primer objetivo a un dominio fijo y discretizarlas utilizando un esquema explícito monótono y una variante semi-implícita, formulaciones que, entre otras ventajas, son más fáciles de implementar en comparación con el enfoque del segundo objetivo.