Algoritmo de segmentación semiautomática de procesos neuronales en imágenes de microscopía de alta resolución.

dc.contributor.advisorGuevara Álvez, Pamela Beatrizes
dc.contributor.authorRodríguez Gatica, Juan Eduardoes
dc.date.accessioned2021-05-18T18:53:32Z
dc.date.accessioned2024-08-28T20:10:46Z
dc.date.available2021-05-18T18:53:32Z
dc.date.available2024-08-28T20:10:46Z
dc.date.issued2014
dc.descriptionTesis presentada para optar al grado de Magíster en Ciencias de la Ingeniería con mención en Ingeniería Eléctrica.es
dc.description.abstractEl siguiente documento muestra las etapas realizadas para el diseño, desarrollo e implementación de un algoritmo a ser usado como herramienta de software que pretende resolver a lo menos en parte un problema fundamental de la neurociencia moderna, la clasificación de todas y cada una de las neuronas presentes en el tejido nervioso. Para esto se utilizaron imágenes de alta resolución obtenidas por medio de microscopia electrónica (EM: Electron Microscopy), en donde se presentan los procesos neuronales a segmentar. El marco teórico demuestra que aun cuando hay herramientas disponibles para el procesamiento de imágenes de microscopía electrónica, éstas dependen directamente de la interacción con el usuario, y por el momento ninguna de ellas permite el proceso completo de segmentación de procesos neuronales en forma automática. Por esta razón, actualmente la segmentación de este tipo de imágenes es una tarea tediosa, que consume mucho tiempo y es susceptible a errores. En este trabajo se desarrolló un algoritmo en MATLAB que permite la manipulación de las imágenes que son obtenidas por medio de EM, realizando el alineamiento de la secuencia de imágenes, así como todo el pre-procesamiento necesario antes de la segmentación, sin la necesidad de utilizar programas externos. El algoritmo permite seleccionar, en la primera imagen de la secuencia, los procesos neuronales de interés, para luego segmentar las neuronas seleccionadas por el usuario en forma automática. Finalmente el algoritmo etiqueta automáticamente los cuerpos segmentados, reconociendo todas las posibles ramificaciones como parte de un mismo cuerpo. Luego despliega los resultados de la segmentación en un mapa de conexiones 3D, además genera índices con el volumen y la cantidad de ramificaciones para cada uno de los cuerpos segmentados, los cuales son potencialmente útiles para el estudio de patologías, comparando muestras de tejidos. Se evaluó el buen funcionamiento del algoritmo mediante un set de validación, en donde los cuerpos neuronales han sido segmentados manualmente, el cual es el método más aceptado en la actualidad. La validación arrojó un error medio de un 3%. Se utilizaron 3 set de datos más, todos con diferentes características de resolución, cantidad de imágenes, pigmentación etc., con la finalidad de evaluar la robustez del algoritmo, frente a imágenes con características diferentes. Además, se evaluó una versión del algoritmo en Python, la cual mostró mejores tiempos de segmentación, resaltando la potencialidad del algoritmo. Para mostrar la versatilidad y potencialidad del algoritmo, 5 set de datos obtenidos con técnicas de fluorescencia fueron evaluados, al segmentar correctamente estos datos.es
dc.description.campusConcepciónes
dc.description.departamentoDepartamento de Ingeniería Eléctricaes
dc.description.facultadFacultad de Ingenieríaes
dc.identifier.urihttps://repositorio.udec.cl/handle/11594/5861
dc.language.isoeses
dc.publisherUniversidad de Concepciónes
dc.rightsCC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.urihttps://go.openathens.net/redirector/udec.cl?url=http://tesisencap.udec.cl/concepcion/rodriguez_g_j/index.html
dc.subjectDiagnóstico por Microscopía Electrónicaes
dc.subjectMicroscopía Electrónica de Alta Resoluciónes
dc.subjectProcesamiento de Imagenes
dc.subjectNeurocienciases
dc.subjectProcesamiento de Imagenes
dc.titleAlgoritmo de segmentación semiautomática de procesos neuronales en imágenes de microscopía de alta resolución.es
dc.typeTesises

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Resumen.pdf
Size:
88.74 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections