Relación entre polarización y fricción en interfases agua-grafeno: un estudio atomístico.
Loading...
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción.
Abstract
En esta investigación se estudió la relación entre la polarización y la fricción en la interfaz agua-grafeno mediante simulación por Dinámica Molecular. Se analizaron dos casos de estudios. En primera instancia se analizó la fricción (λ) en la interfaz entre moléculas de agua depositadas sobre láminas de grafeno no polarizables, mientras que para el segundo caso de estudio se analizó para grafeno polarizable. En ambos casos de estudios se utilizó el modelo de agua polarizable de tipo rígido SWM4-NDP. Los efectos de polarización se simularon mediante el Modelo Clásico Oscilatorio de Drude con potencial de amortiguamiento de Thole. En ambos casos se calculó el coeficiente de fricción (λ) mediante la función de autocorrelación de Green-Kubo. El coeficiente de fricción para el grafeno polarizable presenta un valor promedio aproximado de λP ≈ 1.27 ± 0.009 × 104 Ns/m3, mientras que para el grafeno no polarizable λNP ≈ 1.09 ± 0.0017 × 104 Ns/m3. Esta diferencia es aproximadamente de un 14 %, siendo mayor el valor de la fricción en la interfaz agua-grafeno polarizable. Para complementar el análisis, se calculó la Energía Libre de Gibbs (ΔG) para ambos casos de estudios con la finalidad de analizar las contribuciones estructurales y energéticas del agua además de analizar la barrera de energía. De acuerdo con los resultados obtenidos, la interacción entre el agua y el grafeno polarizable presenta una barrera de energía más corrugada indicando que existe una mayor resistencia al flujo. En conclusión, la inclusión de dipolos inducidos en el grafeno, implica un aumento en el coeficiente de fricción λ, lo que indica que los efectos de la polarización tienen una influencia considerable en el comportamiento de esta.
In this study, the correlation between polarization and friction at the interface between water and graphene was examined through the use of Molecular Dynamics simulation. Two specific cases were analyzed in order to investigate this relationship. The first case involved an analysis of the friction (λ) at the interface between water molecules deposited on non-polarizable graphene sheets, while the second case focused on polarizable graphene. In both cases, the SWM4-NDP rigid-type polarizable water model was utilized. The effects of polarization were simulated using the Classical Drude Oscillator Model with Thole damping potential. The friction coefficient (λ) was calculated using the Green-Kubo formalism for both case studies. The friction coefficient for polarizable graphene exhibited an average value of approximately λP ≈ 1.27±0.009×104 Ns/m3, whereas for non-polarizable graphene, the friction coefficient was λNP ≈ 1.09 ± 0.0017 × 104 Ns/m3. This represents a difference of approximately 14 %, with the friction value at the polarizable graphene-water interface being higher. As a complementary analysis, the Gibbs Free Energy (ΔG) was computed for both case studies in order to examine the structural and energetic contributions of water, as well as to investigate the energy barrier. The results indicate that the interaction between water and polarizable graphene presents a more undulating energy barrier, suggesting a greater resistance to flow. In conclusion, the inclusion of induced dipoles in graphene results in an increase in the friction coefficient λ, indicating that the effects of polarization have a significant impact on the behavior of friction.
In this study, the correlation between polarization and friction at the interface between water and graphene was examined through the use of Molecular Dynamics simulation. Two specific cases were analyzed in order to investigate this relationship. The first case involved an analysis of the friction (λ) at the interface between water molecules deposited on non-polarizable graphene sheets, while the second case focused on polarizable graphene. In both cases, the SWM4-NDP rigid-type polarizable water model was utilized. The effects of polarization were simulated using the Classical Drude Oscillator Model with Thole damping potential. The friction coefficient (λ) was calculated using the Green-Kubo formalism for both case studies. The friction coefficient for polarizable graphene exhibited an average value of approximately λP ≈ 1.27±0.009×104 Ns/m3, whereas for non-polarizable graphene, the friction coefficient was λNP ≈ 1.09 ± 0.0017 × 104 Ns/m3. This represents a difference of approximately 14 %, with the friction value at the polarizable graphene-water interface being higher. As a complementary analysis, the Gibbs Free Energy (ΔG) was computed for both case studies in order to examine the structural and energetic contributions of water, as well as to investigate the energy barrier. The results indicate that the interaction between water and polarizable graphene presents a more undulating energy barrier, suggesting a greater resistance to flow. In conclusion, the inclusion of induced dipoles in graphene results in an increase in the friction coefficient λ, indicating that the effects of polarization have a significant impact on the behavior of friction.
Description
Tesis presentada para optar al grado de Magíster en Ciencias de la Ingeniería con mención en Ingeniería Mecánica.