Uncertainty estimation for time series classification: Exploring predictive uncertainty in transformer-based models for variable stars.

dc.contributor.advisorCabrera Vives, Guillermoes
dc.contributor.authorCádiz Leyton, Martina Aliciaes
dc.date.accessioned2024-11-26T13:56:36Z
dc.date.available2024-11-26T13:56:36Z
dc.date.issued2024
dc.descriptionTesis presentada para optar al grado académico de Magíster en Ciencias de la Computaciónes
dc.description.abstractWe aim to enhance transformer-based models for classifying astronomical light curves by incorporating uncertainty estimation techniques to detect misclassified instances. We tested our methods on labeled datasets from MACHO, OGLE-III, and ATLAS, introducing a framework that significantly improves the reliability of automated classification for the next-generation surveys. We used a transformer-based encoder, Astromer, designed for capturing representations of single-band light curves. We enhanced its capabilities by applying three methods for quantifying uncertainty: Monte Carlo Dropout (MC Dropout), Hierarchical Stochastic Attention (HSA), and a novel hybrid method combining both approaches, which we have named Hierarchical Attention with Monte Carlo Dropout (HA-MC Dropout). We compared these methods against a baseline of Deep Ensembles (DEs). To estimate uncertainty estimation scores for the misclassification task, we selected Sampled Maximum Probability (SMP), Probability Variance (PV), and Bayesian Active Learning by Disagreement (BALD) as uncertainty estimates. When testing predictive performance, HA-MC Dropout outperforms the baseline, achieving macro F1-scores of 79.8 ± 0.5 on OGLE, 84 ± 1.3 on ATLAS, and 76.6 ± 1.8 on MACHO. In the misclassification detection task, it achieves the highest improvement of 8.5 ± 1.6 over the baseline using the PV score on OGLE-III.en
dc.description.campusConcepciónes
dc.description.departamentoDepartamento de Ingeniería Informática y Ciencias de la Computaciónes
dc.description.facultadFacultad de Ingenieríaes
dc.identifier.doihttps://doi.org/10.29393/TMUdeC-151CM1UE151
dc.identifier.urihttps://repositorio.udec.cl/handle/11594/10940
dc.language.isoenen
dc.publisherUniversidad de Concepciónes
dc.rightsCC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectProcesamiento de datoses
dc.subjectAstrofísicaes
dc.subjectEstrellas variableses
dc.titleUncertainty estimation for time series classification: Exploring predictive uncertainty in transformer-based models for variable stars.en
dc.typeThesisen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cádiz_l_m_2024_MAG.pdf
Size:
485.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections